WO2016157701A1 - 太陽電池セルおよび太陽電池セルの製造方法 - Google Patents

太陽電池セルおよび太陽電池セルの製造方法 Download PDF

Info

Publication number
WO2016157701A1
WO2016157701A1 PCT/JP2016/000940 JP2016000940W WO2016157701A1 WO 2016157701 A1 WO2016157701 A1 WO 2016157701A1 JP 2016000940 W JP2016000940 W JP 2016000940W WO 2016157701 A1 WO2016157701 A1 WO 2016157701A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
transparent conductive
bus bar
electrode
Prior art date
Application number
PCT/JP2016/000940
Other languages
English (en)
French (fr)
Inventor
正人 重松
泰史 角村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680018486.9A priority Critical patent/CN107408588B/zh
Priority to DE112016001478.3T priority patent/DE112016001478T5/de
Priority to JP2017509204A priority patent/JP6436424B2/ja
Publication of WO2016157701A1 publication Critical patent/WO2016157701A1/ja
Priority to US15/716,361 priority patent/US20180033898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar battery cell and a method for manufacturing the solar battery cell, and more particularly to a back junction solar battery cell.
  • both an n-type semiconductor layer and a p-type semiconductor layer are formed on the back surface facing the light receiving surface on which light is incident.
  • both an n-side electrode and a p-side electrode for taking out the generated power are provided on the back side.
  • the n-side electrode and the p-side electrode include a plating layer formed by a plating method (see, for example, Patent Document 1).
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell with improved reliability.
  • An embodiment of the present invention is a method for manufacturing a solar battery cell. This method includes forming a first semiconductor layer of a first conductivity type in a first region on a main surface of a semiconductor substrate having a first region and a second region adjacent to each other, and forming a part of the first region. Forming an insulating layer on the first semiconductor layer in the insulating region adjacent to the second region, and forming a second semiconductor layer of the second conductivity type on the main surface of the second region and on the insulating layer in the insulating region.
  • Growing the plating layer includes forming the first plating layer on the first region and forming the second plating layer on the second region.
  • Forming the second plating layer means that the second plating layer protrudes so as to approach the first plating layer as the distance from the main surface increases, and a gap is provided between the second plating layer and the first plating layer.
  • Forming. Removing part of the transparent conductive layer and the seed layer includes laser irradiation or dry etching of part of the transparent conductive layer with the gap as a mask.
  • the solar cell includes a semiconductor substrate having a main surface in which a first region and a second region adjacent to each other are provided, a first semiconductor layer of a first conductivity type provided in a first region on the main surface, An insulating layer provided on the first semiconductor layer of the insulating region that is part of the region and adjacent to the second region; and a second conductivity type provided over the main surface of the second region and the insulating layer of the insulating region.
  • the second semiconductor layer, the transparent conductive layer provided on the first semiconductor layer and the second semiconductor layer, the first metal electrode provided on the transparent conductive layer in the first region, and the transparent conductive layer in the second region A second metal electrode provided on the substrate.
  • the second metal electrode has a protruding portion that protrudes so as to approach the first metal electrode as it is away from the main surface, and is formed so that a gap between the second metal electrode and the first metal electrode is located in the insulating region.
  • the layer is provided so as to avoid the separation region corresponding to the gap in the insulating region.
  • the reliability of the solar battery cell can be improved.
  • Embodiment of this invention is a manufacturing method of a photovoltaic cell.
  • This method includes forming a first semiconductor layer of a first conductivity type in a first region on a main surface of a semiconductor substrate having a first region and a second region adjacent to each other, and forming a part of the first region. Forming an insulating layer on the first semiconductor layer in the insulating region adjacent to the second region, and forming a second semiconductor layer of the second conductivity type on the main surface of the second region and on the insulating layer in the insulating region.
  • a transparent conductive layer on the first semiconductor layer and the second semiconductor layer Forming a transparent conductive layer on the first semiconductor layer and the second semiconductor layer, forming a seed layer on the transparent conductive layer, and applying a plating resist on the seed layer in the insulating region Providing and growing a plating layer on the seed layer, removing the plating resist, and removing a part of the transparent conductive layer and the seed layer.
  • growing the plating layer includes forming the first plating layer on the first region and forming the second plating layer on the second region.
  • Forming the second plating layer means that the second plating layer protrudes so as to approach the first plating layer as the distance from the main surface increases, and a gap is provided between the second plating layer and the first plating layer.
  • Removing a part of the transparent conductive layer and the seed layer includes dry etching a part of the transparent conductive layer using the gap as a mask.
  • the plating layer is formed on the transparent conductive layer covering the first semiconductor layer and the second semiconductor layer, the plating layer is in direct contact with the first semiconductor layer and the second semiconductor layer. Can be prevented. Thereby, it can prevent that the metal which comprises a plating layer contacts the 1st semiconductor layer or the 2nd semiconductor layer, and influences the characteristic of a photovoltaic cell.
  • a space is provided between the plating layer and the transparent conductive layer projecting outward as the distance from the main surface increases, a portion of the transparent conductive layer is removed and exposed between the second semiconductor layer and the plating layer. You can take a distance. Thereby, it can prevent more reliably that a plating layer contacts a 2nd semiconductor layer directly.
  • FIG. 1 is a plan view showing a solar battery cell 70 according to the embodiment, and shows a structure of a back surface 70b of the solar battery cell 70.
  • the solar battery cell 70 includes a first electrode 14 and a second electrode 15 provided on the back surface 70b.
  • the first electrode 14 includes a first bus bar electrode 14a extending in the y direction and a plurality of first finger electrodes 14b extending in the x direction, and is formed in a comb shape.
  • the second electrode 15 includes a second bus bar electrode 15a extending in the y direction and a plurality of second finger electrodes 15b extending in the x direction, and is formed in a comb shape.
  • the 1st electrode 14 and the 2nd electrode 15 are formed so that a plurality of 1st finger electrodes 14b and a plurality of 2nd finger electrodes 15b may mesh, and may be inserted mutually.
  • the first electrode 14 and the second electrode 15 are composed of a transparent conductive layer 17 and a metal electrode layer 20 provided thereon, as will be described later with reference to FIG.
  • the first bus bar electrode 14 a, the first finger electrode 14 b, the second bus bar electrode 15 a, and the second finger electrode 15 b have a two-layer structure of the transparent conductive layer 17 and the metal electrode layer 20.
  • At the tip of the first finger electrode 14b there is provided a first finger tip portion 14c in which the transparent conductive layer 17 is exposed without the metal electrode layer 20 being provided.
  • the metal finger layer 20 is not provided at the tip of the second finger electrode 15b, but the second finger tip 15c where the transparent conductive layer 17 is exposed is provided.
  • a separation region W5 (W51, W52, W53) is provided between the first electrode 14 and the second electrode 15.
  • the separation region W5 is a region where the transparent conductive layer 17 and the metal electrode layer 20 constituting the first electrode 14 and the second electrode 15 are removed, and the first electrode 14 and the second electrode 15 are separated by the separation region W5. Insulation between is ensured.
  • a first bus bar separation region W51 is provided between the first bus bar electrode 14a and the second finger tip 15c.
  • a second bus bar separation region W52 is provided between the second bus bar electrode 15a and the first finger tip 14c.
  • a finger separation region W53 is provided between the first finger electrode 14b and the second finger electrode 15b.
  • FIG. 2 is a cross-sectional view showing the structure of the solar battery cell 70 according to the embodiment, and shows a cross section taken along line AA of FIG.
  • the solar battery cell 70 includes a semiconductor substrate 10, a light receiving surface protective layer 11, a first semiconductor layer 12, a second semiconductor layer 13, an insulating layer 16, a transparent conductive layer 17, and a metal electrode layer 20.
  • the metal electrode layer 20 includes a seed layer 18 and a plating layer 19.
  • the transparent conductive layer 17 and the metal electrode layer 20 constitute the first electrode 14 or the second electrode 15.
  • the first finger electrode 14b and the second finger electrode 15b are shown.
  • the solar cell 70 is a back junction type photovoltaic device in which the first semiconductor layer 12 and the second semiconductor layer 13 having different conductivity are provided on the back surface 70b side, and no electrode is provided on the light receiving surface 70a side. .
  • the semiconductor substrate 10 has a first main surface 10a provided on the light receiving surface 70a side and a second main surface 10b provided on the back surface 70b side.
  • the semiconductor substrate 10 absorbs light incident on the first major surface 10a and generates electrons and holes as carriers.
  • the semiconductor substrate 10 is made of a crystalline semiconductor material having n-type or p-type conductivity.
  • the semiconductor substrate 10 in the present embodiment is an n-type single crystal silicon substrate.
  • the light receiving surface 70a means a main surface on which light (sunlight) is mainly incident in the solar battery cell 70. Specifically, most of the light incident on the solar battery cell 70 is incident. Means the surface to be done.
  • the back surface 70b means the other main surface facing the light receiving surface 70a.
  • the first semiconductor layer 12 and the second semiconductor layer 13 are formed on the second main surface 10b of the semiconductor substrate 10.
  • the first semiconductor layer 12 and the second semiconductor layer 13 are formed in a comb shape so as to correspond to the first electrode 14 and the second electrode 15, respectively, and are formed so as to be interleaved with each other. For this reason, the first regions W1 where the first semiconductor layers 12 are provided and the second regions W2 where the second semiconductor layers 13 are provided are alternately arranged in the y direction.
  • the first semiconductor layer 12 and the second semiconductor layer 13 adjacent in the y direction are provided in contact with each other.
  • the first semiconductor layer 12 is a semiconductor layer having a first conductivity type, and is composed of an amorphous semiconductor layer having the same n-type conductivity type as the semiconductor substrate 10.
  • the first semiconductor layer 12 includes, for example, a substantially intrinsic i-type amorphous semiconductor layer formed on the second main surface 10b and an n-type formed on the i-type amorphous semiconductor layer.
  • the “amorphous semiconductor” may include a microcrystalline semiconductor.
  • a microcrystalline semiconductor refers to a semiconductor in which a semiconductor crystal is precipitated in an amorphous semiconductor.
  • the i-type amorphous semiconductor layer is made of i-type amorphous silicon containing hydrogen (H), and has a thickness of about 2 nm to 25 nm, for example.
  • the n-type amorphous semiconductor layer is made of n-type amorphous silicon containing hydrogen to which an n-type dopant is added, and has a thickness of about 2 nm to 50 nm, for example.
  • the formation method of each layer constituting the first semiconductor layer 12 is not particularly limited, but can be formed by, for example, a chemical vapor deposition (CVD) method such as a plasma CVD method.
  • CVD chemical vapor deposition
  • the insulating layer 16 is formed on the first semiconductor layer 12.
  • the insulating layer 16 is not provided in the contact region W4 corresponding to the central portion in the y direction in the first region W1, but is provided in the insulating region W3 corresponding to both ends of the contact region W4.
  • the first step portion 31 is provided at the boundary between the insulating region W3 and the contact region W4.
  • the insulating region W3 where the insulating layer 16 is formed is, for example, about 1/3 of the first region W1.
  • the contact region W4 where the insulating layer 16 is not provided is, for example, about 1/3 of the first region W1.
  • the insulating layer 16 is formed of, for example, silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxynitride (SiON), or the like.
  • the insulating layer 16 is preferably formed of silicon nitride.
  • the second semiconductor layer 13 is formed on the second region W2 where the first semiconductor layer 12 is not provided in the second main surface 10b and the insulating region W3 where the insulating layer 16 is provided. Therefore, both end portions of the second semiconductor layer 13 are provided so as to overlap the first semiconductor layer 12 in the height direction (z direction). Thereby, the 2nd level
  • the second semiconductor layer 13 in the isolation region W5 is left without being removed, but in the modified example, the second semiconductor layer 13 in the isolation region W5 is removed. Also good.
  • the second semiconductor layer 13 is a semiconductor layer having the second conductivity type, and is composed of an amorphous semiconductor layer having a p-type conductivity type different from that of the semiconductor substrate 10.
  • the second semiconductor layer 13 is, for example, a substantially intrinsic i-type amorphous semiconductor layer formed on the second major surface 10b and a p formed on the i-type amorphous semiconductor layer.
  • the i-type amorphous semiconductor layer is made of i-type amorphous silicon containing hydrogen (H), and has a thickness of about 2 nm to 25 nm, for example.
  • the p-type amorphous semiconductor layer is made of n-type amorphous silicon containing hydrogen to which a p-type dopant is added, and has a thickness of about 2 nm to 50 nm, for example.
  • the formation method of each layer constituting the second semiconductor layer 13 is not particularly limited, but can be formed by, for example, a chemical vapor deposition (CVD) method such as a plasma CVD method.
  • CVD chemical vapor deposition
  • a first electrode 14 for collecting electrons is formed on the first semiconductor layer 12.
  • a second electrode 15 that collects holes is formed on the second semiconductor layer 13.
  • a separation region W5 is formed between the first electrode 14 and the second electrode 15, and both electrodes are electrically insulated.
  • the first electrode 14 and the second electrode 15 are constituted by a laminate of the transparent conductive layer 17 and the metal electrode layer 20.
  • the transparent conductive layer 17 is formed of, for example, a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), or indium tin oxide (ITO).
  • TCO transparent conductive oxide
  • the transparent conductive layer 17 in the present embodiment is made of indium tin oxide and has a thickness of about 50 nm to 100 nm, for example.
  • the transparent conductive layer 17 can be formed by a thin film forming method such as sputtering or chemical vapor deposition (CVD).
  • the transparent conductive layer 17 is provided avoiding the separation region W5 located at the center of the insulating region W3. Thereby, the transparent conductive layer 17 is separated into a first transparent conductive layer 24 that contacts the first semiconductor layer 12 in the contact region W4 and a second transparent conductive layer 29 that contacts the second semiconductor layer 13 in the second region W2. Is done.
  • the metal electrode layer 20 is made of a metal material such as copper (Cu), tin (Sn), gold (Au), silver (Ag), nickel (Ni), or titanium (Ti).
  • the metal electrode layer 20 is made of copper and is composed of two layers of a seed layer 18 and a plating layer 19.
  • the seed layer 18 is formed on the transparent conductive layer 17 by a thin film forming method such as sputtering or chemical vapor deposition (CVD).
  • the plating layer 19 is formed on the seed layer 18 by a plating method.
  • the seed layer 18 has a thickness of about 50 nm to 1000 nm, for example, and the plating layer 19 has a thickness of about 10 ⁇ m to 50 ⁇ m.
  • a protective plating layer made of tin or the like may be further provided on the surface of the plating layer 19.
  • the metal electrode layer 20 is provided avoiding the separation region W5 similarly to the transparent conductive layer 17. Thereby, the metal electrode layer 20 is separated into a first metal electrode 21 provided on the first transparent conductive layer 24 and a second metal electrode 26 provided on the second transparent conductive layer 29.
  • the first metal electrode 21 includes a first base portion 22 provided in the contact region W4, and a first overhang portion 23 that protrudes in the y direction so as to approach the second metal electrode 26 as the distance from the second main surface 10b increases.
  • the first base portion 22 is provided inside the contact region W4, and is provided so as to avoid the top of the first step portion 31 located at the boundary between the insulating region W3 and the contact region W4.
  • the first projecting portion 23 has a shape projecting from the contact region W4 toward the insulating region W3, and is provided apart from the first transparent conductive layer 24. Therefore, the first overhanging portion 23 is formed so as to overlap the first stepped portion 31 and is formed so that a space is provided between the first overhanging portion 23 and the first stepped portion 31. .
  • the second metal electrode 26 includes a second base portion 27 provided in the second region W2 and a second overhanging portion 28 that protrudes in the y direction so as to approach the first metal electrode 21 as the distance from the second main surface 10b increases.
  • the second base portion 27 is provided inside the second region W2, and is provided so as to avoid the second stepped portion 32 located at the boundary between the first region W1 and the second region W2.
  • the second projecting portion 28 has a shape projecting from the second region W2 toward the insulating region W3 and is provided apart from the second transparent conductive layer 29. Therefore, the second overhanging portion 28 is formed so as to overlap the second stepped portion 32, and is formed so that a space is provided between the second overhanging portion 28 and the second stepped portion 32. .
  • the light-receiving surface protective layer 11 is formed of, for example, silicon, silicon oxide, silicon nitride, silicon oxynitride, or the like.
  • the light-receiving surface protective layer 11 has a function as a passivation layer of the first main surface 10a and functions as an antireflection film and a protective film.
  • the light-receiving surface protective layer 11 in the present embodiment has a structure in which an i-type amorphous silicon layer and an insulating layer such as silicon oxide or silicon nitride are sequentially stacked on the first main surface 10a.
  • the light-receiving surface protective layer 11 may have a structure in which an n-type amorphous silicon layer is provided between an i-type amorphous silicon layer and an insulating layer.
  • the i-type amorphous silicon layer and the n-type amorphous silicon layer have a thickness of about 2 nm to 50 nm, for example.
  • the insulating layer such as silicon oxide, silicon nitride, or silicon oxynitride has a thickness of about 50 nm to 200 nm, for example.
  • FIG. 3 is a plan view showing the first region W1 of the solar battery cell 70, and the first semiconductor layer 12 provided in the first region W1 is represented by oblique lines. In the figure, the positions of the first electrode 14 and the second electrode 15 are indicated by alternate long and short dash lines.
  • the first region W1 includes a first bus bar region W11 corresponding to the first bus bar electrode 14a and a plurality of first finger regions W12 corresponding to the plurality of first finger electrodes 14b.
  • region W1 is provided corresponding to the area
  • FIG. 4 is a plan view showing the second region W2 of the solar battery cell 70, and the second semiconductor layer 13 provided in the second region W2 is represented by oblique lines.
  • the second region W2 includes a second bus bar region W22 corresponding to the second bus bar electrode 15a and a plurality of second finger regions W21 corresponding to the plurality of second finger electrodes 15b.
  • the second region W2 is provided corresponding to the region where the second electrode 15 is formed, and is provided narrower than the range where the second electrode 15 is provided. More specifically, the range of the second region W2 is set slightly inside the range where the second electrode 15 is provided.
  • FIG. 5 is a plan view showing the insulating region W3 of the solar battery cell 70, and the insulating layer 16 provided in the insulating region W3 is represented by oblique lines.
  • the insulating region W3 is provided in a region corresponding to the separation region W5, and is provided slightly larger than the range in which the separation region W5 is provided.
  • the insulating region W3 includes a first bus bar insulating region W31 corresponding to the first bus bar isolation region W51, a second bus bar insulating region W32 corresponding to the second bus bar isolation region W52, and a finger insulating region W33 corresponding to the finger isolation region W53. And have.
  • the insulating region W3 is provided avoiding the contact region W4.
  • the first bus bar insulating region W31 extends in the x direction to the region where the first bus bar electrode 14a is provided.
  • the insulating layer 16 provided in the insulating region W3, the insulating layer 16 in a region overlapping with the seed layer 18 may be removed.
  • FIG. 6 is a cross-sectional view showing the structure of the solar battery cell 70 according to the embodiment, and shows a cross section taken along line BB of FIG. This figure shows the structure of the second finger tip 15c located between the first bus bar electrode 14a and the second finger electrode 15b.
  • the first bus bar electrode 14a is provided in the first bus bar region W11 and the first bus bar insulating region W31 where the insulating layer 16 is provided.
  • the first base portion 22 of the first bus bar electrode 14a is provided at a position where the length in the x direction from the boundary between the first bus bar region W11 and the second finger region W21 where the second step portion 32 is provided is X1.
  • the length of X1 is, for example, about 0.1 mm to 0.3 mm.
  • projection part 23 of the 1st bus-bar electrode 14a has a shape which protrudes in a x direction toward the 2nd finger electrode 15b as it leaves
  • the second finger electrode 15b is provided in the second finger region W21.
  • the second base portion 27 of the second finger electrode 15b is provided at a position where the length in the x direction from the boundary between the first bus bar region W11 and the second finger region W21 where the second step portion 32 is provided is X2.
  • the length X2 is provided to be longer than the length X1.
  • the length of X2 is, for example, about 0.5 mm to 2 mm.
  • projection part 28 of the 2nd finger electrode 15b has a shape which protrudes in a x direction toward the 1st bus-bar electrode 14a as it leaves
  • the first bus bar separation region W51 for separating the first bus bar electrode 14a and the second finger electrode 15b is provided in the first bus bar region W11. More specifically, the first bus bar separation region W51 is provided in the vicinity of the first overhanging portion 23 of the first bus bar electrode 14a, and at a position away from the second overhanging portion 28 of the second finger electrode 15b. Provided. As a result, a portion where the second transparent conductive layer 29 is exposed without the second metal electrode 26 being formed is formed in the second finger tip portion 15c.
  • FIG. 7 is a cross-sectional view showing the structure of the solar battery cell 70 according to the embodiment, and shows a cross section taken along the line CC of FIG. This figure shows the structure of the first finger tip portion 14c located between the first finger electrode 14b and the second bus bar electrode 15a.
  • the second bus bar electrode 15a is provided in the second bus bar region W22.
  • the second base portion 27 of the second bus bar electrode 15a is provided at a position where the length in the x direction from the boundary between the contact region W4 where the first step portion 31 is provided and the second bus bar insulating region W32 is X3.
  • the length of X3 is, for example, about 0.1 mm to 0.3 mm.
  • projection part 28 of the 2nd bus-bar electrode 15a has a shape which protrudes in a x direction toward the 1st finger electrode 14b as it leaves
  • the first finger electrode 14b is provided in the contact region W4 where the insulating layer 16 is not provided in the first finger region W12.
  • the first base portion 22 of the first finger electrode 14b is provided at a position where the length in the x direction from the boundary between the contact region W4 where the first step portion 31 is provided and the second bus bar insulating region W32 is X4.
  • X4 is provided to be longer than length X3.
  • the length of X4 is, for example, about 0.5 mm to 2 mm.
  • projection part 23 of the 1st finger electrode 14b has a shape which protrudes in a x direction toward the 2nd bus-bar electrode 15a as it leaves
  • the second bus bar isolation region W52 that separates the first finger electrode 14b and the second bus bar electrode 15a is provided in the second bus bar insulating region W32. Therefore, the second bus bar separation region W52 is provided in the vicinity of the second overhanging portion 28 of the second bus bar electrode 15a, and is provided at a position away from the first overhanging portion 23 of the first finger electrode 14b. Thereby, in the 1st finger front-end
  • the light-receiving surface protective layer 11 is formed on the first main surface 10 a of the semiconductor substrate 10. Further, the first semiconductor layer 12 and the insulating layer 36 are formed in the first region W1 on the second main surface 10b of the semiconductor substrate 10.
  • the light-receiving surface protective layer 11 is formed before or after the step of forming the first semiconductor layer 12 and the insulating layer 36. The process of forming the light-receiving surface protective layer 11 is illustrated in this example. Not limited.
  • the second semiconductor layer 33 is formed on the second main surface 10b of the second region W2 and on the insulating layer 36 of the first region W1.
  • the formation method of the light-receiving surface protective layer 11, the first semiconductor layer 12, the second semiconductor layer 33, and the insulating layer 36 is not particularly limited, but can be formed by a thin film formation method such as a sputtering method or a CVD method.
  • the second semiconductor layer 33 and the insulating layer 36 provided in the contact region W4 corresponding to the central portion of the first region W1 are removed.
  • the insulating layer 16 remaining in the insulating region W3 is formed from the insulating layer 36
  • the second semiconductor layer 13 remaining in the second region W2 and the insulating region W3 is formed from the second semiconductor layer 33.
  • a transparent conductive layer 37 is formed on the first semiconductor layer 12 and the second semiconductor layer 13, and a seed layer 38 is formed on the transparent conductive layer 37.
  • a plating resist 40 is formed on the seed layer 38.
  • the plating resist 40 is provided at a position corresponding to the insulating region W3, and contacts with the second region W2 (second finger region W21) adjacent to the insulating region W3 (finger insulating region W33). It is provided so as to straddle part of W4. Accordingly, the plating resist 40 covers the first step portion 31 located at the boundary between the insulating region W3 and the contact region W4 and the second step portion 32 located at the boundary between the first region W1 and the second region W2. Provided.
  • FIG. 13 is a plan view showing the arrangement of the plating resist 40.
  • the boundary between the second region W2, the insulating region W3, and the contact region W4 is indicated by a solid line, and the range in which the plating resist 40 is provided is indicated by a broken line.
  • the first step portion 31 located at the boundary between the insulating region W3 and the contact region W4 is indicated by a thick solid line, and the second step portion 32 located at the boundary between the second region W2 and the insulating region W3 is indicated by a thin solid line.
  • the cross section taken along the line AA in this figure corresponds to FIG.
  • the plating resist 40 is provided so as to cover the entirety of the second bus bar insulating region W32 and the finger insulating region W33 in the insulating region W3.
  • the plating resist 40 is provided so as to cover the first step portion 31 and the second step portion 32 adjacent to the second bus bar insulating region W32 and the finger insulating region W33.
  • the plating resist 40 is provided in a part of the first bus bar insulating region W31 adjacent to the second finger region W21 or the finger insulating region W33. In other words, the plating resist 40 is provided to avoid a part of the first bus bar insulating region W31 adjacent to the contact region W4. Further, the plating resist 40 is provided in the tip portion of the second finger region W21 adjacent to the first bus bar insulating region W31 and a part of the contact region W4 adjacent to the second bus bar region W22.
  • FIG. 14 is a cross-sectional view showing the arrangement of the plating resist 40 and corresponds to a cross section taken along line BB of FIG.
  • the plating resist 40 is provided to extend in the x direction so as to cover the second stepped portion 32 located at the boundary between the first bus bar region W11 (first bus bar insulating region W31) and the second finger region W21. Further, the plating resist 40 has an x direction extending from the boundary of the second step portion 32 toward the second finger region W21 rather than the length X1 in the x direction extending from the boundary of the second step portion 32 toward the first bus bar region W11.
  • the length X2 is provided to be long.
  • FIG. 15 is a cross-sectional view showing the arrangement of the plating resist 40 and corresponds to a cross section taken along the line CC of FIG.
  • the plating resist 40 is provided to extend in the x direction so as to cover the top of the first step portion 31 located at the boundary between the second bus bar insulating region W32 and the contact region W4.
  • the plating resist 40 has an x-direction extending from the boundary of the first step portion 31 toward the contact region W4 rather than the length X3 in the x-direction extending from the boundary of the first step portion 31 toward the second bus bar insulating region W32.
  • the length X4 is provided to be longer.
  • a plating layer 19 is formed on the seed layer 38.
  • the plating layer 19 includes a first plating layer 19a formed on the first region W1 (contact region W4) and a second plating layer 19b formed on the second region W2.
  • the first plating layer 19 a and the second plating layer 19 b are separated by the plating resist 40.
  • the plating layer 19 is also formed on the plating resist 40 and is formed so as to protrude outward as the distance from the second main surface 10b increases. Accordingly, the first plating layer 19a has a shape protruding toward the second plating layer 19b, and the second plating layer 19b has a shape protruding toward the first plating layer 19a.
  • the plating layer 19 is formed such that a gap 42 is provided between the first plating layer 19a and the second plating layer 19b separated by the plating resist 40.
  • the plating resist 40 is removed.
  • a part of the seed layer 38 exposed on the surface can be removed by etching.
  • a part of the seed layer 38 sandwiched between the transparent conductive layer 37 and the plating layer 19 remains, and the seed layer 18 is formed. Therefore, the plating layer 19 is formed by a so-called “semi-additive method”.
  • the gap 50 between the first plating layer 19a and the second plating layer 19b is irradiated with a laser 50 to remove a part of the transparent conductive layer 37, and the separation region W5 (finger A separation region W53) is formed.
  • the transparent conductive layer 37 is separated into the first transparent conductive layer 24 and the second transparent conductive layer 29, and the transparent conductive layer 17 is formed.
  • the laser 50 is irradiated along the first plating layer 19a provided on the first bus bar region W11 to remove a part of the transparent conductive layer 37, and the first bus bar separation region.
  • W51 is formed.
  • the laser 50 is irradiated along the second plating layer 19b provided on the second bus bar region W22 to remove a part of the transparent conductive layer 37, and the second bus bar separation region.
  • W52 is formed.
  • the solar battery cell 70 shown in FIGS. 1 to 7 is completed.
  • FIG. 21 is a cross-sectional view showing a structure of a solar battery cell 170 according to a comparative example, and shows a structure corresponding to the cross section shown in FIG.
  • the solar battery cell 170 is a back junction type photovoltaic device having the same structure as the solar battery cell 70 according to the above-described embodiment.
  • the solar battery 170 is different from the above-described embodiment in the structure and forming method of the transparent conductive layer 117, the seed layer 118, and the plating layer 119 that constitute the first electrode 114 and the second electrode 115.
  • the transparent conductive layer 37 and the seed layer 38 located in the insulating region W3 are partially removed to form the separation region W6, and the separated seed layer 118 is formed. It is formed by growing a plating layer 119 on the substrate. Since the plating layer 119 isotropically grows with the seed layer 118 as a base point, the plating layer 119 is formed on the first step portion 31 located at the boundary between the insulating region W3 and the contact region W4. Since the plating layer 119 is provided after the formation of the separation region W6, the plating layer 119 is formed so as to be in direct contact with the second semiconductor layer 13 exposed in the separation region W6.
  • the isolation region W6 is not necessarily formed within the range of the insulating region W3 due to manufacturing variations or the like, and as illustrated in FIG. 21, the isolation region W6 may be formed to be shifted from the insulating region W3. is there.
  • it is desirable that the width in the y direction of the first region and the second region located under the finger electrodes extending in the x direction is small, and is high for forming the separation region W6. Position accuracy is required. For this reason, the position of the separation region W6 may be shifted as shown in the figure depending on variations in manufacturing.
  • the separation region W6 is formed to be shifted toward the second region W2, the second semiconductor layer 13 is exposed at the second step portion 32 located at the boundary between the second region W2 and the insulating region W3, and the second region W2 is exposed.
  • the plating layer 119 directly contacts the second semiconductor layer 13 on the stepped portion 32.
  • the second step portion 32 includes a portion where the first semiconductor layer 12 and the second semiconductor layer 13 are in direct contact, and a part of electrons collected by the n-type first semiconductor layer 12 is in direct contact with the second semiconductor. It flows into the second electrode 115 via the layer 13. Then, the holes collected by the p-type second semiconductor layer 13 and recombined with the holes flowing into the second electrode 115 may cause a junction leak. In particular, since the plating layer 119 has higher conductivity than the transparent conductive layer 117, the plating layer 119 may be in direct contact with the second semiconductor layer 13 of the second stepped portion 32, which may increase junction leakage.
  • the plating layer 19 is separated from the transparent conductive layer 17 by providing the separation region W5 after the plating layer 19 is formed. It is possible to prevent direct contact with the second semiconductor layer 13 below. Thereby, it can prevent that the plating layer 19 contacts the 2nd semiconductor layer 13 of the 2nd level
  • the separation region W5 of the transparent conductive layer 17 is formed using the gap between the first metal electrode 21 and the second metal electrode 26 as a mask, so that the mask is used to form the separation region W5. Need not be provided separately.
  • the position of the separation region W5 is determined in a self-aligned manner depending on the position of the gap between the first metal electrode 21 and the second metal electrode 26, it is possible to prevent the position shift of the portion where the separation region W5 is formed. it can. Thereby, the reliability of the photovoltaic cell 70 can be improved.
  • the separation region W5 of the transparent conductive layer 17 is formed using the gap between the first metal electrode 21 and the second metal electrode 26, the first overhang 23 and the second It can prevent that the transparent conductive layer 17 of the location covered with the overhang
  • the transparent conductive layer 17 can be provided between the 1st semiconductor layer 12 or the 2nd semiconductor layer 13, and the plating layer 19, and it can prevent that the plating layer 19 contacts a semiconductor layer directly. Thereby, the reliability of the photovoltaic cell 70 can be improved.
  • the transparent conductive layer 17 of the first step portion 31 and the second step portion 32 has a shape. It can be set as the shape which the plating layer 19 does not contact directly on the top.
  • the semiconductor substrate 10 and the plating layer 19 have different coefficients of thermal expansion, stress is generated due to the difference in the amount of expansion and contraction caused by the temperature change. At this time, if a plating layer having a large film thickness is provided on the first step portion 31 and the second step portion 32, the stress caused by the temperature change is concentrated on the first step portion 31 and the second step portion 32. May cause damage.
  • the plating layer 19 is formed on the first step portion 31 and the second step portion 32 so as not to be in direct contact with each other, the stress on the first step portion 31 and the second step portion 32 is determined. Can be prevented. Thereby, the reliability of the photovoltaic cell 70 can be improved.
  • the connection members connecting the plurality of solar cells 70 are connected to each other in the same cell. It is possible to prevent the first electrode 14 and the second electrode 15 from being short-circuited. This effect will be described with reference to FIG.
  • FIG. 22 is a cross-sectional view showing the structure of the solar battery cell 70 to which the connection member 60 is bonded.
  • Solar cell 70 is modularized by connecting a plurality of solar cells 70 with connecting members 60.
  • the connection member 60 connects the first bus bar electrode 14a of the first solar battery cell 70 and the second bus bar electrode of the second solar battery cell. This figure has shown the connection member 60 adhere
  • connection member 60 is provided over the first bus bar electrode 14a and the second finger tip 15c, and is bonded to the solar battery cell 70 with the adhesive 62.
  • the adhesive 62 is a thermosetting resin and includes conductive particles 64.
  • the connection member 60 and the first bus bar electrode 14a are electrically connected via the conductive particles 64, and the connection member 60 and the second finger tip 15c are electrically insulated by the adhesive 62.
  • the connection member 60 contacts the second finger electrode 15b, and the first bus bar electrode 14a and the second finger electrode 15b are short-circuited. Can be prevented.
  • the first bus bar insulating region W31 serving as an ineffective region is small.
  • the width of the first bus bar electrode 14a in the x direction is small, high positional accuracy is required for bonding to the connection member 60, and the tip of the connection member 60 may be the second finger electrode depending on manufacturing variations and the like. It will be close to 15b.
  • the connecting member 60 is bonded to the first bus bar electrode 14a by applying pressure, the adhesive 62 flows toward the second finger region W21. At this time, if there is not enough space between the first bus bar electrode 14a and the second finger electrode 15b, the adhesive 62 exceeds the height (z direction) of the first bus bar electrode 14a and the second finger electrode 15b. There is a risk that.
  • connection member 60 by providing the second finger tip portion 15c, a margin can be provided between the connection member 60 bonded to the first bus bar electrode 14a and the second finger electrode 15b. Thereby, the connection member 60 can be suitably connected to the 1st bus-bar electrode 14a.
  • One aspect of the present embodiment is a method for manufacturing solar battery cell 70.
  • This method Forming a first conductive type first semiconductor layer 12 in a first region W1 on a main surface (second main surface 10b) of a semiconductor substrate 10 having a first region W1 and a second region W2 adjacent to each other; Forming an insulating layer 16 on the first semiconductor layer 12 in the insulating region W3 that is part of the first region W1 and adjacent to the second region W2, Forming a second semiconductor layer 13 of the second conductivity type over the main surface (second main surface 10b) of the second region W2 and the insulating layer 16 of the insulating region W3; Forming a transparent conductive layer 17 on the first semiconductor layer 12 and the second semiconductor layer 13; Forming a seed layer 18 on the transparent conductive layer 17; Providing a plating resist 40 on the seed layer 18 in the insulating region W3 to grow the plating layer 19 on the seed layer 18; Removing the plating resist 40 and removing a part of the transparent conductive layer
  • Growing the plating layer 19 includes forming the first plating layer 19a on the first region W1, and forming the second plating layer 19b on the second region W2.
  • the formation of the second plating layer 19b means that the second plating layer 19b protrudes closer to the first plating layer 19a as it is away from the main surface (second main surface 10b), and between the first plating layer 19a.
  • Forming the second plating layer 19b so that the gap 42 is provided in Removing part of the transparent conductive layer 17 and the seed layer 18 includes laser irradiation or dry etching of part of the transparent conductive layer 17 using the gap 42 as a mask.
  • Removing part of the transparent conductive layer 17 and the seed layer 18 may include wet etching the seed layer 18.
  • Growing the plating layer 19 may include providing a plating resist 40 so as to cover a part of the second region W2 adjacent to the insulating region W3.
  • the first region W1 includes a plurality of first finger regions W12 extending in the x direction, and a first bus bar region W11 extending in the y direction by connecting one end of the plurality of first finger regions W12
  • the second region W2 includes a plurality of second finger regions W21 extending in the x direction, and a second bus bar region W22 extending in the y direction by connecting one end of the plurality of second finger regions W21
  • the first region W1 and the second region W2 are provided such that the plurality of first finger regions W12 and the plurality of second finger regions W21 are interleaved with each other.
  • the growth of the plating layer 19 extends in the x direction across the boundary between the first bus bar region W11 and the second finger region W21, and extends from the boundary to the length X1 extending from the boundary to the first bus bar region W11 side.
  • the plating resist 40 may be provided so that the length X2 extending toward the two-finger region W21 is increased.
  • Growing the first plating layer 19a includes forming the first bus bar electrode 14a extending in the y direction in the first bus bar region W11, Removing part of the transparent conductive layer 17 and the seed layer 18 may include removing a part of the transparent conductive layer 17 by irradiating the laser 50 in the y direction along the first bus bar electrode 14a.
  • This solar cell 70 is A semiconductor substrate 10 having a main surface (second main surface 10b) provided with a first region W1 and a second region W2 adjacent to each other; A first conductivity type first semiconductor layer 12 provided in a first region W1 on a main surface (second main surface 10b); An insulating layer 16 provided on the first semiconductor layer 12 in the insulating region W3 that is a part of the first region W1 and is adjacent to the second region W2, A second conductive type second semiconductor layer 13 provided over the main surface (second main surface 10b) of the second region W2 and the insulating layer 16 of the insulating region W3; A transparent conductive layer 17 provided on the first semiconductor layer 12 and the second semiconductor layer 13; A first metal electrode 21 provided on the transparent conductive layer 17 in the first region W1, A second metal electrode 26 provided on the transparent conductive layer 17 in the second region W2, The second metal electrode 26 has an overhanging portion (second overhanging portion 28) that protrudes closer to the first metal electrode 21 as it moves
  • the overhang portion (second overhang portion 28) may protrude from the second region W2 toward the insulating region W3 so as to straddle the boundary between the second region W2 and the insulating region W3.
  • the first metal electrode 21 includes a plurality of first finger electrodes 14b extending in the x direction and a first bus bar electrode 14a extending in the y direction by connecting one ends of the plurality of first finger electrodes 14b.
  • the second metal electrode 26 includes a plurality of second finger electrodes 15b extending in the x direction, and a second bus bar electrode 15a extending in the y direction by connecting one end of the plurality of second finger electrodes 15b,
  • the first metal electrode 21 and the second metal electrode 26 are provided such that the plurality of first finger electrodes 14b and the plurality of second finger electrodes 15b are interleaved with each other,
  • the transparent conductive layer 17 is provided to avoid a plurality of bus bar separation regions (first bus bar separation regions W51) located between the first bus bar electrode 14a and the plurality of second finger electrodes 15b,
  • the plurality of bus bar separation regions (first bus bar separation region W51) may be provided closer to the first bus bar electrode 14a than the plurality of second finger electrodes
  • FIG. 23 and 24 are cross-sectional views showing the structure of the solar battery cell 70 according to a modification.
  • 23 shows a cross section corresponding to FIG. 2
  • FIG. 24 shows a cross section corresponding to FIG.
  • This modification is different from the above-described embodiment in that the seed layer 18 is provided so as to cover the entire surface of the transparent conductive layer 17 while avoiding the separation region W5.
  • the seed layer 38 is not removed in the step of removing the plating resist 40 shown in FIG. 17 and the seed layer is formed in the step of forming the isolation region W5 shown in FIGS. 38 and a part of the transparent conductive layer 37 can be removed.
  • the current collection efficiency at the second finger tip 15c can be increased by leaving the seed layer 18 at the second finger tip 15c. Similarly, by leaving the seed layer 18 at the first finger tip 14c, the current collection efficiency at the first finger tip 14c can be increased.
  • removing a part of the transparent conductive layer 17 and the seed layer 18 may include dry etching a part of the seed layer 18 using the gap 42 as a mask.
  • the present invention has been described with reference to the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention.
  • the plating resist 40 is provided across the insulating region W3 and a part of the adjacent second region W2 and the contact region W4 has been described.
  • the plating resist may be provided only within the range of the insulating region W3, or may be provided so as to straddle only one of the adjacent second region W2 or contact region W4.
  • at least one of the first base and the second base of the plating layer may be provided in the insulating region W3.
  • a part of the transparent conductive layer 37 and the seed layer 38 located in the separation region W5 is removed by laser irradiation.
  • part of the transparent conductive layer 37 and the seed layer 38 may be removed using an etching gas. That is, a part of the transparent conductive layer 37 and the seed layer 38 can be removed by laser irradiation or a dry etching method using an etching gas.
  • SYMBOLS 10 Semiconductor substrate, 12 ... 1st semiconductor layer, 13 ... 2nd semiconductor layer, 14a ... 1st bus-bar electrode, 14b ... 1st finger electrode, 15a ... 2nd bus-bar electrode, 15b ... 2nd finger electrode, 16 ... insulation Layer, 17 ... transparent conductive layer, 18 ... seed layer, 19 ... plating layer, 19a ... first plating layer, 19b ... second plating layer, 21 ... first metal electrode, 26 ... second metal electrode, 40 ... plating resist 42 ... Gap, 50 ... Laser, 70 ... Solar cell, W1 ... First region, W2 ... Second region, W3 ... Insulating region, W5 ... Separation region, W11 ... First bus bar region, W12 ... First finger region , W21 ... second finger area, W22 ... second bus bar area.
  • the reliability of the solar battery cell can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池セル70は、主面上の第1領域W1に設けられる第1導電型の第1半導体層12と、第2領域W2に隣接する絶縁領域W3の第1半導体層上に設けられる絶縁層16と、第2領域W2の主面上および絶縁領域W3の絶縁層上にわたって設けられる第2導電型の第2半導体層13と、第1半導体層12および第2半導体層13の上に設けられる透明導電層17と、第1領域W1に設けられる第1金属電極21と、第2領域W2に設けられる第2金属電極26と、を備える。第2金属電極26は、主面から離れるにつれて第1金属電極21に近づくように突出する第2張出部28を有し、第1金属電極21との間の隙間が絶縁領域W3に位置するように形成される。透明導電層17は、隙間に対応する分離領域W5を避けて設けられる。

Description

太陽電池セルおよび太陽電池セルの製造方法
 本発明は、太陽電池セルおよび太陽電池セルの製造方法に関し、特に裏面接合型の太陽電池セルに関する。
 発電効率の高い太陽電池として、光が入射する受光面に対向する裏面にn型半導体層およびp型半導体層の双方が形成された裏面接合型の太陽電池がある。裏面接合型の太陽電池では、発電した電力を取り出すためのn側電極とp側電極の双方が裏面側に設けられる。n側電極およびp側電極は、めっき法により成膜されるめっき層を含む(例えば、特許文献1参照)。
国際公開第2012/090643号
 より信頼性の高い太陽電池セルを提供することが望ましい。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、信頼性を高めた太陽電池セルを提供することにある。
 本発明のある態様は、太陽電池セルの製造方法である。この方法は、互いに隣接する第1領域と第2領域を有する半導体基板の主面上の第1領域に第1導電型の第1半導体層を形成することと、第1領域の一部であって第2領域に隣接する絶縁領域の第1半導体層上に絶縁層を形成することと、第2領域の主面上および絶縁領域の絶縁層上にわたって第2導電型の第2半導体層を形成することと、第1半導体層および第2半導体層の上に透明導電層を形成することと、透明導電層の上にシード層を形成することと、絶縁領域のシード層の上にめっきレジストを設けてシード層の上にめっき層を成長させることと、めっきレジストを除去し、透明導電層およびシード層の一部を除去することと、を備える。めっき層を成長させることは、第1領域上に第1めっき層を形成することと、第2領域上に第2めっき層を形成することと、を含む。第2めっき層を形成することは、主面から離れるにつれて第2めっき層が第1めっき層に近づくように突出するとともに、第1めっき層との間に隙間が設けられるように第2めっき層を形成することを含む。透明導電層およびシード層の一部を除去することは、隙間をマスクとして透明導電層の一部をレーザ照射またはドライエッチングすることを含む。
 本発明の別の態様は、太陽電池セルである。この太陽電池セルは、互いに隣接する第1領域と第2領域が設けられる主面を有する半導体基板と、主面上の第1領域に設けられる第1導電型の第1半導体層と、第1領域の一部であって第2領域に隣接する絶縁領域の第1半導体層上に設けられる絶縁層と、第2領域の主面上および絶縁領域の絶縁層上にわたって設けられる第2導電型の第2半導体層と、第1半導体層および第2半導体層の上に設けられる透明導電層と、第1領域の透明導電層の上に設けられる第1金属電極と、第2領域の透明導電層の上に設けられる第2金属電極と、を備える。第2金属電極は、主面から離れるにつれて第1金属電極に近づくように突出する張出部を有し、第1金属電極との間の隙間が絶縁領域に位置するように形成され、透明導電層は、絶縁領域のうち隙間に位置的に対応する分離領域を避けて設けられる。
 本発明によれば、太陽電池セルの信頼性を高めることができる。
実施の形態に係る太陽電池セルを示す平面図である。 太陽電池セルの構造を示す断面図である。 太陽電池セルの第1領域を示す平面図である。 太陽電池セルの第2領域を示す平面図である。 太陽電池セルの絶縁領域を示す平面図である。 太陽電池セルの構造を示す断面図である。 太陽電池セルの構造を示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す平面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 比較例に係る太陽電池セルの構造を示す断面図である。 接続部材を接着した太陽電池セルの構造を示す断面図である。 変形例に係る太陽電池セルの構造を示す断面図である。 変形例に係る太陽電池セルの構造を示す断面図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施の形態は、太陽電池セルの製造方法である。この方法は、互いに隣接する第1領域と第2領域を有する半導体基板の主面上の第1領域に第1導電型の第1半導体層を形成することと、第1領域の一部であって第2領域に隣接する絶縁領域の第1半導体層上に絶縁層を形成することと、第2領域の主面上および絶縁領域の絶縁層上にわたって第2導電型の第2半導体層を形成することと、第1半導体層および第2半導体層の上に透明導電層を形成することと、透明導電層の上にシード層を形成することと、絶縁領域のシード層の上にめっきレジストを設けてシード層の上にめっき層を成長させることと、めっきレジストを除去し、透明導電層およびシード層の一部を除去することと、を備える。
 上記方法において、めっき層を成長させることは、第1領域上に第1めっき層を形成することと、第2領域上に第2めっき層を形成することと、を含む。第2めっき層を形成することは、主面から離れるにつれて第2めっき層が第1めっき層に近づくように突出するとともに、第1めっき層との間に隙間が設けられるように第2めっき層を形成することを含む。透明導電層および前記シード層の一部を除去することは、前記隙間をマスクとして前記透明導電層の一部をドライエッチングすることを含む。
 本実施の形態によれば、第1半導体層および第2半導体層の上を覆う透明導電層上にめっき層が形成されるため、第1半導体層および第2半導体層にめっき層が直接接触するのを防ぐことができる。これにより、めっき層を構成する金属が第1半導体層または第2半導体層に接触して太陽電池セルの特性に影響を与えるのを防ぐことができる。また、主面から離れるにつれて外側に張り出すめっき層と透明導電層の間には空間が設けられるため、透明導電層の一部を除去して露出した第2半導体層とめっき層との間の距離を取ることができる。これにより、第2半導体層にめっき層が直接接触するのをより確実に防ぐことができる。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、実施の形態に係る太陽電池セル70を示す平面図であり、太陽電池セル70の裏面70bの構造を示す。太陽電池セル70は、裏面70bに設けられる第1電極14と、第2電極15を備える。第1電極14は、y方向に延びる第1バスバー電極14aと、x方向に延びる複数の第1フィンガー電極14bを含み、櫛歯状に形成される。同様に第2電極15は、y方向に延びる第2バスバー電極15aと、x方向に延びる複数の第2フィンガー電極15bを含み、櫛歯状に形成される。第1電極14および第2電極15は、複数の第1フィンガー電極14bと複数の第2フィンガー電極15bが噛み合って互いに間挿し合うように形成される。
 第1電極14および第2電極15は、図2を参照しながら後述するように、透明導電層17とその上に設けられる金属電極層20とで構成される。言いかえれば、第1バスバー電極14a、第1フィンガー電極14b、第2バスバー電極15a、第2フィンガー電極15bは、透明導電層17と金属電極層20の二層構造で構成される。第1フィンガー電極14bの先には、金属電極層20が設けられずに透明導電層17が露出した第1フィンガー先端部14cが設けられる。同様に、第2フィンガー電極15bの先には金属電極層20が設けられずに透明導電層17が露出した第2フィンガー先端部15cが設けられる。
 第1電極14と第2電極15の間には分離領域W5(W51、W52、W53)が設けられる。分離領域W5とは、第1電極14および第2電極15を構成する透明導電層17および金属電極層20が除去された領域のことであり、分離領域W5により第1電極14と第2電極15の間の絶縁が確保される。第1バスバー電極14aと第2フィンガー先端部15cの間には第1バスバー分離領域W51が設けられる。第2バスバー電極15aと第1フィンガー先端部14cの間には第2バスバー分離領域W52が設けられる。第1フィンガー電極14bと第2フィンガー電極15bの間には、フィンガー分離領域W53が設けられる。
 図2は、実施の形態に係る太陽電池セル70の構造を示す断面図であり、図1のA-A線断面を示す。太陽電池セル70は、半導体基板10と、受光面保護層11と、第1半導体層12と、第2半導体層13と、絶縁層16と、透明導電層17と、金属電極層20とを備える。金属電極層20は、シード層18とめっき層19とを有する。上述したように透明導電層17および金属電極層20は、第1電極14または第2電極15を構成する。なお本図では、第1電極14および第2電極15として、第1フィンガー電極14bと第2フィンガー電極15bを示している。太陽電池セル70は、互いに導電性の異なる第1半導体層12および第2半導体層13が裏面70b側に設けられ、電極が受光面70a側に設けられない裏面接合型の光起電力素子である。
 半導体基板10は、受光面70a側に設けられる第1主面10aと、裏面70b側に設けられる第2主面10bを有する。半導体基板10は、第1主面10aに入射する光を吸収し、キャリアとして電子および正孔を生成する。半導体基板10は、n型またはp型の導電型を有する結晶性の半導体材料により構成される。本実施の形態における半導体基板10は、n型の単結晶シリコン基板である。
 ここで、受光面70aとは、太陽電池セル70において主に光(太陽光)が入射される主面を意味し、具体的には、太陽電池セル70に入射される光の大部分が入射される面を意味する。一方、裏面70bは、受光面70aに対向する他方の主面を意味する。
 半導体基板10の第2主面10bの上には、第1半導体層12と第2半導体層13が形成される。第1半導体層12および第2半導体層13はそれぞれ、第1電極14および第2電極15に対応するように櫛歯状に形成され、互いに間挿し合うように形成される。このため、第1半導体層12が設けられる第1領域W1と、第2半導体層13が設けられる第2領域W2とは、y方向に交互に配列される。また、y方向に隣接する第1半導体層12と第2半導体層13は互いに接触して設けられる。
 第1半導体層12は、第1導電型を有する半導体層であり、半導体基板10と同じn型の導電型を有する非晶質半導体層で構成される。第1半導体層12は、例えば、第2主面10bの上に形成される実質的な真性なi型の非晶質半導体層と、i型の非晶質半導体層の上に形成されるn型の非晶質半導体層の二層構造により構成される。なお、本実施の形態において、「非晶質半導体」には、微結晶半導体を含むものであってもよい。微結晶半導体とは、非晶質半導体中に半導体結晶が析出している半導体をいう。
 i型の非晶質半導体層は、水素(H)を含むi型の非晶質シリコンで構成され、例えば、2nm~25nm程度の厚さを有する。n型の非晶質半導体層は、n型のドーパントが添加された水素を含むn型非晶質シリコンで構成され、例えば、2nm~50nm程度の厚さを有する。第1半導体層12を構成する各層の形成方法は、特に限定されないが、例えば、プラズマCVD法等の化学気相成長(CVD)法により形成することができる。
 第1半導体層12の上には、絶縁層16が形成される。絶縁層16は、第1領域W1のうちy方向の中央部に相当するコンタクト領域W4には設けられず、コンタクト領域W4を残した両端に相当する絶縁領域W3に設けられる。これにより、絶縁領域W3とコンタクト領域W4の境界には第1段差部31が設けられる。なお、絶縁層16が形成される絶縁領域W3は、例えば、第1領域W1の約1/3程度である。また、絶縁層16が設けられないコンタクト領域W4は、例えば、第1領域W1の約1/3程度である。
 絶縁層16は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)などにより形成される。絶縁層16は、窒化シリコンにより形成されることが望ましい。
 第2半導体層13は、第2主面10bのうち第1半導体層12が設けられない第2領域W2と、絶縁層16が設けられる絶縁領域W3の上に形成される。このため、第2半導体層13の両端部は、第1半導体層12と高さ方向(z方向)に重なって設けられる。これにより、第1領域W1と第2領域W2の境界には、第2段差部32が設けられる。本実施の形態では、分離領域W5の第2半導体層13が除去されずに残される構成となっているが、変形例においては分離領域W5の第2半導体層13が除去された構成であってもよい。
 第2半導体層13は、第2導電型を有する半導体層であり、半導体基板10と異なるp型の導電型を有する非晶質半導体層で構成される。第2半導体層13は、例えば、第2主面10bの上に形成される実質的な真性なi型の非晶質半導体層と、i型の非晶質半導体層の上に形成されるp型の非晶質半導体層の二層構造により構成される。
 i型の非晶質半導体層は、水素(H)を含むi型の非晶質シリコンで構成され、例えば、2nm~25nm程度の厚さを有する。p型の非晶質半導体層は、p型のドーパントが添加された水素を含むn型非晶質シリコンで構成され、例えば、2nm~50nm程度の厚さを有する。第2半導体層13を構成する各層の形成方法は、特に限定されないが、例えば、プラズマCVD法等の化学気相成長(CVD)法により形成することができる。
 第1半導体層12の上には、電子を収集する第1電極14が形成される。第2半導体層13の上には、正孔を収集する第2電極15が形成される。第1電極14と第2電極15の間には分離領域W5が形成され、両電極は電気的に絶縁される。上述したように、第1電極14および第2電極15は、透明導電層17と金属電極層20の積層体により構成される。
 透明導電層17は、例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)により形成される。本実施の形態における透明導電層17は、インジウム錫酸化物により形成され、例えば、50nm~100nm程度の厚さを有する。透明導電層17は、スパッタリングや化学気相成長(CVD)などの薄膜形成方法により形成することができる。
 透明導電層17は、絶縁領域W3の中央部に位置する分離領域W5を避けて設けられる。これにより、透明導電層17は、コンタクト領域W4の第1半導体層12に接触する第1透明導電層24と、第2領域W2の第2半導体層13に接触する第2透明導電層29に分離される。
 金属電極層20は、銅(Cu)、錫(Sn)、金(Au)、銀(Ag)、ニッケル(Ni)、チタン(Ti)などの金属材料で構成される。本実施の形態において、金属電極層20は、銅により形成され、シード層18とめっき層19の二層により構成される。シード層18は、スパッタリングや化学気相成長(CVD)などの薄膜形成方法により透明導電層17の上に形成される。めっき層19は、めっき法によりシード層18の上に形成される。シード層18は、例えば、50nm~1000nm程度の厚さを有し、めっき層19は、10μm~50μm程度の厚さを有する。なお、めっき層19の表面には、錫などで構成される保護めっき層がさらに設けられてもよい。
 金属電極層20は、透明導電層17と同様に分離領域W5を避けて設けられる。これにより、金属電極層20は、第1透明導電層24の上に設けられる第1金属電極21と、第2透明導電層29の上に設けられる第2金属電極26に分離される。
 第1金属電極21は、コンタクト領域W4に設けられる第1基部22と、第2主面10bから離れるにつれて第2金属電極26に近づくようにy方向に突出する第1張出部23とを有する。第1基部22は、コンタクト領域W4の内側に設けられ、絶縁領域W3とコンタクト領域W4の境界に位置する第1段差部31の上を避けて設けられる。第1張出部23は、コンタクト領域W4から絶縁領域W3に向けて張り出す形状を有し、第1透明導電層24から離れて設けられる。したがって、第1張出部23は、第1段差部31の上に重なるように形成されるとともに、第1張出部23と第1段差部31の間に空間が設けられるように形成される。
 第2金属電極26は、第2領域W2に設けられる第2基部27と、第2主面10bから離れるにつれて第1金属電極21に近づくようにy方向に出する第2張出部28とを有する。第2基部27は、第2領域W2の内側に設けられ、第1領域W1と第2領域W2の境界に位置する第2段差部32の上を避けて設けられる。第2張出部28は、第2領域W2から絶縁領域W3に向けて張り出す形状を有し、第2透明導電層29から離れて設けられる。したがって、第2張出部28は、第2段差部32の上に重なるように形成されるとともに、第2張出部28と第2段差部32の間に空間が設けられるように形成される。
 半導体基板10の第1主面10aの上には、受光面保護層11が設けられる。受光面保護層11は、例えば、シリコン、酸化シリコン、窒化シリコン、酸窒化シリコンなどにより形成される。受光面保護層11は、第1主面10aのパッシベーション層としての機能や、反射防止膜および保護膜としての機能を有する。
 本実施の形態における受光面保護層11は、第1主面10aの上にi型の非晶質シリコン層、酸化シリコンや窒化シリコンなどの絶縁層が順に積層された構造を有する。受光面保護層11は、i型の非晶質シリコン層と絶縁層との間にn型の非晶質シリコン層が設けられた構造を有してもよい。i型の非晶質シリコン層およびn型の非晶質シリコン層は、例えば、2nm~50nm程度の厚さを有する。酸化シリコン、窒化シリコン、酸窒化シリコンなどの絶縁層は、例えば、50nm~200nm程度の厚さを有する。
 次に、図3~図5を参照しながら、第1半導体層12、第2半導体層13、絶縁層16が設けられる第1領域W1、第2領域W2、絶縁領域W3の平面配置について説明する。
 図3は、太陽電池セル70の第1領域W1を示す平面図であり、第1領域W1に設けられる第1半導体層12を斜線で表す。本図では、第1電極14および第2電極15の位置を一点鎖線で示している。第1領域W1は、第1バスバー電極14aに対応する第1バスバー領域W11と、複数の第1フィンガー電極14bに対応する複数の第1フィンガー領域W12とを有する。
 第1領域W1は、第1電極14が形成される領域に対応して設けられ、第1電極14が設けられる範囲よりも広く設けられる。より具体的には、第1電極14と第2電極15の間の分離領域W5(W51、W52、W53)を越えて第2電極15が設けられる一部範囲と重複するように第1領域W1の範囲が設定される。
 図4は、太陽電池セル70の第2領域W2を示す平面図であり、第2領域W2に設けられる第2半導体層13を斜線で表す。第2領域W2は、第2バスバー電極15aに対応する第2バスバー領域W22と、複数の第2フィンガー電極15bに対応する複数の第2フィンガー領域W21とを有する。第2領域W2は、第2電極15が形成される領域に対応して設けられ、第2電極15が設けられる範囲よりも狭く設けられる。より具体的には、第2電極15が設けられる範囲よりも少しだけ内側に第2領域W2の範囲が設定される。
 図5は、太陽電池セル70の絶縁領域W3を示す平面図であり、絶縁領域W3に設けられる絶縁層16を斜線で表す。絶縁領域W3は、分離領域W5に対応する領域に設けられ、分離領域W5が設けられる範囲よりも少しだけ広く設けられる。
 絶縁領域W3は、第1バスバー分離領域W51に対応する第1バスバー絶縁領域W31と、第2バスバー分離領域W52に対応する第2バスバー絶縁領域W32と、フィンガー分離領域W53に対応するフィンガー絶縁領域W33とを有する。なお、絶縁領域W3は、コンタクト領域W4を避けて設けられる。また、第1バスバー絶縁領域W31は、第1バスバー電極14aが設けられる領域までx方向に延びている。なお、絶縁領域W3に設けられる絶縁層16のうち、シード層18と重なる領域の絶縁層16は除去してもよい。
 つづいて、第1フィンガー先端部14cおよび第2フィンガー先端部15cの構造について説明する。図6は、実施の形態に係る太陽電池セル70の構造を示す断面図であり、図1のB-B線断面を示す。本図は、第1バスバー電極14aと第2フィンガー電極15bの間に位置する第2フィンガー先端部15cの構造を示す。
 第1バスバー電極14aは、第1バスバー領域W11であって、絶縁層16が設けられる第1バスバー絶縁領域W31に設けられる。第1バスバー電極14aの第1基部22は、第2段差部32が設けられる第1バスバー領域W11と第2フィンガー領域W21の境界からのx方向の長さがX1となる位置に設けられる。X1の長さは、例えば、0.1mm~0.3mm程度である。第1バスバー電極14aの第1張出部23は、第2主面10bから離れるにつれて第2フィンガー電極15bに向けてx方向に突出する形状を有する。
 第2フィンガー電極15bは、第2フィンガー領域W21に設けられる。第2フィンガー電極15bの第2基部27は、第2段差部32が設けられる第1バスバー領域W11と第2フィンガー領域W21の境界からのx方向の長さがX2となる位置に設けられ、長さX2が長さX1よりも長くなるように設けられる。X2の長さは、例えば、0.5mm~2mm程度である。第2フィンガー電極15bの第2張出部28は、第2主面10bから離れるにつれて第1バスバー電極14aに向けてx方向に突出する形状を有する。
 第1バスバー電極14aと第2フィンガー電極15bの間を分離する第1バスバー分離領域W51は、第1バスバー領域W11に設けられる。より具体的に言えば、第1バスバー分離領域W51は、第1バスバー電極14aの第1張出部23の近傍に設けられ、第2フィンガー電極15bの第2張出部28から離れた位置に設けられる。これにより、第2フィンガー先端部15cにおいて、第2金属電極26が設けられずに第2透明導電層29が露出した部分が形成される。
 図7は、実施の形態に係る太陽電池セル70の構造を示す断面図であり、図1のC-C線断面を示す。本図は、第1フィンガー電極14bと第2バスバー電極15aの間に位置する第1フィンガー先端部14cの構造を示す。
 第2バスバー電極15aは、第2バスバー領域W22に設けられる。第2バスバー電極15aの第2基部27は、第1段差部31が設けられるコンタクト領域W4と第2バスバー絶縁領域W32の境界からのx方向の長さがX3となる位置に設けられる。X3の長さは、例えば、0.1mm~0.3mm程度である。第2バスバー電極15aの第2張出部28は、第2主面10bから離れるにつれて第1フィンガー電極14bに向けてx方向に突出する形状を有する。
 第1フィンガー電極14bは、第1フィンガー領域W12のうち絶縁層16が設けられていないコンタクト領域W4に設けられる。第1フィンガー電極14bの第1基部22は、第1段差部31が設けられるコンタクト領域W4と第2バスバー絶縁領域W32の境界からのx方向の長さがX4となる位置に設けられ、長さX4が長さX3よりも長くなるように設けられる。X4の長さは、例えば、0.5mm~2mm程度である。第1フィンガー電極14bの第1張出部23は、第2主面10bから離れるにつれて第2バスバー電極15aに向けてx方向に突出する形状を有する。
 第1フィンガー電極14bと第2バスバー電極15aの間を分離する第2バスバー分離領域W52は、第2バスバー絶縁領域W32に設けられる。したがって、第2バスバー分離領域W52は、第2バスバー電極15aの第2張出部28の近傍に設けられ、第1フィンガー電極14bの第1張出部23から離れた位置に設けられる。これにより、第1フィンガー先端部14cにおいて、第1金属電極21が設けられずに第1透明導電層24が露出した部分が形成される。
 つづいて、図8~図20を参照しながら、本実施の形態の太陽電池セル70の製造方法について説明する。
 まず、図8に示すように、半導体基板10の第1主面10a上に受光面保護層11を形成する。また、半導体基板10の第2主面10b上の第1領域W1に第1半導体層12と絶縁層36を形成する。本実施の形態では、一例として、第1半導体層12と絶縁層36を形成する工程の前または後で受光面保護層11を形成するが、受光面保護層11を形成する工程はこの例に限られない。
 つづいて、図9に示すように、第2領域W2の第2主面10b上と、第1領域W1の絶縁層36上に第2半導体層33を形成する。受光面保護層11、第1半導体層12、第2半導体層33、絶縁層36の形成方法は特に限定されないが、例えば、スパッタリング法やCVD法等の薄膜形成法などにより形成することができる。
 次に、図10に示すように、第1領域W1の中央部に相当するコンタクト領域W4に設けられる第2半導体層33と絶縁層36を除去する。これにより、絶縁層36から絶縁領域W3に残る絶縁層16を形成し、第2半導体層33から第2領域W2および絶縁領域W3に残る第2半導体層13を形成する。次に、図11に示すように、第1半導体層12および第2半導体層13の上に透明導電層37を形成し、透明導電層37の上にシード層38を形成する。
 つづいて、図12に示すように、シード層38の上にめっきレジスト40を形成する。図12に示されるように、めっきレジスト40は、絶縁領域W3に対応する位置に設けられ、絶縁領域W3(フィンガー絶縁領域W33)に隣接する第2領域W2(第2フィンガー領域W21)とコンタクト領域W4の一部に跨るように設けられる。したがって、めっきレジスト40は、絶縁領域W3とコンタクト領域W4の境界に位置する第1段差部31と、第1領域W1と第2領域W2の境界に位置する第2段差部32の上を覆うように設けられる。
 図13は、めっきレジスト40の配置を示す平面図である。本図では、第2領域W2、絶縁領域W3、コンタクト領域W4の境界を実線で示し、めっきレジスト40が設けられる範囲を破線で示している。また、絶縁領域W3とコンタクト領域W4の境界に位置する第1段差部31を太い実線で示し、第2領域W2と絶縁領域W3の境界に位置する第2段差部32を細い実線で示している。なお、本図のA-A線断面は、図12に対応する。
 めっきレジスト40は、絶縁領域W3のうち第2バスバー絶縁領域W32およびフィンガー絶縁領域W33の上の全体を覆うように設けられる。また、めっきレジスト40は、第2バスバー絶縁領域W32およびフィンガー絶縁領域W33に隣接する第1段差部31および第2段差部32の上を覆うように設けられる。また、めっきレジスト40は、第1バスバー絶縁領域W31のうち、第2フィンガー領域W21またはフィンガー絶縁領域W33に隣接する一部に設けられる。言いかえれば、第1バスバー絶縁領域W31のうちコンタクト領域W4に隣接する一部を避けてめっきレジスト40が設けられる。また、めっきレジスト40は、第1バスバー絶縁領域W31に隣接する第2フィンガー領域W21の先端部と、第2バスバー領域W22に近接するコンタクト領域W4の一部に設けられる。
 図14は、めっきレジスト40の配置を示す断面図であり、図13のB-B線断面に相当する。めっきレジスト40は、第1バスバー領域W11(第1バスバー絶縁領域W31)と第2フィンガー領域W21の境界に位置する第2段差部32の上を覆うようにx方向に延在して設けられる。また、めっきレジスト40は、第2段差部32の境界から第1バスバー領域W11側に延びるx方向の長さX1よりも、第2段差部32の境界から第2フィンガー領域W21側に延びるx方向の長さX2が長くなるように設けられる。
 図15は、めっきレジスト40の配置を示す断面図であり、図13のC-C線断面に相当する。めっきレジスト40は、第2バスバー絶縁領域W32とコンタクト領域W4の境界に位置する第1段差部31の上を覆うようにx方向に延在して設けられる。また、めっきレジスト40は、第1段差部31の境界から第2バスバー絶縁領域W32側に延びるx方向の長さX3よりも、第1段差部31の境界からコンタクト領域W4側に延びるx方向の長さX4が長くなるように設けられる。
 つづいて、図16に示すように、シード層38の上にめっき層19を形成する。めっき層19は、第1領域W1(コンタクト領域W4)の上に形成される第1めっき層19aと、第2領域W2の上に形成される第2めっき層19bを有する。第1めっき層19aと第2めっき層19bは、めっきレジスト40により分離される。めっき層19は、めっきレジスト40の上にも形成され、第2主面10bから離れるにつれて外側に突出するように形成される。したがって、第1めっき層19aは、第2めっき層19bに向かって突出する形状を有し、第2めっき層19bは、第1めっき層19aに向かって突出する形状を有する。めっき層19は、めっきレジスト40により分離される第1めっき層19aと第2めっき層19bとの間に隙間42が設けられるように形成される。
 つづいて、図17に示すように、めっきレジスト40を除去する。めっきレジスト40を除去することで、表面に露出するシード層38の一部をエッチングにより除去することができる。これにより、透明導電層37とめっき層19の間に挟まれたシード層38の一部が残り、シード層18が形成される。したがって、めっき層19は、いわゆる「セミアディティブ法」により形成される。
 つづいて、図18に示すように、第1めっき層19aと第2めっき層19bの間の隙間42にレーザ50を照射して、透明導電層37の一部を除去し、分離領域W5(フィンガー分離領域W53)を形成する。これにより、透明導電層37が第1透明導電層24と第2透明導電層29に分離され、透明導電層17が形成される。
 また、図19に示すように、第1バスバー領域W11の上に設けられる第1めっき層19aに沿ってレーザ50を照射して、透明導電層37の一部を除去し、第1バスバー分離領域W51を形成する。さらに、図20に示すように、第2バスバー領域W22の上に設けられる第2めっき層19bに沿ってレーザ50を照射して、透明導電層37の一部を除去し、第2バスバー分離領域W52を形成する。
 以上の工程により、図1~図7に示す太陽電池セル70ができあがる。
 つづいて、図21に示す比較例に係る太陽電池セル170を参照しながら、本実施の形態に係る太陽電池セル70が奏する効果について述べる。
 図21は、比較例に係る太陽電池セル170の構造を示す断面図であり、図2に示した断面に対応する構造を示す。太陽電池セル170は、上述の実施の形態に係る太陽電池セル70と同様の構造を有する裏面接合型の光起電力素子である。一方で、太陽電池セル170は、第1電極114および第2電極115を構成する透明導電層117、シード層118、めっき層119の構造および形成方法において上述の実施の形態と相違する。
 太陽電池セル170は、上述の図11に示す工程の後に、絶縁領域W3に位置する透明導電層37およびシード層38の一部を除去して分離領域W6を形成し、分離されたシード層118の上にめっき層119を成長させることで形成される。めっき層119は、シード層118を基点として等方的に成長するため、絶縁領域W3とコンタクト領域W4の境界に位置する第1段差部31の上に形成される。まためっき層119は、分離領域W6の形成後に設けられるため、分離領域W6に露出する第2半導体層13の上に直接接触するように形成される。
 なお、分離領域W6は、製造時のばらつき等により絶縁領域W3の範囲内に形成されるとは限らず、図21に示すように、分離領域W6が絶縁領域W3からずれて形成される場合がある。太陽電池セル170の出力特性を向上させるためには、x方向に延びるフィンガー電極下に位置する第1領域および第2領域のy方向の幅は小さいことが望ましく、分離領域W6の形成には高い位置精度が求められる。そのため、製造時のばらつきによっては、図示されるように分離領域W6の位置がずれることがある。このとき、分離領域W6が第2領域W2側にずれて形成されると、第2領域W2と絶縁領域W3の境界に位置する第2段差部32において第2半導体層13が露出し、第2段差部32の上の第2半導体層13にめっき層119が直接接触する可能性がある。
 第2段差部32は、第1半導体層12と第2半導体層13が直接接触する部分を含み、n型の第1半導体層12により収集される電子の一部は、直接接触する第2半導体層13を経由して第2電極115に流れ込む。そうすると、p型の第2半導体層13により収集されて第2電極115に流れ込むホールと再結合し、ジャンクションリークが発生しうる。特に、めっき層119は、透明導電層117よりも導電性が高いため、第2段差部32の第2半導体層13にめっき層119が直接接触することでジャンクションリークが大きくなるおそれが生じる。
 一方、図2に示す本実施の形態に係る太陽電池セル70によれば、めっき層19を形成した後に分離領域W5を設けて透明導電層17を分離するため、めっき層19が透明導電層17の下の第2半導体層13に直接接触することを防ぐことができる。これにより、第2段差部32の第2半導体層13にめっき層19が直接接触してジャンクションリークが発生することを防ぐことができる。これにより、太陽電池セル70の信頼性を高めることができる。
 また本実施の形態によれば、第1金属電極21と第2金属電極26の間の隙間をマスクにして透明導電層17の分離領域W5を形成するため、分離領域W5を形成するためにマスクを別途設ける必要がなくなる。また、第1金属電極21と第2金属電極26の間の隙間の位置により分離領域W5の位置が自己整合的に決定されるため、分離領域W5が形成される箇所の位置ずれを防ぐことができる。これにより、太陽電池セル70の信頼性を高めることができる。
 また本実施の形態によれば、第1金属電極21と第2金属電極26の間の隙間を利用して透明導電層17の分離領域W5を形成するため、第1張出部23や第2張出部28に覆われた箇所の透明導電層17が除去されるのを防ぐことができる。これにより、第1半導体層12や第2半導体層13とめっき層19の間に透明導電層17を設けることができ、めっき層19が半導体層に直接接触するのを防ぐことができる。これにより、太陽電池セル70の信頼性を高めることができる。
 また本実施の形態によれば、めっき層19が主面から離れるにつれて絶縁領域W3に向かって突出するような形状を有するため、第1段差部31および第2段差部32の透明導電層17の上にめっき層19が直接接触しない形状とすることができる。一般に、半導体基板10とめっき層19は熱膨張率が異なることから、温度変化に起因する伸縮量の差によって応力が生じる。このとき、第1段差部31および第2段差部32の上に膜厚の大きいめっき層が設けられると、温度変化により生じた応力が第1段差部31や第2段差部32に集中してダメージを与えるおそれが生じる。本実施の形態によれば、第1段差部31および第2段差部32の上にめっき層19が直接接触しないように形成されるため、第1段差部31や第2段差部32への応力の集中を防ぐことができる。これにより、太陽電池セル70の信頼性を高めることができる。
 また本実施の形態によれば、金属電極のない第1フィンガー先端部14cおよび第2フィンガー先端部15cが設けられるため、複数の太陽電池セル70の間を接続する接続部材によって同じセル内の第1電極14と第2電極15が短絡してしまうのを防ぐことができる。本効果について、図22を参照しながら説明する。
 図22は、接続部材60を接着した太陽電池セル70の構造を示す断面図である。太陽電池セル70は、複数の太陽電池セル70を接続部材60で接続することによりモジュール化される。接続部材60は、第1の太陽電池セル70の第1バスバー電極14aと、第2の太陽電池セルの第2バスバー電極とを接続する。本図は、第1の太陽電池セル70の第1バスバー電極14aに接着された接続部材60を示しており、第2の太陽電池セルの記載は省略している。
 接続部材60は、第1バスバー電極14aおよび第2フィンガー先端部15cの上に跨って設けられ、接着剤62により太陽電池セル70に接着される。接着剤62は、熱硬化性の樹脂であり、導電性粒子64を含む。接続部材60と第1バスバー電極14aは、導電性粒子64を介して電気的に接続され、接続部材60と第2フィンガー先端部15cの間は接着剤62により電気的に絶縁される。
 本実施の形態によれば、第2フィンガー先端部15cが設けられるため、接続部材60が第2フィンガー電極15bに接触して第1バスバー電極14aと第2フィンガー電極15bが短絡してしまうことを防ぐことができる。太陽電池セル70の発電効率を高めるためには無効領域となる第1バスバー絶縁領域W31は小さい方が望ましく、その結果、第1バスバー絶縁領域W31の上に設けられる第1バスバー電極14aのx方向の幅もある程度小さい方が望ましい。一方で、第1バスバー電極14aのx方向の幅が小さいと、接続部材60に接着させるために高い位置精度が必要となり、製造時のばらつき等によっては、接続部材60の先端が第2フィンガー電極15bに近接してしまう。第1バスバー電極14aに接続部材60を圧力を加えて接着する際、接着剤62が第2フィンガー領域W21に向かって流動する。このとき、第1バスバー電極14aと第2フィンガー電極15bとの間に十分な空間がなければ、接着剤62が第1バスバー電極14aと第2フィンガー電極15bの高さ(z方向)を超えてしまうおそれがある。そうすると、第1バスバー電極14aと接続部材60の間の接着性が低下するおそれが生じる。本実施の形態によれば、第2フィンガー先端部15cを設けることで、第1バスバー電極14aに接着される接続部材60と第2フィンガー電極15bの間に余裕を設けることができる。これにより、接続部材60を好適に第1バスバー電極14aに接続させることができる。
 本実施の形態の一態様は、太陽電池セル70の製造方法である。この方法は、
 互いに隣接する第1領域W1と第2領域W2を有する半導体基板10の主面(第2主面10b)上の第1領域W1に第1導電型の第1半導体層12を形成することと、
 第1領域W1の一部であって第2領域W2に隣接する絶縁領域W3の第1半導体層12上に絶縁層16を形成することと、
 第2領域W2の主面(第2主面10b)上および絶縁領域W3の絶縁層16上にわたって第2導電型の第2半導体層13を形成することと、
 第1半導体層12および第2半導体層13の上に透明導電層17を形成することと、
 透明導電層17の上にシード層18を形成することと、
 絶縁領域W3のシード層18の上にめっきレジスト40を設けてシード層18の上にめっき層19を成長させることと、
 めっきレジスト40を除去し、透明導電層17およびシード層18の一部を除去することと、を備える。
 めっき層19を成長させることは、第1領域W1上に第1めっき層19aを形成することと、第2領域W2上に第2めっき層19bを形成することと、を含み、
 第2めっき層19bを形成することは、主面(第2主面10b)から離れるにつれて第2めっき層19bが第1めっき層19aに近づくように突出するとともに、第1めっき層19aとの間に隙間42が設けられるように第2めっき層19bを形成することを含み、
 透明導電層17およびシード層18の一部を除去することは、隙間42をマスクとして透明導電層17の一部をレーザ照射またはドライエッチングすることを含む。
 透明導電層17およびシード層18の一部を除去することは、シード層18をウェットエッチングすることを含んでもよい。
 めっき層19を成長させることは、絶縁領域W3に隣接する第2領域W2の一部を覆うようにめっきレジスト40を設けることを含んでもよい。
 第1領域W1は、x方向に延びる複数の第1フィンガー領域W12と、複数の第1フィンガー領域W12の一端を接続してy方向に延びる第1バスバー領域W11とを含み、
 第2領域W2は、x方向に延びる複数の第2フィンガー領域W21と、複数の第2フィンガー領域W21の一端を接続してy方向に延びる第2バスバー領域W22とを含み、
 第1領域W1および第2領域W2は、複数の第1フィンガー領域W12と複数の第2フィンガー領域W21が互いに間挿し合うように設けられ、
 めっき層19を成長させることは、第1バスバー領域W11と第2フィンガー領域W21の境界を跨いでx方向に延在し、境界から第1バスバー領域W11側に延びる長さX1よりも境界から第2フィンガー領域W21側に延びる長さX2が大きくなるようにめっきレジスト40を設けることを含んでもよい。
 第1めっき層19aを成長させることは、第1バスバー領域W11においてy方向に延びる第1バスバー電極14aを形成することを含み、
 透明導電層17およびシード層18の一部を除去することは、第1バスバー電極14aに沿ってy方向にレーザ50を照射して透明導電層17の一部を除去することを含んでもよい。
 別の態様は、太陽電池セル70である。この太陽電池セル70は、
 互いに隣接する第1領域W1と第2領域W2が設けられる主面(第2主面10b)を有する半導体基板10と、
 主面(第2主面10b)上の第1領域W1に設けられる第1導電型の第1半導体層12と、
 第1領域W1の一部であって第2領域W2に隣接する絶縁領域W3の第1半導体層12上に設けられる絶縁層16と、
 第2領域W2の主面(第2主面10b)上および絶縁領域W3の絶縁層16上にわたって設けられる第2導電型の第2半導体層13と、
 第1半導体層12および第2半導体層13の上に設けられる透明導電層17と、
 第1領域W1の透明導電層17の上に設けられる第1金属電極21と、
 第2領域W2の透明導電層17の上に設けられる第2金属電極26と、を備え、
 第2金属電極26は、主面(第2主面10b)から離れるにつれて第1金属電極21に近づくように突出する張出部(第2張出部28)を有し、第1金属電極21との間の隙間が絶縁領域W3に位置するように形成され、
 透明導電層17は、絶縁領域W3のうち隙間に位置的に対応する分離領域W5を避けて設けられる。
 張出部(第2張出部28)は、第2領域W2と絶縁領域W3の境界を跨ぐように第2領域W2から絶縁領域W3に向けて突出してもよい。
 第1金属電極21は、x方向に延びる複数の第1フィンガー電極14bと、複数の第1フィンガー電極14bの一端を接続してy方向に延びる第1バスバー電極14aとを含み、
 第2金属電極26は、x方向に延びる複数の第2フィンガー電極15bと、複数の第2フィンガー電極15bの一端を接続してy方向に延びる第2バスバー電極15aとを含み、
 第1金属電極21および第2金属電極26は、複数の第1フィンガー電極14bと複数の第2フィンガー電極15bが互いに間挿し合うように設けられ、
 透明導電層17は、第1バスバー電極14aと複数の第2フィンガー電極15bの間に位置する複数のバスバー分離領域(第1バスバー分離領域W51)を避けて設けられ、
 複数のバスバー分離領域(第1バスバー分離領域W51)は、複数の第2フィンガー電極15bよりも第1バスバー電極14aの近くに設けられてもよい。
 図23および図24は、変形例に係る太陽電池セル70の構造を示す断面図である。図23は、図2に対応する断面を示し、図24は、図6に対応する断面を示す。本変形例は、シード層18が分離領域W5を避けて透明導電層17上の全面を覆うように設けられる点で上述の実施の形態と異なる。本変形例に係る太陽電池セル70は、上述の図17に示しためっきレジスト40の除去工程においてシード層38を除去せず、図18~図20に示す分離領域W5を形成する工程においてシード層38と透明導電層37の一部を除去することにより形成できる。
 本変形例においても、上述の実施の形態と同様の効果を得ることができる。また、図24に示されるように、第2フィンガー先端部15cにシード層18を残すことで、第2フィンガー先端部15cにおける集電効率を高めることができる。同様に、第1フィンガー先端部14cにシード層18を残すことで、第1フィンガー先端部14cにおける集電効率を高めることができる。
 上述の太陽電池セル70の製造方法において、透明導電層17およびシード層18の一部を除去することは、隙間42をマスクとしてシード層18の一部をドライエッチングすることを含んでもよい。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。
 上述の実施の形態では、絶縁領域W3と、隣接する第2領域W2やコンタクト領域W4の一部に跨ってめっきレジスト40を設ける場合を示した。さらなる変形例においては、めっきレジストが絶縁領域W3の範囲内のみに設けられるようにしてもよいし、隣接する第2領域W2またはコンタクト領域W4の一方にのみ跨るように設けてもよい。この場合、めっき層の第1基部および第2基部の少なくとも一方は、絶縁領域W3に設けられてもよい。
 上述の実施の形態および変形例では、分離領域W5に位置する透明導電層37やシード層38の一部をレーザ照射により除去することとした。さらなる変形例においては、エッチングガスを用いて透明導電層37やシード層38の一部を除去してもよい。つまり、透明導電層37やシード層38の一部は、レーザ照射やエッチングガスを用いたドライエッチングの手法により除去することができる。
 10…半導体基板、12…第1半導体層、13…第2半導体層、14a…第1バスバー電極、14b…第1フィンガー電極、15a…第2バスバー電極、15b…第2フィンガー電極、16…絶縁層、17…透明導電層、18…シード層、19…めっき層、19a…第1めっき層、19b…第2めっき層、21…第1金属電極、26…第2金属電極、40…めっきレジスト、42…隙間、50…レーザ、70…太陽電池セル、W1…第1領域、W2…第2領域、W3…絶縁領域、W5…分離領域,W11…第1バスバー領域、W12…第1フィンガー領域、W21…第2フィンガー領域、W22…第2バスバー領域。
 本発明によれば、太陽電池セルの信頼性を高めることができる。

Claims (9)

  1.  互いに隣接する第1領域と第2領域を有する半導体基板の主面上の前記第1領域に第1導電型の第1半導体層を形成することと、
     前記第1領域の一部であって前記第2領域に隣接する絶縁領域の前記第1半導体層上に絶縁層を形成することと、
     前記第2領域の前記主面上および前記絶縁領域の前記絶縁層上にわたって第2導電型の第2半導体層を形成することと、
     前記第1半導体層および前記第2半導体層の上に透明導電層を形成することと、
     前記透明導電層の上にシード層を形成することと、
     前記絶縁領域の前記シード層の上にめっきレジストを設けて前記シード層の上にめっき層を成長させることと、
     前記めっきレジストを除去し、前記透明導電層および前記シード層の一部を除去することと、を備え、
     前記めっき層を成長させることは、前記第1領域上に第1めっき層を形成することと、前記第2領域上に第2めっき層を形成することと、を含み、
     前記第2めっき層を形成することは、前記主面から離れるにつれて前記第2めっき層が前記第1めっき層に近づくように突出するとともに、前記第1めっき層との間に隙間が設けられるように前記第2めっき層を形成することを含み、
     前記透明導電層および前記シード層の一部を除去することは、前記隙間をマスクとして前記透明導電層の一部をレーザ照射またはドライエッチングすることを含む太陽電池セルの製造方法。
  2.  前記透明導電層および前記シード層の一部を除去することは、前記シード層をウェットエッチングすることを含む請求項1に記載の太陽電池セルの製造方法。
  3.  前記透明導電層および前記シード層の一部を除去することは、前記隙間をマスクとして前記シード層の一部をドライエッチングすることを含む請求項1に記載の太陽電池セルの製造方法。
  4.  前記めっき層を成長させることは、前記絶縁領域に隣接する前記第2領域の一部を覆うように前記めっきレジストを設けることを含む請求項1から3のいずれか一項に記載の太陽電池セルの製造方法。
  5.  前記第1領域は、x方向に延びる複数の第1フィンガー領域と、前記複数の第1フィンガー領域の一端を接続してy方向に延びる第1バスバー領域とを含み、
     前記第2領域は、x方向に延びる複数の第2フィンガー領域と、前記複数の第2フィンガー領域の一端を接続してy方向に延びる第2バスバー領域とを含み、
     前記第1領域および前記第2領域は、前記複数の第1フィンガー領域と前記複数の第2フィンガー領域が互いに間挿し合うように設けられ、
     前記めっき層を成長させることは、前記第1バスバー領域と前記第2フィンガー領域の境界を跨いでx方向に延在し、前記境界から前記第1バスバー領域側に延びる長さよりも前記境界から前記第2フィンガー領域側に延びる長さが大きくなるように前記めっきレジストを設けることを含む請求項1から4のいずれか一項に記載の太陽電池セルの製造方法。
  6.  前記第1めっき層を成長させることは、前記第1バスバー領域においてy方向に延びる第1バスバー電極を形成することを含み、
     前記透明導電層および前記シード層の一部を除去することは、前記第1バスバー電極に沿ってy方向にレーザを照射して前記透明導電層の一部を除去することを含む請求項5に記載の太陽電池セルの製造方法。
  7.  互いに隣接する第1領域と第2領域が設けられる主面を有する半導体基板と、
     前記主面上の第1領域に設けられる第1導電型の第1半導体層と、
     前記第1領域の一部であって前記第2領域に隣接する絶縁領域の前記第1半導体層上に設けられる絶縁層と、
     前記第2領域の前記主面上および前記絶縁領域の前記絶縁層上にわたって設けられる第2導電型の第2半導体層と、
     前記第1半導体層および前記第2半導体層の上に設けられる透明導電層と、
     前記第1領域の前記透明導電層の上に設けられる第1金属電極と、
     前記第2領域の前記透明導電層の上に設けられる第2金属電極と、を備え、
     前記第2金属電極は、前記主面から離れるにつれて前記第1金属電極に近づくように突出する張出部を有し、前記第1金属電極との間の隙間が前記絶縁領域に位置するように形成され、
     前記透明導電層は、前記絶縁領域のうち前記隙間に位置的に対応する分離領域を避けて設けられる太陽電池セル。
  8.  前記張出部は、前記第2領域と前記絶縁領域の境界を跨ぐように前記第2領域から前記絶縁領域に向けて突出する請求項7に記載の太陽電池セル。
  9.  前記第1金属電極は、x方向に延びる複数の第1フィンガー電極と、前記複数の第1フィンガー電極の一端を接続してy方向に延びる第1バスバー電極とを含み、
     前記第2金属電極は、x方向に延びる複数の第2フィンガー電極と、前記複数の第2フィンガー電極の一端を接続してy方向に延びる第2バスバー電極とを含み、
     前記第1金属電極および前記第2金属電極は、前記複数の第1フィンガー電極と前記複数の第2フィンガー電極が互いに間挿し合うように設けられ、
     前記透明導電層は、前記第1バスバー電極と前記複数の第2フィンガー電極の間に位置する複数のバスバー分離領域を避けて設けられ、
     前記複数のバスバー分離領域は、前記複数の第2フィンガー電極よりも前記第1バスバー電極の近くに設けられる請求項7または8に記載の太陽電池セル。
PCT/JP2016/000940 2015-03-30 2016-02-23 太陽電池セルおよび太陽電池セルの製造方法 WO2016157701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680018486.9A CN107408588B (zh) 2015-03-30 2016-02-23 太阳能电池单元和太阳能电池单元的制造方法
DE112016001478.3T DE112016001478T5 (de) 2015-03-30 2016-02-23 Solarbatteriezelle und verfahren zur herstellung der solarbatteriezelle
JP2017509204A JP6436424B2 (ja) 2015-03-30 2016-02-23 太陽電池セルおよび太陽電池セルの製造方法
US15/716,361 US20180033898A1 (en) 2015-03-30 2017-09-26 Solar cell and method of manufacturing solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069718 2015-03-30
JP2015-069718 2015-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/716,361 Continuation US20180033898A1 (en) 2015-03-30 2017-09-26 Solar cell and method of manufacturing solar cell

Publications (1)

Publication Number Publication Date
WO2016157701A1 true WO2016157701A1 (ja) 2016-10-06

Family

ID=57005561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000940 WO2016157701A1 (ja) 2015-03-30 2016-02-23 太陽電池セルおよび太陽電池セルの製造方法

Country Status (5)

Country Link
US (1) US20180033898A1 (ja)
JP (1) JP6436424B2 (ja)
CN (1) CN107408588B (ja)
DE (1) DE112016001478T5 (ja)
WO (1) WO2016157701A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139020A1 (ja) * 2018-01-10 2019-07-18 パナソニック株式会社 太陽電池セル、及び、太陽電池セルの製造方法
WO2020121694A1 (ja) * 2018-12-12 2020-06-18 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090423A1 (ja) * 2018-10-31 2020-05-07 株式会社カネカ 太陽電池の製造方法、太陽電池、および太陽電池モジュール
CN112670358B (zh) * 2020-12-23 2021-08-03 东南大学苏州研究院 金刚石基紫外探测器及其制备方法
CN113809186A (zh) * 2021-09-13 2021-12-17 福建金石能源有限公司 一种采用形成电极、开槽绝缘二步法的背接触异质结太阳能电池制造方法
CN114551610B (zh) * 2022-03-11 2024-05-31 广东爱旭科技有限公司 一种太阳能电池、电极结构、电池组件、发电***及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
US20140034119A1 (en) * 2012-08-02 2014-02-06 Samsung Sdi Co., Ltd. Photoelectric device
JP2014220291A (ja) * 2013-05-02 2014-11-20 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
WO2015040780A1 (ja) * 2013-09-19 2015-03-26 パナソニックIpマネジメント株式会社 太陽電池および太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705968B2 (ja) * 2011-03-25 2015-04-22 三洋電機株式会社 光電変換装置及びその製造方法
JP5820988B2 (ja) * 2011-03-28 2015-11-24 パナソニックIpマネジメント株式会社 光電変換装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096539A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 太陽電池素子および太陽電池素子の製造方法
US20140034119A1 (en) * 2012-08-02 2014-02-06 Samsung Sdi Co., Ltd. Photoelectric device
JP2014220291A (ja) * 2013-05-02 2014-11-20 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
WO2015040780A1 (ja) * 2013-09-19 2015-03-26 パナソニックIpマネジメント株式会社 太陽電池および太陽電池モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139020A1 (ja) * 2018-01-10 2019-07-18 パナソニック株式会社 太陽電池セル、及び、太陽電池セルの製造方法
CN111566821A (zh) * 2018-01-10 2020-08-21 松下电器产业株式会社 太阳能单电池和太阳能单电池的制造方法
JPWO2019139020A1 (ja) * 2018-01-10 2020-12-10 パナソニック株式会社 太陽電池セル、及び、太陽電池セルの製造方法
US11233164B2 (en) 2018-01-10 2022-01-25 Panasonic Corporation Solar cell, and method for manufacturing solar cell
CN111566821B (zh) * 2018-01-10 2023-03-10 松下控股株式会社 太阳能单电池和太阳能单电池的制造方法
WO2020121694A1 (ja) * 2018-12-12 2020-06-18 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
JPWO2020121694A1 (ja) * 2018-12-12 2021-10-21 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール

Also Published As

Publication number Publication date
JPWO2016157701A1 (ja) 2017-12-07
DE112016001478T5 (de) 2017-12-21
CN107408588A (zh) 2017-11-28
CN107408588B (zh) 2019-12-13
US20180033898A1 (en) 2018-02-01
JP6436424B2 (ja) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436424B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP5171490B2 (ja) 集積型薄膜太陽電池
WO2015040780A1 (ja) 太陽電池および太陽電池モジュール
EP2660874B1 (en) Multi-junction compound solar cell, multi-junction compound solar battery, and method for manufacturing same
WO2015045242A1 (ja) 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
JP5376873B2 (ja) 集積型薄膜太陽電池
JP6425195B2 (ja) 太陽電池
JP2016066709A (ja) 太陽電池
JP6590165B2 (ja) 太陽電池セルの製造方法
JP6380822B2 (ja) 太陽電池セル
US10505055B2 (en) Photoelectric conversion element
JP6311911B2 (ja) 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
JP6906195B2 (ja) 太陽電池
JP6681607B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP7087196B2 (ja) 拡大した開口面積を有するソーラーモジュール
JP6206843B2 (ja) 太陽電池
JP6191995B2 (ja) 太陽電池モジュール
JP6167414B2 (ja) 太陽電池および太陽電池モジュール
JP2019009242A (ja) 光電変換モジュール
JPWO2016143547A1 (ja) 光電変換素子、光電変換装置、光電変換素子の製造方法および光電変換装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016001478

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771596

Country of ref document: EP

Kind code of ref document: A1