WO2016133017A1 - Stannous oxide powder and method for producing stannous oxide powder - Google Patents

Stannous oxide powder and method for producing stannous oxide powder Download PDF

Info

Publication number
WO2016133017A1
WO2016133017A1 PCT/JP2016/054118 JP2016054118W WO2016133017A1 WO 2016133017 A1 WO2016133017 A1 WO 2016133017A1 JP 2016054118 W JP2016054118 W JP 2016054118W WO 2016133017 A1 WO2016133017 A1 WO 2016133017A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide powder
stannous oxide
precipitate
acid
solution
Prior art date
Application number
PCT/JP2016/054118
Other languages
French (fr)
Japanese (ja)
Inventor
広隆 平野
琢磨 片瀬
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016010755A external-priority patent/JP6657991B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201680003782.1A priority Critical patent/CN107001065B/en
Priority to US15/539,302 priority patent/US10392262B2/en
Priority to KR1020177018294A priority patent/KR102272868B1/en
Priority to EP16752403.2A priority patent/EP3260420A4/en
Publication of WO2016133017A1 publication Critical patent/WO2016133017A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides

Definitions

  • the present invention relates to a stannous oxide powder used as a Sn raw material for solder, plating and the like and a method for producing a stannous oxide powder.
  • Sn is widely used as a plating material for forming a plating film on the surface of a metal material.
  • a plating material for forming a plating film on the surface of a metal material.
  • an electronic component material such as a lead frame and a connector
  • a plated copper material obtained by performing Sn plating or solder plating on the surface of a copper base material made of copper or a copper alloy is widely provided.
  • This plated copper material is also used in the above-described semiconductor device.
  • the tinplate material which formed Sn plating on the steel plate is conventionally used for various uses.
  • Patent Document 1 and Patent Document 2 provide stannous oxide powders that have a small amount of alkali and chlorine, and are easily soluble in acids.
  • the stannous oxide powder described in Patent Document 1 has a cubic shape, for example, as shown in FIG. 4, has a relatively small specific surface area, and an insufficient dissolution rate in the plating solution. It was. Also, the stannous oxide powder described in Patent Document 2 has a plate shape or a spherical shape, and similarly, the dissolution rate is insufficient.
  • the present invention has been made in view of the above-mentioned circumstances, and has a high dissolution rate in various acid solutions such as a plating solution, and a stannous oxide powder particularly suitable as a Sn supply material to the plating solution and the oxidation thereof. It aims at providing the manufacturing method of a stannous powder.
  • the stannous oxide powder according to one embodiment of the present invention is a particle body having a plurality of plate-like protrusions protruding outward and has an average particle diameter of 1 ⁇ m or more and 15 ⁇ m. It is characterized by being within the following range.
  • the stannous oxide powder which is one aspect of the present invention having such a structure, since it has a plurality of plate-like protrusions protruding outward, when added to the plating solution or the like Then, the plating solution or the like flows between the plate-like projections, and the contact between the plate-like projections and the plating solution or the like is promoted. Moreover, since the average particle diameter of this stannous oxide powder is in the range of 1 ⁇ m or more and 15 ⁇ m or less, the specific surface area is increased, and the contact with the plating solution or the like is promoted. Therefore, the stannous oxide powder which is one embodiment of the present invention has a significantly high dissolution rate in a plating solution or the like, and is particularly suitable as a Sn supply material to the plating solution or the like.
  • the specific surface area is preferably 1.0 m 2 / g or more.
  • the specific surface area is relatively large at 1.0 m 2 / g or more, contact with the plating solution or the like is promoted, and the dissolution rate in the plating solution or the like can be reliably increased.
  • the bulk density is preferably in the range of less than 1.5 g / cm 3 or more 2.0 g / cm 3. In this case, since the bulk density of the stannous oxide powder is within the above-mentioned range, handling becomes easy.
  • the alkali amount is preferably 10 mass ppm or less and the acid amount (excluding carbonic acid) is preferably 50 mass ppm or less.
  • the composition of the plating solution or the like can be prevented from changing even if it is added to the plating solution or the like as the Sn supply material. Carbonic acid does not need to be evaluated as an acid amount because it foams and escapes.
  • the stannous oxide powder which is 1 aspect of this invention it is preferable that carbonic acid contains 0.2 mass% or more.
  • the stannous oxide powder can be dissolved together with the foaming of carbonic acid, and the dissolution in the plating solution or the like can be further promoted. Moreover, the oxidation of stannous oxide powder can be suppressed.
  • mode of this invention is a manufacturing method of the stannous oxide powder which manufactures the above-mentioned stannous oxide powder, Comprising: Sn ion is contained in an acid liquid, Sn ion A Sn ion-containing acid solution forming step for obtaining an acid solution, and at least one alkaline solution selected from ammonium carbonate, ammonium bicarbonate, and aqueous ammonia is added to the Sn ion-containing acid solution to obtain a pH of 3 To 6 to maintain a first neutralization step for obtaining a Sn precipitate, a Sn precipitate separation step for separating the Sn precipitate from the Sn ion-containing acid solution, and the separated Sn precipitate, The Sn precipitate dispersion step for dispersing in the solvent liquid, the Sn precipitate dispersion liquid is maintained at 50 ° C. or lower, the alkaline liquid is added over 1 hour, and the pH is adjusted to 6-12.
  • the particle body has a plurality of plate-like protrusions protruding outward, the average particle diameter is in the range of 1 ⁇ m to 15 ⁇ m, and the plating is performed. It is possible to produce a stannous oxide powder that has a high dissolution rate in various acid solutions such as a solution and is particularly suitable as a Sn supply material to a plating solution.
  • a stannous oxide powder that has a high dissolution rate in various acid solutions such as a plating solution and is particularly suitable as a Sn supply material to the plating solution, and the production of this stannous oxide powder.
  • a method can be provided.
  • the stannous oxide powder 10 which is embodiment of this invention and this stannous oxide powder 10 is demonstrated.
  • the stannous oxide powder 10 according to the present embodiment is used as, for example, an Sn supply material for a plating solution used when Sn plating is performed.
  • the stannous oxide powder 10 according to the present embodiment is a particle body having a plurality of plate-like projections 11 projecting outward.
  • the plate-like projections 11 are arranged in layers with a space therebetween. That is, the stannous oxide powder 10 according to the present embodiment is a particle body having a plurality of plate-like protrusions 11 protruding outward and having a substantially spherical shape as a whole.
  • the number of the plate-like protrusions 11 is preferably 500 or less in one stannous oxide powder 10, but is not limited thereto.
  • the stannous oxide powder 10 according to the present embodiment has an average particle diameter in the range of 1 ⁇ m or more and 15 ⁇ m or less.
  • the average particle diameter (D50) in this embodiment was taken as the volume accumulation median diameter measured using the particle size distribution measuring apparatus (the model name: Microtrac MT3000 particle size distribution meter by MICROTRAC).
  • the particle size of the stannous oxide powder 10 is set in the range of 1 ⁇ m to 15 ⁇ m.
  • the lower limit of the average particle diameter of the stannous oxide powder 10 is preferably 2 ⁇ m or more.
  • the upper limit of the average particle diameter of the stannous oxide powder 10 is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less. .
  • the stannous oxide powder 10 which is this embodiment has a specific surface area of 1.0 m 2 / g or more.
  • the specific surface area of the stannous oxide powder 10 is measured using a BET flow method.
  • the specific surface area of the stannous oxide powder 10 is preferably 1.5 m 2 / g or more, and preferably 2.0 m 2 / g or more.
  • the upper limit of the specific surface area of the stannous oxide powder 10 is not particularly limited, but is preferably 10.0 m 2 / g or less. Further, the bulk density decreases due to the effect of the shape and can be made less than 2.0 g / cm 3, but if it is less than 1.5 g / cm 3 , the handling is bad.
  • the thickness of the plate-like projection portion 11 is set to 10 nm or more and 500 nm or less. Is preferred.
  • the upper limit of the thickness of the plate-like protrusion 11 is more preferably 100 nm or less.
  • the thickness of the plate-like protruding portion 11 is obtained by calculation by using the image obtained by SEM observation at a magnification of 20000 times and visually measuring the scale bar as a reference. Specifically, the thickness of the plate-like projection 11 in the SEM image is measured, and the actual thickness of the plate-like projection 11 is calculated from the ratio to the length of the scale bar.
  • the stannous oxide powder 10 has an alkali amount of 10 mass ppm or less and an acid amount (excluding carbonic acid) of 50 mass ppm or less.
  • the acid amount is defined by the acid used when the stannous oxide powder 10 is produced. When hydrochloric acid is used, the acid amount is chlorine, and when sulfuric acid is used, the acid amount is sulfate ion. When is used, it is the total value. Further, the amount of acid when nitric acid is used is the amount of nitrate ions. Carbonic acid is not evaluated as an acid amount because it is foamed and removed.
  • the amount of alkali was mainly the amount of residual ammonia component, and Na and K were evaluated as impurities because they were very small.
  • the amount of alkali is preferably 10 ppm by mass or less, and more preferably 5 ppm by mass or less.
  • the acid amount (excluding carbonic acid) is preferably 50 mass ppm or less, and more preferably 10 mass ppm or less.
  • Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn , Co, In, and Cd are each 1 ppm by mass or less. Further, the total content of Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, and Cd is less than 15 mass ppm, preferably 7.5. The mass is less than ppm.
  • Pb is an element that has characteristics similar to those of Sn and is difficult to separate from Sn.
  • Na and K are elements that may be mixed during the purification of the Sn raw material.
  • Fe, Ni, Cu, and Zn are elements that are easily mixed into a plating solution from an object to be plated or base plating.
  • Al, Mg, Ca, Cr, Mn, Co, In, and Cd are elements that may be mixed into the Sn raw material. Therefore, in the stannous oxide powder 10 used as the Sn supply material for the plating solution, it is possible to suppress the accumulation of impurities in the plating solution by reducing these impurity elements.
  • the stannous oxide powder 10 which is this embodiment contains 0.2 mass% or more of carbonic acid.
  • the solubility is further improved by dissolving the stannous oxide powder 10 while the carbonic acid is foamed.
  • the upper limit of the content of carbonic acid in the stannous oxide powder 10 is not particularly limited, but it is difficult to contain carbonic acid exceeding 1.0% by mass, so that it is 1.0% by mass or less. Is preferred.
  • Sn ion-containing acid solution forming step S01 Sn ion-containing acid solution forming step S01
  • Sn ion is contained in the acid solution to form a Sn ion-containing acid solution.
  • high-purity metal Sn purity 99.99 mass% or more
  • an acidic detergent Sn raw material washing step S11
  • oil and oxide on the surface of the metal Sn are removed, and cleaning is performed until a metallic luster appears on the surface of the metal Sn.
  • the washed metal Sn is electrodissolved in the acid solution to form a Sn ion-containing acid solution (electrolysis step S12).
  • the acid solution is not particularly limited, and methanesulfonic acid, hydrochloric acid, nitric acid, sulfuric acid, borofluoric acid, phenolsulfonic acid, alkanosulfonic acid, alkylsulfonic acid, and the like, and mixed acids thereof can be used.
  • the Sn concentration is preferably in the range of, for example, 50 g / L or more and 150 g / L or less, and is 100 to 110 g / L in this embodiment.
  • (First neutralization step S02) Next, by adding at least one alkaline solution selected from ammonium carbonate, ammonium bicarbonate, and aqueous ammonia to the Sn ion-containing acid solution and maintaining the pH at 3 to 6, an Sn precipitate ( To obtain tin hydroxide and the like. At this time, Sn is recovered as Sn precipitates (such as tin hydroxide), and elements such as Na, K, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, and Cd Remains in the Sn ion-containing acid solution. In this embodiment, the aqueous ammonium bicarbonate solution is added until the pH is in the range of 3.5-4.
  • Sn precipitate separation step S03 Next, the Sn precipitate (such as tin hydroxide) is separated from the Sn ion-containing acid solution.
  • Sn precipitate dispersion step S04 Next, the separated Sn precipitate (such as tin hydroxide) is dispersed with pure water and filtered two or three times to wash the Sn precipitate (such as tin hydroxide). Thereby, impurities adhering to the surface of the Sn precipitate (such as tin hydroxide) are removed. Then, the washed Sn precipitate (such as tin hydroxide) is dispersed in pure water.
  • Sn precipitate such as tin hydroxide
  • Acid addition step S05 Next, if necessary, hydrochloric acid or citric acid is added to the dispersion in which Sn precipitates (tin hydroxide or the like) are dispersed.
  • Sn precipitates tin hydroxide or the like
  • the acid component before the first neutralization step S02 in the Sn precipitate such as tin hydroxide
  • SnO stannous oxide
  • SnO sodium oxide
  • SnO sodium oxide
  • the second neutralization step S06 SnO (stannous oxide) is formed by dehydrating Sn precipitates (such as tin hydroxide).
  • an alkali solution containing carbonic acid such as ammonium carbonate or ammonium bicarbonate
  • the stannous oxide powder 10 contains carbonic acid.
  • an aqueous ammonium bicarbonate solution is added as an alkaline solution until the pH becomes 6 or more.
  • the temperature of the dispersion liquid in which the Sn precipitate (tin hydroxide or the like) is dispersed is set to 50 ° C. or less (temperature adjustment step S61).
  • An alkali solution is added to the dispersion at a temperature of 50 ° C. or lower over 1 hour or more until the pH is in the range of 6 to 12 (alkali addition step S62).
  • the pH is preferably about 6 to 8 in consideration of the amount of neutralizing agent used.
  • stannous oxide dissolves, so it is better to set it to 12 or less. Thereby, stannous oxide (SnO) is obtained.
  • the temperature of the dispersion liquid when adding the alkaline liquid exceeds 50 ° C.
  • the temperature of the dispersion liquid at the time of adding an alkaline liquid is set to 10 degreeC or more and 50 degrees C or less.
  • the temperature of the dispersion when adding the alkaline liquid is preferably 30 ° C. or lower.
  • heating is carried out to advance the dehydration reaction.
  • the effect of the residual acid component is small due to the two-stage neutralization, so the dehydration reaction is fast and heating is not required.
  • the addition time of the alkaline solution is shorter than 1 hour, there is a possibility that the particles do not have a plurality of plate-like protrusions 11 protruding outward. For this reason, in this embodiment, the addition time of the alkaline liquid is limited to 1 hour or more. In addition, in order to ensure the particle body having the plurality of plate-like protrusions 11 protruding outward, it is preferable that the addition time of the alkaline liquid is 1 hour 20 minutes or more. Moreover, although there is no limitation in particular in the upper limit of the addition time of an alkaline liquid, it is preferable to set it as 2 hours or less from a viewpoint of work efficiency.
  • the stannous oxide powder 10 which is this embodiment is manufactured by the above process.
  • the particle body has a plurality of plate-like protrusions 11 protruding outward. Therefore, when added to the plating solution, the plating solution flows between the plate-like projections 11 and the contact between the plate-like projections 11 and the plating solution is promoted. Moreover, since the average particle diameter of the stannous oxide powder 10 is in the range of 1 ⁇ m to 15 ⁇ m, the specific surface area is increased. Specifically, the specific surface area of the stannous oxide powder 10 can be 1.0 m 2 / g or more. From the above, in the stannous oxide powder 10 according to the present embodiment, the dissolution rate in the plating solution or the like can be dramatically improved.
  • the thickness of the plate-like projection 11 is in the range of 10 nm to 500 nm, the contact between the plate-like projection 11 and the plating solution can be promoted reliably, The solubility in the liquid can be improved reliably.
  • the bulk density is in the range of 1.5 g / cm 3 or more and less than 2.0 g / cm 3 , handling is easy.
  • the alkali amount is 10 mass ppm or less and the acid amount (excluding carbonic acid) is 50 mass ppm or less, it is added to the plating solution as an Sn supply material. Even if it changes, the composition of the plating solution can be suppressed.
  • the content of Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, and Cd is Since it is 1 mass ppm or less respectively, it can suppress that these impurity elements accumulate
  • the stannous oxide powder 10 of the present embodiment by containing carbon dioxide in an amount of 0.2% by mass or more, the stannous oxide powder 10 can be dissolved together with the foaming of carbonic acid, and dissolved in a plating solution or the like. Can be further promoted. In addition, the presence of carbonic acid expels surrounding oxygen and creates a carbonic acid atmosphere, so that oxidation of the stannous oxide powder 10 can be suppressed.
  • the alkaline liquid is added in the second neutralization step S06 in which the alkaline liquid is added and heated with respect to the dispersion liquid in which the Sn precipitate (such as tin hydroxide) is dispersed. Since the temperature of the dispersion is set to 50 ° C. or less and the addition time of the alkali solution is set to 1 hour or more, it is possible to suppress the stannous oxide particles generated by the second neutralization step S06 from becoming coarse, It is possible to form a particle body having a plurality of plate-like projections 11 projecting toward.
  • the Sn precipitate such as tin hydroxide
  • an alkaline solution (ammonium bicarbonate in the present embodiment) is added to the Sn ion-containing acid solution and the pH is maintained at 3 to 6, thereby forming a Sn precipitate (tin hydroxide or the like). Since the first neutralization step S02 to be obtained is provided, Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, Sn in the Sn precipitate (such as tin hydroxide) It becomes possible to reduce the content of In and Cd.
  • Sn precipitation separation process S03 which isolate
  • Precipitate dispersion step S04, and SnO (stannous oxide) from Sn precipitate (tin hydroxide, etc.) by adding an alkaline solution to the dispersion of Sn precipitate (tin hydroxide, etc.) and heating.
  • the acid addition process which adds hydrochloric acid or a citric acid with respect to the dispersion liquid of Sn precipitation (tin hydroxide etc.) between Sn precipitation dispersion
  • SnO stannous oxide
  • the Sn ion-containing acid solution forming step S01 has been described as one in which metal Sn is electrically dissolved, but the present invention is not limited to this, and the Sn ion-containing acid solution obtained by another method May be used. For this reason, it is also possible to recycle the acid-based tin plating solution.
  • the stannous oxide powder obtained as described above was evaluated as follows.
  • ⁇ Average particle diameter of stannous oxide powder The average particle diameter (D50) of the obtained stannous oxide powder was evaluated as a volume cumulative median diameter measured using a particle size distribution analyzer (Model name: Microtrac MT3000 particle size distribution meter manufactured by MICROTRAC). The evaluation results are shown in Table 1.
  • ⁇ Bulk density of stannous oxide powder The bulk density of the obtained stannous oxide powder was determined by a constant volume measurement method using a JIS Kasa specific gravity measuring instrument (manufactured by Tsutsui Riken Kikai Co., Ltd.). For details of the measurement method, first, the mass of the measurement container (stainless steel volume 25 mL) was measured with a scale. Next, the sample was put into a measuring container through a sieve (stainless steel diameter 2.5 mm) until it overflowed. At this time, vibration was not applied to the measurement container and the sample was not compressed. Thereafter, the powder that swelled from the upper end surface of the measurement container was ground using a grinding plate.
  • JIS Kasa specific gravity measuring instrument manufactured by Tsutsui Riken Kikai Co., Ltd.
  • the grinding plate was used by tilting backward from the direction of grinding so as not to compress the powder.
  • the entire measurement container was weighed with a scale, and the mass of the sample was calculated by subtracting the mass of the measurement container, and was calculated from the volume of the measurement container. The measurement results are shown in Table 1.
  • the ammonia component in the obtained stannous oxide powder was measured by an ion chromatogram to obtain an alkali amount.
  • the amount of acid in the stannous oxide powder produced using the tin chloride aqueous solution was evaluated as the amount of chlorine.
  • the amount of chlorine in the stannous oxide powder was measured by an acid dissolution turbidimetric method. In the acid dissolution turbidimetric method, stannous oxide powder is dissolved in an aqueous nitric acid solution, and the amount of silver chloride generated by adding the aqueous silver nitrate solution is quantified with a spectrophotometer (HITACHI, U-2910). The amount of chlorine in the tin powder was determined.
  • the acid amount in the stannous oxide powder manufactured using the tin sulfate aqueous solution was evaluated as a sulfate ion amount.
  • the amount of acid in the stannous oxide powder produced using a tin nitrate aqueous solution was evaluated as the amount of nitrate ions.
  • the amount of sulfate ions and nitrate ions in the stannous oxide powder was measured by ion chromatogram. The measurement results are shown in Table 2.
  • the temperature of the dispersion when adding alkali (ammonium bicarbonate) in the second neutralization step exceeds 50 ° C., and part of the obtained stannous oxide powder is It was not a particle body having a plurality of plate-like protrusions protruding toward the surface. For this reason, dissolution time became long and the amount of alkalis and chlorine increased.
  • the addition time of alkali (ammonium bicarbonate) in the second neutralization step is as short as 0.5 hours, and a part of the obtained stannous oxide powder protrudes outward. It was not a particle body having a plate-like protrusion. For this reason, dissolution time became long and the amount of alkalis and chlorine increased.
  • stannous oxide powder is obtained by one neutralization, and does not become a particle body having a plurality of plate-like protrusions protruding outward, for example, as shown in FIG. Thus, it became a plate shape. For this reason, the dissolution time became longer, and the amount of alkalis and sulfate ions increased.
  • stannous oxide powder is obtained by one-time neutralization and does not become a particle body having a plurality of plate-like protrusions protruding outward, for example, as shown in FIG. It became plate shape. For this reason, dissolution time became long and the amount of chlorine was small, but the amount of alkali was large.
  • a stannous oxide powder that has a high dissolution rate in various acid solutions such as a plating solution and is particularly suitable as a Sn supply material to the plating solution, and a method for producing the stannous oxide powder. Can do.

Abstract

Provided are: a stannous oxide powder which comprises particulate bodies having a plurality of plate-like projections that project outward and which has an average particle size in the range of 1 to 15 μm; and a method for producing the same. The stannous oxide powder has a fast dissolution rate to various acid liquids such as plating solutions and is especially suitable as an Sn feed for a plating solution.

Description

酸化第一錫粉末及び酸化第一錫粉末の製造方法Stannous oxide powder and method for producing stannous oxide powder
 本発明は、はんだやめっき等のSn原料として用いられる酸化第一錫粉末及び酸化第一錫粉末の製造方法に関する。
 本願は、2015年2月16日に、日本に出願された特願2015-027867号、及びに2016年1月22日に、日本に出願された特願2016-010755号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a stannous oxide powder used as a Sn raw material for solder, plating and the like and a method for producing a stannous oxide powder.
This application claims priority based on Japanese Patent Application No. 2015-027867 filed in Japan on February 16, 2015 and Japanese Patent Application No. 2016-010755 filed on January 22, 2016 in Japan. And the contents thereof are incorporated herein.
 Snは、金属材料の表面にめっき膜を形成するめっき材として広く使用されている。例えば、リードフレームやコネクタ等の電子部品材料として、銅または銅合金からなる銅基材の表面にSnめっきやはんだめっきを施しためっき付き銅材料が広く提供されている。なお、このめっき付き銅材料は、上述の半導体装置にも使用されている。
 また、鋼板の上にSnめっきを形成したブリキ材は、従来から様々な用途に使用されている。
Sn is widely used as a plating material for forming a plating film on the surface of a metal material. For example, as an electronic component material such as a lead frame and a connector, a plated copper material obtained by performing Sn plating or solder plating on the surface of a copper base material made of copper or a copper alloy is widely provided. This plated copper material is also used in the above-described semiconductor device.
Moreover, the tinplate material which formed Sn plating on the steel plate is conventionally used for various uses.
 ここで、Snめっきを行う場合、めっき液中の不純物がSnとともに析出することによりめっき膜の特性が変化してしまうおそれがあった。また、めっき液中の不純物はめっき性に大きく影響を与える。このため、不純物が低減されためっき液が要求されている。
 また、上述のめっき液にSnを供給するSn供給材として、通常、酸化第一錫の粉末等が用いられている。この酸化第一錫粉末においては、めっき液に対して速やかに溶解するとともに、不純物量が低減されていることが求められる。
 そこで、特許文献1や特許文献2には、アルカリ量、塩素量が少なく、かつ、酸に対して易溶解性である酸化第一錫粉末が提供されている。
Here, when performing Sn plating, there exists a possibility that the characteristic of a plating film may change because the impurity in a plating solution precipitates with Sn. Further, impurities in the plating solution greatly affect the plating property. For this reason, a plating solution with reduced impurities is required.
In addition, stannous oxide powder or the like is usually used as the Sn supply material for supplying Sn to the plating solution. This stannous oxide powder is required to dissolve quickly in the plating solution and to reduce the amount of impurities.
Therefore, Patent Document 1 and Patent Document 2 provide stannous oxide powders that have a small amount of alkali and chlorine, and are easily soluble in acids.
特開平11-310415号公報JP-A-11-310415 特開2013-079186号公報JP 2013-079186 A
 ところで、特許文献1に記載された酸化第一錫粉末においては、例えば図4に示すように、立方体形状をなしており、比表面積が比較的小さく、めっき液への溶解速度が不十分であった。
 また、特許文献2に記載された酸化第一錫粉末においても、プレート状や球状の形態をしており、同様に溶解速度が不十分であった。
Incidentally, the stannous oxide powder described in Patent Document 1 has a cubic shape, for example, as shown in FIG. 4, has a relatively small specific surface area, and an insufficient dissolution rate in the plating solution. It was.
Also, the stannous oxide powder described in Patent Document 2 has a plate shape or a spherical shape, and similarly, the dissolution rate is insufficient.
 この発明は、前述した事情に鑑みてなされたものであって、めっき液等の各種酸液への溶解速度が速く、めっき液へのSn供給材として特に適した酸化第一錫粉末及びこの酸化第一錫粉末の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and has a high dissolution rate in various acid solutions such as a plating solution, and a stannous oxide powder particularly suitable as a Sn supply material to the plating solution and the oxidation thereof. It aims at providing the manufacturing method of a stannous powder.
 上記の課題を解決するために、本発明の一態様である酸化第一錫粉末は、外方へ向けて突出する複数の板状突起部を有する粒子体とされ、平均粒径が1μm以上15μm以下の範囲内とされていることを特徴としている。 In order to solve the above-described problems, the stannous oxide powder according to one embodiment of the present invention is a particle body having a plurality of plate-like protrusions protruding outward and has an average particle diameter of 1 μm or more and 15 μm. It is characterized by being within the following range.
 このような構成とされた本発明の一態様である酸化第一錫粉末においては、外方へ向けて突出する複数の板状突起部を有しているので、めっき液等に添加した際に、めっき液等が板状突起部の間に流れ込み、板状突起部とめっき液等との接触が促進される。また、この酸化第一錫粉末の平均粒径が1μm以上15μm以下の範囲内とされているので、比表面積が大きくなり、めっき液等との接触が促進される。
 よって、本発明の一態様である酸化第一錫粉末は、めっき液等への溶解速度が飛躍的に速くなり、めっき液等へのSn供給材として特に適している。
In the stannous oxide powder which is one aspect of the present invention having such a structure, since it has a plurality of plate-like protrusions protruding outward, when added to the plating solution or the like Then, the plating solution or the like flows between the plate-like projections, and the contact between the plate-like projections and the plating solution or the like is promoted. Moreover, since the average particle diameter of this stannous oxide powder is in the range of 1 μm or more and 15 μm or less, the specific surface area is increased, and the contact with the plating solution or the like is promoted.
Therefore, the stannous oxide powder which is one embodiment of the present invention has a significantly high dissolution rate in a plating solution or the like, and is particularly suitable as a Sn supply material to the plating solution or the like.
 ここで、本発明の一態様である酸化第一錫粉末においては、比表面積が1.0m/g以上であることが好ましい。
 この場合、比表面積が1.0m/g以上と比較的大きくされているので、めっき液等との接触が促進され、めっき液等への溶解速度を確実に速くすることができる。
Here, in the stannous oxide powder which is one embodiment of the present invention, the specific surface area is preferably 1.0 m 2 / g or more.
In this case, since the specific surface area is relatively large at 1.0 m 2 / g or more, contact with the plating solution or the like is promoted, and the dissolution rate in the plating solution or the like can be reliably increased.
 また、本発明の一態様である酸化第一錫粉末においては、かさ密度が、1.5g/cm以上2.0g/cm未満の範囲内であることが好ましい。
 この場合、酸化第一錫粉末のかさ密度が上述の範囲内とされているので、取り扱いが容易となる。
In the oxidation of stannous powder which is one embodiment of the present invention, the bulk density is preferably in the range of less than 1.5 g / cm 3 or more 2.0 g / cm 3.
In this case, since the bulk density of the stannous oxide powder is within the above-mentioned range, handling becomes easy.
 さらに、本発明の一態様である酸化第一錫粉末においては、アルカリ量が10質量ppm以下、酸量(炭酸を除く)が50質量ppm以下とされていることが好ましい。
 この場合、アルカリ量及び酸量が、上述のように規定されているので、めっき液等にSn供給材として添加しても、めっき液等の組成が変化することを抑制できる。なお、炭酸は、発泡して抜けてしまうことから、酸量として評価しなくてもよい。
Furthermore, in the stannous oxide powder which is one embodiment of the present invention, the alkali amount is preferably 10 mass ppm or less and the acid amount (excluding carbonic acid) is preferably 50 mass ppm or less.
In this case, since the alkali amount and the acid amount are defined as described above, the composition of the plating solution or the like can be prevented from changing even if it is added to the plating solution or the like as the Sn supply material. Carbonic acid does not need to be evaluated as an acid amount because it foams and escapes.
 また、本発明の一態様である酸化第一錫粉末においては、炭酸を0.2質量%以上含むことが好ましい。
 この場合、炭酸の発泡とともに酸化第一錫粉末を溶解させることができ、めっき液等への溶解をさらに促進することができる。また、酸化第一錫粉末の酸化を抑制することができる。
Moreover, in the stannous oxide powder which is 1 aspect of this invention, it is preferable that carbonic acid contains 0.2 mass% or more.
In this case, the stannous oxide powder can be dissolved together with the foaming of carbonic acid, and the dissolution in the plating solution or the like can be further promoted. Moreover, the oxidation of stannous oxide powder can be suppressed.
 本発明の一態様である酸化第一錫粉末の製造方法は、上述の酸化第一錫粉末を製造する酸化第一錫粉末の製造方法であって、酸液にSnイオンを含有させてSnイオン含有酸液を得るSnイオン含有酸液形成工程と、前記Snイオン含有酸液に対して、炭酸アンモニウム、重炭酸アンモニウム、アンモニア水から選択されるいずれか1種以上のアルカリ液を添加してpH3~6に保持することにより、Sn沈殿物を得る第1中和工程と、前記Sn沈殿物を前記Snイオン含有酸液から分離するSn沈殿物分離工程と、分離された前記Sn沈殿物を、溶媒液に分散させるSn沈殿物分散工程と、前記Sn沈殿物の分散液を50℃以下に維持し、アルカリ液を1時間以上掛けて添加し、pHを6~12とすることにより、前記Sn沈殿物からSnOを得る第2中和工程と、を備えたことを特徴としている。 The manufacturing method of the stannous oxide powder which is one aspect | mode of this invention is a manufacturing method of the stannous oxide powder which manufactures the above-mentioned stannous oxide powder, Comprising: Sn ion is contained in an acid liquid, Sn ion A Sn ion-containing acid solution forming step for obtaining an acid solution, and at least one alkaline solution selected from ammonium carbonate, ammonium bicarbonate, and aqueous ammonia is added to the Sn ion-containing acid solution to obtain a pH of 3 To 6 to maintain a first neutralization step for obtaining a Sn precipitate, a Sn precipitate separation step for separating the Sn precipitate from the Sn ion-containing acid solution, and the separated Sn precipitate, The Sn precipitate dispersion step for dispersing in the solvent liquid, the Sn precipitate dispersion liquid is maintained at 50 ° C. or lower, the alkaline liquid is added over 1 hour, and the pH is adjusted to 6-12. S from the precipitate A second neutralization step to obtain O, and further comprising a are characterized.
 この構成の酸化第一錫粉末の製造方法によれば、外方へ向けて突出する複数の板状突起部を有する粒子体とされ、平均粒径が1μm以上15μm以下の範囲内とされ、めっき液等の各種酸液への溶解速度が速く、めっき液へのSn供給材として特に適した酸化第一錫粉末を製造することができる。 According to the manufacturing method of the stannous oxide powder having this configuration, the particle body has a plurality of plate-like protrusions protruding outward, the average particle diameter is in the range of 1 μm to 15 μm, and the plating is performed. It is possible to produce a stannous oxide powder that has a high dissolution rate in various acid solutions such as a solution and is particularly suitable as a Sn supply material to a plating solution.
 以上のように、本発明によれば、めっき液等の各種酸液への溶解速度が速く、めっき液へのSn供給材として特に適した酸化第一錫粉末及びこの酸化第一錫粉末の製造方法を提供することができる。 As described above, according to the present invention, a stannous oxide powder that has a high dissolution rate in various acid solutions such as a plating solution and is particularly suitable as a Sn supply material to the plating solution, and the production of this stannous oxide powder. A method can be provided.
本発明の実施形態である酸化第一錫粉末(実施例における本発明例1)のSEM観察写真である。It is a SEM observation photograph of the stannous oxide powder (Invention example 1 in an example) which is an embodiment of the present invention. 図1に示す酸化第一錫粉末の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the stannous oxide powder shown in FIG. 図2における第2中和工程のフロー図である。It is a flowchart of the 2nd neutralization process in FIG. 従来の酸化第一錫粉末のSEM観察写真である。It is a SEM observation photograph of the conventional stannous oxide powder. 実施例における本発明例7の酸化第一錫粉末のSEM観察写真である。It is a SEM observation photograph of the stannous oxide powder of the example 7 of this invention in an Example.
 以下に、本発明の実施形態である酸化第一錫粉末10及びこの酸化第一錫粉末10の製造方法について説明する。
 本実施形態である酸化第一錫粉末10は、例えば、Snめっきを行う際に使用されるめっき液へのSn供給材として使用される。
Below, the manufacturing method of the stannous oxide powder 10 which is embodiment of this invention and this stannous oxide powder 10 is demonstrated.
The stannous oxide powder 10 according to the present embodiment is used as, for example, an Sn supply material for a plating solution used when Sn plating is performed.
 本実施形態である酸化第一錫粉末10は、図1に示すように、外方へ向けて突出する複数の板状突起部11を有する粒子体とされており、その外表面においては、複数の板状突起部11が互いに間隔を空けて層状に配置されている。すなわち、本実施形態である酸化第一錫粉末10は、外方へ向けて突出する複数の板状突起部11が配置され、全体として概略球形をなす粒子体である。なお、板状突起部11は、一つの酸化第一錫粉末10において100枚以上配置されていることが好ましい。板状突起部11は、一つの酸化第一錫粉末10において500枚以下がよいが、これに限定されることはない。 As shown in FIG. 1, the stannous oxide powder 10 according to the present embodiment is a particle body having a plurality of plate-like projections 11 projecting outward. The plate-like projections 11 are arranged in layers with a space therebetween. That is, the stannous oxide powder 10 according to the present embodiment is a particle body having a plurality of plate-like protrusions 11 protruding outward and having a substantially spherical shape as a whole. In addition, it is preferable that 100 or more plate-like protrusions 11 are arranged in one stannous oxide powder 10. The number of the plate-like protrusions 11 is preferably 500 or less in one stannous oxide powder 10, but is not limited thereto.
 また、本実施形態である酸化第一錫粉末10は、その平均粒径が1μm以上15μm以下の範囲内とされている。なお、本実施形態における平均粒径(D50)は、粒度分布測定装置(MICROTRAC社製 型式名:マイクロトラックMT3000粒度分布計)を用いて測定された体積累積中位径とした。 Further, the stannous oxide powder 10 according to the present embodiment has an average particle diameter in the range of 1 μm or more and 15 μm or less. In addition, the average particle diameter (D50) in this embodiment was taken as the volume accumulation median diameter measured using the particle size distribution measuring apparatus (the model name: Microtrac MT3000 particle size distribution meter by MICROTRAC).
 ここで、酸化第一錫粉末10の平均粒径が1μm未満の場合には、酸化第一錫粉末10が凝集してしまい、めっき液との接触が阻害され、溶解が促進されないおそれがある。一方、酸化第一錫粉末10の平均粒径が15μmを超える場合には、比表面積が十分に大きくならず、溶解が促進されず溶解速度が不十分となるおそれがある。
 そこで、本実施形態では、酸化第一錫粉末10の粒径を1μm以上15μm以下の範囲内に設定している。なお、酸化第一錫粉末10の凝集を抑制してめっき液への溶解速度を向上させるためには、酸化第一錫粉末10の平均粒径の下限を2μm以上とすることが好ましい。また、比表面積を大きくしてめっき液への溶解速度を向上させるためには、酸化第一錫粉末10の平均粒径の上限を10μm以下とすることが好ましく、7μm以下とすることがさらに好ましい。
Here, when the average particle diameter of the stannous oxide powder 10 is less than 1 μm, the stannous oxide powder 10 agglomerates, the contact with the plating solution may be inhibited, and dissolution may not be promoted. On the other hand, when the average particle diameter of the stannous oxide powder 10 exceeds 15 μm, the specific surface area is not sufficiently increased, and dissolution may not be promoted and the dissolution rate may be insufficient.
Therefore, in the present embodiment, the particle size of the stannous oxide powder 10 is set in the range of 1 μm to 15 μm. In order to suppress the aggregation of the stannous oxide powder 10 and improve the dissolution rate in the plating solution, the lower limit of the average particle diameter of the stannous oxide powder 10 is preferably 2 μm or more. In order to increase the specific surface area and improve the dissolution rate in the plating solution, the upper limit of the average particle diameter of the stannous oxide powder 10 is preferably 10 μm or less, and more preferably 7 μm or less. .
 また、本実施形態である酸化第一錫粉末10は、比表面積が1.0m/g以上とされている。酸化第一錫粉末10の比表面積は、BET流動法を用いて測定する。酸化第一錫粉末10の比表面積を1.0m/g以上とすることにより、めっき液への溶解速度を確実に向上させることができる。
 めっき液への溶解速度をさらに確実に向上させるためには、酸化第一錫粉末10の比表面積を1.5m/g以上とすることが好ましく、2.0m/g以上とすることがさらに好ましい。なお、酸化第一錫粉末10の比表面積の上限は特に制限はないが、10.0m/g以下とすることが好ましい。
 また、かさ密度は、形状の効果により低下し、2.0g/cm未満とすることが可能となるが、1.5g/cm未満では取り扱いが悪い。
Moreover, the stannous oxide powder 10 which is this embodiment has a specific surface area of 1.0 m 2 / g or more. The specific surface area of the stannous oxide powder 10 is measured using a BET flow method. By setting the specific surface area of the stannous oxide powder 10 to 1.0 m 2 / g or more, the dissolution rate in the plating solution can be reliably improved.
In order to further improve the dissolution rate in the plating solution, the specific surface area of the stannous oxide powder 10 is preferably 1.5 m 2 / g or more, and preferably 2.0 m 2 / g or more. Further preferred. The upper limit of the specific surface area of the stannous oxide powder 10 is not particularly limited, but is preferably 10.0 m 2 / g or less.
Further, the bulk density decreases due to the effect of the shape and can be made less than 2.0 g / cm 3, but if it is less than 1.5 g / cm 3 , the handling is bad.
 ここで、板状突起部11の厚さが10nm未満の場合、あるいは、板状突起部11の厚さが500nmを超える場合には、めっき液等との接触が不十分となって、溶解が促進されないおそれがある。
 そこで、板状突起部11とめっき液等とを十分に接触させて、めっき液等への溶解を確実に促進させるためには、板状突起部11の厚さを10nm以上500nm以下とすることが好ましい。なお、板状突起部11の厚さの上限は100nm以下とすることがさらに好ましい。
 ここで、本実施形態においては、板状突起部11の厚さを、倍率20000倍でSEM観察した画像を用いて、スケールバーを基準にして目視で測定して計算により求めた。具体的には、SEM画像の板状突起部11の厚さを測定し、スケールバーの長さとの比率から実際の板状突起部11の厚さを計算する。
Here, when the thickness of the plate-like projection portion 11 is less than 10 nm, or when the thickness of the plate-like projection portion 11 exceeds 500 nm, the contact with the plating solution or the like becomes insufficient and dissolution occurs. May not be promoted.
Therefore, in order to sufficiently bring the plate-like protrusion 11 and the plating solution into contact with each other and to surely promote dissolution in the plating solution or the like, the thickness of the plate-like protrusion 11 is set to 10 nm or more and 500 nm or less. Is preferred. The upper limit of the thickness of the plate-like protrusion 11 is more preferably 100 nm or less.
Here, in the present embodiment, the thickness of the plate-like protruding portion 11 is obtained by calculation by using the image obtained by SEM observation at a magnification of 20000 times and visually measuring the scale bar as a reference. Specifically, the thickness of the plate-like projection 11 in the SEM image is measured, and the actual thickness of the plate-like projection 11 is calculated from the ratio to the length of the scale bar.
 また、本実施形態である酸化第一錫粉末10は、アルカリ量が10質量ppm以下、酸量(炭酸を除く)が50質量ppm以下とされている。
 本実施形態においては、酸量は、酸化第一錫粉末10を製造する際に用いた酸によって定義され、塩酸を用いた場合は塩素量となり、硫酸を用いた場合は硫酸イオン量となり、両者を用いた場合はその合計値となる。また、硝酸を用いた場合の酸量は、硝酸イオン量となる。なお、炭酸は、発泡して抜けることから、酸量として評価しない。
 また、アルカリ量は主に残留するアンモニア成分量とし、Na、Kは微量であるため、不純物として評価した。
 ここで、アルカリ量は10質量ppm以下であることが好ましく、5質量ppm以下であることがさらに好ましい。また、酸量(炭酸を除く)は50質量ppm以下であることが好ましく、10質量ppm以下であることがさらに好ましい。
In addition, the stannous oxide powder 10 according to the present embodiment has an alkali amount of 10 mass ppm or less and an acid amount (excluding carbonic acid) of 50 mass ppm or less.
In the present embodiment, the acid amount is defined by the acid used when the stannous oxide powder 10 is produced. When hydrochloric acid is used, the acid amount is chlorine, and when sulfuric acid is used, the acid amount is sulfate ion. When is used, it is the total value. Further, the amount of acid when nitric acid is used is the amount of nitrate ions. Carbonic acid is not evaluated as an acid amount because it is foamed and removed.
Further, the amount of alkali was mainly the amount of residual ammonia component, and Na and K were evaluated as impurities because they were very small.
Here, the amount of alkali is preferably 10 ppm by mass or less, and more preferably 5 ppm by mass or less. The acid amount (excluding carbonic acid) is preferably 50 mass ppm or less, and more preferably 10 mass ppm or less.
 さらに、本実施形態である酸化第一錫粉末10においては、その他の不純物についても低減されており、例えばNa,K,Pb,Fe,Ni,Cu,Zn,Al,Mg,Ca,Cr,Mn,Co,In,Cdの含有量が、それぞれ1質量ppm以下とされている。
 また、これらNa,K,Pb,Fe,Ni,Cu,Zn,Al,Mg,Ca,Cr,Mn,Co,In,Cdの合計含有量が15質量ppm未満とされ、好ましくは、7.5質量ppm未満とされている。
Further, in the stannous oxide powder 10 according to the present embodiment, other impurities are also reduced. For example, Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn , Co, In, and Cd are each 1 ppm by mass or less.
Further, the total content of Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, and Cd is less than 15 mass ppm, preferably 7.5. The mass is less than ppm.
 ここで、Pbは、Snと特性が近似しており、Snから分離することが困難な元素である。また、Na,Kは、Sn原料の精製時に混入するおそれがある元素である。Fe,Ni,Cu,Znは、被めっき物や下地めっきからめっき液中に混入しやすい元素である。Al,Mg,Ca,Cr,Mn,Co,In,Cdは、Sn原料中に混入するおそれがある元素である。
 よって、めっき液のSn供給材として使用される酸化第一錫粉末10において、これらの不純物元素を低減することにより、めっき液中の不純物の蓄積を抑制することが可能となる。
Here, Pb is an element that has characteristics similar to those of Sn and is difficult to separate from Sn. Na and K are elements that may be mixed during the purification of the Sn raw material. Fe, Ni, Cu, and Zn are elements that are easily mixed into a plating solution from an object to be plated or base plating. Al, Mg, Ca, Cr, Mn, Co, In, and Cd are elements that may be mixed into the Sn raw material.
Therefore, in the stannous oxide powder 10 used as the Sn supply material for the plating solution, it is possible to suppress the accumulation of impurities in the plating solution by reducing these impurity elements.
 さらに、本実施形態である酸化第一錫粉末10は、炭酸を0.2質量%以上含んでいることが好ましい。炭酸を0.2質量%以上含有することで、炭酸が発泡しながら酸化第一錫粉末10が溶解することで、溶解性がさらに向上する。また、炭酸により、酸化第一錫粉末10の酸化を抑制することも可能となる。
 ここで、溶解性をさらに向上させるとともに酸化を抑制するためには、炭酸を0.3質量%以上含有することが好ましく、0.5質量%以上含有することがさらに好ましい。なお、酸化第一錫粉末10における炭酸の含有量の上限は特に制限はないが、1.0質量%を超える炭酸を含有させることは困難であることから、1.0質量%以下とすることが好ましい。
Furthermore, it is preferable that the stannous oxide powder 10 which is this embodiment contains 0.2 mass% or more of carbonic acid. By containing the carbonic acid in an amount of 0.2% by mass or more, the solubility is further improved by dissolving the stannous oxide powder 10 while the carbonic acid is foamed. Moreover, it becomes possible to suppress the oxidation of the stannous oxide powder 10 by carbonic acid.
Here, in order to further improve the solubility and suppress oxidation, it is preferable to contain carbonic acid in an amount of 0.3% by mass or more, and more preferably 0.5% by mass or more. The upper limit of the content of carbonic acid in the stannous oxide powder 10 is not particularly limited, but it is difficult to contain carbonic acid exceeding 1.0% by mass, so that it is 1.0% by mass or less. Is preferred.
 次に、本実施形態である酸化第一錫粉末10の製造方法について、図2及び図3のフロー図を参照して説明する。 Next, a method for producing the stannous oxide powder 10 according to the present embodiment will be described with reference to the flowcharts of FIGS.
(Snイオン含有酸液形成工程S01)
 まず、酸液にSnイオンを含有させてSnイオン含有酸液を形成する。本実施形態では、高純度の金属Sn(純度99.99mass%以上)を準備し、この金属Snの表面を酸性洗剤で洗浄する(Sn原料洗浄工程S11)。このとき、金属Sn表面の油分と酸化物を除去し、金属Snの表面に金属光沢が出るまで洗浄する。
 次に、酸液に、洗浄した金属Snを電気溶解し、Snイオン含有酸液を形成する(電気溶解工程S12)。このとき、酸液としては、特に限定はなく、メタンスルホン酸、塩酸、硝酸、硫酸、ホウフッ酸、フェノールスルホン酸、アルカノースルホン酸、アルキルスルホン酸等やこれらの混酸を用いることができる。また、Snの濃度は、例えば50g/L以上150g/L以下の範囲内とすることが好ましく、本実施形態では、100~110g/Lとしている。なお、Snイオン含有酸液として、上述の酸液を有するSnめっき液を用いてもよい。
(Sn ion-containing acid solution forming step S01)
First, Sn ion is contained in the acid solution to form a Sn ion-containing acid solution. In this embodiment, high-purity metal Sn (purity 99.99 mass% or more) is prepared, and the surface of this metal Sn is washed with an acidic detergent (Sn raw material washing step S11). At this time, oil and oxide on the surface of the metal Sn are removed, and cleaning is performed until a metallic luster appears on the surface of the metal Sn.
Next, the washed metal Sn is electrodissolved in the acid solution to form a Sn ion-containing acid solution (electrolysis step S12). At this time, the acid solution is not particularly limited, and methanesulfonic acid, hydrochloric acid, nitric acid, sulfuric acid, borofluoric acid, phenolsulfonic acid, alkanosulfonic acid, alkylsulfonic acid, and the like, and mixed acids thereof can be used. Further, the Sn concentration is preferably in the range of, for example, 50 g / L or more and 150 g / L or less, and is 100 to 110 g / L in this embodiment. In addition, you may use Sn plating liquid which has the above-mentioned acid solution as Sn ion containing acid solution.
(第1中和工程S02)
 次に、Snイオン含有酸液に対して、炭酸アンモニウム、重炭酸アンモニウム、アンモニア水から選択されるいずれか1種以上のアルカリ液を添加してpH3~6に保持することにより、Sn沈殿物(水酸化錫等)を得る。このとき、Snは、Sn沈殿物(水酸化錫等)として回収されるとともに、Na,K,Fe,Ni,Cu,Zn,Al,Mg,Ca,Cr,Mn,Co,In,Cdといった元素は、Snイオン含有酸液中に残存する。
 なお、本実施形態では、重炭酸アンモニウム水溶液を、pHが3.5~4の範囲となるまで添加している。
(First neutralization step S02)
Next, by adding at least one alkaline solution selected from ammonium carbonate, ammonium bicarbonate, and aqueous ammonia to the Sn ion-containing acid solution and maintaining the pH at 3 to 6, an Sn precipitate ( To obtain tin hydroxide and the like. At this time, Sn is recovered as Sn precipitates (such as tin hydroxide), and elements such as Na, K, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, and Cd Remains in the Sn ion-containing acid solution.
In this embodiment, the aqueous ammonium bicarbonate solution is added until the pH is in the range of 3.5-4.
(Sn沈殿物分離工程S03)
 次に、Sn沈殿物(水酸化錫等)をSnイオン含有酸液から分離する。
(Sn precipitate separation step S03)
Next, the Sn precipitate (such as tin hydroxide) is separated from the Sn ion-containing acid solution.
(Sn沈殿物分散工程S04)
 次に、分離したSn沈殿物(水酸化錫等)に対して純水による分散とろ過を2~3回繰り返し実施し、Sn沈殿物(水酸化錫等)の洗浄を行う。これにより、Sn沈殿物(水酸化錫等)の表面に付着した不純物を除去する。そして、洗浄後のSn沈殿物(水酸化錫等)を純水中に分散させる。
(Sn precipitate dispersion step S04)
Next, the separated Sn precipitate (such as tin hydroxide) is dispersed with pure water and filtered two or three times to wash the Sn precipitate (such as tin hydroxide). Thereby, impurities adhering to the surface of the Sn precipitate (such as tin hydroxide) are removed. Then, the washed Sn precipitate (such as tin hydroxide) is dispersed in pure water.
(酸添加工程S05)
 次に、必要に応じて、Sn沈殿物(水酸化錫等)を分散させた分散液に対して、塩酸又はクエン酸を添加する。この酸添加工程S05により、Sn沈殿物(水酸化錫等)中の第1中和工程S02以前の酸成分が分離される。
(Acid addition step S05)
Next, if necessary, hydrochloric acid or citric acid is added to the dispersion in which Sn precipitates (tin hydroxide or the like) are dispersed. By this acid addition step S05, the acid component before the first neutralization step S02 in the Sn precipitate (such as tin hydroxide) is separated.
(第2中和工程S06)
 次に、Sn沈殿物(水酸化錫等)を分散させた分散液に対して、アルカリ液を添加して加熱することにより、Sn沈殿物(水酸化錫等)からSnO(酸化第一錫)を得る。この第2中和工程S06では、Sn沈殿物(水酸化錫等)を脱水することにより、SnO(酸化第一錫)を形成している。ここで、アルカリ液として、炭酸アンモニウム、重炭酸アンモニウム等の炭酸を含むものを添加した場合に、酸化第一錫粉末10に炭酸が含有される。
 本実施形態では、アルカリ液として重炭酸アンモニウム水溶液をpHが6以上となるまで添加する。
(Second neutralization step S06)
Next, an alkaline solution is added to the dispersion liquid in which the Sn precipitate (tin hydroxide, etc.) is dispersed and heated, so that the SnO (stannous oxide) is converted from the Sn precipitate (tin hydroxide, etc.). Get. In the second neutralization step S06, SnO (stannous oxide) is formed by dehydrating Sn precipitates (such as tin hydroxide). Here, when an alkali solution containing carbonic acid such as ammonium carbonate or ammonium bicarbonate is added, the stannous oxide powder 10 contains carbonic acid.
In this embodiment, an aqueous ammonium bicarbonate solution is added as an alkaline solution until the pH becomes 6 or more.
 詳述すると、この第2中和工程S06においては、まず、Sn沈殿物(水酸化錫等)を分散させた分散液の温度を50℃以下とする(温度調整工程S61)。
 温度が50℃以下とされた分散液に対して、アルカリ液を1時間以上掛けて添加し、pHを6~12の範囲内となるまで添加する(アルカリ添加工程S62)。なお、pHは高くても問題ないが、中和剤の使用量を考慮するとpHは6~8程度とすることが好ましい。また、pHが高すぎると酸化第一錫が溶解するため12以下とした方が良い。
 これにより、酸化第一錫(SnO)が得られる。
Specifically, in the second neutralization step S06, first, the temperature of the dispersion liquid in which the Sn precipitate (tin hydroxide or the like) is dispersed is set to 50 ° C. or less (temperature adjustment step S61).
An alkali solution is added to the dispersion at a temperature of 50 ° C. or lower over 1 hour or more until the pH is in the range of 6 to 12 (alkali addition step S62). Although there is no problem even if the pH is high, the pH is preferably about 6 to 8 in consideration of the amount of neutralizing agent used. Further, if the pH is too high, stannous oxide dissolves, so it is better to set it to 12 or less.
Thereby, stannous oxide (SnO) is obtained.
 ここで、アルカリ液を添加する際の分散液の温度が50℃を超える場合には、外方へ向けて突出する複数の板状突起部11を有する粒子体とならないおそれがある。このため、本実施形態では、アルカリ液を添加する際の分散液の温度を10℃以上50℃以下に設定している。なお、外方へ向けて突出する複数の板状突起部11を有する粒子体を確実に得るためには、アルカリ液を添加する際の分散液の温度は、30℃以下とすることが好ましい。また、従来の方法では脱水反応を進めるために加熱を行うが、本発明においては2段中和により残酸成分の影響が少ないため、脱水反応が早く、加熱を必要としない。  Here, when the temperature of the dispersion liquid when adding the alkaline liquid exceeds 50 ° C., there is a possibility that the particles having the plurality of plate-like protrusions 11 protruding outward will not be formed. For this reason, in this embodiment, the temperature of the dispersion liquid at the time of adding an alkaline liquid is set to 10 degreeC or more and 50 degrees C or less. In order to reliably obtain a particle body having a plurality of plate-like projections 11 projecting outward, the temperature of the dispersion when adding the alkaline liquid is preferably 30 ° C. or lower. In the conventional method, heating is carried out to advance the dehydration reaction. However, in the present invention, the effect of the residual acid component is small due to the two-stage neutralization, so the dehydration reaction is fast and heating is not required.
 また、アルカリ液の添加時間が1時間より短い場合には、外方へ向けて突出する複数の板状突起部11を有する粒子体とならないおそれがある。このため、本実施形態では、アルカリ液の添加時間を1時間以上に限定している。なお、確実に、外方へ向けて突出する複数の板状突起部11を有する粒子体とするためには、アルカリ液の添加時間を1時間20分以上とすることが好ましい。また、アルカリ液の添加時間の上限に特に限定はないが、作業効率の観点から2時間以下とすることが好ましい。 In addition, when the addition time of the alkaline solution is shorter than 1 hour, there is a possibility that the particles do not have a plurality of plate-like protrusions 11 protruding outward. For this reason, in this embodiment, the addition time of the alkaline liquid is limited to 1 hour or more. In addition, in order to ensure the particle body having the plurality of plate-like protrusions 11 protruding outward, it is preferable that the addition time of the alkaline liquid is 1 hour 20 minutes or more. Moreover, although there is no limitation in particular in the upper limit of the addition time of an alkaline liquid, it is preferable to set it as 2 hours or less from a viewpoint of work efficiency.
(洗浄・乾燥工程S07)
 次に、得られたSnO(酸化第一錫)に対して純水による分散とろ過を2~3回繰り返し実施し、SnO(酸化第一錫)の洗浄を行う。これにより、SnO(酸化第一錫)の表面に付着したアンモニウム塩等を除去する。そして、洗浄後のSnO(酸化第一錫)をろ過・乾燥する。
 以上の工程により、本実施形態である酸化第一錫粉末10が製造される。
(Washing / drying step S07)
Next, the obtained SnO (stannous oxide) is dispersed with pure water and filtered two to three times to wash SnO (stannous oxide). Thereby, the ammonium salt etc. adhering to the surface of SnO (stannous oxide) are removed. Then, the washed SnO (stannous oxide) is filtered and dried.
The stannous oxide powder 10 which is this embodiment is manufactured by the above process.
 以上のような構成とされた本実施形態である酸化第一錫粉末10によれば、図1に示すように、外方へ向けて突出する複数の板状突起部11を有する粒子体とされているので、めっき液中に添加した場合に、めっき液が板状突起部11の間に流れ込み、板状突起部11とめっき液との接触が促進される。また、酸化第一錫粉末10の平均粒径が1μm以上15μm以下の範囲内とされているので、比表面積が大きくなる。具体的には、酸化第一錫粉末10の比表面積を1.0m/g以上とすることが可能となる。
 以上のことから、本実施形態である酸化第一錫粉末10においては、めっき液等への溶解速度を飛躍的に向上させることができる。
 さらに、本実施形態では、板状突起部11の厚さが10nm以上500nm以下の範囲内とされているので、板状突起部11とめっき液との接触を確実に促進させることができ、めっき液への溶解性を確実に向上させることができる。
 また、本実施形態の酸化第一錫粉末10においては、かさ密度が1.5g/cm以上2.0g/cm未満の範囲内とされているので、取り扱いが容易である。
According to the stannous oxide powder 10 of the present embodiment configured as described above, as shown in FIG. 1, the particle body has a plurality of plate-like protrusions 11 protruding outward. Therefore, when added to the plating solution, the plating solution flows between the plate-like projections 11 and the contact between the plate-like projections 11 and the plating solution is promoted. Moreover, since the average particle diameter of the stannous oxide powder 10 is in the range of 1 μm to 15 μm, the specific surface area is increased. Specifically, the specific surface area of the stannous oxide powder 10 can be 1.0 m 2 / g or more.
From the above, in the stannous oxide powder 10 according to the present embodiment, the dissolution rate in the plating solution or the like can be dramatically improved.
Furthermore, in the present embodiment, since the thickness of the plate-like projection 11 is in the range of 10 nm to 500 nm, the contact between the plate-like projection 11 and the plating solution can be promoted reliably, The solubility in the liquid can be improved reliably.
Moreover, in the stannous oxide powder 10 of this embodiment, since the bulk density is in the range of 1.5 g / cm 3 or more and less than 2.0 g / cm 3 , handling is easy.
 さらに、本実施形態の酸化第一錫粉末10においては、アルカリ量が10質量ppm以下、酸量(炭酸を除く)が50質量ppm以下とされているので、めっき液にSn供給材として添加しても、めっき液の組成が変化することを抑制できる。
 また、本実施形態の酸化第一錫粉末10においては、例えばNa,K,Pb,Fe,Ni,Cu,Zn,Al,Mg,Ca,Cr,Mn,Co,In,Cdの含有量が、それぞれ1質量ppm以下とされているので、これらの不純物元素がめっき液中に蓄積されることを抑制でき、めっき液の劣化を抑制できる。
Furthermore, in the stannous oxide powder 10 of this embodiment, since the alkali amount is 10 mass ppm or less and the acid amount (excluding carbonic acid) is 50 mass ppm or less, it is added to the plating solution as an Sn supply material. Even if it changes, the composition of the plating solution can be suppressed.
In the stannous oxide powder 10 of the present embodiment, for example, the content of Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, and Cd is Since it is 1 mass ppm or less respectively, it can suppress that these impurity elements accumulate | store in a plating solution, and can suppress deterioration of a plating solution.
 また、本実施形態の酸化第一錫粉末10においては、炭酸を0.2質量%以上含むことにより、炭酸の発泡とともに酸化第一錫粉末10を溶解することができ、めっき液等への溶解をさらに促進することができる。また、炭酸が存在することで周辺の酸素が追い出され、炭酸雰囲気となるため、酸化第一錫粉末10の酸化を抑制することができる。 Further, in the stannous oxide powder 10 of the present embodiment, by containing carbon dioxide in an amount of 0.2% by mass or more, the stannous oxide powder 10 can be dissolved together with the foaming of carbonic acid, and dissolved in a plating solution or the like. Can be further promoted. In addition, the presence of carbonic acid expels surrounding oxygen and creates a carbonic acid atmosphere, so that oxidation of the stannous oxide powder 10 can be suppressed.
 さらに、本実施形態においては、Sn沈殿物(水酸化錫等)を分散させた分散液に対して、アルカリ液を添加して加熱する第2中和工程S06において、アルカリ液を添加する際の分散液の温度を50℃以下とし、アルカリ液の添加時間を1時間以上としているので、この第2中和工程S06によって生成する酸化第一錫の粒子が粗大化することを抑制でき、外方へ向けて突出する複数の板状突起部11を有する粒子体を形成することが可能となる。 Furthermore, in the present embodiment, when the alkaline liquid is added in the second neutralization step S06 in which the alkaline liquid is added and heated with respect to the dispersion liquid in which the Sn precipitate (such as tin hydroxide) is dispersed. Since the temperature of the dispersion is set to 50 ° C. or less and the addition time of the alkali solution is set to 1 hour or more, it is possible to suppress the stannous oxide particles generated by the second neutralization step S06 from becoming coarse, It is possible to form a particle body having a plurality of plate-like projections 11 projecting toward.
 また、本実施形態においては、Snイオン含有酸液に対してアルカリ液(本実施形態では、重炭酸アンモニウム)を添加してpH3~6に保持することによりSn沈殿物(水酸化錫等)を得る第1中和工程S02を備えているので、Sn沈殿物(水酸化錫等)中のNa,K,Pb,Fe,Ni,Cu,Zn,Al,Mg,Ca,Cr,Mn,Co,In,Cdの含有量を低減することが可能となる。 In the present embodiment, an alkaline solution (ammonium bicarbonate in the present embodiment) is added to the Sn ion-containing acid solution and the pH is maintained at 3 to 6, thereby forming a Sn precipitate (tin hydroxide or the like). Since the first neutralization step S02 to be obtained is provided, Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, Sn in the Sn precipitate (such as tin hydroxide) It becomes possible to reduce the content of In and Cd.
 そして、このSn沈殿物(水酸化錫等)をSnイオン含有酸液から分離するSn沈殿物分離工程S03と、分離したSn沈殿物(水酸化錫等)を純水等の溶媒液に分散させる沈殿物分散工程S04と、Sn沈殿物(水酸化錫等)の分散液に対してアルカリ液を添加して加熱することによりSn沈殿物(水酸化錫等)からSnO(酸化第一錫)を得る第2中和工程S06と、を備えているので、Na,K,Pb,Fe,Ni,Cu,Zn,Al,Mg,Ca,Cr,Mn,Co,In,Cdの含有量を低減した酸化第一錫粉末10を効率的に得ることが可能となる。 And Sn precipitation separation process S03 which isolate | separates this Sn precipitate (tin hydroxide etc.) from Sn ion containing acid liquid, and disperse | distributes the separated Sn precipitate (tin hydroxide etc.) to solvent liquids, such as a pure water. Precipitate dispersion step S04, and SnO (stannous oxide) from Sn precipitate (tin hydroxide, etc.) by adding an alkaline solution to the dispersion of Sn precipitate (tin hydroxide, etc.) and heating. Second neutralization step S06 to be obtained, the content of Na, K, Pb, Fe, Ni, Cu, Zn, Al, Mg, Ca, Cr, Mn, Co, In, Cd was reduced. It becomes possible to obtain the stannous oxide powder 10 efficiently.
 また、本実施形態では、Sn沈殿物分散工程S04と第2中和工程S06との間に、Sn沈殿物(水酸化錫等)の分散液に対して塩酸又はクエン酸を添加する酸添加工程S05を備えているので、Sn沈殿物(水酸化錫等)中に第1中和工程S02以前の酸成分が含まれていても、この酸成分を除去することができ、その後の第2中和工程S06においてSnO(酸化第一錫)を効率的に形成することが可能となる。 Moreover, in this embodiment, the acid addition process which adds hydrochloric acid or a citric acid with respect to the dispersion liquid of Sn precipitation (tin hydroxide etc.) between Sn precipitation dispersion | distribution process S04 and 2nd neutralization process S06. Since S05 is provided, even if an acid component before the first neutralization step S02 is contained in the Sn precipitate (such as tin hydroxide), this acid component can be removed, and then the second middle In the sum step S06, SnO (stannous oxide) can be efficiently formed.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、Snイオン含有酸液形成工程S01において、金属Snを電気溶解するものとして説明したが、これに限定されることはなく、他の方法によって得られたSnイオン含有酸液を用いてもよい。このため、酸系の錫めっき液をリサイクルすることも可能である。
 また、Sn沈殿物分散工程S04と第2中和工程S06との間に、塩酸又はクエン酸を添加する酸添加工程S05を備えたものとして説明したが、この酸添加工程S05を省略してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the Sn ion-containing acid solution forming step S01 has been described as one in which metal Sn is electrically dissolved, but the present invention is not limited to this, and the Sn ion-containing acid solution obtained by another method May be used. For this reason, it is also possible to recycle the acid-based tin plating solution.
Moreover, although it demonstrated as having the acid addition process S05 which adds hydrochloric acid or a citric acid between Sn precipitation dispersion | distribution process S04 and 2nd neutralization process S06, even if this acid addition process S05 was abbreviate | omitted Good.
 以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。 Hereinafter, the results of a confirmation experiment performed to confirm the effectiveness of the present invention will be described.
 本発明例1~4及び比較例1,2においては、第1中和工程として、塩酸錫水溶液に重炭酸アンモニウムを添加してpH4にまで中和した。第1中和工程において、重炭酸アンモニウムを添加する時の塩酸錫水溶液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。得られたケーキを洗浄してSn沈殿物を得て、このSn沈殿物を純水で再分散させた。次に、第2中和工程として、Sn沈殿物の分散液に重炭酸アンモニウムを添加してpH7まで中和した後、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。なお、第2中和工程において、重炭酸アンモニウムを添加する時の分散液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。 In Invention Examples 1 to 4 and Comparative Examples 1 and 2, as the first neutralization step, ammonium bicarbonate was added to a tin hydrochloride aqueous solution to neutralize to pH 4. In the first neutralization step, the temperature of the tin hydrochloride aqueous solution when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were set as the conditions shown in Table 1. The obtained cake was washed to obtain an Sn precipitate, and this Sn precipitate was redispersed with pure water. Next, as a second neutralization step, after adding ammonium bicarbonate to the Sn precipitate dispersion to neutralize to pH 7, the resulting cake is washed and dried to obtain stannous oxide powder. Obtained. In the second neutralization step, the temperature of the dispersion when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were the conditions shown in Table 1.
 本発明例5においては、第1中和工程として、硫酸錫水溶液に重炭酸アンモニウムを添加してpH4にまで中和した。第1中和工程において、重炭酸アンモニウムを添加する時の硫酸錫水溶液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。得られたケーキを洗浄してSn沈殿物を得て、このSn沈殿物を純水で再分散させた。次に、塩酸を添加してSn沈殿物を溶解させた後、第2中和工程として、重炭酸アンモニウムを添加してpH7まで中和した後、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。なお、第2中和工程において、重炭酸アンモニウムを添加する時の分散液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。 In Invention Example 5, as the first neutralization step, ammonium bicarbonate was added to the aqueous tin sulfate solution to neutralize to pH 4. In the first neutralization step, the temperature of the aqueous tin sulfate solution when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were the conditions shown in Table 1. The obtained cake was washed to obtain an Sn precipitate, and this Sn precipitate was redispersed with pure water. Next, hydrochloric acid is added to dissolve the Sn precipitate, and as a second neutralization step, ammonium bicarbonate is added to neutralize to pH 7, and then the resulting cake is washed and dried. A stannous oxide powder was obtained. In the second neutralization step, the temperature of the dispersion when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were the conditions shown in Table 1.
 本発明例6においては、第1中和工程として、硝酸錫水溶液に炭酸アンモニウムを添加してpH4にまで中和した。第1中和工程において、炭酸アンモニウムを添加する時の硝酸錫水溶液の温度、及び、炭酸アンモニウムの添加時間を表1に示す条件とした。得られたケーキを洗浄してSn沈殿物を得て、このSn沈殿物を純水で再分散させた。次に、塩酸を添加してSn沈殿物を溶解させた後、第2中和工程として、炭酸アンモニウムを添加してpH7まで中和した後、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。なお、第2中和工程において、炭酸アンモニウムを添加する時の分散液の温度、及び、炭酸アンモニウムの添加時間を表1に示す条件とした。 In Invention Example 6, as the first neutralization step, ammonium carbonate was added to the aqueous tin nitrate solution to neutralize to pH 4. In the first neutralization step, the temperature of the aqueous tin nitrate solution when adding ammonium carbonate and the addition time of ammonium carbonate were the conditions shown in Table 1. The obtained cake was washed to obtain an Sn precipitate, and this Sn precipitate was redispersed with pure water. Next, after adding hydrochloric acid to dissolve the Sn precipitate, as a second neutralization step, after adding ammonium carbonate and neutralizing to pH 7, the resulting cake was washed and dried, A stannous oxide powder was obtained. In the second neutralization step, the temperature of the dispersion when adding ammonium carbonate and the addition time of ammonium carbonate were the conditions shown in Table 1.
 本発明例7においては、第1中和工程として、塩酸錫水溶液に重炭酸アンモニウムを添加してpH4にまで中和した。第1中和工程において、重炭酸アンモニウムを添加する時の塩酸錫水溶液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。得られたケーキを洗浄してSn沈殿物を得て、このSn沈殿物を純水で再分散させた。次に、第2中和工程として、Sn沈殿物の分散液にアンモニア水を添加してpH7まで中和した後、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。なお、第2中和工程において、アンモニア水を添加する時の分散液の温度、及び、アンモニア水の添加時間を表1に示す条件とした。 In Invention Example 7, as the first neutralization step, ammonium bicarbonate was added to the aqueous tin hydrochloride solution to neutralize to pH 4. In the first neutralization step, the temperature of the tin hydrochloride aqueous solution when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were set as the conditions shown in Table 1. The obtained cake was washed to obtain an Sn precipitate, and this Sn precipitate was redispersed with pure water. Next, as a second neutralization step, aqueous ammonia is added to the Sn precipitate dispersion to neutralize to pH 7, and the resulting cake is washed and dried to obtain stannous oxide powder. It was. In the second neutralization step, the temperature of the dispersion when adding the ammonia water and the addition time of the ammonia water were the conditions shown in Table 1.
 本発明例8においては、第1中和工程として、硫酸錫水溶液に重炭酸アンモニウムを添加してpH4にまで中和した。第1中和工程において、重炭酸アンモニウムを添加する時の硫酸錫水溶液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。得られたケーキを洗浄してSn沈殿物を得て、このSn沈殿物を純水で再分散させた。次に、第2中和工程として、Sn沈殿物の分散液に重炭酸アンモニウムを添加してpH7まで中和した後、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。なお、第2中和工程において、重炭酸アンモニウムを添加する時の分散液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。 In Invention Example 8, as the first neutralization step, ammonium bicarbonate was added to the aqueous tin sulfate solution to neutralize to pH 4. In the first neutralization step, the temperature of the aqueous tin sulfate solution when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were the conditions shown in Table 1. The obtained cake was washed to obtain an Sn precipitate, and this Sn precipitate was redispersed with pure water. Next, as a second neutralization step, after adding ammonium bicarbonate to the Sn precipitate dispersion to neutralize to pH 7, the resulting cake is washed and dried to obtain stannous oxide powder. Obtained. In the second neutralization step, the temperature of the dispersion when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were the conditions shown in Table 1.
 本発明例9においては、第1中和工程として、硝酸錫水溶液に炭酸アンモニウムを添加してpH4にまで中和した。第1中和工程において、炭酸アンモニウムを添加する時の硝酸錫水溶液の温度、及び、炭酸アンモニウムの添加時間を表1に示す条件とした。得られたケーキを洗浄してSn沈殿物を得て、このSn沈殿物を純水で再分散させた。次に、第2中和工程として、Sn沈殿物の分散液に炭酸アンモニウムを添加してpH7まで中和した後、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。なお、第2中和工程において、炭酸アンモニウムを添加する時の分散液の温度、及び、炭酸アンモニウムの添加時間を表1に示す条件とした。 In Invention Example 9, as the first neutralization step, ammonium carbonate was added to the aqueous tin nitrate solution to neutralize it to pH 4. In the first neutralization step, the temperature of the aqueous tin nitrate solution when adding ammonium carbonate and the addition time of ammonium carbonate were the conditions shown in Table 1. The obtained cake was washed to obtain an Sn precipitate, and this Sn precipitate was redispersed with pure water. Next, as a second neutralization step, ammonium carbonate is added to the Sn precipitate dispersion to neutralize it to pH 7, and the resulting cake is washed and dried to obtain stannous oxide powder. It was. In the second neutralization step, the temperature of the dispersion when adding ammonium carbonate and the addition time of ammonium carbonate were the conditions shown in Table 1.
 比較例3、4においては、中和工程として、硫酸錫水溶液に重炭酸アンモニウムを添加してpH7にまで加熱しながら中和し、得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。
 また、比較例5においては、中和工程として塩酸錫水溶液に重炭酸アンモニウムを添加してpH9にまで加熱しながら中和し、中和終了後に懸濁液を100℃で加熱して1時間保持することにより得られたケーキを洗浄し、乾燥することにより、酸化第一錫粉末を得た。
 なお、中和工程において、重炭酸アンモニウムを添加する時の分散液の温度、及び、重炭酸アンモニウムの添加時間を表1に示す条件とした。すなわち、比較例3,4,5では、1回の中和工程によって酸化第一錫粉末を得た。
In Comparative Examples 3 and 4, as a neutralization step, ammonium bicarbonate was added to a tin sulfate aqueous solution and neutralized while heating to pH 7, and the resulting cake was washed and dried to obtain a first oxide. Tin powder was obtained.
In Comparative Example 5, as a neutralization step, ammonium bicarbonate was added to an aqueous tin hydrochloride solution to neutralize while heating to pH 9, and after completion of neutralization, the suspension was heated at 100 ° C. and held for 1 hour. The cake obtained by washing was washed and dried to obtain stannous oxide powder.
In the neutralization step, the temperature of the dispersion when adding ammonium bicarbonate and the addition time of ammonium bicarbonate were the conditions shown in Table 1. That is, in Comparative Examples 3, 4, and 5, stannous oxide powder was obtained by a single neutralization step.
 上述のようにして得られた酸化第一錫粉末について、以下のように評価した。 The stannous oxide powder obtained as described above was evaluated as follows.
<粒子形状>
 得られた酸化第一錫粉末を、倍率5000倍でSEM観察し、その粒子形状を確認した。全ての粉末が「外方へ向けて突出する複数の板状突起部を有する粒子体」となっている場合を「A」とし、一部でもプレート状の粒子を含むものを「B」とした。評価結果を表1に示す。
<Particle shape>
The obtained stannous oxide powder was observed by SEM at a magnification of 5000 times to confirm the particle shape. The case where all the powders are “particle bodies having a plurality of plate-like protrusions projecting outward” is “A”, and the powder containing some plate-like particles is “B”. . The evaluation results are shown in Table 1.
<酸化第一錫粉末の平均粒径>
 得られた酸化第一錫粉末の平均粒径(D50)を、粒度分布測定装置(MICROTRAC社製 型式名:マイクロトラックMT3000粒度分布計)を用いて測定された体積累積中位径として評価した。評価結果を表1に示す。
<Average particle diameter of stannous oxide powder>
The average particle diameter (D50) of the obtained stannous oxide powder was evaluated as a volume cumulative median diameter measured using a particle size distribution analyzer (Model name: Microtrac MT3000 particle size distribution meter manufactured by MICROTRAC). The evaluation results are shown in Table 1.
<酸化第一錫粉末の比表面積>
 得られた酸化第一錫粉末の比表面積を、BET流動法(Macsorb HM model-1201)によって測定した。測定結果を表1に示す。
<Specific surface area of stannous oxide powder>
The specific surface area of the obtained stannous oxide powder was measured by the BET flow method (Macsorb HM model-1201). The measurement results are shown in Table 1.
<酸化第一錫粉末のかさ密度>
 得られた酸化第一錫粉末のかさ密度は、JISカサ比重測定器(筒井理化学器械社製)を用いて定容積測定法により求めた。測定方法の詳細は、まず、測定容器(ステンレス製 容積25mL)の質量をはかりによって量った。次に、測定容器にふるい(ステンレス製 直径2.5mm)を通して試料をあふれるまで入れた。この時、測定容器に振動を加えたり、試料を圧縮したりしないようにした。その後、測定容器の上端面から盛り上がった粉末を、すり切り板を使ってすり切った。この時、すり切り板は粉末を圧縮しないようすり切る方向から後ろへ傾斜させて使用した。最後に、測定容器ごと質量をはかりで量り、測定容器の質量を差し引いて試料の質量を計算し、測定容器の容積から算出した。測定結果を表1に示す。
<Bulk density of stannous oxide powder>
The bulk density of the obtained stannous oxide powder was determined by a constant volume measurement method using a JIS Kasa specific gravity measuring instrument (manufactured by Tsutsui Riken Kikai Co., Ltd.). For details of the measurement method, first, the mass of the measurement container (stainless steel volume 25 mL) was measured with a scale. Next, the sample was put into a measuring container through a sieve (stainless steel diameter 2.5 mm) until it overflowed. At this time, vibration was not applied to the measurement container and the sample was not compressed. Thereafter, the powder that swelled from the upper end surface of the measurement container was ground using a grinding plate. At this time, the grinding plate was used by tilting backward from the direction of grinding so as not to compress the powder. Finally, the entire measurement container was weighed with a scale, and the mass of the sample was calculated by subtracting the mass of the measurement container, and was calculated from the volume of the measurement container. The measurement results are shown in Table 1.
<酸化第一錫粉末の炭酸量>
 得られた酸化第一錫粉末中の炭酸量をイオンクロマトグラムによって測定した。測定結果を表1に示す。
<Carbonate content of stannous oxide powder>
The amount of carbonic acid in the obtained stannous oxide powder was measured by an ion chromatogram. The measurement results are shown in Table 1.
<溶解性の評価>
 200mlビーカー(HARIO社製)の中に100g/lのアルキンスルホン酸100mlを入れ、25℃に保持した状態で、上述の酸化第一錫粉末を1g投入し、撹拌した。撹拌は、長さ30mmの棒状の回転子(アズワン社製)を用いて、撹拌速度を500rpmとした。
 そして、投入した酸化第一錫粉末が分散して懸濁化した後に、完全に溶解して液が透明に変化するまでに要した時間を評価した。評価結果を表2に示す。
<Evaluation of solubility>
In a 200 ml beaker (manufactured by HARIO), 100 g / l of alkynesulfonic acid 100 ml was put, and 1 g of the above stannous oxide powder was added and stirred while maintaining at 25 ° C. Stirring was performed using a rod-shaped rotor (manufactured by ASONE) with a length of 30 mm and a stirring speed of 500 rpm.
Then, after the added stannous oxide powder was dispersed and suspended, the time required for completely dissolving and changing the liquid to transparent was evaluated. The evaluation results are shown in Table 2.
<アルカリ量及び酸量の測定>
 得られた酸化第一錫粉末中のアンモニア成分をイオンクロマトグラムによって測定し、アルカリ量とした。
 塩酸錫水溶液を用いて製造された酸化第一錫粉末中の酸量は、塩素量として評価した。酸化第一錫粉末中の塩素量は、酸溶解比濁法によって測定した。酸溶解比濁法では、酸化第一錫粉末を硝酸水溶液に溶解し、硝酸銀水溶液を添加して発生した塩化銀の量を分光光度計(HITACHI社製、U-2910)によって定量し、酸化第一錫粉末中の塩素量を求めた。
 また、硫酸錫水溶液を用いて製造された酸化第一錫粉末中の酸量は、硫酸イオン量として評価した。硝酸錫水溶液を用いて製造された酸化第一錫粉末中の酸量は、硝酸イオン量として評価した。酸化第一錫粉末中の硫酸イオン量と硝酸イオン量は、イオンクロマトグラムによって測定した。
 測定結果を表2に示す。
<Measurement of alkali amount and acid amount>
The ammonia component in the obtained stannous oxide powder was measured by an ion chromatogram to obtain an alkali amount.
The amount of acid in the stannous oxide powder produced using the tin chloride aqueous solution was evaluated as the amount of chlorine. The amount of chlorine in the stannous oxide powder was measured by an acid dissolution turbidimetric method. In the acid dissolution turbidimetric method, stannous oxide powder is dissolved in an aqueous nitric acid solution, and the amount of silver chloride generated by adding the aqueous silver nitrate solution is quantified with a spectrophotometer (HITACHI, U-2910). The amount of chlorine in the tin powder was determined.
Moreover, the acid amount in the stannous oxide powder manufactured using the tin sulfate aqueous solution was evaluated as a sulfate ion amount. The amount of acid in the stannous oxide powder produced using a tin nitrate aqueous solution was evaluated as the amount of nitrate ions. The amount of sulfate ions and nitrate ions in the stannous oxide powder was measured by ion chromatogram.
The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1においては、第2中和工程でアルカリ(重炭酸アンモニウム)を添加するときの分散液の温度が50℃を超えており、得られた酸化第一錫粉末の一部が、外方へ向けて突出する複数の板状突起部を有する粒子体となっていなかった。このため、溶解時間が長くなり、アルカリ量及び塩素量が多くなった。
 比較例2においては、第2中和工程におけるアルカリ(重炭酸アンモニウム)の添加時間が0.5時間と短く、得られた酸化第一錫粉末の一部が、外方へ向けて突出する複数の板状突起部を有する粒子体となっていなかった。このため、溶解時間が長くなり、アルカリ量及び塩素量が多くなった。
In Comparative Example 1, the temperature of the dispersion when adding alkali (ammonium bicarbonate) in the second neutralization step exceeds 50 ° C., and part of the obtained stannous oxide powder is It was not a particle body having a plurality of plate-like protrusions protruding toward the surface. For this reason, dissolution time became long and the amount of alkalis and chlorine increased.
In Comparative Example 2, the addition time of alkali (ammonium bicarbonate) in the second neutralization step is as short as 0.5 hours, and a part of the obtained stannous oxide powder protrudes outward. It was not a particle body having a plate-like protrusion. For this reason, dissolution time became long and the amount of alkalis and chlorine increased.
 比較例3、4においては、1回の中和で酸化第一錫粉末を得ており、外方へ向けて突出する複数の板状突起部を有する粒子体とならず、例えば図4に示すように、プレート形状となった。このため、溶解時間が長くなり、アルカリ量及び硫酸イオン量が多くなった。
 比較例5においては、1回の中和で酸化第一錫粉末を得ており、外方へ向けて突出する複数の板状突起部を有する粒子体とならず、例えば図4に示すように、プレート形状となった。このため、溶解時間が長くなり、塩素量は少なかったが、アルカリ量は多くなった。
In Comparative Examples 3 and 4, stannous oxide powder is obtained by one neutralization, and does not become a particle body having a plurality of plate-like protrusions protruding outward, for example, as shown in FIG. Thus, it became a plate shape. For this reason, the dissolution time became longer, and the amount of alkalis and sulfate ions increased.
In Comparative Example 5, stannous oxide powder is obtained by one-time neutralization and does not become a particle body having a plurality of plate-like protrusions protruding outward, for example, as shown in FIG. It became plate shape. For this reason, dissolution time became long and the amount of chlorine was small, but the amount of alkali was large.
 これに対して、本発明例1~9においては、図1(本発明例1)及び図5(本発明例7)に示すように、外方へ向けて突出する複数の板状突起部を有する粒子体とされており、溶解時間が短く、溶解性に優れていることが確認された。また、アルカリ量及び酸量(炭酸を除く)が少なく、めっき液の組成に大きな影響を与えないことが確認された。
 また、本発明例8,9においては塩酸を使用せずに製造しているため、塩素量は検出できないほど少量となった。塩素量の少ない酸化第一錫粉末を製造するためには、この方法が最も効果が高い。 
On the other hand, as shown in FIGS. 1 (Invention Example 1) and FIG. 5 (Invention Example 7), in the inventive examples 1 to 9, a plurality of plate-like protrusions protruding outward are provided. It was confirmed that the particles had a short dissolution time and excellent solubility. Further, it was confirmed that the alkali amount and acid amount (excluding carbonic acid) are small and do not greatly affect the composition of the plating solution.
In Examples 8 and 9 of the present invention, since the production was performed without using hydrochloric acid, the amount of chlorine was so small that it could not be detected. This method is most effective for producing stannous oxide powder with a small amount of chlorine.
 さらに、炭酸を0.2質量%以上含む本発明例1~6,および8,9においては、炭酸の含有量が0.05質量%未満である本発明例7と比較して、溶解性がさらに向上していることが確認された。 Further, in Invention Examples 1 to 6, and 8, 9 containing 0.2% by mass or more of carbonic acid, the solubility was higher than that of Invention Example 7 in which the content of carbonic acid was less than 0.05% by mass. Further improvement was confirmed.
 本発明によれば、めっき液等の各種酸液への溶解速度が速く、めっき液へのSn供給材として特に適した酸化第一錫粉末及びこの酸化第一錫粉末の製造方法を提供することができる。 According to the present invention, there is provided a stannous oxide powder that has a high dissolution rate in various acid solutions such as a plating solution and is particularly suitable as a Sn supply material to the plating solution, and a method for producing the stannous oxide powder. Can do.
10 酸化第一錫粉末
11 板状突起部
10 Stannous oxide powder 11 Plate-like protrusion

Claims (6)

  1.  外方へ向けて突出する複数の板状突起部を有する粒子体とされ、平均粒径が1μm以上15μm以下の範囲内とされていることを特徴とする酸化第一錫粉末。 A stannous oxide powder characterized in that it has a plurality of plate-like projections protruding outward and has an average particle size in the range of 1 μm to 15 μm.
  2.  比表面積が1.0m/g以上であることを特徴とする請求項1に記載の酸化第一錫粉末。 2. The stannous oxide powder according to claim 1, wherein the specific surface area is 1.0 m < 2 > / g or more.
  3.  かさ密度が、1.5g/cm以上2.0g/cm未満の範囲内であることを特徴とする請求項1又は請求項2に記載の酸化第一錫粉末。 3. The stannous oxide powder according to claim 1, wherein the bulk density is in a range of 1.5 g / cm 3 or more and less than 2.0 g / cm 3 .
  4.  アルカリ量が10質量ppm以下、炭酸を除く酸量が50質量ppm以下とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の酸化第一錫粉末。 The stannous oxide powder according to any one of claims 1 to 3, wherein an alkali amount is 10 mass ppm or less and an acid amount excluding carbonic acid is 50 mass ppm or less.
  5.  炭酸を0.2質量%以上含むことを特徴とする請求項1から請求項4のいずれか一項に記載の酸化第一錫粉末。 The stannous oxide powder according to any one of claims 1 to 4, further comprising 0.2% by mass or more of carbonic acid.
  6.  請求項1から請求項5のいずれか一項に記載の酸化第一錫粉末を製造する酸化第一錫粉末の製造方法であって、
     酸液にSnイオンを含有させてSnイオン含有酸液を得るSnイオン含有酸液形成工程と、
     前記Snイオン含有酸液に対して、炭酸アンモニウム、重炭酸アンモニウム、アンモニア水から選択されるいずれか1種以上のアルカリ液を添加してpH3~6に保持することにより、Sn沈殿物を得る第1中和工程と、
     前記Sn沈殿物を前記Snイオン含有酸液から分離するSn沈殿物分離工程と、
     分離された前記Sn沈殿物を、溶媒液に分散させるSn沈殿物分散工程と、
     前記Sn沈殿物の分散液を50℃以下に維持し、アルカリ液を1時間以上掛けて添加し、pHを6~12とすることにより、前記Sn沈殿物からSnOを得る第2中和工程と、
     を備えたことを特徴とする酸化第一錫粉末の製造方法。
    It is a manufacturing method of the stannous oxide powder which manufactures the stannous oxide powder as described in any one of Claims 1-5,
    A Sn ion-containing acid solution forming step of obtaining Sn ion-containing acid solution by containing Sn ions in the acid solution;
    By adding at least one alkaline solution selected from ammonium carbonate, ammonium bicarbonate, and aqueous ammonia to the Sn ion-containing acid solution and maintaining the pH at 3 to 6, a Sn precipitate is obtained. 1 neutralization step;
    A Sn precipitate separation step of separating the Sn precipitate from the Sn ion-containing acid solution;
    A Sn precipitate dispersion step of dispersing the separated Sn precipitate in a solvent liquid;
    A second neutralization step of obtaining SnO from the Sn precipitate by maintaining the dispersion of the Sn precipitate at 50 ° C. or lower, adding an alkaline solution over 1 hour, and adjusting the pH to 6-12; ,
    A method for producing stannous oxide powder, comprising:
PCT/JP2016/054118 2015-02-16 2016-02-12 Stannous oxide powder and method for producing stannous oxide powder WO2016133017A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680003782.1A CN107001065B (en) 2015-02-16 2016-02-12 Stannous oxide powder and method for producing stannous oxide powder
US15/539,302 US10392262B2 (en) 2015-02-16 2016-02-12 Stannous oxide powder and method for producing stannous oxide powder
KR1020177018294A KR102272868B1 (en) 2015-02-16 2016-02-12 Stannous oxide powder and method for producing stannous oxide powder
EP16752403.2A EP3260420A4 (en) 2015-02-16 2016-02-12 Stannous oxide powder and method for producing stannous oxide powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015027867 2015-02-16
JP2015-027867 2015-02-16
JP2016010755A JP6657991B2 (en) 2015-02-16 2016-01-22 Stannous oxide powder and method for producing stannous oxide powder
JP2016-010755 2016-01-22

Publications (1)

Publication Number Publication Date
WO2016133017A1 true WO2016133017A1 (en) 2016-08-25

Family

ID=56689228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054118 WO2016133017A1 (en) 2015-02-16 2016-02-12 Stannous oxide powder and method for producing stannous oxide powder

Country Status (1)

Country Link
WO (1) WO2016133017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070055A4 (en) * 2014-03-06 2017-05-31 Mitsubishi Materials Corporation METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207717A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline tin oxide and its preparation
JP2011026172A (en) * 2009-07-27 2011-02-10 Mitsui Mining & Smelting Co Ltd Tin oxide particle and method for producing tin oxide sol
WO2015133426A1 (en) * 2014-03-06 2015-09-11 三菱マテリアル株式会社 METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207717A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline tin oxide and its preparation
JP2011026172A (en) * 2009-07-27 2011-02-10 Mitsui Mining & Smelting Co Ltd Tin oxide particle and method for producing tin oxide sol
WO2015133426A1 (en) * 2014-03-06 2015-09-11 三菱マテリアル株式会社 METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIN LIU ET AL.: "Room-temperature synthesis, photoluminescence and photocatalytic properties of SnO nanosheet-based flowerlike architectures", APPLIED PHYSICS A, vol. 107, no. 2, May 2012 (2012-05-01), pages 437 - 443, XP035041544, DOI: doi:10.1007/s00339-012-6760-6 *
HIROAKI UCHIYAMA: "Suiyoeki Process ni yoru Sankasuzu Kessho no Kozo Design", BOUNDARY, vol. 22, no. 12, 15 December 2006 (2006-12-15), pages 19, XP009505444 *
M. ZUBAIR IQBAL ET AL.: "Synthesis of novel nano-flowers assembled with nano-petals array of stannous oxide", MATERIALS LETTERS, vol. 75, 15 May 2012 (2012-05-15), pages 236 - 239, XP028473568, DOI: doi:10.1016/j.matlet.2012.01.126 *
See also references of EP3260420A4 *
YING LIANG ET AL.: "Synthesis and characterization of SnO with controlled flowerlike microstructures", MATERIALS LETTERS, vol. 108, 1 October 2013 (2013-10-01), pages 235 - 238, XP028697741, DOI: doi:10.1016/j.matlet.2013.07.016 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070055A4 (en) * 2014-03-06 2017-05-31 Mitsubishi Materials Corporation METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION
US10184046B2 (en) 2014-03-06 2019-01-22 Mitsubishi Materials Corporation Method of producing stannous oxide, stannous oxide, method of Sn plating solution, and method of removing impurities from Sn plating solution

Similar Documents

Publication Publication Date Title
US7534283B2 (en) Method of producing copper powder and copper powder
KR101510369B1 (en) Process for producing copper powder and copper powder
JP5144022B2 (en) Copper powder manufacturing method and copper powder obtained by the manufacturing method
JP6657991B2 (en) Stannous oxide powder and method for producing stannous oxide powder
JP6168837B2 (en) Copper fine particles and method for producing the same
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP6569237B2 (en) Method for producing stannous oxide, method for producing Sn plating solution
EP2611559A1 (en) Silver particles and a process for making them
JP5142891B2 (en) Cuprous oxide powder and method for producing the same
JP2006199982A (en) Method for producing metallic fine powder
JP7058284B2 (en) Stannous oxide and its manufacturing method
TWI636138B (en) Manufacturing method of precious metal powder
WO2016133017A1 (en) Stannous oxide powder and method for producing stannous oxide powder
JP2008050650A (en) Method for producing copper powder
JP2008156720A (en) Method for producing silver nanoparticle
JP2008223096A (en) Method for manufacturing flaky silver powder
JP2007197836A (en) Nickel powder
KR102355206B1 (en) stannous oxide powder
JP2017101286A (en) Copper powder, method for producing copper powder and conductive paste
WO2021020522A1 (en) Nickel powder and method for producing nickel powder
JP2008223101A (en) Method for producing metal grain
JP2017206751A (en) Manufacturing method of nickel powder
KR20090081166A (en) Manufacturing Method of Copper Powder
JP5729842B2 (en) Copper powder
US11548068B2 (en) Method of producing spherical silver powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539302

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016752403

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177018294

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE