WO2016129148A1 - 潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物 - Google Patents

潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物 Download PDF

Info

Publication number
WO2016129148A1
WO2016129148A1 PCT/JP2015/079666 JP2015079666W WO2016129148A1 WO 2016129148 A1 WO2016129148 A1 WO 2016129148A1 JP 2015079666 W JP2015079666 W JP 2015079666W WO 2016129148 A1 WO2016129148 A1 WO 2016129148A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant composition
bearing
phosphite
present
compound
Prior art date
Application number
PCT/JP2015/079666
Other languages
English (en)
French (fr)
Inventor
真吾 丸山
Original Assignee
株式会社Moresco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Moresco filed Critical 株式会社Moresco
Priority to EP15882022.5A priority Critical patent/EP3257922B1/en
Priority to KR1020167031341A priority patent/KR101819132B1/ko
Priority to JP2015555885A priority patent/JP5899599B1/ja
Priority to US15/129,757 priority patent/US9920274B2/en
Priority to CN201580024611.2A priority patent/CN106661493B/zh
Publication of WO2016129148A1 publication Critical patent/WO2016129148A1/ja
Priority to PH12016501767A priority patent/PH12016501767B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/10Saturated ethers of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/10Saturated ethers of polyhydroxy compounds
    • C07C43/11Polyethers containing —O—(C—C—O—)n units with ≤ 2 n≤ 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a lubricant composition and use thereof, and an aliphatic ether compound, and in particular, a lubricant having high moisture resistance and physical properties such as low viscosity, low evaporation, low temperature fluidity, and high viscosity index.
  • the present invention relates to a composition, its use, and an aliphatic ether compound suitably used in such a lubricant composition.
  • Ester base oils are known as lubricating base oils with low viscosity and low evaporation.
  • ester base oils have a problem of poor moisture resistance. That is, when the ester base oil is used for a long period of time, it is hydrolyzed by moisture in the air to generate an acid, which causes the generated acid to corrode the metal.
  • ester base oil since ester base oil has high polarity, there exists a problem of having an adverse effect on organic materials such as rubber and plastic.
  • fluid bearings have been developed and put to practical use in rotating devices that drive optical disks and optical disks such as FD, MO, minidisks, compact disks, DVDs, and hard disks used in these electronic devices.
  • a fluid bearing composed of a sleeve and a rotating shaft that are opposed to each other through a lubricating oil does not have a ball bearing, so that it is suitable for reduction in size and weight, and is excellent in quietness and economy.
  • Lubricating oils used in such hydrodynamic bearings have low viscosity even in the low temperature range, good low temperature fluidity, low viscosity reduction even in the high temperature range, and low evaporation properties. Is required.
  • Patent Document 1 discloses the thermal / oxidative stability and anti-sludge property of the lubricant.
  • Patent Document 2 discloses a lubricating oil composition suitable as a watch lubricating oil that can operate from ⁇ 30 ° C. to 80 ° C., does not deteriorate over a long period of time, and can maintain a long battery life.
  • a clock lubricating oil containing an ether oil as a base oil, an antiwear agent and an antioxidant is disclosed.
  • JP 2010-150562 A (published July 8, 2010)”
  • WO2001 / 059043 (published August 16, 2001)
  • conventional lubricating oil compositions are not sufficient in that they have high moisture resistance and physical properties such as low viscosity, low evaporation, low temperature fluidity, and high viscosity index.
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is lubrication having high moisture resistance and physical properties such as low viscosity, low evaporation, low temperature fluidity, and high viscosity index. It is an object to provide an aliphatic ether compound suitably used for a lubricant composition and its utilization technique, and such a lubricant composition.
  • the lubricant composition according to the present invention is a lubricant composition comprising an aliphatic ether compound as a base oil and containing an antioxidant, wherein the antioxidant contains at least an alkyl.
  • the total amount of the alkylated phenylnaphthylamine and the phosphite is 3 to 8% by weight based on the total amount of the base oil.
  • the content ratio of the alkylated phenylnaphthylamine and the phosphite is 85 to 95% by weight of the alkylated phenylnaphthylamine with respect to the total amount of the alkylated phenylnaphthylamine and the phosphite. It is characterized by 5 to 15% by weight of phosphite.
  • the aliphatic ether compound is an aliphatic ether compound having 8 to 300 carbon atoms in one molecule and 1 to 150 oxygen atoms in one molecule. It is preferable.
  • the aliphatic ether compound is preferably a 2- (2-ethylhexyloxy) ethyl ether compound.
  • the aliphatic ether compound is preferably at least one selected from the group consisting of compounds having structures represented by the following chemical formulas (1) to (10).
  • the alkylated phenylnaphthylamine is preferably N-phenyl-dodecylnaphthalen-1-amine or N-phenyl-octylnaphthalen-1-amine.
  • the phosphite is preferably 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-t-butylphenyl) butane.
  • the bearing oil according to the present invention preferably uses the lubricant composition.
  • the bearing according to the present invention is preferably lubricated using the lubricant composition.
  • the bearing is preferably a fluid bearing or an impregnated bearing.
  • the motor according to the present invention preferably includes the bearing.
  • the bearing lubrication method according to the present invention is preferably lubricated using a lubricant composition.
  • the use of the lubricant composition according to the present invention is preferably used for producing grease.
  • the grease according to the present invention preferably contains the lubricant composition.
  • the refrigerating machine oil according to the present invention preferably contains a lubricant composition.
  • the aliphatic ether compound according to the present invention preferably has a structure represented by any of the following chemical formulas (1) to (9).
  • a lubricant composition having high moisture resistance and physical properties such as low viscosity, low evaporation, low temperature fluidity, and high viscosity index can be realized.
  • FIG. 6 is a graph showing the results of measuring the evaporation loss of the lubricant compositions prepared in Reference Example 1-3 and Comparative Example 1-5 of the present invention. It is a figure which shows the result of having measured the evaporation loss of the lubricant composition prepared in Example 1-2 of this invention, and Comparative Example 6-10. It is a figure which shows the result of having measured the evaporation loss of the lubricant composition prepared in Example 3-8 and Comparative Example 15-16 of this invention. It is a figure which shows the result of having measured the evaporation loss of the lubricant composition prepared in Examples 9-14 of this invention.
  • FIG. 3 is a diagram showing a 1 H-NMR chart of Compound 1 obtained in Production Example 1 of the present invention.
  • FIG. 3 is a diagram showing a 1 H-NMR chart of Compound 3 obtained in Production Example 3 of the present invention.
  • FIG. 6 is a diagram showing a 1 H-NMR chart of Compound 5 obtained in Production Example 5 of the present invention.
  • FIG. 6 is a diagram showing a 1 H-NMR chart of Compound 6 obtained in Production Example 6 of the present invention.
  • FIG. 3 shows a 1 H-NMR chart of Compound 10 obtained in Production Example 10 of the present invention.
  • the present invention will be described in the order of (1) the lubricant composition according to the present invention, (2) use of the lubricant composition according to the present invention, and (3) the aliphatic ether compound according to the present invention.
  • Lubricant composition according to the present invention
  • an antioxidant comprising a fatty ether compound as a base oil and comprising at least an alkylated phenylnaphthylamine and a phosphite.
  • the total amount of the alkylated phenylnaphthylamine and phosphite is a predetermined amount with respect to the total amount of the base oil, and the content ratio of the alkylated phenylnaphthylamine and phosphite is a predetermined ratio.
  • a lubricant composition having high moisture resistance and having physical properties such as low viscosity, low evaporation, low temperature fluidity and high viscosity index is provided.
  • the present invention has been completed.
  • Such a high combined effect of alkylated phenylnaphthylamine and phosphite is an effect that is characteristic of aliphatic ether compounds among various base oils.
  • the lubricant composition according to the present invention uses an aliphatic ether compound as a base oil.
  • the present inventors have found that when an alkylated phenylnaphthylamine and a phosphite ester are used in combination as an antioxidant, the evaporation loss can be significantly reduced, and such a high combined effect is various. It has been found that this effect is unique to aliphatic ether compounds in base oils. That is, when an aliphatic ether compound is used as a base oil, a high combined effect of an alkylated phenylnaphthylamine and a phosphite can be obtained in that remarkable low evaporation is brought about.
  • the aliphatic ether compound since the aliphatic ether compound is not hydrolyzed by moisture in the air to generate an acid, it has excellent moisture resistance. Furthermore, since aliphatic ether compounds have a lower polarity than ester base oils, there is no problem of adversely affecting organic materials such as rubber and plastic.
  • the aliphatic ether used as a base oil in the present invention is not particularly limited, and an aliphatic ether usually used as a base oil for a lubricant can be suitably used.
  • the aliphatic ether is more preferably an aliphatic ether having 8 to 300 carbon atoms in one molecule and 1 to 150 oxygen atoms in one molecule. It is preferable that the number of carbon atoms in one molecule and the number of oxygen atoms in one molecule are within the above ranges because the balance of viscosity, low evaporation and low temperature fluidity is good.
  • the aliphatic ether preferably has 8 to 80 carbon atoms in one molecule and 1 to 40 oxygen atoms, more preferably has 8 to 60 carbon atoms in one molecule.
  • the number of oxygen atoms is particularly preferably in the range of 1 to 30, and most preferably in the range of 8 to 40 carbon atoms and 1 to 20 oxygen atoms in one molecule.
  • the aliphatic ether has the following general formula (11)
  • the 2- (2-ethylhexyloxy) ethyl ether compound having a structure represented by the formula is more preferable.
  • R 1 represents an alkyl group having 1 to 18 carbon atoms
  • R 2 represents an alkylene group having 2 to 18 carbon atoms
  • n represents an integer of 1 to 6 on average.
  • (R 2 —O) may be the same or different for each structural unit.
  • R 1 and R 2 may be linear or branched. If the carbon number of R 1 is 1 or more, that is, if the terminal of the molecular structure is not a hydroxyl group but an alkoxyl group in the ether compound, it is preferable because the separation from water is improved. It is preferable because the low temperature fluidity is not significantly impaired. In addition, if R 2 has 2 or more carbon atoms, it is preferable to be an ether that does not contain an acetal structure, which is excellent in moisture resistance and Lewis acid resistance, and if it is 18 or less, low-temperature fluidity is greatly impaired. Because there is no R 1 preferably has 1 to 12 carbon atoms, more preferably 2 to 8 carbon atoms.
  • R 2 has more preferably 2 to 12 carbon atoms, and further preferably 2 to 8 carbon atoms. If n is 1 to 6 on average, it is preferable because the balance of viscosity, low evaporation and low temperature fluidity is good.
  • the average value of n is more preferably 1 to 4, and further preferably 1 to 2.
  • the aliphatic ether is more preferably at least one selected from the group consisting of compounds having structures represented by the chemical formulas (1) to (10).
  • the compound having the structure represented by the chemical formula (1) is the compound 1
  • the compound having the structure represented by the chemical formula (2) is the compound 2
  • the compound having the structure represented by the chemical formula (3) is used.
  • Compound 3 is a compound
  • compound 4 is a compound having a structure represented by chemical formula (4)
  • compound 5 is a compound having a structure represented by chemical formula (5)
  • Compound 6 compound 7 having a structure represented by chemical formula (7), compound 8 having a structure represented by chemical formula (8), compound 9 having a structure represented by chemical formula (9)
  • a compound having a structure represented by the chemical formula (10) may be referred to as a compound 10.
  • the above-mentioned aliphatic ether may be used alone, or two or more of the above-mentioned aliphatic ethers may be used in combination.
  • the lubricant composition according to the present invention uses an aliphatic ether compound as a base oil, but contains a small amount of a base oil other than the aliphatic ether compound as long as the effect of the present invention is not adversely affected. You may go out.
  • the base oil other than the aliphatic ether compound is preferably 10% by weight or less, and more preferably 5% by weight or less, based on the total amount of the base oil.
  • the method for producing the aliphatic ether is not particularly limited, and may be obtained by any production method.
  • the aliphatic ether can be produced by polymerizing alkylene oxide such as ethylene oxide or propylene oxide.
  • the said aliphatic ether can be manufactured also by etherifying the terminal hydroxyl group of the said polyalkylene oxide by the substitution reaction of the polyalkylene oxide obtained by the said method, and alkyl chloride.
  • aliphatic ether for example, ADEKA CARPOL M series from ADEKA Corporation, Neugen XL series such as Neugen XL-40 from Daiichi Kogyo Seiyaku Co., Ltd., Neugen TDS-30 Neugen TDS series such as Neugen TDX series such as Neugen TDX-50, Neugen SD series such as Neugen SD-60, Neugen LP series such as Neugen LP-100, Anti-Floss F-233 and the like can be suitably used.
  • Neugen TDS-30 Neugen TDS series such as Neugen TDX series such as Neugen TDX-50, Neugen SD series such as Neugen SD-60, Neugen LP series such as Neugen LP-100, Anti-Floss F-233 and the like can be suitably used.
  • the production method of the compound 1-10 is not particularly limited.
  • the compound 1-10 can be produced by an existing synthesis method described in WO2006 / 025253, for example.
  • compound 1 can be obtained, for example, by an etherification reaction of 2-ethylhexyloxyethyl alcohol and 1,6-dichlorohexane.
  • compound 3 synthesizes 6- [2- (2-ethylhexyloxy) ethoxy] -hexyl chloride by an etherification reaction of 2- (2-ethylhexyloxy) ethyl alcohol and 1,6-dichlorohexane. Then, it can be isolated and purified as an intermediate by distillation under reduced pressure and obtained by etherification reaction of this intermediate and 2-butyloctanol.
  • Compound 4 can be synthesized by performing an etherification reaction using a corresponding alcohol in place of 2-butyloctanol in the same manner as the synthesis method of Compound 3, for example. it can.
  • Compound 2 Compound 7, Compound 8, and Compound 9 are prepared in the same manner as in the synthesis method of Compound 3, for example, by using 1,4-dichlorohexane instead of 1,6-dichlorohexane, and 4- [2 -(2-Ethylhexyloxy) ethoxy] -butyl chloride can be synthesized, isolated and purified as an intermediate by distillation under reduced pressure, and synthesized by performing an etherification reaction using each of the intermediate and the corresponding alcohol. .
  • the synthesis method of Compound 1-10 is not limited to the above method.
  • the product is appropriately purified using a known method (for example, distillation under reduced pressure or silica gel column chromatography), whereby compound 1-10 is converted into a lubricant. It can be used as a base oil.
  • an aliphatic ether compound is used as a base oil, and as an antioxidant, at least an alkylated phenylnaphthylamine and a phosphite, and a total of the alkylated phenylnaphthylamine and a phosphite.
  • the amount is a predetermined amount relative to the total amount of the base oil, and is contained so that the content ratio of the alkylated phenylnaphthylamine and the phosphite is a predetermined ratio.
  • alkylated phenylnaphthylamine and a phosphite ester together as an antioxidant, these can act synergistically to obtain an effect of promoting low evaporation. Moreover, the combined use of alkylated phenylnaphthylamine and phosphite ester can also provide an effect that the duration of the antioxidant effect becomes longer.
  • alkylated phenylnaphthylamine used in the present invention, in other words, the alkyl-substituted phenyl naphthylamine is particularly limited as long as at least one of the phenyl group and the naphthyl group of the phenyl naphthylamine is substituted with an alkyl group.
  • the following general formula (12) the following general formula (12)
  • R 3 and R 4 each independently represent a linear or branched alkyl group having 1 to 18 carbon atoms. l is an integer of 0 to 5, m is an integer of 0 to 7, and 1 + m is 1 or more. It is preferable that R 3 and R 4 are alkyl groups having 4 to 18 carbon atoms because they have high solubility in aliphatic ether compounds and the alkylated phenylnaphthylamine itself is difficult to evaporate.
  • R 3 for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group
  • alkyl groups such as a group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group, and these may be linear or branched.
  • R 3 is more preferably an alkyl group having 4 to 18 carbon atoms, and particularly preferably an alkyl group having 4 to 12 carbon atoms.
  • R 3 is more preferably an alkyl group having 4 to 18 carbon atoms, and particularly preferably an alkyl group having 4 to 12 carbon atoms.
  • the number of substituents 1 is 2 or more, two or more R 3 s may be the same or different.
  • the substitution position of R 3 is not particularly limited.
  • l may be an integer of 0 to 5, more preferably 0 to 2, and still more preferably 0 to 1.
  • R 4 for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group And alkyl groups such as a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group, which may be linear or branched.
  • R 4 is more preferably an alkyl group having 4 to 18 carbon atoms, and particularly preferably an alkyl group having 4 to 12 carbon atoms.
  • m may be an integer of 0 to 7, more preferably 0 to 2, and still more preferably 0 to 1.
  • Examples of the compound represented by the general formula (12) or (13) include: R 3 is an alkyl group having 4 to 12 carbon atoms, 1 is an integer of 0 to 1, and R 4 is an alkyl group having 4 to 12 carbon atoms, An alkylated phenylnaphthylamine in which m is an integer of 0 to 1 and 1 + m is 1 or more can be particularly preferably used.
  • alkylated phenylnaphthylamines include, for example, N-phenyl-dodecylnaphthalen-1-amine, N-phenyl-octylnaphthalen-1-amine, N-phenyl-butylnaphthalen-1-amine, and N-dodecylphenyl.
  • N-phenyl-dodecylnaphthalen-1-amine N-phenyl-dodecylnaphthalen-1-amine
  • N-octylphenyl-octylnaphthalen-1-amine N-dodecylphenyl-naphthalen-1-amine
  • N-octylphenyl-naphthalen-1-amine N-octylphenyl-naphthalen-1-amine and the like.
  • alkylated phenyl naphthylamine Commercially available products can be used as the alkylated phenyl naphthylamine.
  • IRGANOX L06 from BASF
  • Naugalube APAN from Chemtura
  • Chemtura can be suitably used.
  • the phosphite used in the present invention is not particularly limited as long as it is an ester of phosphorous acid.
  • a phosphite having a structure represented by the formula can be suitably used.
  • R 5 , R 6 , and R 7 each independently represent an aliphatic hydrocarbon group having 1 to 18 carbon atoms or an aromatic hydrocarbon group having 4 to 30 carbon atoms.
  • R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently an aliphatic group having 1 to 18 carbon atoms.
  • X represents a divalent, trivalent or tetravalent aliphatic hydrocarbon group having 1 to 18 carbon atoms
  • n represents 0, 1 or 2 It is.
  • R 5 , R 6 , R 7 , R 10 , R 11 , R 14 , R 15 , R 17 and R 18 are aliphatic hydrocarbon groups
  • examples of the aliphatic hydrocarbon group include a methyl group , Ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group Examples thereof include alkyl groups such as a group, and these may be linear or branched.
  • the aliphatic hydrocarbon group is not limited to the alkyl group, and may be an unsaturated aliphatic hydrocarbon group.
  • R 12 , R 13 and R 16 are aliphatic hydrocarbon groups
  • examples of such aliphatic hydrocarbon groups include alkylene groups having 1 to 18 carbon atoms, which are linear. It may be branched or branched.
  • the aliphatic hydrocarbon group is not limited to the alkylene group, and may be an unsaturated aliphatic hydrocarbon group.
  • R 5 , R 6 , R 7 , R 10 , R 11 , R 14 , R 15 , R 17 and R 18 are aromatic hydrocarbon groups
  • examples of such aromatic hydrocarbon groups include phenyl groups And alkylated phenyl groups.
  • the alkylated phenyl group may be a linear or branched alkyl group having 1 to 18 carbon atoms and a phenyl group in which at least 1 to 5 hydrogen atoms of the benzene ring are substituted.
  • the position of the benzene ring is not particularly limited. When the number of substituents is 2 or more, the two or more alkyl groups may be the same or different.
  • R 12 , R 13 and R 16 are aromatic hydrocarbon groups
  • aromatic hydrocarbon groups include phenylene groups and alkylated phenylene groups.
  • the alkylated phenylene group may be a linear or branched alkyl group having 1 to 18 carbon atoms, and may be a phenylene group in which at least 1 to 4 hydrogen atoms of the benzene ring are substituted, and is alkyl-substituted.
  • the position of the benzene ring is not particularly limited. When the number of substituents is 2 or more, the two or more alkyl groups may be the same or different.
  • X is not particularly limited as long as it is a divalent, trivalent or tetravalent aliphatic hydrocarbon group having 1 to 18 carbon atoms, and even if it is a saturated aliphatic hydrocarbon group, unsaturated aliphatic carbonization It may be a hydrogen group, linear or branched. More preferably, the aliphatic hydrocarbon group is a branched or straight-chain saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms. R 12 , R 13 and R 16 may be bonded to any carbon of the aliphatic hydrocarbon group.
  • More specific examples of the phosphite having the structure represented by the general formula (14) include triphenyl phosphite, trisnonylphenyl phosphite, tricresyl phosphite, triethyl phosphite, tris (2- Ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, tris (tridecyl) phosphite, trioleyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphite , Tristearyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, and the like.
  • phosphite having the structure represented by the general formula (16), 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-t-butylphenyl) ) Butane (Adeka Corporation ADEKA STAB 522A), tetraphenyl (tetratridecyl) pentaerythritol tetraphosphite and bis (2-ethylhexyl) phthalate, tetra (C12-C15 alkyl) -4,4'-isopropylidenediphenyl A diphosphite etc. can be mentioned.
  • trilauryl trithiophosphite tetraphenyldipropylene glycol diphosphite, bis (tridecyl) pentaerythritol diphosphite and bis Mixture of (nonylphenyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphosphite, bis (tridecyl) pentaerythritol diphosphite, distearyl pentaerythritol diphosphite, hydrogenated bisphenol A pentaerythritol phosphite polymer Hydrogenated bisphenol A phosphite polymer and the like can also be suitably used as a phosphite in the present invention.
  • phosphite As the phosphite, a commercially available product can be used. For example, JP-360, JP-351, JP-3CP, JP-302, JP-308E, JP-310, JP of Johoku Chemical Industry Co., Ltd.
  • ADK STAB 522A or the like can be preferably used.
  • the phosphite is a low-evaporation phosphite having a molecular weight of 300 or more. If the molecular weight of the phosphite is within the above range, it is preferable because the phosphite itself hardly evaporates.
  • the phosphite ester is more preferably a phosphite ester having a molecular weight in the range of 400 to 1,000, and particularly preferably a phosphite ester having a molecular weight in the range of 500 to 800.
  • the total amount of the alkylated phenylnaphthylamine and phosphite contained in the lubricant composition of the present invention is preferably 3 to 8% by weight based on the total amount of the base oil.
  • the evaporation loss of the lubricant composition is small and the increase in evaporation loss is abrupt. The effect that the time until the gradient is large can be obtained.
  • the total amount of the alkylated phenylnaphthylamine and the phosphite is 8% by weight or less based on the total amount of the base oil, an increase in viscosity can be suppressed, and thermal stability is excellent.
  • a lubricant composition can be obtained.
  • the content ratio of the alkylated phenylnaphthylamine and the phosphite is 85 to 95% by weight of the alkylated phenylnaphthylamine with respect to the total amount of the alkylated phenylnaphthylamine and the phosphite.
  • the phosphate ester is preferably 5 to 15% by weight.
  • the content ratio of the alkylated phenylnaphthylamine and the phosphite is within the above range, it is possible to obtain the effect that the evaporation loss of the lubricant composition is small and the duration of the antioxidant effect is longer. In the point which can be done, the remarkable effect can be acquired.
  • the lubricant composition according to the present invention uses an alkylated phenylnaphthylamine and a phosphite as an antioxidant.
  • an antioxidant other than phenylnaphthylamine and phosphite may be contained.
  • the antioxidant other than the alkylated phenylnaphthylamine and phosphite is preferably 10% by weight or less, and more preferably 5% by weight or less based on the total amount of the antioxidant.
  • the lubricant composition according to the present invention may contain various additives in order to further improve practical performance.
  • additives include metal deactivators, corrosion inhibitors, and conductivity imparting agents.
  • metal deactivator examples include benzotriazole, 5-methyl-1H-benzotriazole, 1-dioctylaminomethylbenzotriazole, 1-dioctylaminomethyl-5-methylbenzotriazole, 2- (5′-methyl-2 '-Hydroxyphenyl) benzotriazole, 2- [2'-hydroxy-3', 5'-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 ', 5'-di- t-butyl-2'-hydroxyphenyl) benzotriazole, 2- (3'-t-butyl-5'-methyl-2'-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3 ', 5'- Di-t-butyl-2′-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3 ′, 5′-di-t-amyl-2) '-Hydroxyphenyl
  • the corrosion inhibitor examples include alkyl or alkenyl succinic acid derivatives such as dodecenyl succinic acid half ester, octadecenyl succinic anhydride, dodecenyl succinic acid amide; sorbitan monooleate, glycerin monooleate, pentaerythritol monooleate Polyhydric alcohol partial esters such as Ca-petroleum sulfonate, Ca-alkylbenzene sulfonate, Ba-alkylbenzene sulfonate, Mg-alkylbenzene sulfonate, Na-alkylbenzene sulfonate, Zn-alkylbenzene sulfonate, Ca- Metal sulfonates such as alkyl naphthalene sulfonate; amines such as rosin amine and N-oleyl sarcosine can be preferably used.
  • alkyl naphthalene sulfonate ester sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkenyl ether, etc.
  • the conductivity-imparting agent alkyl naphthalene sulfonate ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkenyl ether, etc. can be suitably used.
  • one or more selected from these additives are blended in the range of 0.01% by weight to 1% by weight with respect to the total amount of the lubricant composition.
  • the practical performance of the lubricant composition can be further improved.
  • the lubricant composition according to the present invention has physical properties such as low viscosity, low evaporation, low temperature fluidity, and high viscosity index, and metal corrosion due to hydrolysis is suppressed, and adverse effects on organic materials due to the above configuration. Less is. Moreover, it is excellent also in the point that the effect duration of antioxidant is long.
  • the lubricant composition according to the present invention preferably has a kinematic viscosity at 40 ° C. (hereinafter also referred to as “40 ° C. kinematic viscosity”) in the range of 4 cSt to 1000 cSt, and preferably in the range of 6 cSt to 30 cSt. More preferred.
  • 40 ° C. kinematic viscosity is in the above range, the bearing oil can be particularly excellent in lubrication performance and energy saving performance.
  • the lubricant composition according to the present invention has a viscosity index of preferably 80 or higher, more preferably 110 or higher, and a pour point of preferably ⁇ 5 ° C. or lower, more preferably ⁇ 40 ° C. or lower.
  • the bearing lubricant can be particularly excellent in viscosity characteristics at low temperatures.
  • kinematic viscosity at 40 ° C. can be measured by the methods shown in Examples described later.
  • the lubricant composition of the present invention can be used as a bearing oil for any bearing lubricated with a lubricant. Accordingly, the present invention includes bearing oils using the lubricant composition of the present invention.
  • the lubricant composition of the present invention includes, for example, a shaft member and a bearing member (sleeve member), and the shaft member and the bearing member are rotatably fitted through a minute gap, and are inserted into the minute gap.
  • the working fluid (bearing oil) is accommodated so as to form a lubricating film, and the shaft member and the bearing member serve as bearing oil with respect to any bearing that relatively slides through the lubricating film. It can be preferably used.
  • Such a bearing is generally referred to as a “slide bearing”.
  • the lubricant composition of the present invention is also suitably used as a bearing oil for a fluid bearing (fluid dynamic pressure bearing or hydrostatic bearing) or a bearing oil for an impregnated bearing (also referred to as “oil-impregnated bearing”). be able to.
  • the bearing according to the present invention is lubricated using the above-described lubricant composition of the present invention. If the bearing which concerns on this invention is a bearing lubricated using the lubricant composition of this invention mentioned above, the structure will not be specifically limited.
  • the above-mentioned “lubricated using the lubricant composition of the present invention” means that the members facing each other through the lubricant composition of the present invention are relatively relative to each other through the lubricant composition of the present invention. Intended to do a sliding exercise. Examples of such bearings include fluid bearings and impregnated bearings.
  • the “fluid bearing” does not have a mechanism such as a ball bearing, and includes a shaft member (or thrust plate) and a sleeve member, and the shaft member (or thrust plate), the sleeve member,
  • the working fluid lubricant composition
  • the shaft member (or thrust plate) and the The configuration is not particularly limited as long as it is a conventionally known fluid bearing in which the sleeve member is held so as not to be in direct contact with each other by the lubricating film.
  • hydrodynamic bearings either or both of a shaft member and a sleeve member are provided with a dynamic pressure generating groove, and the shaft member is supported by the dynamic pressure;
  • a fluid bearing or the like provided with a thrust plate so as to generate dynamic pressure in the vertical direction is particularly referred to as a fluid dynamic pressure bearing.
  • the fluid dynamic pressure bearing is also included in the bearing of the present invention.
  • the “impregnated bearing” is a conventionally known impregnated bearing (oil-impregnated bearing) formed by impregnating a porous shaft member such as sintered metal or synthetic resin with the lubricant composition of the present invention.
  • the configuration is not particularly limited.
  • the lubricant composition of the present invention has high moisture resistance and low viscosity, low evaporation, low-temperature fluidity, high viscosity index, etc., compared with conventional bearing lubricants.
  • the physical properties can be satisfied in a well-balanced manner. Therefore, the bearing of the present invention lubricated using the lubricant composition of the present invention as a working fluid retains stability and durability when rotated at high speed for a long period of time, and is excellent in energy saving. It can be a bearing.
  • the bearing according to the present invention is effective as a bearing used in a rotating device of an electronic device such as a video / audio device or a personal computer, which is required to be small and light, have a large capacity, and perform high-speed information processing. Can be used.
  • the motor according to the present invention includes the bearing according to the present invention. As long as the motor according to the present invention includes the bearing of the present invention, other configurations are not particularly limited.
  • the bearing of the present invention is as described in the above section [Bearing], and therefore the description thereof is omitted here.
  • Examples of the motor according to the present invention include a motor provided in a known electronic device such as a personal computer, an audio device, a visual device, and a car navigation system.
  • the motor according to the present invention includes a bearing lubricated with the lubricant composition of the present invention, metal wear and seizure are less likely to occur compared to conventional motors. Static electricity is unlikely to accumulate between the shaft member. For this reason, stability and durability when the bearing is rotated at a high speed can be maintained over a long period of time, and as a result, a longer life of the motor can be achieved. Furthermore, the motor according to the present invention can be a motor that is particularly excellent in energy saving when the bearing is rotated at a high speed as compared with a conventional motor.
  • the bearing lubrication method according to the present invention is characterized in that the bearing of the present invention is lubricated using the lubricant composition of the present invention.
  • the lubricant composition of the present invention and the bearing of the present invention are as described in the above-mentioned section of “(1) Lubricant composition according to the present invention” and the above section of [Bearing]. The description is omitted here.
  • the lubricant composition of the present invention has high moisture resistance and low viscosity, low evaporation, low-temperature fluidity, high viscosity index, etc., compared with conventional bearing lubricants.
  • the physical properties can be satisfied in a well-balanced manner. Therefore, the working fluid for lubricating the bearing of the lubricant composition of the present invention is filled with a bearing, in particular, a fluid bearing or an impregnated bearing, and lubricated, whereby the stability when the bearing is rotated at a high speed and The durability and the like can be maintained over a long period of time, and as a result, the life of the bearing can be extended. Furthermore, the energy saving property of the bearing can be improved.
  • the grease according to the present invention contains the lubricant composition of the present invention.
  • the present invention also includes the use of a lubricant composition for producing grease.
  • the lubricant composition of the present invention is as described in the above section “(1) Lubricant composition according to the present invention”, and thus the description thereof is omitted here.
  • the lubricant composition of the present invention is preferably contained in an amount of 50% by weight or more, more preferably 95% by weight or more based on the total weight of the grease.
  • the grease according to the present invention may be solid at room temperature or semi-solid. Further, the grease according to the present invention usually contains an amount of a thickener necessary for obtaining a grease having a desired consistency. For example, usually 10 to 40% by weight of a thickener is contained with respect to the total weight of the grease.
  • thickener a thickener usually used in grease can be used, and examples thereof include lithium soap, calcium soap, sodium soap, and aluminum soap, but are not limited thereto.
  • the grease according to the present invention may further contain additives such as an antioxidant, an extreme pressure agent, and a corrosion inhibitor, if necessary. These additives can improve the practical performance of the grease by blending them in the range of 0.1 to 5% by weight with respect to the total weight of the grease.
  • the application of the grease according to the present invention is not particularly limited, but it can be suitably used as a bearing grease, particularly a fluid bearing grease or an impregnated bearing grease.
  • the manufacturing method of the grease according to the present invention is not particularly limited, and can be manufactured according to a general manufacturing method of grease.
  • the grease according to the present invention contains the lubricant composition of the present invention as a base oil, energy saving, high moisture resistance, low evaporation, viscosity characteristics at low temperature, etc., compared to conventional greases, etc.
  • the grease can satisfy all of the performances more reliably and in a balanced manner.
  • the refrigerating machine oil according to the present invention contains the lubricant composition of the present invention.
  • the lubricant composition of the present invention is as described in the above section “(1) Lubricant composition according to the present invention”, and thus the description thereof is omitted here.
  • the refrigerating machine oil according to the present invention preferably contains 80% by weight or more, more preferably 90% by weight or more of the lubricant composition of the present invention with respect to the total weight of the refrigerating machine oil.
  • the refrigerating machine oil according to the present invention may further contain additives such as a metal deactivator, a corrosion inhibitor, and a conductivity imparting agent as necessary.
  • additives such as a metal deactivator, a corrosion inhibitor, and a conductivity imparting agent as necessary.
  • the method for producing the refrigerating machine oil according to the present invention is not particularly limited, and the refrigerating machine oil can be produced according to a general method for producing refrigerating machine oil.
  • the refrigerating machine oil according to the present invention contains the lubricant composition of the present invention as a base oil, energy saving, high moisture resistance, low evaporation, and viscosity at low temperature compared to conventional refrigerating machine oils. It can be a refrigerating machine oil that satisfies all of the performance such as characteristics more reliably and in a balanced manner.
  • Aliphatic ether compound according to the present invention The aliphatic ether compound that can be suitably used in the lubricating oil composition according to the present invention includes novel compounds. Therefore, such novel compounds are also included in the present invention.
  • Examples of the aliphatic ether compound according to the present invention include an aliphatic ether compound having a structure represented by any one of the chemical formulas (1) to (9).
  • Such an aliphatic ether compound has high moisture resistance and has physical properties such as low viscosity, low temperature fluidity and high viscosity index, and therefore can be suitably used as a base oil of a lubricating oil composition.
  • alkylated phenyl naphthylamine and phosphite are used as antioxidants, a remarkable effect of low evaporating property is observed among aliphatic base compounds among various base oils.
  • the aliphatic ether compound according to the present invention preferably has a kinematic viscosity at 40 ° C. (hereinafter also referred to as “40 ° C. kinematic viscosity”) in the range of 4 cSt to 1000 cSt, and preferably in the range of 4 cSt to 80 cSt. More preferred.
  • 40 ° C. kinematic viscosity is in the above range, the lubricating composition and the energy saving performance of the lubricant composition based on the aliphatic ether compound according to the present invention and the bearing oil, grease, and refrigerating machine oil containing the lubricant composition are particularly excellent. Can be a thing.
  • the aliphatic ether compound according to the present invention has a viscosity index of preferably 80 or higher, more preferably 110 or higher, and a pour point of preferably ⁇ 5 ° C. or lower, more preferably ⁇ 40 ° C. or lower.
  • the viscosity characteristics at low temperatures of the lubricant composition based on the aliphatic ether compound according to the present invention and the bearing oil, grease, and refrigerating machine oil containing the lubricant composition can be particularly excellent.
  • wt% is expressed as “wt%”, and only the number and symbol of the lubricant composition are shown.
  • ⁇ Evaporation loss> The evaporation loss was measured by an evaporation test at 180 ° C. Specifically, 2 g of the lubricant composition was placed in a cylindrical test container having a material of SUS304, an inner diameter of 20 mm, and a height of 35 mm, and the lubricant composition after being left standing in a constant temperature bath with a rotating plate at 180 ° C. for a predetermined time. The weight was measured. The evaporation loss was determined by the following formula. In addition, the average value of two measurements was used as a measurement result.
  • Evaporation loss (% by weight) (2 (g) ⁇ weight of lubricant composition after standing for a predetermined time (g)) ⁇ 100/2 (g) ⁇ Decomposition rate after 65 hours of base oil> 10 g of sample, 1 g of water, 4 g of copper-based sintered bearing metal powder (copper 88 wt%, tin weight 10%, lead 2 wt%) were sealed in a pressure vessel made of SUS and stirred while heating at 160 ° C. for 65 hours. . Samples before and after the test were analyzed using gas chromatography, and the 65 hour post-decomposition rate of the base oil was determined from the residual rate of the base oil according to the following formula.
  • 1-octanol 1508 g, 4- [2- (2-ethylhexyloxy) ethoxy] -butyl chloride 1185 g, and potassium hydroxide 282 g were placed in a 5-liter glass flask, and the mixture was reacted at 180 ° C. for 5 hours with stirring. . Thereafter, the reaction solution was cooled to room temperature, and neutralized by adding hydrochloric acid to neutralize excess alkali. The reaction solution was washed with 3 liters of water, the organic layer was separated using a separatory funnel, and the compound 7 was isolated by distillation under reduced pressure from the organic layer.
  • Base oil and additives In the following Examples, Reference Examples, and Comparative Examples, the base oil obtained by the above synthesis example, and the base oils and additives shown below were used.
  • MPDC11 (3-methyl-1,5-pentanediol diundecanoate, synthesized by the method described in Japanese Patent No. 4466850)
  • IRGANOX L06 (BASF, N-phenyl-1,1,3,3-tetramethylbutylnaphthalen-1-amine, sometimes referred to as “L06” in the table)
  • Naugalube APAN (Chemtura, N-phenyl-2,4,6,8-tetramethyloctylnaphthalen-1-amine, sometimes referred to as “APAN” in the table)
  • IRGANOX L57 BASF, 2,4,4-trimethylpentyldiphenylamine
  • AO-50F (ADEKA Corporation, 3- (4′-hydroxy-3′-5′-di-t-butylphenyl) propionic acid-n
  • the vertical axis represents the evaporation loss (unit:% by weight), and the horizontal axis represents the standing time (indicated as “elapsed time” in the figure, unit: time).
  • alkylated phenyl naphthylamine and phosphite are used as antioxidants, and the ratio is 95 wt% alkylated phenyl naphthylamine and 5 wt% phosphite.
  • Example 1 it was shown that the evaporation loss was small and the time until the increase in evaporation loss suddenly increased was large.
  • Comparative Example 4 in which only the phosphite was used as the antioxidant and no alkylated phenylnaphthylamine was used, as compared with the case where the alkylated phenylnaphthylamine and the phosphite were used in combination as the antioxidant.
  • the evaporation loss is increasing from an early point.
  • Comparative Example 2 in which alkylated phenylnaphthylamine is 97% by weight and phosphite is 3% by weight
  • Comparative Example 3 in which alkylated phenylnaphthylamine is 80% by weight and phosphite is 20% by weight
  • Reference Example 1-3 in which the alkylated phenylnaphthylamine is 85 to 95% by weight and the phosphite is 15 to 5% by weight, the evaporation loss is remarkably increased.
  • Example 1-2 Comparative example 6-10
  • Lubricant Composition Q-W having the composition shown in Table 2 was prepared, and the evaporation loss was measured by changing the standing time in a constant temperature bath with a rotating plate at 180 ° C. did.
  • Table 2 shows the evaluation of low evaporation.
  • the case where the low evaporation property is excellent is indicated by ⁇
  • the case where the low evaporation property is insufficient is indicated by ⁇
  • the case where the low evaporation property is poor is indicated by ⁇ .
  • Comparative Example 6 as an antioxidant, only alkylated phenylnaphthylamine was used at 3.00% by weight based on the total amount of the lubricating oil composition.
  • Comparative Example 7 only alkylated phenylnaphthylamine as an antioxidant was 0.50% by weight relative to the total amount of the lubricating oil composition compared to Comparative Example 6, that is, 3.50% by weight.
  • Example 2 instead of using only 0.50% by weight of alkylated phenylnaphthylamine as compared with Comparative Example 6 as the antioxidant in Comparative Example 6, 0.50% by weight of phosphite was used. % Additional used. As a result, as shown in FIG. 2, the alkylated phenylnaphthylamine was used in an amount of 0.50% by weight more than Comparative Example 6 containing 3.00% by weight of the alkylated phenylnaphthylamine with respect to the total amount of the lubricating oil composition. It was found that the loss on evaporation was significantly smaller in Example 2 using 0.50% by weight of phosphite than in Comparative Example 7.
  • the phenolic antioxidant has the same ratio as the ratio of the alkylated phenylnaphthylamine and phosphite of Example 2 and the same content with respect to the base oil.
  • the evaporation loss is larger than the evaporation loss of Example 2, and the increase in evaporation loss becomes a steep gradient at an early point. It was.
  • Comparative Example 8 in which alkylated phenylnaphthylamine was 81.08 wt% and phosphite was 18.92 wt%, and alkylated phenylnaphthylamine was 75
  • Comparative Example 9 where the weight percentage is 25% and the phosphite is 25 weight%, the alkylated phenylnaphthylamine is 85 to 95 weight% and the phosphite is in the range 15 to 5 weight%. Compared to 2, the evaporation loss increased.
  • Lubricant composition 1-12 having the composition shown in Table 3 was prepared. As shown in Table 3, for various base oils, a lubricant composition using only alkylated phenylnaphthylamine alone as an antioxidant (described as “alone” in Table 3), alkylated phenylnaphthylamine and phosphorus A lubricant composition (described as “Combination” in Table 3) using an antioxidant comprising an acid ester was prepared.
  • evaporation loss reduction rate by combined use the evaporation weight loss reduction rate (hereinafter, may be abbreviated as “evaporation loss reduction rate by combined use”) by the combined use of alkylated phenylnaphthylamine and phosphite was calculated by the following formula.
  • Reduction rate of evaporation loss due to combined use (%) 100-100 ⁇ (evaporation loss after 16.5 hours of lubricating oil composition containing antioxidant comprising alkylated phenylnaphthylamine and phosphite ester / alkylated phenylnaphthylamine only 12.5 hours after evaporation of a lubricating oil composition containing as an antioxidant)
  • Example 3-14 Comparative Example 15-16
  • Lubricant compositions L, M and 13-24 having the compositions shown in Table 5 were prepared, and the standing time in a constant temperature bath with a rotating plate at 180 ° C. was changed variously. The evaporation loss was measured.
  • the total amount of the alkylated phenylnaphthylamine and the phosphite contained in the lubricating oil composition is 4% by weight with respect to the entire lubricating oil composition.
  • Examples 3, 4, 9 and 10, Examples 5, 6, 11 and 12, which are 6% by weight, and Examples 7, 8, 13 and 14 which are 8% by weight the evaporation loss is small and the evaporation loss is also low. It was shown that it took a long time before the rise of the steep slope.
  • Example 3 except that the total amount of the alkylated phenylnaphthylamine and phosphite contained in the lubricating oil composition was 2% by weight based on the entire lubricating oil composition.
  • Comparative Examples 15 and 16 in which a lubricating oil composition was prepared in the same manner as in -8 and the evaporation loss was measured, the evaporation loss was significantly larger than the evaporation loss of Example 3-8, and the earlier time point The increase in evaporation loss became a steep slope.
  • Lubricant Composition AH having the composition shown in Table 6 was prepared, and the evaporation loss was measured by varying the standing time in a constant temperature bath with a 180 ° C. rotating plate. did.
  • an aliphatic ether compound was used as the base oil, and as the antioxidant, an alkylated phenylnaphthylamine-based antioxidant and / or an alkylated diphenylamine-based oxidized
  • An inhibitor and a phosphite antioxidant are used in combination.
  • the alkylated phenyl naphthylamine antioxidant and / or the alkylated diphenylamine antioxidant is used in an amount of 5.5% by weight based on the total amount of the lubricant composition, and the phosphite ester antioxidant is used. Is fixed at 0.5% by weight based on the total amount of the lubricant composition, while the ratio of the alkylated phenylnaphthylamine-based antioxidant to the alkylated diphenylamine-based antioxidant is changed.
  • Example 17 in which the amount of alkylated phenylnaphthylamine antioxidant and the amount of alkylated diphenylamine antioxidant used was 5.5% by weight and 0, respectively, the evaporation loss was the smallest and at a later time Rose.
  • Lubricant compositions 25-26 and 33-36 having the compositions shown in Table 7 were prepared, and the evaporation loss was measured by varying the standing time in a constant temperature bath with a rotating plate at 180 ° C. Also, the viscosity index was determined by measuring the 40 ° C. kinematic viscosity and 100 ° C. kinematic viscosity of the lubricant composition.
  • the obtained lubricant composition had a 40 ° C. kinematic viscosity, a 100 ° C. kinematic viscosity, and a viscosity index equivalent to or superior to those of existing oils in the technical field. Moreover, it was confirmed that the obtained lubricant composition exhibits low evaporation properties equivalent to or superior to existing oils in the technical field.
  • Lubricant compositions 27-32 having the compositions shown in Table 8 and Table 9 were prepared, and the evaporation loss was measured by varying the standing time in a constant temperature bath with a rotating plate at 180 ° C.
  • the compositions shown in Table 8 are the compositions of existing lubricating oil compositions in the art.
  • the decomposition rate after 65 hours of a base oil was measured.
  • the decomposition rate after 65 hours of the base oil was measured.
  • Table 10 shows the measurement results of the base oil after-hour decomposition rate.
  • the existing lubricant compositions 27 and 28 based on the diesters MPDC9 and DOS are compared with the lubricant compositions obtained in Examples 20-22, 24 and Example 18, as shown in FIG. And the evaporation loss was great.
  • Table 10 it can be seen that the base oil has a decomposition rate of more than 60% after 65 hours and is inferior in moisture resistance.
  • the existing lubricant composition based on MPDC11, which is a diester has a small evaporation loss, but as shown in Table 10, the base oil has a decomposition rate after 60 hours of over 60% and is resistant to moisture. It turns out that it is inferior to.
  • the lubricant compositions obtained in Examples 20-22 and 24 and Example 18 are excellent in low evaporation and moisture resistance.
  • the compounds 1, 3, 5, and 6 obtained in the synthesis examples have low viscosity relative to the molecular weight compared to the existing diesters MPDC9, MPDC11, and DOS. It was also confirmed that the viscosity index was higher or equivalent to that of existing diesters.
  • the lubricant composition according to the present invention has physical properties such as low viscosity, low evaporation, low temperature fluidity, and high viscosity index, and metal corrosion due to hydrolysis is suppressed, and there is little adverse effect on organic materials. Therefore, it can be suitably used as a bearing oil for bearings, a bearing oil for fluid bearings, a bearing oil for impregnated bearings, a raw material for grease, a raw material for refrigerator oil, and the like. Therefore, the present invention has a very high industrial utility value in all technical fields using the lubricant composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)

Abstract

 高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する潤滑剤組成物を提供する。脂肪族エーテル化合物を基油とし、少なくともアルキル化フェニルナフチルアミンと亜リン酸エステルとからなる酸化防止剤を、所定量、所定の含有比率で含有させる。

Description

潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物
 本発明は潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物に関し、特に、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する潤滑剤組成物及びその利用、並びに、かかる潤滑剤組成物に好適に用いられる脂肪族エーテル化合物に関する。
 高粘度の潤滑油組成物を使用すると、粘性に起因するエネルギー損失の増大、潤滑油組成物の攪拌損失の増大等の不都合が生じる。潤滑油分野においては、近年、かかる不都合を解消して省エネルギー化を達成するために、潤滑油組成物の低粘度化が図られている。しかし、低粘度化された潤滑油組成物には、特に高温雰囲気下で使用される場合、潤滑油組成物の蒸発損失が起こるという問題がある。かかる問題を解決するため、低蒸発性の要求を満足する低粘度基油への要求が高まっている。
 低粘度で蒸発量が少ない潤滑油基油としてはエステル系基油が知られている。しかし、エステル系基油には耐湿性に劣るという問題がある。すなわち、エステル系基油は、長期間使用すると空気中の水分により加水分解されて酸が生成し、生成した酸が金属を腐食させる原因となる。また、エステル系基油は極性が高いため、ゴム、プラスチック等の有機材料に悪影響を与えるという問題がある。
 また、近年、映像機器、音響機器、パーソナルコンピューター等の小型軽量化、大容量化及び情報処理の高速化が進んでいる。これに伴い、これらの電子機器に使用されるFD、MO、ミニディスク、コンパクトディスク、DVD、ハードディスク等の磁気ディスクや光ディスクを駆動する回転装置に、流体軸受が開発され実用化されている。潤滑油を介して対向するスリーブと回転軸とからなる流体軸受は、ボールベアリングを持たないため、小型軽量化に好適である上、静寂性、経済性などに優れている。このような流体軸受に用いられる潤滑油に対しては、低温域でも低い粘度を有し、低温流動性が良好であると共に、高温域においても粘度低下が少ないなどの粘度特性、及び低蒸発性が要求される。
 このように、潤滑油分野においては、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する潤滑油基油や潤滑油組成物に対する要求が強まってきている。
 ところで、潤滑油の性能を向上させるために、酸化防止剤等の添加物を含有させることは一般に行われており、例えば、特許文献1には、潤滑剤の熱・酸化安定性、抗スラッジ性、潤滑性、長寿命性及び水分離性を向上させるために、フェニル-α-ナフチルアミン、p,p’-ジアルキルジフェニルアミン及びリン酸エステルを基油に含有させることが開示されている。また、特許文献2には、-30℃から80℃まで動作可能で、長期に渡って変質せず、電池の寿命を長く保つことができる、時計用潤滑油として好適な潤滑油組成物として、基油としてのエーテル油、耐摩耗剤および酸化防止剤を含有する時計用潤滑油が開示されている。
日本国公開特許公報「特開2010-150562号公報(2010年7月8日公開)」 WO2001/059043号公報(2001年8月16日公開)
 しかしながら、従来の潤滑油組成物は、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有するという点で十分なものではない。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する潤滑剤組成物及びその利用技術、並びに、かかる潤滑剤組成物に好適に用いられる脂肪族エーテル化合物を提供することにある。
 本発明に係る潤滑剤組成物は、前記の課題を解決するために、脂肪族エーテル化合物を基油とし、酸化防止剤を含有する潤滑剤組成物であって、前記酸化防止剤は、少なくともアルキル化フェニルナフチルアミンと亜リン酸エステルとからなり、前記潤滑剤組成物に含有される、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、前記基油全量に対して3~8重量%であり、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの含有比率は、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量に対して、アルキル化フェニルナフチルアミンが85~95重量%であり、亜リン酸エステルが5~15重量%であることを特徴としている。
 本発明に係る潤滑剤組成物では、前記脂肪族エーテル化合物は、一分子中の炭素原子数が8~300であり、一分子中の酸素原子数が1~150である脂肪族エーテル化合物であることが好ましい。
 本発明に係る潤滑剤組成物では、前記脂肪族エーテル化合物は、2-(2-エチルヘキシルオキシ)エチルエーテル化合物であることが好ましい。
 本発明に係る潤滑剤組成物では、前記脂肪族エーテル化合物は、下記化学式(1)~(10)で表される構造を有する化合物からなる群より選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 本発明に係る潤滑剤組成物では、前記アルキル化フェニルナフチルアミンが、N-フェニル-ドデシルナフタレン-1-アミンまたはN-フェニル-オクチルナフタレン-1-アミンであることが好ましい。
 本発明に係る潤滑剤組成物では、前記亜リン酸エステルが1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタンであることが好ましい。
 本発明に係る軸受油は、前記潤滑剤組成物を用いたことが好ましい。
 本発明に係る軸受は、前記潤滑剤組成物を用いて潤滑されることが好ましい。
 本発明に係る軸受では、前記軸受は、流体軸受または含浸軸受であることが好ましい。
 本発明に係るモータは、前記軸受を備えていることが好ましい。
 本発明に係る軸受の潤滑方法は、潤滑剤組成物を用いて潤滑させることが好ましい。
 本発明に係る潤滑剤組成物の使用は、グリースを製造するための使用であることが好ましい。
 本発明に係るグリースは、前記潤滑剤組成物を含有していることが好ましい。
 本発明に係る冷凍機油は、潤滑剤組成物を含有していることが好ましい。
 本発明に係る脂肪族エーテル化合物は、下記化学式(1)~(9)のいずれかで表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 本発明によれば、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する潤滑剤組成物を実現することができる。
本発明の参考例1-3および比較例1-5において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の実施例1-2および比較例6-10において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の実施例3-8および比較例15-16において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の実施例9-14において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の実施例15-17および比較例17-21において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の実施例18-19において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の実施例18、20-22および比較例22-24において調製した潤滑剤組成物の蒸発減量を測定した結果を示す図である。 本発明の製造例1において得られた化合物1のH-NMRチャートを示す図である。 本発明の製造例3において得られた化合物3のH-NMRチャートを示す図である。 本発明の製造例5において得られた化合物5のH-NMRチャートを示す図である。 本発明の製造例6において得られた化合物6のH-NMRチャートを示す図である。 本発明の製造例10において得られた化合物10のH-NMRチャートを示す図である。
 以下、本発明の実施の形態について、詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変形を加えた態様で実施できるものである。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 以下、本発明を、(1)本発明に係る潤滑剤組成物、(2)本発明に係る潤滑剤組成物の利用、(3)本発明に係る脂肪族エーテル化合物の順に説明する。
 (1)本発明に係る潤滑剤組成物
 前記課題に鑑み鋭意検討した結果、本発明者らは、脂肪族エーテル化合物を基油とし、少なくともアルキル化フェニルナフチルアミンと亜リン酸エステルとからなる酸化防止剤を、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、前記基油全量に対して所定量であって、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの含有比率が所定の比率となるように含有する潤滑剤組成物によれば、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する潤滑剤組成物を提供することができることを見出し、本発明を完成させるに至った。かかる、アルキル化フェニルナフチルアミンと亜リン酸エステルとの高い併用効果は、様々な基油の中で脂肪族エーテル化合物に特有にみられる効果である。
 〔基油〕
 本発明に係る潤滑剤組成物は脂肪族エーテル化合物を基油として用いる。本発明者らは、酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを併用する場合に、蒸発減量を顕著に低減させることができることを見出し、また、かかる高い併用効果が、様々な基油の中で脂肪族エーテル化合物に特有にみられる効果であることを見出した。すなわち、脂肪族エーテル化合物を基油として用いる場合に、顕著な低蒸発性をもたらすという点で、アルキル化フェニルナフチルアミンと亜リン酸エステルとの高い併用効果を得ることができる。
 また、脂肪族エーテル化合物は、空気中の水分により加水分解されて酸を生成することがないため、耐湿性に優れている。さらに、脂肪族エーテル化合物はエステル系基油に比べて極性が低いため、ゴム、プラスチック等の有機材料に悪影響を与えるという問題もない。
 本発明において基油として用いられる脂肪族エーテルは、特に限定されるものではなく、潤滑剤の基油として通常用いられる脂肪族エーテルを好適に用いることができる。
 前記脂肪族エーテルは、一分子中の炭素原子数が8~300であり、一分子中の酸素原子数が1~150である脂肪族エーテルであることがより好ましい。一分子中の炭素原子数および一分子中の酸素原子数が前記範囲内であることにより、粘性、低蒸発性、低温流動性のバランスが良好であるため好ましい。また、前記脂肪族エーテルは、一分子中の炭素原子数が8~80で、酸素原子数が1~40の範囲であることがさらに好ましく、一分子中の炭素原子数が8~60で、酸素原子数が1~30の範囲であることが特に好ましく、一分子中の炭素原子数が8~40で、酸素原子数が1~20の範囲であることが最も好ましい。
 中でも、前記脂肪族エーテルは、下記一般式(11)
Figure JPOXMLDOC01-appb-C000039
で表される構造を有する2-(2-エチルヘキシルオキシ)エチルエーテル化合物であることがより好ましい。一般式(11)中、Rは炭素数1~18のアルキル基を示し、Rは炭素数2~18のアルキレン基を示し、nは平均値で1~6の整数を示す。ここで、(R-O)は構成単位ごとに同一であっても異なっていてもよい。
 RおよびRは、直鎖状であっても分岐状であってもよい。Rの炭素数が1以上であれば、すなわち当該エーテル化合物において、分子構造の末端がヒドロキシル基でなく、アルコキシル基であれば、水との分離性が良くなるため好ましく、18以下であれば、低温流動性を大きく損なうことがないため好ましい。また、Rの炭素数が2以上であれば、アセタール構造を含むことのないエーテルとなることで耐湿性や耐ルイス酸性に優れるため好ましく、18以下であれば、低温流動性を大きく損なうことがないため好ましい。Rの炭素数は1~12であることがより好ましく、2~8であることがさらに好ましい。また、Rの炭素数は2~12であることがより好ましく、2~8であることがさらに好ましい。nが平均値で1~6であれば、粘性、低蒸発性、低温流動性のバランスが良好であるため好ましい。nの平均値は、1~4であることがより好ましく、1~2であることがさらに好ましい。
 より具体的な一例としては、前記脂肪族エーテルは、前記化学式(1)~(10)で表される構造を有する化合物からなる群より選択される少なくとも1種であることがより好ましい。なお、本明細書において、化学式(1)で表される構造を有する化合物を化合物1、化学式(2)で表される構造を有する化合物を化合物2、化学式(3)で表される構造を有する化合物を化合物3、化学式(4)で表される構造を有する化合物を化合物4、化学式(5)で表される構造を有する化合物を化合物5、化学式(6)で表される構造を有する化合物を化合物6、化学式(7)で表される構造を有する化合物を化合物7、化学式(8)で表される構造を有する化合物を化合物8、化学式(9)で表される構造を有する化合物を化合物9、化学式(10)で表される構造を有する化合物を化合物10と称することがある。
 本発明では基油として、上述した脂肪族エーテルを単独で用いてもよいし、上述した脂肪族エーテルの2種以上を組み合わせて用いてもよい。
 また、本発明に係る潤滑剤組成物は脂肪族エーテル化合物を基油として用いるものであるが、本発明の効果に好ましくない影響を与えない限りにおいて、脂肪族エーテル化合物以外の基油を少量含んでいてもよい。かかる脂肪族エーテル化合物以外の基油は、基油全量に対して10重量%以下であることが好ましく、5重量%以下であることがより好ましい。
 前記脂肪族エーテルの製造方法は特に限定されるものではなく、どのような製造方法で得られたものであってもよい。例えば、前記脂肪族エーテルは、エチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを重合させることによって製造することができる。また、前記脂肪族エーテルは、前記方法により得られたポリアルキレンオキサイドと塩化アルキルとの置換反応により、当該ポリアルキレンオキサイドの末端ヒドロキシル基をエーテル化することによっても製造することができる。
 或いは前記脂肪族エーテルとしては、市販品を利用することができ、例えば、株式会社ADEKAのアデカカーポールMシリーズ、第一工業製薬株式会社のノイゲンXL-40等のノイゲンXLシリーズ、ノイゲンTDS-30等のノイゲンTDSシリーズ、ノイゲンTDX-50等のノイゲンTDXシリーズ、ノイゲンSD-60等のノイゲンSDシリーズ、ノイゲンLP-100等のノイゲンLPシリーズ、アンチフロスF-233等を好適に用いることができる。
 また、前記化合物1-10の製造方法も特に限定されるものではないが、例えば、一例として、WO2006/025253号公報等に記載の既存の合成手法により製造することができる。
 より具体的には、化合物1は、例えば、2-エチルヘキシルオキシエチルアルコールと1,6-ジクロロヘキサンとのエーテル化反応により得ることができる。
 また、化合物3は、例えば、2-(2-エチルヘキシルオキシ)エチルアルコールと1,6-ジクロロヘキサンとのエーテル化反応により、6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライドを合成して、減圧蒸留により中間体として単離精製し、この中間体と2-ブチルオクタノールとのエーテル化反応によって得ることができる。
 また、化合物4、化合物5および化合物6は、例えば、化合物3の合成方法と同様の手法で、2-ブチルオクタノールの代わりに対応するアルコールをそれぞれ用い、エーテル化反応を行うことで合成することができる。
 また、化合物2、化合物7、化合物8および化合物9は、例えば、化合物3の合成方法と同様の手法で、1,6-ジクロロヘキサンの代わりに1,4-ジクロロヘキサンを用い、4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライドを合成し、減圧蒸留により中間体として単離精製し、この中間体と対応するアルコールをそれぞれ用いてエーテル化反応を行うことで合成することができる。
 但し、化合物1-10の合成方法は上記方法に限定されるものではない。上述したエーテル化反応を十分に行った後に、公知の方法(例えば、減圧蒸留やシリカゲルカラムクロマトグラフィーによる分離等)を用いて生成物を適宜精製することによって、化合物1-10を、潤滑剤の基油として用いることができる。
 〔酸化防止剤〕
 本発明に係る潤滑剤組成物では、脂肪族エーテル化合物を基油とし、酸化防止剤として、少なくともアルキル化フェニルナフチルアミンと亜リン酸エステルとを、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、前記基油全量に対して所定量であって、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの含有比率が所定の比率となるように含有させる。
 酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを併用することにより、これらが相乗的に作用して低蒸発性を促進する効果を得ることができる。また、アルキル化フェニルナフチルアミンと亜リン酸エステルとを併用することにより、酸化防止効果の持続時間がより長くなるという効果も得ることができる。
 <アルキル化フェニルナフチルアミン>
 本発明において用いられるアルキル化フェニルナフチルアミン、言い換えれば、アルキル置換されたフェニルナフチルアミンは、フェニルナフチルアミンのフェニル基およびナフチル基の少なくとも何れかがアルキル基で置換されている化合物であれば特に限定されるものではなく、例えば下記一般式(12)
Figure JPOXMLDOC01-appb-C000040
で表される構造を有するアルキル化フェニルαナフチルアミン、または、下記一般式(13)
Figure JPOXMLDOC01-appb-C000041
で表される構造を有するアルキル化フェニルβナフチルアミンを好適に用いることができる。一般式(12)および(13)中、RおよびRは、それぞれ独立して、直鎖状または分岐状の炭素数1~18のアルキル基を示す。lは0~5の整数であり、mは0~7の整数であり、l+mは1以上である。RおよびRが炭素数4~18のアルキル基であれば、脂肪族エーテル化合物への溶解性が高く、またアルキル化フェニルナフチルアミン自体が蒸発しにくいため好ましい。
 より具体的には、Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などのアルキル基を挙げることができ、これらは直鎖状であっても分岐状であってもよい。Rは、より好ましくは炭素数4~18のアルキル基、特に好ましくは炭素数4~12のアルキル基である。置換基数lが2以上である場合、2以上のRは、それぞれ同一であってもよいし、異なっていてもよい。また、Rの置換位置も特に限定されるものではない。lは0~5の整数であればよいが、より好ましくは0~2であり、さらに好ましくは0~1である。
 また、Rとしても、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などのアルキル基を挙げることができ、これらは直鎖状であっても分岐状であってもよい。Rは、より好ましくは炭素数4~18のアルキル基、特に好ましくは炭素数4~12のアルキル基である。置換基数mが2以上である場合、2以上のRは、それぞれ同一であってもよいし、異なっていてもよい。また、Rの置換位置も特に限定されるものではない。mは0~7の整数であればよいが、より好ましくは0~2であり、さらに好ましくは0~1である。
 前記一般式(12)または(13)で表される化合物としては、Rが炭素数4~12のアルキル基、lが0~1の整数、Rが炭素数4~12のアルキル基、mが0~1の整数であり、l+mは1以上であるアルキル化フェニルナフチルアミンを特に好適に用いることができる。かかるアルキル化フェニルナフチルアミンの具体例としては、例えば、N-フェニル-ドデシルナフタレン-1-アミン、N-フェニル-オクチルナフタレン-1-アミン、N-フェニル-ブチルナフタレン-1-アミン、N-ドデシルフェニル-ドデシルナフタレン-1-アミン、N-オクチルフェニル-オクチルナフタレン-1-アミン、N-ドデシルフェニル-ナフタレン-1-アミン、N-オクチルフェニル-ナフタレン-1-アミンなどを挙げることができる。
 前記アルキル化フェニルナフチルアミンとしては、市販品を利用することができ、例えば、BASF社のIRGANOX L06;Chemtura社のNaugalube APANを好適に用いることができる。
 <亜リン酸エステル>
 本発明において用いられる亜リン酸エステルとしては、亜リン酸のエステルであれば特に限定されるものではないが、例えば下記一般式(14)
Figure JPOXMLDOC01-appb-C000042
で表される構造を有する第3級ホスファイト、または下記一般式(16)
Figure JPOXMLDOC01-appb-C000043
で表される構造を有する亜リン酸エステルを好適に用いることができる。
 一般式(14)中、R、R、およびRは、それぞれ独立して、炭素数1~18の脂肪族炭化水素基または炭素数4~30の芳香族炭化水素基を示す。
 また、一般式(16)中、R10、R11、R12、R13、R14、R15、R16、R17およびR18は、それぞれ独立して、炭素数1~18の脂肪族炭化水素基または炭素数4~30の芳香族炭化水素基を示し、Xは炭素数1~18の2価、3価または4価の脂肪族炭化水素基を示し、nは0、1または2である。
 R、R、R、R10、R11、R14、R15、R17およびR18が脂肪族炭化水素基である場合は、かかる脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等のアルキル基を挙げることができ、これらは直鎖状であっても分岐状であってもよい。或いは、前記脂肪族炭化水素基は、前記アルキル基に限定されるものではなく、不飽和の脂肪族炭化水素基であってもよい。R12、R13およびR16が脂肪族炭化水素基である場合は、かかる脂肪族炭化水素基としては、例えば、炭素数1~18のアルキレン基を挙げることができ、これらは直鎖状であっても分岐状であってもよい。或いは、前記脂肪族炭化水素基は、前記アルキレン基に限定されるものではなく、不飽和の脂肪族炭化水素基であってもよい。
 R、R、R、R10、R11、R14、R15、R17およびR18が芳香族炭化水素基である場合は、かかる芳香族炭化水素基としては、例えば、フェニル基、アルキル化フェニル基等を挙げることができる。前記アルキル化フェニル基は、直鎖状または分岐状の炭素数1~18のアルキル基で、ベンゼン環の少なくとも1~5個の水素原子が置換されたフェニル基であればよく、アルキル置換されたベンゼン環の位置も特に限定されるものではない。また置換基数が2以上である場合、2以上のアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。R12、R13およびR16が芳香族炭化水素基である場合は、かかる芳香族炭化水素基としては、例えば、フェニレン基、アルキル化フェニレン基等を挙げることができる。前記アルキル化フェニレン基は、直鎖状または分岐状の炭素数1~18のアルキル基で、ベンゼン環の少なくとも1~4個の水素原子が置換されたフェニレン基であればよく、アルキル置換されたベンゼン環の位置も特に限定されるものではない。また置換基数が2以上である場合、2以上のアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。
 Xは、2価、3価または4価の炭素数1~18の脂肪族炭化水素基であれば特に限定されるものではなく、飽和脂肪族炭化水素基であっても、不飽和脂肪族炭化水素基であってもよいし、直鎖状であっても分岐状であってもよい。より好ましくは、当該脂肪族炭化水素基は、炭素数1~6の分岐状または直鎖状の飽和脂肪族炭化水素基である。また、R12、R13およびR16は、当該脂肪族炭化水素基のいずれの炭素に結合していてもよい。
 一般式(14)で表される構造を有する亜リン酸エステルのより具体的な一例としては、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリエチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリオレイルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリステアリルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等を挙げることができる。
 一般式(16)で表される構造を有する亜リン酸エステルのより具体的な一例としては、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン(株式会社ADEKAのアデカスタブ522A)、テトラフェニル(テトラトリデシル)ペンタエリスリトールテトラホスファイトとフタル酸ビス(2-エチルヘキシル)混合物、テトラ(C12~C15アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト等を挙げることができる。
 さらに、前記一般式(14)および(16)で表される亜リン酸エステル以外にも、トリラウリルトリチオホスファイト、テトラフェニルジプロピレングリコールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイトとビス(ノニルフェニル)ペンタエリスリトールジホスファイトの混合物、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマー、水添ビスフェノールAホスファイトポリマー等も、本発明において、亜リン酸エステルとして好適に用いることができる。
 前記亜リン酸エステルとしては、市販品を利用することができ、例えば、城北化学工業株式会社のJP-360、JP-351、JP-3CP、JP-302、JP-308E、JP-310、JP-312L、JP-333E、JP-318-O、JPM-308、JPM-311、JPM-313、JPS-312、JP-202、JPE-208、JP-212、JP-213D、JP-218-OR、JP-260、JPP-100、JPP-613M、JA-805、JPP-88、JPE-10、JPE-13R、JP-318E、JPP-2000T、JP-650、JPH-3800、HBP;株式会社ADEKAのアデカスタブ522A等を好適に用いることができる。
 前記亜リン酸エステルは、分子量が300以上の低蒸発性の亜リン酸エステルであることがより好ましい。亜リン酸エステルの分子量が上記範囲であれば、亜リン酸エステル自体が蒸発しにくいため好ましい。また、前記亜リン酸エステルは、分子量が400~1000の範囲にある亜リン酸エステルであることがさらに好ましく、分子量が500~800の範囲にある亜リン酸エステルであることが特に好ましい。
 〔酸化防止剤の添加量〕
 本発明の前記潤滑剤組成物に含有される、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量は、前記基油全量に対して3~8重量%であることが好ましい。
 前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、前記基油全量に対して3~8重量%であることにより、潤滑剤組成物の蒸発減量が小さく、また蒸発減量の上昇が急こう配となるまでの時間が大きいという効果を得ることができる。
 また、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、前記基油全量に対して8重量%以下であることにより、粘度の上昇を抑えることができ、また、熱安定性に優れる潤滑剤組成物を得ることができる。
 また、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの含有比率は、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量に対して、アルキル化フェニルナフチルアミンが85~95重量%であり、亜リン酸エステルが5~15重量%であることが好ましい。
 前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの含有比率が上記範囲内であれば、潤滑剤組成物の蒸発減量が小さいという点および酸化防止効果の持続時間がより長くなるという効果も得ることができる点において、顕著な効果を得ることができる。
 また、本発明に係る潤滑剤組成物は、酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを用いるものであるが、本発明の効果に好ましくない影響を与えない限りにおいて、アルキル化フェニルナフチルアミンおよび亜リン酸エステル以外の酸化防止剤を少量含んでいてもよい。かかるアルキル化フェニルナフチルアミンおよび亜リン酸エステル以外の酸化防止剤は、酸化防止剤全量に対して10重量%以下であることが好ましく、5重量%以下であることがより好ましい。
 〔その他の添加剤〕
 本発明に係る潤滑剤組成物は、前記基油と前記酸化防止剤とに加えて、実用性能をより向上させるために、各種の添加剤が配合されていてもよい。かかる添加剤としては、金属不活性化剤、腐食防止剤、導電性付与剤等を挙げることができる。
 前記金属不活性化剤としては、ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、1-ジオクチルアミノメチルベンゾトリアゾール、1-ジオクチルアミノメチル-5-メチルベンゾトリアゾール、2-(5’-メチル-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α、α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3’,5’-ジ-t-ブチル-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-(3’-t-ブチル-5’-メチル-2’-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3’,5’-ジ-t-ブチル-2’-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3’,5’-ジ-t-アミル-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-(5’-t-ブチル-2’-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(3”,4”,5”,6”テトラヒドロフタリドメチル)-5’-メチルフェニル]ベンゾトリアゾール等を好適に用いることができる。
 また、前記腐食防止剤としては、ドデセニルコハク酸ハーフエステル、オクタデセニルコハク酸無水物、ドデセニルコハク酸アミド等のアルキル又はアルケニルコハク酸誘導体;ソルビタンモノオレエート、グリセリンモノオレエート、ペンタエリスリトールモノオレエート等の多価アルコール部分エステル;Ca-石油スルフォネート、Ca-アルキルベンゼンスルフォネート、Ba-アルキルベンゼンスルフォネート、Mg-アルキルベンゼンスルフォネート、Na-アルキルベンゼンスルフォネート、Zn-アルキルベンゼンスルフォネート、Ca-アルキルナフタレンスルフォネート等の金属スルフォネート;ロジンアミン、N-オレイルザルコシン等のアミン類等を好適に用いることができる。
 また、前記導電性付与剤としては、アルキルナフタレンスルホン酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルケニルエーテル等を好適に用いることができる。
 本発明では、これらの添加剤から選択される1種または2種以上を、それぞれ、潤滑剤組成物の全量に対して0.01重量%~1重量%の範囲で配合することによって、本発明の潤滑剤組成物の実用性能をより向上させることができる。
 〔潤滑剤組成物〕
 本発明に係る潤滑剤組成物は、上記構成により、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する上に、加水分解による金属腐食が抑えられ、かつ有機材料に対する悪影響が少ない。また、酸化防止剤の効果持続時間が長いという点においても優れている。
 本発明に係る潤滑剤組成物は、40℃における動粘度(以下、「40℃動粘度」ともいう。)が、4cSt~1000cStの範囲であることが好ましく、6cSt~30cStの範囲であることがより好ましい。40℃動粘度が上記範囲であれば、軸受油として、潤滑性能および省エネルギー性能に特に優れたものとなり得る。
 また、本発明に係る潤滑剤組成物は、粘度指数が、好ましくは80以上、より好ましくは110以上であり、且つ流動点が、好ましくは-5℃以下、より好ましくは-40℃以下である場合に、軸受用潤滑剤として、低温における粘度特性に特に優れたものとなり得る。
 なお、本明細書における「40℃における動粘度」、「粘度指数」および「流動点」は、後述する実施例に示した方法によって測定することができる。
 (2)本発明に係る潤滑剤組成物の利用
 〔軸受油〕
 本発明の潤滑剤組成物は、潤滑剤を用いて潤滑されるあらゆる軸受の軸受油として使用され得る。したがって本発明には本発明の潤滑剤組成物を用いた軸受油も含まれる。本発明の潤滑剤組成物は、例えば、軸部材と軸受部材(スリーブ部材)とを備え、当該軸部材と当該軸受部材とが、微小間隙を介して回転可能に嵌合し、当該微小間隙には、潤滑膜を形成するように作動流体(軸受油)が収容され、上記軸部材と上記軸受部材とが、上記潤滑膜を介して相対的にすべり運動をするあらゆる軸受に対して軸受油として好適に使用することができる。このような軸受は、一般に「すべり軸受」と称される。
 さらに、本発明の潤滑剤組成物は、流体軸受(流体動圧軸受もしくは静圧軸受)用の軸受油、または含浸軸受(「含油軸受」ともいう。)用の軸受油としても好適に使用することができる。
 〔軸受〕
 本発明に係る軸受は、上述した本発明の潤滑剤組成物を用いて潤滑される。本発明に係る軸受は、上述した本発明の潤滑剤組成物を用いて潤滑される軸受であれば、その構成は特に限定されるものではない。なお、前記「本発明の潤滑剤組成物を用いて潤滑される」とは、本発明の潤滑剤組成物を介して対向する部材同士が、本発明の潤滑剤組成物を介して相対的にすべり運動をすることを意図している。このような軸受としては、例えば、流体軸受、含浸軸受等を挙げることができる。
 ここで、前記「流体軸受」としては、ボールベアリング等の機構を有さず、軸部材(または、スラストプレート)とスリーブ部材とを備え、当該軸部材(または、スラストプレート)と当該スリーブ部材とが、微小間隙を介して回転可能に嵌合し、当該微小間隙には、潤滑膜を形成するように作動流体(潤滑剤組成物)が収容され、上記軸部材(または、スラストプレート)と上記スリーブ部材とが、上記潤滑膜によって互いに直接接触することがないように保持されている、従来公知の流体軸受であれば、その構成は特に限定されるものではない。
 流体軸受のなかでも、軸部材およびスリーブ部材のどちらか一方またはこれらの両方に動圧発生溝が設けられ、当該軸部材が、動圧によって支承されている流体軸受;軸部材の回転軸に対して垂直方向に動圧を生じるようにスラストプレートが設けられている流体軸受等は、特に、流体動圧軸受と称される。本発明の軸受には、かかる流体動圧軸受も包含される。
 上記流体動圧軸受においては、軸部材(または、スラストプレート)が回転していないときには動圧が生じない。このため、軸部材(または、スラストプレート)が回転していないときには、スリーブ部材と軸部材(または、スラストプレート)とは部分的にもしくは全面で接触している。これに対して、軸部材(または、スラストプレート)が回転しているときには、その回転によって動圧が生じる。このため、スリーブ部材と軸部材(または、スラストプレート)とは非接触状態となる。すなわち、流体動圧軸受においては、スリーブ部材と軸部材(または、スラストプレート)とが、常に、接触または非接触を繰り返している。それゆえ、従来の流体動圧軸受においては、スリーブ部材と軸部材(または、スラストプレート)との間に金属摩耗が起こったり、回転時にスリーブ部材と軸部材(または、スラストプレート)とが一時的に接触することによって焼付きが起こったりする場合がある。さらに、軸受に静電気が蓄積され易いため、磁気ディスク等の重要な電子部品に静電破壊が生じる場合がある。しかし、本発明に係る流体軸受は、本発明の潤滑剤組成物を用いて潤滑されるので、このような金属摩耗や焼付きが起こり難く、また、スリーブ部材と軸部材(または、スラストプレート)との間に静電気が蓄積され難い。
 また、上記「含浸軸受」としては、焼結金属、合成樹脂等の多孔質の軸部材に本発明の潤滑剤組成物を含浸してなる、従来公知の含浸軸受(含油軸受)であれば、その構成は特に限定されるものではない。
 従来の含浸軸受では、軸受部材と軸部材との間に金属摩耗が起こったり、軸部材の回転時に軸受部材と軸部材とが一時的に接触することによって焼付きが起こったりする場合がある。さらに、軸受に静電気が蓄積され易いため、磁気ディスク等の重要な電子部品に静電破壊が生じる場合がある。しかし、本発明に係る含浸軸受は、本発明の潤滑剤組成物を用いて潤滑されるので、このような金属摩耗や焼付きが起こり難く、また、軸受部材と軸部材との間に静電気が蓄積され難い。
 上述したように、本発明の潤滑剤組成物は、従来の軸受用潤滑剤と比較して、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性をバランスよく満足させることができる。それゆえ、本発明の潤滑剤組成物を作動流体として用いて潤滑される本発明の軸受は、高速回転させたときの安定性および耐久性等が長期に保持され、さらに、省エネルギー性に優れた軸受となり得る。従って、本発明の軸受は、小型・軽量化、大容量化、情報の高速処理化が要求されている映像・音響機器、パーソナルコンピューター等の電子機器の回転装置等に使用される軸受として有効に用いることができる。〔モータ〕
 本発明に係るモータは、本発明の軸受を備えている。本発明に係るモータは、本発明の軸受を備えていれば、その他の構成は特に限定されない。なお、本発明の軸受については、前記〔軸受〕の項で説明したとおりであるので、ここでは説明は省略する。
 本発明に係るモータとしては、例えば、パーソナルコンピューター、音響機器、ビジュアル機器、カーナビゲーション等の公知の電子機器に備えられているモータを挙げることができる。
 本発明に係るモータは、本発明の潤滑剤組成物を用いて潤滑されている軸受を備えているので、従来のモータと比較して、金属摩耗や焼付きが起こり難く、また、軸受部材と軸部材との間に静電気が蓄積され難い。このため、軸受を高速回転させたときの安定性および耐久性等を長期にわたって保持することができ、その結果、モータの長寿命化を達成することができる。さらに、本発明に係るモータは、従来のモータと比較して、軸受を高速回転させたときの省エネルギー性に特に優れたモータとなり得る。
〔軸受の潤滑方法〕
 本発明に係る軸受の潤滑方法は、本発明の軸受を、本発明の潤滑剤組成物を用いて潤滑させることを特徴としている。なお、本発明の潤滑剤組成物および本発明の軸受については、それぞれ、前記「(1)本発明に係る潤滑剤組成物」の項および前記〔軸受〕の項で説明したとおりであるので、ここでは説明は省略する。
 上述したように、本発明の潤滑剤組成物は、従来の軸受用潤滑剤と比較して、高い耐湿性を有し、且つ、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性をバランスよく満足させることができる。それゆえ、本発明の潤滑剤組成物を軸受を潤滑させるための作動流体として、軸受、特に、流体軸受または含浸軸受に充填して潤滑することによって、軸受を高速回転させたときの安定性および耐久性等を長期にわたって保持することができ、その結果、軸受の長寿命化を達成することができる。さらに、軸受の省エネルギー性を向上させることができる。
〔グリース〕
 本発明に係るグリースは、本発明の潤滑剤組成物を含有している。また、本発明には、グリースを製造するための、潤滑剤組成物の使用も含まれる。なお、本発明の潤滑剤組成物については、上記「(1)本発明に係る潤滑剤組成物」の項で説明したとおりであるので、ここでは説明は省略する。
 本発明の潤滑剤組成物は、グリースの総重量に対して、50重量%以上含まれていることが好ましく、95重量%以上含まれていることがより好ましい。
 本発明に係るグリースは、常温で固体であってもよく、半固体であってもよい。また、本発明に係るグリースには、通常、所望の増ちょう度を有するグリースにするために必要な量の増ちょう剤が含まれている。例えば、通常、グリースの総重量に対して、10重量%~40重量%の増ちょう剤が含有されている。
 上記「増ちょう剤」としては、グリースにおいて通常使用される増ちょう剤を用いることができ、例えば、リチウム石けん、カルシウム石けん、ナトリウム石けん、アルミニウム石けん等が挙げられるが、これらに限定されない。
 本発明に係るグリースは、必要に応じて、酸化防止剤、極圧剤、腐食防止剤等の添加剤がさらに配合されていてもよい。これらの添加剤は、それぞれ、グリースの総重量に対して0.1重量%~5重量%の範囲で配合することによって、グリースの実用性能をより向上させることができる。
 本発明に係るグリースの用途は特に限定されないが、軸受用グリース、特に、流体軸受用グリースまたは含浸軸受用グリースとして好適に使用することができる。
 本発明に係るグリースの製造方法は特に限定されず、一般的なグリースの製造方法に従って製造することができる。
 本発明に係るグリースは、基油として、本発明の潤滑剤組成物を含有しているので、従来のグリースと比較して、省エネルギー性、高い耐湿性、低蒸発性、および低温における粘度特性等の性能の全てをより確実に、且つバランスよく満たすグリースとなり得る。
 〔冷凍機油〕
 本発明に係る冷凍機油は、本発明の潤滑剤組成物を含有している。なお、本発明の潤滑剤組成物については、上記「(1)本発明に係る潤滑剤組成物」の項で説明したとおりであるので、ここでは説明は省略する。
 本発明に係る冷凍機油は、冷凍機油の総重量に対して、本発明の潤滑剤組成物を80重量%以上含んでいることが好ましく、90重量%以上含んでいることがより好ましい。
 本発明に係る冷凍機油は、必要に応じて、金属不活性化剤、腐食防止剤、導電性付与剤等の添加剤がさらに配合されていてもよい。これらの添加剤は、それぞれ、冷凍機油の総重量に対して0.01重量%~5重量%の範囲で配合することによって、冷凍機油の実用性能をより向上させることができる。
 本発明に係る冷凍機油の製造方法は特に限定されず、一般的な冷凍機油の製造方法に従って製造することができる。
 本発明に係る冷凍機油は、基油として、本発明の潤滑剤組成物を含有しているので、従来の冷凍機油と比較して、省エネルギー性、高い耐湿性、低蒸発性、および低温における粘度特性等の性能の全てをより確実に、且つバランスよく満たす冷凍機油となり得る。
 (3)本発明に係る脂肪族エーテル化合物
 本発明に係る潤滑油組成物に好適に用いることができる脂肪族エーテル化合物には、化合物としても新規なものが含まれる。したがって、かかる新規な化合物も本発明に含まれる。本発明にかかる脂肪族エーテル化合物としては、例えば前記化学式(1)~(9)のいずれかで表される構造を有する脂肪族エーテル化合物を挙げることができる。
 かかる脂肪族エーテル化合物は、高い耐湿性を有し、且つ、低粘度、低温流動性及び高粘度指数などの物性を有するため、潤滑油組成物の基油として好適に利用することができる。また、特に、酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを用いる場合に、様々な基油の中で脂肪族エーテル化合物に特有に低蒸発性の顕著な効果がみられる。
 本発明に係る脂肪族エーテル化合物は、40℃における動粘度(以下、「40℃動粘度」ともいう。)が、4cSt~1000cStの範囲であることが好ましく、4cSt~80cStの範囲であることがより好ましい。40℃動粘度が上記範囲であれば、本発明に係る脂肪族エーテル化合物を基油とする潤滑剤組成物およびこれを含有する軸受油、グリース、冷凍機油の潤滑性能および省エネルギー性能が特に優れたものとなり得る。
 また、本発明に係る脂肪族エーテル化合物は、粘度指数が、好ましくは80以上、より好ましくは110以上であり、且つ流動点が、好ましくは-5℃以下、より好ましくは-40℃以下である場合に、本発明に係る脂肪族エーテル化合物を基油とする潤滑剤組成物およびこれを含有する軸受油、グリース、冷凍機油の、低温における粘度特性が特に優れたものとなり得る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、本発明を実施例により具体的に説明するが、本発明は実施例によって限定されるものではない。なお、図においては、便宜上、「重量%」を「wt%」と表記し、潤滑剤組成物の番号および記号のみを示す。
 〔潤滑剤組成物の諸性能の測定〕
 潤滑剤組成物の諸性能は、以下の方法で測定した。
 <蒸発減量>
 180℃における蒸発性試験により蒸発減量を測定した。具体的には、材質SUS304、内径20mm、高さ35mmの円筒型試験容器に、潤滑剤組成物を2g入れ、180℃の回転盤付恒温槽に所定時間静置した後の潤滑剤組成物の重量を測定した。蒸発減量を以下の式により求めた。なお、2回の測定の平均値を測定結果として用いた。
蒸発減量(重量%)=(2(g)-所定時間静置した後の潤滑剤組成物の重量(g))×100/2(g)
 <基油の65時間後分解率>
 試料10g、水1g、銅系焼結軸受金属粉末(銅88重量%、スズ重量10%、鉛2重量%)4gをSUS製の耐圧容器に密閉し、160℃で65時間加熱しながら攪拌した。試験前後の試料を、ガスクロマトグラフィを用いて分析し、基油の残存率から、基油の65時間後分解率を以下の式により求めた。
基油の65時間後分解率(%)=100-基油の残存率(GC%)
 <40℃動粘度>
 JISK2283に準じ、キャノン-フェンスケ粘度計を用いて40℃における動粘度を測定した。
 <100℃動粘度>
 JISK2283に準じ、キャノン-フェンスケ粘度計を用いて100℃における動粘度を測定した。
 <粘度指数>
 JISK2283に準じ、算出した。
 <絶対粘度>
 ブルックフィールド社製デジタル粘度計(DV-II+Pro)を用い、絶対粘度を測定した。
 <流動点>
 JISK2269に準じ、測定した。
 〔基油の合成〕
 〔製造例1:化合物1の製造〕
 2リットルのガラス製フラスコに、2-エチルヘキシルオキシエチルアルコール1046g、1,6-ジクロロヘキサン230g、水酸化カリウム219gを入れ、180℃で1時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を2リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物1を単離した。得られた化合物1のH-NMRチャートを図8に示す。
 〔製造例2:化合物2の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,4-ジクロロブタン3048g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライドを単離した。続いて5リットルのガラス製フラスコに、2-ブチルオクタノール2158g、4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライド1185g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物2を単離した。
 〔製造例3:化合物3の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,6-ジクロロヘキサン3673g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライドを単離した。続いて5リットルのガラス製フラスコに、2-ブチルオクタノール2158g、6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライド1293g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物3を単離した。得られた化合物3のH-NMRチャートを図9に示す。
 〔製造例4:化合物4の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,6-ジクロロヘキサン3673g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライドを単離した。続いて5リットルのガラス製フラスコに、1-オクタノール1508g、6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライド1293g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物4を単離した。
 〔製造例5:化合物5の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,6-ジクロロヘキサン3673g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライドを単離した。続いて5リットルのガラス製フラスコに、1-デカノール1832g、6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライド1293g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物5を単離した。得られた化合物5のH-NMRチャートを図10に示す。
 〔製造例6:化合物6の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,6-ジクロロヘキサン3673g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライドを単離した。続いて5リットルのガラス製フラスコに、1-ドデカノール2158g、6-[2-(2-エチルヘキシルオキシ)エトキシ]-ヘキシルクロライド1293g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物6を単離した。得られた化合物6のH-NMRチャートを図11に示す。
 〔製造例7:化合物7の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,4-ジクロロブタン3048g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライドを単離した。続いて5リットルのガラス製フラスコに、1-オクタノール1508g、4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライド1185g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物7を単離した。
 〔製造例8:化合物8の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,4-ジクロロブタン3048g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライドを単離した。続いて5リットルのガラス製フラスコに、1-デカノール1832g、4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライド1185g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物8を単離した。
 〔製造例9:化合物9の製造〕
 10リットルのガラス製フラスコに、2-(2-エチルヘキシルオキシ)エチルアルコール1310g、1,4-ジクロロブタン3048g、水酸化カリウム438gを入れ、90℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライドを単離した。続いて5リットルのガラス製フラスコに、1-ドデカノール2158g、4-[2-(2-エチルヘキシルオキシ)エトキシ]-ブチルクロライド1185g、水酸化カリウム282gを入れ、180℃で5時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を3リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物9を単離した。
 〔製造例10:化合物10の製造〕
 2リットルのガラス製フラスコに、2-ブチルオクタノール1117g、1,4-ジクロロブタン191g、水酸化カリウム219gを入れ、180℃で16時間攪拌し反応させた。その後、反応液を室温に冷却し、過剰のアルカリを中和するため塩酸を加え中性にした。この反応液を2リットルの水で水洗後、分液ろうとを用いて有機層を分取し、有機層から減圧蒸留することで化合物10を単離した。得られた化合物10のH-NMRチャートを図12に示す。
 〔基油および添加物〕
 以下の実施例、参考例、比較例においては、前記合成例によって得られた基油、ならびに、以下に示す基油および添加剤を用いた。
<基油>
・セバシン酸ジオクチル(以下、本明細書においてDOSと称することがある。)
・モレスコホワイトP-70(株式会社MORESCO、流動パラフィン)
・モレスコハイルーブLB-15(株式会社MORESCO、アルキルジフェニルエーテル)
・ユニスター(登録商標)H334R(日油株式会社、トリメチロールプロパン由来のトリエステル)
・アデカカーポールM-60(株式会社ADEKA、ポリアルキレングリコール)
・MPDC9(3-メチル-1,5-ペンタンジオール ジノナノエート、特許第4466850号に記載の方法で合成した。)
・MPDC11(3-メチル-1,5-ペンタンジオール ジウンデカノエート、特許第4466850号に記載の方法で合成した。)
<アルキル化フェニルナフチルアミン系酸化防止剤>
・IRGANOX L06(BASF社、N-フェニル-1,1,3,3-テトラメチルブチルナフタレン-1-アミン、表中「L06」と表記することがある。)
・Naugalube APAN(Chemtura社、N-フェニル-2,4,6,8-テトラメチルオクチルナフタレン-1-アミン、表中「APAN」と表記することがある。)
<ジフェニルアミン系酸化防止剤>
・IRGANOX L57(BASF社、2,4,4-トリメチルペンチルジフェニルアミン)
<フェノール系酸化防止剤>
・AO-50F(株式会社ADEKA、3-(4’-ヒドロキシ-3’-5’-ジ-t-ブチルフェニル)プロピオン酸-n-オクタデシル)
<亜リン酸エステル系酸化防止剤>
・アデカスタブ522A(株式会社ADEKA、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン)
<金属不活性化剤>
・IRGAMET 39(BASF社、N,N-ビス(2-エチルヘキシル)-(4又は5)-メチル-1H-ベンゾトリアゾール-1-メチルアミン)
<腐食防止剤>
・IRGACOR L12(BASF社、テトラプロペニルコハク酸,1,2-プロパンジオールエステル/ミネラルオイル/テトラプロペニルコハク酸の混合物)
 〔参考例1-3、比較例1-5〕
 基油として化合物6を用い、表1に示す組成を有する潤滑剤組成物I-Pを調製し、180℃の回転盤付恒温槽内での静置時間を様々に変化させて蒸発減量を測定した。
Figure JPOXMLDOC01-appb-T000044
 結果を図1に示す。なお、図1-7において、縦軸は蒸発減量(単位:重量%)を、横軸は静置時間(図中、「経過時間」と表示、単位:時間)を示す。図1に示すように、酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを用い、その比率において、アルキル化フェニルナフチルアミンが95重量%であり亜リン酸エステルが5重量%である参考例1では、蒸発減量が小さく、また蒸発減量の上昇が急こう配となるまでの時間が大きいことが示された。また、アルキル化フェニルナフチルアミンが90重量%であり亜リン酸エステルが10重量%である参考例2、およびアルキル化フェニルナフチルアミンが85重量%であり亜リン酸エステルが15重量%である参考例3では、蒸発減量がさらに小さく、また蒸発減量の上昇が急こう配となるまでの時間がさらに大きくなることが示された。これは、酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを、前記比率で用いることにより、酸化防止効果がより大きくなるとともに、酸化防止効果の持続時間がより長くなるためであると考えられる。
 これに対して、酸化防止剤としてアルキル化フェニルナフチルアミンのみを用い、亜リン酸エステルを用いなかった比較例1では、酸化防止剤としてアルキル化フェニルナフチルアミンと、亜リン酸エステルとを併用した場合と比較して、早い時点で蒸発減量が大きく上昇した。
 また、酸化防止剤として亜リン酸エステルのみを用い、アルキル化フェニルナフチルアミンを用いなかった比較例4では、酸化防止剤としてアルキル化フェニルナフチルアミンと、亜リン酸エステルとを併用した場合と比較して、蒸発減量が早い時点から大きくなっている。
 また、アルキル化フェニルナフチルアミンが97重量%であり亜リン酸エステルが3重量%である比較例2、アルキル化フェニルナフチルアミンが80重量%であり亜リン酸エステルが20重量%である比較例3では、アルキル化フェニルナフチルアミンが85~95重量%であり亜リン酸エステルが15~5重量%である参考例1-3と比較して、蒸発減量が顕著に大きくなっている。
 さらに、酸化防止剤として亜リン酸エステルおよびアルキル化フェニルナフチルアミンのいずれも用いず、フェノール系酸化防止剤を用いた比較例5では、酸化防止剤としてアルキル化フェニルナフチルアミンと、亜リン酸エステルとを併用した場合と比較して、蒸発減量が大きくなっている。
 〔実施例1-2、比較例6-10〕
 基油として化合物6を用い、表2に示す組成を有する潤滑剤組成物Q-Wを調製し、180℃の回転盤付恒温槽内での静置時間を様々に変化させて蒸発減量を測定した。
Figure JPOXMLDOC01-appb-T000045
 結果を図2に示す。また、低蒸発性の評価を表2に示す。表2中、低蒸発性に優れている場合を◎、低蒸発性が不十分な場合を△、低蒸発性に劣る場合を×で示した。
 比較例6では、酸化防止剤として、アルキル化フェニルナフチルアミンのみを、潤滑油組成物全量に対して3.00重量%用いた。これに対して、比較例7では、酸化防止剤として、アルキル化フェニルナフチルアミンのみを、比較例6と比べて潤滑油組成物全量に対して0.50重量%多く、すなわち、3.50重量%用いた。
 一方、実施例2では、酸化防止剤として、比較例6に対して、比較例7のようにアルキル化フェニルナフチルアミンのみを0.50重量%多く用いるかわりに、亜リン酸エステルを0.50重量%追加的に用いた。その結果、図2に示すように、アルキル化フェニルナフチルアミンを潤滑油組成物全量に対して3.00重量%含有する比較例6に対して、アルキル化フェニルナフチルアミンを0.50重量%多く用いた比較例7よりも、亜リン酸エステルを0.50重量%用いる実施例2の方が、蒸発減量が顕著に小さくなることが見出された。かかる結果より、アルキル化フェニルナフチルアミンと亜リン酸エステルとを併用することにより、酸化防止剤の総量が多くなったことによる効果を超える、低蒸発性を促進する相乗的な効果が得られることが判る。さらに、アルキル化フェニルナフチルアミンを潤滑油組成物全量に対して3.00重量%含有する比較例6に対して、亜リン酸エステルをわずか0.20重量%多く含有させる実施例1においても、低蒸発性を促進する顕著な効果が得られることが見出された。
 また、図2に示すように、酸化防止剤として、実施例2のアルキル化フェニルナフチルアミンと亜リン酸エステルとの比率と同じ比率、及び、基油に対して同じ含有量で、フェノール系酸化防止剤と亜リン酸エステルとからなる酸化防止剤を用いた比較例10では、蒸発減量は、実施例2の蒸発減量と比較して大きく、かつ、早い時点で蒸発減量の上昇が急こう配となった。かかる結果より、フェノール系酸化防止剤と亜リン酸エステルとを併用しても、アルキル化フェニルナフチルアミンと亜リン酸エステルとを併用する場合のような低蒸発性を達成することができないことが判る。
 また、アルキル化フェニルナフチルアミンと亜リン酸エステルとの比率において、アルキル化フェニルナフチルアミンが81.08重量%であり亜リン酸エステルが18.92重量%である比較例8、アルキル化フェニルナフチルアミンが75重量%であり亜リン酸エステルが25重量%である比較例9では、アルキル化フェニルナフチルアミンが85~95重量%であり亜リン酸エステルが15~5重量%の範囲内にある実施例1-2と比較して、蒸発減量が大きくなった。
 〔参考例4-5、比較例11-14〕
 表3に示す組成を有する潤滑剤組成物1-12を調製した。表3に示すように、種々の基油について、アルキル化フェニルナフチルアミンのみを酸化防止剤として単独で用いた潤滑剤組成物(表3において「単独」と記載)と、アルキル化フェニルナフチルアミンと亜リン酸エステルとからなる酸化防止剤を併用した潤滑剤組成物(表3において「併用」と記載)とを調製した。それぞれの潤滑剤組成物の、180℃の回転盤付恒温槽内で16.5時間静置後の蒸発減量を測定し、アルキル化フェニルナフチルアミンと亜リン酸エステルとの併用による蒸発減量低減率を求めた。
 なお、アルキル化フェニルナフチルアミンと亜リン酸エステルとの併用による蒸発減量低減率(以下、「併用による蒸発減量低減率」と略称することがある。)は、以下の式により算出した。
併用による蒸発減量低減率(%)=100-100×(アルキル化フェニルナフチルアミンと亜リン酸エステルとからなる酸化防止剤を含む潤滑油組成物の16.5時間後蒸発減量/アルキル化フェニルナフチルアミンのみを酸化防止剤として含む潤滑油組成物の16.5時間後蒸発減量)
Figure JPOXMLDOC01-appb-T000046
 結果を表4に示す。基油として前記化学式(6)で示される脂肪族エーテル化合物(化合物6)を用いた参考例4における併用による蒸発減量低減率(%)は76%であり、基油として脂肪族ポリエーテル化合物であるポリアルキレングリコールを用いた参考例5における併用による蒸発減量低減率(%)は54%であった。
 これに対して、基油としてジエステル化合物であるセバシン酸ジオクチルを用いた比較例11では併用による蒸発減量低減率(%)は1.5%であり、基油として流動パラフィンを用いた比較例12では併用による蒸発減量低減率(%)は3.6%であり、基油として芳香族エーテル化合物であるアルキルジフェニルエーテルを用いた比較例13では併用による蒸発減量低減率(%)は1.0%であり、基油としてトリエステル化合物であるヒンダードエステルを用いた比較例14では併用による蒸発減量低減率(%)は4.7%であった。
 参考例4-5および比較例11-14の結果より、アルキル化フェニルナフチルアミンと亜リン酸エステルとの組み合わせによる高い併用効果は、様々な基油の中で脂肪族エーテル化合物に特有にみられる効果であることが見出された。
 〔実施例3-14、比較例15-16〕
 基油として化合物6を用い、表5に示す組成を有する潤滑剤組成物L、Mおよび13-24を調製し、180℃の回転盤付恒温槽内での静置時間を様々に変化させて蒸発減量を測定した。
Figure JPOXMLDOC01-appb-T000048
 結果を図3および図4に示す。図3および図4に示すように、潤滑油組成物に含有される、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、潤滑油組成物全体に対して、4重量%である実施例3、4、9および10と、6重量%である実施例5、6、11および12と、8重量%である実施例7、8、13および14では、蒸発減量が小さく、また蒸発減量の上昇が急こう配となるまでの時間が大きいことが示された。
 これに対して、潤滑油組成物に含有される、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量を、潤滑油組成物全体に対して、2重量%とした以外は、実施例3-8と同様にして潤滑油組成物を調製し、蒸発減量を測定した比較例15および16では、蒸発減量は、実施例3-8の蒸発減量と比較して顕著に大きく、かつ、早い時点で蒸発減量の上昇が急こう配となった。
 〔実施例15-17、比較例17-21〕
 基油として化合物5を用い、表6に示す組成を有する潤滑剤組成物A-Hを調製し、180℃の回転盤付恒温槽内での静置時間を様々に変化させて蒸発減量を測定した。
Figure JPOXMLDOC01-appb-T000049
 結果を図5に示す。表6に示すように、比較例17-21および実施例15-17では、脂肪族エーテル化合物を基油とし、酸化防止剤として、アルキル化フェニルナフチルアミン系酸化防止剤および/またはアルキル化ジフェニルアミン系酸化防止剤と亜リン酸エステル系酸化防止剤とを併用している。これらの例では、アルキル化フェニルナフチルアミン系酸化防止剤および/またはアルキル化ジフェニルアミン系酸化防止剤の使用量を潤滑剤組成物全量に対して5.5重量%に、亜リン酸エステル系酸化防止剤の使用量を潤滑剤組成物全量に対して0.5重量%に固定する一方で、アルキル化フェニルナフチルアミン系酸化防止剤とアルキル化ジフェニルアミン系酸化防止剤との比率を変化させている。
 図5に示すように、アルキル化フェニルナフチルアミン系酸化防止剤の使用量およびアルキル化ジフェニルアミン系酸化防止剤の使用量がそれぞれ、0および5.5重量%である比較例17では、蒸発減量は、実施例15-17、比較例18-21の蒸発減量と比較して大きく、かつ、早い時点で蒸発減量の上昇が急こう配となった。比較例18、比較例19、比較例20、比較例21、実施例15、実施例16では、その順に、蒸発減量が減少し、かつ、より遅い時点で上昇した。アルキル化フェニルナフチルアミン系酸化防止剤の使用量およびアルキル化ジフェニルアミン系酸化防止剤の使用量がそれぞれ5.5重量%および0である実施例17では、蒸発減量が最も減少し、かつ、遅い時点で上昇した。
 かかる結果より、アルキル化ジフェニルアミン系酸化防止剤と亜リン酸エステル系酸化防止剤との組合せでは、低蒸発量を達成するという本発明の効果は得られないことが判る。これに対して、酸化防止剤として、アルキル化フェニルナフチルアミンと亜リン酸エステルとを併用すれば顕著な蒸発量低減の効果が得られることが見出された。
 〔実施例18-19、23-26〕
 表7に示す組成を有する潤滑剤組成物25-26および33-36を調製し、180℃の回転盤付恒温槽内での静置時間を様々に変化させて蒸発減量を測定した。また、潤滑剤組成物の40℃動粘度および100℃動粘度を測定し粘度指数を求めた。
Figure JPOXMLDOC01-appb-T000050
 結果を表7および図6に示す。表7に示すように、得られた潤滑剤組成物の40℃動粘度、100℃動粘度および粘度指数は、当該技術分野における既存油と同等であるか、優れていた。また、得られた潤滑剤組成物は当該技術分野における既存油と同等または優れた低蒸発性を示すことが確認された。
 〔実施例20-22、比較例22-24〕
 表8および表9に示す組成を有する潤滑剤組成物27-32を調製し、180℃の回転盤付恒温槽内での静置時間を様々に変化させて蒸発減量を測定した。表8に示す組成は、当該技術分野における既存の潤滑油組成物の組成である。また、得られた潤滑油組成物について、基油の65時間後分解率を測定した。また、実施例18で得られた潤滑剤組成物25および実施例24で得られた潤滑剤組成物34についても基油の65時間後分解率を測定した。
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 蒸発減量の測定結果を実施例18の結果とともに図7に示す。また、基油の65時間後分解率の測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000053
 ジエステルであるMPDC9およびDOSを基油とする既存の潤滑剤組成物27および28は、図7に示すように、実施例20-22、24および実施例18で得られた潤滑剤組成物と比較して蒸発減量が大きかった。また、表10に示すように、基油の65時間後分解率が60%を超えており、耐湿性に劣ることが判る。また、ジエステルであるMPDC11を基油とする既存の潤滑剤組成物は、蒸発減量は小さいが、表10に示すように、基油の65時間後分解率が60%を超えており、耐湿性に劣ることが判る。これに対して、実施例20-22、24および実施例18で得られた潤滑剤組成物は、低蒸発性および耐湿性に優れていることが判る。
 〔本発明に係る脂肪族エーテル化合物の物性の評価〕
 前記合成例で得られた脂肪族エーテル化合物および既存油について、粘性および低温流動性の評価を行った。
 結果を表11-13に示す。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
 表11に示すように、前記合成例で得られた化合物1、3、5、6は、既存のジエステルであるMPDC9、MPDC11およびDOSと比較すると、分子量の割に粘度が低いと言える。また、粘度指数も既存のジエステルより高いかまたは同等であることが確認された。
 また、表12に示すように、前記合成例で得られた化合物3、5、6は、既存のジエステルであるDOSと比較すると、分子量の割に粘度が低いことが確認された。
 また、表13に示すように、前記合成例で得られた化合物1、3、5、6は、既存のジエステルであるMPDC9、MPDC11およびDOSと比較すると、流動点が低いかまたは同等であることが確認された。
 本発明に係る潤滑剤組成物は、低粘度、低蒸発性、低温流動性及び高粘度指数などの物性を有する上に、加水分解による金属腐食が抑えられ、かつ有機材料に対する悪影響も少ない。それゆえ、軸受用の軸受油としてはもちろんのこと、流体軸受用の軸受油、含浸軸受用の軸受油、グリース用の原料、冷凍機油用の原料等としても好適に用いることができる。従って、本発明は、潤滑剤組成物を用いる全ての技術分野において産業上の利用価値が極めて高い。

Claims (15)

  1.  脂肪族エーテル化合物を基油とし、酸化防止剤を含有する潤滑剤組成物であって、
     前記酸化防止剤は、少なくともアルキル化フェニルナフチルアミンと亜リン酸エステルとからなり、
     前記潤滑剤組成物に含有される、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量が、前記基油全量に対して3~8重量%であり、
     前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの含有比率は、前記アルキル化フェニルナフチルアミンと亜リン酸エステルとの合計量に対して、アルキル化フェニルナフチルアミンが85~95重量%であり、亜リン酸エステルが5~15重量%であることを特徴とする潤滑剤組成物。
  2.  前記脂肪族エーテル化合物は、一分子中の炭素原子数が8~300であり、一分子中の酸素原子数が1~150である脂肪族エーテル化合物であることを特徴とする請求項1に記載の潤滑剤組成物。
  3.  前記脂肪族エーテル化合物は、2-(2-エチルヘキシルオキシ)エチルエーテル化合物であることを特徴とする請求項1または2に記載の潤滑剤組成物。
  4.  前記脂肪族エーテル化合物は、下記化学式(1)~(10)で表される構造を有する化合物からなる群より選択される少なくとも1種である請求項1または2に記載の潤滑剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
  5.  前記アルキル化フェニルナフチルアミンが、N-フェニル-ドデシルナフタレン-1-アミンまたはN-フェニル-オクチルナフタレン-1-アミンであることを特徴とする請求項1~4のいずれか1項に記載の潤滑剤組成物。
  6.  前記亜リン酸エステルが1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタンであることを特徴とする請求項1~5のいずれか1項に記載の潤滑剤組成物。
  7.  請求項1~6のいずれか1項に記載の潤滑剤組成物を用いた軸受油。
  8.  請求項1~6のいずれか1項に記載の潤滑剤組成物を用いて潤滑されることを特徴とする軸受。
  9.  前記軸受は、流体軸受または含浸軸受であることを特徴とする請求項8に記載の軸受。
  10.  請求項8または9に記載の軸受を備えていることを特徴とする、モータ。
  11.  軸受を、請求項1~6のいずれか1項に記載の潤滑剤組成物を用いて潤滑させることを特徴とする軸受の潤滑方法。
  12.  グリースを製造するための、請求項1~6のいずれか1項に記載の潤滑剤組成物の使用。
  13.  請求項1から6のいずれか1項に記載の潤滑剤組成物を含有していることを特徴とするグリース。
  14.  請求項1から6のいずれか1項に記載の潤滑剤組成物を含有していることを特徴とする冷凍機油。
  15.  下記化学式(1)~(9)のいずれかで表される構造を有する脂肪族エーテル化合物。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
PCT/JP2015/079666 2015-02-09 2015-10-21 潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物 WO2016129148A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15882022.5A EP3257922B1 (en) 2015-02-09 2015-10-21 Lubricant composition, use thereof and aliphatic ether compound
KR1020167031341A KR101819132B1 (ko) 2015-02-09 2015-10-21 윤활제 조성물과 그 이용 및 지방족 에테르 화합물
JP2015555885A JP5899599B1 (ja) 2015-02-09 2015-10-21 潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物
US15/129,757 US9920274B2 (en) 2015-02-09 2015-10-21 Lubricant composition, use thereof and aliphatic ether compound
CN201580024611.2A CN106661493B (zh) 2015-02-09 2015-10-21 润滑剂组合物及其利用、以及脂肪族醚化合物
PH12016501767A PH12016501767B1 (en) 2015-02-09 2016-09-08 Lubricant composition, use thereof and aliphatic ether compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023672 2015-02-09
JP2015-023672 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129148A1 true WO2016129148A1 (ja) 2016-08-18

Family

ID=56615629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079666 WO2016129148A1 (ja) 2015-02-09 2015-10-21 潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物

Country Status (7)

Country Link
US (1) US9920274B2 (ja)
EP (1) EP3257922B1 (ja)
KR (1) KR101819132B1 (ja)
CN (1) CN106661493B (ja)
MY (1) MY173662A (ja)
PH (1) PH12016501767B1 (ja)
WO (1) WO2016129148A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109128A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses
WO2018109125A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses
WO2018109123A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses
JP2018517749A (ja) * 2015-06-18 2018-07-05 カストロール リミテッド エーテル化合物ならびに関連の組成物および方法
JP2020090604A (ja) * 2018-12-05 2020-06-11 Jxtgエネルギー株式会社 冷凍機油の耐発火性を向上させる方法及び耐発火性が向上された冷凍機油

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990299B2 (ja) * 2018-04-13 2022-02-03 株式会社Moresco 潤滑油組成物およびそれを用いた潤滑剤
FR3099176B1 (fr) * 2019-07-26 2022-02-18 Total Marketing Services Composition lubrifiante pour turbines à gaz

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641572A (ja) * 1992-05-29 1994-02-15 Tonen Corp 潤滑油組成物
JPH06200277A (ja) * 1992-12-28 1994-07-19 Tonen Corp 潤滑油組成物
JPH0931484A (ja) * 1995-07-19 1997-02-04 Kao Corp 冷凍機作動流体用組成物
JP2001146598A (ja) * 1999-11-19 2001-05-29 Asahi Denka Kogyo Kk グリース組成物
WO2001090232A2 (en) * 2000-05-25 2001-11-29 Union Carbide Chemicals & Plastics Technology Corporation A method for providing a fluid composition with improved fire resistance
JP2008001734A (ja) * 2006-06-20 2008-01-10 Nok Kluber Kk 潤滑油組成物
JP2008189786A (ja) * 2007-02-05 2008-08-21 Matsumura Sekiyu Kenkyusho:Kk 流体軸受用潤滑流体、それを用いた流体軸受及びモータ並びに流体軸受の潤滑方法
JP2009155432A (ja) * 2007-12-26 2009-07-16 Kyodo Yushi Co Ltd 金属加工油剤組成物、金属加工方法及び金属加工品
WO2010058021A1 (en) * 2008-11-24 2010-05-27 Shell Internationale Research Maatschappij B.V. Lubricating grease compositions

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1280738C (en) 1984-03-07 1991-02-26 Andrew Gene Horodysky Grease composition containing boron compound and hydroxy containing soap thickener
US5084194A (en) 1984-03-07 1992-01-28 Mobil Oil Corporation Grease composition
JPS6361038A (ja) 1986-09-02 1988-03-17 Mitsubishi Petrochem Co Ltd 耐放射線性ポリオレフイン組成物
JPH0420597A (ja) 1990-05-14 1992-01-24 Nippon Oil Co Ltd 水素含有フロン冷媒用冷凍機油
JP2627564B2 (ja) 1989-12-28 1997-07-09 日本石油株式会社 非塩素系フロン冷媒用冷凍機油
JP3012907B2 (ja) 1989-12-28 2000-02-28 日石三菱株式会社 非塩素系フロン冷媒用冷凍機油
US6582621B1 (en) 1989-12-28 2003-06-24 Nippon Mitsubishi Oil Corporation Refrigerator oils for use with chlorine-free fluorocarbon refrigerants
BR9007186A (pt) 1990-01-05 1992-01-28 Lubrizol Corp Composicao lubrificante e metodo de lubrificacao de transmissoes e conjuntos de engrenagens
JP2617369B2 (ja) 1990-06-28 1997-06-04 日本石油株式会社 合成潤滑油
DE69120952T2 (de) 1990-04-20 1996-11-28 Nippon Oil Co Ltd Synthetische Schmieröle
US5256321A (en) 1992-07-10 1993-10-26 The Lubrizol Corporation Grease compositions
US5256320A (en) 1992-07-10 1993-10-26 The Lubrizol Corporation Grease compositions
AU674548B2 (en) 1992-12-24 1997-01-02 Lubrizol Corporation, The Lubricants, functional fluid and grease compositions containing sulfite or sulfate overbased metal salts and methods of using the same
US5596039A (en) 1993-01-27 1997-01-21 Mitsui Toatsu Chemicals, Incorporated Diguanamines and preparation process, derivatives and use thereof
JPH06345897A (ja) 1993-02-24 1994-12-20 Mitsui Toatsu Chem Inc 樹脂の改質方法およびその用途
US5354485A (en) 1993-03-26 1994-10-11 The Lubrizol Corporation Lubricating compositions, greases, aqueous fluids containing organic ammonium thiosulfates
US5576281A (en) * 1993-04-05 1996-11-19 Olin Corporation Biogradable low foaming surfactants as a rinse aid for autodish applications
TW318861B (ja) 1994-08-16 1997-11-01 Mitsui Toatsu Chemicals
JPH08109333A (ja) 1994-08-16 1996-04-30 Mitsui Toatsu Chem Inc 改質された樹脂類の製造方法及びその用途
JPH09217078A (ja) * 1996-02-08 1997-08-19 Tonen Corp 耐熱性潤滑油組成物
JP2610003B2 (ja) 1996-06-17 1997-05-14 日本石油株式会社 非塩素系フロン冷媒用冷凍機油
JP3961618B2 (ja) 1997-05-27 2007-08-22 出光興産株式会社 潤滑油基油
JP3145360B2 (ja) 1999-03-11 2001-03-12 日石三菱株式会社 非塩素系フロン冷媒用冷凍機油
CA2395106A1 (en) 1999-12-22 2001-06-28 The Lubrizol Corporation Lubricants with the combination of a molybdenum compound, a phosphorus compounds and dispersants
US6858567B2 (en) 2000-02-09 2005-02-22 Citizen Watch Co., Ltd. Lubricating oil composition and watch using the same
JP4010109B2 (ja) 2000-06-22 2007-11-21 日本精工株式会社 導電性グリース及び転動装置
US6589918B2 (en) 2000-06-22 2003-07-08 Nsk Ltd. Conductive grease and rolling apparatus packed with the same
JP4171575B2 (ja) 2000-07-24 2008-10-22 新日本石油株式会社 冷凍機油組成物
JP2002348586A (ja) 2001-05-23 2002-12-04 Citizen Watch Co Ltd 潤滑油組成物およびそれを用いた精密部品および軸受け
JP4028982B2 (ja) 2001-12-27 2008-01-09 新日鐵化学株式会社 流体軸受ユニット及び軸受用潤滑油組成物
JP2004161976A (ja) 2002-03-18 2004-06-10 Cosmo Sekiyu Lubricants Kk 潤滑油組成物及びその製造方法
JPWO2004018594A1 (ja) 2002-08-21 2005-12-08 シチズン時計株式会社 精密機器用グリース組成物およびこれを用いた時計
CN100523156C (zh) 2002-08-22 2009-08-05 新日本理化株式会社 轴承用润滑油
JP4769463B2 (ja) 2002-12-24 2011-09-07 出光興産株式会社 潤滑油基油及び潤滑油組成物
JP4209189B2 (ja) 2002-12-25 2009-01-14 コスモ石油ルブリカンツ株式会社 湿式クラッチ用潤滑油
CN100341988C (zh) 2003-04-02 2007-10-10 出光兴产株式会社 导电润滑剂组合物
JP2005232434A (ja) 2004-01-21 2005-09-02 New Japan Chem Co Ltd 軸受用潤滑油
JP4700288B2 (ja) 2004-03-29 2011-06-15 出光興産株式会社 無段変速機用潤滑油組成物
JP5078614B2 (ja) 2004-08-18 2012-11-21 チバ ホールディング インコーポレーテッド 改善された性能を有する潤滑油組成物
US7737095B2 (en) * 2004-08-30 2010-06-15 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information device using the same
JP2006064151A (ja) 2004-08-30 2006-03-09 Matsushita Electric Ind Co Ltd 流体軸受装置、ならびにそれを用いたスピンドルモータ及び磁気ディスク装置
CN101006164A (zh) * 2004-08-30 2007-07-25 出光兴产株式会社 流体轴承用润滑油组合物
JP2007077244A (ja) 2005-09-13 2007-03-29 Nsk Ltd グリース組成物及び転がり軸受
JP2007145899A (ja) * 2005-11-24 2007-06-14 Cosmo Sekiyu Lubricants Kk 軸受油組成物
JP4946063B2 (ja) 2006-01-12 2012-06-06 日本精工株式会社 グリース組成物及び転がり軸受
JP4871606B2 (ja) 2006-02-03 2012-02-08 出光興産株式会社 ポリエーテル化合物及びそれを含む潤滑油用基油と潤滑油組成物
US10615388B2 (en) 2006-03-22 2020-04-07 Celgard, Llc Membrane made of a blend of UHMW polyolefins
CN101415806A (zh) * 2006-03-31 2009-04-22 埃克森美孚研究工程公司 降低在润滑剂组合物中沉积物形成的方法
KR101410143B1 (ko) 2006-09-29 2014-06-25 이데미쓰 고산 가부시키가이샤 압축형 냉동기용 윤활유 및 이것을 사용한 냉동 장치
WO2008094812A2 (en) * 2007-01-29 2008-08-07 The Lubrizol Corporation Lubricating compositions comprising capped polyoxyalkylene polyols
US20090011961A1 (en) 2007-07-06 2009-01-08 Jun Dong Lubricant compositions stabilized with styrenated phenolic antioxidant
US8193260B2 (en) 2007-02-26 2012-06-05 Chemtura Corporation Stabilization of polymers with styrenated-p-cresols
KR20100018486A (ko) 2007-05-24 2010-02-17 켐트라 코포레이션 스티렌화된-p-크레졸을 갖는 폴리머의 안정화
JP5305125B2 (ja) * 2007-12-18 2013-10-02 Ntn株式会社 オルタネータ用転がり軸受
WO2009088778A1 (en) * 2008-01-11 2009-07-16 Dow Global Technologies Inc. Alkylene oxide-capped secondary alcohol alkoxylates useful as surfactants
JP5392595B2 (ja) * 2008-04-08 2014-01-22 Ntn株式会社 グリース封入外輪回転用転がり軸受
JP2009263439A (ja) 2008-04-23 2009-11-12 Cosmo Oil Lubricants Co Ltd 湿式クラッチ用潤滑油
US8455415B2 (en) * 2009-10-23 2013-06-04 Exxonmobil Research And Engineering Company Poly(alpha-olefin/alkylene glycol) copolymer, process for making, and a lubricant formulation therefor
JP5508920B2 (ja) 2010-04-01 2014-06-04 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US9156751B2 (en) 2010-07-20 2015-10-13 Idemitsu Kosan Co., Ltd. Lubricating oil composition and lubricating oil composition for continuously variable transmission
JP5771799B2 (ja) * 2011-02-10 2015-09-02 株式会社Moresco 軸受用潤滑剤およびその利用
JP5774881B2 (ja) * 2011-03-17 2015-09-09 協同油脂株式会社 グリース組成物
KR101301343B1 (ko) 2011-05-06 2013-08-29 삼성전기주식회사 윤활유 조성물
US9200096B2 (en) * 2011-12-21 2015-12-01 Exxonmobil Research And Engineering Company Polyvinyl ether based high performance synthetic fluids prepared using cationic polymerization
CN104395274B (zh) * 2012-10-31 2017-12-05 株式会社Moresco 烷基化二苯基醚化合物及含有该化合物的润滑油剂
CN105189719B (zh) * 2013-03-11 2018-05-29 巴斯夫欧洲公司 聚烷氧基化物在润滑剂组合物中的用途
CN104059715B (zh) * 2013-03-22 2016-12-28 中国石油化工股份有限公司 抗氧剂组合物、润滑油组合物及提高润滑油抗氧性能的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641572A (ja) * 1992-05-29 1994-02-15 Tonen Corp 潤滑油組成物
JPH06200277A (ja) * 1992-12-28 1994-07-19 Tonen Corp 潤滑油組成物
JPH0931484A (ja) * 1995-07-19 1997-02-04 Kao Corp 冷凍機作動流体用組成物
JP2001146598A (ja) * 1999-11-19 2001-05-29 Asahi Denka Kogyo Kk グリース組成物
WO2001090232A2 (en) * 2000-05-25 2001-11-29 Union Carbide Chemicals & Plastics Technology Corporation A method for providing a fluid composition with improved fire resistance
JP2008001734A (ja) * 2006-06-20 2008-01-10 Nok Kluber Kk 潤滑油組成物
JP2008189786A (ja) * 2007-02-05 2008-08-21 Matsumura Sekiyu Kenkyusho:Kk 流体軸受用潤滑流体、それを用いた流体軸受及びモータ並びに流体軸受の潤滑方法
JP2009155432A (ja) * 2007-12-26 2009-07-16 Kyodo Yushi Co Ltd 金属加工油剤組成物、金属加工方法及び金属加工品
WO2010058021A1 (en) * 2008-11-24 2010-05-27 Shell Internationale Research Maatschappij B.V. Lubricating grease compositions

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517749A (ja) * 2015-06-18 2018-07-05 カストロール リミテッド エーテル化合物ならびに関連の組成物および方法
CN110462011A (zh) * 2016-12-16 2019-11-15 卡斯特罗尔有限公司 基于醚的润滑剂组合物、方法和用途
WO2018109123A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses
WO2018109125A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses
CN110462012A (zh) * 2016-12-16 2019-11-15 卡斯特罗尔有限公司 基于醚的润滑剂组合物、方法和用途
CN110462010A (zh) * 2016-12-16 2019-11-15 卡斯特罗尔有限公司 基于醚的润滑剂组合物、方法和用途
WO2018109128A1 (en) * 2016-12-16 2018-06-21 Castrol Limited Ether-based lubricant compositions, methods and uses
CN110462011B (zh) * 2016-12-16 2022-05-13 卡斯特罗尔有限公司 基于醚的润滑剂组合物、方法和用途
US11492566B2 (en) 2016-12-16 2022-11-08 Castrol Limited Ether-based lubricant compositions, methods and uses
EP4095220A1 (en) * 2016-12-16 2022-11-30 Castrol Limited Ether-based lubricant compositions, methods and uses
EP4108745A1 (en) * 2016-12-16 2022-12-28 Castrol Limited Ether-based lubricant compositions, methods and uses
CN110462010B (zh) * 2016-12-16 2023-01-10 卡斯特罗尔有限公司 基于醚的润滑剂组合物、方法和用途
JP2020090604A (ja) * 2018-12-05 2020-06-11 Jxtgエネルギー株式会社 冷凍機油の耐発火性を向上させる方法及び耐発火性が向上された冷凍機油
JP7144297B2 (ja) 2018-12-05 2022-09-29 Eneos株式会社 冷凍機油の耐発火性を向上させる方法及び耐発火性が向上された冷凍機油

Also Published As

Publication number Publication date
KR20160145666A (ko) 2016-12-20
MY173662A (en) 2020-02-14
CN106661493B (zh) 2020-11-13
PH12016501767A1 (en) 2017-01-09
EP3257922B1 (en) 2019-08-07
CN106661493A (zh) 2017-05-10
KR101819132B1 (ko) 2018-01-16
EP3257922A1 (en) 2017-12-20
PH12016501767B1 (en) 2017-01-09
EP3257922A4 (en) 2018-07-18
US9920274B2 (en) 2018-03-20
US20170183598A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2016129148A1 (ja) 潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物
JP5202830B2 (ja) 流体軸受用潤滑油、並びにそれを用いた流体軸受及び流体軸受の潤滑方法
JP6186056B2 (ja) 含エーテルモノエステル化合物およびその利用
TW200923071A (en) Lubricating oil base oil and lubricating oil composition
WO2009096570A1 (ja) 潤滑剤組成物
JPWO2007116725A1 (ja) 潤滑油基油
JP6965096B2 (ja) 導電性潤滑油組成物及びスピンドルモータ
KR20120125026A (ko) 윤활유 조성물
JP6199786B2 (ja) 流体動圧軸受油、及びそれを用いた流体動圧軸受ならびにスピンドルモータ
US8889607B2 (en) Lubricating oil composition
JP2002348586A (ja) 潤滑油組成物およびそれを用いた精密部品および軸受け
JP6075209B2 (ja) 流体軸受用潤滑油基油及びスピンドルモータ
CN105802716B (zh) 滚动轴承用润滑脂、滚动轴承、滚动轴承装置以及信息记录重放装置
US8889608B2 (en) Lubricating oil composition
JP5899599B1 (ja) 潤滑剤組成物及びその利用、並びに脂肪族エーテル化合物
JP2001234187A (ja) 潤滑油組成物
JP5426098B2 (ja) 潤滑剤組成物
JP5771799B2 (ja) 軸受用潤滑剤およびその利用
WO2009096600A1 (ja) 潤滑油剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015555885

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12016501767

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15129757

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882022

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015882022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015882022

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031341

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE