WO2016158892A1 - 電動機制御装置の回転子位置検出器異常判定装置 - Google Patents

電動機制御装置の回転子位置検出器異常判定装置 Download PDF

Info

Publication number
WO2016158892A1
WO2016158892A1 PCT/JP2016/060002 JP2016060002W WO2016158892A1 WO 2016158892 A1 WO2016158892 A1 WO 2016158892A1 JP 2016060002 W JP2016060002 W JP 2016060002W WO 2016158892 A1 WO2016158892 A1 WO 2016158892A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor position
position detector
unit
abnormality determination
current
Prior art date
Application number
PCT/JP2016/060002
Other languages
English (en)
French (fr)
Inventor
信貴 毛塚
省吾 黒住
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN201680019668.8A priority Critical patent/CN108139229B/zh
Priority to RU2017134421A priority patent/RU2658660C1/ru
Publication of WO2016158892A1 publication Critical patent/WO2016158892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a rotor position detector abnormality determination device in a power conversion device that acquires rotor position / speed information of an electric motor using a rotor position detector such as a rotary encoder and controls the electric motor.
  • a vector control type electric motor control device with a position / speed sensor shown in FIG. 4 is employed. .
  • reference numeral 1 denotes a three-phase motor, and a rotor position detector 2 for detecting a rotor position (rotation angle) is attached to the motor 1.
  • Reference numeral 3 denotes a speed calculation unit that calculates the rotational speed of the motor from the detection signal of the rotor position detector 2.
  • Reference numeral 4 denotes a speed control unit that controls the rotational speed calculated by the speed calculation unit 3 to be the speed command value of the speed command unit 5 and outputs a current command value.
  • FIG. 6 shows a three-phase detection current obtained by detecting a three-phase (u, v, w) current flowing in the motor 1 by a current transformer (current sensor) 7, and position information of the rotor obtained by the rotor position detector 2. That is, it is a dq conversion unit that performs three-phase to two-phase conversion and rotational coordinate conversion based on phase information.
  • dq-axis current converted by the dq conversion unit 6 is a current command value output from the speed control unit 4 and outputs a dq-axis voltage command value.
  • Reference numeral 10 denotes a power converter (inverter) that has, for example, a semiconductor switching element connected in a three-phase bridge, and supplies three-phase AC power to the motor 1 based on a voltage command from the three-phase converter 9.
  • the PWM modulation unit is controlled by a control signal (gate signal of the semiconductor switching element) generated by PWM modulating the voltage command of the three-phase conversion unit 9.
  • the UVW three-phase coordinate system, ⁇ fixed coordinate system, and dq rotational coordinate system in vector control in which three-phase to two-phase conversion and rotational coordinate conversion are performed are defined as shown in FIG. That is, each axis of the three-phase current UVW is converted into an ⁇ axis by three-phase to two-phase conversion, and converted to a dq axis by rotational coordinate conversion. Each of the dq axes is a direct current amount.
  • each dq axis has a constant value, but when the speed command is changed, it shifts to a value like the dq axis value at that speed command value. During this transition, the dq axis value has a vibration component in a transient state.
  • the dq coordinate axis can be arbitrarily defined after the uvw ⁇ dq conversion, but in general, the d axis coincides with the magnetic flux of the motor in order to easily control the motor torque.
  • coordinate conversion is performed based on position information of the rotor obtained from, for example, a rotary encoder (rotor position detector 2), that is, phase information.
  • the dq axes rotate in synchronization with the rotation frequency in the case of a synchronous motor, and in synchronization with the frequency on the primary winding side in the case of an induction motor (IM).
  • IM induction motor
  • the current value obtained by coordinate conversion on the dq axis is a direct current amount.
  • a rotary encoder absolute encoder shown in FIG. 6 is used as the rotor position detector 2, for example, a rotary encoder (absolute encoder) shown in FIG. 6 is used.
  • reference numeral 60 denotes a rotating disk provided rotatably by a rotating shaft 61.
  • the rotating disk 60 displays a plurality of disk tracks D 1 to D n (only two tracks are shown in the figure). Is formed).
  • a light source 63 is provided above the rotating disk 60 via a lens 62, and a light receiving element 65 is provided below it via a fixed slit plate 64 having a plurality of fixed slits.
  • Light from the light source 63 is received by the light receiving element 65 via the lens 62, the disk tracks D 1 to D n and the fixed slit plate 64, and an absolute position signal having a predetermined bit configuration is obtained from the output signal of each light receiving element 65. .
  • Patent Document 1 a device disclosed in Patent Document 1 has been proposed as an abnormality and deterioration diagnosis device for electrical equipment related to the present invention.
  • the detection information of the rotor position detector 2 is incorrect.
  • speed control and current control cannot be appropriately performed. For this reason, when a sudden speed fluctuation or load fluctuation occurs, an overcurrent failure or an overspeed failure may occur and the device may be broken.
  • harmonic components are included in the output current and the loss increases.
  • PM motor permanent magnet synchronous motor
  • the increased loss becomes heat, and the temperature of the rotor magnet may rise and demagnetize.
  • the rotating disk 60 attached to the rotating shaft 61 is a movable part, and other components are fixed. Therefore, when the rotary encoder itself is subjected to mechanical vibration, it should originally exist. Since the positional relationship among the fixed light source 63, the lens 62, the fixed slit plate 64, and the light receiving element 65 is blurred, phase blurring occurs in the output of the rotary encoder. For this reason, the phase signal input to the dq converter 6 is also blurred. For this reason, since the phase information used for coordinate conversion vibrates, the current on the dq axes also vibrates. This vibration component becomes a harmonic component, and the loss of the motor increases.
  • the present invention solves the above-described problems, and its purpose is to reliably determine that information on the rotor position detector is abnormal due to mechanical vibration, for example, vibration generated due to a mounting failure on the electric motor.
  • An object of the present invention is to provide a rotor position detector abnormality determination device for an electric motor control device.
  • the rotor position detector abnormality determining device for an electric motor control device for solving the above-mentioned problem is an electric motor control device for controlling an electric motor based on detection information of a rotor position detector attached to the electric motor.
  • a vibration component extraction unit that extracts a vibration component of the d-axis current from the d-axis current obtained by converting the three-phase detection current of the electric motor into the dq axes; It is determined whether or not the vibration component of the d-axis current extracted by the vibration component extraction unit is a vibration caused by a mechanical factor. When the vibration component is a vibration caused by a mechanical factor, the vibration component continues for a set time or more.
  • a rotor position detector information abnormality determination unit that determines that the detection information of the rotor position detector is abnormal when the information is detected.
  • the abnormality determination is performed based on the vibration component of the d-axis current obtained by converting the detected current of the motor into the dq axes. It can be reliably determined that the information of the rotor position detector is abnormal due to the vibration.
  • the rotor position detector abnormality determining device of the electric motor control device is the rotor position detector information abnormality determining unit according to claim 1,
  • An effective value calculation unit for calculating an effective value of the vibration component of the d-axis current;
  • a first comparison unit that compares a first determination value set to a current value corresponding to noise other than vibration caused by a mechanical factor and the calculated effective value;
  • a counter that counts the time when the comparison result of the first comparison unit is larger in effective value than the first determination value;
  • a second comparison unit that compares the second determination value set to the allowable time of AC component generation and the count time of the counter; When the comparison result of the second comparison unit shows that the count time of the counter is longer than the second determination value, it is determined that the detection information of the rotor position detector is abnormal.
  • the first comparison unit since the first comparison unit is provided, it is possible to prevent erroneous determination due to noise other than vibration caused by mechanical factors.
  • the second comparison unit since the second comparison unit is provided, it is erroneously determined based on the AC component generated within the AC component generation allowable time, for example, the high-frequency current component generated when a transient speed fluctuation occurs in the motor. Can be prevented.
  • the rotor position detector abnormality determining device for the electric motor control device is: A speed control system that controls the speed according to detection information of the rotor position detector; A current control system for controlling the current by the output of a coordinate conversion unit that converts the three-phase detection current of the motor into dq axes with reference to the detection information of the rotor position detector.
  • speed control and current control are performed based on abnormal detection information output from the rotor position detector, and it is possible to prevent an overspeed failure or an overcurrent failure from occurring.
  • the vibration component extracting unit according to any one of claims 1 to 3 includes a high-pass filter.
  • the rotor position detector abnormality determining device of the motor control device according to any one of the first to third aspects, wherein the vibration component extraction unit is only in a frequency band corresponding to mechanical vibration.
  • a band-pass filter that passes the filter is provided.
  • the abnormality determination is performed based on the vibration component of the d-axis current obtained by converting the detected current of the motor into the dq axes. It is possible to reliably determine that the information on the rotor position detector is abnormal due to vibration, for example, vibration generated due to a mounting failure in the electric motor.
  • the block diagram which shows the structure of the example of embodiment of this invention The block diagram which shows the principal part detail in Example 1 of this invention.
  • the block diagram which shows the principal part detail in Example 2 of this invention The block diagram which shows an example of the electric motor control apparatus with which this invention is applied.
  • Explanatory drawing which shows the definition of the control coordinate axis in vector control.
  • FIG. 1 shows the configuration of the present embodiment, and the same parts as those in FIG.
  • FIG. 1 differs from FIG. 4 in that harmonic detection is performed by extracting a vibration component (AC component) of the d-axis current, that is, a harmonic, from the d-axis current of the dq-axis current converted by the dq converter 6. It is determined whether the vibration component of the d-axis current extracted by the unit 11 (vibration component extraction unit) and the harmonic detection unit 11 is a vibration caused by a mechanical factor, and is a vibration caused by a mechanical factor.
  • an encoder information abnormality determination unit 12 rotor position detector information abnormality determination unit
  • the other parts are the same as in FIG.
  • a rotary encoder shown in FIG. 6 is used as the rotor position detector 2, and in the following description, the rotor position detector may be simply referred to as an encoder.
  • the current information obtained by detecting the current flowing through the motor 1 with the current transformer 7 (current sensor) is subjected to three-phase to two-phase conversion and rotational coordinate conversion by the dq conversion unit 6.
  • Id detection value
  • q-axis current detection value q-axis current detection value
  • the d-axis current detection value (Id) after the rotation coordinate conversion by the dq conversion unit 6 is a direct current amount and normally does not vibrate. Therefore, the vibration detection component (Id_h) of the d-axis current is extracted by the harmonic detection unit 11, and the encoder information abnormality determination unit 12 determines whether or not the vibration component is a vibration caused by a mechanical factor. The correctness / incorrectness of the information is determined. If there is an error, it is determined that the information is abnormal.
  • FIG. 2 shows a detailed configuration of the harmonic detection unit 11 and the encoder information abnormality determination unit 12 in FIG.
  • Reference numeral 11a denotes a harmonic detection unit including a high-pass filter (HPF) that performs high-band pass processing on the d-axis current detection value Id to extract a vibration component Id_h of the d-axis current.
  • HPF high-pass filter
  • the vibration component Id_h of the d-axis current that is the output of the harmonic detection unit 11a becomes an AC component waveform, and is input to an effective value calculation (Root Mean Square; RMS) unit 21 of the encoder information abnormality determination unit 12.
  • the effective value calculator 21 calculates an effective value of the vibration component Id_h and extracts an effective value component.
  • the first comparison unit 22 compares the effective value component output from the effective value calculation unit 21 with the first determination value (determination value 1) for preventing erroneous determination due to noise.
  • the effective value is larger, “1” Is a first comparison unit that outputs ".” Note that the first comparison unit 22 outputs “0” when the first determination value is larger.
  • the first judgment value is set to an amplitude value of about 5% with respect to the rated current value, for example. That is, the harmonic component of the d-axis current basically does not occur except for the vibration component of the speed sensor (encoder: rotor position detector 2) and the current sensor (current transformer 7).
  • the first judgment value may be set to about 5% of the rated current value. This improves the determination accuracy.
  • the output of the first comparison unit 22 is input to the up counter 23 (counter).
  • the up counter 23 when the first comparison unit 22 outputs “1” (a harmonic is generated), the state continues. Calculate (count) the time to perform.
  • the second comparison unit 24 compares the count time output from the up-counter 23 with the second determination value (determination value 2) for preventing erroneous determination due to the AC component generated within the allowable time.
  • This is a second comparison unit that outputs “1” when it is large (the harmonic generation duration exceeds the allowable time) and determines that the encoder information is abnormal. Note that the second comparison unit 24 outputs “0” when the second determination value is larger.
  • the value for the second judgment value is set in minutes. That is, for example, when a transient speed fluctuation occurs in the motor 1, a high-frequency current component is generated, but the electric time constant of the motor is not as long as minutes. Therefore, by setting the second determination value in minutes, there is no erroneous determination due to the transient speed fluctuation of the motor, and vibration due to abnormal mechanical attachment of the encoder (rotor position detector 2). It can be determined that there is. This improves the determination accuracy.
  • speed control and current control are performed based on abnormal detection information output from the rotor position detector 2, and it is possible to prevent an overspeed failure or an overcurrent failure from occurring.
  • the vibration component Id_h of the d-axis current that is the output of the harmonic detection unit 11 has a frequency in a band close to the output frequency component of the motor, not an AC component such as noise. That is, vibrations caused by mechanical factors do not become high frequency components such as noise.
  • the vibration component of the d-axis current is extracted for the low frequency region and the high frequency region is extracted.
  • BPF band pass filter
  • the encoder information abnormality determination unit 12 is configured in the same way as in FIG.
  • the vibration component of the d-axis current ( Id_h) is extracted, it is determined whether or not the vibration component is a vibration caused by a mechanical factor, and when the vibration component duration when the vibration component is a vibration caused by a mechanical factor exceeds an allowable time, an encoder ( It can be determined that the detection information of the rotor position detector 2) is abnormal.
  • motor loss increases.
  • PM permanent magnet synchronous motor
  • the temperature of the rotor magnet may rise and demagnetize.
  • the electric motor can be protected from them.
  • the present invention is not limited to the motor control device shown in FIG. 1, and can be applied to motor control devices having other configurations. In this case, the same operations and effects as described above can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

機械的振動、例えばモータ1への取り付け不具合により発生した振動によって回転子位置検出器2の情報が異常となっていることを確実に判定する。回転子位置検出器2の検出情報により速度を制御する速度制御系(速度演算部3、速度制御部4)と、前記検出器2の検出情報を基準としてモータ1の三相検出電流をd-q軸に変換するdq変換部6の出力によって電流を制御する電流制御系(電流制御部8)とを備えた電動機制御装置において、dq変換部6で得られたd軸電流Idから、d軸電流の振動成分Id_hを抽出する高調波検出部11と、高調波検出部11によって抽出されたd軸電流の振動成分が機械的要因で起こる振動であるか否かを判定し、機械的要因で起こる振動である場合に、その振動成分が設定時間以上継続したときに、回転子位置検出器2の検出情報が異常であると判定するエンコーダ情報異常判定部12と、を備えた。

Description

電動機制御装置の回転子位置検出器異常判定装置
 本発明は、ロータリーエンコーダなどの回転子位置検出器を使用して電動機の回転子位置・速度情報を取得し、電動機を制御する電力変換装置における、回転子位置検出器異常判定装置に関する。
 電動機に取り付けられた回転子位置検出器(位置・速度センサ)の検出情報に基づいて電動機を制御する装置として、例えば図4に示す位置・速度センサ付ベクトル制御方式の電動機制御装置が採用される。
 図4において、1は三相のモータであり、モータ1には回転子位置(回転角度)を検出する回転子位置検出器2が取り付けられている。3は回転子位置検出器2の検出信号からモータの回転速度を演算する速度演算部である。4は、速度演算部3で演算された回転速度が、速度指令部5の速度指令値になるように制御し、電流指令値を出力する速度制御部である。
 6は、モータ1に流れる三相(u,v,w)電流を変流器(電流センサ)7で検出した三相検出電流を、回転子位置検出器2で得られた回転子の位置情報、すなわち位相情報を基準にして三相-二相変換、回転座標変換するdq変換部である。
 8は、dq変換部6で変換されたd-q軸電流が速度制御部4から出力される電流指令値となるように制御しd-q軸電圧指令値を出力する電流制御部である。
 9は、電流制御部8から出力されたd-q軸電圧指令値を、回転子位置検出器2で得られた回転子の位置情報、すなわち位相情報を基準にして二相-三相変換し、三相各相の電圧指令を出力する三相変換部である。
 10は、例えば三相ブリッジ接続された半導体スイッチング素子を有し、三相変換部9の電圧指令に基づいてモータ1に三相交流電力を供給する電力変換器(インバータ)であり、図示省略のPWM変調部で前記三相変換部9の電圧指令をPWM変調して生成された制御信号(半導体スイッチング素子のゲート信号)によって制御される。
 上記のように、位置・速度センサ(回転子位置検出器2)付きのベクトル制御を行う場合には、センサの位置・速度情報を使用して速度制御及び電流制御を行っている。
 三相-二相変換および回転座標変換がなされるベクトル制御における、UVW三相座標系、αβ固定座標系、dq回転座標系は、図5のように定義される。すなわち、三相電流UVWの各軸は三相-二相変換によってαβ軸に変換され、回転座標変換によってd-q軸に変換される。d-q軸は各々直流量となる。
 定常速度ではd-q軸は各々一定値となるが、速度指令を変更すると、その速度指令値でのd-q軸値のような値に移行する。この移行する間は、d-q軸値は過渡的状態で振動成分を持つ。
 dq変換部6において、uvw→dq変換をした後d-q座標軸は任意に定義することができるが、一般的にはモータのトルクを制御しやすくするためにd軸をモータの磁束と一致するように制御する。制御する為の座標を回転座標系で定義したときには、例えばロータリーエンコーダ(回転子位置検出器2)から得られた回転子の位置情報、すなわち位相情報を基準に座標変換を行う。d-q軸は、同期電動機の場合には回転周波数に同期し、誘導電動機(IM)の場合には一次巻線側の周波数に同期して回転する。d-q軸上の座標変換した電流値は直流量となる。
 前記回転子位置検出器2は、例えば図6に示すロータリーエンコーダ(アブソリュート・エンコーダ)が用いられる。図6において、60は、回転軸61によって回転自在に設けられた回転円板であり、この回転円板60には複数トラックのディスクトラックD1~Dn(図示では2トラック分のみ表示している)が形成されている。
 回転円板60の上方位置にはレンズ62を介して光源63が設けられ、下方位置には複数の固定スリットを有する固定スリット板64を介して受光素子65が配設されている。
 光源63の光は、レンズ62、ディスクトラックD1~Dnおよび固定スリット板64を介して受光素子65で受光され、各受光素子65の出力信号により所定ビット構成のアブソリュート位置信号を得ている。
 尚、本発明に関連する電機機器の異常及び劣化診断装置は、例えば特許文献1に記載のものが提案されている。
特開2003-156547号公報
 図4のように、回転子位置検出器2の検出情報(位置・速度情報)を使用して速度制御及び電流制御を行う装置においては、回転子位置検出器2の検出情報が誤っている場合には速度制御および電流制御も適切に行うことができない。このため、急な速度変動もしくは負荷変動が起きた場合には過電流故障や過速度故障が発生してしまい装置が壊れてしまう可能性がある。
 さらに、回転子位置検出器2の位置・速度情報が振動してしまっている場合には出力電流に高調波成分が含まれ損失が増加する。永久磁石同期電動機(PMモータ)の場合には増加した損失が熱となり回転子磁石の温度が上昇し減磁する恐れがある。
 例えば、回転子位置検出器2として図6のロータリーエンコーダが採用されている図4の制御装置において、ロータリーエンコーダが取り付け不具合を起こし、モータ1のカップリング異常となった場合、ロータリーエンコーダの出力信号が振動する場合がある。
 図6に示すように、回転軸61に取り付けられている回転円板60は可動部であり、その他の構成部品は固定されているため、ロータリーエンコーダ自体に機械的振動を受けると、本来あるべき固定された光源63、レンズ62、固定スリット板64、受光素子65の位置関係にブレが生じるので、ロータリーエンコーダの出力に位相のブレが生じる。このため、dq変換部6に入力される位相信号にもブレが生じる。このため、座標変換に使用する位相情報が振動する為、d-q軸上の電流も振動する。この振動成分は高調波成分となり、モータの損失が増加する。
 永久磁石同期電動機(PMモータ)の場合、損失が増加すると回転子磁石の温度が上昇し減磁する恐れがある。誘導電動機(IM)の場合にも、絶縁物の劣化による短絡や、何らかの物質の焼損の恐れがある。また、制御性能も劣化する為、急な速度変動もしくは負荷変動が起きた場合には過電流故障や過速度故障が発生してしまい、装置が壊れてしまう可能性がある。現状では、これらを防止するため、ロータリーエンコーダの種類を問わずにエンコーダ情報により故障などの異常がないかどうかの判定を行う機能がない。
 本発明は、上記課題を解決するものであり、その目的は、機械的振動、例えば電動機への取り付け不具合により発生した振動によって回転子位置検出器の情報が異常となっていることを確実に判定することができる電動機制御装置の回転子位置検出器異常判定装置を提供することにある。
 上記課題を解決するための請求項1に記載の電動機制御装置の回転子位置検出器異常判定装置は、電動機に取り付けられた回転子位置検出器の検出情報に基づいて電動機を制御する電動機制御装置において、
 電動機の三相検出電流をd-q軸に変換して得られたd軸電流から、d軸電流の振動成分を抽出する振動成分抽出部と、
 前記振動成分抽出部によって抽出されたd軸電流の振動成分が機械的要因で起こる振動であるか否かを判定し、機械的要因で起こる振動である場合に、その振動成分が設定時間以上継続したときに、回転子位置検出器の検出情報が異常であると判定する回転子位置検出器情報異常判定部と、を備えている。
 上記構成によれば、電動機の検出電流をd-q軸に変換して得たd軸電流の振動成分に基づいて異常判定を行っているので、機械的振動、例えば電動機への取り付け不具合により発生した振動によって回転子位置検出器の情報が異常となっていることを確実に判定することができる。
 また、請求項2に記載の電動機制御装置の回転子位置検出器異常判定装置は、請求項1において、前記回転子位置検出器情報異常判定部は、
 前記d軸電流の振動成分の実効値を演算する実効値演算部と、
 機械的要因で起こる振動以外のノイズに相当する電流値に設定した第1の判定値と前記演算された実効値とを比較する第1の比較部と、
 第1の比較部の比較結果が、第1の判定値よりも実効値の方が大であるときの時間をカウントするカウンタと、
 交流成分発生の許容時間に設定された第2の判定値と前記カウンタのカウント時間とを比較する第2の比較部とを備え、
 第2の比較部の比較結果が、第2の判定値よりもカウンタのカウント時間の方が大であるときに、回転子位置検出器の検出情報が異常であると判定する。
 上記構成によれば、第1の比較部を設けたので、機械的要因で起こる振動以外のノイズによって誤判定してしまうことを防ぐことができる。
 また第2の比較部を設けたので、交流成分発生の許容時間内に発生した交流成分、例えば電動機で過渡的な速度変動が生じたときに発生する高周波電流成分によって誤判定してしまうことを防ぐことができる。
 また、請求項3に記載の電動機制御装置の回転子位置検出器異常判定装置は、請求項1又は2において、前記電動機制御装置は、
 回転子位置検出器の検出情報によって速度を制御する速度制御系と、
 回転子位置検出器の検出情報を基準として電動機の三相検出電流をd-q軸に変換する座標変換部の出力によって電流を制御する電流制御系と、を備えている。
 上記構成によれば、回転子位置検出器が出力する異常な検出情報によって速度制御および電流制御がなされて、過速度故障や過電流故障が発生することを防ぐことができる。
 また、請求項4に記載の電動機制御装置の回転子位置検出器異常判定装置は、請求項1ないし3のいずれか1項において、前記振動成分抽出部は、ハイパスフィルタを備えている。
 また、請求項5に記載の電動機制御装置の回転子位置検出器異常判定装置は、請求項1ないし3のいずれか1項において、前記振動成分抽出部は、機械的振動に相当する周波数帯域のみを通過させるバンドパスフィルタを備えている。
(1)請求項1~5に記載の発明によれば、電動機の検出電流をd-q軸に変換して得たd軸電流の振動成分に基づいて異常判定を行っているので、機械的振動、例えば電動機への取り付け不具合により発生した振動によって回転子位置検出器の情報が異常となっていることを確実に判定することができる。
(2)請求項2に記載の発明によれば、機械的要因で起こる振動以外のノイズ、および交流成分発生の許容時間内に発生した交流成分による誤判定を防ぎ、判定精度を向上させることができる。
(3)請求項3に記載の発明によれば、回転子位置検出器が出力する異常な検出情報によって速度制御および電流制御がなされて、過速度故障や過電流故障が発生することを防ぐことができる。
本発明の実施形態例の構成を示すブロック図。 本発明の実施例1における要部詳細を示すブロック図。 本発明の実施例2における要部詳細を示すブロック図。 本発明が適用される電動機制御装置の一例を示すブロック図。 ベクトル制御における制御座標軸の定義を示す説明図。 本発明が適用されるアブソリュート・エンコーダの構成図。
 以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。図1は本実施形態例の構成を示し、図4と同一部分は同一符号をもって示している。
 図1において図4と異なる点は、dq変換部6によって変換されたd-q軸電流のうちd軸電流から、d軸電流の振動成分(交流成分)、すなわち高調波を抽出する高調波検出部11(振動成分抽出部)と、前記高調波検出部11によって抽出されたd軸電流の振動成分が機械的要因で起こる振動であるか否かを判定し、機械的要因で起こる振動である場合に、その振動成分が設定時間以上継続したときに、回転子位置検出器2の検出情報が異常であると判定するエンコーダ情報異常判定部12(回転子位置検出器情報異常判定部)と、を設けた点にあり、その他の部分は図1と同一に構成されている。
 尚、回転子位置検出器2には、例えば図6に示すロータリーエンコーダが用いられ、以下の説明では、回転子位置検出器を単にエンコーダと称することもある。
 モータ1に流れる電流を変流器7(電流センサ)によって検出して得られた電流を、dq変換部6によって三相-二相変換、回転座標変換した後の電流情報には、d軸電流検出値(Id)とq軸電流検出値の2成分がある。本実施形態例では、図1のようにd軸電流検出値の情報よりエンコーダ情報の正誤判定を行うように構成した。
 dq変換部6によって回転座標変換した後のd軸電流検出値(Id)は直流量となり、通常は振動することはない。このため高調波検出部11によってd軸電流の振動成分(Id_h)を抽出し、その振動成分が機械的要因で起こる振動であるか否かをエンコーダ情報異常判定部12によって判定することで、エンコーダ情報の正誤判定を行い、誤りである場合に、異常であると判定する。
 前記高調波検出部11およびエンコーダ情報異常判定部12は、以下の実施例1、実施例2で詳細に説明する。
(実施例1)
 図2は、図1における高調波検出部11およびエンコーダ情報異常判定部12の詳細な構成を示している。11aは、d軸電流検出値Idに対して高帯域通過処理を行ってd軸電流の振動成分Id_hを抽出するハイパスフィルタ(HPF)を備えた高調波検出部である。
 高調波検出部11aの出力であるd軸電流の振動成分Id_hは、交流成分の波形となり、エンコーダ情報異常判定部12の実効値演算(Root Mean Square;RMS)部21に入力される。実効値演算部21は、振動成分Id_hの実効値演算を行い、実効値成分を取り出す。
 22は、実効値演算部21から出力される実効値成分とノイズによる誤判定を防止するための第1の判定値(判定値1)とを比較し、実効値の方が大きいときに「1」を出力する第1の比較部である。尚、第1の比較部22は、第1の判定値の方が大きいときは「0」を出力する。
 前記第1の判定値は、定格電流値に対して例えば5%ぐらいの振幅の値を設定する。すなわち、d軸電流の高調波成分は、基本的に速度センサ(エンコーダ;回転子位置検出器2)と電流センサ(変流器7)の振動成分によるもの以外は発生しない。
 そこで、機械的要因で起こる振動成分以外のノイズによる誤検出、誤判定を防止するため、第1の判定値を定格電流値の5%程度に設定すればよい。これによって判定精度が向上する。
 第1の比較部22の出力はアップカウンタ23(カウンタ)に入力され、アップカウンタ23では、第1の比較部22が「1」を出力した(高調波が発生した)場合にその状態が継続する時間を演算(カウント)する。
 24は、アップカウンタ23から出力されるカウント時間と、許容時間内に発生した交流成分による誤判定を防止するための第2の判定値(判定値2)とを比較し、カウント時間の方が大である(高調波発生継続時間が許容時間を超えた)場合に「1」を出力し、エンコーダ情報が異常であると判定する第2の比較部である。尚、第2の比較部24は第2の判定値の方が大のときは「0」を出力する。
 前記第2の判定値は、分単位の値を設定する。すなわち、例えばモータ1で過渡的な速度変動が生じた際には高周波の電流成分が発生するが、モータの電気時定数は分単位と長いことはない。したがって、第2の判定値を分単位に設定することにより、前記モータの過渡的な速度変動によって誤判定することはなく、エンコーダ(回転子位置検出器2)の機械的な取り付け異常による振動であることを判断することができる。これによって判定精度が向上する。
 前記エンコーダ情報の異常が判定された場合は、例えばモータ1を停止させるなどの処置を行うことができる。
 本実施例1によれば、回転子位置検出器2が出力する異常な検出情報によって速度制御および電流制御がなされて、過速度故障や過電流故障が発生することを防ぐことができる。
(実施例2)
 高調波検出部11の出力であるd軸電流の振動成分Id_hは、ノイズのような交流成分ではなくモータの出力周波数成分に近い帯域の周波数となる。すなわち、機械的な要因で起こる振動はノイズのような高周波の成分となることはない。
 そこで本実施例2では、実施例1(図2)の高調波検出部11aに代えて、図3に示すように、低周波の領域に関してはd軸電流の振動成分を取り出し、高周波の領域に関してはノイズのような帯域をカットする通過帯域を持つバンドパスフィルタ(BPF)を備えた高調波検出部11bを採用した。図3において、エンコーダ情報異常判定部12は図2と同一に構成されている。
 図3の構成においても、前記図2と同様の動作となり、モータ1の三相検出電流をd-q軸に変換して得られたd軸電流(Id)から、d軸電流の振動成分(Id_h)が抽出され、前記振動成分が機械的要因で起こる振動であるか否かが判定され、機械的要因で起こる振動である場合の振動成分継続時間が許容時間を超えた場合に、エンコーダ(回転子位置検出器2)の検出情報が異常であると判定することができる。
 以上のように本実施形態例によれば、エンコーダ取り付け異常を監視し、異常判定結果に基づいてモータ制御を適切に行うことができる。
 また、エンコーダの取り付け異常が発生すると、モータの損失が増加する。永久磁石同期電動機(PM)の場合、損失が増加すると回転子磁石の温度が上昇し減磁する恐れがあり、誘導電動機(IM)の場合にも絶縁物の劣化による短絡や、何らかの物質の焼損の恐れがあるが、本実施形態例によればそれらから電動機を保護することができる。
 尚、本発明は図1に示す電動機制御装置に限らず、他の構成の電動機制御装置に適用することも可能であり、その場合も前記と同様の作用、効果を奏する。

Claims (5)

  1.  電動機に取り付けられた回転子位置検出器の検出情報に基づいて電動機を制御する電動機制御装置において、
     電動機の三相検出電流をd-q軸に変換して得られたd軸電流から、d軸電流の振動成分を抽出する振動成分抽出部と、
     前記振動成分抽出部によって抽出されたd軸電流の振動成分が機械的要因で起こる振動であるか否かを判定し、機械的要因で起こる振動である場合に、その振動成分が設定時間以上継続したときに、回転子位置検出器の検出情報が異常であると判定する回転子位置検出器情報異常判定部と、
     を備えた電動機制御装置の回転子位置検出器異常判定装置。
  2.  前記回転子位置検出器情報異常判定部は、
     前記d軸電流の振動成分の実効値を演算する実効値演算部と、
     機械的要因で起こる振動以外のノイズに相当する電流値に設定した第1の判定値と前記演算された実効値とを比較する第1の比較部と、
     第1の比較部の比較結果が、第1の判定値よりも実効値の方が大であるときの時間をカウントするカウンタと、
     交流成分発生の許容時間に設定された第2の判定値と前記カウンタのカウント時間とを比較する第2の比較部とを備え、
     第2の比較部の比較結果が、第2の判定値よりもカウンタのカウント時間の方が大であるときに、回転子位置検出器の検出情報が異常であると判定する請求項1に記載の電動機制御装置の回転子位置検出器異常判定装置。
  3.  前記電動機制御装置は、
     回転子位置検出器の検出情報によって速度を制御する速度制御系と、
     回転子位置検出器の検出情報を基準として電動機の三相検出電流をd-q軸に変換する座標変換部の出力によって電流を制御する電流制御系と、
     を備えている請求項1又は2に記載の電動機制御装置の回転子位置検出器異常判定装置。
  4.  前記振動成分抽出部は、ハイパスフィルタを備えている請求項1ないし3のいずれか1項に記載の電動機制御装置の回転子位置検出器異常判定装置。
  5.  前記振動成分抽出部は、機械的振動に相当する周波数帯域のみを通過させるバンドパスフィルタを備えている請求項1ないし3のいずれか1項に記載の電動機制御装置の回転子位置検出器異常判定装置。
PCT/JP2016/060002 2015-04-02 2016-03-29 電動機制御装置の回転子位置検出器異常判定装置 WO2016158892A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680019668.8A CN108139229B (zh) 2015-04-02 2016-03-29 电动机控制装置的转子位置检测器异常判定装置
RU2017134421A RU2658660C1 (ru) 2015-04-02 2016-03-29 Устройство для определения ошибочного функционирования датчика положения ротора в устройстве управления электродвигателем

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075713 2015-04-02
JP2015075713A JP6052323B2 (ja) 2015-04-02 2015-04-02 電動機制御装置の回転子位置検出器異常判定装置

Publications (1)

Publication Number Publication Date
WO2016158892A1 true WO2016158892A1 (ja) 2016-10-06

Family

ID=57006834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060002 WO2016158892A1 (ja) 2015-04-02 2016-03-29 電動機制御装置の回転子位置検出器異常判定装置

Country Status (4)

Country Link
JP (1) JP6052323B2 (ja)
CN (1) CN108139229B (ja)
RU (1) RU2658660C1 (ja)
WO (1) WO2016158892A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293930B (zh) * 2018-12-07 2023-07-11 施耐德电气工业公司 用于控制电机的方法和装置
JP2020153965A (ja) * 2019-03-15 2020-09-24 オムロン株式会社 異常診断装置および異常診断方法
US11988546B2 (en) 2019-04-12 2024-05-21 Satake Corporation Sieving device
US11353345B2 (en) 2019-07-22 2022-06-07 Boston Dynamics, Inc. Magnetic encoder calibration
DE112021006951T5 (de) * 2021-06-25 2023-12-28 Hitachi Industrial Equipment Systems Co., Ltd. Verschleißdiagnosevorrichtung, Verschleißdiagnoseverfahren und Elektromotorsteuervorrichtung.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057817A (ja) * 2003-08-01 2005-03-03 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2006067731A (ja) * 2004-08-27 2006-03-09 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2006129636A (ja) * 2004-10-29 2006-05-18 Daihatsu Motor Co Ltd モータ回転検出の異常検出方法及び異常検出装置
JP2008278575A (ja) * 2007-04-26 2008-11-13 Sanyo Electric Co Ltd モータ制御装置
WO2015029098A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411878B2 (ja) * 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
JP3671369B2 (ja) * 2001-11-26 2005-07-13 エイテック株式会社 電気機器の異常及び劣化診断装置
AU2003289041A1 (en) * 2002-12-12 2004-06-30 Nsk Ltd. Motor drive-controlling device and electric power-steering device
DE10355423A1 (de) * 2003-11-27 2005-07-14 Siemens Ag Verfahren zur Erkennung eines fehlerhaften Rotorlagewinkelsignals sowie Einrichtungen zur Durchführung des Verfahrens
JP4789720B2 (ja) * 2006-07-07 2011-10-12 三洋電機株式会社 モータ制御装置
RU2397600C1 (ru) * 2006-07-24 2010-08-20 Кабусики Кайся Тосиба Система привода двигателя с переменным магнитным потоком
FR2954020B1 (fr) * 2009-12-11 2012-02-24 Hispano Suiza Sa Dispositif de commande d'une msap

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057817A (ja) * 2003-08-01 2005-03-03 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2006067731A (ja) * 2004-08-27 2006-03-09 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2006129636A (ja) * 2004-10-29 2006-05-18 Daihatsu Motor Co Ltd モータ回転検出の異常検出方法及び異常検出装置
JP2008278575A (ja) * 2007-04-26 2008-11-13 Sanyo Electric Co Ltd モータ制御装置
WO2015029098A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法

Also Published As

Publication number Publication date
JP2016197015A (ja) 2016-11-24
CN108139229B (zh) 2019-06-25
JP6052323B2 (ja) 2016-12-27
CN108139229A (zh) 2018-06-08
RU2658660C1 (ru) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2016158892A1 (ja) 電動機制御装置の回転子位置検出器異常判定装置
US10042011B2 (en) Method to detect or monitor the demagnetization of a magnet
US8471507B2 (en) Electric power conversion system and electric power conversion device
JP4696146B2 (ja) 断線検出方法および電力変換装置
CN107111284B (zh) 检测场定向控制永磁同步电机中的故障
US9806656B1 (en) Fault tolerant phase current measurement for motor control systems
JP5397023B2 (ja) 交流モータの制御装置
US10396702B2 (en) Motor drive control device
JP6194113B2 (ja) モータ駆動装置
KR101169797B1 (ko) 3상 유도전동기의 고정자 권선 고장 진단시스템
JP5876846B2 (ja) 電動機駆動装置
US10389290B2 (en) Motor control apparatus
Dianov A novel phase loss detection method for low-cost motor drives
JP5055835B2 (ja) 同期モータの駆動装置
JP2007089261A (ja) 電力変換装置
WO2021117303A1 (ja) モータの減磁診断装置およびモータ制御装置の減磁診断方法
JP6108109B2 (ja) 永久磁石形同期電動機の制御装置
JP5744151B2 (ja) 電動機の駆動装置および電動機の駆動方法
JP2019205243A (ja) インバータ装置
JP2021090313A (ja) 電力変換装置
JP2007053842A (ja) 電動機の制御装置
JP4361598B1 (ja) センサレス交流電動機の制御装置
JP2010252503A (ja) Pmモータの位置・速度センサレス制御装置
JP2012143045A (ja) 同期電動機の制御装置、及び同期発電機の制御装置
JP5157082B2 (ja) 電動機駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017134421

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 16772773

Country of ref document: EP

Kind code of ref document: A1