WO2016157629A1 - ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法 - Google Patents

ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法 Download PDF

Info

Publication number
WO2016157629A1
WO2016157629A1 PCT/JP2015/084427 JP2015084427W WO2016157629A1 WO 2016157629 A1 WO2016157629 A1 WO 2016157629A1 JP 2015084427 W JP2015084427 W JP 2015084427W WO 2016157629 A1 WO2016157629 A1 WO 2016157629A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
solution
cobalt
hydrogen sulfide
reaction
Prior art date
Application number
PCT/JP2015/084427
Other languages
English (en)
French (fr)
Inventor
智暁 米山
宏之 三ツ井
学 榎本
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to AU2015389766A priority Critical patent/AU2015389766B2/en
Priority to EP15887771.2A priority patent/EP3279344B1/en
Priority to CA2980523A priority patent/CA2980523C/en
Priority to CN201580078138.6A priority patent/CN107429317B/zh
Priority to US15/561,695 priority patent/US10125408B2/en
Publication of WO2016157629A1 publication Critical patent/WO2016157629A1/ja
Priority to PH12017501778A priority patent/PH12017501778B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/165Preparation from sulfides, oxysulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D13/00Compounds of sodium or potassium not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a mixed sulfide of nickel and cobalt, and more specifically, a method for producing a mixed sulfide of nickel and cobalt by a sulfidation reaction from an acidic sulfuric acid solution containing nickel and cobalt, and sulfiding the method.
  • the present invention relates to a method for hydrometallizing nickel oxide ore applied to a process.
  • a leaching solution containing nickel and cobalt is used as a sulfidation reaction starter to cause a sulfidation reaction under pressure, and mixing of nickel and cobalt while separating impurities Processing to produce sulfides is performed.
  • a sulfurization reaction under pressure in particular, separation of zinc, copper and the like is possible, and it has been put into practical use.
  • the nickel ions in the end solution increase as the iron concentration increases. That is, it means that the nickel recovery rate decreases as the iron concentration increases. Since the iron concentration in the sulfidation reaction start liquid depends on the operating parameters of the process prior to the sulfidation process in the hydrometallurgical method of nickel oxide ore, the iron concentration in the start liquid at the start of the sulfidation process is not constant. , "The state is scattered". Therefore, in this sulfidation step, in order to suppress a decrease in nickel recovery rate, it is required to cope with the “variation state” of the iron concentration in the sulfidation reaction starting solution.
  • Patent Document 1 an alkali sulfide is added to an acidic aqueous solution containing nickel and / or cobalt to precipitate and recover nickel and / or cobalt sulfide.
  • the S / (Ni + Co) molar ratio uses hydrogen sulfide.
  • a method for recovering sulfide precipitates which is controlled to a value close to 1 which is the stoichiometric composition of NiS and CoS, which is 1.05 or less of the amount of sulfides produced in this manner.
  • alkali sulfide is added to the aqueous solution, and the sulfide is removed while maintaining the oxidation-reduction potential (Ag / AgCl electrode standard) at ⁇ 300 mV to 100 mV.
  • a method for precipitation is disclosed.
  • An object of the present invention is to provide a method for producing a mixed sulfide of nickel and cobalt, which can stabilize the concentration of nickel and cobalt in the sulfidation reaction final solution at a low level and can suppress a decrease in the recovery rate of nickel and cobalt.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, hydrogen sulfide gas was blown into the sulfuric acid acidic solution containing nickel and cobalt containing iron at a rate of 1.0 to 4.0 g / L, and the exhaust gas containing hydrogen sulfide gas generated by the sulfurization reaction was discharged.
  • a sodium hydrogen sulfide (NaHS) solution obtained by absorption in an alkaline solution to cause a sulfurization reaction, the concentration of nickel and cobalt in the sulfurization reaction final solution is stabilized at a low level.
  • NaHS sodium hydrogen sulfide
  • the inventors have found that a reduction in recovery rate can be suppressed, and have completed the present invention. That is, the present invention provides the following.
  • the first aspect of the present invention is a method for producing a mixed sulfide of nickel and cobalt by causing a sulfurization reaction by blowing hydrogen sulfide gas into a sulfuric acid acidic solution containing nickel and cobalt, wherein the sulfuric acid
  • the acidic solution contains iron at a rate of 1.0 to 4.0 g / L, and the hydrogen sulfide gas is blown into the sulfuric acid acidic solution and exhaust gas containing the hydrogen sulfide gas generated by the sulfidation reaction.
  • the second invention of the present invention is characterized in that, in the first invention, the addition amount of the sodium hydrogen sulfide is an amount equal to or more than an equivalent amount necessary for sulfurization of the iron contained in the sulfuric acid acidic solution. And producing a mixed sulfide of nickel and cobalt.
  • the third invention of the present invention is the first or second invention, wherein the sodium hydrogen sulfide is added in an amount of 20 to 35 mass% of the solution containing the sodium hydrogen sulfide in the sulfuric acid acidity.
  • a method for producing a mixed sulfide of nickel and cobalt characterized in that a proportion of 1.7 ⁇ 3.8m 3 / H to a solution 1000 m 3 / H.
  • the amount of the hydrogen sulfide gas blown is necessary for sulfiding nickel and cobalt contained in the sulfuric acid acidic solution.
  • This is a method for producing a mixed sulfide of nickel and cobalt, characterized in that the amount is 1.5 to 2.5 times the theoretical equivalent.
  • a fifth invention of the present invention is the method for producing a mixed sulfide of nickel and cobalt according to any one of the first to fourth inventions, wherein the alkaline solution is a sodium hydroxide solution. is there.
  • the sixth invention of the present invention is a nickel oxide ore which performs a leaching treatment using sulfuric acid on nickel oxide ore and produces a mixed sulfide of nickel and cobalt from the obtained leachate containing nickel and cobalt.
  • the method includes a sulfurization step in which a sulfide reaction is caused by blowing hydrogen sulfide gas into the leachate to obtain a mixed sulfide of nickel and cobalt, and the leachate is 1.0 to 4.0 g / L.
  • hydrogen sulfide gas obtained by blowing the hydrogen sulfide gas into the leachate and absorbing exhaust gas containing hydrogen sulfide gas generated by the sulfidation reaction in an alkaline solution is contained in the sulfiding step.
  • the nickel and cobalt concentrations in the sulfurization reaction final solution are stabilized at a low level without increasing the cost, even when the sulfurization reaction initial solution having a high iron concentration is processed. And the fall of the recovery rate of cobalt can be suppressed.
  • the method for producing a mixed sulfide of nickel and cobalt is a method for obtaining a mixed sulfide of nickel and cobalt by causing a sulfurization reaction by blowing hydrogen sulfide gas into a sulfuric acid acidic solution containing nickel and cobalt.
  • the mixed sulfide refers to a mixture of nickel sulfide and cobalt sulfide.
  • the mixed sulfide of nickel and cobalt is also simply referred to as “mixed sulfide”.
  • this mixed sulfide manufacturing method is a solution in which an acidic sulfuric acid solution containing nickel and cobalt as a sulfurization reaction starting solution contains iron at a rate of 1.0 to 4.0 g / L, Sodium hydrogen sulfide (NaHS) obtained by injecting hydrogen sulfide (H 2 S) gas as a sulfiding agent into the sulfuric acid acidic solution and absorbing exhaust gas containing hydrogen sulfide gas generated by the sulfidation reaction in an alkaline solution Is added to cause a sulfurization reaction.
  • NaHS Sodium hydrogen sulfide
  • This mixed sulfide production method can be applied, for example, to a treatment in a sulfidation process in a wet smelting method of nickel oxide ore as described later.
  • a sulfuric acid acidic solution containing nickel and cobalt a leachate obtained by subjecting nickel oxide ore to a leaching treatment using sulfuric acid can be used.
  • a neutralized final solution obtained by neutralizing a leachate obtained through the leaching treatment with a neutralizer may be used.
  • the nickel oxide ore contains iron, and the leachate obtained by leaching the nickel oxide ore could not be fixed as hematite (Fe 2 O 3 ) during the leaching process. Iron is included as an impurity element. Moreover, since the root of the plant is mixed in the nickel oxide ore used as a raw material, if the carbon (C) grade in the nickel oxide ore exceeds 0.2%, the ORP of the leachate obtained by the leaching process is lowered. As a result, iron is leached and the iron concentration in the leachate exceeds 1.0 g / L. In addition, even if this iron is neutralized with respect to the leachate, it is difficult to separate compared with other impurity elements. Therefore, even in the neutralized final solution obtained by performing neutralization, the iron has a predetermined concentration. Included.
  • FIG. 1 is a graph showing the relationship between the pH of a solution and the solubility of various metal sulfides. From the graph of FIG. 1, it can be seen that the solubility of nickel sulfide (NiS) and cobalt sulfide (CoS) depends on pH. Therefore, the higher the pH is, the sulfide form is maintained in the final sulfurization reaction solution, and the concentration of nickel ions and cobalt ions decreases. That is, the recovery rate as a mixed sulfide of nickel and cobalt is improved.
  • NiS nickel sulfide
  • CoS cobalt sulfide
  • FIG. 2 is a graph showing the relationship between the iron concentration in the sulfurization reaction start solution and the nickel concentration in the sulfurization reaction end solution. As shown in FIG. 2, the higher the iron concentration in the sulfurization reaction start solution, the lower the pH of the solution as described above to promote NiS redissolution, and as a result, in the sulfurization reaction final solution. It can be clearly seen that the nickel concentration tends to increase.
  • a sulfurization reaction is performed on a sulfuric acid acidic solution containing nickel and cobalt and containing iron at a concentration of 1.0 to 4.0 g / L.
  • a predetermined amount of hydrogen sulfide gas is blown in, an exhaust gas containing hydrogen sulfide gas generated by the sulfurization reaction is alkali-treated, and a solution containing sodium hydrogen sulfide obtained by the alkali treatment ( Hereinafter, it is also referred to as “NaHS solution”) to cause a sulfurization reaction.
  • the reaction shown in the following reaction formulas (ii) and (iii) proceeds by adding the NaHS solution obtained by alkali treatment of the exhaust gas generated by the sulfidation reaction to the sulfidation reaction starting solution.
  • the acid produced in the reaction shown in i) is neutralized.
  • the fall of pH of a solution is suppressed, the density
  • the sulfurization reaction can be promoted based on the reaction formula (iii), and the utilization efficiency of the hydrogen sulfide gas can be improved by reusing the excessively added hydrogen sulfide gas as described later. .
  • the necessary theory is obtained in order to obtain a desired recovery rate and to use the surplus as exhaust gas for alkali treatment.
  • An excess of 1.5 to 2.5 times the equivalent is added.
  • the present embodiment is characterized in that NaHS is generated by subjecting excess hydrogen sulfide gas to alkali treatment, a solution containing the NaHS is recovered, and repeatedly added in the sulfurization reaction.
  • FIG. 3 schematically shows a flow in which surplus hydrogen sulfide gas is recovered and subjected to detoxification treatment with an alkaline solution (hereinafter simply referred to as “alkali treatment”), and the obtained NaHS solution is supplied to the sulfurization reaction.
  • alkali treatment an alkaline solution
  • FIG. 3 shows a flow in which surplus hydrogen sulfide gas is recovered and subjected to detoxification treatment with an alkaline solution (hereinafter simply referred to as “alkali treatment”), and the obtained NaHS solution is supplied to the sulfurization reaction.
  • alkali treatment an alkaline solution
  • the NaHS solution 13 obtained in this way is added to the sulfurization reaction starting liquid 10 charged in the sulfurization reaction tank 1 using a pump or the like. It is characterized by.
  • the repeatedly added NaHS solution is also used for the sulfurization reaction, and the decrease in pH in the reaction system accompanying the sulfurization reaction is suppressed.
  • the re-dissolution of the produced NiS and CoS is reduced, and even when the sulfurization reaction initial solution 10 having a high iron concentration is processed, the nickel concentration in the resulting sulfurization reaction final solution 14 is stabilized at a low level. Can do.
  • the system for adding the NaHS solution obtained by alkali treatment of the hydrogen sulfide gas discharged from the sulfidation reaction tank to the sulfidation reaction starting solution is not particularly limited, but as described above, a circulation system as shown in FIG. be able to. That is, the exhaust gas 12 containing the surplus hydrogen sulfide gas 11a is used as the NaHS solution 13 in the H 2 S gas cleaning tower 2 in which the alkali solution is circulated, and the obtained NaHS solution 13 is discharged into the sulfurization reaction tank.
  • the system can be repeated to 1.
  • a detoxifying facility such as a scrubber in order to efficiently contact the alkali solution and the hydrogen sulfide gas.
  • the alkali solution used for alkali treatment in H 2 S gas washing tower 2 is not particularly limited, industrially has high alkali strength, it is preferable to handle using easy sodium hydroxide (NaOH) solution as a solution.
  • the concentration of the sodium hydroxide solution is preferably about 20 to 30% by mass. If the concentration of sodium hydroxide is less than 20%, the concentration decreases and the amount of sodium hydroxide solution increases. On the other hand, if the concentration exceeds 30%, unreacted sodium hydroxide may remain.
  • the NaHS solution obtained by this alkali treatment is, for example, a 20 to 35% by mass NaHS solution.
  • this NaHS solution is repeatedly added to the sulfidation reaction vessel to cause a sulfidation reaction.
  • the amount of addition is sulfuric acid containing nickel and cobalt which are the sulfidation reaction starting liquid. it is preferably added in an amount of about 1.7 ⁇ 3.8m 3 / H to acidic solution 1000 m 3 / H.
  • Amount of NaHS is less than 1.7 m 3 / H with respect to sulfuric acid solution 1000 m 3 / H, increase the effect of pH is the desired effect, the effect of suppressing pH decrease sufficiently obtained in other words There is no possibility.
  • the sulfuric acid acidic solution exceeds 3.8 m 3 / H with respect to 1000 m 3 / H, not only the recovery rate of nickel or cobalt is increased, but also the mixing of Fe into the product is promoted due to excessive increase in pH. This is not preferable.
  • a sulfuric acid acidic solution containing nickel and cobalt is used as a sulfurization reaction starting solution, and hydrogen sulfide gas and a NaHS solution obtained by alkali treatment are added to this solution. This causes a sulfurization reaction.
  • the sulfuric acid acidic solution containing nickel and cobalt for example, a leachate obtained by leaching nickel oxide ore with sulfuric acid can be used. And a mixed sulfide of cobalt.
  • the mixed sulfide manufacturing method according to the present embodiment can be applied to a sulfiding step in a hydrometallurgical method for recovering nickel from nickel oxide ore.
  • FIG. 4 is a process diagram showing an example of the flow of a method for hydrometallizing nickel oxide ore.
  • the hydrometallurgical method of nickel oxide ore is a leaching step S1 in which sulfuric acid is added to a raw material nickel oxide ore slurry and leaching is performed under high temperature and high pressure, and the residue is separated from the leached slurry.
  • Leaching step S1 sulfuric acid is added to a slurry of nickel oxide ore (hereinafter also referred to as “ore slurry”) using a high-temperature pressure reaction tank such as an autoclave, and the pressure is about 230 to 270 ° C.
  • the mixture is stirred under a condition of about 3 to 5 MPa to produce a leaching slurry comprising a leaching solution and a leaching residue.
  • Nickel oxide ores include so-called laterite ores such as limonite ore and saprolite ore.
  • Laterite ore usually has a nickel content of 0.8 to 2.5% by weight and is contained as a hydroxide or magnesium silicate mineral.
  • the iron content is 10 to 50% by weight and is mainly in the form of a trivalent hydroxide, but a part of the divalent iron is contained in the siliceous clay.
  • oxide ores containing valuable metals such as nickel, cobalt, manganese, and copper, such as manganese nodules existing in the deep sea floor, can be used.
  • the leaching process in the leaching step S1 for example, a leaching reaction represented by the following formulas (a) to (e) and a high-temperature thermal hydrolysis reaction occur, leaching as sulfates such as nickel and cobalt, and leached iron sulfate. Is fixed as hematite. However, since the immobilization of iron ions does not proceed completely, the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
  • the pH of the obtained leachate is 0.1 to 1.0 from the viewpoint of the filterability of the leaching residue containing hematite produced in the subsequent solid-liquid separation step S2. It is preferable to adjust.
  • the amount of sulfuric acid added to the autoclave charged with the ore slurry is not particularly limited, but an excessive amount such that iron in the ore is leached is used.
  • an excessive amount such that iron in the ore is leached is used.
  • a solid-liquid separation process is performed using a solid-liquid separation apparatus such as a thickener.
  • the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the leaching slurry is concentrated as a thickener sediment.
  • the nickel part adhering to a leaching residue can be reduced according to the dilution degree.
  • the recovery rate of nickel can be improved by using thickeners having such functions connected in multiple stages.
  • Neutralization step S3 a neutralizing agent such as magnesium oxide or calcium carbonate is added so that the pH becomes 4 or less while suppressing oxidation of the leachate, and trivalent iron is contained.
  • a Japanese starch slurry and a neutralized final solution which is a mother liquor for nickel recovery are obtained.
  • the pH of the resulting neutralized final solution is adjusted to 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3.2 while suppressing oxidation of the separated leachate.
  • a neutralizing agent such as calcium carbonate is added to the leachate to form a neutralized final solution that becomes a mother liquor for nickel and cobalt recovery, and a neutralized starch slurry that contains trivalent iron as an impurity element. To do.
  • the neutralization step S3 by performing the neutralization treatment on the leachate in this way, the excess acid used in the leaching treatment by the HPAL method is neutralized to form a neutralized final solution, and also remains in the solution 3 Impurities such as valent iron ions and aluminum ions are removed as neutralized starch.
  • the neutralized final solution is a solution based on a leaching solution obtained by leaching the raw material nickel oxide ore with sulfuric acid in the leaching step S1, and is a sulfuric acid acidic solution containing nickel. is there.
  • This neutralized final solution is a reaction start solution for the sulfurization reaction in the sulfurization step S4 described later, and has a nickel concentration in the range of about 0.5 to 5.0 g / L.
  • the neutralized final solution contains cobalt as a valuable metal in addition to nickel.
  • iron, manganese, magnesium, aluminum, chromium, lead, etc. may be contained. Specifically, iron is contained at a rate of 1.0 to 4.0 g / L.
  • a neutralization final solution which is a mother liquor for nickel and cobalt recovery is used as a sulfidation reaction start solution, and a sulfidation reaction is caused by blowing hydrogen sulfide gas as a sulfiding agent into the sulfidation reaction start solution.
  • a mixed sulfide of nickel and cobalt with a small amount of components and a sulfurization reaction final solution which is a poor solution in which the concentrations of nickel and cobalt are stabilized at a low level are generated.
  • the sulfidation treatment in the sulfidation step S4 can be performed using a sulfidation reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase portion in the reaction tank with respect to the sulfidation reaction starting liquid introduced into the sulfidation reaction tank.
  • a sulfurization reaction is caused by dissolving hydrogen sulfide gas therein.
  • the obtained slurry containing mixed sulfide of nickel and cobalt is charged into a settling separator such as thickener and subjected to settling separation, and only the mixed sulfide is separated from the bottom of the thickener. to recover.
  • the aqueous solution component overflows from the upper part of the thickener and is recovered as a poor solution.
  • hydrogen sulfide gas is blown into the neutralized final solution that is an acidic solution containing nickel and cobalt and that has an iron concentration of 1.0 to 4.0 g / L.
  • a solution of NaHS obtained by absorbing an exhaust gas containing hydrogen sulfide gas generated by the sulfurization reaction into an alkaline solution is added to cause a sulfurization reaction.
  • nickel is used as the hydrogen sulfide gas.
  • An excess amount of 1.5 to 2.5 times the theoretical equivalent required for sulfurization treatment of cobalt and cobalt is blown, and excess hydrogen sulfide gas that has not been used for the sulfurization reaction is brought into contact with an alkaline solution by alkali treatment to form NaHS. Become.
  • the solution containing NaHS obtained by alkali treatment of excess hydrogen sulfide gas in this way is repeatedly used for the sulfurization reaction.
  • Example 1 A sulfuric acid acidic solution having a nickel concentration of 1.0 to 3.0 g / L, a cobalt concentration of 1.0 to 3.0 g / L, and an iron concentration of 1.0 to 2.0 g / L is used as a sulfurization reaction starting solution. Then, it was charged into a sulfurization reactor, and a sulfurization reaction was caused while blowing hydrogen sulfide gas.
  • the amount of hydrogen sulfide gas blown was 0.30 to 0.85 Nm 3 / kg ⁇ Ni, and a solution containing sodium hydrogen sulfide (NaHS) was added to the sulfuric acid acidic solution.
  • Amount of NaHS solution was a ratio of 1.7 ⁇ 3.8m 3 / H with respect to sulfuric acid solution 1000 m 3 / H.
  • This NaHS was obtained by bringing an exhaust gas containing excess hydrogen sulfide gas generated by the sulfidation reaction into contact with a sodium hydroxide solution, and this was repeatedly added to the sulfuric acid acidic solution in the sulfidation reaction tank.
  • mixed sulfides were obtained in which nickel and cobalt in the sulfuric acid acidic solution, which is a sulfurization reaction starting solution, were respectively sulfides.
  • the obtained mixed sulfide was separated from the aqueous solution component by sedimentation treatment using a thickener, and then the nickel concentration in the sulfurization reaction final solution as the aqueous solution component was analyzed.
  • the nickel concentration in the sulfurization reaction final solution was less than 0.10 g / L, and could be stabilized at a low level.
  • Example 1 As in Example 1, a sulfuric acid acidic solution containing nickel and cobalt and containing iron at a rate of 1.0 to 2.0 g / L was used as a sulfurization reaction starting solution to cause a sulfurization reaction.
  • Comparative Example 1 with blowing hydrogen sulfide gas was added at a ratio of 1.0 ⁇ 1.5m 3 / H the NaHS solution in an acidic sulfuric acid solution relative to the sulfuric acid solution 1000 m 3 / H.
  • this NaHS used what was obtained by making the waste gas containing the surplus hydrogen sulfide gas produced by the sulfurization reaction contact with a sodium hydroxide solution.
  • mixed sulfides were obtained in which nickel and cobalt in the sulfuric acid acidic solution, which is a sulfurization reaction starting solution, were respectively sulfides.
  • the obtained mixed sulfide was separated from the aqueous solution component by sedimentation treatment using a thickener, and then the nickel concentration in the sulfurization reaction final solution as the aqueous solution component was analyzed.
  • the nickel concentration in the sulfurization reaction final solution exceeded 0.10 g / L, and the nickel concentration became high. This is considered to be because the decrease in pH of the solution could not be suppressed, and the re-dissolution of the produced NiS was promoted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 ニッケル及びコバルトを含有し、鉄濃度が高い硫酸酸性溶液を硫化反応始液として処理する場合であっても、コストを増加させることなく、硫化反応終液中のニッケル及びコバルトの濃度を低い水準で安定させ、ニッケル及びコバルトの回収率の低下を抑えることができるニッケル及びコバルトの混合硫化物の製造方法を提供する。 本発明に係るニッケル及びコバルトの混合硫化物の製造方法は、ニッケル及びコバルトを含む硫酸酸性溶液に硫化水素ガスを吹き込むことによって硫化反応を生じさせて混合硫化物を得る方法であって、硫化反応始液である硫酸酸性溶液は1.0~4.0g/Lの割合で鉄を含有し、その硫化反応始液に対して、硫化水素ガスを吹き込むとともに、硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウム(NaHS)を添加して硫化反応を生じさせる。

Description

ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
 本発明は、ニッケル及びコバルトの混合硫化物の製造方法に関し、より詳しくは、ニッケル及びコバルトを含有する硫酸酸性溶液から硫化反応によりニッケル及びコバルトの混合硫化物を製造する方法、及びその方法を硫化工程に適用したニッケル酸化鉱石の湿式製錬方法に関する。
 ニッケル酸化鉱石からのニッケルの湿式製錬においては、硫化工程として、ニッケル及びコバルトを含む浸出液を硫化反応始液として用いて加圧下で硫化反応を生じさせ、不純物を分離しながらニッケル及びコバルトの混合硫化物を製造する処理が行われている。このように加圧下で硫化反応を生じさせることにより、特に、亜鉛や銅等の分離が可能であり、実用化されている。
 ここで、硫化工程では、主に下記の反応式(i)に示す反応が進行する。反応式(i)に示すように、硫化工程では、反応の進行に伴って溶液中の[H]イオン濃度が上昇し、反応が進むにつれてpHが低下していく。
S+NiSO→HSO+NiS ・・(i)
 ところが、反応式(i)の進行によって溶液のpHが下がると、生成したNiSが再溶解するため、反応終点での溶液中のニッケル濃度は上がり、ニッケル回収率が悪化する。したがって、硫化反応始液のpHが低い場合には、終液のpHも低くなり、ニッケル回収率は低下する。
 さらに、硫化工程では、他の金属と比較して分離が困難な鉄イオンが増加すると、下記の反応式(ii)に示す反応が促進され、ニッケルの硫化と同様に溶液中の[H]イオン濃度が上昇して、反応が進むにつれてpHを低下させる。
S+FeSO→HSO+FeS ・・(ii)
 硫化反応始液中の鉄濃度と終液中のニッケルイオンとの関係においては、鉄濃度の増加に伴って終液中のニッケルイオンが増加する。つまり、鉄濃度の増加に伴ってニッケル回収率が低下することを意味する。硫化反応始液中の鉄濃度は、ニッケル酸化鉱石の湿式製錬方法における硫化工程より前の工程の操業パラメーターに依存するため、硫化工程の処理開始時における始液中の鉄濃度は一定ではなく、“ばらついた状態”となる。したがって、この硫化工程において、ニッケル回収率の低下を抑えるために、硫化反応始液中の鉄濃度の“ばらついた状態”に対応することが求められている。
 特許文献1には、ニッケル及び/又はコバルトを含む酸性水溶液に硫化アルカリを添加して、ニッケル及び/又はコバルト硫化物を沈殿回収する方法において、S/(Ni+Co)モル比が、硫化水素を用いて生成された硫化物なみの1.05以下、望ましくはNiS、CoSの化学量論組成である1近傍の値に制御した硫化物沈殿の回収方法が開示されている。具体的には、反応容器内を非酸化性ガス雰囲気下とした後に、水溶液に硫化アルカリを添加して、酸化還元電位(Ag/AgCl電極規準)を-300mV~100mVに保持しながら硫化物を沈殿生成させる方法が開示されている。
 しかしながら、この特許文献1の方法では、NaSやNaHS等の硫化アルカリを新たに使用するため、コストの著しい増加を招く。このことから、新たに硫化アルカリを使用することなく、硫化反応始液中の鉄濃度が増加してもニッケル回収率の低下を抑えることができるニッケル及びコバルトの混合硫化物の製造方法が求められている。
特開2006-144102号公報
 本発明は、このような実情に鑑みて提案されたものであり、ニッケル及びコバルトを含有し、鉄濃度が高い硫酸酸性溶液を硫化反応始液として処理する場合であっても、コストを増加させることなく、硫化反応終液中のニッケル及びコバルトの濃度を低い水準で安定させ、ニッケル及びコバルトの回収率の低下を抑えることができるニッケル及びコバルトの混合硫化物の製造方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、1.0~4.0g/Lの割合で鉄を含有するニッケル及びコバルトを含む硫酸酸性溶液に対して、硫化水素ガスを吹き込むとともに、硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウム(NaHS)溶液を繰り返し添加して硫化反応を生じさせることにより、硫化反応終液中のニッケル及びコバルトの濃度を低い水準で安定させ、ニッケル及びコバルトの回収率の低下を抑えることができることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものを提供する。
 (1)本発明の第1の発明は、ニッケル及びコバルトを含む硫酸酸性溶液に硫化水素ガスを吹き込むことによって硫化反応を生じさせてニッケル及びコバルトの混合硫化物を得る方法であって、前記硫酸酸性溶液は、1.0~4.0g/Lの割合で鉄を含有し、前記硫酸酸性溶液に対して、前記硫化水素ガスを吹き込むとともに、前記硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウムを添加して硫化反応を生じさせることを特徴とするニッケル及びコバルトの混合硫化物の製造方法である。
 (2)本発明の第2の発明は、第1の発明において、前記硫化水素ナトリウムの添加量は、前記硫酸酸性溶液に含まれる前記鉄の硫化に必要な当量以上の量であることを特徴とするニッケル及びコバルトの混合硫化物の製造方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記硫化水素ナトリウムの添加量は、該硫化水素ナトリウムを20~35質量%の割合で含む溶液を、前記硫酸酸性溶液1000m/Hに対して1.7~3.8m/Hの割合とすることを特徴とするニッケル及びコバルトの混合硫化物の製造方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記硫化水素ガスの吹き込み量は、前記硫酸酸性溶液に含まれるニッケル及びコバルトを硫化するのに必要な理論当量の1.5~2.5倍の量とすることを特徴とするニッケル及びコバルトの混合硫化物の製造方法である。
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記アルカリ溶液は水酸化ナトリウム溶液であることを特徴とするニッケル及びコバルトの混合硫化物の製造方法である。
 (6)本発明の第6の発明は、ニッケル酸化鉱石に対して硫酸を用いて浸出処理を施し、得られたニッケル及びコバルトを含む浸出液からニッケル及びコバルトの混合硫化物を生成させるニッケル酸化鉱石の湿式製錬方法において、前記浸出液に硫化水素ガスを吹き込むことによって硫化反応を生じさせてニッケル及びコバルトの混合硫化物を得る硫化工程を含み、前記浸出液は、1.0~4.0g/Lの割合で鉄を含有し、前記硫化工程では、前記浸出液に対して、前記硫化水素ガスを吹き込むとともに、前記硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウムを添加して硫化反応を生じさせることを特徴とするニッケル酸化鉱石の湿式製錬方法である。
 本発明によれば、鉄濃度が高い硫化反応始液を処理する場合であっても、コストを増加させることなく、その硫化反応終液中のニッケル及びコバルトの濃度を低い水準で安定させ、ニッケル及びコバルトの回収率の低下を抑えることができる。
溶液のpHと各種の金属硫化物の溶解度との関係を示すグラフ図である。 硫化反応始液中の鉄濃度と硫化反応終液中のニッケル濃度との関係を示すグラフ図である。 余剰の硫化水素ガスを回収してアルカリ処理に供し、得られたNaHS溶液を硫化反応に供給する流れを模式的に示す図である。 ニッケル酸化鉱石の湿式製錬方法の流れの一例を示した工程図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 ≪1.ニッケル及びコバルトの混合硫化物の製造方法≫
 本実施の形態に係るニッケル及びコバルトの混合硫化物の製造方法は、ニッケル及びコバルトを含む硫酸酸性溶液に硫化水素ガスを吹き込むことによって硫化反応を生じさせてニッケル及びコバルトの混合硫化物を得る方法である。ここで、混合硫化物とは、ニッケル硫化物とコバルト硫化物の混合物をいう。以下では、ニッケル及びコバルトの混合硫化物を、単に「混合硫化物」ともいう。
 具体的に、この混合硫化物の製造方法は、硫化反応始液であるニッケル及びコバルトを含む硫酸酸性溶液が1.0~4.0g/Lの割合で鉄を含有する溶液であって、その硫酸酸性溶液に対して、硫化剤としての硫化水素(HS)ガスを吹き込むとともに、当該硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウム(NaHS)を添加して硫化反応を生じさせることを特徴としている。
 この混合硫化物の製造方法は、後述するように、例えばニッケル酸化鉱石の湿式製錬方法における硫化工程での処理に適用することができる。このとき、ニッケル及びコバルトを含む硫酸酸性溶液としては、ニッケル酸化鉱石に対して硫酸を用いた浸出処理を施して得られた浸出液を用いることができる。なお、後述するように、その浸出処理を経て得られた浸出液に対して中和剤を用いて中和して得られた中和終液を用いてもよい。
 ニッケル酸化鉱石には鉄が含まれており、このようなニッケル酸化鉱石に対して浸出処理を経て得られた浸出液には、浸出処理の過程でヘマタイト(Fe)として固定しきれなかった鉄が不純物元素として含まれることになる。また、原料となるニッケル酸化鉱石には植物の根等が混入しているため、ニッケル酸化鉱石中の炭素(C)品位が0.2%を超えると、浸出処理により得られる浸出液のORPが低下して鉄が浸出されるようになり、浸出液中の鉄濃度が1.0g/Lを超えるようになる。なお、この鉄は、浸出液に対して中和処理を施したとしても、他の不純物元素と比べて分離が困難であるため、中和処理を施して得られる中和終液においても所定の濃度で含まれる。
 ここで、ニッケル及びコバルトを含む硫酸酸性溶液を用いて硫化反応により混合硫化物を生成させるにあたって、その硫化反応の重要なパラメーターとして、反応終点のpHが挙げられる。図1は、溶液のpHと各種の金属硫化物の溶解度との関係を示すグラフ図である。図1のグラフ図から、ニッケル硫化物(NiS)、コバルト硫化物(CoS)の溶解度はpHに依存していることが分かる。したがって、pHが高いほど、硫化反応終液中において硫化物の形態が維持され、ニッケルイオン及びコバルトイオンの濃度は低下する。つまり、ニッケル及びコバルトの混合硫化物としての回収率が向上する。
 しかしながら、硫化剤として硫化水素ガスを用いた硫化反応においては、下記の反応式(i)の反応が進行することにより、経時的に反応系内のpHが徐々に低下していき、NiSあるいはCoSが溶液中に再溶解していく。
S+NiSO⇔HSO+NiS ・・(i)
 さらに、硫化反応始液中に含まれる不純物である鉄の濃度が高いほど、図1に示すようにニッケルやコバルトと共に硫化物となり、溶液のpHを低下させ、その結果としてNiSの再溶解を促進させる。図2は、硫化反応始液中の鉄濃度と硫化反応終液中のニッケル濃度との関係を示すグラフ図である。図2に示されるように、硫化反応始液中における鉄濃度が高くなるほど、上述のように溶液のpHを低下させてNiSの再溶解を促進させていき、その結果として、硫化反応終液中におけるニッケル濃度が高くなる傾向が明確に分かる。
 そこで、本実施の形態に係る混合硫化物の製造方法においては、濃度が1.0~4.0g/Lの割合で鉄を含有する、ニッケル及びコバルトを含む硫酸酸性溶液に対して硫化反応を生じさせ混合硫化物を生成させるにあたり、所定量の硫化水素ガスを吹き込むとともに、当該硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ処理し、そのアルカリ処理により得られる硫化水素ナトリウムを含む溶液(以下、「NaHS溶液」ともいう)を添加して硫化反応を生じさせる。
 硫化反応により生じた排ガスをアルカリ処理して得られたNaHS溶液を硫化反応始液に添加することにより、下記の反応式(ii)、(iii)に示す反応が進行し、上述した反応式(i)で示す反応において生成した酸の中和が行われる。このことにより、溶液のpHの低下が抑制されて、終液中のニッケル及びコバルトの濃度を低く維持することができ、ニッケル及びコバルトの回収率を向上させることができる。さらに、反応式(iii)に基づいて硫化反応が促進させることができるとともに、後述のように過剰に添加された硫化水素ガスを再利用することで硫化水素ガスの利用効率を向上させることができる。
2NaHS+HSO→NaSO+2HS ・・(ii)
2NaHS+NiSO
        →NaSO+NiS+HS ・・(iii)
 このように、硫化水素ガスを添加して硫化反応を生じさせるとともにNaHS溶液を添加することによって、硫化反応に伴う反応系内におけるpHの低下が抑制され、NiS及びCoSの再溶解を低減させることができる。これにより、高い鉄濃度となった硫化反応始液を処理する場合でも、コストを増加させることなく、硫化反応終液中のニッケル濃度を低い水準で安定させ、混合硫化物としてのニッケル及びコバルトの回収率の低下を抑えることができる。なお、NaHS溶液の添加量としては、硫化反応始液に含まれる鉄の硫化に必要な当量以上の量とする。
 本実施の形態において、ニッケル及びコバルトを含む硫酸酸性溶液に対する硫化水素ガスの吹き込み量としては、所望とする回収率を得るとともに、余剰分を排ガスとしてアルカリ処理に供するようにするために、必要理論当量の1.5~2.5倍の過剰量を添加する。これにより、反応式(i)に示した、硫化反応始液に含まれるニッケルやコバルトの硫化を生じさせるとともに、その反応式(i)に示す反応で消費されなった余剰の硫化水素ガスが系外へ放出され、アルカリ処理に供されるようになる。
 ここで、本実施の形態においては、余剰の硫化水素ガスをアルカリ処理に供することによってNaHSを生成させ、そのNaHSを含む溶液を回収して、硫化反応において繰り返し添加することを特徴としている。
 具体的に、図3に、余剰の硫化水素ガスを回収してアルカリ溶液による無害化処理(以下、単に「アルカリ処理」という)に供し、得られたNaHS溶液を硫化反応に供給する流れを模式的に示す。図3に示すように、硫化反応始液10を装入した硫化反応槽1では、硫化水素ガス11が反応槽1の気相に吹き込まれて硫化反応を生じ、ニッケル及びコバルトが硫化物となる。このとき、硫化反応槽1には、硫化水素ガスとして、ニッケルやコバルトの硫化処理に必要な理論当量の1.5~2.5倍の過剰量が吹き込まれる。硫化反応に使用されなかった余剰の硫化水素ガス11aは、排ガス12として回収され、HSガス洗浄塔2にてアルカリ処理が行われる。このアルカリ処理においては、硫化水素ガスをアルカリ溶液に接触させて硫化水素をアルカリ溶液に吸収させる反応が生じ、下記の反応式(iv)に示すようにしてNaHS溶液13が得られる。
NaOH+HS→NaHS+HO ・・(iv)
 本実施の形態に係る混合硫化物の製造方法では、このようにして得られたNaHS溶液13を、ポンプ等を用いて、硫化反応槽1に装入された硫化反応始液10に添加することを特徴としている。この方法によれば、繰り返し添加されたNaHS溶液も硫化反応に使用され、その硫化反応に伴う反応系内におけるpHの低下が抑制される。これにより、生成したNiS及びCoSの再溶解が低減され、高い鉄濃度となった硫化反応始液10を処理する場合でも、得られる硫化反応終液14中のニッケル濃度を低い水準で安定させることができる。
 硫化反応槽から排出された硫化水素ガスをアルカリ処理して得られるNaHS溶液を硫化反応始液に添加するシステムとしては、特に限定されないが、上述のように図3に示すような循環システムとすることができる。すなわち、余剰となった硫化水素ガス11aを含む排ガス12を、アルカリ溶液を循環させているHSガス洗浄塔2においてNaHS溶液13とし、得られた排液であるNaHS溶液13を硫化反応槽1に繰り返すシステムとすることができる。なお、HSガス洗浄塔2では、アルカリ溶液と硫化水素ガスとの接触を効率的に行うため、スクラバー等の除害設備を設けることが好ましい。
 HSガス洗浄塔2におけるアルカリ処理に用いるアルカリ溶液としては、特に限定されないが、工業的にはアルカリ強度が高く、溶液として取り扱いが容易な水酸化ナトリウム(NaOH)溶液を用いることが好ましい。具体的に、水酸化ナトリウム溶液の濃度としては、20~30質量%程度であることが好ましい。水酸化ナトリウムの濃度が20%未満であると、濃度が薄くなるため水酸化ナトリウム溶液の量が増えてしまう。一方で、濃度が30%を超えると、未反応の水酸化ナトリウムが残留してしまう可能性がある。
 このアルカリ処理により得られたNaHS溶液は、例えば20~35質量%のNaHS溶液である。上述したように、本実施の形態においては、このNaHS溶液を硫化反応槽に繰り返し添加して硫化反応を生じさせるが、その添加量としては、硫化反応始液となるニッケル及びコバルトを含有する硫酸酸性溶液1000m/Hに対して1.7~3.8m/H程度の割合で添加することが好ましい。
 NaHSの添加量が、硫酸酸性溶液1000m/Hに対して1.7m/H未満であると、所望とする効果であるpHの上昇効果、言い換えるとpH低下の抑制効果が十分に得られない可能性がある。一方で、硫酸酸性溶液1000m/Hに対して3.8m/Hを越えると、ニッケルやコバルトの回収率が上がらないばかりか、pHの過剰な上昇によって製品へのFeの混入が促進してしまい、好ましくない。
 ≪2.ニッケル酸化鉱石の湿式製錬方法での適用≫
 本実施の形態に係る混合硫化物の製造方法では、硫化反応始液としてニッケル及びコバルトを含む硫酸酸性溶液を用い、この溶液に対して硫化水素ガス及びアルカリ処理により得られたNaHS溶液を添加して硫化反応を生じさせる。ここで、ニッケル及びコバルトを含む硫酸酸性溶液としては、例えば、ニッケル酸化鉱石に対して硫酸により浸出処理を施して得られる浸出液を用いることができ、その浸出液に対して硫化反応を生じさせてニッケル及びコバルトの混合硫化物を得る。
 このように、本実施の形態に係る混合硫化物の製造方法は、ニッケル酸化鉱石からニッケルを回収する湿式製錬方法における硫化工程に適用することができる。
 以下では、ニッケル酸化鉱石の湿式製錬方法についての概要を説明して、その湿式製錬方法における硫化工程での処理に、上述した混合硫化物の製造方法を適用した具体的な態様について説明する。なお、ニッケル酸化鉱石の湿式製錬方法として、高温高圧下で浸出を行う高温加圧酸浸出法(以下、「HPAL法」ともいう)による湿式製錬方法を例に挙げて説明する。
  <2-1.ニッケル酸化鉱石の湿式製錬方法の各工程について>
 図4は、ニッケル酸化鉱石の湿式製錬方法の流れの一例を示した工程図である。図4に示すように、ニッケル酸化鉱石の湿式製錬方法は、原料のニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1と、浸出スラリーから残渣を分離してニッケル及びコバルトを含む浸出液を得る固液分離工程S2と、浸出液のpHを調整して浸出液中の不純物元素を中和澱物スラリーとして分離して中和終液を得る中和工程S3と、中和終液に硫化剤としての硫化水素ガスを添加することでニッケル及びコバルトの混合硫化物を生成させる硫化工程S4とを有する。
 (1)浸出工程
 浸出工程S1では、オートクレーブ等の高温加圧反応槽を用い、ニッケル酸化鉱石のスラリー(以下、「鉱石スラリー」ともいう)に硫酸を添加して温度230~270℃程度、圧力3~5MPa程度の条件下で攪拌し、浸出液と浸出残渣とからなる浸出スラリーを生成する。
 ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8~2.5重量%であり、水酸化物又はケイ酸マグネシウム鉱物として含有される。また、鉄の含有量は、10~50重量%であり、主として3価の水酸化物の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。また、浸出工程S1では、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等を用いることができる。
 浸出工程S1における浸出処理では、例えば下記式(a)~(e)で表される浸出反応と高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。なお、この浸出工程S1では、次工程の固液分離工程S2で生成されるヘマタイトを含む浸出残渣の濾過性の観点から、得られる浸出液のpHが0.1~1.0にとなるように調整することが好ましい。
 ・浸出反応
MO+HSO⇒MSO+HO ・・(a)
(なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
2Fe(OH)+3HSO⇒Fe(SO+6HO ・・(b)
FeO+HSO⇒FeSO+HO ・・(c)
 ・高温熱加水分解反応
2FeSO+HSO+1/2O⇒Fe(SO+HO・・(d)
Fe(SO+3HO⇒Fe+3HSO ・・(e)
 なお、鉱石スラリーを装入したオートクレーブへの硫酸の添加量としては、特に限定されないが、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300~400kgとする。
 (2)固液分離工程
 固液分離工程S2では、浸出工程S1で生成した浸出スラリーを多段洗浄して、ニッケルやコバルト等の有価金属を含む浸出液と浸出残渣とを得る。
 固液分離工程S2では、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離装置を用いて固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈度合に応じて減少させることができる。なお、実操業では、このような機能を持つシックナーを多段に連結して用いることにより、ニッケルの回収率の向上を図ることができる。
 (3)中和工程
 中和工程S3では、浸出液の酸化を抑制しながら、pHが4以下となるように酸化マグネシウムや炭酸カルシウム等の中和剤を添加して、3価の鉄を含む中和澱物スラリーとニッケル回収用母液である中和終液とを得る。
 中和工程S3では、分離された浸出液の酸化を抑制しながら、得られる中和終液のpHが4以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加し、ニッケル及びコバルト回収用の母液となる中和終液と、不純物元素として3価の鉄を含む中和澱物スラリーとを形成する。中和工程S3では、このように浸出液に対する中和処理を施すことで、HPAL法による浸出処理で用いた過剰の酸を中和して中和終液と生成するとともに、溶液中に残留する3価の鉄イオンやアルミニウムイオン等の不純物を中和澱物として除去する。
 なお、中和終液は、上述したように、浸出工程S1において原料のニッケル酸化鉱石に対して硫酸による浸出処理を施して得られた浸出液に基づく溶液であって、ニッケルを含む硫酸酸性溶液である。この中和終液は、後述する硫化工程S4における硫化反応の反応始液となるものであり、ニッケル濃度がおよそ0.5~5.0g/Lの範囲である。また、この中和終液中には、ニッケル以外にも有価金属としてコバルトが含まれている。また浄液処理を施して得られた溶液であるとしても、鉄、マンガン、マグネシウム、アルミニウム、クロム、鉛等が含まれることがある。具体的に、鉄としては、1.0~4.0g/Lの割合で含まれている。
 [硫化工程]
 硫化工程S4では、ニッケル及びコバルト回収用母液である中和終液を硫化反応始液として、その硫化反応始液に対して硫化剤としての硫化水素ガスを吹き込むことによって硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの混合硫化物と、ニッケル及びコバルトの濃度を低い水準で安定させた貧液である硫化反応終液とを生成させる。
 なお、中和終液中に亜鉛が含まれる場合には、硫化物としてニッケルやコバルトを分離するに先立って、亜鉛を硫化物として選択的に分離することができる。
 硫化工程S4における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に硫化水素ガスを溶解させることで硫化反応を生じさせる。この硫化処理により、硫化反応始液中に含まれるニッケル及びコバルトを混合硫化物として固定化する。
 硫化反応の終了後においては、得られたニッケル及びコバルトの混合硫化物を含むスラリーをシックナー等の沈降分離装置に装入して沈降分離処理を施し、その混合硫化物のみをシックナーの底部より分離回収する。一方で、水溶液成分は、シックナーの上部からオーバーフローさせて貧液として回収する。
  <2-2.湿式製錬方法の硫化工程について>
 ここで、硫化工程S4での処理、つまりニッケル及びコバルトを含む硫酸酸性溶液である中和終液からニッケル及びコバルトの混合硫化物を生成させる硫化処理においては、その中和終液を硫化反応始液として、上述した混合硫化物の製造方法を適用できる。
 すなわち、本実施の形態における硫化工程S4では、ニッケル及びコバルトを含む硫酸酸性溶液であって鉄濃度が1.0~4.0g/Lである中和終液に対して、硫化水素ガスを吹き込むとともに、当該硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られるNaHSの溶液を添加して、硫化反応を生じさせる。
 具体的な硫化処理の方法については上述したニッケル及びコバルトの混合硫化物の製造方法と同様であるため、ここでの詳細な説明は省略するが、本実施の形態においては、硫化水素ガスとしてニッケルやコバルトの硫化処理に必要な理論当量の1.5~2.5倍の過剰量が吹き込まれ、硫化反応に使用されなかった余剰の硫化水素ガスがアルカリ処理によりアルカリ溶液と接触してNaHSとなる。このようにして余剰の硫化水素ガスをアルカリ処理して得られたNaHSを含む溶液を、硫化反応に繰り返し使用する。
 本実施の形態においては、このようにして、硫化水素ガスを添加して硫化反応を生じさせるとともにNaHS溶液を添加することによって、硫化反応に伴う反応系内におけるpHの低下が抑制され、NiS及びCoSの再溶解が低減する。このことにより、高い鉄濃度となった硫化反応始液を処理する場合でも、コストを増加させることなく、ニッケル及びコバルトの混合硫化物としての回収率の低下を効果的に抑えることができる。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1]
 ニッケル濃度が1.0~3.0g/L、コバルト濃度が1.0~3.0g/L、鉄濃度が1.0~2.0g/Lである硫酸酸性溶液を硫化反応始液として用いて、それを硫化反応槽に装入し、硫化水素ガスを吹き込みながら硫化反応を生じさせた。
 このとき、硫化水素ガスの吹き込み量は0.30~0.85Nm/kg・Niとし、また硫化水素ナトリウム(NaHS)を含む溶液をその硫酸酸性溶液に添加した。NaHS溶液の添加量は、硫酸酸性溶液1000m/Hに対して1.7~3.8m/Hの割合とした。なお、このNaHSは、硫化反応により生じた余剰の硫化水素ガスを含む排ガスを水酸化ナトリウム溶液と接触させて得られたものであり、これを繰り返し硫化反応槽内の硫酸酸性溶液に添加した。
 このようにして硫化反応を施すことによって、硫化反応始液である硫酸酸性溶液中のニッケル及びコバルトをそれぞれ硫化物とした混合硫化物を得た。得られた混合硫化物を、シックナーを用いた沈降分離処理によって水溶液成分と分離した後、その水溶液成分である硫化反応終液中のニッケル濃度を分析した。
 その結果、硫化反応終液中のニッケル濃度は0.10g/L未満となり、低い水準で安定化させることができた。
 [比較例1]
 実施例1と同じ、ニッケル及びコバルトを含み、また1.0~2.0g/Lの割合で鉄を含有する硫酸酸性溶液を硫化反応始液として用いて、硫化反応を生じさせた。
 このとき、比較例1では、硫化水素ガスを吹き込むとともに、硫酸酸性溶液中にNaHS液を硫酸酸性溶液1000m/Hに対して1.0~1.5m/Hの割合で添加した。なお、このNaHSも、硫化反応により生じた余剰の硫化水素ガスを含む排ガスを水酸化ナトリウム溶液と接触させて得られたものを用いた。
 このようにして硫化反応を施すことによって、硫化反応始液である硫酸酸性溶液中のニッケル及びコバルトをそれぞれ硫化物とした混合硫化物を得た。得られた混合硫化物を、シックナーを用いた沈降分離処理によって水溶液成分と分離した後、その水溶液成分である硫化反応終液中のニッケル濃度を分析した。
 その結果、硫化反応終液中のニッケル濃度は0.10g/Lを超え、ニッケル濃度が高くなってしまった。このことは、溶液のpHの低下を抑制させることができず、生成したNiSの再溶解が促進してしまったためであると考えられる。
 1  硫化反応槽
 2  HSガス洗浄塔
 10  硫化反応始液
 11  硫化水素ガス
 11a  余剰の硫化水素ガス
 12  排ガス
 13  NaHS溶液
 14  硫化反応終液

Claims (6)

  1.  ニッケル及びコバルトを含む硫酸酸性溶液に硫化水素ガスを吹き込むことによって硫化反応を生じさせてニッケル及びコバルトの混合硫化物を得る方法であって、
     前記硫酸酸性溶液は、1.0~4.0g/Lの割合で鉄を含有し、
     前記硫酸酸性溶液に対して、前記硫化水素ガスを吹き込むとともに、前記硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウム(NaHS)を添加して硫化反応を生じさせる
     ことを特徴とするニッケル及びコバルトの混合硫化物の製造方法。
  2.  前記硫化水素ナトリウムの添加量は、前記硫酸酸性溶液に含まれる前記鉄の硫化に必要な当量以上の量であることを特徴とする請求項1に記載のニッケル及びコバルトの混合硫化物の製造方法。
  3.  前記硫化水素ナトリウムの添加量は、該硫化水素ナトリウムを20~35質量%の割合で含む溶液を、前記硫酸酸性溶液1000m/Hに対して1.7~3.8m/Hの割合とすることを特徴とする請求項1又は2に記載のニッケル及びコバルトの混合硫化物の製造方法。
  4.  前記硫化水素ガスの吹き込み量は、前記硫酸酸性溶液に含まれるニッケル及びコバルトを硫化するのに必要な理論当量の1.5~2.5倍の量とすることを特徴とする請求項1乃至3のいずれか1項に記載のニッケル及びコバルトの混合硫化物の製造方法。
  5.  前記アルカリ溶液は水酸化ナトリウム溶液であることを特徴とする請求項1乃至4のいずれか1項に記載のニッケル及びコバルトの混合硫化物の製造方法。
  6.  ニッケル酸化鉱石に対して硫酸を用いて浸出処理を施し、得られたニッケル及びコバルトを含む浸出液からニッケル及びコバルトの混合硫化物を生成させるニッケル酸化鉱石の湿式製錬方法において、
     前記浸出液に硫化水素ガスを吹き込むことによって硫化反応を生じさせてニッケル及びコバルトの混合硫化物を得る硫化工程を含み、
     前記浸出液は、1.0~4.0g/Lの割合で鉄を含有し、
     前記硫化工程では、前記浸出液に対して、前記硫化水素ガスを吹き込むとともに、前記硫化反応により生じた硫化水素ガスを含む排ガスをアルカリ溶液に吸収させて得られる硫化水素ナトリウム(NaHS)を添加して硫化反応を生じさせる
     ことを特徴とするニッケル酸化鉱石の湿式製錬方法。
     
PCT/JP2015/084427 2015-04-01 2015-12-08 ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法 WO2016157629A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015389766A AU2015389766B2 (en) 2015-04-01 2015-12-08 Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
EP15887771.2A EP3279344B1 (en) 2015-04-01 2015-12-08 Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
CA2980523A CA2980523C (en) 2015-04-01 2015-12-08 Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
CN201580078138.6A CN107429317B (zh) 2015-04-01 2015-12-08 镍和钴的混合硫化物的制造方法、镍氧化物矿石的湿式冶炼方法
US15/561,695 US10125408B2 (en) 2015-04-01 2015-12-08 Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
PH12017501778A PH12017501778B1 (en) 2015-04-01 2017-09-27 Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075062 2015-04-01
JP2015075062A JP2016194124A (ja) 2015-04-01 2015-04-01 ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法

Publications (1)

Publication Number Publication Date
WO2016157629A1 true WO2016157629A1 (ja) 2016-10-06

Family

ID=57004059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084427 WO2016157629A1 (ja) 2015-04-01 2015-12-08 ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法

Country Status (8)

Country Link
US (1) US10125408B2 (ja)
EP (1) EP3279344B1 (ja)
JP (1) JP2016194124A (ja)
CN (1) CN107429317B (ja)
AU (1) AU2015389766B2 (ja)
CA (1) CA2980523C (ja)
PH (1) PH12017501778B1 (ja)
WO (1) WO2016157629A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183189A (ja) * 2018-04-03 2019-10-24 住友金属鉱山株式会社 低ニッケル品位酸化鉱石からのニッケルコバルト混合硫化物の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6747620B2 (ja) * 2018-03-07 2020-08-26 住友金属鉱山株式会社 Ni・Co硫化物製造方法及び鉄品位安定化システム
JP7095606B2 (ja) * 2019-01-17 2022-07-05 住友金属鉱山株式会社 湿式製錬法によるニッケル酸化鉱石からのニッケルコバルト混合硫化物の製造方法
US11186492B2 (en) * 2019-03-05 2021-11-30 Korea Resources Corporation Method for recovering valuable metal sulfides
JP7293873B2 (ja) * 2019-05-30 2023-06-20 住友金属鉱山株式会社 ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
US11254584B2 (en) * 2019-07-26 2022-02-22 Korea Resources Corporation Method for inhibiting extractant degradation of DSX process through metal extraction control
US11359258B2 (en) * 2019-09-04 2022-06-14 Korea Resources Corporation Method of inhibiting degradation of DSX extractant by auxiliary means
CN116368249A (zh) * 2021-08-11 2023-06-30 三菱综合材料株式会社 钴及镍的回收方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350766A (ja) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010126778A (ja) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd ニッケル及びコバルトを含む硫化物の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110400A (en) * 1977-08-01 1978-08-29 Amax Inc. Selective precipitation of nickel and cobalt sulfides from acidic sulfate solution
JP3203707B2 (ja) * 1991-10-09 2001-08-27 大平洋金属株式会社 酸化鉱石から有価金属を回収する方法
JP4457864B2 (ja) 2004-11-24 2010-04-28 住友金属鉱山株式会社 ニッケル及び/又はコバルト硫化物の回収方法
BRPI0604853B1 (pt) * 2006-10-27 2016-03-08 Vale Do Rio Doce Co método para produção de cobalto metálico a partir de refinado de extração por solventes de níquel
CN101302584A (zh) * 2008-07-08 2008-11-12 中南大学 一种采用硫化沉淀从红土镍矿浸出液中富集镍钴的方法
CN101575676A (zh) * 2009-06-18 2009-11-11 中南大学 一种红土镍矿沉淀除铁和镍钴富集的方法
JP5533700B2 (ja) * 2011-01-27 2014-06-25 住友金属鉱山株式会社 有価金属の浸出方法及びこの浸出方法を用いた有価金属の回収方法
JP5500208B2 (ja) 2012-06-12 2014-05-21 住友金属鉱山株式会社 中和処理方法
CN103173623B (zh) * 2013-02-28 2014-11-05 江西铜业股份有限公司 一种从多金属酸性水中回收镍钴的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350766A (ja) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010126778A (ja) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd ニッケル及びコバルトを含む硫化物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279344A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183189A (ja) * 2018-04-03 2019-10-24 住友金属鉱山株式会社 低ニッケル品位酸化鉱石からのニッケルコバルト混合硫化物の製造方法
JP7035735B2 (ja) 2018-04-03 2022-03-15 住友金属鉱山株式会社 低ニッケル品位酸化鉱石からのニッケルコバルト混合硫化物の製造方法

Also Published As

Publication number Publication date
EP3279344A4 (en) 2018-09-12
EP3279344A1 (en) 2018-02-07
PH12017501778A1 (en) 2018-04-02
CA2980523A1 (en) 2016-10-06
EP3279344B1 (en) 2019-10-23
CN107429317A (zh) 2017-12-01
CA2980523C (en) 2020-03-24
AU2015389766B2 (en) 2019-02-14
US20180105896A1 (en) 2018-04-19
PH12017501778B1 (en) 2018-04-02
CN107429317B (zh) 2019-10-29
AU2015389766A1 (en) 2017-10-19
JP2016194124A (ja) 2016-11-17
US10125408B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2016157629A1 (ja) ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP5245768B2 (ja) ニッケル及びコバルトを含む硫化物の製造方法
US8580213B2 (en) Method for recovering nickel from sulfuric acid aqueous solution
JP2019173107A (ja) テルルの回収方法
WO2016194709A1 (ja) 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法
JP6953988B2 (ja) 硫化剤の除去方法
JP5892301B2 (ja) ニッケル酸化鉱石の湿式製錬における中和方法
WO2017110572A1 (ja) 硫化剤の除去方法
CN112593074A (zh) 黄钠铁矾低温焙烧浸出循环除铁工艺
JP6724351B2 (ja) 硫化剤の除去方法
WO2013187367A1 (ja) 中和処理方法
JP7200698B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP7238686B2 (ja) 中和処理方法
JP7293873B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP7147362B2 (ja) ニッケル酸化鉱石の湿式製錬法における臭気低減方法
JP5637294B1 (ja) 中和処理方法
JP2020180314A (ja) 水硫化ナトリウム溶液の製造方法、硫化処理方法、ニッケル硫化物の製造方法、及びニッケル酸化鉱石の湿式製錬方法
JP7508977B2 (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2022150719A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2015105431A (ja) 中和処理方法
JP2015105432A (ja) 中和処理方法
JP5637297B1 (ja) 中和処理方法
JP2019181349A (ja) 硫化剤の除去方法及びニッケル酸化鉱石の湿式製錬方法
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法
JP2015105395A (ja) 中和処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2980523

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15561695

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12017501778

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015887771

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015389766

Country of ref document: AU

Date of ref document: 20151208

Kind code of ref document: A