WO2016132586A1 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
WO2016132586A1
WO2016132586A1 PCT/JP2015/077495 JP2015077495W WO2016132586A1 WO 2016132586 A1 WO2016132586 A1 WO 2016132586A1 JP 2015077495 W JP2015077495 W JP 2015077495W WO 2016132586 A1 WO2016132586 A1 WO 2016132586A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
deterioration
voltage
storage
Prior art date
Application number
PCT/JP2015/077495
Other languages
English (en)
French (fr)
Inventor
一史 田中
禎之 井上
吉瀬 万希子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/543,611 priority Critical patent/US10164448B2/en
Priority to JP2016507306A priority patent/JP5932190B1/ja
Publication of WO2016132586A1 publication Critical patent/WO2016132586A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00718Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power conversion system in which a plurality of storage batteries are connected in parallel and the power of the storage batteries is supplied to a load.
  • the storage battery is preferentially used on the basis of the detection result of the remaining amount detection device that detects the remaining amount of each of the plurality of storage batteries.
  • the deterioration of the storage battery means a decrease in the capacity maintenance rate
  • the use priority of the storage battery is determined with reference to only the remaining amount of the storage battery, a difference occurs in the progress speed of deterioration of each storage battery (hereinafter referred to as deterioration progress).
  • the degree of deterioration of the storage battery varies depending on the installation conditions of the storage battery or variations in the manufacturing stage of the storage battery. For example, as described above, when three storage batteries are installed and one of the three storage batteries is installed at a position where the sun hits, the storage battery hitting the sun is compared to other storage batteries. If the temperature in a housing
  • the power conversion system pays attention to the deterioration progress and temperature state of each of a plurality of storage batteries as input power supplies, and is provided in each of the plurality of storage batteries using a storage battery as an input power supply.
  • the present invention it is possible to match the progress of deterioration of each storage battery by detecting a storage battery in which deterioration has further progressed and performing control with a high effect of suppressing deterioration by the deterioration information acquisition device. Therefore, even if there is a variation in the amount of power supplied to the storage battery, or even if the deterioration rate of the storage battery varies due to installation conditions, etc., the replacement time of the storage battery can be adjusted by controlling the progress of the deterioration. Thus, all the storage batteries can be replaced almost simultaneously.
  • FIG. 1 is a first configuration block diagram of a power conversion system according to a first embodiment of the present invention. It is a figure which shows the example of the power-voltage characteristic of the solar cell in Embodiment 1 of this invention. It is a characteristic view for demonstrating the characteristic of the storage battery which concerns on Embodiment 1 of this invention. It is a characteristic view for demonstrating the characteristic of the storage battery which concerns on Embodiment 1 of this invention. It is a characteristic view for demonstrating the characteristic of the storage battery which concerns on Embodiment 1 of this invention. It is a characteristic view for demonstrating the characteristic of the storage battery which concerns on Embodiment 1 of this invention. It is a 2nd structure block diagram of the power conversion system in Embodiment 1 of this invention. It is a figure which shows the flowchart which shows the operation procedure of the storage battery in Embodiment 1 of this invention.
  • FIG. 1 is a first configuration block diagram of a power conversion system according to Embodiment 1 of the present invention.
  • the power conversion system 1 is connected to a load 3 such as a refrigerator, lighting, and TV together with a power system 2 such as another AC power supply and supplies power to the load 3.
  • a power supply device of the power conversion system 1 a device using the solar battery 4 as a power source, a device using the first storage battery 8a as a power source, a device using the second storage battery 8b as a power source, and a third storage battery 8c as a power source Are connected in parallel.
  • the outputs of the solar battery 4, the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c include a solar battery DC / DC converter 5, a first storage battery DC / DC converter 9a, and a second storage battery 8c.
  • the storage battery DC / DC converter 9b and the third storage battery DC / DC converter 9c are respectively connected.
  • the outputs of the solar battery DC / DC converter 5, the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c are: And a DC / AC converter 7 via a DC bus 6.
  • Embodiment 1 demonstrates the case where the three storage batteries of the 1st storage battery 8a, the 2nd storage battery 8b, and the 3rd storage battery 8c other than the solar cell 4 are connected in parallel. When two or more storage batteries are connected, the same state is obtained. The output of the DC / AC converter 7 becomes the output of the power conversion system 1.
  • the solar cell DC / DC converter 5 is driven and controlled by the control device 10 to control the DC power from the solar cell 4.
  • the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c are driven and controlled by the control device 10, and the corresponding first The charging / discharging of the storage battery 8a, the second storage battery 8b, and the third storage battery 8c is controlled.
  • the DC / AC converter 7 is driven and controlled by the control device 10, converts a DC voltage into a desired AC voltage, and supplies it to the power system 2 and the load 3.
  • the DC / AC converter 7 can also convert the AC power supplied from the power system 2 into DC power, and can charge the first storage battery 8a through the first storage battery DC / DC converter 9a.
  • the second storage battery 8b and the third storage battery 8c can be similarly charged.
  • the control device 10 has a communication unit that communicates with the outside, and a HEMS (Home Energy Management System) 11 is connected to the communication unit of the control device 10.
  • the HEMS 11 is a power conversion system 1 based on the state of the power system 2, the power consumption of the load 3, the amount of power generated by the solar battery 4, the remaining amount of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c.
  • Is an operation plan creation means for creating an overall operation plan related to the control system 10 and the control device 10 is based on the operation plan created by the HEMS 11, and each converter (DC / DC converter 5 for solar cell, first storage battery).
  • DC / DC converter 9a, second storage battery DC / DC converter 9b, third storage battery DC / DC converter 9c, and DC / AC converter 7) are controlled.
  • the control device 10 determines the first storage battery 8a, the second storage battery 8a, the second storage battery 8c based on the deterioration progress of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c.
  • the usable temperature range of the storage battery 8b and the third storage battery 8c is narrowed, and at least one of the maximum charge / discharge current and usable voltage range is updated in a predetermined cycle, and the first storage battery 8a and the second storage battery 8c are updated.
  • Discharge The first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC so as not to exceed the limits of the current, the usable voltage range, and the usable temperature range.
  • the DC converter 9c is controlled.
  • the deterioration detection device 12 is configured to output information on the degree of deterioration of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c as a deterioration information acquisition device.
  • the temperature detection apparatus 15 outputs the information of the temperature state of the 1st storage battery 8a, the 2nd storage battery 8b, and the 3rd storage battery 8c as a temperature information acquisition apparatus,
  • the current detection device 13 and the voltage detection device 14 are configured to output information on the operating states of the second storage battery 8b and the third storage battery 8c.
  • the solar cell DC / DC converter 5 is controlled by a control device 10 so that the maximum power point tracking control (Maximum Power Point Tracking control, hereinafter referred to as MPPT control) for extracting the maximum power of the solar cell 4 and the output from the solar cell 4 are performed.
  • MPPT control Maximum Power Point Tracking control
  • the voltage control for controlling the output power of the solar cell 4 by controlling the voltage is switched according to the situation.
  • MPPT control and voltage control will be briefly described with reference to FIG.
  • FIG. 2 is a diagram illustrating an example of power-voltage characteristics of the solar cell 4.
  • the horizontal axis represents the voltage value of the solar cell 4
  • the vertical axis represents the generated power value of the solar cell 4, showing the power-voltage characteristics of three cases with different amounts of solar radiation and the temperature of the solar cell 4.
  • the power-voltage characteristics of the solar cell 4 change depending on the ambient conditions such as the change in the amount of solar radiation and the temperature change, and the maximum power point is shifted.
  • the output voltage (operating voltage) of the solar cell 4 is changed, and the point where the maximum power is obtained based on the increase or decrease of the power, that is, the operation of searching for the optimum operating voltage is continuously performed.
  • the maximum power is taken out from 4.
  • a general search operation for the maximum power point is called a hill-climbing method.
  • the operation voltage is increased by, for example, a minute amount ⁇ V to calculate the power difference ⁇ P.
  • the maximum power point can be searched. As described above, in the MPPT control, control is performed so that the output power of the solar cell 4 becomes maximum, that is, the output voltage of the solar cell 4 becomes the maximum power point shown in FIG.
  • a voltage control range is set in advance based on the power-voltage characteristics of the solar cell 4, and the power of the solar cell 4 is extracted within the voltage control range.
  • the voltage control range in the voltage control is set to a range on the right side of the voltage that is the maximum power point of the power-voltage characteristic. If the output voltage of the solar cell 4 becomes smaller than the voltage at which the maximum power point is reached (hereinafter referred to as peak voltage), the output power from the solar cell 4 starts to decrease monotonously and subsequent voltage control breaks down.
  • the voltage range is set so that the output voltage of the solar cell 4 does not fall below the peak voltage.
  • the horizontal axis represents the charging power ratio (hereinafter referred to as SoC), and the vertical axis represents the charging current.
  • FIG. 3B shows time on the horizontal axis and SoC on the vertical axis.
  • FIG. 4A shows the SoC on the horizontal axis and the storage battery voltage on the vertical axis.
  • a storage battery In general, if a storage battery is overcharged (charged when the storage battery voltage exceeds a predetermined value) or overdischarged (discharged until the storage battery voltage falls below a predetermined value), the battery deteriorates more than necessary. Sometimes. As shown in FIG. 4A, when the lithium ion battery is near full charge (SoC is around 1.0), the storage battery voltage rapidly increases. Further, when the current ripple of the charging current is large near the full charge, the deterioration may proceed more than necessary. Therefore, when charging the storage battery, in order to prevent the overcharge and reduce the amount of charging current ripple, the battery is charged with a constant current until the storage battery voltage reaches a predetermined voltage, and charged with a constant voltage when the predetermined voltage is reached. The method to take is taken.
  • FIG. 3B shows the relationship between the SoC and the charging time when the battery is charged with a constant current up to the storage battery voltage at which the SoC is 0.8 and then charged until the battery is fully charged with the constant voltage.
  • the charging time with the constant current control is 0.8 C (1 C is the amount of current that can fully charge the storage battery in 1 hour) .) Is shown in FIG. 3B.
  • the time for charging with constant current control and the time for charging with constant voltage control are substantially equal. In general, the control is not switched until the storage battery voltage reaches the end-of-discharge voltage.
  • FIG. 4B shows an example of the relationship between the number of charge / discharge operations and the storage battery capacity when full charge / discharge is performed. As shown in the figure, the capacity of the storage battery has deteriorated to about half after approximately 4000 charge / discharge cycles. A storage battery that has deteriorated needs to be replaced, and the replacement timing may be determined arbitrarily, or may be determined by, for example, a storage battery capacity that allows safe use of a storage battery determined by a battery manufacturer.
  • typical factors that promote storage battery deterioration include storage battery cell temperature, charge / discharge current, end-of-charge voltage, end-of-discharge voltage, and storage time.
  • the storage time is more deteriorated in a state near full charge than in a state close to empty.
  • the higher the temperature the faster the deterioration.
  • the charge / discharge current also deteriorates as the amount of current increases, and the rate at which the deterioration proceeds depends on the temperature of the storage battery cell. Further, the same applies to the end-of-charge voltage and the end-of-discharge voltage.
  • the deterioration of the storage battery is smaller than when charging up to 100%.
  • the amount of remaining stored power at the completion of discharge is increased, the deterioration of the storage battery is reduced as compared with the case of full discharge.
  • the progress of deterioration during full charge or full discharge also greatly depends on the storage battery cell temperature. Therefore, it can be expected that the deterioration suppressing effect by limiting the maximum charge / discharge current / operating voltage range becomes higher by setting the operating temperature range to be narrow.
  • Lithium-ion batteries charge and discharge power through chemical reactions. For example, when a predetermined current (for example, 1C) is to be charged at a low temperature, the chemical reaction cannot follow the charging current, so that metallic lithium is deposited and the lithium ion battery is deteriorated. If the storage battery is repeatedly charged and discharged without considering the storage cell temperature, for example, the storage battery deteriorates more than necessary, and the storage battery cannot be used without waiting for a desired period of use (for example, 10 years). In this case, in order to suppress the deterioration of the storage battery, when the battery management unit in the storage battery detects overcharge or overdischarge, or when charging or discharging is performed at a high temperature or low temperature, etc. In many cases, a mechanism for separating the storage battery is incorporated in the battery.
  • a predetermined current for example, 1C
  • the chemical reaction cannot follow the charging current, so that metallic lithium is deposited and the lithium ion battery is deteriorated.
  • the storage battery is repeatedly charged and discharge
  • FIG. 5 (A) shows the relationship between the maximum charge / discharge current and the SoC with respect to each storage battery cell temperature.
  • the storage battery cell temperature is room temperature (for example, about 20 to 25 ° C.)
  • the storage battery can be charged as rated.
  • the reason why the maximum charging current is reduced when the SoC is 0.8 or more is due to the fact that the above-described charging control of the storage battery is switched from constant current control to constant voltage control.
  • the maximum charging current gradually decreases as shown in the figure, and the SoC also decreases.
  • the storage cell temperature exceeds 45 ° C. the charging operation is prohibited.
  • FIG. 5B shows the relationship between the maximum discharge current and the SoC (charged power ratio) with respect to each storage battery cell temperature.
  • the storage battery cell temperature is room temperature (for example, about 20 to 25 ° C.)
  • the storage battery can be discharged as rated.
  • the SoC is close to 0, the maximum discharge current is sharply reduced to 0.
  • the maximum discharge current gradually decreases and the SoC increases as shown in the figure. And discharge operation is prohibited when storage battery cell temperature becomes 0 degrees C or less.
  • limits the maximum value of charging / discharging electric current with respect to storage battery cell temperature is not restricted to what is shown to FIG. 5 (A) and FIG. 5 (B),
  • the table according to the characteristic of the storage battery to be used should be used. It goes without saying. Further, although description of storage deterioration, which is one of the deterioration factors of the storage battery, is omitted, for example, at high temperatures when storage deterioration progresses, the upper limit value of the maximum charge power amount (charge end voltage) is further limited. Needless to say, a restriction table may be provided.
  • the storage battery cell temperature, the maximum charge / discharge current, the end-of-charge voltage, the end-of-discharge voltage, and the storage deterioration have been described as factors that promote the deterioration of the storage battery.
  • the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are operated by switching to a strict limit as the deterioration progresses according to the degree of deterioration. By doing so, since the control with higher deterioration inhibitory effect is applied to the storage battery in which the deterioration has progressed, the degree of deterioration of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is gradually increased. Can be approached.
  • the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are combined into one storage battery 8, the first storage battery DC / DC converter 9a, The second storage battery DC / DC converter 9b and the third storage battery DC / DC converter 9c will be collectively described as one storage battery DC / DC converter 9.
  • operation movement inside the storage battery 8 and DC / DC9 for storage batteries is mentioned later.
  • the control device 10 confirms whether power is generated by the solar cell 4. Specifically, it is confirmed whether or not the measured value of a voltmeter (not shown) that measures the voltage of the solar cell 4 exceeds a predetermined value.
  • the predetermined value is set in advance as a value that enables the solar battery 4 to generate power. And when the measured value of the voltage of the solar cell 4 exceeds a predetermined value, the control device 10 confirms that the power system 2 is not a power failure.
  • the control apparatus 10 starts the DC / AC converter 7 and starts power generation from the solar cell 4.
  • the bus voltage of the DC bus 6 is controlled to be a first control target voltage set in advance.
  • the power regenerated in the power system 2 is assumed to operate the entire system by controlling the current of the DC / AC converter 7.
  • system 2 is not a power failure is mentioned later.
  • a control command value for MPPT control is input from the control device 10 to the DC / DC converter 5 for solar cell.
  • the solar cell DC / DC converter 5 operates based on the command value, converts the first DC voltage V1 output from the solar cell 4 into the second DC voltage V2, and outputs the second DC voltage V2.
  • the DC / AC converter 7 is driven and controlled by the control device 10 so that the electric power from the solar cell 4 is supplied to the power system 2. , Output to load 3.
  • the output (regeneration) of the electric power from the solar cell 4 to the electric power system 2 is determined by the control device 10. Specifically, the control device 10 monitors the bus voltage with a voltmeter (not shown) that measures the bus voltage of the DC bus 6, and when the measured value of the bus voltage exceeds the first control target voltage.
  • the DC / AC converter 7 is controlled so as to regenerate power in the power system 2 in synchronization with the AC voltage waveform supplied from the power system 2.
  • a method for controlling the storage battery 8 will be described.
  • a lithium ion battery is used as a storage battery.
  • the charging method is changed from constant current charging (charging at a constant current value) to constant voltage charging (battery Switch to charge) so that the voltage is constant.
  • discharge control is performed with a margin for the discharge end voltage in order to prevent overdischarge. Specifically, the discharge end voltage is set to a high value, and when the discharge end voltage falls below the discharge end voltage, the discharge operation is immediately stopped.
  • the description will be continued assuming that the storage battery 8 is controlled using a restriction table that defines the maximum charge / discharge current of the storage battery 8.
  • the restriction table defines the relationship between the SoC and the maximum charge / discharge current with respect to the storage battery temperature, and is prepared for each temperature. For example, six types of tables of 0 ° C., 5 ° C., 10 ° C., 25 ° C., 30 ° C., and 35 ° C. are prepared for charging and discharging.
  • the restriction table can be rewritten from the HEMS 11. The reason for preparing six types of tables as described above is that the lithium-ion battery does not change the characteristics of the maximum value of the charge / discharge current between 10 ° C.
  • the restriction table is rewritten from the HEMS 11 in accordance with the degree of deterioration of the storage battery.
  • the limit table according to the progress of the deterioration of the storage battery, for the storage battery 8 that has deteriorated, the limit of the maximum current value and the limit of the charge / discharge end voltage can be increased to reduce the deterioration of the storage battery. Progress can be suppressed.
  • rewriting the restriction table from the HEMS 11 outside the power conversion system 1 can reduce the cost without causing the control device 10 to have unnecessary data. Needless to say, if there is a margin in the memory size, the control device 10 may have the data of the restriction table.
  • restriction table data is managed not by the HEMS 11 but by a cloud server (not shown) or the like, downloaded from the cloud server according to the progress of deterioration, and the restriction table data in the control device 10 is rewritten via the HEMS 11.
  • a cloud server not shown
  • the restriction table data in the control device 10 is rewritten via the HEMS 11.
  • the control device 10 and the HEMS 11 do not have unnecessary data, it is possible to obtain an effect that the plurality of power conversion systems 1 can be brought into the same control state together with cost reduction. be able to.
  • the control device 10 when receiving the charge / discharge command from the HEMS 11, the control device 10 confirms the storage battery temperature using the temperature detection device 15.
  • the maximum charge / discharge current value and the charge / discharge end voltage are obtained from the restriction table.
  • the charge / discharge current is determined based on the obtained maximum charge / discharge current value.
  • the charge / discharge current value is calculated from the charge / discharge command value from the HEMS 11. For example, in the case of a discharge instruction, the current value is calculated in consideration of the loss in the storage battery 8 and the storage battery DC / DC converter 9. The calculated current value is compared with the maximum charge / discharge current value obtained from the limit table.
  • the target current value for controlling the storage battery 8 is determined as the maximum charge / discharge.
  • charging / discharging of the storage battery 8 is controlled with the current value calculated from the charge / discharge command value instructed from the HEMS 11.
  • the control apparatus 10 measures the temperature of the storage battery 8 by the temperature detection apparatus 15 regularly (for example, every 1 second), and switches this charge / discharge current value.
  • the temperature detection device 15 functions as a temperature information acquisition device that detects the temperature information of the storage battery 8, and the control device 10 calculates SoC based on the charge / discharge current value at that time, and based on the calculation result, It goes without saying that the maximum value of the charge / discharge current is calculated.
  • the SoC is calculated based on the charge / discharge current value.
  • the present invention is not limited to this, and for example, the voltage value of the storage battery 8 may be used.
  • the control device 10 gives instructions for charging and discharging the storage battery 8 as described above. For example, when receiving a status information transmission request of the storage battery 8 from the HEMS 11, the control device 10 notifies the HEMS 11 of the determination result of whether discharge or charge is possible and the maximum discharge power or maximum charge power. Specifically, as described above, the maximum charge / discharge current is calculated based on the storage battery temperature and the SoC. And the maximum electric power of charging / discharging is notified from the voltage of the storage battery 8, and this maximum charging / discharging electric current.
  • the HEMS 11 instructs the control device 10 to discharge the storage battery 8 (including the discharge power indication value), or A charge instruction (including charge power instruction value) of the storage battery 8 is notified.
  • communication between the HEMS 11 and the control device 10 is performed regularly (for example, in units of 5 minutes).
  • the control device 10 that has received the notification of the discharge instruction receives the voltage information obtained by the voltage detection device 14 that detects the voltage of the storage battery 8 and the current information obtained by the current detection device 13 that detects the charge / discharge current of the storage battery 8. Based on the above, the actual discharge power from the storage battery 8 is calculated. A control command for the storage battery DC / DC converter 9 is output so that the calculation result becomes the received discharge power instruction value.
  • the storage battery DC / DC converter 9 operates based on the control command, converts the third DC voltage V3 output from the storage battery 8 to the fourth DC voltage V4, and outputs the fourth DC voltage V4.
  • the output from the storage battery 8 converted to the fourth DC voltage V4 is supplied to the power system 2 and the load 3 via the DC / AC converter 7.
  • the output (regeneration) of the electric power from the storage battery 8 to the electric power system 2 is determined by the control device 10.
  • the controller 10 regenerates power to the power system 2 when the measured value of the bus voltage by a voltmeter (not shown) that measures the bus voltage of the DC bus 6 exceeds the first control target voltage. / AC converter 7 is controlled.
  • the control device 10 collects the discharge power actually output from the storage battery DC / DC converter 9 as the status information of the storage battery DC / DC converter 9, and the storage battery DC / DC converter 9.
  • the conversion loss in the battery can be obtained, and the discharge control of the storage battery 8 can be performed by adding the loss.
  • the charge / discharge control of the storage battery 8 is notified from the HEMS 11 but is not limited thereto.
  • the load 3 is consumed in order to sell the generated power of the solar battery 4 to the maximum extent.
  • the current to be measured is measured with an ammeter (not shown), and the power consumption of the load is calculated based on the measurement result.
  • the power consumption of the load may be discharged from the storage battery 8 based on the calculation result. In that case, it goes without saying that the maximum value of the discharge current is controlled using the limit table in the manner described above.
  • the control device 10 manages status information such as the charge amount of the storage battery 8. More specifically, the charge / discharge history of the storage battery 8 is collected in order to estimate the deterioration progress of the storage battery 8 as described later.
  • the control device 10 collects the information, and actual data management is performed by the HEMS 11 or a cloud server (not shown).
  • the control device 10 is obtained by the voltage information obtained by the voltage detection device 14 that detects the voltage of the storage battery 8 and the current detection device 13 that detects the charge / discharge current of the storage battery 8. Based on the current information, the actual charging power to the storage battery 8 is calculated. A control command for the storage battery DC / DC converter 9 is output so that the calculation result becomes the received charge power instruction value.
  • the storage battery DC / DC converter 9 operates based on the control command and charges the storage battery 8.
  • the generated power of the solar battery 4 is preferentially used for charging the storage battery 8.
  • surplus power is generated after all the charging power for the storage battery 8 is covered by the generated power of the solar battery 4, the surplus power is output to the power system 2 and the load 3.
  • the control device 10 monitors the bus voltage via a voltmeter (not shown) that measures the bus voltage of the DC bus 6, and the measured value of the bus voltage is lower than the first control target voltage. In such a case, the DC / AC converter 7 is controlled so that powering power is taken into the power conversion system 1 from the power system 2.
  • the control device 10 has been described in the description of the discharge operation, but in order to estimate the deterioration progress of the storage battery 8 to be described later, the charge / discharge history of the storage battery 8 is collected (the information to be collected is omitted because it has been described above). )
  • the charging control of the storage battery 8 is notified from the HEMS 11, but is not limited to this, and for example, it is not illustrated so as to charge surplus power of the generated power of the solar battery 4.
  • the power selling current (the power generation current of the solar cell 4 and the current consumption of the load 3) is measured using an ammeter, and the power selling power is calculated from the measurement result.
  • charging of the storage battery 8 may be controlled so that electric power sales power may be set to 0 or the minimum. In this case, it goes without saying that the maximum value of the charging current is controlled using the limit table in the manner described above.
  • the control device 10 detects whether or not the power system 2 has failed and confirms that it is not a power failure.
  • detecting whether or not the power system 3 has failed is referred to as isolated operation detection.
  • the control device 10 is an ammeter that measures an AC current flowing between the DC / AC converter 7 and the power system 2 as a result of measurement by a voltmeter (not shown) that measures the system voltage of the power system 2 during normal operation.
  • the isolated operation is detected from the measurement result (not shown) and the output phase of the DC / AC converter 7 regenerated in the power system 2.
  • the details of the isolated operation detection method are the same as those defined in the grid interconnection regulation (JEAC 9701-2010), and detailed description thereof is omitted in the first embodiment.
  • the control apparatus 10 will stop the DC / DC converter 5 for solar cells, and the DC / DC converter 9 for storage batteries, if isolated operation is detected.
  • the controller 10 confirms that the solar cell DC / DC converter 5 and the storage battery DC / DC converter 9 are stopped, the controller 10 stops the DC / AC converter 7.
  • a switch (not shown) arranged between the power system 2 and the power conversion system 1 and the load 3 is automatically turned off, and the power system 2, the power conversion system 1 and the load 3 are Disconnect the connection. Needless to say, disconnection from the power system 2 may be performed manually by the user.
  • the control device 10 confirms whether or not the discharge from the storage battery 8 is possible and the electric power that can be discharged. If the discharge is possible, the control device 10 controls the storage battery DC / DC converter 9 by voltage control. Start discharging.
  • voltage control of the storage battery DC / DC converter 9 will be described.
  • the bus voltage of the DC bus 6 is controlled by the DC / AC converter 7 during normal operation.
  • the DC / AC converter 7 cannot control the bus voltage.
  • the bus voltage is basically controlled by the storage battery DC / DC converter 9 that can obtain electric power by discharging the storage battery 8 and output a desired voltage.
  • control device 10 obtains a measured value of a voltmeter (not shown) that measures the bus voltage, and the DC / DC for the storage battery is set so that the measured value becomes a preset first control target voltage.
  • the output voltage of the DC converter 9 is controlled.
  • the first control target voltage during the self-sustained operation is the case where the DC / AC converter 7 controls the bus voltage according to the command from the control device 10 described during the normal operation.
  • the same value as the first control target voltage is set.
  • the first control target voltage does not necessarily have to be set to the same value as the first control target voltage when the bus voltage is controlled by the DC / AC converter 7, and may be set to a different value as necessary. .
  • the control device 10 starts up the DC / AC converter 7 by voltage control. Specifically, a voltage waveform measured by a voltmeter (not shown) that generates a reference sine wave (for example, 60 Hz) as a reference in the control device 10 and measures the output voltage of the DC / AC converter 7 The DC / AC converter 7 is controlled so that the reference sine wave becomes a similar sine wave.
  • the load 3 is activated and starts power consumption.
  • the control device 10 causes the storage battery DC / DC converter 9 to increase the discharge power from the storage battery 8.
  • a control command is issued and the first control target voltage is maintained.
  • the control device 10 When power supply from the DC / AC converter 7 to the load 3 is started, the control device 10 starts power generation from the solar cell 4.
  • the control device 10 confirms whether the voltage of the solar cell 4 is equal to or higher than a predetermined value based on a measurement value obtained from a voltmeter (not shown) that measures the voltage of the solar cell 4.
  • a voltmeter not shown
  • the solar cell DC / DC converter 5 is activated by voltage control.
  • the predetermined value is set in advance as a value that enables the solar battery 4 to generate power.
  • it is set to the same value as the predetermined value used when determining whether or not the solar battery 4 can generate power during normal operation, but this predetermined value may be set as appropriate.
  • the control device 10 controls the DC / DC converter 5 for solar cells by voltage control so that the bus voltage becomes a preset second control target voltage. Specifically, the control device 10 obtains a measured value of a voltmeter (not shown) that measures the bus voltage of the DC bus 6, and the DC for solar cell so that the measured value becomes the second control target voltage. The output voltage of the / DC converter 5 is controlled.
  • the second control target voltage in the voltage control is set to a value larger than the first control target voltage, which is the target value of the bus voltage by the storage battery DC / DC converter 9.
  • the second control target voltage which is the target value of the bus voltage in the voltage control of the DC / DC converter 5 for solar cells, is the target value of the bus voltage in the voltage control of the DC / DC converter 9 for storage batteries. Is set to a value larger than the first control target voltage. For this reason, when there is sufficient power generated by the solar cell 4, the bus voltage can be maintained at the second control target voltage by the output power from the solar cell 4, and during this time, the discharge from the storage battery 8 Can be suppressed.
  • the power consumption of the load 3 exceeds the generated power of the solar battery 4, it cannot be maintained at the second control target voltage with the generated power of the solar battery 4, and the bus voltage decreases.
  • the discharge from the storage battery 8 is started this time so that it does not fall below the first control target voltage that is the target value of the bus voltage in the voltage control of the storage battery DC / DC converter 9.
  • the voltage is controlled by the first control target voltage.
  • the charging / discharging of the storage battery 8 is performed by the operation of the storage battery DC / DC converter 9 based on the control instruction of the control device 10 that has received the discharge instruction or the charging instruction from the HEMS 11. This is because the total charge / discharge power of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined according to the control instruction of the control device 10 that has received the discharge instruction or the charge instruction from the HEMS 11. It means that the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c are controlled so as to satisfy the instruction.
  • the control device 10 supplies the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c according to the flowchart shown in FIG. Output control commands.
  • the control device 10 supplies the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c.
  • a method for determining the control command will be described.
  • the control device 10 detects deterioration of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c every predetermined period set in advance (one day cycle in the first embodiment). carry out.
  • control apparatus 10 is the charging / discharging end voltage, the charging / discharging maximum electric current value, charging / discharging electric current value average, charging / discharging electric energy, the average value of storage battery temperature, the maximum minimum measured by the deterioration detection apparatus 12 as mentioned above.
  • Information such as a value, a retention time of SoC of 0.8 or more (status information) is collected in units of one day. The collected data is transmitted to the HEMS 11.
  • the first storage battery 8a, the second storage battery 8a, the second storage battery 8c, and the second storage battery 8c are switched according to the degree of deterioration by switching the limit tables of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c every predetermined period.
  • the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c can be replaced almost simultaneously in accordance with the degree of progress of deterioration of the storage battery 8b and the third storage battery 8c.
  • the deterioration detection timings of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c may be the same or different.
  • step 2 the HEMS 11 estimates the deterioration state based on the history database construction method based on the status information input from the control device 10.
  • description of the specific estimation method of a degradation state is abbreviate
  • storage battery capacity measuring means (not shown) for measuring the battery capacity of the storage battery is provided, and full discharge-full charge is performed at least regularly (for example, about once every six months)
  • the capacity of the storage battery 8 is measured, and the deterioration progress based on the history database construction method is corrected based on the measured result.
  • the deterioration progress based on the actually measured value there is an effect that the storage battery deterioration caused by the manufacturing variation of the storage battery 8 can be corrected.
  • the HEMS 11 receives the status information of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c from the control device 10, and calculates the deterioration progress of each storage battery 8a, 8b, 8c.
  • the reason why the deterioration progress is performed separately is because the deterioration of the storage battery 8 varies depending on manufacturing variations, installation conditions, and the like. For example, when the first storage battery 8a is installed at a position where the sun hits, and the second storage battery 8b and the third storage battery 8c are installed in the shade, the average storage battery temperature is the first storage battery 8a. Get higher. Therefore, the deterioration of the first storage battery 8a is expected to proceed as compared with the second storage battery 8b and the third storage battery 8c.
  • the degree of daily deterioration of the storage battery 8 is calculated using the deterioration estimation formula.
  • the present invention is not limited to this method. For example, all the status information from the start of operation to the present time is used. It goes without saying that the calculation can be performed using.
  • a method for detecting deterioration any method easily conceived by those skilled in the art can be used. For example, a history database construction method, a DC resistance measurement method, an AC impedance measurement method, a discharge curve analysis method, a charge curve analysis method, A curve analysis method or the like can be used.
  • the history database construction method, DC resistance measurement method, AC impedance measurement method, discharge curve analysis method, and charge curve analysis method are as follows.
  • ⁇ History database construction method This is a method that comprehensively treats storage battery environmental conditions and usage conditions such as charging and discharging as deterioration measurement data, and evaluates the deterioration state from the storage battery usage history.
  • DC resistance measurement method Measures the recovery voltage when no current is flowing and the discharge voltage when a certain discharge current flows, and divides the difference between the recovery voltage and the discharge voltage by the discharge current. This is a technique for obtaining DC resistance and evaluating battery deterioration from changes in DC resistance.
  • AC impedance measurement method This is a technique for obtaining the resistance of each part of the battery from the graph of the real part and imaginary part of the AC impedance measured by changing the frequency, and evaluating the battery deterioration from the resistance change.
  • -Discharge curve analysis method This is a technique for extracting the change in capacity of each active material by characterizing the discharge curve by voltage.
  • -Charging curve analysis method This is a method for obtaining the capacity and resistance by performing regression calculation with the capacity and internal resistance of each active material as variables based on the open circuit voltage for the cell voltage change during charging.
  • deterioration detection is performed by the HEMS 11.
  • the deterioration detection device 12 acquires data necessary for detection of deterioration, and is stored in the control device 10, the deterioration detection device 12, or a cloud server (not shown). The deterioration detection may be executed by analyzing the data.
  • the control device 10 determines the first storage battery 8a and the second storage battery 8b based on the deterioration progress of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c detected in the HEMS 11 in the procedure 2. Then, the restriction table of each of the third storage batteries 8c is updated, and the procedure proceeds to procedure 4.
  • the data in the restriction table used for controlling each storage battery 8 in the control device 10 is rewritten from the HEMS 11.
  • the restriction item is updated in a table indicating the relationship between the maximum charge / discharge current and the SoC for each storage battery cell temperature shown in FIG. By using this table, the storage battery 8 can switch between the maximum charge / discharge current, the usable voltage range, and the usable temperature range for each SoC depending on the progress of deterioration.
  • the end-of-charge voltage is set to decrease proportionally as indicated by the solid line, and the end-of-discharge voltage is set to increase proportionally as indicated by the dotted line to maintain the capacity.
  • the usable voltage range is narrowed as the rate drops.
  • each end voltage is shown by a straight line for the sake of simplicity. However, the present invention is not limited to this. If each end voltage is controlled in accordance with the characteristics of the storage battery 8, the progress of deterioration is suppressed. Needless to say, the effect is improved. Next, the relationship between the temperature and the maximum charge / discharge current in the SoC shown in FIG. 9 is shown.
  • the usable area in the normal state is represented by a trapezoid as shown by a solid line in FIG.
  • a horizontal line is added to the inside of the trapezoid as shown by a one-dot chain line in the figure.
  • a diagonal line is added to the inside of the trapezoid as shown by the dotted line in the figure.
  • a line is added to the inner side of the trapezoid to narrow the usable area.
  • the main deterioration factors of the storage battery are the temperature during charging / discharging, the magnitude of the charging / discharging current, the voltage during storage, the storage battery temperature, the depth of charging / discharging.
  • the control device 10 includes the SoC information of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, and each of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c.
  • the maximum charge / discharge current is obtained from the limit table and multiplied by the storage battery voltage to calculate chargeable / dischargeable power P1, P2, P3. Further, whether or not charge / discharge is possible is determined from the restriction table and the SoC information. Then, the charge / discharge possibility determination result and chargeable / dischargeable power P1, P2, P3 are notified to the HEMS 11. Needless to say, whether charging / discharging is possible or not is performed, and the same effect can be obtained even if the maximum charging power or the maximum discharging power is notified as “0”.
  • Specific confirmation method of chargeable / dischargeable power P1, P2, P3 is performed as follows, for example.
  • the temperature detector 15 detects the temperatures of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, and includes the detected temperature, the maximum charge / discharge current set in step 3, and the usable temperature range. From the comparison with the usable area, the maximum charge / discharge current at the detected temperature is obtained.
  • the voltage detection device 14 detects the voltages of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, and integrates the detected voltage and the maximum charge / discharge current at the detected temperature.
  • the chargeable / dischargeable powers P1, P2, and P3 of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are confirmed.
  • the HEMS 11 adds the chargeable / dischargeable powers P1, P2, and P3, calculates the maximum value of the charge / discharge power from the power conversion system 1, and calculates the calculation result, the power consumption of the load 3, and the generated power of the solar cell 4.
  • charging / discharging electric power P0 is calculated from the 1st storage battery 8a, the 2nd storage battery 8b, and the 3rd storage battery 8c. And based on this calculation result, HEMS11 creates an operation plan.
  • step 5 the control device 10 receives the required power P0 from the HEMS 11, and proceeds to step 6.
  • the required power P0 is the chargeable / dischargeable power P1, P2, P3 of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c notified by the control device 10 to the HEMS 11 in step 4 and the solar battery 4. It is calculated by the HEMS 11 based on the power generation state, the state of the power system 2, the power consumption of the load 3, etc., and does not exceed the total value of the chargeable / dischargeable powers P1, P2, and P3.
  • step 6 the control device 10 determines the charge / discharge power of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c with respect to the required power P0 received from the HEMS 11, and proceeds to step 7. .
  • the determination of the charge / discharge power may be simply made equal, or the chargeable / dischargeable power and the degree of progress of deterioration may be taken into consideration as in the example shown below.
  • Example 1 When determining the discharge power at a ratio of chargeable / dischargeable power to the required discharge power
  • the control device 10 receives the required discharge power P0 from the HEMS 11, the control device 10 follows the flowchart of FIG.
  • the discharge power from the storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined as follows using the ratio of the chargeable / dischargeable power P1, P2, and P3.
  • FIG. 11 shows a specific operation waveform diagram in the case where the discharge power from the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined using Equation 1.
  • chargeable / dischargeable powers P1, P2, and P3 satisfy P1>P2> P3.
  • FIG. 11 shows that the smaller the chargeable / dischargeable power is, the smaller the discharge power from the storage battery is, and the smaller the fluctuation of the discharge power is.
  • a storage battery whose deterioration has progressed increases the use limit, and therefore the chargeable / dischargeable power decreases. Therefore, as described above, by determining the discharge power from the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, the fluctuations in the discharge power and discharge power from the deteriorated storage battery are reduced. It is possible to suppress the deterioration of the storage battery that has been deteriorated.
  • the discharge power is determined so as to be equal to or less than P1, P2, and P3. It is configured to discharge from the possible storage battery 8.
  • Example 2 When determining the discharge power so as to reduce the utilization rate / usage frequency of the storage battery that has deteriorated with respect to the required discharge power
  • the control device 10 receives the required discharge power P0 from the HEMS 11, the control device 10 According to the flowchart of FIG. 12, the discharge power from the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined so as to reduce the usage frequency of the storage battery that has deteriorated.
  • the flowchart will be described as the deterioration degree of the first storage battery 8a ⁇ the deterioration degree of the second storage battery 8b ⁇ the deterioration degree of the third storage battery 8c.
  • FIG. 13 shows physical operation waveforms when the discharge power from the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined by the procedure of the flowchart.
  • the control device 10 compares the required discharge power P0 with the chargeable / dischargeable power P1 of the first storage battery 8a having the smallest deterioration rate, and the chargeable / dischargeable power P1. If the required discharge power P0 is greater than or equal to the required discharge power P0, the process proceeds to step 6b.
  • the control device 10 determines that the required discharge power P0 can be discharged only by the first storage battery 8a, and the first storage battery
  • the discharge power from 8a is set to P0
  • the discharge power from the 2nd storage battery 8b and the 3rd storage battery 8c is set to 0, and a flowchart is complete
  • step 6c since the chargeable / dischargeable power P1 is smaller than the required discharge power P0, the control device 10 sets the discharge power from the first storage battery 8a as P1, and proceeds to step 6d.
  • the reason why the discharge power from the first storage battery 8a is set to P1 is that the first storage battery 8a having the smallest deterioration degree is used to the maximum, thereby reducing the utilization rate of the storage battery having the higher deterioration degree. is there.
  • step 6d the control device 10 determines the difference P0-P1 between the required discharge power P0 and the discharge power P1 from the first storage battery 8a, and the charge / discharge power P2 of the second storage battery 8b having the second lowest deterioration rate.
  • step 6e the control device 10 determines that the chargeable / dischargeable power P2 is equal to or greater than the difference P0 ⁇ P1 between the required discharge power P0 and the discharge power P1 from the first storage battery 8a. It is determined that ⁇ P1 can be discharged, the discharge power from the second storage battery 8b is P0-P1, the discharge power from the third storage battery 8c is 0, and the flowchart is ended.
  • the control device 10 determines that the chargeable / dischargeable power P2 is smaller than the difference P0-P1 between the required discharge power P0 and the discharge power P1 from the first storage battery 8a, and therefore the discharge power from the second storage battery 8b. Is set to P2, and the process proceeds to step 6g.
  • the reason why the discharge power from the second storage battery 8b is set to P2 is the same as the reason why the discharge power from the first storage battery 8a in the procedure 6c is set to P1, and the third storage battery having the largest deterioration. This is to reduce the utilization rate of 8c.
  • the control device 10 ends the flowchart by setting the discharge power from the third storage battery 8c to P0-P1-P2.
  • the required discharge power P0 from the HEMS 11 does not exceed the total value of chargeable / dischargeable powers P1, P2, and P3 of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c.
  • the storage battery 8c can discharge the discharge power P0-P1-P2.
  • the control device 10 determines the discharge power from the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, the usage frequency of the storage battery having a high degree of deterioration as shown in FIG. Can be kept low.
  • the utilization factor of a storage battery with a large deterioration progress can also be suppressed low. Therefore, it is possible to further suppress the deterioration of the storage battery having a high degree of deterioration.
  • Example 3 When charging power is determined at a ratio of chargeable / dischargeable power with respect to required charging power
  • the control device 10 receives the required charging power P0 from the HEMS 11, the control device 10 follows the flowchart of FIG.
  • the charging power to the storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined using the ratio of chargeable / dischargeable power P1, P2, and P3 as follows.
  • Charging power to the first storage battery 8a P0 ⁇ P1 / (P1 + P2 + P3)
  • Charging power to the second storage battery 8b P0 ⁇ P2 / (P1 + P2 + P3)
  • Charging power to the third storage battery 8c P0 ⁇ P3 / (P1 + P2 + P3)
  • the charging power to the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are reduced. It is possible to suppress the deterioration of the storage battery that has been deteriorated.
  • Example 4 When determining the discharge power so as to reduce the fluctuation of the charging power to the storage battery having deteriorated with respect to the required charging power
  • the control device 10 receives the required charging power P0 from the HEMS 11, the control device 10 According to the flowchart of FIG. 16, the charging power from the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined so as to reduce the charging power fluctuation to the storage battery having deteriorated.
  • the flowchart will be described as the deterioration degree of the first storage battery 8a ⁇ the deterioration degree of the second storage battery 8b ⁇ the deterioration degree of the third storage battery 8c.
  • FIG. 17 shows a specific operation waveform diagram when charging power to the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c is determined by the procedure of the flowchart.
  • step 6h the control device 10 compares the required charging power P0 with the chargeable / dischargeable power P3 of the third storage battery 8c having the highest degree of deterioration, and the chargeable / dischargeable power P3. If the required charge power P0 is greater than or equal to the required charge power P0, the process proceeds to step 6i. In step 6i, the control device 10 determines that the chargeable / dischargeable power P3 is equal to or higher than the required charge power P0, and therefore determines that the required charge power P0 can be charged only by the third storage battery 8c.
  • the charge power to 8c is set to P0, the charge power to the 1st storage battery 8a and the 2nd storage battery 8b is set to 0, and a flowchart is complete
  • the control device 10 sets the charging power for the third storage battery 8c as P3 and proceeds to procedure 6k.
  • the reason why the charging power to the third storage battery 8c is set to P3 is that the required charging power P0 is rapidly increased by making the maximum use of the third storage battery 8c having the greatest deterioration rate. This is because the third storage battery 8c cannot be charged any more and fluctuations in charging power can be suppressed.
  • step 6k the control device 10 determines the difference P0-P3 between the required charging power P0 and the charging power P3 for the third storage battery 8c, and the chargeable / dischargeable power P2 of the second storage battery 8b having the second highest deterioration rate. If the chargeable / dischargeable power P2 is greater than or equal to the difference P0 ⁇ P1, the procedure proceeds to step 6l. If the chargeable / dischargeable power P2 is smaller than the difference P0 ⁇ P1, the procedure proceeds to step 6m.
  • the control device 10 uses the second storage battery 8b to generate the difference P0. -It is determined that P3 can be charged, the charging power for the second storage battery 8b is P0-P3, the charging power for the first storage battery 8a is 0, and the flowchart is ended. In procedure 6m, the control device 10 determines that the chargeable / dischargeable power P2 is smaller than the difference P0 ⁇ P3 between the required discharge power P0 and the charge power P3 for the third storage battery 8c, and therefore the charge power for the second storage battery 8b.
  • the reason why the charging power to the second storage battery 8b is set to P2 is the same as the reason why the charging power to the third storage battery 8c in the procedure 6j is set to P3, and when the required charging power P0 rapidly increases. Even so, it is to suppress fluctuations in the charging power.
  • step 6n the control device 10 ends the flowchart by setting the charging power to the first storage battery 8a as P0-P3-P2.
  • the required charging power P0 from the HEMS 11 does not exceed the total value of the chargeable / dischargeable powers P1, P2, and P3 of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c.
  • the storage battery 8a can charge the charging power P0-P3-P2.
  • the control device 10 determines the charging power to the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, so that the charging power of the storage battery having a high degree of deterioration as shown in FIG. Fluctuations can be suppressed.
  • the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are generally large in capacity, the voltage increase in a short time is small. Therefore, a storage battery having a high degree of deterioration is charged with a substantially constant current, and deterioration can be further suppressed.
  • the charge / discharge power of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c with respect to the required power P0 is determined in consideration of the chargeable / dischargeable power and the degree of progress of deterioration. It is possible to further suppress the progress of deterioration of the storage battery having a high degree of progress. Therefore, even if a shift occurs in the deterioration progress of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c based on the variation of the storage batteries or the difference in the usage environment, the deterioration progresses as described above. By restricting the use conditions of the storage batteries 8 (using a strict restriction table), it is possible to substantially match the deterioration progresses of the respective storage batteries 8 by suppressing the deterioration progress of the storage batteries 8 that are rapidly deteriorated. effective.
  • the procedure proceeds to procedure 7 as shown in FIG.
  • the control device 10 sends a control command to the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c.
  • Control is performed so that the charge / discharge power of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c matches the charge / discharge power determined in (Procedure 6).
  • the control device 10 takes into account the loss in the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c. Control may be performed.
  • the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c have the maximum charge / discharge current and usable voltage range determined by the progress of deterioration. Since the limit of the usable temperature range is controlled by the deterioration progress, a severe deterioration of the use condition is given to the storage battery that has further deteriorated by the restriction table, so that a high deterioration suppressing effect can be obtained. Therefore, the degree of progress of deterioration of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c can be substantially matched.
  • the control device 10 obtains a measured value of a voltmeter (not shown) that measures the bus voltage, and DC / DC conversion for the storage battery so that the measured value becomes a preset first control target voltage. It has been explained that the output voltage of the device 9 is controlled.
  • control device 10 outputs the output voltages of the first storage battery DC / DC converter 9a, the second storage battery DC / DC converter 9b, and the third storage battery DC / DC converter 9c to the first This means that voltage control is performed so as to obtain the control target voltage, and the control device 10 performs voltage control to the first storage battery DC / DC converter 9a and the second storage battery DC / DC converter 9b.
  • the third storage battery DC / DC converter 9c is driven and controlled.
  • the supplyable powers P1, P2, and P3 of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are sufficient, ideally, the first storage battery 8a and the second storage battery
  • the power supplied from 8b and the third storage battery 8c should match.
  • the first charge rate is determined by the maximum charge / discharge current, the usable voltage range, the limit of the usable temperature range, and the remaining amount determined by the deterioration progress of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c.
  • the suppliable power P1, P2, P3 of the storage battery 8a, the second storage battery 8b, and the third storage battery 8c There is a case where there is a difference in the suppliable power P1, P2, P3 of the storage battery 8a, the second storage battery 8b, and the third storage battery 8c, and the suppliable power is insufficient.
  • the output voltage of the first storage battery DC / DC converter 9a connected to the first storage battery 8a is the supplyable power of the first storage battery 8a. It drops to a value commensurate with P1.
  • the bus voltage is maintained at the first control target voltage. The power supply to the load 3 is performed without any problem.
  • the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c are limited in the maximum charge / discharge current, the usable voltage range, and the usable temperature range that are determined by the progress of deterioration. Therefore, the higher the deterioration is, the higher the deterioration suppressing effect can be obtained. Therefore, the progress of deterioration of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c can be substantially matched.
  • the present invention is not limited to this. do not do. Therefore, even if the restriction table for suppressing deterioration is not used at the time of a power failure and the control is performed based on the original specifications of the storage battery, the deterioration of the storage battery is not rapidly advanced if it is used for a short period.
  • the control device 10 determines the maximum charge / discharge current determined by the deterioration progress of the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c, The first storage battery DC / DC converter 9a so as to charge / discharge the first storage battery 8a, the second storage battery 8b, and the third storage battery 8c within the usable voltage range and the usable temperature range. Since the second storage battery DC / DC converter 9b and the third storage battery DC / DC converter 9c are controlled, the higher the deterioration is, the higher the deterioration suppression effect can be obtained.
  • FIG. 18 (A) even if the battery is used in the same manner and there is a deviation in the replacement time due to variations in characteristics of the storage battery, as shown in FIG. Since it can be exchanged, maintainability is improved.
  • FIG. 19 (A) even when a rechargeable storage battery is used or the like, the degree of progress of deterioration is different from the beginning, and even if the same usage is used, there is a difference in the replacement time.
  • (B) since the deterioration progresses can be substantially matched and exchanged at the same time, maintainability is improved. Further, as shown in FIG.
  • the DC power supplied from the solar battery 4, the first storage battery 8 a, the second storage battery 8 b, and the third storage battery 8 c is once converted into AC power by the DC / AC converter 7.
  • the case where it converts and supplies to the load 3 was demonstrated, it does not restrict to this.
  • a configuration may be adopted in which DC power is directly supplied from the DC bus 6 to the load 3 or DC / DC converted and DC power is supplied to the load 3, which is supplied to a so-called DC power supply compatible load 3.
  • the AC side of the DC / AC converter 7 has been described as being connected to the power system 2 and the load 3, but the present invention is not necessarily limited thereto.
  • the AC side of the DC / AC converter 7 may be connected to a motor and used as a power system for an electric vehicle.
  • the function of the HEMS 11 may be performed by an ECU (Electronic Control Unit) of the electric vehicle or the control device 10.
  • the control of each converter is performed by the control device 10, but the present invention is not limited to this.
  • the control device 10 determines a target value of charge / discharge power or voltage of each converter, and a control circuit built in each converter or a dedicated control circuit controls so that the output of each converter becomes the target value. You may make it do.
  • the HEMS 11 performs deterioration detection.
  • the deterioration detection device 12 acquires data necessary for deterioration detection, and the control device 10, the deterioration detection device 12 or a cloud server (not shown)
  • the deterioration detection may be executed by analyzing the data.
  • the deterioration of the storage battery 8 may be estimated in the deterioration detection device 12.
  • a part of the calculation of the deterioration estimation may be performed by the cloud server, and the final estimation may be performed by the HEMS 11 or the deterioration detection device 12.
  • the information of chargeable / dischargeable electric power among the status information of the storage battery 8 was input from the control apparatus 10 to HEMS11, and it determined that each charging / discharging electric power of the storage battery 8 was determined in HEMS11.
  • This power amount is obtained by integrating the power on the time axis.
  • the chargeable power amount represents the amount of power that can be charged before the storage battery reaches the end-of-charge voltage
  • the dischargeable power amount is the current state of the storage battery. Represents the amount of electric power that can be discharged from the time until the discharge end voltage is reached.
  • the usable voltage range of the storage battery 8 was restrict
  • the present invention is not limited to this, and it goes without saying that the usable voltage range may be further controlled based on the storage battery temperature in addition to the deterioration degree.
  • the storage battery deteriorates when the storage battery 8 is left in a state near full charge at a high temperature. Therefore, it goes without saying that storage deterioration can be suppressed by suppressing the end-of-charge voltage especially at high temperatures.
  • temperature prediction information is acquired and charged at midnight based on the acquired temperature information. Needless to say, it may be configured so as to determine the end voltage at the time.
  • the maximum charge / discharge current value of the storage battery 8 is limited by the deterioration progress of the storage battery 8 as shown in FIG.
  • the present invention is not limited to this, and it goes without saying that the maximum charge / discharge current value may be further controlled based on the storage battery temperature or / and the storage battery voltage in addition to the degree of deterioration.
  • the storage battery has a different degree of deterioration of the storage battery depending on the storage battery temperature.
  • the progress of deterioration of the storage battery can be suppressed by restricting the maximum charge / discharge current to the storage battery voltage (the SoC of the storage battery) particularly at a high temperature where the deterioration of the storage battery is progressing, at a low temperature, or particularly at the time of charging.
  • the maximum charging / discharging current value of the storage battery 8 has been described as shown in FIG. 9, but the present invention is not limited to this, and particularly when a lithium ion battery is used, the charging and discharging are described above.
  • the control method is different. Specifically, at the time of charging, when the SoC (or storage battery voltage) exceeds a predetermined value, the constant current control is switched to the constant voltage control. Therefore, it goes without saying that different tables may be used for charging and discharging.
  • the limit table is used as a method for limiting the maximum charge / discharge current, the usable voltage range, and the usable temperature range has been described. Needless to say, an approximate curve may be used.
  • the estimation method of storage battery deterioration is not limited to the history database construction method, but other methods such as “DC resistance measurement method”, “AC impedance measurement method”, “discharge curve analysis method”, “charge curve analysis method”, etc. It goes without saying that the method may be used.
  • the temperature detection device 15 detects the temperature of the storage battery 8.
  • the temperature detection device 15 is not limited to directly measuring the temperature of the storage battery 8 with a thermocouple or the like. Needless to say, the temperature of 8 may be estimated.
  • the present invention is not limited to this.
  • other batteries such as a nickel hydride battery and a lead storage battery may be used.
  • the degree of deterioration of the storage battery is controlled by controlling at least the maximum charge / discharge current amount, the specifiable voltage range, the maximum charge / discharge current amount based on the storage battery voltage, or the like according to the storage battery temperature.
  • the embodiment can be appropriately modified or omitted within the scope of the invention.
  • the device used for the description is not limited to a single device, and can be implemented as a means for achieving a similar function by combining devices having a plurality of functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 複数の蓄電池を並列に接続して使用する場合、蓄電池のそれぞれの劣化進度に差が生じるため、蓄電池の各々の劣化情報を取得する劣化情報取得装置と、前記蓄電池の温度情報を検出する温度情報取得装置と、前記劣化情報取得装置による前記蓄電池の劣化情報と前記温度情報取得装置による前記蓄電池の温度情報に基づいて前記蓄電池用電力変換器を制御する制御装置とを備え、複数の前記蓄電池の劣化の状態を一致し得るようにした。

Description

電力変換システム
 本発明は、複数の蓄電池が並列に接続されて、蓄電池の電力を負荷に供給する電力変換システムに関するものである。
 蓄電池をそれぞれに有する複数の電源装置を並列に接続して、負荷に電力を供給するシステムにおいて、大きな問題は、複数の蓄電池が劣化することである。蓄電池は、使用履歴に応じて劣化し、貯えることのできるエネルギー量が少なくなる。そのため、蓄電池を有する複数の電源装置を並列に接続して負荷に電力を供給する場合には、蓄電池から供給されるエネルギーの放出量すなわち複数の電源装置から負荷への電力の供給量を、蓄電池毎に制御することによって、複数の蓄電池の劣化を抑える技術が従来から提案されている(例えば特許文献1)。
特許第5385698号公報
 提案されている従来の電力変換システムでは、複数の蓄電池のそれぞれの残量を検出する残量検出装置の検出結果に基づいて、残量の多い蓄電池を優先的に使用することで、保存劣化による蓄電池の劣化(以降、蓄電池の劣化は容量維持率の低下を意味する)の進行を抑えることができるという効果がある。しかし、蓄電池の残量のみを参照して蓄電池の利用優先度を決定しているため、各蓄電池の劣化の進行速度(以下、劣化進度という)に差が生じる。例えば、3台の蓄電池を設置して、それぞれの蓄電池で2kWずつ供給して合計6kWの電力を供給している場合に、1つの蓄電池の劣化進度が進んでいると、突然に1台の蓄電池が使用できなくなることで、システムとして出力できる電力が4kWと低下し、想定していた電力が供給できなくなってしまうといった問題点も発生する。特に、停電時にマンションのエレベータを起動するようなシステムでは、最大定格電力が供給できない場合にはエレベータが動作しない等の問題点が発生する。また、複数の蓄電池の劣化進度が異なることによって、蓄電池の交換時期に差ができ、保守性が悪いという課題があった。
 蓄電池の劣化進度は、蓄電池の設置条件、あるいは蓄電池の製造段階でのばらつきなどによって異なる。例えば、前述のように、3台の蓄電池を設置して、3台の蓄電池のうち、1台が西日の当たる位置に設置されている場合、西日の当たる蓄電池は、他の蓄電池に比べ筐体内の温度が上昇することになり、蓄電池としてリチウムイオンバッテリを使用していれば、蓄電池の温度が35℃を超えると、劣化進度が加速する。このように、設置条件等に起因して劣化進度が異なる蓄電池が存在すると、蓄電池の交換時期に差ができ、保守性が悪いということになる。
 このため、本発明では、入力電源としての複数の蓄電池のそれぞれの劣化の状態が同じになるように制御し得る電力変換システムを提供することを目的とするものである。
 本発明に係わる電力変換システムは、入力電源とする複数の蓄電池のそれぞれの劣化進度と温度状態に着目し、蓄電池を入力電源として複数の前記蓄電池のそれぞれに設けられ、前記蓄電池を並列運転する複数の蓄電池用電力変換器と、前記蓄電池の各々の劣化情報を取得する劣化情報取得装置と、前記蓄電池の温度情報を検出する温度情報取得装置と、前記劣化情報取得装置による前記蓄電池の劣化情報と前記温度情報取得装置による前記蓄電池の温度情報に基づいて前記蓄電池用電力変換器を制御する制御装置とを備え、複数の前記蓄電池の劣化の状態を一致し得るようにしたものである。
 本発明によれば、劣化情報取得装置によって、劣化がより進行した蓄電池を検出して、劣化抑制効果の高い制御を行うことで、各蓄電池の劣化進度を合せることが可能となる。よって、蓄電池の電力の供給量にばらつきがあった場合、あるいは設置条件等で蓄電池の劣化進度にばらつきが生じた場合でも、劣化の進行を制御することで、蓄電池の交換時期が調整されることになり、ほぼ同時期に全ての蓄電池を交換することができるようになる。
本発明の実施の形態1における電力変換システムの第1の構成ブロック図である。 本発明の実施の形態1における太陽電池の電力‐電圧特性の例を示す図である。 本発明の実施の形態1に係る蓄電池の特性を説明するための特性図である。 本発明の実施の形態1に係る蓄電池の特性を説明するための特性図である。 本発明の実施の形態1に係る蓄電池の特性を説明するための特性図である。 本発明の実施の形態1における電力変換システムの第2の構成ブロック図である。 本発明の実施の形態1における蓄電池の運用手順を示すフローチャートを示す図である。 本発明の実施の形態1における蓄電池の容量維持率に対する使用可能電圧範囲の一例を示す図である。 本発明の実施の形態1における蓄電池の温度に対する最大充放電電流の一例を示す図である。 本発明の実施の形態1における各蓄電池の放電電力決定手順を示す第1フローチャートを示す図である。 本発明の実施の形態1における各蓄電池の放電電力決定手順に従い、放電電力を決定した場合の第1の具体的な動作波形図である。 本発明の実施の形態1における各蓄電池の放電電力決定手順を示す第2のフローチャートを示す図である。 本発明の実施の形態1における各蓄電池の放電電力決定手順に従い、放電電力を決定した場合の第2の具体的な動作波形図である。 本発明の実施の形態1における各蓄電池の充電電力決定手順を示す第1のフローチャートを示す図である。 本発明の実施の形態1における各蓄電池の充電電力決定手順に従い、充電電力を決定した場合の第1の具体的な動作波形図である。 本発明の実施の形態1における各蓄電池の充電電力決定手順を示す第2のフローチャートを示す図である。 本発明の実施の形態1における各蓄電池の充電電力決定手順に従い、充電電力を決定した場合の第2の具体的な動作波形図である。 本発明の実施の形態1における発明の第1の効果を示す図である。 本発明の実施の形態1における発明の第2の効果を示す図である。
実施の形態1
 図1は本発明の実施の形態1による電力変換システムの第1の構成ブロック図である。
 図に示すように、電力変換システム1は、別の交流電源等の電力系統2と共に、冷蔵庫、照明、TV等の負荷3に接続され、負荷3に電力を供給する。
 この電力変換システム1の電源装置としては、太陽電池4を電源とする装置、第1の蓄電池8aを電源とする装置、第2の蓄電池8bを電源とする装置、第3の蓄電池8cを電源とする装置が並列に接続されている。太陽電池4、第1の蓄電池8a、第2の蓄電池8b、第3の蓄電池8cの出力には、太陽電池用DC/DC変換器5、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9b、第3の蓄電池用DC/DC変換器9cがそれぞれ接続されている。そして、太陽電池用DC/DC変換器5、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9b、第3の蓄電池用DC/DC変換器9cの出力は、直流母線6を介してDC/AC変換器7にまとめられている。なお、この実施の形態1では、太陽電池4以外に、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの3つの蓄電池が並列に接続されている場合を説明しているが、蓄電池を2つ以上接続している場合には同様の状態になる。DC/AC変換器7の出力が、電力変換システム1の出力となる。
 太陽電池用DC/DC変換器5は、制御装置10によって駆動制御され、太陽電池4からの直流電力を制御する。第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cは、制御装置10によって駆動制御され、対応する第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電を制御している。また、DC/AC変換器7は、制御装置10によって駆動制御され、直流電圧を所望の交流電圧に変換して電力系統2および負荷3に供給している。また、DC/AC変換器7は、電力系統2から供給される交流電力を直流電力に変換し、第1の蓄電池用DC/DC変換器9aを通じて第1の蓄電池8aを充電することもでき、第2の蓄電池8bおよび第3の蓄電池8cに対しても同様に充電することができる。
 なお、制御装置10は、外部と通信する通信手段を有し、この制御装置10の通信手段には、HEMS(Home Energy Management System)11が接続される。このHEMS11は、電力系統2の状態、負荷3の消費電力、太陽電池4の発電電力量、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの残量等から電力変換システム1が関係する全体の運転計画を作成する運転計画作成手段であり、制御装置10は、HEMS11で作成された運転計画に基づき、各変換器(太陽電池用DC/DC変換器5、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9c、DC/AC変換器7)を制御する。
 この制御の際、制御装置10は、劣化検出装置12で検出される第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度に基づいて、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの使用可能温度範囲を狭めるとともに、最大充放電電流、使用可能電圧範囲の内、少なくとも1つを所定の周期で更新し、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電電流を検出する電流検出装置13、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの電圧を検出する電圧検出装置14、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの温度を検出する温度検出装置15の検出結果を参照し、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの最大充放電電流、使用可能電圧範囲、使用可能温度範囲の制限を超えないように、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cを制御する。
 すなわち、劣化検出装置12は、劣化情報取得装置として、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度の情報を出力するように構成されている。また、温度検出装置15は、温度情報取得装置として、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの温度状態の情報を出力し、その温度状態における第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの動作状態の情報を電流検出装置13および電圧検出装置14が出力するように構成されている。
 太陽電池用DC/DC変換器5は、制御装置10によって、太陽電池4の最大電力を引き出す最大電力点追従制御(Maximum Power Point Tracking制御、以下、MPPT制御という)と、太陽電池4からの出力電圧を制御して太陽電池4の出力電力を制御する電圧制御とを状況に合わせて切り替えて制御される。ここでは、図2を用いてMPPT制御と電圧制御について簡単に説明する。
 図2は、太陽電池4の電力‐電圧特性の例を示す図である。横軸は太陽電池4の電圧値、縦軸は太陽電池4の発電電力値であり、日射量や太陽電池4の温度が異なる3つのケースの電力‐電圧特性を示している。
 まず、一般的なMPPT制御について説明する。
 図2に示すように、太陽電池4は、日射量の変化や温度変化等の周囲状況によって、その電力‐電圧特性が変化し、最大電力点にずれが生じる。このため、MPPT制御では、太陽電池4の出力電圧(動作電圧)を変化させ、電力の増減に基づいて、最大電力が得られる点、すなわち、最適動作電圧を探すという動作を絶えず行い、太陽電池4から最大電力を取り出すようにしている。最大電力点の一般的な探索動作は、山登り法と称され、まず、動作電圧を、例えば微量ΔV増加させて電力差ΔPを演算し、その結果、電力差ΔPが0以上であれば、最大電力点よりも左側(低電圧側)に現在の電圧があるとして、それまでと同じ方向に電圧を変化させる。電圧差ΔPが0以下であれば、最大電力点よりも右側(高電圧側)に現在の電圧があるとして、それまでと逆方向に電圧を変化させるものである。これを繰り返すことによって、最大電力点を探索することができる。以上のように、MPPT制御では、太陽電池4の出力電力が最大となるように、すなわち、太陽電池4の出力電圧が、図2に示す最大電力点となるように制御される。
 次に、一般的な電圧制御について説明する。
 電圧制御では、太陽電池4の電力‐電圧特性に基づいて電圧制御範囲が予め設定され、その電圧制御範囲内で太陽電池4の電力を引き出すものである。
 電圧制御における電圧制御範囲は、図2に示すように、電力‐電圧特性の最大電力点となる電圧より右側の範囲に設定される。仮に、太陽電池4の出力電圧が最大電力点となる電圧(以下、ピーク電圧)より小さくなると、太陽電池4からの出力電力は、単調減少を始め、以降の電圧制御が破綻してしまうため、太陽電池4の出力電圧がピーク電圧以下とならないよう、電圧範囲が設定されている。また、図2に示すように、電力‐電圧特性のピーク電圧は、太陽電池4の周囲状況により随時変化している。従って、周囲状況が変わっても太陽電池4の出力電圧がピーク電圧以下とならないよう、電圧制御範囲の下限値は、電力‐電圧特性のピーク電圧からある程度のマージンを持たせて設定されている。電圧制御は、前記のような電圧制御範囲の中で太陽電池4の出力電圧を制御して電力を引き出している。
 電圧制御では、電圧制御範囲の下限値を電力‐電圧特性のピーク電圧からある程度のマージンを持たせているのに対し、MPPT制御では、常に発電電力が最大となるようなピーク電圧を探索している。このため、太陽電池4をMPPT制御で制御することで、より効率よく太陽電池4から発電電力を得ることができる。
 次に、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cにリチウムイオンバッテリを利用することを例に上げ、蓄電池の特性について説明する。図3(A)は、横軸に充電電力割合(以降、SoC)、縦軸に充電電流を示す。図3(B)は、横軸に時間、縦軸にSoCを示す。図4(A)は、横軸にSoC、縦軸に蓄電池電圧を示す。一般に、蓄電池は、過充電(蓄電池電圧が所定の値を超えて充電)、過放電(蓄電池電圧が所定値以下になるまで放電)を行うと劣化が必要以上に進み、最悪の場合、破壊に至ることがある。リチウムイオンバッテリは、図4(A)に示すように満充電付近(SoCが1.0付近)になると、急激に蓄電池電圧が上昇する。また、満充電付近で充電電流の電流リプルが大きいと、劣化が必要以上に進む場合がある。従って、蓄電池に充電する際は、前記過充電の防止、および充電電流リプル量を低減するため、蓄電池電圧が所定の電圧になるまでは定電流で充電し、所定の電圧になると定電圧で充電する方式がとられる。
 例えば、SoCが0.8となる蓄電池電圧までは定電流で充電し、以降を定電圧で満充電になるまで充電した場合のSoCと充電時間の関係を図3(B)に示す。図に示すように、蓄電池特性、および定電流で充電する電流量に依存するが、前記定電流制御で充電する時間を0.8C(1Cとは1時間で蓄電池を満充電できる電流量とする。)とした場合の一例を図3(B)に示した。図に示すように、定電流制御で充電する時間と定電圧制御で充電する時間は、ほぼ等しくなっている。なお、放電については、一般的には蓄電池電圧が放電終止電圧になるまでは、充電時とは異なり、制御の切り替えは行わない。
 また、リチウムイオンバッテリは、通常、使用しているだけで劣化が進む。図4(B)にフル充電・フル放電を実施した際の充放電実施回数と蓄電池容量の関係の一例を示す。図に示すように、約4000回の充放電で、蓄電池の容量は、半分程度まで劣化している。劣化の進んだ蓄電池は、交換する必要があり、交換するタイミングは、任意で決めても良いし、例えば、電池メーカが定めた蓄電池を安全に使用できる蓄電池容量で決定しても良い。
 一般に、蓄電池劣化を進める代表的な要因としては、蓄電池のセル温度、充放電電流、充電終止電圧、放電終止電圧、保存時間がある。例えば、保存時間については、満充電に近い状態では空に近い状態と比べ劣化が進む。また、気温が高ければ高いほど劣化の進みが早い。また、充放電電流についても、電流量が大きければ大きいほど劣化が進み、その劣化の進む割合は、蓄電池セルの温度に依存する。さらに、充電終止電圧、および放電終止電圧についても同様で、例えば、本来の充電電力の容量の90%程度まで充電をしなければ、100%まで充電した場合と比べて蓄電池の劣化は小さくなる。同様に、放電完了時の残蓄電電力量を大きくすればフル放電した場合と比べて蓄電池の劣化は小さくなる。また、フル充電時、あるいはフル放電時の劣化の進み具合も蓄電池セル温度に大きく依存する。よって、使用温度範囲を狭く設定して使用することによって、最大充放電電流/使用電圧範囲を制限することによる劣化抑制効果が、より高くなることが期待できる。
 リチウムイオンバッテリは、化学反応により電力を充電したり、放電したりする。例えば、低温で所定の電流(例えば、1C)を充電しようとした場合は、充電電流に対して化学反応が追従できず金属リチウムが析出し、リチウムイオンバッテリは劣化する。蓄電池を、例えば蓄電池セル温度を考慮せず、充放電を繰り返すと、蓄電池劣化が必要以上に進み、所望の使用期間(例えば、10年)を待たずに蓄電池が使用できなくなる。本件については、蓄電池の劣化を抑制するため、蓄電池内のバッテリマネージメントユニットにより、過充電、あるいは過放電を検出した場合、温度の高い状態、あるいは低い状態で充放電を行った場合等、強制的に蓄電池を切り離すような仕組みが組み込まれている場合が多い。
 従って、蓄電池の劣化要因となる、最大充放電電流、充電終止電圧、および放電終止電圧を蓄電池セル温度に基づき制限する場合について説明する。図5(A)に、各蓄電池セル温度に対する最大充放電電流とSoCとの関係を示した。図に示すように、蓄電池セル温度が室温(例えば、20から25℃程度の状態)の場合は、蓄電池は定格通りに充電が可能となる。なお、SoCが0.8以上になると最大充電電流が絞られている理由は、前述した蓄電池の充電制御が定電流制御から定電圧制御に切り替わることに起因している。室温から蓄電池セル温度が上昇すると、図に示すように最大充電電流は、徐々に小さくなり、また、SoCも低くなる。そして、蓄電池セル温度が45℃を超えると、充電動作を禁止する。
 蓄電池セル温度が室温から低くなると、図に示すように最大充電電流は、徐々に小さくなり、また、SoCも低くなる。そして、蓄電池セル温度が0℃以下になると、充電動作を禁止する。同様に、図5(B)に各蓄電池セル温度に対する最大放電電流とSoC(充電電力割合)との関係を示した。図に示すように、蓄電池セル温度が室温(例えば20から25℃程度の状態)の場合は、蓄電池は定格通りに放電が可能となる。なお、SoCが0付近になると最大放電電流は急峻に絞られ0になる。室温から蓄電池セル温度が上昇すると、図に示すように最大放電電流は、徐々に小さくなり、また、SoCは高くなる。そして、蓄電池セル温度が0℃以下になると放電動作を禁止する。
 なお、蓄電池セル温度に対する充放電電流の最大値を制限するテーブルは図5(A)、および図5(B)に示すものに限るものではなく、使用する蓄電池の特性に合わせたテーブルを使用すれば良いことは言うまでもない。また、蓄電池の劣化要因の1つである保存劣化については説明を省略するが、例えば、保存劣化が進む高温時については、最大充電電力量(充電終止電圧)の上限値を制限するよう、さらに制限テーブルを設けても良いことは言うまでもない。
 蓄電池の劣化を進める要因として、蓄電池セル温度、最大充放電電流、充電終止電圧、放電終止電圧、および保存劣化について説明した。本実施の形態1では、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化の度合いに応じ、劣化が進むほど厳しい制限に切り替えて運用する。そうすることで、劣化の進んだ蓄電池には、より高い劣化抑制効果のある制御が適応されるため、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化の度合いを徐々に近づけることができる。
 次に、電力変換システム1の詳細な動作を説明する。ただし、簡単のため、図6に示すように、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cをまとめて1つの蓄電池8、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cをまとめて1つの蓄電池用DC/DC変換器9として説明する。なお、蓄電池8および蓄電池用DC/DC9内部の動作については、後述する。
 初めに、電力系統2が正常な場合の通常運転について説明する。
 まず、電力変換システム1の太陽電池4に対する動作について説明する。
 電力変換システム1の通常運転時、制御装置10が、太陽電池4にて電力が発電されているかを確認する。具体的には、太陽電池4の電圧を計測する電圧計(図示せず)の計測値が所定値を超えているかを確認することになる。なお、この所定値は太陽電池4の発電が可能となる値として予め設定されている。そして、太陽電池4の電圧の計測値が所定値を超えていた場合、制御装置10は、電力系統2が停電ではないことを確認する。電力系統2が停電でない場合、制御装置10は、DC/AC変換器7を起動するとともに、太陽電池4からの発電を開始する。DC/AC変換器7の起動により、直流母線6の母線電圧が予め設定された第1の制御目標電圧となるように制御される。また、電力系統2に回生する電力は、DC/AC変換器7を電流制御することでシステム全体を動作させるものとする。なお、電力系統2が停電ではないことを確認する動作については後述する。
 太陽電池4からの発電を開始する際、制御装置10から太陽電池用DC/DC変換器5にMPPT制御の制御指令値が入力される。太陽電池用DC/DC変換器5は、指令値を元に動作し、太陽電池4から出力される第1の直流電圧V1を第2の直流電圧V2に変換して出力する。
 太陽電池用DC/DC変換器5からの太陽電池4による発電電力の供給が開始されると、制御装置10によりDC/AC変換器7を駆動制御して太陽電池4からの電力を電力系統2、負荷3に出力する。なお、太陽電池4からの電力の電力系統2への出力(回生)は、制御装置10により判断される。具体的には、制御装置10が、直流母線6の母線電圧を計測する電圧計(図示せず)により母線電圧を監視し、母線電圧の計測値が第1の制御目標電圧を超えた場合に、電力系統2より供給される交流電圧波形に同期して電力系統2に電力を回生するようDC/AC変換器7を制御する。
 次に、蓄電池8の制御方法について説明する。本実施の形態1では、蓄電池としてリチウムイオンバッテリを用いた場合について説明する。リチウムイオンバッテリは、前述したように高温、あるいは低温の状態で充放電を行うと劣化の進行が速くなる。また、過放電、あるいは過充電に対して非常に弱い。特に、蓄電池の蓄電電力量が80%を超えると蓄電池電圧が急速に上昇するため、一般の蓄電池の制御では、充電方式を定電流充電(一定の電流値での充電)から定電圧充電(電池電圧が一定なるように充電)に切換える。また、放電に関しては、過放電を防ぐために放電終止電圧にマージンを持たせ放電制御を行う。具体的には、放電終止電圧を高めに設定して、放電終止電圧を下回った場合は即座に放電動作を停止させる。
 本実施の形態1では、蓄電池8の最大充放電電流を規定する制限テーブルを用いて蓄電池8を制御するものとして説明を続ける。該制限テーブルは、蓄電池温度に対するSoCと最大充放電電流の関係を規定するもので、温度毎に準備する。例えば、0℃、5℃、10℃、25℃、30℃、35℃の6種類のテーブルを充電、および放電の2種類準備する。なお、本実施の形態1では、該制限テーブルは、HEMS11から書き換えが可能なものとする。前述のように6種類のテーブルを準備する理由は、リチウムイオンバッテリは、10℃から30℃ぐらいの間は充放電電流の最大値の特性は変わらないが、10℃以下、あるいは30℃を超えると蓄電池劣化の進行を抑えるために、急激に充放電電流の最大値は絞らなければならない。また、-5℃以下、あるいは40℃を超えると充放電は行えなくなる。よって、本実施の形態1では、前述したような6種類のテーブルを使用する。なお、7℃など制限テーブルを持たない温度に関しては5℃と10℃のテーブルを用い、線形補間して最大充放電電流値を算出する。
 以下、制限テーブルについてもう少し詳しく説明する。本実施の形態1では、制限テーブルについては、蓄電池の劣化度合いに応じてHEMS11から書きかえるものとする。このように、制限テーブルを蓄電池の劣化の進行度合いにより書き換えることで、劣化の進んだ蓄電池8については、最大電流値の制限や充放電の終止電圧の制限を大きくすることで、蓄電池の劣化の進行を抑制することができる。また、電力変換システム1の外部のHEMS11から制限テーブルを書き換えることで、制御装置10に不必要なデータを持たせることなく、低コスト化を図ることができることは言うまでもない。メモリサイズに余裕がある場合は、制限テーブルのデータを制御装置10に持たせても良いことは言うまでもない。更に、制限テーブルのデータをHEMS11ではなく、図示していないクラウドサーバ等で管理し、劣化の進行度合いに応じてクラウドサーバからダウンロードし、HEMS11経由で制御装置10内の制限テーブルのデータを書き換えるように構成する場合には、制御装置10およびHEMS11に不必要なデータを持たせることがないことから、低コスト化と共に、複数の電力変換システム1を同じ制御状態にすることができるという効果を得ることができる。
 以上より、制御装置10は、HEMS11からの充放電指令を受け取ると、温度検出装置15を用いて蓄電池温度を確認する。実施の形態1では、確認結果に基づき、制限テーブルから最大充放電電流値、および充放電終止電圧を求める。そして、求めた最大充放電電流値に基づき充放電電流を決定する。具体的には、HEMS11からの充放電指令値から充放電電流値を算出する。例えば、放電指示である場合は、蓄電池8、蓄電池用DC/DC変換器9での損失を考慮し、電流値を算出する。算出した電流値と制限テーブルから求めた最大充放電電流値を比較し、算出した電流値が最大充放電電流値を超えていた場合は、蓄電池8を制御する際の目標電流値を最大充放電電流値とし、超えていない場合は、前記HEMS11から指示された充放電指令値より算出した電流値で蓄電池8の充放電を制御する。
 なお、蓄電池8を動作させると、蓄電池8の損失、あるいは蓄電池8と各種変換器が同一の筐体に入っている場合は、蓄電池用DC/DC変換器9の損失、DC/AC変換器7の損失、太陽電池用DC/DC変換器5の損失等により蓄電池温度が上昇する。よって、制御装置10は、定期的(例えば1秒毎)に蓄電池8の温度を温度検出装置15により計測し、該充最大放電電流値を切換える。すなわち、温度検出装置15は、蓄電池8の温度情報を検出する温度情報取得装置としての機能を果たし、制御装置10は、その際、充放電電流値に基づきSoCを算出し、算出結果に基づき該充放電電流の最大値を算出することは言うまでもない。また、本実施の形態1では、充放電電流値に基づきSoCを算出したが、これに限るものではなく、例えば、蓄電池8の電圧値を用いても良いことは言うまでもない。
 次に、通常運転時における、電力変換システム1の蓄電池8に関する動作を説明する。
 制御装置10は、前述のように蓄電池8の充放電についての指示を行う。例えば、制御装置10は、HEMS11から、蓄電池8のステータス情報送信要求を受けると、放電あるいは充電の可否判断結果、および最大放電電力あるいは最大充電電力をHEMS11に通知する。具体的には、前述したように、蓄電池温度、およびSoCに基づき最大充放電電流を算出する。そして、蓄電池8の電圧と、該最大充放電電流から充放電の最大電力を通知する。その際、蓄電池8、および蓄電池用DC/DC変換器9、DC/AC変換器7での損失分を考慮し、HEMS11に通知する。HEMS11は、制御装置10から受信したステータス情報(前記充放電可否情報、および充放電の最大電力量)に基づき、制御装置10に対し、蓄電池8の放電指示(放電電力指示値を含む)、あるいは蓄電池8の充電指示(充電電力指示値を含む)を通知する。なお、実施の形態1では、HEMS11と制御装置10間の通信は、定期的(例えば5分単位)に実施している。これは、蓄電池温度が前述したように充放電を行うことで上昇し、最大充放電電流を絞る、あるいは、充電時にはSoCが所定値に近づき充電電流を絞るなどのケースなどがあり、HEMS11側で、蓄電池8の動作を把握するために実施する。
 まず、HEMS11より放電指示が通知された場合について説明する。
 放電指示の通知を受信した制御装置10は、蓄電池8の電圧を検出する電圧検出装置14にて得られる電圧情報、および蓄電池8の充放電電流を検出する電流検出装置13にて得られる電流情報に基づき、蓄電池8からの実際の放電電力を算出する。算出結果が受信した放電電力指示値となるように、蓄電池用DC/DC変換器9に対する制御指令を出力する。蓄電池用DC/DC変換器9は、制御指令に基づいて動作し、蓄電池8から出力される第3の直流電圧V3を第4の直流電圧V4に変換して出力する。第4の直流電圧V4に変換された蓄電池8からの出力は、DC/AC変換器7を介して電力系統2、負荷3に供給される。ここで、前記の太陽電池4の電力を電力系統2へ出力(回生)する場合と同様、蓄電池8からの電力の電力系統2への出力(回生)は、制御装置10により判断される。制御装置10は、直流母線6の母線電圧を計測する電圧計(図示せず)による母線電圧の計測値が第1の制御目標電圧を超えた場合に、電力系統2に電力を回生するようDC/AC変換器7を制御する。
 なお、制御装置10は、前述したが蓄電池用DC/DC変換器9のステータス情報として蓄電池用DC/DC変換器9から実際に出力される放電電力を収集し、蓄電池用DC/DC変換器9内での変換損失を求め、損失分を上乗せして蓄電池8の放電制御を行うことができる。なお、本実施の形態1では、蓄電池8の充放電制御について、HEMS11から通知されるがこれに限るものではなく、例えば、太陽電池4の発電電力を最大限売電するために負荷3が消費する電流を電流計(図示せず)で計測し、計測結果を元に負荷の消費電力を計算する。そして、計算結果を元に、負荷の消費電力を蓄電池8から放電しても良いことは言うまでもない。その際は、前述の要領で制限テーブルを用いて放電電流の最大値を制御することは言うまでもない。
 また、制御装置10は、蓄電池8の充電量などのステータス情報を管理する。具体的には、後述するが蓄電池8の劣化進度を推定するために、蓄電池8の充放電履歴を収集する。本実施の形態1では、充放電時の終止電圧、充放電最大電流値、充放電電流値平均、充放電電力量、蓄電池温度の平均値、最大最小値、SoCが0.8以上の保持時間等を計測し、1日単位で情報を管理する。なお、本実施の形態1では、制御装置10は前記情報の収集を実施し、実際のデータ管理はHEMS11、あるいはクラウドサーバ(図示せず)で実施するものとする。
 一方、HEMS11より充電指示が通知された場合について説明する。
 充電指示の通知を受信した場合、制御装置10は、蓄電池8の電圧を検出する電圧検出装置14にて得られる電圧情報、および蓄電池8の充放電電流を検出する電流検出装置13にて得られる電流情報に基づいて、蓄電池8への実際の充電電力を算出する。算出結果が受信した充電電力指示値となるように、蓄電池用DC/DC変換器9に対する制御指令を出力する。蓄電池用DC/DC変換器9は、制御指令に基づいて動作し、蓄電池8を充電する。
 なお、蓄電池8への充電の際、太陽電池4の発電電力を蓄電池8への充電のために優先的に使用する。太陽電池4の発電電力で蓄電池8への充電電力を全てまかなった上で、余剰電力が発生する場合には、その余剰電力を電力系統2、負荷3に出力するものとする。太陽電池4の発電電力で蓄電池8への充電電力をまかなうことができない場合には、不足する電力を電力系統2より供給する。具体的には、制御装置10は直流母線6の母線電圧を計測する電圧計(図示せず)を介して母線電圧を監視し、母線電圧の計測値が第1の制御目標電圧を下回っていた場合に、電力系統2から電力変換システム1内に力行電力を取り込むようDC/AC変換器7を制御する。その際、制御装置10は、放電動作の説明の際に説明したが、後述する蓄電池8の劣化進度を推定するために、蓄電池8の充放電履歴を収集(収集する情報は前述したので省略する)する。
 なお、本実施の形態1では、蓄電池8の充電制御について、HEMS11から通知されるがこれに限るものではなく、例えば、太陽電池4の発電電力の余剰電力を充電するように、図示していない電流計を用いて売電電流(太陽電池4の発電電流と負荷3の消費電流)を計測し、計測結果から売電電力を算出する。そして、売電電力が0、あるいは最小になるように蓄電池8の充電を制御しても良いことは言うまでもない。なお、その際は、前述の要領で制限テーブルを用いて充電電流の最大値を制御することは言うまでもない。
 また、通常動作時において、太陽電池4からの発電電力、蓄電池8からの放電電力を電力系統2に出力(回生)する場合の判断、および電力系統2から電力変換システム1内に電力を取り込む(力行)場合の判断は、直流母線6の母線電圧の計測値に基づき行われる。
 次に、停電検出動作について説明する。通常運転時において、制御装置10は、電力系統2が停電していないかを検出し、停電でないことを随時確認している。以下、電力系統3が停電していないかを検出することを単独運転検出とする。
 制御装置10は、通常運転時において、電力系統2の系統電圧を計測する電圧計(図示せず)による計測結果、DC/AC変換器7と電力系統2間を流れる交流電流を計測する電流計(図示せず)による計測結果、および電力系統2に回生するDC/AC変換器7の出力位相から単独運転検出を行う。単独運転検出方法の詳細は、系統連系規定(JEAC9701‐2010)に規定されているものと同様であり、本実施の形態1では詳細な説明を省略する。
 制御装置10による単独運転検出において単独運転が検出された場合、電力系統2において停電等の何らかの異常が発生したこととなり、電力変換システム1は自立運転を開始する。
 以下、電力系統2の停電時における電力変換システム1の動作(以下、自立運転動作と記す)を説明する。
 制御装置10は、単独運転を検出すると、太陽電池用DC/DC変換器5および蓄電池用DC/DC変換器9を停止させる。制御装置10は太陽電池用DC/DC変換器5および蓄電池用DC/DC変換器9の停止を確認すると、DC/AC変換器7を停止させる。
 そして、例えば自動的に、電力系統2と、電力変換システム1および負荷3との間に配置されたスイッチ(図示せず)等が切られ、電力系統2と、電力変換システム1および負荷3との接続を切り離す。なお、電力系統2からの切り離しはユーザーが手動で行っても良いことは言うまでもない。
 次に、制御装置10は、蓄電池8からの放電の可否および放電可能電力を確認し、放電が可能であれば、蓄電池用DC/DC変換器9を電圧制御にて制御し、蓄電池8からの放電を開始させる。
 ここで、蓄電池用DC/DC変換器9の電圧制御について説明する。
 前記の通り、通常運転時には、DC/AC変換器7により直流母線6の母線電圧が制御されていた。しかし、停電時には、電力系統2からの電力が供給されないため、DC/AC変換器7では母線電圧を制御することはできない。このため、蓄電池8の放電により電力を得て所望の電圧を出力することのできる蓄電池用DC/DC変換器9により、基本的に母線電圧を制御する。具体的には、制御装置10は、母線電圧を計測する電圧計(図示せず)の計測値を得、この計測値が予め設定された第1の制御目標電圧となるように蓄電池用DC/DC変換器9の出力電圧を制御する。
 なお、本実施の形態1では、自立運転時の第1の制御目標電圧は、通常運転時において説明した、制御装置10からの指令によりDC/AC変換器7にて母線電圧を制御する場合の第1の制御目標電圧と同じ値に設定している。ただし、第1の制御目標電圧を必ずしもDC/AC変換器7にて母線電圧を制御する場合の第1の制御目標電圧と同じ値に設定する必要はなく、必要に応じて異なる値としても良い。
 蓄電池用DC/DC変換器9の電圧制御により母線電圧が第1の制御目標電圧になると、制御装置10は、DC/AC変換器7を電圧制御にて起動する。具体的には、制御装置10内で基準となる基準正弦波(例えば60Hz)を発生させ、DC/AC変換器7の出力電圧を計測する電圧計(図示せず)で計測される電圧波形と基準正弦波が同様の正弦波となるようにDC/AC変換器7を制御する。DC/AC変換器7から電力供給が開始されると、負荷3が起動し、電力消費を開始する。その際、蓄電池8からの放電電力が少ないと母線電圧が第1の制御目標電圧より下がってくるため、制御装置10は蓄電池8からの放電電力を増加させるよう蓄電池用DC/DC変換器9に制御指令を出し、第1の制御目標電圧を維持する。
 DC/AC変換器7から負荷3へ電力供給が開始されると、制御装置10は、太陽電池4からの発電を開始する。以下、停電時の電力変換システム1における太陽電池4の制御について説明する。
 制御装置10は、太陽電池4の電圧を計測する電圧計(図示せず)から得られる計測値により太陽電池4の電圧が所定値以上かを確認する。太陽電池4の電圧が所定値未満の場合は、太陽電池4が発電できないと判断し、太陽電池4の電圧が所定値となるまで待機する。太陽電池4の電圧が所定値以上であった場合は、太陽電池用DC/DC変換器5を電圧制御で起動する。なお、この所定値は太陽電池4の発電が可能となる値として予め設定されたものである。ここでは、通常運転時に太陽電池4の発電が可能かどうかを判断する際に使用した所定値と同じ値に設定しているが、この所定の値は必要に応じて適宜設定すれば良い。
 制御装置10は、母線電圧が予め設定された第2の制御目標電圧となるように太陽電池用DC/DC変換器5を電圧制御で制御する。具体的には、制御装置10は、直流母線6の母線電圧を計測する電圧計(図示せず)の計測値を得、この計測値が第2の制御目標電圧となるように太陽電池用DC/DC変換器5の出力電圧を制御する。
 ここで、電圧制御における第2の制御目標電圧は、蓄電池用DC/DC変換器9による母線電圧の目標値である第1の制御目標電圧より大きい値に設定される。
 停電時に長時間安定して電力を供給するためには、自然エネルギーである太陽電池4による発電電力を優先的に利用し、蓄電池8に充電された電力を必要以上に消費しないようにする必要がある。前記のように、太陽電池用DC/DC変換器5の電圧制御における母線電圧の目標値である第2の制御目標電圧を、蓄電池用DC/DC変換器9の電圧制御における母線電圧の目標値である第1の制御目標電圧より大きい値に設定する。このため、太陽電池4での発電電力が十分にある場合は、母線電圧を、太陽電池4からの出力電力により第2の制御目標電圧に維持することができ、この間は、蓄電池8からの放電を抑えることができる。
 一方、負荷3の消費電力が太陽電池4の発電電力を超える場合は、太陽電池4の発電電力で第2の制御目標電圧に維持することができなくなり、母線電圧が下がる。母線電圧が下がってくると、蓄電池用DC/DC変換器9の電圧制御における母線電圧の目標値である第1の制御目標電圧を下回らないよう、今度は蓄電池8からの放電が開始され、母線電圧が第1の制御目標電圧で制御されることとなる。負荷3での消費電力が下がり、太陽電池4での発電電力で負荷3の消費電力を十分にまかなえるようになると、母線電圧は上昇し、再び第2の制御目標電圧で制御されるようになり、蓄電池8からの放電を抑えることができる。
 以上により、通常運転時、停電時に係わらず負荷3に電力を供給することが可能である。
 ここで、蓄電池8を複数個有する場合(図1参照)の蓄電池8および蓄電池用DC/DC変換器9内部の動作について説明する。
 まずは、通常運転時における蓄電池8および蓄電池用DC/DC変換器9内部の動作について図1および図7を用いて説明する。
 蓄電池8の充放電は、HEMS11からの放電指示あるいは充電指示を受け取った制御装置10の制御指令に基づいて、蓄電池用DC/DC変換器9が動作することで行われると説明した。これは、HEMS11からの放電指示あるいは充電指示を受け取った制御装置10の制御指令によって、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電電力の合計が放電指示あるいは充電指示を満たすように、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cが制御されることを意味しており、制御装置10は、図7に示したフローチャートに従って第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cに制御指令を出力する。
 ここで、図7のフローチャートに従って、制御装置10が第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cへの制御指令を決定する方法について説明する。
 手順1では、制御装置10は、予め設定された所定の期間ごと(本実施の形態1では1日周期)に第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化検出を実施する。なお、制御装置10は、前述したように劣化検出装置12で計測した充放電時の終止電圧、充放電最大電流値、充放電電流値平均、充放電電力量、蓄電池温度の平均値、最大最小値、SoCが0.8以上の保持時間等(ステータス情報)を、1日単位で情報を収集する。収集したデータはHEMS11に送信する。
 本実施の形態1では、所定期間毎に第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの制限テーブルを劣化進度に応じて切換えることで、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化の進行の度合いをあわせて第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cをほぼ同時に交換できるようにする。ここでは、予め設定された所定の期間ごとの劣化検出タイミングであるかどうかの判断を行い、劣化検出タイミングであれば手順2へ、劣化検出タイミングでなければ手順4へ移行する。なお、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化検出タイミングは同じであっても、それぞれ異なっていても良い。
 手順2では、HEMS11は、制御装置10より入力されたステータス情報を元に、履歴データベース構築法に基づき劣化状態を推定する。なお、具体的な劣化状態の推定方法の説明は省略するが、該ステータス情報をパラメータとする劣化推定式を準備しておき、劣化推定式に該ステータス情報を入力することで、所定周期期間(本実施の形態1では1日)の劣化進行度を算出し、前日の劣化進行度に加算することで求める。また、本実施の形態1では、蓄電池の電池容量を計測する蓄電池容量計測手段(図示せず)を設け、少なくとも定期的(例えば、半年に1回程度)にフル放電-フル充電を実施し、蓄電池8の容量を実測し、実測結果を元に、該履歴データベース構築法に基づく劣化進度に補正を加える。このように、実測値に基づき劣化進度に補正を加えることにより、蓄電池8の製造ばらつきなどに起因する蓄電池劣化についても補正することができる効果がある。
 また、HEMS11は、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの前記ステータス情報を制御装置10から受けて、各々の蓄電池8a、8b、8cの劣化進度を算出する。劣化進度を、各々別々に実施する理由は、蓄電池8の劣化は、製造時のばらつき、設置条件などにより異なるためである。例えば、第1の蓄電池8aが西日の当たる位置に設置され、第2の蓄電池8bおよび第3の蓄電池8cが日陰に設置された場合は、蓄電池の平均温度は第1の蓄電池8aが一番高くなる。従って、第1の蓄電池8aの劣化は、第2の蓄電池8bおよび第3の蓄電池8cと比較して進むと予想される。
 なお、本実施の形態1では劣化推定式を利用して、蓄電池8の1日の劣化の進行度を算出したがこの方法に限るものではなく、例えば、運用開始から現在までの該ステータス情報全てを利用して計算しても良いことは言うまでもない。また、劣化検出の方法は、当業者により容易に想到される任意の手法を利用することができるが、例えば、履歴データベース構築法、直流抵抗測定法、交流インピーダンス測定法、放電曲線解析法、充電曲線解析法等を利用することができる。
 なお、履歴データベース構築法、直流抵抗測定法、交流インピーダンス測定法、放電曲線解析法、充電曲線解析法とは次のものである。
・履歴データベース構築法
 蓄電池の環境条件と、充電や放電などの使用条件を劣化計測データとして網羅的に扱い、蓄電池の使用履歴から劣化状態を評価する手法である。
・直流抵抗測定法
 電流を流していない状態の回復時電圧と、ある一定の放電電流を流した状態の放電時電圧を測定し、回復時電圧と放電時電圧の差分を放電電流で割ることで直流抵抗を求め、直流抵抗の変化から電池劣化を評価する手法である。
・交流インピーダンス測定法
 周波数を変えて測定した交流インピーダンスの実数部と虚数部のグラフから、電池各部位の抵抗を求め、抵抗変化から電池劣化を評価する手法である。
・放電曲線解析法
 放電曲線を電圧で微分するなどによって特徴づけて、各活物質の容量変化を抽出する手法である。
・充電曲線解析法
 充電時のセル電圧変化に対し、開回路電圧に基づき、各活物質の容量と内部抵抗値を変数とした回帰計算を行い、容量と抵抗を求める手法である。
 実施の形態1では、HEMS11で劣化検出を行うとしたが、劣化検出装置12で劣化検出のために必要なデータを取得し、制御装置10、劣化検出装置12またはクラウドサーバ(図示せず)内でデータの分析を行うことで、劣化検出を実行するものであっても良い。
 手順3では、制御装置10は、手順2でHEMS11において検出した第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度に基づき、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの各々の制限テーブルの更新を行い、手順4へ移行する。なお、本実施の形態1では、HEMS11から制御装置10内の各蓄電池8の制御に使用する該制限テーブルのデータを書き換える。制限項目は、本実施の形態1では、図5に示す各蓄電池セル温度に対する最大充放電電流とSoCとの関係を指し示すテーブルを更新する。本テーブルを使用することで、蓄電池8は、各SoCに対する最大充放電電流、使用可能電圧範囲、使用可能温度範囲の3つを劣化進度により切換えることができる。
 なお、本実施の形態1では、前記3つの項目について制限をかける場合について説明を続けるがこれに限るものではなく、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度に合わせ、使用可能温度範囲を制限するテーブルとともに、最大充放電電流、使用可能電圧範囲の内、少なくとも1つの制限するテーブルを準備し、そのテーブルを更新するよう構成すればよいことは言うまでもない。例えば、使用電圧範囲に制限を加える場合、図8に例えば蓄電池温度が25℃における容量維持率(容量維持率=1.0-劣化進度)と使用電圧範囲の関係を示す。
 図8に示したように容量維持率の低下に対し、充電終止電圧は実線で表すように比例して降下、放電終止電圧は点線に表すように比例して上昇するように設定し、容量維持率が降下するほど使用可能電圧範囲を狭める。なお、図8は、説明を簡単にするために各々の終止電圧を直線で示したがこれに限るものではなく、蓄電池8の特性に合わせて各々の終止電圧を制御すれば、劣化進度の抑制効果が良くなることは言うまでもない。
 次に、図9にあるSoCにおける温度と最大充放電電流の関係を示す。最大充放電電流は蓄電池温度に依存するため、通常状態での使用可能領域は、図9中に実線で示すように台形状で表される。ここで、最大充放電電流に制限を加える場合、図中の一点鎖線のように台形の内側に水平線を加える。また、使用可能温度範囲に制限を加える場合、図中の点線のように台形の内側に斜線を加える。容量維持率が低下するほど、台形のより内側に線を追加し、使用可能領域を狭める。蓄電池の主な劣化要因は、充放電時の温度、充放電電流の大きさ、保存時の電圧、蓄電池温度、充放電深度であるため、劣化が進行し、容量維持率が低下するほど、使用可能温度範囲を狭めるとともに、最大充放電電流、使用可能電圧範囲の内、少なくとも1つの制限を大きくし、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cを運用することにより、劣化を抑制できる。
 手順4では、制御装置10は、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cのSoC情報、および第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの各々の制限テーブルから最大充放電電流を求め、蓄電池電圧と乗算して充放電可能電力P1、P2、P3を算出する。また、制限テーブル、およびSoC情報から充放電の可否判断を行う。そして、充放電可否判断結果と充放電可能電力P1、P2、P3をHEMS11へ通知する。なお、充放電可否判断は行わず、最大充電電力、あるいは最大放電電力を“0”として通知しても同様の効果があることは言うまでもない。
 具体的な充放電可能電力P1、P2、P3の確認方法は、例えば、次のように行う。まず、温度検出装置15において第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの温度を検出し、検出した温度と手順3で設定した最大充放電電流、使用可能温度範囲から成る使用可能領域との比較から、検出した温度における最大充放電電流を求める。続いて、電圧検出装置14において第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの電圧を検出し、検出した電圧と検出した温度における最大充放電電流を積算することで、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電可能電力P1、P2、P3を確認する。なお、HEMS11は、前記充放電可能電力P1、P2、P3を加算し、電力変換システム1から充放電電力の最大値を算出し、算出結果と負荷3の消費電力、太陽電池4の発電電力を元に、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cから充放電電力P0を算出する。そして、この算出結果に基づいて、HEMS11は、運転計画を作成する。
 手順5では、制御装置10は、HEMS11より要求電力P0を受け取り、手順6へ移行する。なお、要求電力P0は、手順4で制御装置10がHEMS11に通知した第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電可能電力P1、P2、P3、太陽電池4の発電状態、電力系統2の状態、負荷3の消費電力等を元に、HEMS11で計算されるものであり、充放電可能電力P1、P2、P3の合計値を超えることはない。
 手順6では、制御装置10は、HEMS11より受け取った要求電力P0に対し、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電電力の決定を行い、手順7へ移行する。充放電電力の決定は、単純に均等にしても良いし、以下に示す例のように、充放電可能電力や劣化の進行度合いを考慮しても良い。
例1:要求放電電力に対し、充放電可能電力の割合で放電電力を決定する場合
 制御装置10がHEMS11より要求放電電力P0を受け取った場合、制御装置10は、図10のフローチャートに従い、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を充放電可能電力P1、P2、P3の比率を用い、次のように決定する。
 第1の蓄電池8aからの放電電力:P0×P1/(P1+P2+P3)
 第2の蓄電池8bからの放電電力:P0×P2/(P1+P2+P3)
 第3の蓄電池8cからの放電電力:P0×P3/(P1+P2+P3) ・・・(1)
 ここで、式1を用いて第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を決定した場合の具体的な動作波形図を図11に示す。ただし、充放電可能電力P1、P2、P3がP1>P2>P3を満たすものとする。
 図11より、充放電可能電力の小さい蓄電池ほど蓄電池からの放電電力が小さく抑えられ、なおかつ放電電力の変動も小さいことが分かる。本発明では、劣化の進行した蓄電池ほど使用制限を大きくするため、充放電可能電力が小さくなる。よって、前記のように、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を決定することで、劣化の進んだ蓄電池からの放電電力および放電電力の変動を小さく抑えることができ、劣化の進んだ蓄電池の劣化の進行をより抑制することができる。なお、前述の式(1)の算出結果が、P1、P2、P3の値を超えていた場合は、該P1、P2、P3以下になるように放電電力を決定し、放電できない電力は、放電可能な蓄電池8から放電するよう構成する。
例2:要求放電電力に対し、劣化の進んだ蓄電池の利用率・利用頻度を下げるように放電電力を決定する場合
 制御装置10がHEMS11から要求放電電力P0を受け取った場合、制御装置10は、図12のフローチャートに従い、劣化の進んだ蓄電池の利用頻度を下げるように、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を決定する。以下、第1の蓄電池8aの劣化進度<第2の蓄電池8bの劣化進度<第3の蓄電池8cの劣化進度として、フローチャートの説明を行う。また、フローチャートの手順で第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を決定した場合の体的な動作波形を図13に示す。
 図12のフローチャートに示すように、手順6aでは、制御装置10は、要求放電電力P0と最も劣化進度の小さい第1の蓄電池8aの充放電可能電力P1との比較を行い、充放電可能電力P1が要求放電電力P0以上であれば手順6bへ、充放電可能電力P1が要求放電電力P0より小さければ手順6cへ移行する。
 手順6bでは、制御装置10は、充放電可能電力P1が要求放電電力P0以上であるため、第1の蓄電池8aのみで、要求放電電力P0を放電することができると判断し、第1の蓄電池8aからの放電電力をP0、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を0として、フローチャートを終了する。
 手順6cでは、制御装置10は、充放電可能電力P1が要求放電電力P0よりも小さいため、第1の蓄電池8aからの放電電力をP1として、手順6dへ移行する。ここで、第1の蓄電池8aからの放電電力をP1とした理由は、最も劣化進度の小さい第1の蓄電池8aを最大限利用することで、劣化進度のより大きな蓄電池の利用率を下げるためである。
 手順6dでは、制御装置10は、要求放電電力P0と第1の蓄電池8aからの放電電力P1との差分P0-P1と2番目に劣化進度の小さい第2の蓄電池8bの充放電可能電力P2との比較を行い、充放電可能電力P2が差分P0-P1以上であれば手順6eへ、充放電可能電力P2が差分P0-P1よりも小さければ手順6fへ移行する。
 手順6eでは、制御装置10は、充放電可能電力P2が要求放電電力P0と第1の蓄電池8aからの放電電力P1との差分P0-P1以上であるため、第2の蓄電池8bで、差分P0-P1を放電することができると判断し、第2の蓄電池8bからの放電電力をP0-P1、第3の蓄電池8cからの放電電力を0としてフローチャートを終了する。
 手順6fでは、制御装置10は、充放電可能電力P2が要求放電電力P0と第1の蓄電池8aからの放電電力P1との差分P0-P1よりも小さいため、第2の蓄電池8bからの放電電力をP2として、手順6gへ移行する。ここで、第2の蓄電池8bからの放電電力をP2とした理由は、手順6cでの第1の蓄電池8aからの放電電力とP1とした理由と同じであり、最も劣化の大きい第3の蓄電池8cの利用率を下げるためである。
 手順6gでは、制御装置10は、第3の蓄電池8cからの放電電力をP0-P1-P2としてフローチャートを終了する。
 なお、HEMS11からの要求放電電力P0は、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電可能電力P1、P2、P3の合計値を上回ることはないため、第3の蓄電池8cは放電電力P0-P1-P2を放電することが可能である。
 以上のようにして、制御装置10が第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの放電電力を決定することによって、図13のように劣化進度の大きい蓄電池の利用頻度を低く抑えることができる。また、劣化進度の大きい蓄電池の利用率も低く抑えることができる。よって、劣化進度の大きい蓄電池の劣化をより抑制することができる。
例3:要求充電電力に対し、充放電可能電力の割合で充電電力を決定する場合
 制御装置10がHEMS11より要求充電電力P0を受け取った場合、制御装置10は、図14のフローチャートに従い、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cへの充電電力を充放電可能電力P1、P2、P3の比率を用い、次のように決定する。
 第1の蓄電池8aへの充電電力:P0×P1/(P1+P2+P3)
 第2の蓄電池8bへの充電電力:P0×P2/(P1+P2+P3)
 第3の蓄電池8cへの充電電力:P0×P3/(P1+P2+P3) ・・・(2)
 ここで、式2を用いて第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cへの充電電力を決定した場合の具体的な動作波形図を図15に示す。ただし、充放電可能電力P1、P2、P3がP1>P2>P3を満たすものとする。図15より、充放電可能電力の小さい蓄電池ほど蓄電池への充電電力が小さく抑えられ、また、充電電力の変動も小さいことが分かる。本発明では、劣化の進行した蓄電池ほど使用制限を大きくするため、充放電可能電力が小さくなる。よって、前記のように、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cへの充電電力を決定することで、劣化の進んだ蓄電池への充電電力および充電電力の変動を小さく抑えることができ、劣化の進んだ蓄電池の劣化の進行をより抑制することができる。
例4:要求充電電力に対し、劣化の進んだ蓄電池への充電電力変動を下げるように放電電力を決定する場合
 制御装置10がHEMS11から要求充電電力P0を受け取った場合、制御装置10は、図16のフローチャートに従い、劣化の進んだ蓄電池への充電電力変動を下げるように、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cからの充電電力を決定する。以下、第1の蓄電池8aの劣化進度<第2の蓄電池8bの劣化進度<第3の蓄電池8cの劣化進度として、フローチャートの説明を行う。また、フローチャートの手順で第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cへの充電電力を決定した場合の具体的な動作波形図を図17に示す。
 図16のフローチャートに示すように、手順6hでは、制御装置10は、要求充電電力P0と最も劣化進度の大きい第3の蓄電池8cの充放電可能電力P3との比較を行い、充放電可能電力P3が要求充電電力P0以上であれば手順6iへ、充放電可能電力P3が要求充電電力P0より小さければ手順6jへ移行する。
 手順6iでは、制御装置10は、充放電可能電力P3が要求充電電力P0以上であるため、第3の蓄電池8cのみで、要求充電電力P0を充電することができると判断し、第3の蓄電池8cへの充電電力をP0、第1の蓄電池8aおよび第2の蓄電池8bへの充電電力を0として、フローチャートを終了する。
 手順6jでは、制御装置10は、充放電可能電力P3が要求充電電力P0よりも小さいため、第3の蓄電池8cへの充電電力をP3として、手順6kへ移行する。ここで、第3の蓄電池8cへの充電電力をP3とした理由は、最も劣化進度の大きい第3の蓄電池8cを最大限利用しておくことで、要求充電電力P0が急増した場合であっても第3の蓄電池8cへはこれ以上充電できず、充電電力の変動を抑えることができるためである。
 手順6kでは、制御装置10は、要求充電電力P0と第3の蓄電池8cへの充電電力P3との差分P0-P3と2番目に劣化進度の大きい第2の蓄電池8bの充放電可能電力P2との比較を行い、充放電可能電力P2が差分P0-P1以上であれば手順6lへ、充放電可能電力P2が差分P0-P1よりも小さければ手順6mへ移行する。
 手順6lでは、制御装置10は、充放電可能電力P2が要求充電電力P0と第3の蓄電池8cへの充電電力P3との差分P0-P3以上であるため、第2の蓄電池8bで、差分P0-P3を充電することができると判断し、第2の蓄電池8bへの充電電力をP0-P3、第1の蓄電池8aへの充電電力を0としてフローチャートを終了する。
 手順6mでは、制御装置10は、充放電可能電力P2が要求放電電力P0と第3の蓄電池8cへの充電電力P3との差分P0-P3よりも小さいため、第2の蓄電池8bへの充電電力をP2として、手順6nへ移行する。ここで、第2の蓄電池8bへの充電電力をP2とした理由は、手順6jでの第3の蓄電池8cへの充電電力とP3とした理由と同じであり、要求充電電力P0が急増した場合であっても充電電力の変動を抑えるためである。
 手順6nでは、制御装置10は、第1の蓄電池8aへの充電電力をP0-P3-P2としてフローチャートを終了する。なお、HEMS11からの要求充電電力P0は、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電可能電力P1、P2、P3の合計値を上回ることはないため、第1の蓄電池8aは充電電力P0-P3-P2を充電することが可能である。
 以上のようにして、制御装置10が第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cへの充電電力を決定することによって、図17のように劣化進度の大きい蓄電池の充電電力の変動を抑えることができる。また、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cは大容量であることが一般的であるため、短時間での電圧上昇が小さい。よって、劣化進度の大きい蓄電池は、概ね一定電流で充電され、劣化をより抑制することができる。
 前記のように、充放電可能電力や劣化の進行度合いを考慮し、要求電力P0に対する第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電電力を決定することで、劣化進度の大きい蓄電池の劣化の進行をさらに抑制することができる。よって、蓄電池のばらつきや、使用環境の違いなどに基づき、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度にずれが発生しても、前述のように劣化の進んだ蓄電池8の使用条件に制限を加える(厳しい制限テーブルを使用)することで、劣化の進みが速い蓄電池8の劣化進度を抑えることで、それぞれの蓄電池8の劣化進度をほぼ一致させることができる効果がある。
 これらの手順を終えた後は、図7に示すように手順7に移る。手順7では、制御装置10は、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cに制御指令を送り、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電電力が(手順6)で決定した充放電電力と一致するように制御を行う。なお、制御装置10は、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cでの損失分を加味して制御を行うようにしても良い。
 前述のように、本実施の形態1では、通常運転時、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cは、劣化進度によって決定される最大充放電電流、使用可能電圧範囲、使用可能温度範囲の制限を劣化進度により制御するので、より劣化が進行した蓄電池には、前記制限テーブルにより使用条件に厳しい使用条件を与えるため、高い劣化抑制効果を得ることができる。よって、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進行の度合いをほぼ一致させることができる。
 続いて、停電時における蓄電池8および蓄電池用DC/DC変換器9内部の動作について説明する。
 停電時、制御装置10は、母線電圧を計測する電圧計(図示せず)の計測値を得、この計測値が予め設定された第1の制御目標電圧となるように蓄電池用DC/DC変換器9の出力電圧を制御すると、説明した。これは、制御装置10が第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cそれぞれの出力電圧を第1の制御目標電圧とするように、電圧制御を行うことを意味しており、制御装置10は、電圧制御で第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cを駆動制御する。
 このとき、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの供給可能電力P1、P2、P3が十分であれば、理想的には、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cから供給される電力は一致するはずである。しかし、前記した第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度によって決定される最大充放電電流、使用可能電圧範囲、使用可能温度範囲の制限および残量によって第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの供給可能電力P1、P2、P3に差が生じ、供給可能電力が不十分なものがある場合がある。
 例えば、第1の蓄電池8aの供給可能電力P1が不足した場合、第1の蓄電池8aと接続された第1の蓄電池用DC/DC変換器9aの出力電圧が第1の蓄電池8aの供給可能電力P1に見合った値まで低下する。しかし、第1の蓄電池8aが負担仕切れなかった電力は、自動的に残りの第2の蓄電池8bおよび第3の蓄電池8cによって負担されるため、母線電圧は、第1の制御目標電圧に維持され、負荷3への電力供給が問題なく行われる。
 前記のように、停電時においても第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cは、劣化進度によって決定される最大充放電電流、使用可能電圧範囲、使用可能温度範囲の制限内で使用されるため、より劣化が進行した蓄電池ほど、より高い劣化抑制効果を得ることができる。よって、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進行をほぼ一致させることができる。
 なお、本実施の形態1では、自立運転時についても制限テーブルを利用し蓄電池劣化の進度を制御する場合について説明したがこれに限るものではなく、停電による自立運転は日本の電力需要ではほとんど発生しない。よって、停電時には劣化抑制のための制限テーブルは使用せず、蓄電池御本来の仕様に基づき制御するよう構成しても、短い期間の利用であれば蓄電池劣化を急速に進めることはない。
 これまで説明した通り、通常運転時と停電時の両方において、制御装置10は、第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの劣化進度によって決定される最大充放電電流、使用可能電圧範囲、使用可能温度範囲の制限範囲内で第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cの充放電を行うよう、第1の蓄電池用DC/DC変換器9a、第2の蓄電池用DC/DC変換器9bおよび第3の蓄電池用DC/DC変換器9cを制御するため、より劣化が進行した蓄電池ほど、より高い劣化抑制効果を得ることができる。
 よって、図18(A)に示すように、蓄電池の特性ばらつきにより、同じように使用しても交換時期にずれが生じる場合でも、図18(B)に示すように、劣化進度を近づけ、同時に交換することができるため、保守性が向上する。また、図19(A)に示すように、リユース品の蓄電池を使用する等して、初めから劣化の進行度合いが異なり、同じように使用しても交換時期にずれが生じる場合でも、図19(B)に示すように、劣化進度をほぼ一致させ、同時に交換することができるため、保守性が向上する。また、図19(A)に示すように、リユース品の蓄電池を使用する等して、初めから劣化の進行度合いが異なり、同じように使用しても交換時期にずれが生じる場合でも、図19(B)に示すように、劣化進度を近づけることができる。
 なお、本実施の形態1では、直流母線6に太陽電池4を電源とする太陽電池用DC/DC変換器5が接続された場合について説明したが、必ずしもこれに限られるものではない。例えば、風力発電や、水力発電等を用いても良い。そして、太陽電池4の場合には、MPPT制御と電圧制御を用いたが、風力発電や水力発電等の場合にも最大電力を引き出す電力制御と出力電圧を制御する電圧制御を用いれば良い。また、創エネ機器を持たず、複数の蓄エネ機器のみが直流母線6に接続される構成としても良い。
 また、本実施の形態1では、太陽電池4や第1の蓄電池8a、第2の蓄電池8bおよび第3の蓄電池8cから供給される直流電力を、DC/AC変換器7にて一旦交流電力に変換し、負荷3に供給する場合について説明したが、これに限るものではない。例えば、直流母線6から直接負荷3に直流電力を供給する、あるいはDC/DC変換して直流電力を負荷3に供給する、いわゆる直流給電対応の負荷3に供給する構成としても良い。
 さらに、本実施の形態1では、DC/AC変換器7の交流側は、電力系統2および負荷3と接続されると説明したが、必ずしもこれに限られるものではない。例えば、DC/AC変換器7の交流側をモータと接続し、電気自動車の電源システムとして利用しても良い。その際、HEMS11の機能は、電気自動車のECU(Electronic Control Unit)が担っても良いし、制御装置10が担っても良い。
 最後に、本実施の形態1では、各変換器の制御を制御装置10で実施するものとして説明したが、これに限るものでない。例えば、制御装置10は、各変換器の充放電電力または電圧の目標値を決定し、各変換器に内蔵される、または専用の制御回路が各変換器の出力が目標値となるよう制御を行うようにしても良い。
 また、実施の形態1ではHEMS11で劣化検出を行うとしたが、劣化検出装置12で劣化検出のために必要なデータを取得し、制御装置10、劣化検出装置12または図示されていないクラウドサーバ内でデータの分析を行うことで、劣化検出を実行するものであっても良い。また、劣化検出装置12内で蓄電池8の劣化を推定しても良いことは言うまでもない。さらに、劣化推定の一部の計算をクラウドサーバで実施し、最終的な推定はHEMS11、あるいは劣化検出装置12で実施するよう構成しても良い。
 また、本実施の形態1では、蓄電池8のステータス情報のうち、充放電可能電力の情報が制御装置10からHEMS11に入力され、HEMS11において蓄電池8の各々の充放電電力を決定することについて説明したが、電力量の情報を制御装置10からHEMS11に入力することによって、蓄電池8の各々の充放電電力を決定するようにしても、同様の効果を得ることができる。この電力量は、電力を時間軸で積分したもので、例えば、充電可能電力量は、蓄電池が現状から充電終止電圧になるまでに充電可能な電力量を表し、放電可能電力量は蓄電池が現状から放電終止電圧になるまでに放電可能な電力量を表す。
 また、本実施の形態1では、蓄電池8の劣化進度によって、図8に示すように、蓄電池8の使用可能電圧範囲を制限した。しかし、これに限るものではなく、劣化進度に加え、蓄電池温度に基づき更に使用可能電圧範囲を制御しても良いことは言うまでもない。これは、前述したが、本実施の形態1に示すように蓄電池は、高温時に満充電に近い状態で蓄電池8を放置すると劣化が進む。従って、特に高温時には充電終止電圧を抑制することで保存劣化を抑えることができることは言うまでもない。
 また、蓄電池8を深夜の電力料金の安い時間帯に充電し、昼間の電力料金の高い時間帯に放電するような場合、気温予測情報を取得し、取得した気温情報を元に、深夜に充電する際の終止電圧を決定するように構成しても良いことは言うまでもない。
 また、本実施の形態1では、蓄電池8の劣化進度によって、図9に示すように、蓄電池8の最高充放電電流値を制限した。しかし、これに限るものではなく、劣化進度に加え、蓄電池温度、あるいは/および蓄電池電圧に基づき更に最高充放電電流値を制御しても良いことは言うまでもない。これは、前述したが、本実施の形態1に示すように蓄電池は、蓄電池温度により蓄電池の劣化の進度が異なる。従って、特に蓄電池の劣化が進む高温時、あるいは低温時、あるいは特に充電時については蓄電池電圧(蓄電池のSoC)に最大充放電電流を絞ることで蓄電池劣化の進行を抑えることができることは言うまでもない。
 また、本実施の形態1では、蓄電池8の最大充放電電流値を図9に示すように説明したがこれに限るものではなく、リチウムイオンバッテリを使用する場合は特に、前述したが充電と放電で制御方法が異なる。具体的には、充電時はSoC(あるいは蓄電池電圧)が所定の値を超えた場合、定電流制御から定電圧制御に切り換る。よって、該制限テーブルは充電と放電で異なるテーブルを使用しても良いことは言うまでもない。
 また、本実施の形態1では、最大充放電電流、使用可能電圧範囲、使用可能温度範囲を制限する手法として制限テーブルを使用する場合について説明したがこれに限るものではなく、数式や予め定められた近似曲線などを使用しても良いことは言うまでもない。
 また、蓄電池劣化の推定方法は、履歴データベース構築法に限るものではなく、「直流抵抗測定法」、「交流インピーダンス測定法」、「放電曲線解析法」、「充電曲線解析法」等、他の方式でも良いことは言うまでもない。
また、本実施の形態1では、温度検出装置15は蓄電池8の温度を検出するとしたが、熱電対等で蓄電池8の温度を直接測定することに限らず、気温や充放電電流の大きさから蓄電池8の温度を推定しても良いことは言うまでもない。
 なお、本実施の形態1では蓄電池8の1実施例としてリチウムインバッテリを使用した場合について説明したがこれに限るものではなく、例えばニッケル水素電池、鉛蓄電池等の他の電池でも良いことは言うまでもない。特に、蓄電池は化学反応により電気エネルギーの充電/放電を実施するため、蓄電池温度による影響は非常に大きい。従って、蓄電池温度により、少なくとも最大充放電電流量、あるいは仕様可能電圧範囲、あるいは蓄電池電圧に基づく最大充放電電流量等制御することで蓄電池の劣化進度を制御することは言うまでもない。
 なお、この発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。また、実施の形態において、説明に使用している装置は、単体に限らず、複数の機能の装置を組合せて同様の機能を達成する手段として実施することが可能である。

Claims (11)

  1.  蓄電池を入力電源として複数の前記蓄電池のそれぞれに設けられ、前記蓄電池を並列運転する複数の蓄電池用電力変換器と、前記蓄電池の各々の劣化情報を取得する劣化情報取得装置と、前記蓄電池の温度情報を検出する温度情報取得装置と、前記劣化情報取得装置による前記蓄電池の劣化情報と前記温度情報取得装置による前記蓄電池の温度情報に基づいて前記蓄電池用電力変換器を制御する制御装置とを備え、複数の前記蓄電池の劣化の状態を一致し得るようにしたことを特徴とする電力変換システム。
  2.  前記制御装置で前記蓄電池の充放電を制御する際、前記劣化情報取得装置で取得した前記蓄電池の劣化の進度を基に、劣化の進んだ蓄電池は、劣化の進みが遅い蓄電池に対して、使用可能温度範囲を同じ、もしくは狭めるとともに、蓄電池温度に対する最大充放電電流を同じ、もしくは小さくする、あるいは蓄電池温度に対する蓄電池の使用可能電圧範囲を同じ、もしくは狭める、の内から少なくとも1つを使用して前記蓄電池の充放電を制御することを特徴とする請求項1に記載の電力変換システム。
  3.  前記制御装置は、前記蓄電池の劣化情報、および前記蓄電池の温度情報に基づいて各々の前記蓄電池の充放電電力を決定する運転計画作成手段からの情報を受けることを特徴とする請求項1記載の電力変換システム。
  4.  前記劣化情報取得装置および前記温度情報取得装置が、前記蓄電池の各々の劣化の進度を推定する劣化推定手段と、前記蓄電池の各々の電圧を検出する電圧検出手段と、前記蓄電池の各々の充放電電流を検出する電流検出手段と、前記蓄電池の各々の温度を計測する温度計測手段、および前記蓄電池の各々の蓄電電力量を計測する蓄電電力計測手段を有し、所定期間内に所定の周期で検出した前記電圧検出手段、前記電流検出手段、前記温度計測手段、および前記蓄電電力計測手段における各種計測結果をデータベース化し、データベース化したデータを元に、前記劣化推定手段において前記蓄電池の各々の劣化の進度を推定し、前記制御装置によって前記蓄電池の充放電を制御することを特徴とする請求項1に記載の電力変換システム。
  5.  前記蓄電池をフル放電の状態から満充電させるよう制御し、前記蓄電池の電池容量を計測する蓄電池容量計測手段を有し、前記劣化推定手段は前記蓄電池容量計測手段により計測した前記蓄電池の電池容量を元に、前記蓄電池の劣化の進度の推定結果を補正することを特徴とする請求項4に記載の電力変換システム。
  6.  前記劣化情報取得装置で取得した前記蓄電池の各々の劣化の進度に基づき、前記制御装置で前記蓄電池を制御する際、前記蓄電池の各々に前記最大充放電電流、前記使用可能電圧範囲、前記使用可能温度範囲の少なくとも1つを制限するための制限テーブルを備え、前記制限テーブルに基づき前記蓄電池の各々の充放電を制御するようにしたことを特徴とする請求項2に記載の電力変換システム。
  7.  外部と通信する通信手段を有し、前記蓄電池の各々に準備した前記制限テーブルは、前記通信手段を経由して外部より書き換えられるようにしたことを特徴とする請求項6に記載の電力変換システム。
  8.  前記運転計画作成手段が、前記制御装置より入力される充放電可能電力に基づいて、前記蓄電池の各々の充放電電力を決定することを特徴とする請求項3に記載の電力変換システム。
  9.  前記運転計画作成手段が、前記制御装置より入力される充放電可能電力量に基づいて、前記蓄電池の各々の充放電電力を決定することを特徴とする請求項3に記載の電力変換システム。
  10.  前記運転計画作成手段が、前記蓄電池の各々の放電電力を決定する際に、劣化の進行が最も小さい前記蓄電池に放電電力を割り当て、不足が出た場合は、劣化の進行が小さい前記蓄電池から順番に、放電を行う前記蓄電池を追加することを特徴とする請求項3に記載の電力変換システム。
  11.  前記運転計画作成手段が、前記蓄電池の各々の充電電力を決定する際に、劣化の進行が最も大きい前記蓄電池に充電電力を割り当て、不足が出た場合は、劣化の進行が大きい前記蓄電池から順番に、充電を行う前記蓄電池を追加することを特徴とする請求項3に記載の電力変換システム。 
PCT/JP2015/077495 2015-02-17 2015-09-29 電力変換システム WO2016132586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/543,611 US10164448B2 (en) 2015-02-17 2015-09-29 Power conversion system
JP2016507306A JP5932190B1 (ja) 2015-02-17 2015-09-29 電力変換システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-028259 2015-02-17
JP2015028259 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016132586A1 true WO2016132586A1 (ja) 2016-08-25

Family

ID=56688833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077495 WO2016132586A1 (ja) 2015-02-17 2015-09-29 電力変換システム

Country Status (2)

Country Link
US (1) US10164448B2 (ja)
WO (1) WO2016132586A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189005A (ja) * 2016-04-05 2017-10-12 オムロン株式会社 蓄電装置
JP2018050428A (ja) * 2016-09-23 2018-03-29 三菱日立パワーシステムズ株式会社 制御装置、それを備えた電力システム、及び制御方法並びに制御プログラム
JP6345291B1 (ja) * 2017-03-22 2018-06-20 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
WO2018230019A1 (ja) * 2017-06-16 2018-12-20 日本電気株式会社 電力管理システム、電力制御装置、電力管理方法及びプログラム
CN109061338A (zh) * 2018-07-04 2018-12-21 蔚来汽车有限公司 储能pcs对拖测试平台及方法
WO2019021099A1 (ja) * 2017-07-25 2019-01-31 株式会社半導体エネルギー研究所 蓄電システム、電子機器及び車両、並びに推定方法
EP3442092A1 (en) * 2017-08-10 2019-02-13 Robert Bosch GmbH Method and apparatus for charging management, charging device and machine readable medium
EP3444918A1 (en) * 2017-08-16 2019-02-20 Robert Bosch GmbH Method and apparatus for charging management, charging device and machine readable medium
JP2019047625A (ja) * 2017-09-01 2019-03-22 日本リライアンス株式会社 バッテリー用コンバータ及び三相蓄電システム
WO2019075294A1 (en) * 2017-10-12 2019-04-18 General Electric Company TEMPERATURE REGULATION FOR ENERGY STORAGE SYSTEM
WO2019188166A1 (ja) * 2018-03-29 2019-10-03 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
WO2020026502A1 (ja) * 2018-07-30 2020-02-06 日立オートモティブシステムズ株式会社 電池管理装置、電池管理方法、電力貯蔵システム
JPWO2021048920A1 (ja) * 2019-09-10 2021-03-18
JP6918433B1 (ja) * 2020-03-10 2021-08-11 三菱電機株式会社 劣化度診断装置
WO2021192847A1 (ja) * 2020-03-27 2021-09-30 本田技研工業株式会社 バッテリシステム
JP2021170889A (ja) * 2020-04-16 2021-10-28 日新電機株式会社 電力変動緩和装置
US20220006133A1 (en) * 2019-03-22 2022-01-06 Kaneka Corporation Power storage control system and power storage control method
WO2023189179A1 (ja) * 2022-03-30 2023-10-05 株式会社デンソー 2次電池のインピーダンス測定装置
WO2024084872A1 (ja) * 2022-10-17 2024-04-25 株式会社Gsユアサ 蓄電部、蓄電システム、電気エネルギー貯蔵変換システム
WO2024100967A1 (ja) * 2022-11-10 2024-05-16 株式会社デンソー 電池監視プログラム、記録媒体、電池監視システム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413311B2 (ja) * 2014-04-11 2018-10-31 株式会社村田製作所 蓄電装置、制御方法、制御装置、蓄電システム、電動車両および電子機器
JP2017085769A (ja) * 2015-10-28 2017-05-18 パナソニックIpマネジメント株式会社 電力変換システム及び制御装置
US10486836B2 (en) * 2016-11-10 2019-11-26 Hamilton Sundstrand Corporaration Solar powered spacecraft power system
US11342760B2 (en) * 2017-01-26 2022-05-24 Sony Interactive Entertainment Inc. Electrical device for parallel connected batteries
JP6363754B1 (ja) 2017-03-22 2018-07-25 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP7065435B2 (ja) * 2017-09-15 2022-05-12 パナソニックIpマネジメント株式会社 電池管理装置、電池システム、及び電池管理方法
CN110015115B (zh) * 2017-10-20 2022-05-27 蔚来(安徽)控股有限公司 用于确定换电站电池充电策略的方法和装置
JP6370522B1 (ja) * 2018-01-30 2018-08-08 三菱電機株式会社 直列多重インバータ
US20210313816A1 (en) * 2018-08-31 2021-10-07 Sanyo Electric Co., Ltd. Secondary battery charging system
US20200395774A1 (en) * 2019-06-17 2020-12-17 Renesas Electronics America Inc. Single inductor multiple output charger for multiple battery applications
CN110460105B (zh) * 2019-09-26 2021-02-23 珠海格力电器股份有限公司 光伏空调***的启动方法、控制器和光伏空调***
JP7225153B2 (ja) * 2020-03-13 2023-02-20 株式会社東芝 充放電制御方法、電池搭載機器、管理システム、充放電制御プログラム、管理方法、管理サーバ及び管理プログラム
US11646596B2 (en) 2020-03-26 2023-05-09 Robert Bosch Gmbh Portable power station having multiple battery modules and method of operating a portable power station having multiple battery modules
CN113644726A (zh) * 2020-04-27 2021-11-12 台达电子企业管理(上海)有限公司 分布式供电***及基于其的能量调节方法
WO2021261094A1 (ja) * 2020-06-22 2021-12-30 国立研究開発法人理化学研究所 直流バス制御システム
WO2022087955A1 (zh) * 2020-10-29 2022-05-05 华为数字能源技术有限公司 光伏***母线电压控制方法及装置
CN113281672B (zh) * 2021-05-12 2024-04-12 阳光电源股份有限公司 电池组检测控制方法、储能变换***及计算机可读存储介质
CN114636943B (zh) * 2022-05-12 2022-08-30 中创新航科技股份有限公司 电池装置、其检测方法、电池单元的筛选方法及装置
CN114660478B (zh) * 2022-05-12 2022-09-02 中创新航科技股份有限公司 电池装置、其检测方法、电池单元的筛选方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098794A1 (ja) * 2011-01-18 2012-07-26 日産自動車株式会社 電池制御装置
JP2013085386A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 蓄電池制御装置、蓄電池制御方法、電力貯蔵システム及び電気自動車の駆動システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056461A (ja) * 2003-08-06 2005-03-03 Pioneer Electronic Corp 光学式情報記録装置
JP4465598B2 (ja) * 2004-07-05 2010-05-19 ソニー株式会社 集積回路およびその処理制御方法、並びに、プログラム
JP5385698B2 (ja) 2009-06-25 2014-01-08 パナソニック株式会社 電源供給装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098794A1 (ja) * 2011-01-18 2012-07-26 日産自動車株式会社 電池制御装置
JP2013085386A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 蓄電池制御装置、蓄電池制御方法、電力貯蔵システム及び電気自動車の駆動システム

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189005A (ja) * 2016-04-05 2017-10-12 オムロン株式会社 蓄電装置
JP2018050428A (ja) * 2016-09-23 2018-03-29 三菱日立パワーシステムズ株式会社 制御装置、それを備えた電力システム、及び制御方法並びに制御プログラム
JP6345291B1 (ja) * 2017-03-22 2018-06-20 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
WO2018174209A1 (ja) * 2017-03-22 2018-09-27 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP2018160364A (ja) * 2017-03-22 2018-10-11 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
TWI788333B (zh) * 2017-03-22 2023-01-01 日商本田技研工業股份有限公司 信息處理裝置、記錄媒體以及信息處理方法
JPWO2018230019A1 (ja) * 2017-06-16 2020-04-09 日本電気株式会社 電力管理システム、電力制御装置、電力管理方法及びプログラム
WO2018230019A1 (ja) * 2017-06-16 2018-12-20 日本電気株式会社 電力管理システム、電力制御装置、電力管理方法及びプログラム
WO2019021099A1 (ja) * 2017-07-25 2019-01-31 株式会社半導体エネルギー研究所 蓄電システム、電子機器及び車両、並びに推定方法
US11205912B2 (en) 2017-07-25 2021-12-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system, electronic device, vehicle, and estimation method
JPWO2019021099A1 (ja) * 2017-07-25 2020-08-06 株式会社半導体エネルギー研究所 蓄電システム、電子機器及び車両、並びに推定方法
CN111164822A (zh) * 2017-07-25 2020-05-15 株式会社半导体能源研究所 蓄电***、电子设备及车辆以及推测方法
CN109383324A (zh) * 2017-08-10 2019-02-26 罗伯特·博世有限公司 用于充电管理的方法和装置、充电设备和机器可读介质
EP3442092A1 (en) * 2017-08-10 2019-02-13 Robert Bosch GmbH Method and apparatus for charging management, charging device and machine readable medium
TWI808089B (zh) * 2017-08-10 2023-07-11 德商羅伯特博斯奇股份有限公司 用於充電管理的方法和設備、充電裝置和機器可讀取媒體
CN110015124A (zh) * 2017-08-16 2019-07-16 罗伯特·博世有限公司 用于充电管理的方法和装置、充电设备和机器可读介质
CN110015124B (zh) * 2017-08-16 2023-06-09 罗伯特·博世有限公司 用于充电管理的方法和装置、充电设备和机器可读介质
TWI780205B (zh) * 2017-08-16 2022-10-11 德商羅伯特博斯奇股份有限公司 用於充電管理的方法和設備、充電裝置和機器可讀取媒體
EP3444918A1 (en) * 2017-08-16 2019-02-20 Robert Bosch GmbH Method and apparatus for charging management, charging device and machine readable medium
JP7020824B2 (ja) 2017-09-01 2022-02-16 株式会社Rej バッテリー用コンバータ及び三相蓄電システム
JP2019047625A (ja) * 2017-09-01 2019-03-22 日本リライアンス株式会社 バッテリー用コンバータ及び三相蓄電システム
US11342882B2 (en) 2017-10-12 2022-05-24 General Electric Company Temperature control for energy storage system
AU2018347543B2 (en) * 2017-10-12 2021-03-25 Ge Grid Solutions Llc Temperature control for energy storage system
US11848425B2 (en) 2017-10-12 2023-12-19 General Electric Company Temperature control for energy storage system
WO2019075293A1 (en) * 2017-10-12 2019-04-18 General Electric Company TEMPERATURE REGULATION FOR ENERGY STORAGE SYSTEM
WO2019075294A1 (en) * 2017-10-12 2019-04-18 General Electric Company TEMPERATURE REGULATION FOR ENERGY STORAGE SYSTEM
WO2019188166A1 (ja) * 2018-03-29 2019-10-03 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
JP2019176651A (ja) * 2018-03-29 2019-10-10 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
CN109061338A (zh) * 2018-07-04 2018-12-21 蔚来汽车有限公司 储能pcs对拖测试平台及方法
WO2020026502A1 (ja) * 2018-07-30 2020-02-06 日立オートモティブシステムズ株式会社 電池管理装置、電池管理方法、電力貯蔵システム
US20220006133A1 (en) * 2019-03-22 2022-01-06 Kaneka Corporation Power storage control system and power storage control method
JPWO2021048920A1 (ja) * 2019-09-10 2021-03-18
WO2021048920A1 (ja) * 2019-09-10 2021-03-18 株式会社 東芝 蓄電池管理システム
JP7225421B2 (ja) 2019-09-10 2023-02-20 株式会社東芝 蓄電池管理システム
WO2021181536A1 (ja) * 2020-03-10 2021-09-16 三菱電機株式会社 劣化度診断装置
JP6918433B1 (ja) * 2020-03-10 2021-08-11 三菱電機株式会社 劣化度診断装置
WO2021192847A1 (ja) * 2020-03-27 2021-09-30 本田技研工業株式会社 バッテリシステム
JP2021170889A (ja) * 2020-04-16 2021-10-28 日新電機株式会社 電力変動緩和装置
JP7215456B2 (ja) 2020-04-16 2023-01-31 日新電機株式会社 電力変動緩和装置
WO2023189179A1 (ja) * 2022-03-30 2023-10-05 株式会社デンソー 2次電池のインピーダンス測定装置
WO2024084872A1 (ja) * 2022-10-17 2024-04-25 株式会社Gsユアサ 蓄電部、蓄電システム、電気エネルギー貯蔵変換システム
WO2024100967A1 (ja) * 2022-11-10 2024-05-16 株式会社デンソー 電池監視プログラム、記録媒体、電池監視システム
WO2024101380A1 (ja) * 2022-11-10 2024-05-16 株式会社デンソー 電池監視プログラム、記録媒体、電池監視システム

Also Published As

Publication number Publication date
US20170366023A1 (en) 2017-12-21
US10164448B2 (en) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2016132586A1 (ja) 電力変換システム
EP3148037B1 (en) Energy storage system
JP5838313B2 (ja) 蓄電池充放電制御装置および蓄電池充放電制御方法
US8946929B2 (en) Method and apparatus for effective utilization of energy storage components within a microgid
JP5932190B1 (ja) 電力変換システム
JP5800919B2 (ja) 電力変換装置
US8456878B2 (en) Power storage system and method of controlling the same
US8854004B2 (en) Energy storage system and controlling method thereof
WO2013121618A1 (ja) 電力変換装置
US9205756B2 (en) Battery system
WO2012049915A1 (ja) 電力管理システム
JP5507582B2 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JP6430775B2 (ja) 蓄電池装置
JP2011130655A (ja) 共同住宅のエネルギー保存システム、並びに統合電力管理システム及びその制御方法
JP2013172495A (ja) 電力貯蔵型の発電システム
CN103748734A (zh) 控制蓄电池的方法、控制蓄电池的装置和电功率控制***
JP2015195674A (ja) 蓄電池集合体制御システム
JP2012249500A (ja) 電力系統管理システム及び電力系統の管理方法
KR101545136B1 (ko) 독립형 마이크로 그리드의 발전기 출력 제어 방법 및 시스템
KR102061308B1 (ko) 배터리 관리를 위한 제어전원 공급시스템과 그 공급방법 및 이를 이용한 에너지저장시스템
Luna et al. Generation-side power scheduling in a grid-connected DC microgrid
JP2017139834A (ja) 電力変換装置、およびパワーコンディショナシステム
JP2016116428A (ja) 分散型電源の自律運転システム
KR20160040831A (ko) 배터리 팩 및 그의 구동방법
JP2014230366A (ja) 発電装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15543611

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882687

Country of ref document: EP

Kind code of ref document: A1