WO2016150406A1 - 一种单层及多层空心碳纳米球、制备及其应用 - Google Patents

一种单层及多层空心碳纳米球、制备及其应用 Download PDF

Info

Publication number
WO2016150406A1
WO2016150406A1 PCT/CN2016/077561 CN2016077561W WO2016150406A1 WO 2016150406 A1 WO2016150406 A1 WO 2016150406A1 CN 2016077561 W CN2016077561 W CN 2016077561W WO 2016150406 A1 WO2016150406 A1 WO 2016150406A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
hollow carbon
carbon sphere
specifically
layer
Prior art date
Application number
PCT/CN2016/077561
Other languages
English (en)
French (fr)
Inventor
曹安民
池子翔
万立骏
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510137088.6A external-priority patent/CN104843665B/zh
Priority claimed from CN201510137103.7A external-priority patent/CN104891468B/zh
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Publication of WO2016150406A1 publication Critical patent/WO2016150406A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of synthesis of polymer materials and inorganic nano materials, and particularly relates to a method for preparing single-layer and multi-layer hollow carbon sphere nano materials by using phenolic resin and an etchant.
  • Hollow carbon sphere is a special carbon material with high specific surface area, high porosity, excellent electrical conductivity, chemical stability and thermal stability. It is used in catalysis, adsorption separation, ion exchange and electrochemical energy storage. The field has important application value. Due to its unique cavity structure, it can be used as a nanocage to accommodate different kinds of substances, and thus can also be used in the fields of electrode materials, catalyst carriers, gas storage media, lubricants, substance adsorption separation, drug sensors, drug release, artificial cells, and the like. , has a wide range of application value and received a lot of attention.
  • hollow carbon spheres there are various methods for preparing hollow carbon spheres, mainly including template method, solvothermal method, chemical vapor deposition method and the like.
  • template method a method for preparing hollow carbon spheres.
  • the carbon sphere is prepared by the template method, and the structure and size of the carbon sphere can be controlled by controlling the structure and scale of the template, so that hollow carbon spheres with various structures and uniform scale can be prepared in large quantities.
  • Chinese patent 200910055527.3 uses SiO 2 as a template, then adds sterol to the surface of SiO 2 to form a core-shell structure of sterol-coated SiO 2 , removes the template by NaOH solution, and finally synthesizes hollow carbon with a size of 80-300 nm by high-temperature calcination. ball. It can be seen that the template method is cumbersome, including the combination of the template and the carbon matrix and the removal of the template. The removal of the template requires a large amount of solvent, acid or alkali such as hydrofluoric acid, sodium hydroxide and the like. Therefore, it is very important to develop a simple and quick method for preparing hollow carbon materials.
  • Phenolic resin is a widely used polymer with good acid resistance, mechanical properties and heat resistance. It is widely used in anti-corrosion engineering, adhesives, flame retardant materials, grinding wheel manufacturing and other industries. Phenolic resin is carbonized at high temperature, can produce graphitized carbon, has good electrical conductivity, and is widely used in electrochemical devices such as batteries and capacitors.
  • the method for preparing phenolic resin hollow spheres based on template method is in the literature. Also reported, for example, AB Fuertes, PV-Vigón, M. Sevilla, Chem. Commun. 2012, 48, 6124-6126; X. Fang, S. Liu, J. Zang, C. Xu, MS Zheng, QFDong, D .Sun, N. Zheng, Nanoscale 2013, 5, 6908-6916. However, there are still many defects of the above template method.
  • the present invention has found and proposed a method for preparing a single layer and a plurality of hollow carbon spheres based on phenolic resin without using a template.
  • the method is simple in operation and mild in reaction, and a hollow carbon sphere with uniform scale and controlled morphology can be prepared by one-step synthesis reaction.
  • By adjusting the degree of polymerization of the polymer it is also possible to synthesize the inner solid hollow yolk-shell and the overall mesoporous carbon sphere structure in one step.
  • a multi-layer hollow structure can be prepared by coating a single layer of hollow spheres multiple times and layer by layer etching, on the other hand, different The nanoparticles are loaded into the cavity to prepare a hollow carbon sphere composite having an egg yolk-shell structure.
  • the prepared hollow carbon spheres have application value in silicon carbon negative electrode material, Li-S battery, potassium ion battery, sodium ion battery, super capacitor and heavy metal ion adsorption in wastewater.
  • the invention discovers the intrinsic property of a phenolic resin polymerization, and based on the above, provides a phenolic resin pellet, a single layer and a plurality of hollow carbon sphere nano materials and a preparation method thereof. It was found that the phenolic resin had a heterogeneous degree of internal and external polymerization during the polymerization to form polymer beads. The internal component polymerization degree of the pellet was lower than that of the outer portion of the sphere, that is, the outer portion of the pellet was "sturdy" than the inside. By selecting the appropriate solvent (ie etchant), the difference in solubility between the internal and external components can be used to compare the internal The soft components are selectively removed, while the stronger outer components are retained to form a cavity structure.
  • solvent ie etchant
  • the synthesized single-layer polymer hollow sphere or hollow carbon sphere can be used as a core, first coating one or more layers on its surface.
  • the layer of phenolic resin, the polymer layer coated in each layer is also divided into internal soft components and external solid components, so it can be further synthesized through multiple coating and layer-by-layer etching.
  • Multi-layer polymer hollow spheres and corresponding multi-layer carbon hollow spheres by using this principle, the phenolic resin can be firstly coated in the cavity by coating the surface of various nanoparticles with corrosion. Forming a core-shell structure or a yolk-shell structure. 1 and 16 are schematic views of the present invention.
  • the invention provides a first type phenolic resin pellet, a single layer and a plurality of hollow carbon sphere nano materials and a preparation method thereof, and the method has the advantages of simple operation method, mild reaction condition, and can mass-synthesize products through amplification experiments, which is beneficial to application. There are many advantages in actual production.
  • the preparation method of the first type of phenolic resin beads and the hollow carbon spheres obtained by carbonization thereof is classified into Method A according to the morphology and scale.
  • Method A includes the following steps:
  • the intermediate product I obtained in the step a2) is calcined and naturally cooled to room temperature to obtain a single-layer hollow carbon sphere I.
  • the obtained single-layer hollow carbon sphere I has an outer diameter of 160 to 200 nm, an inner diameter of 100 to 120 nm, a wall thickness of 30 to 50 nm, a pore volume of 0.4 to 0.9 cm 3 /g, and a specific surface area of 500 to 800 m 2 /g.
  • the present invention also provides a phenolic resin pellet obtained by the step a1) in the method A, wherein the phenolic resin has a non-uniform degree of polymerization inside and outside during polymerization to form polymer beads, the small sphere
  • the internal component polymerization degree is lower than the outer portion of the ball, that is, the outer portion of the small ball is "sturdy" than the inner portion.
  • the present invention still further provides a single-layer hollow carbon sphere having an outer diameter of 160-200 nm, an inner diameter of 100-120 nm, a wall thickness of 30-50 nm, and a pore volume of 0.4-0.9 cm 3 /g.
  • the surface area is from 500 to 800 m 2 /g.
  • the single-layer hollow carbon spheres are prepared by phenolic resin and an etchant, preferably prepared by the above method.
  • the etching method provided by the present invention can be further used for preparing a double-layer phenolic resin and a hollow carbon sphere obtained by carbonization thereof by using a unique growth mode of the phenolic resin, and according to the method, a phenolic resin hollow sphere having more layers can be obtained. Hollow carbon spheres.
  • the double-layer hollow carbon sphere has the following structures: one outer layer outer diameter 300-350 nm, inner diameter 220-250 nm, wall thickness 40-60 nm, inner layer outer diameter 250-290 nm, wall thickness 25-35 nm;
  • the inner layer has an outer diameter of 300-350 nm, an inner diameter of 160-180 nm, a wall thickness of 60-80 nm, an outer diameter of 420-450 nm, an inner diameter of 380-400 nm, and a wall thickness of 20-30 nm; and a third inner layer outer diameter of 500-600 nm.
  • the inner diameter is 400-420 nm
  • the wall thickness is 40-80 nm
  • the outer diameter is about 700-800 nm
  • the inner diameter is about 600-660 nm
  • the wall thickness is 20-70 nm.
  • the present invention still further provides a plurality of hollow carbon spheres, the plurality of hollow carbon spheres having a structure of the double-layer hollow carbon spheres, and further comprising 3 layers and 4 layers of the third layer, the fourth layer, the fifth layer, and the like. , 5 layers of hollow carbon spheres.
  • the plurality of layers of hollow carbon spheres have a layer number of 2-10, specifically two layers, three layers, four layers, and five layers.
  • the method for preparing the multilayer hollow carbon sphere is specifically Method B.
  • Method B includes the following steps:
  • step b2) adding a certain amount of phenolic compound again in step b1), stirring is continued, and a certain amount of phenolic compound is added n times, and stirring is continued, wherein n is selected from 0 or a natural number (such as 1, 2, 3, etc.) ;
  • the intermediate product II obtained in the step b3) is calcined and naturally cooled to room temperature to obtain a multilayer hollow carbon sphere II.
  • the wall thickness is 25-35 nm.
  • the phenolic resin is suitable for coating the properties of various particles, and the double-layer and multi-layer hollow structures are prepared by multiple coating and layer-by-layer etching as described above, and various kinds of hollow rubber are encapsulated in the cavity of the carbon sphere.
  • Nanoparticles Accordingly, the present invention further provides a hollow carbon sphere coated with nanoparticles in situ in a cavity and a method of preparing the same.
  • the nanoparticles in the hollow carbon sphere coated with nanoparticles in situ are metal nanoparticles, oxide nanoparticles, sulfide nanoparticles, hydroxide nanoparticles, carbonate nanoparticles, sulfate nanoparticles, organic Compound nanoparticles, high molecular polymer nanoparticles, etc., the nanoparticles having a size of 10-800 nm.
  • the metal nanoparticles are preferably nanoparticles of Ag, Au, Pd, Pt, etc.
  • the oxide nanoparticles are preferably Fe 2 O 3 nanoparticles, ZnO nanoparticles, CuO nanoparticles, etc.
  • the sulfide nanoparticles are preferably FeS nanoparticles.
  • the hydroxide nanoparticles are preferably Mg(OH) 2 nanoparticles, Cu(OH) 2 nanoparticles, etc.
  • the carbonate nanoparticles are preferably MgCO 3 nanoparticles, CaCO 3 nanoparticles.
  • the sulfate nanoparticles are preferably BaSO 4 nanoparticles or the like.
  • a method for preparing hollow carbon spheres in which nanoparticles are encapsulated in a cavity is specifically method C.
  • the method C includes the following steps:
  • Nanoparticles of ester polymer are placed in water, the ultrasonic is sufficiently dispersed, the pH of the solution is adjusted, and then the aqueous solution of the aldehyde compound is stirred at a certain temperature. After the reaction, the surface is coated with the phenolic tree.
  • the intermediate III obtained in the step c2) is calcined and naturally cooled to room temperature to obtain a final product, that is, hollow carbon spheres III encapsulated with nanoparticles.
  • the obtained product is a multilayer hollow carbon sphere.
  • the use of certain noble metal salts can be reduced by phenolic or aldehyde compounds to form metal nanoparticles in situ, and the nanoparticles can be encapsulated in the cavity by in situ synthesis. Therefore, the present invention also provides a method for preparing carbon spheres in which metal nanoparticles are encapsulated in a cavity by in-situ synthesis, specifically Method D.
  • Method D A method for preparing carbon spheres encapsulating metal nanoparticles in a cavity by in-situ synthesis, comprising the following steps:
  • the intermediate product IV obtained in the step d2) is calcined and naturally cooled to room temperature to obtain a final product IV, that is, a carbon sphere IV in which a metal nanoparticle is encapsulated in a cavity.
  • the present invention further provides a non-metallic elemental carbon sphere encapsulated with a low melting point and a high fluidity after melting in a hollow structure, wherein the non-metal element is S or Se or P or the like, and the hollow carbon sphere is As mentioned before.
  • the present invention further provides a method for preparing a non-metallic elemental carbon sphere having a low melting point and a high fluidity after melting in a hollow structure, the non-metal element being S or Se or P, etc., specifically the method M and Method N.
  • Method M A method for preparing a non-metallic elemental carbon sphere having a low melting point and a high fluidity after melting in a hollow structure, comprising the following steps:
  • Method N A method for preparing a non-metallic elemental carbon sphere having a low melting point and a high fluidity after melting in a hollow structure, comprising the following steps:
  • the invention provides a method for preparing a supercapacitor, which is characterized by the porous, high specific surface area and good electrical conductivity of the hollow carbon sphere, and is specifically a method O, which comprises the following steps:
  • the hollow carbon sphere material, carbon black and PVDF are mixed at a mass ratio of 85:10:5, prepared into a paste by NMP, coated on a foamed nickel current collector, dried at 100 ° C, compacted, and cut.
  • a polyethylene porous membrane is used as a separator, the two pole pieces are placed opposite each other, and the separator is separated in the middle, and 6 mol/L KOH electrolyte is added dropwise, and then packaged in a button battery case to be assembled into a super a capacitor; wherein the hollow carbon sphere is prepared according to any one of Method A, Method B, Method C, and Method D.
  • the present invention also provides a supercapacitor comprising the hollow carbon sphere of the present invention.
  • the present invention also provides a lithium ion battery anode material comprising the hollow carbon sphere of the present invention.
  • the hollow carbon spheres are hollow carbon spheres in which nanoparticles are encapsulated in situ.
  • the present invention also provides a potassium ion battery or a sodium ion battery comprising the hollow carbon sphere of the present invention.
  • the prepared hollow carbon spheres have great potential in the application of heavy metal ions in the adsorption treatment of industrial wastewater. Accordingly, the present invention provides a method of treating industrial wastewater using hollow carbon spheres, in particular method P, comprising the steps of:
  • the preparation method of the above-mentioned first-type single-layer and multi-layer hollow carbon spheres provided by the invention has simple operation, low raw material cost, uniformity of carbon spheres, and controllable number of layers of carbon spheres.
  • This method can not only prepare various yolk-shell structures by in-situ encapsulation of various nanoparticles, but also prepare materials such as lithium ion battery anode materials, Li-S batteries, sodium ion batteries, potassium ion batteries and capacitors. And in the field of heavy metal ion adsorption in wastewater, there are great application prospects.
  • the invention further provides a second type phenolic resin pellet, single layer and multi-layer hollow carbon sphere nano material and a preparation method thereof, the method has the advantages of simple operation method, mild reaction condition, and can mass-synthesize the product through the amplification experiment, which is beneficial to It has many advantages in practical production.
  • the second type of phenolic resin pellets and the method for preparing the hollow carbon spheres obtained by carbonization are classified into a method A' and a method B' depending on the morphology and scale.
  • method A' comprises the following steps:
  • the phenolic compound is placed in an organic solvent or a mixed solvent of water and an organic solvent, and is sufficiently dissolved to adjust the dissolution.
  • the pH of the liquid is then added to the aqueous solution of the aldehyde compound for a period of time at a certain temperature;
  • the obtained single-layer hollow carbon sphere I' has an outer diameter of 300 to 350 nm, an inner diameter of 240 to 260 nm, a wall thickness of 30 to 50 nm, a pore volume of 0.6 to 1.2 cm 3 /g, and a specific surface area of 1400 to 1800 m 2 /g.
  • the present invention provides a phenolic resin pellet obtained by the step a1') in the method A', wherein the phenolic resin has a non-uniform degree of polymerization inside and outside during polymerization to form polymer beads.
  • the internal composition of the pellet is less than the outer portion of the sphere, ie the exterior of the pellet is "sturdy" than the interior.
  • the present invention provides a single-layer hollow carbon sphere I' having an outer diameter of 300-350 nm, an inner diameter of 240-260 nm, a wall thickness of 30-50 nm, and a pore volume of 0.6-1.2 cm. 3 / g, specific surface area of 1400-1800 m 2 /g.
  • the single-layer hollow carbon sphere I' is prepared by a phenolic resin and an etchant, preferably prepared by the above method.
  • method B' comprises the following steps:
  • the obtained single-layer hollow carbon sphere II' has an outer diameter of 500 to 800 nm, an inner diameter of 400 to 600 nm, a wall thickness of 50 to 150 nm, a pore volume of 0.6 to 0.9 cm 3 /g, and a specific surface area of 1000 to 1300 m 2 /g.
  • the present invention provides a phenolic resin pellet obtained by the step b1') in the method B', wherein the phenolic resin has a non-uniform degree of polymerization inside and outside during polymerization to form polymer beads.
  • the internal composition of the pellet is less than the outer portion of the sphere, ie the exterior of the pellet is "sturdy" than the interior.
  • the present invention provides a single-layer hollow carbon sphere II' having an outer diameter of 500-800 nm, an inner diameter of 400-600 nm, a wall thickness of 50-150 nm, and a pore volume of 0.6-0.9 cm. 3 / g, specific surface area of 1000-1300 m 2 /g.
  • the single-layer hollow carbon sphere II' is prepared by a phenolic resin and an etchant, preferably prepared by the above method.
  • the obtained carbon sphere structure can be controlled to be tubular in the method B' by adjusting the concentration of the phenol and the aldehyde or the concentration of the quaternary ammonium salt type cationic surfactant.
  • the etching method provided by the present invention can be further used to prepare double-layer hollow carbon spheres and more layers of hollow carbon spheres.
  • the double-layer hollow carbon sphere has the following structures: one outer layer outer diameter 300-350 nm, inner diameter 220-250 nm, wall thickness 40-60 nm, inner layer outer diameter 250-290 nm, wall thickness 25-35 nm;
  • the inner layer has an outer diameter of 300-350 nm, an inner diameter of 160-180 nm, a wall thickness of 60-80 nm, an outer diameter of 420-450 nm, an inner diameter of 380-400 nm, and a wall thickness of 20-30 nm; and a third inner layer outer diameter of 500-600 nm.
  • the inner diameter is 400-420 nm
  • the wall thickness is 40-80 nm
  • the outer diameter is about 700-800 nm
  • the inner diameter is about 600-660 nm
  • the wall thickness is 20-70 nm.
  • the plurality of hollow carbon spheres are hollow carbon spheres including 3 layers, 4 layers, and 5 layers of the third layer, the fourth layer, and the fifth layer, in addition to the structure including the double-layer hollow carbon spheres.
  • the method of preparing the multilayer hollow carbon spheres is specifically the method C' and the method D'.
  • method C' comprises the following steps:
  • step c1 ' add a certain amount of phenolic compound again, continue stirring, repeat a certain amount of phenolic compound after n times, and continue stirring, wherein n is selected from natural numbers such as 0 or 1, 2, 3, etc. ;
  • a double-layer hollow carbon sphere III' is obtained, and the obtained double-layer hollow carbon sphere III' has an inner layer outer diameter of 300-350 nm, an inner diameter of 160-180 nm, a wall thickness of 60-80 nm, and an outer diameter of 420-450 nm.
  • the inner diameter is 380-400 nm and the wall thickness is 20-30 nm.
  • method D' comprises the following steps:
  • step d1' a certain amount of phenolic compound is added again, stirring is continued, and a certain amount of phenolic compound is added n times, and stirring is continued, wherein n is selected from natural numbers such as 0 or 1, 2, 3, and the like. ;
  • a double-layer hollow carbon sphere IV' is obtained, and the obtained double-layer hollow carbon sphere IV' has an inner layer outer diameter of 500-600 nm, an inner diameter of 400-420 nm, a wall thickness of 40-80 nm, and an outer diameter of about 700. -800 nm, an inner diameter of about 600-660 nm, and a wall thickness of 20-70 nm.
  • the phenolic resin is suitable for coating the properties of various particles, and the double-layer and multi-layer hollow structures are prepared by multiple coating and layer-by-layer etching as described above, and various kinds of hollow rubber are encapsulated in the cavity of the carbon sphere. Nanoparticles.
  • the present invention further provides another hollow carbon sphere coated with nanoparticles in situ in a cavity, and a preparation method thereof, wherein the nanoparticles in the hollow carbon sphere coated with nanoparticles in situ are metal nanoparticles, Oxide nanoparticles, sulfide nanoparticles, hydroxide nanoparticles, carbonate nanoparticles, sulfate nanoparticles, organic compound nanoparticles, high molecular polymer nanoparticles, etc., the nanoparticles having a size of 10-800 nm.
  • the metal nanoparticles are preferably nanoparticles of Ag, Au, Pd, Pt, etc.
  • the oxide nanoparticles are preferably Fe 2 O 3 nanoparticles, ZnO nanoparticles, CuO nanoparticles, etc.
  • the sulfide nanoparticles are preferably FeS nanoparticles.
  • the hydroxide nanoparticles are preferably Mg(OH) 2 nanoparticles, Cu(OH) 2 nanoparticles, etc.
  • the carbonate nanoparticles are preferably MgCO 3 nanoparticles, CaCO 3 nanoparticles, etc.
  • the sulfate nanoparticles are preferably BaSO 4 nanoparticles or the like.
  • Method E A method for preparing hollow carbon spheres encapsulated with nanoparticles in a cavity, comprising the following steps:
  • the nanoparticles and the phenolic compound are placed in an organic solvent or a mixed solvent of water and an organic solvent, the ultrasonic is sufficiently dispersed, the pH of the solution is adjusted, and then the aqueous solution of the aldehyde compound is stirred at a certain temperature. After the reaction, the solution is a nanoparticle having a surface coated with a phenolic resin;
  • the intermediate product V obtained in the step e2) is calcined and naturally cooled to room temperature to obtain a hollow carbon sphere V in which the final product is encapsulated with nanoparticles.
  • the obtained product is a multilayer hollow carbon sphere.
  • Method F A method for preparing hollow carbon spheres encapsulated with nanoparticles in a cavity, comprising the following steps:
  • the intermediate VI obtained in the step f2) is calcined and naturally cooled to room temperature to obtain a hollow carbon sphere VI in which the final product is encapsulated with nanoparticles.
  • the use of certain noble metal salts can be reduced by phenolic or aldehyde compounds to form metal nanoparticles in situ, and the nanoparticles can be encapsulated in the cavity by in situ synthesis.
  • the present invention also provides another method for preparing carbon spheres encapsulated with metal nanoparticles in a cavity by in-situ synthesis, specifically Method G and Method H.
  • Method G Another method for preparing carbon spheres encapsulated with metal nanoparticles in a cavity by in-situ synthesis, comprising the following steps:
  • the intermediate product VII obtained in the step g2) is calcined and naturally cooled to room temperature to obtain a final product VII, that is, a carbon sphere VII in which a metal nanoparticle is encapsulated in a cavity.
  • Method H A further method for preparing carbon spheres encapsulating metal nanoparticles in a cavity by in-situ synthesis, comprising the following steps:
  • the intermediate product VIII obtained in the step h2) is calcined and naturally cooled to room temperature to obtain a final product VIII, that is, a carbon sphere VIII in which a metal nanoparticle is encapsulated in a cavity.
  • the present invention further provides a method for preparing a non-metallic elemental carbon sphere having a low melting point and a high fluidity after melting in a hollow structure, the non-metal element being S or Se or P, etc., specifically the method M' And method N'.
  • Method M' a method for preparing a non-metallic elemental carbon sphere having a low melting point and a high fluidity after melting in a hollow structure, comprising the following steps:
  • Method N' a method for preparing a non-metallic elemental carbon sphere encapsulated with a low melting point and a high fluidity after melting in a hollow structure, comprising the following steps:
  • N1' preparing hollow carbon spheres according to any one of method A', method B', method C', method D', method E, method F, method G, method H;
  • N2' dispersing the hollow carbon spheres obtained in the step n1') and the low melting point non-metal element in a solvent of a low melting point non-metal element, stirring well at room temperature, and collecting the precipitate;
  • the invention provides a supercapacitor by utilizing the characteristics of porous hollow carbon sphere, high specific surface area and good electrical conductivity.
  • the preparation method specifically the method O', comprises the following steps:
  • the hollow carbon sphere material, carbon black and PVDF are mixed at a mass ratio of 85:10:5, prepared into a paste by NMP, coated on a foamed nickel current collector, dried at 100 ° C, crushed, After the piece is cut into pieces, a pole piece with a diameter of 12 mm is used, and a polyethylene porous film is used as a separator. The two pole pieces are placed opposite each other, and the separator is separated in the middle. After 6 mol/L KOH electrolyte is dropped, the package is assembled in a button battery case.
  • the supercapacitor wherein the hollow carbon sphere is prepared according to any one of Method A', Method B', Method C', Method D', Method E, Method F, Method G, and Method H.
  • the present invention also provides a supercapacitor comprising the above-described second type of hollow carbon sphere of the present invention.
  • the present invention also provides a lithium ion battery anode material comprising the above-mentioned second type hollow carbon sphere of the present invention.
  • the hollow carbon spheres are hollow carbon spheres in which nanoparticles are encapsulated in situ.
  • the present invention also provides a potassium ion battery or a sodium ion battery comprising the above-mentioned second type hollow carbon sphere of the present invention.
  • the prepared hollow carbon spheres have great potential in the application of heavy metal ions in the adsorption treatment of industrial wastewater. Accordingly, the present invention further provides a method of treating industrial wastewater using hollow carbon spheres, in particular a method P' comprising the steps of:
  • the size of the single-layer hollow carbon sphere is 30-1000 nm, specifically 50, 180, 300, 500 nm; the number of layers of the multi-layer hollow carbon sphere is 2-10, specifically two-layer, three-layer, four-layer, Five floors.
  • the preparation method of the above-mentioned second-type single-layer and multi-layer hollow carbon spheres has the advantages of simple operation, low raw material cost, uniformity of carbon spheres, and controllable number of layers of carbon spheres.
  • the method can be used to prepare the egg yolk-shell structure by in-situ encapsulation of various nanoparticles, and the prepared materials are electrochemical devices such as lithium ion battery anode materials, Li-S batteries, sodium ion batteries, potassium ion batteries and capacitors. And in the field of heavy metal ion adsorption in wastewater, there are great application prospects.
  • the phenolic compound is at least one of a phenol having a substituent; wherein the substituent is selected from the group consisting of a C1-C5 alkyl group, an amino group, a C1-C5 aminoalkyl group, a hydroxyl group, a decyl group, a nitro group, At least one of a sulfonic acid group, a C1-C5 carboxyl group, a halogen, and a C1-C5 alkoxy group;
  • the phenol having a substituent is specifically selected from at least one of methyl phenol, benzenediol, benzenetriol, aminophenol, and nitrophenol;
  • the methyl phenol is specifically o-methyl phenol, m-methyl phenol or p-methyl phenol;
  • the benzenediol is specifically catechol, resorcin or hydroquinone;
  • the phenol is specifically 1,2,3-benzenetriol, 1,2,4-benzenetriol or phloroglucinol;
  • the aminophenol is specifically o-aminophenol, m-aminophenol or p-aminophenol; the nitro group
  • the phenol is specifically an ortho, meta or para-substituted nitrophenol.
  • the aldehyde compound is selected At least one of formaldehyde, acetaldehyde, propionaldehyde and glutaraldehyde, furfural, pentahydroxymethylfurfural, benzaldehyde;
  • the aqueous solution of the aldehyde compound has a mass percentage of 10-40%, specifically 30-40%, more specifically 37%.
  • the pH range is 5 -11, adjusting the pH may be an acid or a base;
  • the acid is at least one of hydrochloric acid, nitric acid, oxalic acid, acetic acid and the like;
  • the base is ammonia water, ethylenediamine, propylenediamine, triethylamine, At least one of 1-butylamine, 2-butylamine, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium carbonate, and sodium hydrogencarbonate;
  • ammonia water mass concentration is 25-28%, specifically 25%.
  • the ratio of the phenolic compound to the aldehyde compound is from 0.5 to 5, preferably 1:1.1.
  • the mass concentration of the phenolic compound in water is 0.1-50 mg/mL, specifically 3.3 mg/mL.
  • the concentration of the phenolic compound in the solvent is 0.1-50 mg/mL, Specifically, it is 0.83 mg/mL, 1.67 mg/mL, and 3.3 mg/mL;
  • the compound has a molar ratio of 0.05-30:0.05-30, specifically 1:3, 0.65:13.4, 0.7:13.4, 9.09:13.4, 9.09:13.4, 18:13.4, 9:13.4, 27:13.4, 18: 13.4, 18: 13.4, 9: 13.4.
  • the molar ratio of the phenolic compound, the aldehyde compound and the cationic surfactant is 0.05-30:0.05-30:0.1-20, specifically It is 9:10:0.82.
  • the solvent in the steps a1'), b1'), c1'), d1'), e1), f1), g1) and h1) is an organic solvent or a mixed solution of water and an organic solvent;
  • the organic solvent is specifically selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, glycerol, acetone, methyl ethyl ketone, tetrahydrofuran, N, N-dimethylformamide and N At least one of N-dimethylacetamide;
  • the volume ratio of water to organic solvent in the mixed solution of water and organic solvent is 0.5-50:1, specifically 2:1, 1:1, 1.5:1.
  • the nanoparticles are insoluble in water and an organic solvent, the metal having a size of 1-500 nm and having a stable morphology at a high temperature, a non-metal, a metal oxide, and a non- Metal oxides, organic compounds, inorganic compounds or high molecular polymers, and synthesized according to any of methods A, B, C, D, A', B', C', D', E, F, G, H
  • the hollow product containing the hollow structure and the calcined hollow carbon sphere specifically selected from the group consisting of Ag, Au, Pd, Si, SnO 2 , TiO 2 , Fe 2 O 3 , Fe 3 O 4 , SiO 2 , polystyrene, A phenolic resin, a porous carbon material, each of the above intermediate products, each of the above hollow carbon spheres, and any of the above-mentioned multilayer hollow carbon spheres.
  • the noble metal salt is any one of silver nitrate, chloroauric acid, chloropalladium acid and chloroplatinic acid.
  • the quaternary ammonium salt type cationic surfactant is specifically selected from the group consisting of alkyl trimethyl ammonium salt type cationic surfactants, dialkyl dimethyl groups. At least one of an ammonium salt type cationic surfactant and an alkyl dimethyl benzyl ammonium salt type cationic surfactant;
  • alkyltrimethylammonium salt type cationic surfactant is specifically octyltrimethylammonium bromide, octyltrimethylammonium chloride, octadecyltrimethylammonium bromide, octaalkyl Trimethylammonium chloride, decamethyltrimethylammonium bromide, decamethyltrimethylammonium chloride, dodecyltrimethylammonium bromide, dodecyltrimethylammonium chloride, ten Tetraalkyltrimethylammonium bromide, tetradecyltrimethylammonium chloride, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, octadecyltrimethyl Ammonium bromide or octadecyltrimethylammonium chloride, etc.; the dialkyldimethylammonium salt type cationic surfactant is specifically dioctyldimethylammoni
  • the quaternary ammonium salt type cationic surfactant has a mass concentration in the solvent of from 3 ⁇ 10 -4 to 0.1 mg / mL, preferably specifically from 0.001 mg / mL to 0.009 mg / mL.
  • the etchant is selected from the group consisting of alcohols At least one of a ketone, an amide, a furan, an alkane or a halogenated hydrocarbon and a derivative thereof;
  • the derivatives of the alcohol and the alcohol are specifically methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, ethylene glycol or glycerol;
  • the ketone and its derivative are specifically acetone, cyclopropanone, methyl ethyl ketone, butanedione or acetylacetone;
  • the amide and its derivatives are specifically formamide, acetamide, propionamide, butanamide, N, N- Dimethylformamide, N,N-dimethylacetamide or N,N-dimethylpropanamide;
  • the furan and its derivative are specifically tetrahydrofuran;
  • the alkane and its derivative are specifically cyclohexane
  • the halogenated hydrocarbon and its derivative are specifically chloroform.
  • the temperature is -15 to 180 ° C, preferably 10 to 30 ° C, specifically room temperature, the time is 0.01-12 hours, preferably 1 to 5 hours, specifically 1.5 hours;
  • the temperature is -15 to 180 ° C, preferably 30-100 ° C, specifically room temperature, the time is 0.01-12 hours, preferably 1 to 5 hours, specifically 0.5 hours, 1 hour;
  • the time is 0.01-1 hour, preferably 20 minutes to 1 hour, specifically 0.5 hour;
  • the time is from 0.01 to 1 hour, preferably from 20 minutes to 1 hour, specifically 0.5 hour.
  • the volume ratio of the volume of the etchant added to the water in the steps a1), d1), c1), and d1) is 0.1-100:1, specifically 0.7. :1.
  • the volume of the etchant is added and steps a1), b1), d1), e1 ), f1), g1), h1)
  • the volume ratio of water or solvent is from 0.1 to 100:1, specifically 0.7:1.
  • the temperature is 500. -3000 ° C, preferably 500-1000 ° C, specifically 700 ° C, 800 ° C, 900 ° C, the time is 1-30 hours, specifically 10 hours, the heating rate is 1-20 ° C / min, specifically 5 °C/min;
  • the calcination atmosphere is an inert or reducing atmosphere, specifically selected from the group consisting of nitrogen, argon, a mixture of hydrogen and argon, and a mixture of nitrogen and hydrogen, more specifically a volume ratio of 1 ⁇ 5: 95-99 mixture of hydrogen and argon.
  • the low melting point non-metal element in the steps m2), n2), m2'), n2') is specifically a powder of S or Se;
  • the proportion of the non-metal elemental powder in the total mass of the carbon sphere is 10 to 90%, preferably 50 to 80%, specifically 50%, 60%, 70%;
  • the solvent containing the non-metal element in the steps n2) and n2') is specifically carbon disulfide; the stirring time is 1-10h, specifically 4h;
  • the carbon spheres have a mass concentration of 10 to 1000 mg/mL, specifically 100 mg/mL, in a solvent containing a non-metal element.
  • the temperature is 100-600 ° C, specifically 155 ° C, 300 ° C, 400 ° C, or calcination in two stages, for example First, after 155 ° C and then through 300 ° C, and first through 155 ° C and then through 400 ° C, the time is 1-30 hours, specifically 10 hours, the heating rate is 1-20 ° C / min, specifically 5 ° C / min;
  • the calcination atmosphere is an air, inert or reducing atmosphere, and is specifically selected from the group consisting of air, nitrogen, argon, a mixture of hydrogen and argon, and a mixture of nitrogen and hydrogen, more specifically A mixture of hydrogen and argon in a volume ratio of 1 to 5: 95 to 99.
  • the hollow carbon sphere materials in the steps o1), p1), o1') and p1') are according to method A, method B, method C, method D, method A', method B', method C', The hollow carbon sphere prepared by any one of method D', method E, method F, method G, method H;
  • the heavy metal ions in the steps p1) and p1') are one or more of harmful metal ions to the human body such as Pb 2+ , Cd 2+ , Cu 2+ , Hg 2+ , As 5+ , Cr 4+ ;
  • the concentration of heavy metal ions is 1 to 100 mg/L, specifically 10 mg/L, 20 mg/L, 30 mg/L;
  • the mass ratio of the mass of the hollow carbon sphere to the precious metal ions contained is 1 to 100:1, preferably 1 to 10. :1, specifically 5:1, 6:1; pH range is 2-10, specifically 5; stirring or shaking time is 1-10 hours, specifically 4 hours; stirring or shaking temperature is room temperature.
  • FIG. 1 is a schematic view showing a preparation method of a first type of single layer and a plurality of hollow carbon spheres in the present invention.
  • Figure 2 is a TEM image of a 3-aminophenol formaldehyde resin polymer prepared according to Example A1 at a solid stage.
  • Figure 3 is a TEM image of a hollow 3-aminophenol formaldehyde resin polymer hollow sphere (i.e., intermediate product I) prepared in accordance with Example A1.
  • Example 4 is a TEM image of a hollow carbon sphere prepared in accordance with Example A1.
  • Figure 5 is a hollow yolk-shell structure with solid carbon spheres prepared in accordance with Example A3.
  • Figure 6 is a TEM image of a double-walled hollow carbon sphere prepared in accordance with Example C1.
  • Figure 7 is a TEM image of a three-layer hollow carbon sphere prepared in accordance with Example C2.
  • Figure 8 is a TEM image of a four-layer hollow carbon sphere prepared in accordance with Example C3.
  • Figure 9 is a TEM image of the Ag@void@C1 core-shell structure prepared in accordance with Example D1.
  • Figure 10 is a TGA (thermogravimetric analysis) diagram of the S-C electrode material prepared in accordance with Example M1.
  • Figure 11 is a graph showing the first charge and discharge curves of the S-C electrode material prepared in accordance with Example M1 in the range of 1-3V.
  • Figure 12 is a CV curve of a supercapacitor prepared in accordance with Example O1.
  • Figure 13 is a graph showing the adsorption rate measured in Example P1.
  • Figure 14 is a graph showing the first charge and discharge curves of the electrode material prepared in Example Q1 in the range of 0.01 - 2 V.
  • Figure 15 is a graph showing the first charge and discharge curves of the electrode material prepared in Example R1 in the range of 0.01 - 2 V.
  • Figure 16 is a schematic view showing the preparation method of the second type of single-layer and multi-layer hollow carbon spheres in the present invention.
  • Figure 17 is a TEM image of a hollow carbon sphere prepared in accordance with Example A1'.
  • Figure 18 is a TEM image of the carbon nanotubes of the overall mesoporous distribution prepared in accordance with Example A2'.
  • Figure 19 is a TEM image of a hollow yolk-shell structure with solid carbon spheres prepared in accordance with Example A3'.
  • Figure 20 is a TEM image of a hollow carbon sphere prepared in accordance with Example B1'.
  • Figure 21 is a TEM image of a hollow carbon sphere prepared in accordance with Example B2'.
  • Figure 22 is a TEM image of a hollow carbon tube prepared in accordance with Example B3'.
  • Figure 23 is a TEM image of a double-walled hollow carbon sphere prepared in accordance with Example D1'.
  • Figure 24 is a TEM image of a double-walled hollow carbon sphere prepared in accordance with Example E1.
  • Figure 25 is a TEM image of a double-walled hollow carbon sphere prepared in accordance with Example E2.
  • Figure 26 is a TEM image of a double-walled hollow carbon sphere prepared in accordance with Example F1.
  • Figure 27 is a TEM image of a Si@void@C core-shell structure prepared in accordance with Example F2.
  • Figure 28 is a graph showing the first charge and discharge curve and the charge and discharge cycle performance of a Si@void@C sample prepared in accordance with Example F2.
  • Figure 29 is a TEM image of the SiO 2 @void@C core-shell structure prepared in accordance with Example F3.
  • Figure 30 is a TEM image of the SnO 2 @void@C core-shell structure prepared in accordance with Example F4.
  • Figure 31 is a TEM image of the Ag@void@C2 core-shell structure prepared in accordance with Example G1.
  • Figure 32 is a TEM image of the Ag@void@C3 core-shell structure prepared in accordance with Example H1.
  • Figure 33 is a TGA (thermogravimetric analysis) chart of the S-C electrode material prepared in accordance with Example M1'.
  • Figure 34 is a graph showing the first charge and discharge curves of the S-C electrode material prepared in accordance with Example M1' in the range of 1-3V.
  • Figure 35 is a CV curve of the supercapacitor prepared according to Example O1'.
  • Figure 36 is a graph showing the adsorption rate measured in Example P1'.
  • Figure 37 is a graph showing the first charge and discharge curves of the electrode material prepared in accordance with Example Q1' in the range of 0.01 - 2V.
  • Figure 38 is a graph showing the first charge and discharge curves of the electrode material prepared in Example R1' in the range of 0.01 - 1.5V.
  • the invention is further illustrated by the following specific examples, but the invention is not limited to the following examples.
  • the method is a conventional method unless otherwise specified.
  • the raw materials can be obtained from an open commercial route unless otherwise specified.
  • the dried intermediate I was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C. Calcined for 10 h, naturally cooled to room temperature to obtain a clean internal single-layer hollow carbon sphere I having an outer diameter of 160-200 nm, an inner diameter of 100-120 nm, a wall thickness of 30-50 nm, a pore volume of 0.6927 cm 3 /g, and a specific surface area of 711.20m 2 /g.
  • TEM 4 is a transmission electron microscope (TEM) image of the hollow carbon sphere nanomaterial prepared in the present embodiment. From the figure, it can be seen that the hollow carbon sphere has a dimension of 180 nm and a cavity diameter of about 120 nm.
  • Embodiment A1 The difference from Embodiment A1 is that:
  • the result is a clean, single-layer hollow carbon sphere.
  • the obtained carbon sphere has an outer diameter of 160 to 200 nm, an inner diameter of 100 to 120 nm, and a wall thickness of 30 to 50 nm.
  • Example A3 Using Method A, a yolk-shell hollow structure with a solid carbon sphere inside was prepared:
  • Embodiment A1 The difference from Embodiment A1 is that:
  • the result is a hollow yolk-shell structure with solid carbon spheres inside.
  • the obtained hollow carbon sphere structure has an outer diameter of 270-360 nm and an inner solid sphere diameter of 180-250 nm.
  • TEM 5 is a transmission electron microscope (TEM) image of a hollow yolk-shell carbon sphere material filled with a solid carbon sphere prepared in the present embodiment. It can be seen from the figure that the inner solid carbon sphere has a diameter of about 230 nm and the outer cavity diameter is about It is 350nm.
  • Example B1 using method B to prepare double-layer hollow carbon spheres
  • the dried intermediate product II was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C. Calcined for 10h, naturally cooled to room temperature, to obtain double-layer hollow carbon sphere II, the outer diameter of the outer layer is 300-350nm, the inner diameter is 220-250nm, the wall thickness is 40-60nm, the inner layer outer diameter is 250-290nm, and the wall thickness is 25-35nm. .
  • Example C1 using method C to prepare a double-layer hollow carbon material:
  • Embodiment A1 The difference from Embodiment A1 is that:
  • the dried intermediate product III was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and calcined at 900 ° C. After 10 h, it was naturally cooled to room temperature to give product III.
  • Figure 6 is a transmission electron microscope (TEM) image of the double-walled hollow carbon nanomaterial prepared in this example.
  • Example C2 using Method C to prepare a three-layer hollow carbon material:
  • Embodiment C1 The difference from Embodiment C1 is:
  • the dried intermediate C2-III was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C.
  • the product was calcined for 10 h and naturally cooled to room temperature to give the product C2-III.
  • Figure 7 is a transmission electron microscope (TEM) image of a three-layer hollow carbon nanomaterial prepared in this example.
  • Embodiment C1 The difference from Embodiment C1 is:
  • the dried intermediate product C3-III was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and the temperature was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C.
  • the product was calcined for 10 h and naturally cooled to room temperature to give the product C3-III.
  • Figure 8 is a transmission electron microscope (TEM) image of a four-layer hollow carbon nanomaterial prepared in this example.
  • Example C4 using method C to prepare hollow carbon spheres coated with Fe 2 O 3 nanoparticles in situ
  • Embodiment C1 The difference from Embodiment C1 is:
  • Fe 2 O 3 particles having a particle size of 50 to 200 nm and 0.1 g of 3-aminophenol (0.92 mmol) were weighed out in 30 ml of H 2 O, and ultrasonically dispersed uniformly.
  • the dried intermediate product C4-III was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C.
  • the calcination was carried out for 10 h, and naturally cooled to room temperature to obtain a hollow carbon sphere in which the product C4-III was coated with nanoparticles in situ.
  • Example C5 using method C to prepare hollow carbon spheres coated with ZnS nanoparticles in situ
  • Embodiment C1 The difference from Embodiment C1 is:
  • ZnS particles having a particle size of 50 to 250 nm and 0.1 g of 3-aminophenol (0.92 mmol) were weighed out in 30 ml of H 2 O, and ultrasonically dispersed uniformly.
  • the dried intermediate product C4-III was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C. After calcination for 10 h, it was naturally cooled to room temperature to obtain hollow carbon spheres in which the product C5-III was coated with nanoparticles in situ.
  • Embodiment A1 The difference from Embodiment A1 is that:
  • Figure 9 is a transmission electron microscope (TEM) image of the Ag@void@C-1 core-shell structure prepared in this example.
  • Example M1 Application of Method M to Hollow Carbon Ball Material Load S and Hollow Carbon Ball in Li-S Cathode Material:
  • the temperature is raised from room temperature to 155 ° C at a heating rate of 5 ° C / min for 10 hours, then raised to 300 ° C at a heating rate of 5 ° C / min, and calcined at 300 ° C for 5 h, naturally cooled
  • SC a hollow carbon material loaded with S was obtained, designated SC.
  • Figure 10 is a TGA (thermogravimetric analysis) curve of the prepared S-C composite, and it can be seen from the figure that the loading of S is about 45%.
  • the hollow carbon sphere after loading S can be used as a Li-S battery electrode material.
  • Metal lithium is a negative electrode assembled into a 2032 button battery, and a constant current charge and discharge test is performed in a voltage range of 1-3 V (vs Li + /Li).
  • the electrolyte component used EC:DMC 1:1, 1M LiPF 6 as a lithium salt.
  • the charge and discharge current was 0.1 C (-167 mA/g).
  • Figure 11 is a graph showing the first charge and discharge curves of the SC electrode material in the range of 1-3V. As can be seen from the figure, the initial discharge capacity of the SC sample is 800 mAh/g, which has the potential to be used as a Li-S battery material.
  • Example N1 S is applied to the hollow carbon sphere material by Method N.
  • Example O1 application of hollow carbon sphere material in supercapacitor
  • the hollow carbon sphere material (synthesized according to Example C1), carbon black and PVDF were mixed at a mass ratio of 85:10:5, and prepared into a paste by NMP, coated on a foamed nickel current collector, and dried at 100 ° C. After rolling, cutting, forming a pole piece with a diameter of 12 mm, using a polyethylene porous film as a separator, placing the two pole pieces in opposite directions, separating them with a separator in the middle, dropping 6 mol/L KOH electrolyte, and packaging them in a button battery. The shell is assembled into a supercapacitor. Using an electrochemical workstation, the performance test was performed at 5, 10, 100 mV/s between 0-1 V. The discharge specific capacities of the capacitors were 144.8, 140.7, and 106.2 Fg -1 , respectively.
  • Figure 12 shows the capacitors prepared in three types. CV curve under sweep speed.
  • Example P Application of hollow carbon sphere material in adsorbing heavy metal ions in wastewater
  • the hollow carbon sphere material (synthesized as in Example C1), carbon black, and PVDF were mixed at a mass ratio of 85:10:5 to prepare an electrode.
  • Metal sodium is a negative electrode assembled into a 2032 button battery, and a constant current charge and discharge test is performed in a voltage range of 0.01-2 V (vs Na + /Na).
  • the electrolyte component used EC: PC 1:1, 1 M NaClO 4 as the sodium salt.
  • the charge and discharge current was 0.1 C ( ⁇ 30 mA/g).
  • Figure 14 is a graph showing the first charge and discharge curves of the prepared hollow carbon sphere material in the range of 0.01-2V. As can be seen from the figure, the initial discharge capacity is 300 mAh/g, which is a good sodium ion battery electrode material.
  • the hollow carbon sphere material (synthesized as in Example C1), carbon black, and PVDF were mixed at a mass ratio of 85:10:5 to prepare an electrode.
  • Metal potassium is a negative electrode assembled into a 2032 button battery, and a constant current charge and discharge test is performed in a voltage range of 0.01-2 V (vs Na + /Na).
  • the electrolyte component used EC: DEC 1:1 and 0.5 M KPF 6 as a potassium salt.
  • the charge and discharge current was 0.05 C ( ⁇ 14 mA/g).
  • Figure 15 is a graph showing the first charge and discharge curves of the prepared hollow carbon sphere material in the range of 0.01-2V. It can be seen from the figure that the initial discharge capacity is 343 mAh/g, which is a good potassium ion battery electrode material.
  • the hollow carbon sphere prepared by the invention has potential application value in silicon carbon negative electrode material, Li-S battery, super capacitor, sodium ion battery, potassium ion battery and heavy metal ion adsorption.
  • Example A1' using the method A' to prepare a hollow carbon sphere:
  • the dried intermediate I' was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C. Calcined for 10 h, and naturally cooled to room temperature to obtain an internal clean single-layer hollow carbon sphere I'.
  • a single-layer hollow carbon sphere with mesopores internally is obtained, which has an outer diameter of 300-350 nm, an inner diameter of 240-260 nm, a wall thickness of 30-50 nm, a pore volume of 0.9685 cm 3 /g, and a specific surface area of 1504.06 m 2 /g. .
  • FIG. 17 is a transmission electron microscope (TEM) image of the hollow carbon sphere nanomaterial prepared in the present embodiment. From the figure, it can be seen that the hollow carbon sphere has a size of 300 to 350 nm and a cavity diameter of about 260 nm.
  • TEM transmission electron microscope
  • Example A2' using the method A' to prepare an overall full mesoporous carbon sphere structure:
  • TEM 18 is a transmission electron microscope (TEM) diagram of the carbon sphere structure of the monolithic mesopores prepared in the present embodiment. From the figure, it can be seen that the dimensions of the hollow carbon spheres are 300 to 350 nm.
  • TEM transmission electron microscope
  • Example A3' using the method A' to prepare a yolk-shell hollow structure with a solid carbon sphere inside:
  • the result is a hollow yolk-shell structure with solid carbon spheres inside.
  • the obtained hollow carbon sphere structure has an outer diameter of 470-520 nm and an inner solid sphere diameter of 200-250 nm.
  • Figure 19 is a transmission electron microscope (TEM) image of a hollow yolk-shell carbon sphere material filled with a solid carbon sphere prepared in the present embodiment. It can be seen from the figure that the outer diameter of the sphere is about 500 nm, and the diameter of the inner solid sphere is about It is 230 nm.
  • TEM transmission electron microscope
  • Example B1' using the method B' to prepare a hollow carbon sphere:
  • the dried intermediate II' was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), and was raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and at 900 ° C. Calcined for 10 h, and naturally cooled to room temperature to give product II'.
  • a single-layer hollow carbon sphere with mesopores internally is obtained, which has an outer diameter of 500-800 nm, an inner diameter of 400-600 nm, a wall thickness of 50-150 nm, a pore volume of 0.7611 cm 3 /g, and a specific surface area of 1244.21 m 2 /g. .
  • TEM 20 is a transmission electron microscope (TEM) image of the hollow carbon sphere nanomaterial prepared in the present embodiment. From the figure, it can be seen that the hollow carbon sphere has a size of 500 to 800 nm and a cavity diameter of about 400 to 700 nm.
  • TEM transmission electron microscope
  • Example B2' using the method B' to prepare a hollow carbon sphere:
  • the resulting single-layer hollow carbon spheres have an outer diameter of 50-60 nm, an inner diameter of about 30 nm, and a wall thickness of 10-20 nm.
  • Figure 21 is a transmission electron microscope (TEM) image of the hollow carbon sphere nanomaterial prepared in this example.
  • Example B3' using the method B' to prepare a hollow carbon tube:
  • Figure 22 is a transmission electron microscope (TEM) image of the hollow carbon nanotube nanomaterial prepared in this example. It can be seen from the figure that the tube diameter is about 30 nm and the wall thickness is about 12 nm.
  • TEM transmission electron microscope
  • Example C1' using the method C' to prepare a double-layer hollow carbon sphere:
  • the dried intermediate III' is placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), raised from room temperature to 900 ° C at a heating rate of 5 ° C / min, and at 900 Calcined at °C for 10h, and naturally cooled to room temperature to obtain a double-layer hollow carbon sphere III'.
  • the inner layer has an outer diameter of 300-350 nm, an inner diameter of 160-180 nm, a wall thickness of 60-80 nm, an outer diameter of 420-450 nm, an inner diameter of 380-400 nm, and a wall thickness of 20-30 nm.
  • Example D1' using the method D' to prepare a double-layer hollow carbon sphere:
  • the dried intermediate IV' is placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), raised from room temperature to 900 ° C at a heating rate of 5 ° C / min, and at 900 Calcined at °C for 10h, naturally cooled to room temperature to obtain double-layer hollow carbon sphere IV', the inner layer outer diameter is 500-600nm, inner diameter 400-420nm, wall thickness 40-80nm, outer diameter outer diameter about 700-800nm, inner diameter It is about 600-660 nm and has a wall thickness of 20-70 nm.
  • Figure 23 is a transmission electron microscope (TEM) image of the double-walled hollow carbon nanomaterial prepared in the present embodiment. It can be seen from the figure that the hollow carbon sphere has a double outer wall, and the inner carbon sphere has a size of 500-600 nm, and the outer layer The carbon spheres are 700-800 nm.
  • TEM transmission electron microscope
  • Example E1 Using the method E to prepare a double-layer hollow carbon material:
  • the dried intermediate product was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and calcined at 900 ° C for 10 h. Naturally cooled to room temperature to obtain product V.
  • Figure 24 is a transmission electron microscope (TEM) image of the double-layered hollow carbon nanomaterial prepared in this example.
  • Example E2 using method E to prepare a double-layer hollow carbon material
  • Embodiment E1 The difference from Embodiment E1 is that:
  • Figure 25 is a transmission electron microscope (TEM) image of the double-layered hollow carbon nanomaterial prepared in this example.
  • Example F1 Using the method F to prepare a double-layer hollow carbon material:
  • CTAB cetyltrimethylammonium bromide
  • the dried intermediate VI was placed in a tube furnace with a mixture of hydrogen and argon (5/95 vol%), raised from room temperature to 900 ° C at a heating rate of 5 ° C/min, and calcined at 900 ° C. 10h, naturally cooled to room temperature to get product VI.
  • Figure 26 is a transmission electron microscope (TEM) image of the double-walled hollow carbon nanomaterial prepared in this example.
  • Example F2 using the method F to prepare the Si@void@C core-shell structure:
  • Figure 27 is a transmission electron microscope (TEM) image of a Si@void@C sample prepared in this example.
  • the Si@void@C composite material with core-shell structure can be used as the negative electrode of Li-ion battery, and its cavity can alleviate the huge volume expansion of Si during Li + insertion and extraction, avoiding direct contact with electrode material and electrolyte The capacity decay caused by contact with the SEI film.
  • PVDF polyvinylidene fluoride
  • Metal lithium is a positive electrode assembled into a 2032 button battery, and a constant current charge and discharge test is performed in a voltage range of 0.01-1 V (vs Li + /Li).
  • the charge and discharge current was 0.05 C (210 mA/g).
  • Figure 28 is a graph of the first charge and discharge curve and the charge and discharge cycle performance of the Si@void@C sample. It can be seen from the figure that the first discharge of the Si@void@C sample reached 1180 mAh/g, and the capacity was 1040 mAh/g after 100 cycles of charge and discharge, and the capacity retention rate reached 88.1%.
  • Embodiment F2 According to the steps of Embodiment F2, the difference from Embodiment F2 is that:
  • Figure 29 is a transmission electron microscope (TEM) image of a SiO 2 @void@C core-shell sample prepared in this example.
  • Example F4 using method F to prepare SnO 2 @void@C core-shell structure:
  • Embodiment F3 According to the steps of Embodiment F3, the difference from Embodiment F3 is that:
  • Figure 30 is a transmission electron microscope (TEM) image of the SnO 2 @void@C core-shell structure prepared in this example.
  • the prepared SnO 2 @void@C composite material with core-shell structure can be used as a negative electrode of Li-ion battery, and its cavity can alleviate the huge volume expansion of SnO 2 during Li + insertion and extraction, avoiding electrode material and electrolysis.
  • the capacity is attenuated by direct contact of the liquid to form the SEI film.
  • Preparation of lithium battery negative electrode by using the prepared SnO 2 @void@C: prepared as an electrode according to SnO 2 @void@C: conductive carbon black: polyvinylidene fluoride (PVDF) 60%: 20%: 20% (mass ratio) .
  • Metal lithium is a positive electrode assembled into a 2032 button battery, and can be tested for constant current charge and discharge in a voltage range of 0.01-3 V (vs Li + /Li). The charge and discharge current can be 100-4000 mA/g.
  • Figure 31 is a transmission electron microscope (TEM) image of the Ag@void@C-2 core-shell structure prepared in this example.
  • Example H1 using the method H to prepare the Ag@void@C core-shell structure:
  • Embodiment A1' The difference from Embodiment A1' is that:
  • Figure 32 is a transmission electron microscope (TEM) image of the Ag@void@C-3 core-shell structure prepared in this example.
  • Example M1' using the method M' for the hollow carbon sphere material loading S and the hollow carbon sphere in the Li-S cathode material:
  • the protected tube furnace was raised from room temperature to 155 ° C at a heating rate of 5 ° C / min for 10 hours, then heated to 300 ° C at a heating rate of 5 ° C / min, and calcined at 300 ° C for 5 h, naturally Cooling to room temperature gave a S-filled hollow carbon material designated SC.
  • Figure 33 is a TGA (thermogravimetric analysis) curve of the prepared S-C composite material, and it can be seen from the figure that the loading of S is 53.72%.
  • the hollow carbon sphere after loading S can be used as a Li-S battery electrode material.
  • Metal lithium is a negative electrode assembled into a 2032 button battery, and a constant current charge and discharge test is performed in a voltage range of 1-3 V (vs Li + /Li).
  • the charge and discharge current was 0.1 C (-167 mA/g).
  • Figure 34 is a graph showing the first charge and discharge curves of the SC electrode material in the range of 1-3V. As can be seen from the figure, the initial discharge capacity of the SC sample is 1000 mAh/g, which has the potential to be used as a Li-S battery material.
  • Example N1' the hollow carbon sphere material was loaded with S by the method N'.
  • a single layer of hollow carbon spheres I' prepared in accordance with Example A1' Weigh 0.06g hollow carbon sphere I' and 0.14g S powder in methanol solvent, stir well at room temperature, collect the precipitate, put it into sealed reaction vessel, vacuum it, and put it into the tube with argon protection. In the furnace, the temperature was raised from room temperature to 155 ° C at a heating rate of 5 ° C / min, held for 10 hours, and then heated to 300 ° C at a heating rate of 5 ° C / min, and calcined at 300 ° C for 5 h, naturally cooled to room temperature, A hollow carbon material of the load S is obtained.
  • Example O1' application of hollow carbon sphere material in supercapacitor
  • the hollow carbon sphere material (synthesized according to Example B1'), carbon black, and PVDF were mixed at a mass ratio of 85:10:5, prepared into a paste by NMP, coated on a foamed nickel current collector, and dried at 100 ° C. After processing, rolling, and cutting, a pole piece with a diameter of 12 mm was prepared, and a polyethylene porous film was used as a separator. The two pole pieces were placed opposite each other, and the separator was separated in the middle, and 6 mol/L KOH electrolyte was added dropwise, and then packaged in a button type. The battery case is assembled into a super capacitor. Using electrochemical workstations, performance tests were performed at 5, 10, 100 mV/s between 0-1 V. The discharge specific capacities of the capacitors were 144.8, 140.7, and 106.2 Fg -1 , respectively.
  • Figure 35 shows the capacitors prepared in three. CV curve under sweep speed.
  • Example P1' and hollow carbon sphere material in adsorbing heavy metal ions in wastewater
  • Example Q1' application of hollow carbon sphere material in sodium ion battery
  • the hollow carbon sphere material (synthesized as in Example B1'), carbon black, and PVDF were mixed at a mass ratio of 85:10:5 to prepare an electrode.
  • Metal sodium is a negative electrode assembled into a 2032 button battery, and a constant current charge and discharge test is performed in a voltage range of 0.01-2 V (vs Na + /Na).
  • the electrolyte component used EC: PC 1:1, 1 M NaClO 4 as the sodium salt.
  • the charge and discharge current was 0.1 C ( ⁇ 30 mA/g).
  • Figure 37 is a graph showing the first charge and discharge curves of the prepared mesoporous carbon spheres in the range of 0.01-2V. As can be seen from the figure, the initial discharge capacity is 316 mAh/g, which is a good sodium ion battery electrode material.
  • the hollow carbon sphere material (synthesized as in Example B1'), carbon black, and PVDF were mixed at a mass ratio of 85:10:5 to prepare an electrode.
  • Metal potassium is a negative electrode assembled into a 2032 button type battery, and a constant current charge and discharge test is performed in a voltage range of 0.01-1.5 V (vs Na + /Na).
  • the electrolyte component used EC: DEC 1:1 and 0.5 M KPF 6 as a potassium salt.
  • the charge and discharge current was 0.1 C ( ⁇ 28 mA/g).
  • Figure 38 is a graph showing the first charge and discharge curves of the prepared mesoporous carbon sphere material in the range of 0.01-2V. As can be seen from the figure, the initial discharge capacity is 253 mAh/g, which is a good potassium ion battery electrode material.
  • the hollow carbon sphere prepared by the invention has potential application value in silicon carbon negative electrode material, Li-S battery, super capacitor, sodium ion battery, potassium ion battery and heavy metal ion adsorption.

Abstract

提供一种单层及多层空心碳球及其制备方法和应用。该方法包括:1)将酚置于水或溶剂中,调节pH,再加入醛在一定的温度下搅拌一段时间,2)于反应体系中加入腐蚀剂,在一定温度下搅拌,得到中间产物;3)将步骤2)所得中间产物于惰性或还原气氛中进行煅烧,自然冷却至室温,得到空心碳球。该方法简单易行,所得空心碳球形貌均一,尺度可控。该方法可以通过多次包覆且逐层腐蚀的方式制备多层空心结构,也可以将不同的纳米颗粒原位封装于空腔中,从而制备核壳或蛋黄-核结构。该空心碳球在硅碳负极电极材料,Li-S电池,钠离子电池,钾离子电池,超级电容器,以及重金属离子吸附等方面均有很大的应用价值。

Description

一种单层及多层空心碳纳米球、制备及其应用 技术领域
本发明涉及高分子材料和无机纳米材料合成领域,具体涉及一种利用酚醛树酯及腐蚀剂制备单层及多层空心碳球纳米材料的方法。
背景技术
空心碳球是一种结构特殊的碳材料,具有高比表面积、高孔隙率、优异的导电性、化学稳定性和热稳定性等性质,在催化、吸附分离、离子交换及电化学储能等领域有重要的应用价值。由于其特有的空腔结构,可作为容纳不同种类物质的纳米笼,因而还可用于电极材料、催化剂载体、储气介质、润滑剂、物质吸附分离、药物传感器、药物释控、人造细胞等领域,具有广泛的应用价值并受到大量的关注。
目前,制备空心碳球方法多样,主要有模板法,溶剂热法,化学气相沉积法等。其中报道较多且较为成熟的方法主要为模板法。用模板法制备碳球,碳球的结构和大小可以通过控制模板的结构和尺度进行调控,因此可以大量制备结构多样、尺度均一的空心碳球。中国专利200910055527.3采用SiO2作为模板,然后加入糠醇在SiO2表面聚合形成糠醇包覆SiO2的核壳结构,再通过NaOH溶液去除模板,最后通过高温煅烧过程合成出尺度为80-300nm的空心碳球。可见,模板法步骤较为繁琐,包括模板与碳基体的结合及模板的去除等步骤,模板的去除需要大量的溶剂、酸或碱如氢氟酸、氢氧化钠等。因此,开发出一种简便快捷的方法制备空心碳材料具有十分重要的意义。
酚醛树酯是一种应用广泛的聚合物,具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。酚醛树酯在高温下进行碳化,能产生石墨化的碳,具有良好的导电性能,在电池、电容等电化学器件上也有广泛的应用,基于模板法制备酚醛树酯空心球的方法在文献中也有报道,例如A.B.Fuertes,P.V.-Vigón,M.Sevilla,Chem.Commun.2012,48,6124-6126;X.Fang,S.Liu,J.Zang,C.Xu,M.S.Zheng,Q.F.Dong,D.Sun,N.Zheng,Nanoscale2013,5,6908-6916.等的工作。但仍存在上述的模板法的诸多缺陷。
发明内容
本发明发现并提出了一种无需模板大量制备基于酚醛树酯的单层及多层空心碳球的方法。该方法操作简单,反应温和,可通过一步合成反应制备尺度均一,形貌可控的空心碳球。通过对聚合物聚合程度的调控,还可以一步合成内部实心外层空心的yolk-shell以及整体全介孔分布的碳球结构。另外,利用酚醛树酯在不同颗粒表面原位包覆的性质,一方面可以通过多次包覆单层空心球并且逐层腐蚀的方式制备多层空心结构,另一方面,还可将不同的纳米颗粒装入空腔中,制备具有蛋黄-壳结构的空心碳球复合材料。所制备的空心碳球在硅碳负极电极材料、Li-S电池、钾离子电池、钠离子电池、超级电容器以及废水中重金属离子吸附等方面均有应用价值。
本发明发现了一种酚醛树酯聚合的内在特性,并基于此提供一种酚醛树脂小球、单层及多层空心碳球纳米材料及其制备方法。发现酚醛树酯在聚合形成聚合物小球的过程中存在内外聚合程度不均一的特性,小球的内部成份聚合度低于球的外层部分,即小球的外部比内部“结实”。通过选择合适的溶剂(即腐蚀剂),利用内部和外部成份的溶解度差异,可将内部较 软的成份选择性去除,而外部较为结实的成份得以保留,从而形成空腔结构。在此基础上,通过对聚合物球整体聚合度的调控,还可进一步合成内部实心外层空心的yolk-shell以及整体全介孔分布的碳球结构。另一方面,利用酚醛树酯聚合反应在不同颗粒表面原位包覆的特点,可将所合成的单层聚合物空心球或空心碳球做为核,先在其表面包覆一层或多层酚醛树酯聚合物,每层所包覆的聚合物层同样分为内部软成份以及外部结实的成份,因此通过多次包覆和逐层腐蚀的方式不仅可以进一步合成二层,三层或多层聚合物空心球以及相应的多层碳空心球,利用此原理,还能够将酚醛树酯先包覆于各种纳米颗粒表面再腐蚀的方式将各种纳米颗粒原位装于空腔中,形成核壳结构(core-shell structure)或是蛋黄-核结构(yolk-shell structure)。图1和图16为本发明的示意图。
本发明提供第一类酚醛树脂小球、单层及多层空心碳球纳米材料及其制备方法,所述方法具备操作方法简单,反应条件温和,能够通过放大实验而批量合成产品,有利于应用于实际生产中等诸多优点。
所述第一类的酚醛树脂小球及其碳化后得到的空心碳球的制备方法,依形貌和尺度分为方法A。
其中方法A包括如下步骤:
a1)将酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
a2)加入腐蚀剂,在一定温度下搅拌并反应,收集所得的沉淀,得到单层聚合物空心球,即中间产物I;
a3)将步骤a2)所得中间产物I进行煅烧,自然冷却至室温,得到单层空心碳球I。
所得单层空心碳球I的外径为160-200nm,内径100-120nm,壁厚30-50nm,孔体积为0.4-0.9cm3/g,比表面积为500-800m2/g。
本发明还提供一种酚醛树脂小球,其通过方法A中的步骤a1)制得,其中,酚醛树酯在聚合形成聚合物小球的过程中存在内外聚合程度不均一的特性,小球的内部成份聚合度低于球的外层部分,即小球的外部比内部“结实”。
上述方法A中,当酚和醛的溶度很高时,在短时间内由于球的内部聚合速度加快,聚合程度高,不能再被腐蚀剂腐蚀。当酚和醛的溶度下降至一定程度后,可在外层包覆并进行腐蚀,因此可利用此方法一步合成内部装有酚醛树脂聚合物实心球及碳球的yolk-shell空心结构。另外,通过调整酚和醛的溶度来控制聚合物球的聚合物度还可以一步合成整体全介孔分布的碳球结构。
本发明还进一步提供一种单层空心碳球,所述单层空心碳球外径为160-200nm,内径100-120nm,壁厚30-50nm,孔体积为0.4-0.9cm3/g,比表面积为500-800m2/g。所述单层空心碳球通过酚醛树酯以及腐蚀剂制备得到,优选通过上述方法制备得到。
利用酚醛树酯独特的生长方式,本发明提供的腐蚀方法可进一步用于制备双层酚醛树脂及其碳化后得到的空心碳球,并依此方法可以得到具有更多层的酚醛树脂空心球及空心碳球。所述双层空心碳球具有以下结构:其一、外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm;其二、内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm;其三、内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径约600-660nm,壁厚20-70nm。本发明还进一步提供多层空心碳球,所述更多层空心碳球是具备上述双层空心碳球的结构外进一步包含第3层、第4层、第5层等的3层、4层、5层等空心碳球。
优选地,所述多层空心碳球的层数为2-10,具体为双层,三层,四层,五层。
制备多层空心碳球的方法具体为方法B。
其中方法B包括如下步骤:
b1)将一定量的酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
b2)于步骤b1)中再次加入一定量的酚类化合物,继续搅拌,再重复n次加入一定量的酚类化合物,继续搅拌,其中n选自0或者自然数(如1、2、3等);
b3)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到多层聚合物空心球,即中间产物II;
d4)将步骤b3)所得中间产物II进行煅烧,自然冷却至室温,得到多层空心碳球II。
其中,n=0时,得到双层空心碳球II,所得双层空心碳球II的外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm。n=1、2、3等自然数时,得到3层、4层、5层空心碳球。
利用酚醛树酯适合包覆各种颗粒的性质,通过前面所述的多次包覆再逐层腐蚀的方式制备双层和更多层的空心结构,并且在碳球的空腔中封装各种纳米颗粒。因此,本发明进一步提供一种在空腔中原位包覆有纳米颗粒的空心碳球及其制备方法。所述原位包覆有纳米颗粒的空心碳球中的纳米颗粒为金属纳米颗粒、氧化物纳米颗粒、硫化物纳米颗粒、氢氧化物纳米颗粒、碳酸盐纳米颗粒、硫酸盐纳米颗粒、有机化合物纳米颗粒、高分子聚合物纳米颗粒等,所述纳米颗粒尺寸为10-800nm。优选地,金属纳米颗粒优选为Ag、Au、Pd、Pt等纳米颗粒,氧化物纳米颗粒优选为Fe2O3纳米颗粒、ZnO纳米颗粒、CuO纳米颗粒等,硫化物纳米颗粒优选为FeS纳米颗粒、ZnS纳米颗粒、CuS纳米颗粒等,氢氧化物纳米颗粒优选为Mg(OH)2纳米颗粒、Cu(OH)2纳米颗粒等,碳酸盐纳米颗粒优选为MgCO3纳米颗粒、CaCO3纳米颗粒等,硫酸盐纳米颗粒优选为BaSO4纳米颗粒等。
其中,一种在空腔中封装有纳米颗粒的空心碳球的制备方法,具体为方法C。
所述方法C包括如下步骤:
c1)将纳米颗粒和酚类化合物置于水中,超声充分分散,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌,此步反应后溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
c2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到封装有纳米颗粒的酚醛树酯聚合物空心球yolk-shell结构,即中间产物III;
c3)将步骤c2)所得中间产物III进行煅烧,自然冷却至室温,得到最终产物,即封装有纳米颗粒的空心碳球III。
当纳米颗粒为方法A、B制备得到的空心碳球时,则所得产物为多层空心碳球。
利用某些贵金属盐可被酚类或醛类化合物还原,原位生成金属的纳米颗粒,可通过原位合成的方法在空腔中封装纳米颗粒。因此,本发明还提供通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,具体为方法D。
方法D:一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,包括如下步骤:
d1)将贵金属盐和酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定温度下搅拌;
d2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物IV;
d3)将步骤d2)所得中间产物IV进行煅烧,自然冷却至室温,得到最终产物IV,即空腔中封装有金属纳米颗粒的碳球IV。
利用碳材料本身的疏松多孔结构,以及高比表面积的物理化学性质,可实现在所述含有空心结构的碳球中封装低熔点且熔融后流动性强的非金属单质。
因此,本发明进一步还提供在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球,其中,所述非金属单质为S或Se或P等,所述空心碳球如前所述。
因此,本发明进一步还提供在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,所述非金属单质为S或Se或P等,具体为方法M和方法N。
方法M:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
m1)按方法A、方法B、方法C和方法D中任一方法制备空心碳球;
m2)将步骤m1)所得的空心碳球与低熔点非金属单质在室温下按一定比例混合均匀;
m3)将步骤m2)所得的混合物密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
方法N:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
n1)按方法A、方法B、方法C和方法D中任一方法制备空心碳球;
n2)将步骤n1)所得的空心碳球和低熔点非金属单质分散于低熔点非金属单质的溶剂中,室温下充分搅拌,并收集沉淀;
n3)将步骤n2)所得的混合物干燥后密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
利用空心碳球的多孔,高比表面积和导电性好等特点,本发明提供一种超级电容器的制备方法,具体为方法O,其包括如下步骤:
o1)将空心碳球材料、炭黑、PVDF按质量比85:10:5进行混合,用NMP调制成膏状,涂布于泡沫镍集流体上,经100℃烘干处理、碾压、裁片后制成直径12mm的极片,选用聚乙烯多孔膜为隔膜,将两极片相对放置,中间以隔膜进行隔离,滴加6mol/L KOH电解液后,封装于扣式电池壳内组装成超级电容器;其中,所述空心碳球按照方法A、方法B、方法C和方法D中任一种制备。
本发明还提供一种超级电容器,其特征在于,包含本发明所述空心碳球。
进一步的,本发明还提供一种锂离子电池负极材料,其包含本发明所述空心碳球。优选地,所述空心碳球为原位封装有纳米颗粒的空心碳球。
更进一步的,本发明还提供一种钾离子电池或钠离子电池,其包含本发明所述空心碳球。
另一方面,所制备空心碳球在吸附处理工业废水中重金属离子的应用上,也有较大的潜力。因此,本发明提供一种利用空心碳球处理工业废水的方法,具体为方法P,其包含如下步骤:
p1)将一定质量的空心碳球材料加入到含有一定浓度的重金属离子的水溶液中,用HNO3或NaOH调节溶液的pH;将悬浊液充分搅拌或震荡一段时间后,离心收集上清液,立即用电感耦合等离子体光谱测定清液中残余的重金属离子含量;其中,所述空心碳球按照方法A、方法B、方法C和方法D中任一种制备。
本发明提供的上述第一类单层及多层空心碳球的制备方法,操作简单,原料成本低廉,得到碳球的尺度均一,碳球的层数可控。利用此方法不仅可对各种纳米颗粒进行原位封装制备蛋黄-壳结构,而且所制备的材料在锂离子电池负极材料,Li-S电池,钠离子电池,钾离子电池和电容器等电化学器件以及废水中重金属离子吸附等领域中均有很大的应用前景。
本发明进一步提供第二类酚醛树脂小球、单层及多层空心碳球纳米材料及其制备方法,所述方法具备操作方法简单,反应条件温和,能够通过放大实验而批量合成产品,有利于应用于实际生产中等诸多优点。
所述第二类的酚醛树脂小球及其碳化后得到的空心碳球的制备方法,依形貌和尺度分为方法A’和方法B’。
其中方法A’包括如下步骤:
a1’)将酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶 液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
a2’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到单层聚合物空心球,即中间产物I’;
a3’)将步骤a2’)所得中间产物I’进行煅烧,自然冷却至室温,得到内部分布有介孔的单层空心碳球I’。
所得单层空心碳球I’的外径为300-350nm,内径240-260nm,壁厚30-50nm,孔体积为0.6-1.2cm3/g,比表面积为1400-1800m2/g。
可见,本发明提供一种酚醛树脂小球,其通过方法A’中的步骤a1’)制得,其中,酚醛树酯在聚合形成聚合物小球的过程中存在内外聚合程度不均一的特性,小球的内部成份聚合度低于球的外层部分,即小球的外部比内部“结实”。
可见,本发明提供一种单层空心碳球I’,所述单层空心碳球I’的外径为300-350nm,内径240-260nm,壁厚30-50nm,孔体积为0.6-1.2cm3/g,比表面积为1400-1800m2/g。所述单层空心碳球I’通过酚醛树酯以及腐蚀剂制备得到,优选通过上述方法制备得到。
其中方法B’包括如下步骤:
b1’)将酚类化合物置于水、有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性剂和醛类化合物的水溶液在一定的温度下搅拌一段时间;
b2’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物II’;
b3’)将步骤b2’)所得中间产物II’进行煅烧,自然冷却至室温,得到内部分布有介孔的单层空心碳球II’。
所得单层空心碳球II’的外径为500-800nm,内径400-600nm,壁厚50-150nm,孔体积为0.6-0.9cm3/g,比表面积为1000-1300m2/g。
可见,本发明提供一种酚醛树脂小球,其通过方法B’中的步骤b1’)制得,其中,酚醛树酯在聚合形成聚合物小球的过程中存在内外聚合程度不均一的特性,小球的内部成份聚合度低于球的外层部分,即小球的外部比内部“结实”。
可见,本发明提供一种单层空心碳球II’,所述单层空心碳球II’的外径为500-800nm,内径400-600nm,壁厚50-150nm,孔体积为0.6-0.9cm3/g,比表面积为1000-1300m2/g。所述单层空心碳球II’通过酚醛树酯以及腐蚀剂制备得到,优选通过上述方法制备得到。
上述方法A’和方法B’中,当酚和醛的溶度很高时,在短时间内由于球的内部聚合速度加快,聚合程度高,不能再被腐蚀剂腐蚀。当酚和醛的溶度下降至一定程度后,可在外层包覆并进行腐蚀,因此可利用此方法一步合成内部装有酚醛树脂聚合物实心球及碳球的yolk-shell空心结构。另外,通过调整酚和醛的溶度来控制聚合物球的聚合物度还可以一步合成整体全介孔分布的碳球结构。另外,除上述的形貌外,在方法B’中通过调节酚和醛的浓度或季铵盐型阳离子表面活性剂的浓度,可将所得的碳球结构控制为管状。
利用酚醛树酯独特的生长方式,本发明提供的腐蚀方法可进一步用于制备双层空心碳球和更多层的空心碳球。所述双层空心碳球具有以下结构:其一、外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm;其二、内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm;其三、内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径约600-660nm,壁厚20-70nm。所述更多层空心碳球是具备上述双层空心碳球的结构外进一步包含第3层、第4层、第5层等的3层、4层、5层等空心碳球。
制备多层空心碳球的方法具体为方法C’和方法D’。
其中方法C’包括如下步骤:
c1’)将一定量的酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解, 调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
c2’)于步骤c1’)中再次加入一定量的酚类化合物,继续搅拌,再重复n次加入一定量的酚类化合物,继续搅拌,其中n选自0或者1、2、3等的自然数;
c3’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物III’;
c4’)将步骤c3’)所得中间产物III’进行煅烧,自然冷却至室温,得到多层空心碳球III’。
n=0时,得到双层空心碳球III’,所得双层空心碳球III’,其内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm。n=1、2、3等自然数时,得到3层、4层、5层空心碳球。
其中方法D’包括如下步骤:
d1’)将一定量的酚类化合物置于水、有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性和醛类化合物的水溶液,在一定的温度下搅拌一段时间;
d2’)于步骤d1’)中再次加入一定量的酚类化合物,继续搅拌,再重复n次加入一定量的酚类化合物,继续搅拌,其中n选自0或者1、2、3等的自然数;
d3’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物IV’;
d4’)将步骤d3’)所得中间产物IV’进行煅烧,自然冷却至室温,得到多层空心碳球IV’。
n=0时,得到双层空心碳球IV’,所得双层空心碳球IV’,其内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径约600-660nm,壁厚20-70nm。n=1、2、3等自然数时,得到3层、4层、5层空心碳球。
利用酚醛树酯适合包覆各种颗粒的性质,通过前面所述的多次包覆再逐层腐蚀的方式制备双层和更多层的空心结构,并且在碳球的空腔中封装各种纳米粒子。因此,本发明进一步提供另一种在空腔中原位包覆有纳米颗粒的空心碳球及其制备方法,所述原位包覆有纳米颗粒的空心碳球中的纳米颗粒为金属纳米颗粒、氧化物纳米颗粒、硫化物纳米颗粒、氢氧化物纳米颗粒、碳酸盐纳米颗粒、硫酸盐纳米颗粒、有机化合物纳米颗粒、高分子聚合物纳米颗粒等,所述纳米颗粒尺寸为10-800nm。其中,金属纳米颗粒优选为Ag、Au、Pd、Pt等纳米颗粒,氧化物纳米颗粒优选为Fe2O3纳米颗粒、ZnO纳米颗粒、CuO纳米颗粒等,硫化物纳米颗粒优选为FeS纳米颗粒、ZnS纳米颗粒、CuS纳米颗粒等,氢氧化物纳米颗粒优选为Mg(OH)2纳米颗粒、Cu(OH)2纳米颗粒等,碳酸盐纳米颗粒优选为MgCO3纳米颗粒、CaCO3纳米颗粒等,硫酸盐纳米颗粒优选为BaSO4纳米颗粒等。
其中,另一种在空腔中封装有纳米颗粒的空心碳球的制备方法具体为方法E和方法F。
方法E:一种在空腔中封装有纳米颗粒的空心碳球的制备方法,包括如下步骤:
e1)将纳米颗粒和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,超声充分分散,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌,此步反应后,溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
e2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到封装有纳米颗粒的聚合物空心球,命名为中间产物V;
e3)将步骤e2)所得中间产物V进行煅烧,自然冷却至室温,得到最终产物封装有纳米颗粒的空心碳球V。
当纳米颗粒为方法A’、方法B’、方法C’、方法D’制备得到的空心碳球时,则所得产物为多层空心碳球。
方法F:一种在空腔中封装有纳米颗粒的空心碳球的制备方法,包括如下步骤:
f1)将纳米颗粒和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,超声充 分分散,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性剂和醛类化合物的水溶液在一定温度下搅拌;
f2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物VI;
f3)将步骤f2)所得中间产物VI进行煅烧,自然冷却至室温,得到最终产物封装有纳米颗粒的空心碳球VI。
利用某些贵金属盐可被酚类或醛类化合物还原,原位生成金属的纳米颗粒,可通过原位合成的方法在空腔中封装纳米颗粒。另外,本发明还提供另一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,具体为方法G和方法H。
方法G:另一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,包括如下步骤:
g1)将贵金属盐和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定温度下搅拌,此步反应后,溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
g2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物VII;
g3)将步骤g2)所得中间产物VII进行煅烧,自然冷却至室温,得到最终产物VII,即空腔中封装有金属纳米颗粒的碳球VII。
方法H:再一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,包括如下步骤:
h1)将贵金属盐和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性剂和醛类化合物的水溶液在一定温度下搅拌,此步反应后,溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
h2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物VIII;
h3)将步骤h2)所得中间产物VIII进行煅烧,自然冷却至室温,得到最终产物VIII,即空腔中封装有金属纳米颗粒的碳球VIII。
利用碳材料本身的疏松多孔结构,以及高比表面积的物理化学性质,可实现在所述含有空心结构的碳球中封装低熔点且熔融后流动性强的非金属单质。
因此,本发明进一步还提供在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,所述非金属单质为S或Se或P等,具体为方法M’和方法N’。
方法M’:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
m1’)按方法A’,方法B’,方法C’,方法D’,方法E,方法F,方法G,方法H中任一方法制备空心碳球;
m2’)将步骤m1’)所得的空心碳球与低熔点非金属单质在室温下按一定比例混合均匀;
m3’)将步骤m2’)所得的混合物密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
方法N’:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
n1’)按方法A’,方法B’,方法C’,方法D’,方法E,方法F,方法G,方法H中任一方法制备空心碳球;
n2’)将步骤n1’)所得的空心碳球和低熔点非金属单质分散于低熔点非金属单质的溶剂中,室温下充分搅拌,并收集沉淀;
n3’)将步骤n2’)所得的混合物干燥后密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
利用空心碳球的多孔,高比表面积和导电性好等特点,本发明再提供一种超级电容器的 制备方法,具体为方法O’,其包括如下步骤:
o1’)将空心碳球材料、炭黑、PVDF按质量比85:10:5进行混合,用NMP调制成膏状,涂布于泡沫镍集流体上,经100℃烘干处理、碾压、裁片后制成直径12mm的极片,选用聚乙烯多孔膜为隔膜,将两极片相对放置,中间以隔膜进行隔离,滴加6mol/L KOH电解液后,封装于扣式电池壳内组装成超级电容器;其中,所述空心碳球按照方法A’,方法B’,方法C’,方法D’,方法E,方法F,方法G,方法H中任一种制备。
本发明还提供一种超级电容器,其包含本发明上述的第二类空心碳球。
进一步的,本发明还提供一种锂离子电池负极材料,其包含本发明上述的第二类空心碳球。优选地,所述空心碳球为原位封装有纳米颗粒的空心碳球。
进一步的,本发明还提供一种钾离子电池或钠离子电池,其包含本发明上述的第二类空心碳球。
另一方面,所制备空心碳球在吸附处理工业废水中重金属离子的应用上,也有较大的潜力。因此,本发明再提供一种利用空心碳球处理工业废水的方法,具体为方法P’,其包含如下步骤:
p1’)将一定质量的空心碳球材料加入到含有一定浓度的重金属离子的水溶液中,用HNO3或NaOH调节溶液的pH;将悬浊液充分搅拌或震荡一段时间后,离心收集上清液,立即用电感耦合等离子体光谱测定清液中残余的重金属离子含量;其中,所述空心碳球按照方法A’,方法B’,方法C’,方法D’,方法E,方法F,方法G,方法H中任一种制备。
所述单层空心碳球的尺度为30-1000nm,具体为50、180、300、500nm;所述多层空心碳球的层数为2-10,具体为双层,三层,四层,五层。
本发明提供的上述第二类单层及多层空心碳球的制备方法,操作简单,原料成本低廉,得到碳球的尺度均一,碳球的层数可控。利用此方法不仅可对各种纳米颗粒进行原位封装制备蛋黄-壳结构,而且所制备的材料在锂离子电池负极材料、Li-S电池、钠离子电池、钾离子电池和电容器等电化学器件以及废水中重金属离子吸附等领域中均有很大的应用前景。
其中,所述步骤a1)、b1)~b2)、c1)、d1)、a1’)、b1’)、c1’)~c2’)、d1’)、e1)、f1)、g1)、h1)中,酚类化合物为含有取代基的苯酚中的至少一种;其中,所述取代基选自C1-C5的烷基、氨基、C1-C5的氨烷基、羟基、巯基、硝基、磺酸基、C1-C5的羧基、卤素和C1-C5的烷氧基中的至少一种;
所述含有取代基的苯酚具体选自甲基苯酚、苯二酚、苯三酚、氨基苯酚、和硝基苯酚中的至少一种;
其中,所述甲基苯酚具体为邻甲基苯酚、间甲基苯酚或对甲基苯酚;所述苯二酚具体为邻苯二酚、间苯二酚或对苯二酚;所述苯三酚具体为1,2,3-苯三酚、1,2,4-苯三酚或间苯三酚;所述氨基苯酚具体为邻氨基苯酚、间氨基苯酚或对氨基苯酚;所述硝基苯酚具体为邻位、间位、对位取代的硝基苯酚。
其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,醛类化合物选自甲醛、乙醛、丙醛和戊二醛、糠醛、五羟甲基糠醛、苯甲醛中的至少一种;
其中醛类化合物的水溶液的质量百分浓度为10-40%,具体为30-40%,更具体为37%。
其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,pH范围为5-11,调节pH可用酸或碱;所述的酸为盐酸,硝酸,草酸,醋酸等酸类物质中的至少一种;所述碱为氨水,乙二胺,丙二胺,三乙胺,1-丁胺,2-丁胺,氢氧化钠,氢氧化钾、氢氧化钡、碳酸钠及碳酸氢钠中的至少一种;
其中,氨水质量百分浓度为25-28%,具体为25%。
其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1) 中,所述酚类化合物与所述醛类化合物的用量比为0.5-5,优选为1:1.1。
其中,所述步骤a1)、b1)、c1)和d1)中,酚类化合物在水中的质量浓度为0.1-50mg/mL,具体为3.3mg/mL。
其中,所述步骤a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)和h1)中,酚类化合物在溶剂中的质量浓度为0.1-50mg/mL,具体为0.83mg/mL,1.67mg/mL,3.3mg/mL;
所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,酚类化合物和醛类化合物的摩尔用量比为0.05-30:0.05-30,具体为1:3、0.65:13.4、0.7:13.4、9.09:13.4、9.09:13.4、18:13.4、9:13.4、27:13.4、18:13.4、18:13.4、9:13.4。
其中,所述步骤b1’)、d1’)、f1)、h1)中,酚类化合物、醛类化合物和阳离子表面活性剂的摩尔用量比为0.05-30:0.05-30:0.1-20,具体为9:10:0.82。
其中,所述步骤a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)和h1)中的溶剂为有机溶剂,或者水与有机溶剂组成的混合溶液;
其中,所述的有机溶剂具体选自甲醇,乙醇,丙醇,异丙醇,丁醇,乙二醇,丙三醇,丙酮,丁酮,四氢呋喃,N,N-二甲基甲酰胺和N,N-二甲基乙酰胺中的至少一种;
所述由水和有机溶剂组成的混合液中,水和有机溶剂的体积比为0.5-50:1,具体为2:1、1:1、1.5:1。
其中,所述步骤c1)、e1)和f1)中,纳米颗粒为不溶于水和有机溶剂的,尺度为1-500nm且在高温下形貌保持稳定的金属,非金属,金属氧化物,非金属氧化物,有机化合物,无机化合物或高分子聚合物,以及按方法A、B、C、D、A’、B’、C’、D’、E、F、G、H任意一种所合成的含有空心结构的中间产物及其煅烧后的空心碳球,具体选自Ag,Au,Pd,Si,SnO2,TiO2,Fe2O3,Fe3O4,SiO2,聚苯乙烯,酚醛树酯,多孔碳材料,上述各中间产物,上述各空心碳球,上述各多层空心碳球中的任意一种。
其中,所述步骤d1)、g1)和h1)中,贵金属盐为硝酸银,氯金酸,氯钯酸,氯铂酸中的任意一种。
其中,所述步骤b1’)、d1’)、f1)和h1)中,季铵盐型阳离子表面活性剂具体选自烷基三甲基铵盐型阳离子表面活性剂、二烷基二甲基铵盐型阳离子表面活性剂和烷基二甲基苄基铵盐型阳离子表面活性剂中的至少一种;
其中,所述的烷基三甲基铵盐型阳离子表面活性剂具体为辛基三甲基溴化铵,辛基三甲基氯化铵,八烷基三甲基溴化铵,八烷基三甲基氯化铵,十烷基三甲基溴化铵,十烷基三甲基氯化铵,十二烷基三甲基溴化铵,十二烷基三甲基氯化铵,十四烷基三甲基溴化铵,十四烷基三甲基氯化铵,十六烷基三甲基溴化铵,十六烷基三甲基氯化铵,十八烷基三甲基溴化铵或十八烷基三甲基氯化铵等;所述的二烷基二甲基铵盐型阳离子表面活性剂具体为双辛基二甲基溴化铵,双辛基二甲基氯化铵,双八烷基二甲基溴化铵,双八烷基二甲基氯化铵,双十烷基二甲基溴化铵,双十烷基二甲基氯化铵,双十二烷基二甲基溴化铵,双十二烷基二甲基氯化铵,双十四烷基二甲基溴化铵,双十四烷基二甲基氯化铵,双十六烷基二甲基氯化铵,双十六烷基二甲基溴化铵,双十八烷基二甲基氯化铵或双十八烷基二甲基溴化铵;所述的烷基二甲基苄基铵盐型阳离子表面活性剂具体为十二烷基二甲基苄基氯化铵,十二烷基二甲基苄基溴化铵,十四烷基二甲基苄基氯化铵,十四烷基二甲基苄基溴化铵,十六烷基二甲基苄基氯化铵,十六烷基二甲基苄基溴化铵,十八烷基二甲基苄基氯化铵或十八烷基二甲基苄基溴化铵;
所述的季铵盐型阳离子表面活性剂在溶剂中的质量浓度为3×10-4~0.1mg/mL,优选具体为0.001mg/mL~0.009mg/mL。
其中,所述步骤a2)、b3)、c2)、d2)、a2’)、b2’)、c3’)、d3’)、e2)、f2)、g2)和h2)中,腐蚀剂选自醇,酮,酰胺,呋喃,烷烃或卤代烃及其它们的衍生物中的至少一种;
其中,所述的醇及醇类的衍生物具体为甲醇,乙醇,丙醇,异丙醇,正丁醇,异丁醇,仲丁醇,叔丁醇,乙二醇或丙三醇;所述的酮及其衍生物具体为丙酮,环丙酮,丁酮,丁二酮或乙酰丙酮;所述的酰胺及其衍生物具体为甲酰胺,乙酰胺,丙酰胺,丁酰胺,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺或N,N-二甲基丙酰胺;所述的呋喃及其衍生物具体为四氢呋喃;所述烷烃及其衍生物具体为环已烷;所述的卤代烃及其衍生物具体为三氯甲烷。
其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中的搅拌步骤中,温度为-15~180℃,优选为10~30℃,具体为室温,时间均为0.01-12小时,优选为1~5小时,具体为1.5小时;
其中,所述步骤a2)、b3)、c2)、d2)、a2’)、b2’)、c3’)、d3’)、e2)、f2)、g2)和h2)中的搅拌步骤中,温度为-15~180℃,优选为30-100℃,具体为室温,时间均为0.01-12小时,优选为1~5小时,具体为0.5小时,1小时;
所述步骤b1)、c1)和d1)中的搅拌步骤中,时间为0.01-1小时,优选为20分钟~1小时,具体为0.5小时;
所述步骤b2)、c2)和d2)中的搅拌步骤中,时间为0.01-1小时,优选为20分钟~1小时,具体为0.5小时。
其中,所述步骤a2)、b3)、c2)、d2)中,加入腐蚀剂的体积与步骤a1)、d1)、c1)、d1)中水的体积比为0.1-100:1,具体为0.7:1。
其中,所述步骤a2’)、b2’)、c3’)、d3’)、e2)、f2)、g2)和h2)中,加入腐蚀剂的体积与步骤a1)、b1)、d1)、e1)、f1)、g1)、h1)中水或溶剂的体积比为0.1-100:1,具体为0.7:1。
所述步骤a3)、b4)、c3)、d3)、a3’)、b3’)、c4’)、d4’)、e3)、f3)、g3)和h3)的煅烧步骤中,温度为500-3000℃,优选为500-1000℃,具体可为700℃、800℃、900℃,时间为1-30小时,具体可为10小时,升温速率为1-20℃/min,具体可为5℃/min;
煅烧的气氛为惰性或还原气氛,具体选自氮气、氩气、由氢气和氩气组成的混合气和由氮气和氢气组成的混合气中的任意一种,更具体可为由体积比为1~5:95~99的氢气和氩气组成的混合气。
其中,所述步骤m2)、n2)、m2’)、n2’)中的低熔点非金属单质具体为S或Se的粉末;非金属单质粉末在碳球与其的总质量中所占的比例为10~90%,优选为50-80%,具体为50%,60%,70%;
所述步骤n2)和n2’)中的含有非金属单质的溶剂具体为二硫化碳;搅拌时间为1-10h,具体为4h;
所述碳球在含有非金属单质的溶剂中的质量浓度为10~1000mg/mL,具体为100mg/mL。
其中,所述步骤m3)、n3)、m3’)和n3’)的煅烧步骤中,温度为100-600℃,具体可为155℃、300℃、400℃,或分两段进行煅烧,例如先经过155℃再经过300℃,以及先经过155℃再经过400℃,时间为1-30小时,具体可为10小时,升温速率为1-20℃/min,具体可为5℃/min;
煅烧的气氛为空气、惰性或还原气氛,具体选自空气、氮气、氩气、由氢气和氩气组成的混合气和由氮气和氢气组成的混合气中的任意一种,更具体可为由体积比为1~5:95~99的氢气和氩气组成的混合气。
其中,所述步骤o1)、p1)、o1’)和p1’)中的空心碳球材料为按方法A,方法B,方法C,方法D、方法A’,方法B’,方法C’,方法D’,方法E,方法F,方法G,方法H中任一方法制备得到的空心碳球;
所述步骤p1)和p1’)中重金属离子为Pb2+,Cd2+,Cu2+,Hg2+,As5+,Cr4+等对人体有害金属离子中的一种或几种;重金属离子的浓度为1~100mg/L,具体为10mg/L,20mg/L,30mg/L;空心碳球的质量与所含贵金属离子的质量比为1~100:1,优选为1~10:1,具体为5:1,6:1;pH范围为2~10,具体为5;搅拌或震荡时间为1~10小时,具体为4小时;搅拌 或震荡温度为室温。
附图说明
图1为本发明中第一类单层及多层空心碳球制备方法的示意图。
图2是按照实施例A1所制备的3-氨基苯酚甲醛树酯聚合物在实心阶段时的TEM图。
图3是按照实施例A1所制备的空心3-氨基苯酚甲醛树酯聚合物空心球(即中间产物I)的TEM图。
图4是按照实施例A1所制备的空心碳球的TEM图。
图5是按照实施例A3所制备的内部装有实心碳球的空心yolk-shell结构。
图6是按照实施例C1所制备的双层空心碳球的TEM图。
图7是按照实施例C2所制备的三层空心碳球的TEM图。
图8是按照实施例C3所制备的四层空心碳球的TEM图。
图9是按照实施例D1所制备的Ag@void@C1核壳结构的TEM图。
图10是按照实施例M1所制备的S-C电极材料的TGA(热重分析)图。
图11是按照实施例M1所制备的S-C电极材料在1-3V范围内的首次充放电曲线图。
图12是按照实施例O1所制备的超级电容器的CV曲线。
图13是实施例P1中所测得的吸附速率曲线。
图14是按照实施例Q1中所制备的电极材料在0.01-2V范围内的首次充放电曲线图。
图15是按照实施例R1中所制备的电极材料在0.01-2V范围内的首次充放电曲线图。
图16为本发明中第二类单层及多层空心碳球制备方法的示意图。
图17是按照实施例A1’所制备的空心碳球的TEM图。
图18是按照实施例A2’所制备的整体介孔分布的碳球的TEM图。
图19按照实施例A3’所制备的内部装有实心碳球的空心yolk-shell结构的TEM图。
图20是按照实施例B1’所制备的空心碳球的TEM图。
图21是按照实施例B2’所制备的空心碳球的TEM图。
图22是按照实施例B3’所制备的空心碳管的TEM图。
图23是按照实施例D1’所制备的双层空心碳球的TEM图。
图24是按照实施例E1所制备的双层空心碳球的TEM图。
图25是按照实施例E2所制备的双层空心碳球的TEM图。
图26是按照实施例F1所制备的双层空心碳球的TEM图。
图27是按照实施例F2所制备的Si@void@C核壳结构的TEM图。
图28是按照实施例F2所制备的Si@void@C样品的首次充放电曲线和100圈充放电循环性能图。
图29是按照实施例F3所制备的SiO2@void@C核壳结构的TEM图。
图30是按照实施例F4所制备的SnO2@void@C核壳结构的TEM图。
图31是按照实施例G1所制备的Ag@void@C2核壳结构的TEM图。
图32是按照实施例H1所制备的Ag@void@C3核壳结构的TEM图。
图33是按照实施例M1’所制备的S-C电极材料的TGA(热重分析)图。
图34是按照实施例M1’所制备的S-C电极材料在1-3V范围内的首次充放电曲线图。
图35是按照实施例O1’所制备的超级电容器的CV曲线。
图36是实施例P1’中所测得的吸附速率曲线。
图37是按照实施例Q1’中所制备的电极材料在0.01-2V范围内的首次充放电曲线图。
图38是按照实施例R1’中所制备的电极材料在0.01-1.5V范围内的首次充放电曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径而得。
实施例A1、利用方法A制备空心碳球:
1)称取0.1g 3-氨基苯酚(0.92mmol)溶于30ml H2O中,得到质量浓度为3.3mg/ml的3-氨基苯酚水溶液。然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h,此时可得到3-氨基苯酚甲醛树酯聚合物的实心球,如图2所示。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到单层的3-氨基苯酚甲醛树酯聚合物的空心球,即中间产物I,如图3所示;
2)将干燥后的中间产物I置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到内部干净的单层空心碳球I,其外径为160-200nm,内径100-120nm,壁厚30-50nm,孔体积为0.6927cm3/g,比表面积为711.20m2/g.
图4是本实施例制备的空心碳球纳米材料的透射电镜(TEM)图,从图中可以看空心碳球的尺度为180nm,空腔直径约为120nm。
实施例A2、利用方法A制备空心碳球:
与实施例A1的不同之处在于:
称取0.12g间苯二酚(1.09mmol)溶于20ml H2O中,得到质量浓度为6mg/ml的间苯二酚水溶液。
最终得到内部干净的单层空心碳球。所得碳球的外径为160-200nm,内径100-120nm,壁厚30-50nm。
实施例A3、利用方法A制备内部装有实心碳球的yolk-shell空心结构:
与实施例A1的不同之处在于:
称取0.6g 3-氨基苯酚(5.52mmol)于40ml H2O中,然后依次加入0.2ml质量百分浓度为25%的氨水(2.60mmol)和0.6ml质量浓度为37%的甲醛水溶液(8.04mmol)。
最终得到内部装有实心碳球的空心yolk-shell结构。所得空心碳球结构的外径270-360nm,内部实心球直径180-250nm。
图5是本实施例制备的内部装有实心碳球的空心yolk-shell碳球材料的透射电镜(TEM)图,从图中可以看内部实心碳球的直径约为230nm,外部空腔直径约为350nm。
实施例B1、利用方法B制备双层空心碳球
1)称取0.066g 3-氨基苯酚(0.607mmol)溶于20ml水溶液中,然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(2.68mmol),于室温下搅拌60分钟。另将0.033g 3-氨基苯酚(0.303mmol)溶于10ml H2O水溶液中,加入上面的溶液中,继续反应40分钟。向反应容器中加入22ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物II;
2)将干燥后的中间产物II置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温,得到双层空心碳球II,其外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm。
实施例C1、利用方法C制备双层空心碳材料:
与实施例A1的不同之处在于:
称取0.05g中间产物I(按实施例A1的方法合成)和0.1g 3-氨基苯酚(0.92mmol)于30ml H2O中,超声分散均匀。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h。
将干燥后的中间产物III置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品III。
图6是本实施例制备的双层空心碳纳米材料的透射电镜(TEM)图。
实施例C2、利用方法C制备三层空心碳材料:
与实施例C1的不同之处在于:
称取0.05g中间产物C1-III(按实施例C1的方法制备)和0.1g 3-氨基苯酚(0.92mmol)于30ml H2O中,超声分散均匀。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h。
将干燥后的中间产物C2-III置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品C2-III。
图7是本实施例制备的三层空心碳纳米材料的透射电镜(TEM)图。
实施例C3、利用方法C制备四层空心碳材料
与实施例C1的不同之处在于:
称取0.05g中间产物C2-III(按实施例C2的方法制备)和0.1g 3-氨基苯酚(0.92mmol)于30ml H2O中,超声分散均匀。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h。
将干燥后的中间产物C3-III置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品C3-III。
图8是本实施例制备的四层空心碳纳米材料的透射电镜(TEM)图。
实施例C4、利用方法C制备原位包覆Fe2O3纳米颗粒的空心碳球
与实施例C1的不同之处在于:
称取颗粒尺寸为50-200nm的Fe2O3颗粒和0.1g 3-氨基苯酚(0.92mmol)于30ml H2O中,超声分散均匀。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h。
将干燥后的中间产物C4-III置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品C4-III原位包覆纳米颗粒的空心碳球。
实施例C5、利用方法C制备原位包覆ZnS纳米颗粒的空心碳球
与实施例C1的不同之处在于:
称取颗粒尺寸为50-250nm的ZnS颗粒和0.1g 3-氨基苯酚(0.92mmol)于30ml H2O中,超声分散均匀。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h。
将干燥后的中间产物C4-III置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品C5-III原位包覆纳米颗粒的空心碳球。
实施例D1、利用方法D制备Ag@void@C
与实施例A1的不同之处在于:
称取0.02g AgNO3(0.118mmol)和0.1g 3-氨基苯酚(0.92mmol)于30ml H2O溶液中,充分溶解。最终得到Ag纳米颗粒封装与空心碳球中的核壳结构,命名为Ag@void@C-1。
图9是本实施例中制备的Ag@void@C-1核壳结构的透射电镜(TEM)图。
实施例M1、利用方法M对空心碳球材料负载S及空心碳球在Li-S正极材料方面的应用:
按照实施例A1制备的单层空心碳球I。称取0.06g空心碳球I和0.14g S粉于玛瑙研钵中充分研磨20~30分钟,然后将研磨后的粉末装入密封的反应容器中,并抽真空,放入通有氩气保护的管式炉中,以5℃/min的升温速率从室温升至155℃,保持10小时,再以5℃/min的升温速率升温至300℃,并在300℃下煅烧5h,自然冷却至室温,得到负载S的空心碳材料,命名为S-C。
图10是制备的S-C复合材料的TGA(热重分析)曲线,从图中可以看出S的负载量约为45%。
装载S后空心碳球可用作Li-S电池电极材料。选用所制备的S-C复合材料制备锂电池正极:按照S-C:导电炭黑:聚偏氟乙烯(PVDF)=80%:10%:10%(质量比)制备成电极。金属锂为负极组装成2032扣式电池,在电压范围为1-3V(vs Li+/Li)内进行恒电流充放电测试。电解液组份采用EC:DMC=1:1,1M LiPF6作为锂盐。充放电的电流为0.1C(~167mA/g)。图11为S-C电极材料在1-3V范围内的首次充放电曲线。从图中可以看出,S-C样品的首次放电容量为800mAh/g,有潜力用做Li-S电池材料。
实施例N1、利用方法N对空心碳球材料负载S。
按照实施例A1制备的单层空心碳球I。称取0.06g空心碳球I和0.14g S粉分散于甲醇溶剂中,室温下充分搅拌,收集沉淀,装入密封的反应容器中,并抽真空,放入通有氩气保护的管式炉中,以5℃/min的升温速率从室温升至155℃,保持10小时,再以5℃/min的升温速率升温至300℃,并在300℃下煅烧5h,自然冷却至室温,得到负载S的空心碳材料。
实施例O1、空心碳球材料在超级电容器方面的应用
将空心碳球材料(按实施例C1合成)、炭黑、PVDF按质量比85:10:5进行混合,用NMP调制成膏状,涂布于泡沫镍集流体上,经100℃烘干处理、碾压、裁片后制成直径12mm的极片,选用聚乙烯多孔膜为隔膜,将两极片相对放置,中间以隔膜进行隔离,滴加6mol/L KOH电解液后,封装于扣式电池壳内组装成超级电容器。采用电化学工作站,在工作电压0-1V之间以5,10,100mV/s进行性能测试,电容器的放电比容量分别为144.8,140.7,106.2Fg-1,图12为所制备的电容器在三种扫速下的CV曲线。
实施例P1、空心碳球材料在吸附废水中重金属离子方面的应用
将0.05g空心碳球材料(按实施例C1合成)加入到100ml含有Pb2+,Cd2+,Cu2+离子浓度均为100mg/L的水溶液中,用HNO3将溶液的pH值调至5.0。将混合液在室温下搅拌4小时后,用0.15μm的滤膜过滤,收集滤液,立即用电感耦合等离子体光谱(Shimazu ICPE-9000)测定不同时间后清液中残余的重金属离子含量。图13为不同时间的吸附速率曲线,从图中可以看出,吸附过程在最初的1h内非常迅速,三种重金属离子的吸附平衡在1h 后建立起来。
实施例Q1、空心碳球材料在钠离子电池中的应用
将空心碳球材料(按实施例C1合成)、炭黑、PVDF按质量比85:10:5进行混合并制备成电极。金属钠为负极组装成2032扣式电池,在电压范围为0.01-2V(vs Na+/Na)内进行恒电流充放电测试。电解液组份采用EC:PC=1:1,1M NaClO4作为钠盐。充放电的电流为0.1C(~30mA/g)。图14为所制备的空心碳球材料在0.01-2V范围内的首次充放电曲线。从图中可以看出,首次放电容量为300mAh/g,是良好的钠离子电池电极材料。
实施例R1、空心碳球材料在钾离子电池中的应用
将空心碳球材料(按实施例C1合成)、炭黑、PVDF按质量比85:10:5进行混合并制备成电极。金属钾为负极组装成2032扣式电池,在电压范围为0.01-2V(vs Na+/Na)内进行恒电流充放电测试。电解液组份采用EC:DEC=1:1,0.5M KPF6作为钾盐。充放电的电流为0.05C(~14mA/g)。图15为所制备的空心碳球材料在0.01-2V范围内的首次充放电曲线。从图中可以看出,首次放电容量为343mAh/g,是良好的钾离子电池电极材料。
可见本发明所制备的空心碳球在硅碳负极电极材料,Li-S电池,超级电容器,钠离子电池,钾离子电池以及重金属离子吸附等方面均有潜在的应用价值。
实施例A1’、利用方法A’制备空心碳球:
称取0.1g 3-氨基苯酚溶于20ml H2O和10ml EtOH组成的混合溶液中,加入氨水和甲醛溶液后室温下搅拌1.3h。
向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物I’。
将干燥后的中间产物I’置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到内部干净的单层空心碳球I’。
最终得到内部分布有介孔的单层空心碳球,其外径为300-350nm,内径240-260nm,壁厚30-50nm,孔体积为0.9685cm3/g,比表面积为1504.06m2/g.
图17是本实施例制备的空心碳球纳米材料的透射电镜(TEM)图,从图中可以看空心碳球的尺度为300~350nm,空腔直径约为260nm。
实施例A2’、利用方法A’制备整体全介孔分布的碳球结构:
与实施例A1’的不同之处在于:
称取0.1g 3-氨基苯酚于16ml H2O和14ml EtOH组成的混合溶液中,加入氨水和甲醛溶液后室温下搅拌45min。
最终得到整体分布有介孔的碳球结构,球的直径为280-360nm。
图18是本实施例制备的整体分布介孔的碳球结构的透射电镜(TEM)图,从图中可以看空心碳球的尺度为300~350nm。
实施例A3’、利用方法A’制备内部装有实心碳球的yolk-shell空心结构:
与实施例A1’的不同之处在于:
称取0.4g 3-氨基苯酚于20ml H2O和10ml EtOH组成的混合溶液中,加入0.1ml氨水和0.4ml甲醛溶液后室温下搅拌1.3h。
最终得到内部装有实心碳球的空心yolk-shell结构。所得空心碳球结构的外径470-520nm,内部实心球直径200-250nm。
图19是本实施例制备的内部装有实心碳球的空心yolk-shell碳球材料的透射电镜(TEM)图,从图中可以看出球的外径约为500nm,内部实心球的直径约为230nm。
实施例B1’、利用方法B’制备空心碳球:
称取0.1g 3-氨基苯酚溶于20ml H2O和10ml EtOH组成的混合溶液中,然后加入0.03g 十六烷基三甲基溴化铵(CTAB)(0.082mmol)。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物II’。
将干燥后的中间产物II’置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品II’。
最终得到内部分布有介孔的单层空心碳球,其外径为500-800nm,内径400-600nm,壁厚50-150nm,孔体积为0.7611cm3/g,比表面积为1244.21m2/g.
图20是本实施例制备的空心碳球纳米材料的透射电镜(TEM)图,从图中可以看空心碳球的尺度为500~800nm,空腔直径约为400~700nm。
实施例B2’、利用方法B’制备空心碳球:
与实施例B1’的不同之处在于:
称取0.1g 3-氨基苯酚溶于50ml H2O和10ml EtOH组成的混合溶液中。最终得到的单层空心碳球,外径50-60nm,内径约30nm,壁厚10-20nm。
图21是本实施例制备的空心碳球纳米材料的透射电镜(TEM)图。
实施例B3’、利用方法B’制备空心碳管:
与实施例B1’的不同之处在于:
称取0.1g 3-氨基苯酚溶于20ml H2O和2ml EtOH组成的混合溶液中。
最终得到空心碳管结构,管径为25-50nm,壁厚为10-20nm。
图22是本实施例制备的空心碳管纳米材料的透射电镜(TEM)图,从图中可以看出管径约为30nm,壁厚约为12nm。
实施例C1’、利用方法C’制备双层空心碳球:
1)称取0.066g 3-氨基苯酚(0.607mmol)溶于14ml H2O和7ml EtOH组成的混合溶液中,然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(2.68mmol),于室温下搅拌60分钟。另将0.033g 3-氨基苯酚(0.303mmol)溶于6ml H2O和3ml EtOH组成的混合溶液中,加入上面的溶液中,继续反应40分钟。向反应容器中加入22ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物III’;
2)将干燥后的中间产物III’置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温,得到双层空心碳球III’,
最终得到双层空心碳球,内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm。
实施例D1’、利用方法D’制备双层空心碳球:
1)称取0.1g3-氨基苯酚(0.92mmol)溶于20ml H2O和10ml EtOH组成的混合溶液中,然后依次加入0.03g十六烷基三甲基溴化铵(CTAB)(0.082mmol),0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.2ml质量浓度为37%的甲醛水溶液(2.68mmol),于室温下搅拌40分钟。再次加入0.1g 3-氨基苯酚(0.92mmol)于反应体系中,继续搅拌40分钟。向反应容器中加入22ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物IV’;
2)将干燥后的中间产物IV’置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到双层空心碳球IV’,其内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径 约600-660nm,壁厚20-70nm。
图23是本实施例制备的双层空心碳纳米材料的透射电镜(TEM)图,从图中可以看出,空心碳球具有双层外壁,内层碳球的尺度为500-600nm,外层碳球尺度为700-800nm。
实施例E1、利用方法E制备双层空心碳材料:
称取0.05g中间产物II’(按实施例B1’的方法合成)和0.1g 3-氨基苯酚(0.92mmol)于20ml H2O和10ml EtOH组成的混合溶液中,超声分散均匀。
加入氨水和甲醛溶液后室温下搅拌1.3h。
向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物V。
将干燥后的中间产物置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品V。
图24是本实施例制备的双层空心碳纳米材料的透射电镜(TEM)图。
实施例E2、利用方法E制备双层空心碳材料
与实施例E1的不同之处在于:
称取0.05g中间产物I’(按实施例A1’的方法合成)和0.1g 3-氨基苯酚(0.92mmol)于20ml H2O和10ml EtOH组成的混合溶液中,超声分散均匀。
图25是本实施例制备的双层空心碳纳米材料的透射电镜(TEM)图。
实施例F1、利用方法F制备双层空心碳材料:
称取0.05g中间产物III’(按实施例C1’的方法合成)和0.1g 3-氨基苯酚(0.92mmol)于20ml H2O和10ml EtOH组成的混合溶液中,超声分散均匀。
然后加入0.03g十六烷基三甲基溴化铵(CTAB)(0.082mmol)。
然后依次加入0.1ml质量百分浓度为25%的氨水(1.30mmol)和0.1ml质量浓度为37%的甲醛水溶液(1.34mmol),于室温下搅拌1.5h。向反应容器中加入20ml丙酮,室温下继续搅拌30min,将沉淀物离心收集,并用乙醇清洗2次,所得沉淀置于80℃的干燥箱中充分干燥4h,得到中间产物VI。
将干燥后的中间产物VI置于通有氢氩混合气(5/95体积%)的管式炉中,以5℃/min的升温速率从室温升至900℃,并在900℃下煅烧10h,自然冷却至室温得到产品VI。
图26是本实施例制备的双层空心碳纳米材料的透射电镜(TEM)图。
实施例F2、利用方法F制备Si@void@C核壳结构:
称取0.1g粒度为50-200nm的Si粉(3.57mmol),并加入1g(9.2mmol)3-氨基苯酚于200ml水和100ml乙醇的混合溶液中,然后依次加入0.3g十六烷基三甲基溴化铵(CTAB)(0.82mmol)、1ml质量百分浓度为25%的氨水(13mmol)和1ml质量百分浓度为37%的甲醛溶液(13.4mmol)。最终得到Si纳米颗粒封装于空心碳球中的核壳结构,样品命名为Si@void@C。
图27是本实施例中制备的Si@void@C样品的透射电镜(TEM)图。
所制备的具有核壳结构的Si@void@C复合材料可用做Li离子电池负极,其空腔可缓解Si在Li+嵌入和脱出过程中产生的巨大体积膨胀,避免因电极材料与电解液直接接触生成SEI膜而导致的容量衰减。选用所制备的Si@void@C制备锂电池负极:按照Si@void@C:导电炭黑:聚偏氟乙烯(PVDF)=40%:40%:20%(质量比)制备成电极。电解液组份采用EC:DMC:DEC=1:1:1,1M LiPF6作为锂盐。金属锂为正极组装成2032扣式电池,在电压范围为0.01-1V(vs Li+/Li)内进行恒电流充放电测试。充放电的电流为0.05C(210mA/g)。
图28是Si@void@C样品的首次充放电曲线和100圈充放电循环性能图。从图中可以看出,Si@void@C样品首次放电达到1180mAh/g,经过100圈充放电循环后容量为1040mAh/g,容量保持率达到88.1%。
实施例F3、利用方法F制备SiO2@void@C核壳结构:
按照实施例F2的步骤,与实施例F2的不同之处在于:
称取0.2g粒度为200nm的SiO2(3.33mmol)粉末,并加入1g(9.2mmol)3-氨基苯酚于混合溶液中。
图29是本实施例制备的SiO2@void@C核壳样品的透射电镜(TEM)图。
实施例F4、利用方法F制备SnO2@void@C核壳结构:
按照实施例F3的步骤,与实施例F3的不同之处在于:
称取0.05g粒度为30nm SnO2(0.332mmol)粉末,并加入0.1g(0.909mmol)3-氨基苯酚于混合溶剂中,最终得到SnO2纳米颗粒封装于空心碳球中的核壳结构的粉末材料,命名为SnO2@void@C。
图30是本实施例制备的SnO2@void@C核壳结构的透射电镜(TEM)图。
所制备的具有核壳结构的SnO2@void@C复合材料可用做Li离子电池负极,其空腔可缓解SnO2在Li+嵌入和脱出过程中产生的巨大体积膨胀,避免因电极材料与电解液直接接触生成SEI膜而导致的容量衰减。选用所制备的SnO2@void@C制备锂电池负极:按照SnO2@void@C:导电炭黑:聚偏氟乙烯(PVDF)=60%:20%:20%(质量比)制备成电极。电解液组份采用EC:DMC:DEC=1:1:1,1M LiPF6作为锂盐。金属锂为正极组装成2032扣式电池,可在电压范围为0.01-3V(vs Li+/Li)内进行恒电流充放电测试。充放电的电流可为100-4000mA/g。
实施例G1、利用方法G制备Ag@void@C
与实施例A1’的不同之处在于:
称取0.02g AgNO3(0.118mmol)和0.1g 3-氨基苯酚(0.92mmol)于20ml H2O和10ml EtOH组成的混合溶液中,充分溶解。最终得到Ag纳米颗粒封装与空心碳球中的核壳结构,命名为Ag@void@C-2。
图31是本实施例中制备的Ag@void@C-2核壳结构的透射电镜(TEM)图。
实施例H1、利用方法H制备Ag@void@C核壳结构:
与实施例A1’不同之处在于:
称取0.02g AgNO3(0.118mmol)和0.1g 3-氨基苯酚(0.92mmol)于20ml H2O和10ml EtOH组成的混合溶液中,充分溶解。最终得到Ag纳米颗粒封装与空心碳球中的核壳结构,命名为Ag@void@C-3。
图32是本实施例中制备的Ag@void@C-3核壳结构的透射电镜(TEM)图。
实施例M1’、利用方法M’对空心碳球材料负载S及空心碳球在Li-S正极材料方面的应用:
按照实施例A1’制备的单层空心碳球I’。称取0.06g空心碳球I’和0.14g S粉于玛瑙研钵中充分研磨20~30分钟,然后将研磨后的粉末装入密封的反应容器中,并抽真空,放入通有氩气保护的管式炉中,以5℃/min的升温速率从室温升至155℃,保持10小时,再以5℃/min的升温速率升温至300℃,并在300℃下煅烧5h,自然冷却至室温,得到负载S的空心碳材料,命名为S-C。
图33是制备的S-C复合材料的TGA(热重分析)曲线,从图中可以看出S的负载量为53.72%。
装载S后空心碳球可用作Li-S电池电极材料。选用所制备的S-C复合材料制备锂电池正极:按照S-C:导电炭黑:聚偏氟乙烯(PVDF)=80%:10%:10%(质量比)制备成电极。金属锂为负极组装成2032扣式电池,在电压范围为1-3V(vs Li+/Li)内进行恒电流充放电测试。电解液组份采用DOL:DME=1:1,1M LiTFSI作为锂盐。充放电的电流为0.1C(~167mA/g)。图34为S-C电极材料在1-3V范围内的首次充放电曲线。从图中可以看出,S-C样品的首次放电容量为1000mAh/g,有潜力用做Li-S电池材料。
实施例N1’、利用方法N’对空心碳球材料负载S。
按照实施例A1’制备的单层空心碳球I’。称取0.06g空心碳球I’和0.14g S粉分散于甲醇溶剂中,室温下充分搅拌,收集沉淀,装入密封的反应容器中,并抽真空,放入通有氩气保护的管式炉中,以5℃/min的升温速率从室温升至155℃,保持10小时,再以5℃/min的升温速率升温至300℃,并在300℃下煅烧5h,自然冷却至室温,得到负载S的空心碳材料。实施例O1’、空心碳球材料在超级电容器方面的应用
将空心碳球材料(按实施例B1’合成)、炭黑、PVDF按质量比85:10:5进行混合,用NMP调制成膏状,涂布于泡沫镍集流体上,经100℃烘干处理、碾压、裁片后制成直径12mm的极片,选用聚乙烯多孔膜为隔膜,将两极片相对放置,中间以隔膜进行隔离,滴加6mol/L KOH电解液后,封装于扣式电池壳内组装成超级电容器。采用电化学工作站,在工作电压0-1V之间以5,10,100mV/s进行性能测试,电容器的放电比容量分别为144.8,140.7,106.2Fg-1,图35为所制备的电容器在三种扫速下的CV曲线。
实施例P1’、空心碳球材料在吸附废水中重金属离子方面的应用
将0.05g空心碳球材料(按实施例B1’合成)加入到100ml含有Pb2+,Cd2+,Cu2+离子浓度均为100mg/L的水溶液中,用HNO3将溶液的pH值调至5.0。将混合液在室温下搅拌4小时后,用0.15μm的滤膜过滤,收集滤液,立即用电感耦合等离子体光谱(Shimazu ICPE-9000)测定不同时间后清液中残余的重金属离子含量。图36为不同时间的吸附速率曲线,从图中可以看出,吸附过程在最初的1h内非常迅速,三种重金属离子的吸附平衡在1h后建立起来。
实施例Q1’、空心碳球材料在钠离子电池中的应用
将空心碳球材料(按实施例B1’合成)、炭黑、PVDF按质量比85:10:5进行混合并制备成电极。金属钠为负极组装成2032扣式电池,在电压范围为0.01-2V(vs Na+/Na)内进行恒电流充放电测试。电解液组份采用EC:PC=1:1,1M NaClO4作为钠盐。充放电的电流为0.1C(~30mA/g)。图37为所制备介孔碳球在0.01-2V范围内的首次充放电曲线。从图中可以看出,首次放电容量为316mAh/g,是良好的钠离子电池电极材料。
实施例R1’、空心碳球材料在钾离子电池中的应用
将空心碳球材料(按实施例B1’合成)、炭黑、PVDF按质量比85:10:5进行混合并制备成电极。金属钾为负极组装成2032扣式电池,在电压范围为0.01-1.5V(vs Na+/Na)内进行恒电流充放电测试。电解液组份采用EC:DEC=1:1,0.5M KPF6作为钾盐。充放电的电流为0.1C(~28mA/g)。图38为所制备的介孔碳球材料在0.01-2V范围内的首次充放电曲线。从图中可以看出,首次放电容量为253mAh/g,是良好的钾离子电池电极材料。
可见本发明所制备的空心碳球在硅碳负极电极材料,Li-S电池,超级电容器,钠离子电池,钾离子电池以及重金属离子吸附等方面均有潜在的应用价值。

Claims (22)

  1. 一种酚醛树脂小球及其碳化后得到的单层空心碳球,利用酚醛树酯以及腐蚀剂制备得到,单层空心碳球外径为160-200nm,内径100-120nm,壁厚30-50nm,孔体积为0.4-0.9cm3/g,比表面积为500-800m2/g。
    所述酚醛树脂小球,其通过包括如下步骤的方法制得:
    a1)将酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
    其中,酚醛树酯在聚合形成聚合物小球的过程中存在内外聚合程度不均一的特性,小球的内部成份聚合度低于球的外层部分,即小球的外部比内部“结实”。
  2. 一种酚醛树脂小球及其碳化后得到的单层空心碳球的制备方法,其为方法A;
    其中方法A包括如下步骤:
    a1)将酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
    a2)加入腐蚀剂,在一定温度下搅拌并反应,收集所得的沉淀,得到单层聚合物空心球,即中间产物I;
    a3)将步骤a2)所得中间产物I进行煅烧,自然冷却至室温,得到单层空心碳球I。
    所得单层空心碳球I的外径为160-200nm,内径100-120nm,壁厚30-50nm,孔体积为0.4-0.9cm3/g,比表面积为500-800m2/g。
    所述方法A中,当酚和醛的溶度很高时,在短时间内由于球的内部聚合速度加快,聚合程度高,不能再被腐蚀剂腐蚀。当酚和醛的溶度下降至一定程度后,可在外层包覆并进行腐蚀,因此可利用此方法一步合成内部装有酚醛树脂聚合物实心球及碳球的yolk-shell空心结构。另外,通过调整酚和醛的溶度来控制聚合物球的聚合物度还可以一步合成整体介孔分布的碳球结构。
  3. 一种双层酚醛树脂及其碳化后的双层或者更多层空心碳球及其制备方法,利用酚醛树酯的溶胶-凝胶生长方式,通过腐蚀方法进一步用于制备双层或更多层的空心碳球,
    所述双层空心碳球具有以下结构:其一、外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm;其二、内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm;其三、内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径约600-660nm,壁厚20-70nm。所述更多层空心碳球是具备上述双层空心碳球的结构外进一步包含第3层、第4层、第5层等的3层、4层、5层等空心碳球。
    所述制备方法为方法B;
    其中方法B包括如下步骤:
    b1)将一定量的酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
    b2)于步骤b1)中再次加入一定量的酚类化合物,继续搅拌,再重复n次加入一定量的酚类化合物,继续搅拌,其中n选自0或者1、2、3等的自然数;
    b3)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到多层聚合物空心球,即中间产物II;
    d4)将步骤b3)所得中间产物II进行煅烧,自然冷却至室温,得到多层空心碳球IV。
    n=0时,得到双层空心碳球II,所得双层空心碳球II的外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm。n=1、2、3等自然数时得到3层、4层、5层空心碳球。
  4. 一种原位包覆有纳米颗粒的空心碳球及其制备方法,
    所述原位包覆有纳米颗粒的空心碳球中的纳米颗粒为金属纳米颗粒、氧化物纳米颗粒、硫化物纳米颗粒、氢氧化物纳米颗粒、碳酸盐纳米颗粒、硫酸盐纳米颗粒、有机化合物纳米颗粒、高分子聚合物纳米颗粒等,所述纳米颗粒尺寸为10-800nm。其中,金属纳米颗粒优选为Ag、Au、Pd、Pt、Si等纳米颗粒,氧化物纳米颗粒优选为Fe2O3纳米颗粒、ZnO纳米颗粒、CuO纳米颗粒、SiO2纳米颗粒等,硫化物纳米颗粒优选为FeS纳米颗粒、ZnS纳米颗粒、CuS纳米颗粒等,氢氧化物纳米颗粒优选为Mg(OH)2纳米颗粒、Cu(OH)2纳米颗粒等,碳酸盐纳米颗粒优选为MgCO3纳米颗粒、CaCO3纳米颗粒等,硫酸盐纳米颗粒优选为BaSO4纳米颗粒等。
    利用酚醛树酯适合包覆各种颗粒的性质,通过先包覆再腐蚀的方式制备双层和更多层的空心结构,并且在碳球的空腔中封装各种纳米颗粒,制备方法为方法C,若纳米颗粒为权利要求1-3之一的空心碳球时,得到多层空心碳球;
    方法C:一种在空腔中封装有纳米颗粒的空心碳球的制备方法,包括如下步骤:
    c1)将纳米颗粒和酚类化合物置于水中,超声充分分散,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌,此步反应后溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
    c2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到封装有纳米颗粒的酚醛树酯聚合物空心球yolk-shell结构,即中间产物III;
    c3)将步骤c2)所得中间产物III进行煅烧,自然冷却至室温,得到最终产物,即封装有纳米颗粒的空心碳球。
    利用某些贵金属盐可被酚类或醛类化合物还原,原位生成金属的纳米颗粒,可通过原位合成的方法在空腔中封装纳米颗粒。另外,本发明还提供通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,具体为方法D。
    方法D:一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,包括如下步骤:
    d1)将贵金属盐和酚类化合物置于水中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定温度下搅拌;
    d2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物IV;
    d3)将步骤d2)所得中间产物IV进行煅烧,自然冷却至室温,得到最终产物。
  5. 一种封装低熔点且熔融后流动性强的非金属单质的碳球及其制备方法,所述非金属单质为S或Se或P,所述含有空心结构的碳球中封装低熔点且熔融后流动性强的非金属单质,制备方法为方法M或方法N;
    方法M:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
    m1)按权利要求1的空心碳球或者权利要求2-4任一项制备的空心碳球;
    m2)将步骤m1)所得的空心碳球与低熔点非金属单质在室温下按一定比例混合均匀;
    m3)将步骤m2)所得的混合物密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
    方法N:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
    n1)按权利要求1的空心碳球或者权利要求2-4任一项制备的空心碳球;
    n2)将步骤n1)所得的空心碳球和低熔点非金属单质分散于低熔点非金属单质的溶剂中,室温下充分搅拌,并收集沉淀;
    n3)将步骤n2)所得的混合物干燥后密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
  6. 一种超级电容器及其制备方法,所述超级电容器包含权利要求1-5任一项所述的空心碳球,所述方法包括如下步骤:
    将权利要求1的空心碳球或者权利要求2-5任一项制备的空心碳球材料、炭黑、PVDF按质量比85:10:5进行混合,用NMP调制成膏状,涂布于泡沫镍集流体上,经100℃烘干处理、碾压、裁片后制成直径12mm的极片,选用聚乙烯多孔膜为隔膜,将两极片相对放置,中间以隔膜进行隔离,滴加6mol/L KOH电解液后,封装于扣式电池壳内组装成超级电容器。
  7. 一种锂离子电池负极材料或钾离子电池或钠离子电池,其包含权利要求1-5任一项所述的空心碳球。
  8. 一种利用空心碳球处理工业废水的方法,具体为方法P,其包含如下步骤:
    p1)将一定质量的空心碳球材料加入到含有一定浓度的重金属离子的水溶液中,用HNO3或NaOH调节溶液的pH;将悬浊液充分搅拌或震荡一段时间后,离心收集上清液,立即用电感耦合等离子体光谱测定清液中残余的重金属离子含量;其中,所述空心碳球为权利要求1的空心碳球或者权利要求2-5任一项制备的空心碳球材料。
  9. 根据权利要求1的空心碳球或权利要求2-8任一项的方法,所述单层空心碳球的尺度为30-1000nm,具体为50、180、300、500nm;所述多层空心碳球的层数为2-10,具体为双层,三层,四层,五层。
  10. 一种酚醛树脂小球及其碳化后得到的单层空心碳球,利用酚醛树酯以及腐蚀剂制备得到,所述单层空心碳球的外径为300-350nm,内径240-260nm,壁厚30-50nm,孔体积为0.6-1.2cm3/g,比表面积为1400-1800m2/g;或者,
    所述单层空心碳球的外径为500-800nm,内径400-600nm,壁厚50-150nm,孔体积为0.6-0.9cm3/g,比表面积为1000-1300m2/g。
    所述酚醛树脂小球,其通过包括如下步骤的方法制得:
    a1’)将酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
    其中,酚醛树酯在聚合形成聚合物小球的过程中存在内外聚合程度不均一的特性,小球的内部成份聚合度低于球的外层部分,即小球的外部比内部“结实”。
  11. 一种酚醛树脂小球及其碳化后得到的单层空心碳球的制备方法,依形貌和尺度分为方法A’和方法B’;
    方法A’包括如下步骤:
    a1’)将酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
    a2’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到单层聚合物空心球,即中间产物I’;
    a3’)将步骤a2’)所得中间产物I’进行煅烧,自然冷却至室温,得到内部分布有介孔的单层空心碳球I’。
    所得单层空心碳球I’的外径为300-350nm,内径240-260nm,壁厚30-50nm,孔体积为0.6-1.2cm3/g,比表面积为1400-1800m2/g。
    方法B’包括如下步骤:
    b1’)将酚类化合物置于水、有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性剂和醛类化合物的水溶液在一定的温度下搅拌一段时间;
    b2’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物II’;
    b3’)将步骤b2’)所得中间产物II’进行煅烧,自然冷却至室温,得到内部分布有介孔的单层空心碳球II’。
    所得单层空心碳球II’的外径为500-800nm,内径400-600nm,壁厚50-150nm,孔体积为0.6-0.9cm3/g,比表面积为1000-1300m2/g。
    所述方法A’和B’中,当酚和醛的溶度很高时,在短时间内由于球的内部聚合速度加快,聚合程度高,不能再被腐蚀剂腐蚀。当酚和醛的溶度下降至一定程度后,可在外层包覆并进行腐蚀,因此可利用此方法一步合成内部装有酚醛树脂聚合物实心球及碳球的yolk-shell空心结构。另外,通过调整酚和醛的溶度来控制聚合物球的聚合物度还可以一步合成整体介孔分布的碳球结构。另外,除上述的形貌外,在方法B’中通过调节酚和醛的浓度或季铵盐型阳离子表面活性剂的浓度,可将所得的碳球结构控制为管状。
  12. 一种双层酚醛树脂及其碳化后的双层或者更多层空心碳球及其制备方法,利用酚醛树酯的溶胶-凝胶生长方式,通过腐蚀方法进一步用于制备双层或更多层的空心碳球,
    所述双层空心碳球具有以下结构:其一、外层外径300-350nm,内径220-250nm,壁厚40-60nm,内层外径250-290nm,壁厚25-35nm;其二、内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm;其三、内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径约600-660nm,壁厚20-70nm。所述更多层空心碳球是具备上述双层空心碳球的结构外进一步包含第3层、第4层、第5层等的3层、4层、5层等空心碳球。
    所述制备方法为方法C’和方法D’;
    方法C’包括如下步骤:
    c1’)将一定量的酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌一段时间;
    c2’)于步骤c1’)中再次加入一定量的酚类化合物,继续搅拌,再重复n次加入一定量的酚类化合物,继续搅拌,其中n选自0或者1、2、3等的自然数;
    c3’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物III’;
    c4’)将步骤c3’)所得中间产物III’进行煅烧,自然冷却至室温,得到多层空心碳球III’。
    n=0时,得到双层空心碳球III’,所得双层空心碳球III’,其内层外径300-350nm,内径160-180nm,壁厚60-80nm,外层外径420-450nm,内径380-400nm,壁厚20-30nm。n=1、2、3等自然数时,得到3层、4层、5层空心碳球。
    方法D’包括如下步骤:
    d1’)将一定量的酚类化合物置于水、有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性和醛类化合物的水溶液,在一定的温度下搅拌一段时间;
    d2’)于步骤d1’)中再次加入一定量的酚类化合物,继续搅拌,再重复n次加入一定量的酚类化合物,继续搅拌,其中n选自0或者1、2、3等的自然数;
    d3’)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物IV’;
    d4’)将步骤d3’)所得中间产物IV’进行煅烧,自然冷却至室温,得到多层空心碳球IV’。
    n=0时,得到双层空心碳球IV’,所得双层空心碳球IV’,其内层外径为500-600nm,内径400-420nm,壁厚40-80nm,外层外径约700-800nm,内径约600-660nm,壁厚20-70nm。n=1、2、3等自然数时,得到3层、4层、5层空心碳球。
  13. 一种原位包覆有纳米颗粒的空心碳球及其制备方法,
    所述原位包覆有纳米颗粒的空心碳球中的纳米颗粒为金属纳米颗粒、氧化物纳米颗粒、硫化物纳米颗粒、氢氧化物纳米颗粒、碳酸盐纳米颗粒、硫酸盐纳米颗粒、有机化合物纳米颗粒、高分子聚合物纳米颗粒等,所述纳米颗粒尺寸为10-800nm;金属纳米颗粒优选为Ag、 Au、Pd、Pt、Si等纳米颗粒,氧化物纳米颗粒优选为Fe2O3纳米颗粒、ZnO纳米颗粒、CuO纳米颗粒、SiO2纳米颗粒等,硫化物纳米颗粒优选为FeS纳米颗粒、ZnS纳米颗粒、CuS纳米颗粒等,氢氧化物纳米颗粒优选为Mg(OH)2纳米颗粒、Cu(OH)2纳米颗粒等,碳酸盐纳米颗粒优选为MgCO3纳米颗粒、CaCO3纳米颗粒等,硫酸盐纳米颗粒优选为BaSO4纳米颗粒等;
    利用酚醛树酯适合包覆各种颗粒的性质,通过先包覆再腐蚀的方式制备双层和更多层的空心结构,并且在碳球的空腔中封装各种纳米颗粒,制备方法为方法E和方法F,若纳米颗粒为权利要求10-12之一的空心碳球时,得到多层空心碳球;
    方法E:一种在空腔中封装有纳米颗粒的空心碳球及其制备方法,包括如下步骤:
    e1)将纳米颗粒和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,超声充分分散,调节溶液的pH值,然后加入醛类化合物的水溶液在一定的温度下搅拌,此步反应后,溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
    e2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到封装有纳米颗粒的聚合物空心球,命名为中间产物V;
    e3)将步骤e2)所得中间产物V进行煅烧,自然冷却至室温,得到最终产物封装有纳米颗粒的空心碳球V。
    方法F:一种在空腔中封装有纳米颗粒的空心碳球的制备方法,包括如下步骤:
    f1)将纳米颗粒和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,超声充分分散,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性剂和醛类化合物的水溶液在一定温度下搅拌;
    f2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物VI;
    f3)将步骤f2)所得中间产物VI进行煅烧,自然冷却至室温,得到最终产物封装有纳米颗粒的空心碳球VI。
    利用某些贵金属盐可被酚类或醛类化合物还原,原位生成金属的纳米颗粒,通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,具体为方法G或方法H。
    方法G:一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,包括如下步骤:
    g1)将贵金属盐和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后加入醛类化合物的水溶液在一定温度下搅拌,此步反应后,溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
    g2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物VII;
    g3)将步骤g2)所得中间产物VII进行煅烧,自然冷却至室温,得到最终产物VII,即空腔中封装有金属纳米颗粒的碳球VII。
    方法H:一种通过原位合成方法制备空腔中封装有金属纳米颗粒的碳球的方法,包括如下步骤:
    h1)将贵金属盐和酚类化合物置于有机溶剂或水与有机溶剂组成的混合溶剂中,充分溶解,调节溶液的pH值,然后依次加入季铵盐型阳离子表面活性剂和醛类化合物的水溶液在一定温度下搅拌,此步反应后,溶液中为表面包覆有酚醛树酯聚合物的纳米颗粒;
    h2)加入腐蚀剂,在一定温度下继续搅拌,收集所得的沉淀,得到中间产物VIII;
    h3)将步骤h2)所得中间产物VIII进行煅烧,自然冷却至室温,得到最终产物VIII,即空腔中封装有金属纳米颗粒的碳球VIII。
  14. 一种封装低熔点且熔融后流动性强的非金属单质的碳球及其制备方法,所述非金属单质为S或Se或P,所述制备方法为方法M’或方法N’;
    方法M’:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备 方法,包括如下步骤:
    m1’)按权利要求10的空心碳球或者权利要求11-13任一项制备的空心碳球;
    m2’)将步骤m1’)所得的空心碳球与低熔点非金属单质在室温下按一定比例混合均匀;
    m3’)将步骤m2’)所得的混合物密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
    方法N’:一种在空心结构中封装有低熔点且熔融后流动性强的非金属单质的碳球的制备方法,包括如下步骤:
    n1’)按权利要求10的空心碳球或者权利要求11-13任一项制备的空心碳球;
    n2’)将步骤n1’)所得的空心碳球和低熔点非金属单质分散于低熔点非金属单质的溶剂中,室温下充分搅拌,并收集沉淀;
    n3’)将步骤n2’)所得的混合物干燥后密封,在一定温度下煅烧,自然冷却至室温,得到最终产物。
  15. 一种超级电容器及其制备方法,所述超级电容器含有权利要求10-14任一项所述的空心碳球;所述制备方法包括如下步骤:
    将权利要求10的空心碳球或者权利要求11-14任一项制备的空心碳球材料、炭黑、PVDF按质量比85:10:5进行混合,用NMP调制成膏状,涂布于泡沫镍集流体上,经100℃烘干处理、碾压、裁片后制成直径12mm的极片,选用聚乙烯多孔膜为隔膜,将两极片相对放置,中间以隔膜进行隔离,滴加6mol/L KOH电解液后,封装于扣式电池壳内组装成超级电容器。
  16. 一种锂离子电池负极材料或钾离子电池或钠离子电池,其特征在于,其含有权利要求10-14任一项所述的空心碳球。
  17. 一种利用空心碳球处理工业废水的方法,具体为方法P’,其包含如下步骤:
    p1’)将一定质量的空心碳球材料加入到含有一定浓度的重金属离子的水溶液中,用HNO3或NaOH调节溶液的pH;将悬浊液充分搅拌或震荡一段时间后,离心收集上清液,立即用电感耦合等离子体光谱测定清液中残余的重金属离子含量;其中,所述空心碳球为权利要求10的空心碳球或者权利要求11-14任一项制备的空心碳球材料。
  18. 根据权利要求10的空心碳球或者权利要求11-17任一项的方法,所述单层空心碳球的尺度为30-1000nm,具体为50、180、300、500nm;所述多层空心碳球的层数为2-10,具体为双层,三层,四层,五层。
  19. 根据权利要求2-9、11-18任一项所述的方法,其特征在于:所述步骤a1)、b1)~b2)、c1)、d1)、a1’)、b1’)、c1’)~c2’)、d1’)、e1)、f1)、g1)、h1)中,酚类化合物为含有取代基的苯酚中的至少一种;其中,所述取代基选自C1-C5的烷基、氨基、C1-C5的氨烷基、羟基、巯基、硝基、磺酸基、C1-C5的羧基、卤素和C1-C5的烷氧基中的至少一种;
    所述含有取代基的苯酚具体选自甲基苯酚、苯二酚、苯三酚、氨基苯酚和硝基苯酚中的至少一种;
    其中,所述甲基苯酚具体为邻甲基苯酚、间甲基苯酚或对甲基苯酚;所述苯二酚具体为邻苯二酚、间苯二酚或对苯二酚;所述苯三酚具体为1,2,3-苯三酚、1,2,4-苯三酚或间苯三酚;所述氨基苯酚具体为邻氨基苯酚、间氨基苯酚或对氨基苯酚;所述硝基苯酚具体为邻位、间位、对位取代的硝基苯酚。
    其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,醛类化合物选自甲醛、乙醛、丙醛、戊二醛、糠醛、五羟甲基糠醛、苯甲醛中的至少一种;
    其中醛类化合物的水溶液的质量百分浓度为10-40%,具体为30-40%,更具体为37%。
  20. 根据权利要求2-9、11-19任一项所述的方法,其特征在于:所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,pH范围为5-11,调节pH可用酸或 碱;所述的酸为盐酸,硫酸,硝酸,草酸,醋酸,柠檬酸,抗坏血酸等酸类物质中的至少一种;所述碱为氨水,乙二胺,丙二胺,三乙胺,1-丁胺,2-丁胺,氢氧化钠,氢氧化钾,氢氧化钡,碳酸钠及碳酸氢钠中的至少一种;
    其中,氨水质量百分浓度为25-28%,具体为25%。
    其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,所述酚类化合物与所述醛类化合物的用量比为0.5-5,优选为1:1.1。
    其中,所述步骤a1)、b1)、c1)和d1)中,酚类化合物在水中的质量浓度为0.1-50mg/mL,具体为3.3mg/mL。
    其中,所述步骤a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)和h1)中,酚类化合物在溶剂中的质量浓度为0.1-50mg/mL,具体为0.83mg/mL,1.67mg/mL,3.3mg/mL;
    所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中,酚类化合物和醛类化合物的摩尔用量比为0.05-30:0.05-30,具体为1:3、0.65:13.4、0.7:13.4、9.09:13.4、9.09:13.4、18:13.4、9:13.4、27:13.4、18:13.4、18:13.4、9:13.4。
    其中,所述步骤b1’)、d1’)、f1)、h1)中,酚类化合物、醛类化合物和阳离子表面活性剂的摩尔用量比为0.05-30:0.05-30:0.1-20,具体为9:10:0.82。
    其中,所述步骤a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)和h1)中的溶剂为有机溶剂,或者水与有机溶剂组成的混合溶液;
    其中,所述的有机溶剂具体选自甲醇,乙醇,丙醇,异丙醇,丁醇,乙二醇,丙三醇,丙酮,丁酮,四氢呋喃,N,N-二甲基甲酰胺和N,N-二甲基乙酰胺中的至少一种;
    所述由水和有机溶剂组成的混合液中,水和有机溶剂的体积比为0.5-50:1,具体为2:1、1:1、1.5:1。
  21. 根据权利要求2-9、11-20任一项所述的方法,其特征在于:所述步骤c1)、e1)和f1)中,纳米颗粒为不溶于水和有机溶剂的,尺度为1-500nm且在高温下形貌保持稳定的金属,非金属,金属氧化物,非金属氧化物,有机化合物,无机化合物或高分子聚合物,以及按方法A、B、C、D、A’、B’、C’、D’、E、F、G、H任意一种所合成的含有空心结构的中间产物及其煅烧后的空心碳球,具体选自Ag,Au,Pd,Si,SnO2,TiO2,Fe2O3,Fe3O4,SiO2,聚苯乙烯,酚醛树酯,多孔碳材料,上述各中间产物,上述各空心碳球,上述各多层空心碳球中的任意一种。
    其中,所述步骤d1)、g1)和h1)中,贵金属盐为硝酸银,氯金酸,氯钯酸,氯铂酸中的任意一种。
    其中,所述步骤b1’)、d1’)、f1)和h1)中,季铵盐型阳离子表面活性剂具体选自烷基三甲基铵盐型阳离子表面活性剂、二烷基二甲基铵盐型阳离子表面活性剂和烷基二甲基苄基铵盐型阳离子表面活性剂中的至少一种;
    其中,所述的烷基三甲基铵盐型阳离子表面活性剂具体为辛基三甲基溴化铵,辛基三甲基氯化铵,八烷基三甲基溴化铵,八烷基三甲基氯化铵,十烷基三甲基溴化铵,十烷基三甲基氯化铵,十二烷基三甲基溴化铵,十二烷基三甲基氯化铵,十四烷基三甲基溴化铵,十四烷基三甲基氯化铵,十六烷基三甲基溴化铵,十六烷基三甲基氯化铵,十八烷基三甲基溴化铵或十八烷基三甲基氯化铵等;所述的二烷基二甲基铵盐型阳离子表面活性剂具体为双辛基二甲基溴化铵,双辛基二甲基氯化铵,双八烷基二甲基溴化铵,双八烷基二甲基氯化铵,双十烷基二甲基溴化铵,双十烷基二甲基氯化铵,双十二烷基二甲基溴化铵,双十二烷基二甲基氯化铵,双十四烷基二甲基溴化铵,双十四烷基二甲基氯化铵,双十六烷基二甲基氯化铵,双十六烷基二甲基溴化铵,双十八烷基二甲基氯化铵或双十八烷基二甲基溴化铵;所述的烷基二甲基苄基铵盐型阳离子表面活性剂具体为十二烷基二甲基苄基氯化铵,十二烷基二甲基苄基溴化铵,十四烷基二甲基苄基氯化铵,十四烷基二甲基苄基溴化铵,十六烷基二甲基苄 基氯化铵,十六烷基二甲基苄基溴化铵,十八烷基二甲基苄基氯化铵或十八烷基二甲基苄基溴化铵;
    所述的季铵盐型阳离子表面活性剂在溶剂中的质量浓度为3×10-4~0.1mg/mL,优选具体为0.001mg/mL~0.009mg/mL。
    其中,所述步骤a2)、b3)、c2)、d2)、a2’)、b2’)、c3’)、d3’)、e2)、f2)、g2)和h2)中,腐蚀剂选自醇,酮,酰胺,呋喃,烷烃或卤代烃及其它们的衍生物中的至少一种;
    其中,所述的醇及醇类的衍生物具体为甲醇,乙醇,丙醇,异丙醇,正丁醇,异丁醇,仲丁醇,叔丁醇,乙二醇或丙三醇;所述的酮及其衍生物具体为丙酮,环丙酮,丁酮,丁二酮或乙酰丙酮;所述的酰胺及其衍生物具体为甲酰胺,乙酰胺,丙酰胺,丁酰胺,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺或N,N-二甲基丙酰胺;所述的呋喃及其衍生物具体为四氢呋喃;所述烷烃及其衍生物具体为环已烷;所述的卤代烃及其衍生物具体为三氯甲烷。
    其中,所述步骤a1)、b1)、c1)、d1)、a1’)、b1’)、c1’)、d1’)、e1)、f1)、g1)、h1)中的搅拌步骤中,温度为-15~180℃,优选为10~30℃,具体为室温,时间均为0.01-12小时,优选为1~5小时,具体为1.5小时;
    其中,所述步骤a2)、b3)、c2)、d2)、a2’)、b2’)、c3’)、d3’)、e2)、f2)、g2)和h2)中的搅拌步骤中,温度为-15~180℃,优选为30-100℃,具体为室温,时间均为0.01-12小时,优选为1~5小时,具体为0.5小时,1小时;
    所述步骤b1)、c1)和d1)中的搅拌步骤中,时间为0.01-1小时,优选为20分钟~1小时,具体为0.5小时;
    所述步骤b2)、c2)和d2)中的搅拌步骤中,时间为0.01-1小时,优选为20分钟~1小时,具体为0.5小时。
    其中,所述步骤a2)、b3)、c2)、d2)中,加入腐蚀剂的体积与步骤a1)、d1)、c1)、d1)中水的体积比为0.1-100:1,具体为0.7:1。
    其中,所述步骤a2’)、b2’)、c3’)、d3’)、e2)、f2)、g2)和h2)中,加入腐蚀剂的体积与步骤a1)、b1)、d1)、e1)、f1)、g1)、h1)中水或溶剂的体积比为0.1-100:1,具体为0.7:1。
    所述步骤a3)、b4)、c3)、d3)、a3’)、b3’)、c4’)、d4’)、e3)、f3)、g3)和h3)的煅烧步骤中,温度为500-3000℃,优选为500-1000℃,具体可为700℃、800℃、900℃,时间为1-30小时,具体可为10小时,升温速率为1-20℃/min,具体可为5℃/min;
    煅烧的气氛为惰性或还原气氛,具体选自氮气、氩气、由氢气和氩气组成的混合气和由氮气和氢气组成的混合气中的任意一种,更具体可为由体积比为1~5:95~99的氢气和氩气组成的混合气。
  22. 根据权利要求2-9、11-21任一项所述的方法,其特征在于:所述步骤m2)、n2)、m2’)、n2’)中的低熔点非金属单质具体为S或Se的粉末;非金属单质粉末在碳球与其的总质量中所占的比例为10~90%,优选为50-80%,具体为50%,60%,70%;
    所述步骤n2)和n2’)中的含有非金属单质的溶剂具体为二硫化碳;搅拌时间为1-10h,具体为4h;
    所述碳球在含有非金属单质的溶剂中的质量浓度为10~1000mg/mL,具体为100mg/mL。
    其中,所述步骤m3)、n3)、m3’)和n3’)的煅烧步骤中,温度为100-600℃,具体可为155℃、300℃、400℃,或分两段进行煅烧,例如先经过155℃再经过300℃,以及先经过155℃再经过400℃,时间为1-30小时,具体可为10小时,升温速率为1-20℃/min,具体可为5℃/min;
    煅烧的气氛为空气、惰性或还原气氛,具体选自空气、氮气、氩气、由氢气和氩气组成的混合气和由氮气和氢气组成的混合气中的任意一种,更具体可为由体积比为1~5:95~99的氢气和氩气组成的混合气。
    其中,所述步骤o1)、p1)、o1’)和p1’)中的空心碳球材料为按方法A,方法B,方法 C,方法D、方法A’,方法B’,方法C’,方法D’,方法E,方法F,方法G,方法H中任一方法制备得到的空心碳球;
    所述步骤p1)和p1’)中重金属离子为Pb2+,Cd2+,Cu2+,Hg2+,As5+,Cr4+等对人体有害金属离子中的一种或几种;重金属离子的浓度为1~100mg/L,具体为10mg/L,20mg/L,30mg/L;空心碳球的质量与所含贵金属离子的质量比为1~100:1,优选为1~10:1,具体为5:1,6:1;pH范围为2~10,具体为5;搅拌或震荡时间为1~10小时,具体为4小时;搅拌或震荡温度为室温。
PCT/CN2016/077561 2015-03-26 2016-03-28 一种单层及多层空心碳纳米球、制备及其应用 WO2016150406A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2015101371037 2015-03-26
CN201510137088.6A CN104843665B (zh) 2015-03-26 2015-03-26 一种单层及多层空心碳纳米球、制备及其应用
CN2015101370886 2015-03-26
CN201510137103.7A CN104891468B (zh) 2015-03-26 2015-03-26 一种单层及多层空心碳纳米球、制备及其应用

Publications (1)

Publication Number Publication Date
WO2016150406A1 true WO2016150406A1 (zh) 2016-09-29

Family

ID=56976981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077561 WO2016150406A1 (zh) 2015-03-26 2016-03-28 一种单层及多层空心碳纳米球、制备及其应用

Country Status (1)

Country Link
WO (1) WO2016150406A1 (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433818A (zh) * 2019-08-16 2019-11-12 陕西科技大学 一种钼酸镍碳复合纳米球、制备方法及其作为电解水析氢催化剂的应用
CN110589801A (zh) * 2019-10-10 2019-12-20 太原理工大学 一种发光颜色可变的固态荧光碳量子点及其制备方法
CN110975852A (zh) * 2019-12-24 2020-04-10 济南大学 一种二氧化钛纳米簇@碳球多级复合结构材料及其制备方法和应用
CN111517366A (zh) * 2020-06-05 2020-08-11 济南大学 一种MoO3自组装空心球结构的制备方法
CN111935965A (zh) * 2020-07-14 2020-11-13 西安工程大学 一种银/生物质多孔碳电磁波吸收复合材料的制备方法
CN112086642A (zh) * 2020-08-19 2020-12-15 广东工业大学 一种石墨化碳包覆的高比表面积多孔碳球及其制备方法和应用
CN112103500A (zh) * 2020-08-16 2020-12-18 复旦大学 一种钠离子电池负极用硬炭纳米球及其制备方法和应用
CN112194115A (zh) * 2020-11-11 2021-01-08 湖南纳微新材料科技有限公司 一种中空纳米碳球的制备方法及中空纳米碳球
CN112296349A (zh) * 2020-09-24 2021-02-02 河北工程大学 一种戒指状Au纳米圆环的制备方法
CN113206225A (zh) * 2021-04-12 2021-08-03 华南理工大学 一种锚定有金属硫化物的中空碳球及其制备方法与在制备钾离子电池负极中的应用
CN113353918A (zh) * 2021-07-20 2021-09-07 福建师范大学 金属离子催化诱导制备形貌可调的介孔空心碳球及其应用
CN113540453A (zh) * 2020-08-27 2021-10-22 中南大学 一种锂金属负极的内亲锂型多重限域/诱导中空碳复合骨架及其制备方法
CN113848201A (zh) * 2021-09-27 2021-12-28 烟台大学 一种用于检测乌司他丁的电致化学发光生物传感器
CN113996289A (zh) * 2021-11-12 2022-02-01 国能龙源催化剂江苏有限公司 一种可用于低温烟气的空心碳球脱硝催化剂及其制备方法
CN114050281A (zh) * 2021-11-02 2022-02-15 湖北大学 一种空心碳纳米球复合催化剂及其制备方法和应用
CN114220983A (zh) * 2021-12-15 2022-03-22 南京工业大学 一种基于中空碳球的改性膜及其制备方法和应用
CN114314651A (zh) * 2021-11-05 2022-04-12 中科纳迪(苏州)科技有限公司 一种含有非晶成分的中空多壳层材料的制备方法及应用
CN114540867A (zh) * 2022-01-21 2022-05-27 天津大学 酸性电催化二氧化碳还原的纳米反应器及制备方法和膜电极***
CN114715897A (zh) * 2022-04-19 2022-07-08 南京航空航天大学 一种尺寸可调的SiC@C介孔空心球及其制备方法和应用
CN114835106A (zh) * 2022-05-11 2022-08-02 哈尔滨工业大学 一种碳微米笼封装碳纳米管吸波材料的制备方法
CN114843475A (zh) * 2022-05-19 2022-08-02 西北工业大学深圳研究院 一种碳化铁基复合材料及其制备方法
CN115057488A (zh) * 2022-07-12 2022-09-16 合肥国轩高科动力能源有限公司 一种具有特殊形貌锂离子电池正极材料及其制备方法与应用
CN115215337A (zh) * 2022-05-24 2022-10-21 中国科学院兰州化学物理研究所 一种合成酚醛树脂且制备碳材料的方法
CN115872402A (zh) * 2022-07-13 2023-03-31 武汉科技大学 一种空心介孔碳球自组装多孔炭微球及其制备方法
CN116101999A (zh) * 2023-02-17 2023-05-12 之江实验室 一种非连续轻质空心碳球吸波材料及其制备方法与应用
CN116282150A (zh) * 2023-04-14 2023-06-23 贵州华星冶金有限公司 一种空心三氧化二锑的制备方法
CN116902958A (zh) * 2023-07-24 2023-10-20 辽宁石油化工大学 碳基空心球材料的制备方法及其应用
CN117024227A (zh) * 2023-08-16 2023-11-10 福建省巨颖高能新材料有限公司 一种生产类球形二硝酰胺铵的装置及方法
CN114314651B (zh) * 2021-11-05 2024-05-14 中科纳迪(苏州)科技有限公司 一种含有非晶成分的中空多壳层材料的制备方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314467A (zh) * 2008-06-20 2008-12-03 大连理工大学 一步合成空心炭壳的方法
CN101798077A (zh) * 2010-04-08 2010-08-11 哈尔滨工业大学 以间苯二酚和甲醛为原料的碳空心球的制备方法
CN102352003A (zh) * 2011-07-19 2012-02-15 黑龙江大学 酚醛树脂微球的制备方法及利用其制备酚醛树脂基碳球的方法
CN102437318A (zh) * 2011-11-30 2012-05-02 奇瑞汽车股份有限公司 一种硅碳复合材料的制备方法、所制备的硅碳复合材料及含有该硅碳复合材料的锂离子电池负极和电池
CN102643513A (zh) * 2012-05-14 2012-08-22 中国科学院长春应用化学研究所 一种间氨基苯酚-甲醛树脂球的制备方法和碳球的制备方法
CN103072970A (zh) * 2013-02-04 2013-05-01 河北科技大学 球形空心介孔碳壳及其制备方法
CN103985876A (zh) * 2014-05-15 2014-08-13 中国科学院化学研究所 利用酚醛树脂对锂离子电池电极材料进行原位可控包覆的方法
CN104058401A (zh) * 2014-07-11 2014-09-24 北京科技大学 一种多孔碳微球的制备方法
CN104151595A (zh) * 2014-07-11 2014-11-19 北京科技大学 一种树脂微球/核壳型微球的制备方法
CN104843665A (zh) * 2015-03-26 2015-08-19 中国科学院化学研究所 一种单层及多层空心碳纳米球、制备及其应用
CN104891468A (zh) * 2015-03-26 2015-09-09 中国科学院化学研究所 一种单层及多层空心碳纳米球、制备及其应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314467A (zh) * 2008-06-20 2008-12-03 大连理工大学 一步合成空心炭壳的方法
CN101798077A (zh) * 2010-04-08 2010-08-11 哈尔滨工业大学 以间苯二酚和甲醛为原料的碳空心球的制备方法
CN102352003A (zh) * 2011-07-19 2012-02-15 黑龙江大学 酚醛树脂微球的制备方法及利用其制备酚醛树脂基碳球的方法
CN102437318A (zh) * 2011-11-30 2012-05-02 奇瑞汽车股份有限公司 一种硅碳复合材料的制备方法、所制备的硅碳复合材料及含有该硅碳复合材料的锂离子电池负极和电池
CN102643513A (zh) * 2012-05-14 2012-08-22 中国科学院长春应用化学研究所 一种间氨基苯酚-甲醛树脂球的制备方法和碳球的制备方法
CN103072970A (zh) * 2013-02-04 2013-05-01 河北科技大学 球形空心介孔碳壳及其制备方法
CN103985876A (zh) * 2014-05-15 2014-08-13 中国科学院化学研究所 利用酚醛树脂对锂离子电池电极材料进行原位可控包覆的方法
CN104058401A (zh) * 2014-07-11 2014-09-24 北京科技大学 一种多孔碳微球的制备方法
CN104151595A (zh) * 2014-07-11 2014-11-19 北京科技大学 一种树脂微球/核壳型微球的制备方法
CN104843665A (zh) * 2015-03-26 2015-08-19 中国科学院化学研究所 一种单层及多层空心碳纳米球、制备及其应用
CN104891468A (zh) * 2015-03-26 2015-09-09 中国科学院化学研究所 一种单层及多层空心碳纳米球、制备及其应用

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433818A (zh) * 2019-08-16 2019-11-12 陕西科技大学 一种钼酸镍碳复合纳米球、制备方法及其作为电解水析氢催化剂的应用
CN110433818B (zh) * 2019-08-16 2022-02-25 陕西科技大学 一种钼酸镍碳复合纳米球、制备方法及其作为电解水析氢催化剂的应用
CN110589801A (zh) * 2019-10-10 2019-12-20 太原理工大学 一种发光颜色可变的固态荧光碳量子点及其制备方法
CN110975852A (zh) * 2019-12-24 2020-04-10 济南大学 一种二氧化钛纳米簇@碳球多级复合结构材料及其制备方法和应用
CN111517366A (zh) * 2020-06-05 2020-08-11 济南大学 一种MoO3自组装空心球结构的制备方法
CN111517366B (zh) * 2020-06-05 2022-05-03 济南大学 一种MoO3自组装空心球结构的制备方法
CN111935965A (zh) * 2020-07-14 2020-11-13 西安工程大学 一种银/生物质多孔碳电磁波吸收复合材料的制备方法
CN112103500A (zh) * 2020-08-16 2020-12-18 复旦大学 一种钠离子电池负极用硬炭纳米球及其制备方法和应用
CN112086642A (zh) * 2020-08-19 2020-12-15 广东工业大学 一种石墨化碳包覆的高比表面积多孔碳球及其制备方法和应用
CN113540453B (zh) * 2020-08-27 2023-02-03 中南大学 一种锂金属负极的内亲锂型多重限域/诱导中空碳复合骨架及其制备方法
CN113540453A (zh) * 2020-08-27 2021-10-22 中南大学 一种锂金属负极的内亲锂型多重限域/诱导中空碳复合骨架及其制备方法
CN112296349B (zh) * 2020-09-24 2022-04-01 河北工程大学 一种戒指状Au纳米圆环的制备方法
CN112296349A (zh) * 2020-09-24 2021-02-02 河北工程大学 一种戒指状Au纳米圆环的制备方法
CN112194115A (zh) * 2020-11-11 2021-01-08 湖南纳微新材料科技有限公司 一种中空纳米碳球的制备方法及中空纳米碳球
CN113206225B (zh) * 2021-04-12 2022-11-18 华南理工大学 一种锚定有金属硫化物的中空碳球及其制备方法与在制备钾离子电池负极中的应用
CN113206225A (zh) * 2021-04-12 2021-08-03 华南理工大学 一种锚定有金属硫化物的中空碳球及其制备方法与在制备钾离子电池负极中的应用
CN113353918A (zh) * 2021-07-20 2021-09-07 福建师范大学 金属离子催化诱导制备形貌可调的介孔空心碳球及其应用
CN113848201A (zh) * 2021-09-27 2021-12-28 烟台大学 一种用于检测乌司他丁的电致化学发光生物传感器
CN113848201B (zh) * 2021-09-27 2024-03-22 烟台大学 一种用于检测乌司他丁的电致化学发光生物传感器
CN114050281A (zh) * 2021-11-02 2022-02-15 湖北大学 一种空心碳纳米球复合催化剂及其制备方法和应用
CN114050281B (zh) * 2021-11-02 2023-12-15 湖北大学 一种空心碳纳米球复合催化剂及其制备方法和应用
CN114314651A (zh) * 2021-11-05 2022-04-12 中科纳迪(苏州)科技有限公司 一种含有非晶成分的中空多壳层材料的制备方法及应用
CN114314651B (zh) * 2021-11-05 2024-05-14 中科纳迪(苏州)科技有限公司 一种含有非晶成分的中空多壳层材料的制备方法及应用
CN113996289B (zh) * 2021-11-12 2023-08-18 国能龙源催化剂江苏有限公司 一种可用于低温烟气的空心碳球脱硝催化剂及其制备方法
CN113996289A (zh) * 2021-11-12 2022-02-01 国能龙源催化剂江苏有限公司 一种可用于低温烟气的空心碳球脱硝催化剂及其制备方法
CN114220983A (zh) * 2021-12-15 2022-03-22 南京工业大学 一种基于中空碳球的改性膜及其制备方法和应用
CN114220983B (zh) * 2021-12-15 2024-01-30 南京工业大学 一种基于中空碳球的改性膜及其制备方法和应用
CN114540867A (zh) * 2022-01-21 2022-05-27 天津大学 酸性电催化二氧化碳还原的纳米反应器及制备方法和膜电极***
CN114540867B (zh) * 2022-01-21 2023-06-27 天津大学 酸性电催化二氧化碳还原的纳米反应器及制备方法和膜电极***
CN114715897A (zh) * 2022-04-19 2022-07-08 南京航空航天大学 一种尺寸可调的SiC@C介孔空心球及其制备方法和应用
CN114835106A (zh) * 2022-05-11 2022-08-02 哈尔滨工业大学 一种碳微米笼封装碳纳米管吸波材料的制备方法
CN114843475B (zh) * 2022-05-19 2024-01-19 西北工业大学深圳研究院 一种碳化铁基复合材料及其制备方法
CN114843475A (zh) * 2022-05-19 2022-08-02 西北工业大学深圳研究院 一种碳化铁基复合材料及其制备方法
CN115215337A (zh) * 2022-05-24 2022-10-21 中国科学院兰州化学物理研究所 一种合成酚醛树脂且制备碳材料的方法
CN115057488A (zh) * 2022-07-12 2022-09-16 合肥国轩高科动力能源有限公司 一种具有特殊形貌锂离子电池正极材料及其制备方法与应用
CN115872402A (zh) * 2022-07-13 2023-03-31 武汉科技大学 一种空心介孔碳球自组装多孔炭微球及其制备方法
CN116101999B (zh) * 2023-02-17 2023-11-14 之江实验室 一种非连续轻质空心碳球吸波材料及其制备方法与应用
CN116101999A (zh) * 2023-02-17 2023-05-12 之江实验室 一种非连续轻质空心碳球吸波材料及其制备方法与应用
CN116282150A (zh) * 2023-04-14 2023-06-23 贵州华星冶金有限公司 一种空心三氧化二锑的制备方法
CN116902958A (zh) * 2023-07-24 2023-10-20 辽宁石油化工大学 碳基空心球材料的制备方法及其应用
CN117024227A (zh) * 2023-08-16 2023-11-10 福建省巨颖高能新材料有限公司 一种生产类球形二硝酰胺铵的装置及方法

Similar Documents

Publication Publication Date Title
WO2016150406A1 (zh) 一种单层及多层空心碳纳米球、制备及其应用
CN104891468B (zh) 一种单层及多层空心碳纳米球、制备及其应用
Guo et al. Tunable synthesis of yolk–shell porous silicon@ carbon for optimizing Si/C-based anode of lithium-ion batteries
CN104843665B (zh) 一种单层及多层空心碳纳米球、制备及其应用
Huang et al. Co3O4 supraparticle‐based bubble nanofiber and bubble nanosheet with remarkable electrochemical performance
Deng et al. One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries
Xia et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries
CN103947017B (zh) 用于混合能量存储装置中的碳‑铅共混物
Liu et al. Hierarchical porous intercalation‐type V2O3 as high‐performance anode materials for Li‐ion batteries
KR20180045010A (ko) 개질된 초소수성 소재가 코팅된 리튬이온 전지용 고니켈 양극소재 및 그 제조방법
Li et al. Rational design and controllable synthesis of multishelled Fe2O3@ SnO2@ C nanotubes as advanced anode material for lithium-/sodium-ion batteries
Yoo et al. Porous silicon nanowires for lithium rechargeable batteries
KR102250814B1 (ko) 탄소 코팅된 그래핀, 실리콘 나노입자, 탄소나노튜브를 포함하는 리튬이차전지 음극재용 복합체, 이의 제조방법
CN102934265A (zh) 用于锂二次电池的阳极活性物质,制备这种物质的方法和包含这种物质的锂二次电池
CN103165862A (zh) 一种高性能锂离子电池负极材料及其制备方法
Lee et al. Spherical graphene and Si nanoparticle composite particles for high-performance lithium batteries
US9054377B2 (en) Cathode composition for lithium ion battery and method for fabricating the same
CN108682833B (zh) 一种磷酸铁锂基改性正极材料制备方法
Qi et al. Covalent bonding of sulfur nanoparticles to unzipped multiwalled carbon nanotubes for high-performance lithium–sulfur batteries
Xu et al. Hierarchical nitrogen-doped porous carbon microspheres as anode for high performance sodium ion batteries
US10374215B2 (en) Centrifugation-assisted preparation of additive-free carbon-decorated magnetite electrodes
CN109841803B (zh) 一种硅碳复合材料、其制备方法及含有该材料的二次电池
CN106229563A (zh) 一种具有自愈合功能的柔性水系锂离子电池及其制备方法
CN112357956A (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN106602008B (zh) 磷酸锰锂正极材料的自组装制备方法以及磷酸锰锂正极材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767783

Country of ref document: EP

Kind code of ref document: A1