WO2016147243A1 - パワーモジュール,電力変換装置,および車両用駆動装置 - Google Patents

パワーモジュール,電力変換装置,および車両用駆動装置 Download PDF

Info

Publication number
WO2016147243A1
WO2016147243A1 PCT/JP2015/057409 JP2015057409W WO2016147243A1 WO 2016147243 A1 WO2016147243 A1 WO 2016147243A1 JP 2015057409 W JP2015057409 W JP 2015057409W WO 2016147243 A1 WO2016147243 A1 WO 2016147243A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
power module
power
diode
switching
Prior art date
Application number
PCT/JP2015/057409
Other languages
English (en)
French (fr)
Inventor
隆誠 藤田
秋山 悟
景山 寛
徹 増田
歩 畑中
島 明生
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/057409 priority Critical patent/WO2016147243A1/ja
Priority to DE112015004772.7T priority patent/DE112015004772T5/de
Priority to US15/527,089 priority patent/US10115700B2/en
Priority to JP2017505759A priority patent/JP6356904B2/ja
Publication of WO2016147243A1 publication Critical patent/WO2016147243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power module, a power conversion device, and a vehicle drive device.
  • a semiconductor device chip is mounted as a switching element of the power converter.
  • Silicon (Si) has been generally used as a material for semiconductor devices.
  • an IGBT Insulated Gate Bipolar Transistor
  • SiC silicon carbide
  • SiC-MOSFETs Metal Oxide Semiconductor Field Transistors
  • SiC-MOSFETs Metal Oxide Semiconductor Field Transistors
  • Threshold voltage is one of the characteristics of switching elements.
  • the threshold voltage is a gate voltage when a current of a certain level flows through the switching element.
  • an n-channel MOSFET is normally in an off state, but is turned on when a positive voltage higher than a threshold voltage is applied to the gate.
  • Patent Document 1 when a wide band gap semiconductor is used as a semiconductor switching element, it is difficult to stably manufacture because a high temperature environment is required at the time of manufacturing, and there are individual variations in gate threshold voltage.
  • a technique for reducing the leakage current of the switching element by controlling the drive voltage based on the detected value of the leakage current of the switching element is disclosed for individual variations in the gate threshold voltage.
  • Multiple switching elements may be mounted in the power module. For example, a current of several tens of amperes can flow through a chip of a semiconductor device, but a large capacity of several hundreds of amperes is required for railway vehicle applications, etc., so power can be achieved by connecting multiple chips in parallel. Ensure the allowable current as a module.
  • the gate drive voltage since the gate drive voltage is controlled, the gate drive voltage is similarly applied to the switching element group connected in parallel to the switching element group connected in parallel. As a result, variations in the gate threshold voltage cannot be compensated.
  • An object of the present invention is to compensate for a difference in threshold voltage between a plurality of switching elements mounted in a power module.
  • the present invention solves the above-mentioned problems by mounting a switching element having a higher threshold voltage than other switching elements at a location where the temperature is higher during operation than the location where the other switching elements are mounted. To do.
  • the present invention it is possible to compensate for a difference in threshold voltage between a plurality of switching elements mounted on a power module. As a result, a high-performance power converter and a high-performance vehicle drive device can be provided.
  • FIG. 2 is a plan view of an insulating substrate mounted on the power module of FIG. 1. It is an example (1 in 1 module) of the circuit diagram of the power module of Example 1. FIG. It is an example (2 in 1 module) of the circuit diagram of the power module of Example 1. FIG. It is sectional drawing of the example (in the case of DMOSFET) of the switching element mounted on the insulating substrate of Example 1. (A) is a DMOSFET, and (b) is a trench structure MOSFET. It is sectional drawing of the example (in the case of trench structure MOSFET) of the switching element mounted on the insulating substrate of Example 1.
  • FIG. 1 is a vehicle drive device according to a first embodiment.
  • FIG. 1 is a vehicle drive device according to a first embodiment. It is a block diagram of the protection system of the power converter device of Example 1.
  • FIG. 6 is a plan view of an insulating substrate of Example 2.
  • FIG. 7 is a plan view of a drain wiring pattern of Example 3.
  • FIG. It is a top view of the power module and cooling system of Example 4.
  • FIG. 1 is a plan view of a power module 100 according to an embodiment of the present invention.
  • the power module 100 includes a heat dissipation base 101 and two insulating substrates 102.
  • the insulating substrate 102 is joined to the heat dissipation base 101 with solder or the like.
  • the power module 100 has a sealing resin that covers the insulating substrate 102.
  • a plurality of insulating substrates 102 can be mounted on the heat dissipation base 101 to increase the current capacity of the power module 100.
  • the number of insulating substrates 102 mounted on the heat dissipation base 101 can be one, or three or more. Moreover, it is also possible to increase the current capacity of the power converter by connecting a plurality of power modules 100 in parallel.
  • FIG. 2 is a plan view of the insulating substrate 102 of the power module 100 shown in FIG.
  • a gate wiring pattern 104 On the insulating substrate 102, a gate wiring pattern 104, a source sense wiring pattern 105, a drain wiring pattern 106, and a source wiring pattern 107 are formed on the insulating layer 103.
  • a drain wiring pattern 106 On the drain wiring pattern 106, four first switching elements 108a and four second switching elements 108b are joined by solder or the like.
  • the four first switching elements 108a and the four second switching elements 108b can be joined with sintered metal.
  • the first switching element 108a and the second switching element 108b are SiC-MOSFETs.
  • the second switching element 108b has a threshold voltage higher than that of the first switching element 108a.
  • the threshold voltage of the second switching element 108b being higher than that of the first switching element 108a is based on a comparison of the specific threshold voltages of the second switching element 108b and the first switching element 108a.
  • the threshold voltage of the second switching element 108b is higher than that of the first switching element 108a at room temperature (25 ° C.). Note that when there is no need to distinguish between the first switching element 108a and the second switching element 108b, they are referred to as switching elements 108.
  • the switching element 108 is a chip, and in this embodiment is a square with a side of 8 mm.
  • the size of the switching element 108 is not limited to the above, and can be a square having a side of 5 mm to 20 mm, for example, or a rectangle.
  • two rows of chips are arranged in the order of the first switching element 108a, the second switching element 108b, the second switching element 108b, and the first switching element 108a. Yes.
  • the distance X between the adjacent switching elements 108 in each row is 5 mm.
  • the distance Y between the rows is 25 mm.
  • the distance Y which is the horizontal distance between the rows is large, there is almost no movement of heat between the rows, and the influence of the heat generated from the switching devices 108 on the other switching devices 108 is different for each row.
  • the first switching element 108a is disposed at both ends of each column, and the second switching element 108b having a threshold voltage higher than that of the first switching element 108a is disposed near the center of each column. The That is, the second switching element 108b having a threshold voltage higher than that of the first switching element 108a is sandwiched between other adjacent switching elements 108.
  • the first switching element 108a having a lower threshold voltage than the second switching element 108b is not disposed between the other switching elements 108. Therefore, the second switching element 108b has more adjacent switching elements 108 than the first switching element 108a. Further, the second switching element 108b having a threshold voltage higher than that of the first switching element 108a is disposed closer to the center of the insulating substrate 102, which is likely to become high temperature when the power conversion device operates.
  • Each switching element 108 is connected to the gate wiring pattern 104, the source sense wiring pattern 105, and the source wiring pattern 107 through the gate wire 109, the source sense wire 110, and the source wire 111.
  • the eight switching elements 108 are connected in parallel. Since the switching element 108 is a MOSFET and has a built-in diode, the built-in diode of the switching element 108 can be used as a freewheeling diode, and the power converter can be operated without mounting an external freewheeling diode. it can.
  • FIG. 3A and 3B are circuit diagrams of the power module 100 shown in FIG. 3A and 3B show the connection relationship of the eight switching elements 108 on each insulating substrate 102 in the power module 100.
  • FIG. 3A and 3B are circuit diagrams of the power module 100 shown in FIG. 3A and 3B show the connection relationship of the eight switching elements 108 on each insulating substrate 102 in the power module 100.
  • FIG. 3A and 3B show the connection relationship of the eight switching elements 108 on each insulating substrate 102 in the power module 100.
  • FIG. 3A shows an example of a 1 in 1 module.
  • the current capacity can be increased by connecting two insulating substrates 102 in parallel.
  • the gate electrodes of 16 switching elements 108 are connected to the control terminal 301.
  • the main circuit terminal 302 and the main circuit terminal 303 are connected to the source-drain path of the switching element 108.
  • a 2-in-1 module can be obtained by electrically short-circuiting the source of one insulating substrate 102 and the drain of the other insulating substrate 102.
  • the gate electrodes of the eight switching elements 108 on one insulating substrate 102 are connected to the control terminal 304, and the gate electrodes of the eight switching elements 108 on the other insulating substrate 102 are connected. Is connected to the control terminal 305.
  • the main circuit terminal 306, the main circuit terminal 307, and the main circuit terminal 308 are connected to the source-drain path of the switching element 108.
  • the MOSFET Since the MOSFET has a characteristic that the threshold voltage becomes lower as the temperature is higher, if the threshold voltage at the same temperature is the same for all chips, the chip placed closer to the center is not the other during the operation of the power converter.
  • the threshold voltage decreases as the temperature rises due to heat from the chip. Therefore, variation in the current flowing between the chips occurs due to the difference in the change amount of the threshold voltage due to the difference in temperature.
  • the threshold voltage is lowered by the heat from other chips, so that the current is further increased, the amount of heat generation is increased, and the threshold voltage is further decreased. As a result, the current between the chips is reduced. Variation will increase.
  • the second switching element 108b disposed near the center of the column during the operation of the power conversion apparatus is replaced with the first switching element 108a disposed at both ends of the column.
  • the threshold voltage at the same temperature is higher in the second switching element 108b than in the first switching element 108a. The difference in threshold voltage between the elements 108a is compensated, and current variation is suppressed.
  • FIG. 4A shows an example of a vertical MOSFET having a DMOS (Double Diffuse Metal Oxide Semiconductor) structure
  • FIG. 4B shows an example of a vertical MOSFET having a trench structure.
  • DMOS Double Diffuse Metal Oxide Semiconductor
  • the N + layer 402 and the P layer 403 are connected to the source electrode 401.
  • the P layer 403 is in contact with the gate insulating film 404 and the N ⁇ layer 405 responsible for ensuring the breakdown voltage
  • the gate insulating film 404 is in contact with the gate electrode 406, and N ⁇ Layer 405 is formed on N + substrate layer 407.
  • the N + substrate layer 407 is connected to the drain electrode 408.
  • the switching element 108 is a SiC-MOSFET
  • the N + substrate layer 407 is an N + type silicon carbide substrate
  • the N ⁇ layer 405 is an N ⁇ type silicon carbide epitaxial layer
  • the P layer 403 is This is a P-type body region.
  • the switching element 108 is a SiC-MOSFET, but the switching element 108 may be a nitride semiconductor element formed of a nitride semiconductor layer.
  • the threshold voltage can be increased. Since the voltage between the drain electrode 408 and the source electrode 401 decreases until the current reaches a steady state, there is a period in which both the voltage and the current are not zero, and there is a power loss calculated by the product of the voltage and the current. appear. Similarly, power loss occurs at turn-off, and further, power loss occurs due to the electrical resistance between the drain electrode 408 and the source electrode 401 while the current flowing between the drain electrode 408 and the source electrode 401 is settled to a steady value. .
  • the time required for switching can be shortened by reducing the capacitance between the drain electrode 408 and the gate electrode 406, and the power loss can be reduced.
  • the current peak value at the time of switching also increases, and the current variation increases when the threshold voltages are different.
  • the reduction of power loss during switching and the suppression of current variation are in a trade-off relationship, but in this embodiment, the threshold value due to the difference in temperature between the switching element 108a and the switching element 108b during operation of the power conversion device.
  • the trade-off can be eliminated, reducing both power loss and current variation. Therefore, when the switching element 108 is a trench MOSFET, the performance of the power module 100 can be further improved.
  • the MOSFET functions as a built-in diode having a source as an anode and a drain as a cathode.
  • the switching element 108 generates heat. Therefore, when the built-in diode of the switching element 108 is used as a freewheeling diode as in the power module 100 of the present embodiment, the performance of the power module 100 can be further improved.
  • FIG. 5A and 5 (b) show circuit diagrams of a vehicle drive device provided with the power module 101 of this embodiment.
  • FIG. 5A shows an example in the case of having a 1 in 1 module
  • FIG. 5B shows an example in the case of having a 2 in 1 module.
  • 5A and 5B includes a power converter 501 and a motor 502 as a load.
  • the motor 502 can rotate driving wheels of a railway vehicle or automobile.
  • the power conversion device 501 includes, as a circuit, switching element groups S1 to S6, a diode, and a capacitor C for stabilizing the supplied power supply voltage VCC.
  • the diodes are built in the switching element groups S1 to S6.
  • an inductor is not shown, but the inductance of the motor 502 as a load can be used.
  • the switching element groups S1 to S6 are switching element groups each configured by connecting a plurality of switching elements 108 in parallel.
  • the switching element groups S3 to S6 are described with one switching element as a representative for easy understanding of the drawing.
  • the gate drive circuits GD1 to GD6 are gate drive circuits that drive the switching element groups S1 to S6.
  • one power module 100 is mounted in each of the switching element groups S1 to S6.
  • one power module 100 is mounted for the switching element group S1 and the switching element group S2, and one power module is mounted for the switching element group S3 and the switching element group S4.
  • One power module 100 is mounted on the group S5 and the switching element group S6.
  • Switching element groups S1 to S6 are repeatedly turned on and off by signals output from gate drive circuits GD1 to GD6. There are three sets of two switching element groups connected in series, which are connected in parallel to the power supply voltage VCC. Wiring is connected to a motor 502 as a load from a connection point between each group of switching elements.
  • Two switching element groups (for example, S1 and S2) connected in series do not turn on at the same time.
  • the switching element group S1 is turned off, the switching element group S2 is turned on after a certain time called a dead time has elapsed.
  • a current flows through the built-in diode of the switching element group S1 or the switching element group S2 according to the direction of the load current.
  • the switching element groups S3 and S4 and the switching element groups S5 and S6 are same applies to the switching element groups S3 and S4 and the switching element groups S5 and S6.
  • the power converter 501 converts DC power into three-phase AC power and supplies the power to the motor 502 that is a load. If the operation becomes unstable even in one of the switching element groups S1 to S6, the power conversion device 501 cannot supply power suitable for the motor 502 as a load. In the power conversion device 501 of this embodiment, since the switching element groups S1 to S6 operate stably by the above-described threshold voltage compensation, high reliability of the power conversion device and the vehicle drive device can be realized.
  • FIG. 6 shows a block diagram of a protection system of the power conversion device 501 of the present embodiment.
  • the temperature and current of the switching element 108 are detected and input to the control circuit, and alarm output and gate drive voltage control are performed based on the calculation result. For example, when overheating or overcurrent occurs, the operation of the power converter 501 can be stopped by turning off all the switching elements 108.
  • a current detector such as a shunt resistor or a current transformer (CT) can be used. From the current detector, a sense current that is about several thousand to several ten thousandths of the main current flowing between the drain wiring pattern 106 and the source wiring pattern 107 is output through the source sense wiring pattern 105.
  • CT current transformer
  • the main current can be estimated by detecting the sense current using a current detector. Further, by incorporating a current sense element and a temperature detection element in each switching element 108, the protection system can monitor the threshold voltage compensation status due to the temperature difference between the switching elements 108 connected in parallel. is there.
  • FIG. 7 shows the arrangement of each chip on the insulating substrate of this example.
  • the switching element 108 since the built-in diode of the switching element 108 is used as the freewheeling diode, a separate diode chip is not necessary.
  • the diode 112 is formed on the insulating substrate 102 as shown in FIG. Is installed separately.
  • the switching element 108 is not limited to a MOSFET.
  • the switching element 108 can be an element having a function of switching current on and off, such as an IGBT (insulated gate bipolar transistor).
  • IGBT insulated gate bipolar transistor
  • the mounting of the switching element 108 is the same as in the first embodiment.
  • the diode 112 is joined to the drain wiring pattern 106 formed on the insulating substrate 102 with solder or the like so that the cathode of the diode 112 and the drain of the switching element 108 are electrically connected.
  • the anode of the diode 112 is connected to the source wiring pattern 107 through the anode wire 113 and is electrically connected to the source of the switching element 108.
  • Three switching elements 108 are arranged in a horizontal row, and there are two chip arrangements in which two diodes 112 are arranged vertically next to each other on two places on the insulating substrate 102. As in the first embodiment, the switching elements 108 are arranged in rows. Since the horizontal distance between them is large, the influence of heat generated from the switching element 108 can be considered independently for each column. In each row, the switching element 108 disposed at the second position from the left in FIG. 7 sandwiched between the two switching elements 108 and the third position from the left in FIG. 7 sandwiched between the diode 112 and the switching element 108.
  • the switching element 108 is more likely to have a higher temperature during operation due to heat generated from an adjacent chip than the switching element 108 arranged at the left end in FIG. Accordingly, the first switching element 108a is arranged at the left end, and the second switching element 108b having a threshold voltage higher than that of the first switching element 108a is the second and third from the left closer to the center than the first switching element 108a. Place in the second position.
  • the power module 100 is configured by joining the insulating substrate 102 on the heat dissipation base 101 with solder or the like as in the first embodiment.
  • a current flows through the switching element 108 or the diode 112
  • power loss occurs, and the heat energy is dissipated from the back surface of the heat dissipation base 101 to a heat sink or the like.
  • the second switching element 108b disposed closer to the center has a higher temperature than the first switching element 108a disposed at the left end, but the threshold voltage at the same temperature is the first switching element 108b. Since the switching element 108a is higher than the switching element 108a, a difference in threshold voltage is compensated during operation, and current variation is suppressed. This improves the reliability of the power conversion device.
  • the adjacent of the switching element 108 will be described by changing the chip arrangement from the first and second embodiments.
  • FIG. 8 shows the chip arrangement of this example.
  • Four switching elements 108 are joined to the drain wiring pattern 106 by solder or the like.
  • the first switching element 108a, the second switching element 108b having a threshold voltage higher than the first switching element 108a, the second switching element 108b, and the first switching element 108a are arranged in this order.
  • a circle having the center as an intersection of diagonal lines drawn on the chip and a diameter twice as long as the diagonal line drawn on the chip is defined, and circles are drawn as dotted lines CI1 to CI4. It was.
  • the temperature of the switching element 108 at the center of the circle is likely to rise due to the influence of heat generated from the other switching elements 108.
  • FIG. 8 there are two other switching elements 108 in the circle CI2 and the circle CI3 surrounding the second switching element 108b, and one other other in the circles CI1 and CI4 surrounding the first switching element 108a.
  • the threshold voltage difference is compensated by heat generation during the operation of the power converter.
  • the diameters of the circles CI1 to CI4 are set to be twice the length of the diagonal line of the chip, and if there are other switching elements in each circle, they are defined as adjacent switching elements.
  • the size of can be determined by estimating the effect of heat generation from each switching element through experiments and computer experiments.
  • the chip is square, but when the chip is rectangular, for example, the rectangular chip is the center, the direction along the long side of the rectangle is the long axis, and the short side of the rectangle is along. Whether or not the switching elements are adjacent to each other can be determined using an ellipse whose direction is the minor axis.
  • FIG. 9 is a plan view of the power conversion device and the cooling system of this embodiment.
  • silicon grease or the like is applied on the heat sink 114, and the power module 900 is fixed to the heat sink 114 with screws or the like from the applied silicon grease or the like.
  • a cooling fan 115 is provided as a cooler near the heat sink 114.
  • the chip disposed on the leeward side of the cooling air from the cooling fan 115 that is an air-cooled cooler is likely to be hotter during the operation of the power conversion device than the chip disposed on the windward side.
  • the first switching element 108a ′ is disposed on the leeward side
  • the second switching element 108b ′ having a threshold voltage higher than that of the first switching element 108a ′ is disposed on the leeward side.
  • the threshold voltage difference is compensated for during operation of the power converter, and current variation is suppressed.
  • the power converter can be made highly reliable.
  • the power conversion device of this embodiment can be applied to a vehicle drive device, and the vehicle drive device can be highly reliable.
  • 100 power module
  • 101 heat dissipation base
  • 102 insulating substrate
  • 103 insulating layer
  • 104 gate wiring pattern
  • 105 source sense wiring pattern
  • 106 drain wiring pattern
  • 107 source wiring pattern
  • 108 switching element
  • 108a first switching element
  • 108b second switching element
  • 109 gate wire
  • 110 source sense wire
  • 111 source wire
  • 112 diode
  • 113 anode wire
  • 114 heat sink
  • 115 cooling fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明は,パワーモジュール内に実装されている複数のスイッチング素子間の閾値電圧の差を補償することを目的とする。 本発明では,他のスイッチング素子と比較して閾値電圧の高いスイッチング素子を,他のスイッチング素子が実装されている箇所よりも動作中に高温となる箇所に実装することで,上述の課題を解決する。ひいては,高性能の電力変換装置および高性能の車両用駆動装置を提供することができる。

Description

パワーモジュール,電力変換装置,および車両用駆動装置
 本発明は,パワーモジュール,電力変換装置,および車両用駆動装置に関する。
 電力変換装置のスイッチング素子として半導体デバイスのチップが搭載されている。半導体デバイスの材料にはシリコン(Si)が一般的に用いられてきた。例えば、鉄道車両用の駆動装置などの大容量負荷では、耐圧及び電流容量の観点からスイッチング素子にIGBT(Insulated Gate Bipolar Transistor)が用いられる。一方,近年では化合物半導体であるシリコンカーバイド(SiC)などのワイドバンドギャップ半導体を材料とした半導体デバイスの研究開発が進められている。例えば,シリコンのIGBT(Si-IGBT)と同程度の耐圧で導通時の電気抵抗を小さくできるSiCを材料としたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)(以下,SiC-MOSFET)の開発が盛んである。
 スイッチング素子の特性の1つに閾値電圧がある。閾値電圧とは,スイッチング素子に一定以上の電流が流れる際のゲート電圧のことである。例えばnチャネルMOSFETの場合は,通常はオフ状態であるが,ゲートに閾値電圧以上の正電圧を印加するとオン状態となる。
 特許文献1には,半導体スイッチング素子にワイドバンドギャップ半導体を利用する場合,製造時に高温環境が必要になるために安定的に製造することが困難であり,ゲート閾値電圧に個別のバラツキが存在することが示され,ゲート閾値電圧の個別のバラツキに対し,スイッチング素子の漏れ電流の検出値に基づいて駆動電圧を制御することで,スイッチング素子の漏れ電流を低減させる技術が開示されている。
特開2006-296032号公報
 パワーモジュール内で,スイッチング素子が複数実装される場合がある。例えば,1つの半導体デバイスのチップには数十アンペアの電流を流すことができるが,鉄道車両用途等では数百アンペアの大容量が必要となるので,複数のチップを並列に接続することでパワーモジュールとしての許容電流を確保する。特許文献1に開示の技術では,ゲート駆動電圧を制御するので,並列に接続されているスイッチング素子群に対しては,並列に接続されているスイッチング素子群に同様にゲート駆動電圧が印加されてしまい,ゲート閾値電圧のバラツキの補償ができない。
 本発明は,パワーモジュール内に実装されている複数のスイッチング素子間の閾値電圧の差を補償することを目的とする。
 本発明では,他のスイッチング素子と比較して閾値電圧の高いスイッチング素子を,他のスイッチング素子が実装されている箇所よりも動作中に高温となる箇所に実装することで,上述の課題を解決する。
 本発明によれば,パワーモジュールに実装されている複数のスイッチング素子間の閾値電圧の差を補償することができる。ひいては,高性能の電力変換装置および高性能の車両用駆動装置を提供することができる。
実施例1のパワーモジュールの平面図である。 図1のパワーモジュールに搭載されている絶縁基板の平面図である。 実施例1のパワーモジュールの回路図の例(1in1モジュール)である。 実施例1のパワーモジュールの回路図の例(2in1モジュール)である。 実施例1の絶縁基板上に実装されているスイッチング素子の例(DMOSFETの場合)の断面図である。(a)はDMOSFET,(b)はトレンチ構造MOSFET。 実施例1の絶縁基板上に実装されているスイッチング素子の例(トレンチ構造MOSFETの場合)の断面図である。 実施例1の車両用駆動装置である。 実施例1の車両用駆動装置である。 実施例1の電力変換装置の保護システムのブロック図である。 実施例2の絶縁基板の平面図である。 実施例3のドレイン配線パターンの平面図である。 実施例4のパワーモジュールおよび冷却系統の平面図である。
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は,本発明の実施例のパワーモジュール100の平面図である。パワーモジュール100は,放熱ベース101と二つの絶縁基板102とを有する。絶縁基板102は,放熱ベース101上にはんだ等で接合されている。また,図示していないが,パワーモジュール100は絶縁基板102を被覆する封止樹脂を有する。電力変換装置に必要な電流容量に応じて,絶縁基板102を放熱ベース101上に複数搭載し,パワーモジュール100の電流容量を増加させることができる。したがって、パワーモジュール100では絶縁基板102が二つ搭載されているが,放熱ベース101に搭載される絶縁基板102の数は一つ,または3以上とすることができる。また,複数のパワーモジュール100を並列接続することで電力変換装置の電流容量を増加させることも可能である。
 図2は,図1に示すパワーモジュール100の絶縁基板102の平面図である。絶縁基板102には,絶縁層103上に,ゲート配線パターン104,ソースセンス配線パターン105,ドレイン配線パターン106,およびソース配線パターン107が形成されている。ドレイン配線パターン106上には,4つの第1のスイッチング素子108aと,4つの第2のスイッチング素子108bと,がはんだ等で接合されている。ドレイン配線パターン106上に,4つの第1のスイッチング素子108aと,4つの第2のスイッチング素子108bと,を焼結金属で接合することもできる。
 第1のスイッチング素子108aおよび第2のスイッチング素子108bは,SiC-MOSFETである。第2のスイッチング素子108bは,第1のスイッチング素子108aよりも閾値電圧が高い。ここで,第2のスイッチング素子108bが第1のスイッチング素子108aよりも閾値電圧が高いとは,第2のスイッチング素子108bと第1のスイッチング素子108aのそれぞれの固有の閾値電圧の比較に基づくものであり,例えば室温(25℃)で第2のスイッチング素子108bが第1のスイッチング素子108aよりも閾値電圧が高い。なお,第1のスイッチング素子108aと第2のスイッチング素子108bを区別する必要がない場合は,スイッチング素子108と表記する。
 スイッチング素子108は,チップであり,本実施例では1辺が8mmの正方形である。スイッチング素子108の大きさは上記に限られず,例えば1辺が5mmから20mmの正方形とすることができ,また長方形にもできる。ここで,絶縁基板102上には,第1のスイッチング素子108a,第2のスイッチング素子108b,第2のスイッチング素子108b,第1のスイッチング素子108aの順に並んだチップの配列が2列設けられている。各列内での隣り合うスイッチング素子108間の距離Xは,5mmである。また,列間の距離Yは,25mmである。本実施例では,列同士の水平距離である距離Yが大きいために列間の熱の移動はほとんどなく,スイッチング素子108から発せられる熱の他のスイッチング素子108への影響はそれぞれの列毎に独立に考えることができる。図2に示したように,第1のスイッチング素子108aが各列の両端に配置され,第1のスイッチング素子108aよりも閾値電圧が高い第2のスイッチング素子108bが各列の中央寄りに配置される。すなわち,第1のスイッチング素子108aよりも閾値電圧の高い第2のスイッチング素子108bは,隣接する他のスイッチング素子108に挟まれている。それに対して,第2のスイッチング素子108bよりも閾値電圧の低い第1のスイッチング素子108aは,他のスイッチング素子108に挟まれて配置されていない。したがって,第2のスイッチング素子108bの方が,第1のスイッチング素子108aよりも,隣接するスイッチング素子108の数が多い。また,第1のスイッチング素子108aよりも閾値電圧の高い第2のスイッチング素子108bのほうが,電力変換装置の動作時に高温になり易い絶縁基板102の中央寄りに配置されている。
 各スイッチング素子108は,ゲートワイヤ109,ソースセンスワイヤ110,およびソースワイヤ111を通じて,ゲート配線パターン104,ソースセンス配線パターン105,およびソース配線パターン107と接続される。絶縁基板102上の8つのスイッチング素子108で,共通のゲート配線パターン104,共通のソースセンス配線パターン105,共通のドレイン配線パターン106,および共通のソース配線パターン107を用いることで,絶縁基板102上の8つのスイッチング素子108は並列接続される。スイッチング素子108はMOSFETであり,内蔵ダイオードを有しているため,スイッチング素子108の内蔵ダイオードを還流ダイオードとして用いることができ,外付けの還流ダイオードを実装することなく電力変換装置を動作させることができる。
 図3(a)および図3(b)に,図1のパワーモジュール100の回路図を示す。図3(a)および図3(b)では,パワーモジュール100内の各絶縁基板102上の8つのスイッチング素子108の接続関係を表している。
 図3(a)は,1in1モジュールの例である。図3(a)に示すように,2つの絶縁基板102を並列接続することによって電流容量を増加することができる。図3(a)の1in1モジュールでは,16個のスイッチング素子108のゲート電極が制御端子301に接続されている。主回路端子302および主回路端子303は,スイッチング素子108のソース-ドレイン経路に接続されている。また,必ずしもパワーモジュール100内の全ての絶縁基板102を並列接続する必要はない。例えば,図3(b)に示すように,一方の絶縁基板102のソースと他方の絶縁基板102のドレインを電気的に短絡することにより,2in1モジュールとすることもできる。図3(b)の2in1モジュールでは,一方の絶縁基板102上の8個のスイッチング素子108のゲート電極が制御端子304に接続され,他方の絶縁基板102上の8個のスイッチング素子108のゲート電極が制御端子305に接続されている。主回路端子306,主回路端子307,および主回路端子308は,スイッチング素子108のソース-ドレイン経路に接続されている。
 電力変換装置を動作させるとスイッチング素子108で電力損失が発生し,電力損失は熱エネルギーとして放出される。スイッチング素子108から放出された熱は,熱伝導によって接合用はんだ,ドレイン配線パターン106,絶縁層103,および放熱ベース101に伝わり,放熱ベース101の背面からヒートシンク等に放熱される。熱の移動は放熱ベース101の面に対して垂直方向がほとんどであるが,水平方向にも熱の移動が生じる。したがって,複数のチップが配置された場合は周辺のチップから熱が伝わってくるため,1つのチップのみが配置された場合と比べて温度が高くなり易い。チップが密集しているほど温度は高くなり,中央寄りに配置されたチップは端部に配置されたチップと比べて温度が高くなり易い。
 MOSFETは温度が高いほど閾値電圧が低くなる特性を有しているため,同じ温度における閾値電圧が全てのチップで等しい場合,中央寄りに配置されたチップは電力変換装置の動作中は,他のチップからの熱により温度が上昇する分,閾値電圧が低くなる。したがって,温度の差異に起因する閾値電圧の変化量の差異によりチップ間で流れる電流のバラツキが発生する。中央寄りに配置されたチップでは閾値電圧が他のチップからの熱によって低くなるためにさらに電流が大きくなり,発熱量が増加してさらに閾値電圧が低下してしまい,結果としてチップ間の電流のバラツキが増大してしまう。
 それに対して,本実施例のパワーモジュール100では,電力変換装置の動作中に,列の中央寄りに配置された第2のスイッチング素子108bは,列の両端に配置された第1のスイッチング素子108aよりも温度が高くなるが,同じ温度における閾値電圧が第2のスイッチング素子108bの方が第1のスイッチング素子108aに比べて高いため,動作中には第2のスイッチング素子108bと第1のスイッチング素子108aの間の閾値電圧の差が補償されて電流バラツキが抑制される。
 図4(a)および図4(b)は,スイッチング素子108の断面図である。図4(a)はDMOS(Double Diffusion Metal Oxide Semiconductor)構造を有する縦型MOSFETの場合の例で,図4(b)はトレンチ構造を有する縦型MOSFETの場合の例である。
 図4(a)および図4(b)のMOSFETでは,ソース電極401に,N+層402およびP層403が接続される。また,図4(a)および図4(b)のMOSFETでは,P層403はゲート絶縁膜404および耐圧確保を担うN-層405に接し,ゲート絶縁膜404はゲート電極406に接し,N-層405はN+基板層407上に形成されている。N+基板層407はドレイン電極408と接続されている。本実施例では,スイッチング素子108はSiC-MOSFETであり,N+基板層407はN+型の炭化珪素基板であり,N-層405はN-型の炭化珪素のエピタキシャル層であり, P層403はP型のボディ領域である。本実施例では,スイッチング素子108はSiC-MOSFETであるが,スイッチング素子108は窒化物半導体層で形成した窒化物半導体素子にすることもできる。
 図4(a)および図4(b)のMOSFETでは,ゲート電極406とソース電極401の間に閾値電圧以上の正電圧が印加されると,P領域403のゲート酸化膜404近傍にNチャネル領域が形成され,ドレイン電極408とソース電極401間に電流が流れるようになる。ここで,電流がゼロから定常値に至る過程で,電流は一度定常値を超えピーク値に到達した後,減少して定常値に落ち着く。閾値電圧が高いほどスイッチング時の電流の時間変化量が小さいため,並列接続されている複数のスイッチング素子108間で閾値電圧が異なる場合は電流バラツキが生じる。ここで,同一の製造プロセスで複数のスイッチング素子を製造した場合においても,個体差によって固有の閾値電圧が異なる場合がある。また,図4(a)および図4(b)に示すチャネル長Zの長さを変更することによって,固有の閾値電圧が異なるスイッチング素子を意図的に製造することも可能である。チャネル長Zを長くすることで,閾値電圧を高くすることができる。電流が定常状態に至るまでの間にドレイン電極408とソース電極401間の電圧が減少するため,電圧及び電流の双方がゼロでない期間が存在し,電圧と電流の積によって算出される電力損失が発生する。ターンオフ時も同様に電力損失が発生し,さらにドレイン電極408とソース電極401の間に流れる電流が定常値に落ち着いている間もドレイン電極408とソース電極401間の電気抵抗によって電力損失が発生する。
 図4(b)に示すトレンチ構造は,ドレイン電極408とゲート電極406の間の静電容量を小さくすることでスイッチングに要する時間を短縮し,電力損失を低減することができる。しかし,電流の時間変化量が大きくなるためスイッチング時の電流ピーク値も大きくなり,閾値電圧が異なる場合には電流バラツキが大きくなる。このように,スイッチング時の電力損失の低減と電流バラツキの抑制はトレードオフの関係にあるが,本実施例では,電力変換装置の動作時のスイッチング素子108aとスイッチング素子108bの温度の違いによる閾値電圧の差の補償によって,トレードオフを解消し,電力損失の低減と電流バラツキの抑制を両立させることができる。したがって,スイッチング素子108がトレンチ型のMOSFETである場合には,さらにパワーモジュール100の性能を向上させることができる。
 また,ドレイン電極408とソース電極401の間に負電圧が印加されると,N+基板層407およびN-層405に対してP層403の電位が高くなるため,ソース電極401からドレイン電極408に向かって電流が流れる。したがって,MOSFETはソースをアノード,ドレインをカソードとする内蔵ダイオードとして働く。このように,本実施例では,MOSFETの内蔵ダイオードに電流が流れた場合においても電力損失が発生し,スイッチング素子108は発熱する。したがって,本実施例のパワーモジュール100のように,スイッチング素子108の内蔵ダイオードを還流ダイオードとして用いる場合には,さらにパワーモジュール100の性能向上を図ることができる。
 図5(a)および図5(b)に,本実施例のパワーモジュール101を備えた車両用駆動装置の回路図を示す。図5(a)は,1in1モジュールを備えた場合の例であり,図5(b)は2in1モジュールを備えた場合の例である。図5(a)および図5(b)に示した車両用駆動装置は,電力変換装置501と,負荷としてモータ502とを有する。モータ502は,鉄道車両や自動車の駆動輪を回転させることができる。電力変換装置501は,回路としては,スイッチング素子群S1~S6,ダイオード,および供給される電源電圧VCCの安定化のためのコンデンサCを有する。ダイオードはスイッチング素子群S1~S6に内蔵されている。図5(a)および図5(b)には,インダクタが図示されていないが,負荷であるモータ502が持つインダクタンスを利用できる。
 スイッチング素子群S1~S6は,それぞれが複数のスイッチング素子108を並列接続することによって構成されたスイッチング素子群である。なお,図5(a)および図5(b)では,スイッチング素子群S3~S6については,図の分かり易さのために1つのスイッチング素子を代表して記載している。ゲート駆動回路GD1~GD6は,各スイッチング素子群S1~S6を駆動するゲート駆動回路である。図5(a)では,スイッチング素子群S1~S6のそれぞれに1つのパワーモジュール100が搭載されている。図5(b)では,スイッチング素子群S1およびスイッチング素子群S2に対して1つのパワーモジュール100が搭載され,スイッチング素子群S3およびスイッチング素子群S4に対して1つのパワーモジュールが搭載され,スイッチング素子群S5およびスイッチング素子群S6に対して1つのパワーモジュール100が搭載されている。
 スイッチング素子群S1~S6はゲート駆動回路GD1~GD6から出力された信号によってオンとオフとを繰返す。2つのスイッチング素子群が直列接続されたものが3組あり,電源電圧VCCに対して並列に接続されている。各組のスイッチング素子群の間の接続点から負荷であるモータ502に配線が接続されている。
 直列接続された2つのスイッチング素子群(例えばS1とS2)が同時にオンすることはない。スイッチング素子群S1がターンオフすると,デッドタイムと呼ばれる一定の時間が経過した後にスイッチング素子群S2がターンオンする。デッドタイム期間中は,負荷電流の向きに応じてスイッチング素子群S1あるいはスイッチング素子群S2の内蔵ダイオードに電流が流れる。スイッチング素子群S3とS4,スイッチング素子群S5とS6についても同様である。
 電力変換装置501は,直流電力を三相交流電力に変換し,負荷であるモータ502へ電力を供給する。スイッチング素子群S1~S6のうち1つでも動作が不安定になると,電力変換装置501は負荷であるモータ502に合った電力を供給することができなくなる。本実施例の電力変換装置501では,スイッチング素子群S1~S6が上述の閾値電圧の補償により安定して動作するため,電力変換装置および車両用駆動装置の高信頼化を実現できる。
 図6に,本実施例の電力変換装置501の保護システムのブロック図を示す。電力変換装置501では,スイッチング素子108の温度や電流が検出されて制御回路に入力され,演算結果に基づいてアラーム出力やゲート駆動電圧の制御が行われる。例えば,過熱や過電流が発生した場合に,全てのスイッチング素子108をオフにすることで電力変換装置501の動作を停止させることができる。電流検出には,シャント抵抗器や変流器(CT)などの電流検出器を用いることができる。電流検出器からは,ソースセンス配線パターン105を通して,ドレイン配線パターン106とソース配線パターン107の間を流れるメイン電流の数千~数万分の1程度のセンス電流が出力される。電流検出器を用いてセンス電流を検出することにより,メイン電流を推定することができる。また,各スイッチング素子108に電流センス素子および温度検出素子を内蔵させることで,保護システムが,並列接続されているスイッチング素子108間の温度差による閾値電圧の補償の状況をモニタすることが可能である。
 図7に本実施例の絶縁基板上の各チップの配置を示す。実施例1ではスイッチング素子108の内蔵ダイオードを還流ダイオードとして使用しているために,別途のダイオードチップは不要であったが,図7に示すように,本実施例では絶縁基板102上にダイオード112を別途搭載している。ここで,スイッチング素子108はMOSFETに限らない。スイッチング素子108を,IGBT(絶縁ゲートバイポーラトランジスタ)等の電流のオンとオフを切替える機能を有している素子とすることができる。特に,IGBTのようにスイッチング素子108が内蔵ダイオードを備えていない場合は,ダイオード112の搭載が必須である。
 スイッチング素子108の実装は実施例1と同様である。ダイオード112は,ダイオード112のカソードとスイッチング素子108のドレインが電気的に接続されるように,絶縁基板102上に形成されているドレイン配線パターン106上にはんだ等で接合される。ダイオード112のアノードは,アノードワイヤ113を通じてソース配線パターン107と接続され,スイッチング素子108のソースと電気的に接続されている。
 3つのスイッチング素子108が横一列に配置され,その隣に2つのダイオード112が縦に並ぶチップ配列が絶縁基板102上の2箇所にあるが,実施例1と同様に,スイッチング素子108の列の間の水平距離が大きいために,スイッチング素子108から発せられる熱の影響は列毎に独立に考えることができる。各列において,2つのスイッチング素子108に挟まれる図7の左から2番目の位置に配置されるスイッチング素子108と,ダイオード112とスイッチング素子108に挟まれる図7の左から3番目の位置に配置されるスイッチング素子108とは,図7の左端に配置されるスイッチング素子108よりも,隣接するチップからの発熱によって動作中の温度が高くなり易い。したがって,第1のスイッチング素子108aを左端に配置し,第1のスイッチング素子108aよりも閾値電圧が高い第2のスイッチング素子108bを第1のスイッチング素子108aよりも中央寄りの左から2番目及び3番目の位置に配置する。
 本実施例においても,実施例1と同様に放熱ベース101上に絶縁基板102をはんだ等で接合してパワーモジュール100を構成する。スイッチング素子108,またはダイオード112に電流が流れると電力損失が発生し,熱エネルギーは放熱ベース101の背面からヒートシンク等に放熱される。
 電力変換装置の動作中に,中央寄りに配置された第2のスイッチング素子108bは,左端に配置された第1のスイッチング素子108aよりも温度が高くなるが,同じ温度における閾値電圧が第1のスイッチング素子108aよりも高いために動作中は閾値電圧の差が補償され,電流バラツキが抑制される。これにより,電力変換装置の信頼性が向上する。
 本実施例では,スイッチング素子108の隣接について,実施例1および実施例2とはチップ配列を変えて説明する。
 図8に,本実施例のチップ配列を示す。4つのスイッチング素子108がドレイン配線パターン106上にはんだ等で接合されている。図8の左下から順に,第1のスイッチング素子108a,第1のスイッチング素子108aよりも閾値電圧の高い第2のスイッチング素子108b,第2のスイッチング素子108b,第1のスイッチング素子108aの順に配置されている。各スイッチング素子108に対し,中心をチップに描いた対角線の交点とし,直径をチップに描いた対角線の長さの2倍の長さとした円を定義し,円CI1~CI4として点線で円を描いた。
 それぞれの円内に存在するスイッチング素子108の数が多いほど,円の中心のスイッチング素子108は他のスイッチング素子108からの発熱の影響を受けて温度が上昇し易い。図8では,第2のスイッチング素子108bを囲む円CI2および円CI3には,2つの他のスイッチング素子108が存在し,第1のスイッチング素子108aを囲む円CI1およびCI4には,1つの他のスイッチング素子が存在する。そこで,図8では,円CI1の中心および円CI4の中心に配置されているチップを第1のスイッチング素子108aとして、円CI2の中心および円CI3の中心に配置されているチップを第2のスイッチング素子108bとして,電力変換装置の動作中に閾値電圧の差が発熱により補償されるようにしている。
 本実施例では,円CI1~CI4の直径をチップの対角線の長さの2倍の長さとして,各円内に他のスイッチング素子が存在すれば隣接するスイッチング素子と定義したが,円の直径の大きさは,実験や計算機実験で各スイッチング素子からの発熱の影響を見積もって決めることができる。また,本実施例ではチップを正方形としたが,チップが長方形の場合には,例えば,長方形のチップを中心とし,長方形の長辺に沿った方向を長軸に,長方形の短辺に沿った方向を短軸とした楕円を用いて,スイッチング素子が隣接するか否かを判断することができる。
 図9は,本実施例の電力変換装置および冷却系統の平面図である。図9の電力変換装置では,ヒートシンク114上にシリコングリース等が塗布され,塗布されたシリコングリース等の上からパワーモジュール900がネジ等でヒートシンク114に固定されている。放熱性能向上のため,ヒートシンク114の付近に冷却器として冷却ファン115が設けられている。ここで,空冷の冷却器である冷却ファン115からの冷却風の風下側に配置されたチップは風上側に配置されたチップよりも電力変換装置の動作中に高温になり易い。本実施例のパワーモジュール900では,第1のスイッチング素子108a’を風上側に配置し,第1のスイッチング素子108a’よりも閾値電圧が高い第2のスイッチング素子108b’を風下側に配置することによって,電力変換装置の動作中に閾値電圧の差が補償されて電流バラツキが抑制される。これにより,電力変換装置を高信頼化できる。また,本実施例の電力変換装置は車両用駆動装置に適用することができ,車両用駆動装置を高信頼化できる。
 100:パワーモジュール,101:放熱ベース,102:絶縁基板,103:絶縁層,104:ゲート配線パターン,105:ソースセンス配線パターン,106:ドレイン配線パターン,107:ソース配線パターン,108:スイッチング素子,108a:第1のスイッチング素子,108b:第2のスイッチング素子,109:ゲートワイヤ,110:ソースセンスワイヤ,111:ソースワイヤ,112:ダイオード,113:アノードワイヤ,114:ヒートシンク,115:冷却ファン。

Claims (15)

  1.  第1スイッチング素子と、
     前記第1スイッチング素子と並列に接続され、前記第1スイッチング素子よりも閾値電圧が高い第2スイッチング素子と、を有し、
     前記第2スイッチング素子の方が前記第1スイッチング素子よりも、動作中に高温になる箇所に実装されていることを特徴とするパワーモジュール。
  2.  請求項1に記載のパワーモジュールにおいて、
     前記第2スイッチング素子のチャネル長は、前記第1スイッチング素子のチャネル長よりも長いことを特徴とするパワーモジュール。
  3.  請求項1に記載のパワーモジュールにおいて、
     前記第1スイッチング素子および前記第2スイッチング素子は、SiC-MOSFETであることを特徴とするパワーモジュール。
  4.  請求項3に記載のパワーモジュールを有し、
     前記第1スイッチング素子の内蔵ダイオードおよび前記第2スイッチング素子の内蔵ダイオードが、還流ダイオードであることを特徴とする電力変換装置。
  5.  請求項4に記載の電力変換装置からモータへ電力を供給する車両用駆動装置。
  6.  空冷の冷却器と、
     前記冷却器に実装されている請求項1に記載のパワーモジュールと、を有し、
     前記第1スイッチング素子が、前記第2スイッチング素子よりも前記冷却器からの冷却風の風上側に実装されていることを特徴とする電力変換装置。
  7.  第1スイッチング素子と、
     前記第1スイッチング素子よりも閾値電圧が高い第2スイッチング素子と、
     前記第1スイッチング素子および前記第2スイッチング素子が実装されている絶縁基板と、を有し、
     前記第2スイッチング素子の方が前記第1スイッチング素子よりも、前記絶縁基板の中央寄りに実装されていることを特徴とするパワーモジュール。
  8.  請求項7に記載のパワーモジュールにおいて、
     前記第2スイッチング素子に隣接するスイッチング素子の数が、前記第1スイッチング素子に隣接するスイッチング素子の数よりも多いことを特徴とするパワーモジュール。
  9.  請求項7に記載のパワーモジュールにおいて、
     ダイオードが前記絶縁基板に実装されていることを特徴とするパワーモジュール。
  10.  請求項9に記載のパワーモジュールを有し,
     前記ダイオードが還流ダイオードであることを特徴とする電力変換装置。
  11.  請求項7に記載のパワーモジュールを有し、
     前記第1スイッチング素子の内蔵ダイオードおよび前記第2スイッチング素子の内蔵ダイオードが、還流ダイオードであることを特徴とする電力変換装置。
  12.  第1スイッチング素子と、
     第2スイッチング素子と、
     前記第1スイッチング素子および前記第2スイッチング素子よりも閾値電圧の高い第3スイッチング素子と、を有し、
     前記第1スイッチング素子と前記第2スイッチング素子との間に、前記第3スイッチング素子が実装されていることを特徴とするパワーモジュール。
  13.  請求項12に記載のパワーモジュールにおいて、
     前記第1スイッチング素子、前記第2スイッチング素子、および前記第3スイッチング素子は、SiC素子であることを特徴とするパワーモジュール。
  14.  請求項12に記載のパワーモジュールにおいて、
     前記第1スイッチング素子、前記第2スイッチング素子、および前記第3スイッチング素子は、窒化物半導体素子であることを特徴とするパワーモジュール。
  15.  請求項12に記載のパワーモジュールを有し、
     前記第1スイッチング素子の内蔵ダイオードおよび前記第2スイッチング素子の内蔵ダイオードが、還流ダイオードであることを特徴とする電力変換装置。
PCT/JP2015/057409 2015-03-13 2015-03-13 パワーモジュール,電力変換装置,および車両用駆動装置 WO2016147243A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/057409 WO2016147243A1 (ja) 2015-03-13 2015-03-13 パワーモジュール,電力変換装置,および車両用駆動装置
DE112015004772.7T DE112015004772T5 (de) 2015-03-13 2015-03-13 Leistungsmodul, elektrische Leistungsumsetzungsvorrichtung und Antriebsgerät für ein Fahrzeug
US15/527,089 US10115700B2 (en) 2015-03-13 2015-03-13 Power module, electrical power conversion device, and driving device for vehicle
JP2017505759A JP6356904B2 (ja) 2015-03-13 2015-03-13 パワーモジュール,電力変換装置,および車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057409 WO2016147243A1 (ja) 2015-03-13 2015-03-13 パワーモジュール,電力変換装置,および車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2016147243A1 true WO2016147243A1 (ja) 2016-09-22

Family

ID=56918549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057409 WO2016147243A1 (ja) 2015-03-13 2015-03-13 パワーモジュール,電力変換装置,および車両用駆動装置

Country Status (4)

Country Link
US (1) US10115700B2 (ja)
JP (1) JP6356904B2 (ja)
DE (1) DE112015004772T5 (ja)
WO (1) WO2016147243A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143030A (ja) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 電力変換装置の製造方法
US10978588B2 (en) 2019-09-04 2021-04-13 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097154A (zh) * 2021-03-22 2021-07-09 西安交通大学 一种双向开关功率模块及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175074A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 半導体装置
JP2011243847A (ja) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853612B2 (ja) * 2001-06-06 2006-12-06 松下電器産業株式会社 減衰器
JP2006296032A (ja) 2005-04-07 2006-10-26 Sumitomo Electric Ind Ltd 電力変換器
WO2007007670A1 (ja) * 2005-07-08 2007-01-18 Matsushita Electric Industrial Co., Ltd. 半導体装置および電気機器
JP4988784B2 (ja) * 2009-03-30 2012-08-01 株式会社日立製作所 パワー半導体装置
JP5395009B2 (ja) * 2010-07-30 2014-01-22 株式会社半導体理工学研究センター サブスレッショルドsramのための電源電圧制御回路及び制御方法
KR20160130222A (ko) * 2014-01-17 2016-11-10 유니버시티 오브 버지니아 페이턴트 파운데이션, 디/비/에이 유니버시티 오브 버지니아 라이센싱 & 벤처스 그룹 오프셋 보상된 제로 검출 및 피크 인덕터 전류 제어를 구비한 낮은 입력 전압 부스트 컨버터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175074A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 半導体装置
JP2011243847A (ja) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143030A (ja) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 電力変換装置の製造方法
US10978588B2 (en) 2019-09-04 2021-04-13 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP6356904B2 (ja) 2018-07-11
US20180026009A1 (en) 2018-01-25
JPWO2016147243A1 (ja) 2017-06-22
US10115700B2 (en) 2018-10-30
DE112015004772T5 (de) 2017-08-24

Similar Documents

Publication Publication Date Title
US11355477B2 (en) Power semiconductor module and power conversion device
US10580754B2 (en) Semiconductor module with temperature detecting element
JP6509621B2 (ja) 半導体装置
US10522517B2 (en) Half-bridge power semiconductor module and manufacturing method therefor
WO2013027819A1 (ja) 半導体モジュール
JP6605393B2 (ja) パワーモジュール、電力変換装置、及びパワーモジュールの製造方法
US10134718B2 (en) Power semiconductor module
WO2013018811A1 (ja) パワー半導体モジュール
CN105702638A (zh) 具有减小的形状因子和增强的热耗散的集成功率组件
JP6745991B2 (ja) 半導体パワーモジュール
TW201838336A (zh) 半導體裝置及轉換器系統
JP6356904B2 (ja) パワーモジュール,電力変換装置,および車両用駆動装置
US9812411B2 (en) Semiconductor device, inverter circuit, and drive device
JP2008218611A (ja) 半導体装置
US9950898B2 (en) Semiconductor device, inverter circuit, driving device, vehicle, and elevator
US11682606B2 (en) Semiconductor with integrated electrically conductive cooling channels
JP5563779B2 (ja) 半導体装置
JP2004134460A (ja) 半導体装置
US11515868B2 (en) Electronic circuit and semiconductor module
US20200343226A1 (en) 2-in-1 type chopper module
CN113795917A (zh) 半导体功率模块
JP6541896B1 (ja) 半導体モジュールおよび電力変換装置
CN111341749B (zh) 半导体模块
US20230197581A1 (en) Power semiconductor module and method of manufacturing the same
JP2013074634A (ja) インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505759

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527089

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004772

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885341

Country of ref document: EP

Kind code of ref document: A1