WO2016125852A1 - 自動車用電源装置及び自動車用電源装置の制御方法 - Google Patents

自動車用電源装置及び自動車用電源装置の制御方法 Download PDF

Info

Publication number
WO2016125852A1
WO2016125852A1 PCT/JP2016/053336 JP2016053336W WO2016125852A1 WO 2016125852 A1 WO2016125852 A1 WO 2016125852A1 JP 2016053336 W JP2016053336 W JP 2016053336W WO 2016125852 A1 WO2016125852 A1 WO 2016125852A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power supply
output
power
supply device
Prior art date
Application number
PCT/JP2016/053336
Other languages
English (en)
French (fr)
Inventor
速人 福嶋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201680006329.6A priority Critical patent/CN107683225A/zh
Priority to US15/547,912 priority patent/US20180022223A1/en
Publication of WO2016125852A1 publication Critical patent/WO2016125852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an automobile power supply device having an energy regeneration system and a method for controlling the automobile power supply device.
  • Some energy regeneration systems store the power generated by operating the alternator with inertial energy at the time of deceleration of the car in the capacitor and main battery, and when the engine restarts following the idling stop, the starter motor is driven by the stored power of the capacitor. To drive. In addition, the motor is operated with the electric power stored in the capacitor during traveling to compensate for the engine output torque.
  • This operation reduces the power consumption of the main battery by using a capacitor with excellent charging efficiency, so that the operation time of the alternator is shortened during normal driving. Further, in an automobile equipped with a hybrid system, the output torque of the engine is supplemented by a motor that operates with electric power of a capacitor, so that the engine load is reduced and fuel consumption is reduced.
  • FIG. 4 shows an example of an automobile power supply device equipped with the regeneration system as described above.
  • Electric power generated by an ISG (integrated starter generator) unit 3 having the functions of a starter motor 1 and an alternator 2 is charged in a capacitor 4 and stepped down by a DC / DC converter 5 to be supplied to a main battery 6 and a load group 7. Supplied.
  • the output power of the DC / DC converter 5 is controlled by the power supply control ECU based on the power required by the main battery 6 and the load group 7.
  • the alternator 2 operates mainly at the time of deceleration based on the control of the power control ECU to generate electric power.
  • the power generated by the alternator 2 is supplied to the capacitor 4 and to the main battery 6 and the load group 7 via the DC / DC converter 5.
  • Patent Document 1 discloses a DC / DC converter that can detect an abnormality in output current of a transformer.
  • Patent Document 2 discloses a DC / DC converter that can stabilize an output voltage.
  • the output power Q of the alternator 2 decreases as the speed of the automobile decreases during the regenerative operation.
  • the DC / DC converter 5 is controlled by the power control ECU so as to output a constant power P at a constant output voltage Vc, for example, a voltage of 15 V in order to supply a charging current to the main battery 6.
  • the charging current of the capacitor 4 is used to supply the charging current to the main battery 6.
  • the DC / DC converter 5 transfers power from the capacitor 4 to the main battery 6 and power efficiency decreases. This is because the main battery 6 is composed of a lead battery having poor charging efficiency.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an automotive power supply device capable of improving power efficiency by suppressing discharge of a capacitor based on a decrease in output power of an alternator. is there.
  • a power supply apparatus for a vehicle includes a capacitor that stores regenerative power output from an alternator, and a DC / DC that includes a voltage converter that converts an output voltage of the alternator and supplies the converted voltage to a main battery and a load group. Based on the converter, the first current sensor for detecting the discharge current of the capacitor during the regenerative operation, and the reception of the discharge current detection signal output from the first current sensor, the voltage conversion unit is supplied. And a control unit for reducing the output voltage set value.
  • the automobile power supply apparatus includes a second current sensor that detects a charging current supplied from the DC / DC converter to the main battery, and the control unit includes the discharge current detection signal and the second current. It is preferable that the output voltage of the voltage conversion unit is reduced to a level at which the charging current is not supplied to the main battery based on a charging current detection signal output from the sensor.
  • the control unit is provided in a power control ECU that outputs a command signal to the DC / DC converter based on the reception of the discharge current detection signal, and the voltage conversion based on the command signal. It is preferable to include a microcomputer that reduces the output voltage of the unit.
  • a method for controlling a power supply device for an automobile wherein when a discharge current of a capacitor is detected during a regenerative operation, an output voltage of a DC / DC converter that supplies a charge current to a main battery is reduced based on the discharge current It is characterized by making it.
  • the output voltage of the DC / DC converter is reduced to a voltage at which the charging current is cut off based on the detection of the charging current.
  • This method cuts off the charging current from the DC / DC converter to the main battery when a discharging current flows from the capacitor to the DC / DC converter during the regenerative operation.
  • the ISG unit 11 of the automobile power supply device shown in FIG. 1 has functions of a starter motor 12 and an alternator 13.
  • the ISG unit 11 operates as the alternator 13
  • the capacitor 14 is charged with the output power Q.
  • the output power Q output from the alternator 13 is stepped down by the DC / DC converter 15 and supplied to the main battery 16 and the load group 17.
  • the alternator 13 is controlled by the power supply control ECU 18 based on the charge amount of the capacitor 14 and the main battery 16, and operates mainly based on the inertial energy at the time of deceleration of the automobile to generate electric power.
  • the starter motor 12 is controlled by an engine control ECU (not shown), and operates when the engine is started and when the engine is restarted following the idling stop.
  • the starter motor 12 always operates based on the electric power supplied from the capacitor 14.
  • a first current sensor 19 is interposed between the capacitor 14 and the DC / DC converter 15.
  • the first current sensor 19 detects a discharge current Io flowing from the capacitor 14 toward the DC / DC converter 15, the first current sensor 19 outputs a discharge current detection signal X1 to the power supply control ECU 18.
  • a second current sensor 20 is interposed between the DC / DC converter 15 and the main battery 16.
  • the second current sensor 20 detects the charging current Ic flowing from the DC / DC converter 15 to the main battery 16
  • the second current sensor 20 outputs a charging current detection signal X2 to the power supply control ECU 18.
  • the power supply control ECU 18 operates based on the discharge current detection signal X1, the charge current detection signal X2, and a preset program during the regenerative operation so as to prevent the main battery 16 from being charged by the stored power of the capacitor 14. To work.
  • the power supply control ECU 18 shifts to a discharge suppression mode that suppresses the discharge of the capacitor 14 based on the input of the discharge current detection signal X1.
  • the power supply control ECU 18 In the discharge suppression mode, the power supply control ECU 18 generates a command signal C1 that lowers the output voltage Vc of the voltage converter 23 so as to prevent the charging current Ic from flowing into the main battery 16 based on the detection signal X2. Output to the DC / DC converter 15.
  • the DC / DC converter 15 includes a communication unit 21 that performs communication with the power supply control ECU 18, a microcomputer 22 that operates based on a preset program, and an output voltage setting value that is output from the microcomputer 22.
  • a voltage converter 23 that adjusts the output voltage Vc and the output power P by adjusting the duty ratio of the PWM control is provided by C2.
  • the DC / DC converter 15 supplies a constant output power P to the main battery 16 and the load group 17 while stepping down the output voltage of the alternator 13 to a predetermined voltage.
  • the operation of the automobile power supply device including the DC / DC converter 15 as described above will be described.
  • the output power Q of the alternator 13 gradually decreases as the speed of the vehicle decreases during the regenerative operation, but the DC / DC converter 15 outputs a constant output power P set in advance. Then, the main battery 16 is charged by the output power P, and required power is supplied to the load group 17.
  • the discharge current Io starts to flow from the capacitor 14 to the DC / DC converter 15. Then, the first current sensor 19 detects the discharge current Io and outputs a discharge current detection signal X1 to the power supply control ECU 18.
  • the power supply control ECU 18 shifts to the discharge suppression mode based on the reception of the discharge current detection signal X1.
  • the discharge suppression mode when the second current sensor 20 detects the charging current to the main battery 16 and outputs the detection signal X2, the power control ECU 18 receives the detection signal X2 based on the reception of the detection signal X2.
  • a command signal C1 is output to the microcomputer 22 of the DC converter 15.
  • the microcomputer 22 outputs the output voltage set value C2 to the voltage converter 23 based on the reception of the command signal C1. Then, the duty ratio of the PWM control is changed in the voltage conversion unit 23, and the output voltage Vc to be output by the voltage conversion unit 23 is changed from a constant voltage (for example, about 15V) for charging the main battery 16 to the main battery. It is controlled so as to drop to about 12.8V, which is 16 normal output voltage.
  • the output power P of the DC / DC converter 15 decreases and becomes smaller than the output power Q of the alternator 13. In this state, the discharge current Io of the capacitor 14 and the charging current Ic to the main battery 16 are cut off.
  • the output voltage Vc of the voltage conversion unit 23 is maintained at substantially the same potential as the output voltage of the main battery 16, so that regardless of the output power Q of the alternator 13.
  • the charging current Ic is cut off.
  • the load group 17 is substantially supplied with required power from the main battery 16.
  • FIG. 3 shows the operation of the automobile power supply apparatus during the regenerative operation as described above.
  • the power supply control ECU 18 issues a power generation instruction to the alternator 13 (step S1), and detects the presence or absence of the discharge current detection signal X1 and the charge current detection signal X2 from the first and second current sensors 19, 20.
  • the discharge current detection signal X1 is not output and only the detection signal X2 is output. And if the discharge current detection signal X1 is detected, it will transfer to discharge suppression mode (step S3), and it will be determined whether the detection signal X2 is detectable (step S4).
  • step S4 When the detection signal X2 is detected in step S4, since the charging current Ic is supplied to the main battery 16 using the discharging current Io of the capacitor 14, the power supply control ECU 18 outputs the output voltage Vc of the DC / DC converter 15. A command signal C1 for lowering is output.
  • the DC / DC converter 15 adjusts the output voltage set value C2 output from the microcomputer 22 to the voltage converter 23, and the output voltage Vc is lowered (step S5). As a result, the discharge current Io from the capacitor 14 and the charging current Ic to the main battery 16 are cut off.
  • the command signal C1 and the output voltage set value C2 are reset in the power supply control ECU 18, and the DC / DC converter 15 outputs the normal output voltage Vc and the output power P. Return to the state.
  • the following effects can be obtained with the automobile power supply device as described above.
  • the power supply control ECU 18 and the microcomputer 22 are configured to function as a control unit in cooperation.
  • the power supply control ECU 18 may directly control the voltage conversion unit 23 of the DC / DC converter based on the discharge current detection signal X1 and the charging current detection signal X2.
  • the microcomputer 22 may directly control the voltage conversion unit 23 by receiving the discharge current detection signal X1 and the charging current detection signal X2.
  • the power supply control ECU 18 and the microcomputer 22 may be realized by a plurality of individual computers each including a memory and a processor, as long as the power supply control ECU 18 and the microcomputer 22 are configured to function as a control unit in cooperation.
  • the automobile power supply device can include at least one memory and one or more processors capable of accessing the memory.
  • the at least one memory may include computer-executable instructions configured to implement the functions, methods, or configurations described in the above-described embodiments when executed by one or more processors.
  • the present invention includes a computer-readable recording medium (also referred to as a non-transitory medium) that stores computer-executable instructions configured to implement the functions, methods, or configurations described in the above-described embodiments.
  • the computer readable medium may be any medium that can be accessed by one or more computer processors, for example, digital memory such as RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other Magnetic storage devices, and any combination thereof can be included.
  • digital memory such as RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other Magnetic storage devices, and any combination thereof can be included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Secondary Cells (AREA)

Abstract

オルタネータ13から出力される回生電力を蓄電するキャパシタ14と、オルタネータの出力電圧を変換してメインバッテリー16及び負荷群17に供給する電圧変換部23を有するDC/DCコンバータ15と、回生動作時に、キャパシタ14の放電電流Ioを検出する第一の電流センサ19と、第一の電流センサから出力される放電電流検出信号X1の受信に基づいて、電圧変換部23に供給される出力電圧設定値C2を低下させる制御部18,22とを備えた自動車用電源装置が開示される。

Description

自動車用電源装置及び自動車用電源装置の制御方法
 本発明は、エネルギー回生システムを備えた自動車用電源装置及び自動車用電源装置の制御方法に関するものである。
 近年、自動車の燃料消費量を低減するために、エネルギー回生システムを備えた自動車が実用化されている。いくつかのエネルギー回生システムは、自動車の減速時の慣性エネルギーでオルタネータを作動させて発電した電力をキャパシタ及びメインバッテリーに蓄え、アイドリングストップに続くエンジンの再始動時に、キャパシタの蓄電電力でスターターモータを駆動する。また、走行時にキャパシタの蓄電電力でモータを作動させて、エンジンの出力トルクを補うことも行われる。
 このような動作により、充電効率に優れたキャパシタを活用してメインバッテリーの電力消費が低減されるため、通常走行時にオルタネータの作動時間が短縮される。また、ハイブリッドシステムを備えた自動車では、キャパシタの電力で動作するモータでエンジンの出力トルクが補われるので、エンジンの負荷が低減されて、燃料消費量の低減が図られている。
 図4は、上記のような回生システムを備えた自動車用電源装置の一例を示す。スターターモータ1とオルタネータ2の機能を備えたISG(integrated starter generator)ユニット3で発電される電力はキャパシタ4に充電されるとともに、DC/DCコンバータ5で降圧されてメインバッテリー6及び負荷群7に供給される。DC/DCコンバータ5の出力電力は、メインバッテリー6及び負荷群7で必要とする電力に基づいて電源制御ECUにより制御される。
 そして、オルタネータ2は電源制御ECUの制御に基づいて主に減速時に作動して発電する。オルタネータ2の発電電力は、キャパシタ4に供給されるとともに、DC/DCコンバータ5を介してメインバッテリー6及び負荷群7に供給される。
 特許文献1には、変圧部の出力電流の異常を検出可能としたDC/DCコンバータが開示されている。
 特許文献2には、出力電圧を安定化可能としたDC/DCコンバータが開示されている。
特開2012-60723号公報 特開2002-315313号公報
 図5に示すように、上記のような自動車用電源装置では、回生動作時において、オルタネータ2の出力電力Qは自動車の速度が低下するにつれて低下する。また、DC/DCコンバータ5は電源制御ECUにより一定の出力電圧Vc、例えばメインバッテリー6に充電電流を供給するために15Vの電圧で一定電力Pを出力するように制御される。
 すると、オルタネータ2の出力電力QがDC/DCコンバータ5の出力電力Pより大きい領域HPでは、オルタネータ2の出力電力Qに基づいてメインバッテリー6に充電電流が供給されるとともに、負荷群7に所要の電力が供給される。
 一方、オルタネータ2の出力電力QがDC/DCコンバータ5の出力電力Pより小さくなる領域LPでは、キャパシタ4の充電電力を使用して、メインバッテリー6に充電電流が供給される。
 従って、DC/DCコンバータ5はオルタネータ2の出力電力Qが低下したとき、キャパシタ4からメインバッテリー6への電力の転送が行われ、電力効率が低下する。メインバッテリー6は、充電効率が劣る鉛バッテリーで構成されるためである。
 また、自動車が回生動作に移行する度に、キャパシタ4では充電動作と放電動作が繰り返されるため、キャパシタ4が劣化し易いという問題点がある。
 特許文献1及び特許文献2に開示されたDC/DCコンバータでは、回生システムに使用して、自動車の電力効率を向上させるようにする構成は開示されていない。
 この発明はこのような事情に鑑みてなされたものであり、その目的はオルタネータの出力電力の低下に基づくキャパシタの放電を抑制して、電力効率を向上させ得る自動車用電源装置を提供することにある。
 本発明の一側面に従う自動車用電源装置は、オルタネータから出力される回生電力を蓄電するキャパシタと、前記オルタネータの出力電圧を変換してメインバッテリー及び負荷群に供給する電圧変換部を有するDC/DCコンバータと、回生動作時に、前記キャパシタの放電電流を検出する第一の電流センサと、前記第一の電流センサから出力される放電電流検出信号の受信に基づいて、前記電圧変換部に供給される出力電圧設定値を低下させる制御部とを備える。
 この構成により、回生動作時にキャパシタからDC/DCコンバータに放電電流が流れると、DC/DCコンバータの出力電圧が下げられて、メインバッテリーへの充電電流が抑制される。
 上記の自動車用電源装置は、前記DC/DCコンバータからメインバッテリーに供給される充電電流を検出する第二の電流センサを備え、前記制御部は、前記放電電流検出信号と、前記第二の電流センサから出力される充電電流検出信号に基づいて、前記電圧変換部の出力電圧を前記メインバッテリーに前記充電電流が供給されないレベルに低下させることが好ましい。
 この構成により、回生動作時にキャパシタからDC/DCコンバータに放電電流が流れると、DC/DCコンバータからメインバッテリーへの充電電流が遮断される。
 前記制御部は、前記放電電流検出信号の受信に基づいて、前記DC/DCコンバータに指令信号を出力する電源制御ECUと、前記DC/DCコンバータに設けられ、前記指令信号に基づいて前記電圧変換部の出力電圧を低下させるマイクロコンピュータを備えることが好ましい。
 この構成により、回生動作時に第一の電流センサから放電電流検出信号が出力されるとともに、第二の電流センサから充電電流検出信号が出力されると、電源制御ECUとマイクロコンピュータの動作により、DC/DCコンバータの出力電圧が下げられて、メインバッテリーへの充電電流が遮断される。
 本発明の一側面に従う自動車用電源装置の制御方法は、回生動作時にキャパシタの放電電流を検出したとき、前記放電電流に基づいてメインバッテリーに充電電流を供給するDC/DCコンバータの出力電圧を低下させることを特徴とする。
 この方法により、回生動作時にキャパシタの放電電流が流れると、DC/DCコンバータからメインバッテリーへの充電電流が抑制される。
 上記制御方法において、前記充電電流の検出に基づいて、前記DC/DCコンバータの出力電圧を、前記充電電流が遮断される電圧まで低下させることが好ましい。
 この方法により、回生動作時にキャパシタからDC/DCコンバータに放電電流が流れると、DC/DCコンバータからメインバッテリーへの充電電流が遮断される。
 本発明のいくつかの側面によれば、オルタネータの出力電力の低下に基づくキャパシタの放電を抑制して、電力効率を向上させる自動車用電源装置を提供することができる。本発明の他の側面及び利点は本発明の技術的思想の例を示す図面と共に以下の記載から明らかとなる。
第一の実施形態に従う自動車用電源装置を示すブロック図である。 第一の実施形態の自動車用電源装置の動作を説明するためのタイミング図である。 自動車用電源装置の動作を示すフローチャートである。 従来の自動車用電源装置を示す説明図である。 従来の自動車用電源装置の動作を説明するためのタイミング図である。
 以下、自動車用電源装置の一実施形態を図面に従って説明する。図1に示す自動車用電源装置のISGユニット11は、スターターモータ12とオルタネータ13の機能を備える。ISGユニット11がオルタネータ13として動作すると、その出力電力Qでキャパシタ14が充電される。
 また、オルタネータ13から出力される出力電力Qは、DC/DCコンバータ15で降圧されて、メインバッテリー16及び負荷群17に供給される。
 オルタネータ13は、キャパシタ14及びメインバッテリー16の充電量に基づいて電源制御ECU18により制御され、主に自動車の減速時の慣性エネルギーに基づいて動作して発電する。
 スターターモータ12は、エンジン制御ECU(図示しない)により制御され、エンジンの始動時及びアイドリングストップに続くエンジンの再始動時に動作する。そして、常にはキャパシタ14から供給される電力に基づいてスターターモータ12は動作する。
 キャパシタ14とDC/DCコンバータ15との間には、第一の電流センサ19が介在されている。この第一の電流センサ19は、キャパシタ14からDC/DCコンバータ15に向かって流れる放電電流Ioを検出したときに、放電電流検出信号X1を電源制御ECU18に出力する。
 DC/DCコンバータ15とメインバッテリー16との間には、第二の電流センサ20が介在されている。この第二の電流センサ20は、DC/DCコンバータ15からメインバッテリー16に流れる充電電流Icを検出したときに、充電電流検出信号X2を電源制御ECU18に出力する。
 電源制御ECU18は、回生動作時に放電電流検出信号X1と、充電電流検出信号X2と、あらかじめ設定されたプログラムに基づいて動作して、キャパシタ14の蓄電電力によるメインバッテリー16の充電動作を阻止するように動作する。
 具体的には、電源制御ECU18は、放電電流検出信号X1の入力に基づいてキャパシタ14の放電を抑制する放電抑制モードに移行する。そして、放電抑制モードでは、電源制御ECU18は検出信号X2に基づいて、メインバッテリー16への充電電流Icの流入を阻止するように、電圧変換部23の出力電圧Vcを下げるような指令信号C1をDC/DCコンバータ15に出力する。
 DC/DCコンバータ15は、電源制御ECU18との間で通信動作を行う通信部21と、あらかじめ設定されているプログラムに基づいて動作するマイクロコンピュータ22と、マイクロコンピュータ22から出力される出力電圧設定値C2により、PWM制御のデューティ比を調整して出力電圧Vc及び出力電力Pを調整する電圧変換部23を備えている。
 そして、DC/DCコンバータ15はオルタネータ13の出力電圧を所定の電圧に降圧しながら、一定の出力電力Pをメインバッテリー16及び負荷群17に供給する。
 次に、上記のようなDC/DCコンバータ15を備えた自動車用電源装置の作用を説明する。
 図2に示すように、回生動作時に自動車の速度の低下にともなってオルタネータ13の出力電力Qは徐々に低下するが、DC/DCコンバータ15はあらかじめ設定された一定の出力電力Pを出力する。そして、その出力電力Pによりメインバッテリー16が充電され、負荷群17に所要の電力が供給される。
 出力電力Qが出力電力Pより小さくなると、キャパシタ14からDC/DCコンバータ15に放電電流Ioが流れ始める。すると、第一の電流センサ19は放電電流Ioを検出して放電電流検出信号X1を電源制御ECU18に出力する。
 電源制御ECU18は、放電電流検出信号X1の受信に基づいて放電抑制モードに移行する。そして、放電抑制モードでは第二の電流センサ20がメインバッテリー16への充電電流を検出して検出信号X2を出力していると、その検出信号X2の受信に基づいて、電源制御ECU18はDC/DCコンバータ15のマイクロコンピュータ22に指令信号C1を出力する。
 マイクロコンピュータ22は、指令信号C1の受信に基づいて電圧変換部23に出力電圧設定値C2を出力する。すると、電圧変換部23ではPWM制御のデューティ比が変更されて、例えば電圧変換部23が出力しようとする出力電圧Vcが、メインバッテリー16を充電するための一定電圧(例えば約15V)からメインバッテリー16の通常の出力電圧である12.8V程度まで低下するように制御される。
 この結果、DC/DCコンバータ15の出力電力Pが下降して、オルタネータ13の出力電力Qより小さくなる。この状態では、キャパシタ14の放電電流Io及びメインバッテリー16への充電電流Icが遮断される。
 この後は、オルタネータ13の出力電力Qが低下しても、電圧変換部23の出力電圧Vcがメインバッテリー16の出力電圧とほぼ同電位に維持されるので、オルタネータ13の出力電力Qに関わらず、充電電流Icは遮断される。そして、負荷群17にはほぼメインバッテリー16から所要の電力が供給される。
 図3は、上記のような回生動作時における自動車用電源装置の動作を示す。回生動作時に電源制御ECU18はオルタネータ13に発電指示を行い(ステップS1)、第一及び第二の電流センサ19,20からの放電電流検出信号X1と充電電流検出信号X2の有無を検知する。
 オルタネータ13の出力電力QがDC/DCコンバータ15の出力電力より大きい状態では、放電電流検出信号X1は出力されず、検出信号X2のみが出力されている。そして、放電電流検出信号X1を検知すると、放電抑制モードに移行し(ステップS3)、検出信号X2を検知可能か否かを判定する(ステップS4)。
 ステップS4で検出信号X2を検知すると、キャパシタ14の放電電流Ioを使用してメインバッテリー16に充電電流Icが供給されている状態であるので、電源制御ECU18はDC/DCコンバータ15の出力電圧Vcを下げさせるような指令信号C1を出力する。
 すると、DC/DCコンバータ15ではマイクロコンピュータ22から電圧変換部23に出力される出力電圧設定値C2が調整されて、出力電圧Vcが下げられる(ステップS5)。この結果、キャパシタ14からの放電電流Io及びメインバッテリー16への充電電流Icが遮断される。
 回生動作が終了した後、車両が通常走行に復帰すると、電源制御ECU18において指令信号C1及び出力電圧設定値C2はリセットされ、DC/DCコンバータ15は通常の出力電圧Vc及び出力電力Pを出力する状態に復帰する。
 上記のような自動車用電源装置では、次に示す効果を得ることができる。
(1)回生動作時に、キャパシタ14からDC/DCコンバータ15を介してメインバッテリー16に供給される充電電流Icを遮断することができる。従って、キャパシタ14の充電電力をメインバッテリー16に転送する際に生じる電力損失の発生を防止して、自動車用電源装置の電力効率を向上させることができる。
(2)回生動作時に、キャパシタ14の蓄電電力の消費を抑制することができるので、回生動作に続くエンジンの再始動時等のために、キャパシタ14の蓄電電力を確実に確保することができる。
(3)回生動作時に、キャパシタ14の蓄電電力の消費を抑制することができるので、キャパシタ14を充電するために回生動作時以外にオルタネータ13を作動させる必要がない。従って、燃費低減効果を確保することができる。
 なお、上記実施形態は以下のように変更してもよい。
 図1の例では、電源制御ECU18及びマイクロコンピュータ22は協働して制御部として機能するように構成されている。例えば、放電電流検出信号X1と充電電流検出信号X2に基づいて、電源制御ECU18がDC/DCコンバータの電圧変換部23を直接に制御してもよい。あるいは、マイクロコンピュータ22が、放電電流検出信号X1と充電電流検出信号X2とを受信して電圧変換部23を直接に制御してもよい。電源制御ECU18及びマイクロコンピュータ22は、協働して制御部として機能するように構成されていれば、各々がメモリとプロセッサとを含む複数の個別コンピュータによって実現されてもよく、単一のコンピュータが電源制御ECU18及びマイクロコンピュータ22の機能を実現してもよい。したがって、自動車用電源装置は、少なくとも一つのメモリと、当該メモリにアクセス可能な一または複数のプロセッサとを含むことができる。当該少なくとも一つのメモリは、一または複数のプロセッサが実行したときに前述した実施形態で説明した機能、方法、または構成を実現するように構成されたコンピュータ実行可能命令を含むことができる。したがって、本発明は、前述した実施形態で説明した機能、方法、または構成を実現するように構成されたコンピュータ実行可能命令を格納したコンピュータ読取可能記録媒体(非一時的媒体ともいう)を含む。当該コンピュータ可読媒体は、一または複数のコンピュータプロセッサがアクセスできる任意の媒体であってよく、例えば、RAM、ROM、EEPROM等のデジタルメモリ、CD-ROMまたは他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気記憶装置、及びそれらの任意の組合わせを含むことができる。
 本発明は例示したものに限定されるものではない。例えば、例示した特徴が本発明にとって必須であると解釈されるべきでなく、本発明の主題は、開示した特定の実施形態の全ての特徴より少ない特徴に存在することがある。したがって、本発明の範囲は、例示された実施形態の参照によって決定されるのではなく、均等物の全ての範囲とともに請求の範囲の参照により決定されるべきである。
 13…オルタネータ、14…キャパシタ、15…DC/DCコンバータ、16…メインバッテリー、17…負荷群、18…制御部(電源制御ECU)、19…第一の電流センサ、20…第二の電流センサ、22…制御部(マイクロコンピュータ)、23…電圧変換部、X1…放電電流検出信号、X2…充電電流検出信号、Io…放電電流、Ic…充電電流、Vc…出力電圧、C1…指令信号、C2…出力電圧設定値。

Claims (5)

  1.  オルタネータから出力される回生電力を蓄電するキャパシタと、
     前記オルタネータの出力電圧を変換してメインバッテリー及び負荷群に供給する電圧変換部を有するDC/DCコンバータと、
     回生動作時に、前記キャパシタの放電電流を検出する第一の電流センサと、
     前記第一の電流センサから出力される放電電流検出信号の受信に基づいて、前記電圧変換部に供給される出力電圧設定値を低下させる制御部と
    を備えたことを特徴とする自動車用電源装置。
  2.  請求項1に記載の自動車用電源装置において、
     前記DC/DCコンバータから前記メインバッテリーに供給される充電電流を検出する第二の電流センサを備え、
     前記制御部は、前記放電電流検出信号と、前記第二の電流センサから出力される充電電流検出信号に基づいて、前記電圧変換部の出力電圧を前記メインバッテリーに前記充電電流が供給されないレベルに低下させることを特徴とする自動車用電源装置。
  3.  請求項2に記載の自動車用電源装置において、
     前記制御部は、
     前記放電電流検出信号の受信に基づいて、前記DC/DCコンバータに指令信号を出力する電源制御ECUと、
     前記DC/DCコンバータに設けられ、前記指令信号に基づいて前記電圧変換部の出力電圧を低下させる出力電圧設定値を出力するマイクロコンピュータと
    を備えたことを特徴とする自動車用電源装置。
  4.  回生動作時にキャパシタの放電電流を検出したとき、前記放電電流に基づいて前記メインバッテリーに充電電流を供給するDC/DCコンバータの出力電圧を低下させることを特徴とする自動車用電源装置の制御方法。
  5.  請求項4に記載の自動車用電源装置の制御方法において、
     前記充電電流の検出に基づいて、前記DC/DCコンバータの出力電圧を、前記充電電流が遮断される電圧まで低下させることを特徴とする自動車用電源装置の制御方法。
PCT/JP2016/053336 2015-02-05 2016-02-04 自動車用電源装置及び自動車用電源装置の制御方法 WO2016125852A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680006329.6A CN107683225A (zh) 2015-02-05 2016-02-04 汽车用电源装置以及汽车用电源装置的控制方法
US15/547,912 US20180022223A1 (en) 2015-02-05 2016-02-04 Vehicle power-source device and control method for vehicle power-source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015020891A JP2016141356A (ja) 2015-02-05 2015-02-05 自動車用電源装置及び自動車用電源装置の制御方法
JP2015-020891 2015-09-18

Publications (1)

Publication Number Publication Date
WO2016125852A1 true WO2016125852A1 (ja) 2016-08-11

Family

ID=56564191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053336 WO2016125852A1 (ja) 2015-02-05 2016-02-04 自動車用電源装置及び自動車用電源装置の制御方法

Country Status (4)

Country Link
US (1) US20180022223A1 (ja)
JP (1) JP2016141356A (ja)
CN (1) CN107683225A (ja)
WO (1) WO2016125852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172789A1 (en) 2018-02-14 2019-09-12 Vers Produkcja Sp. Z O.O. Sp. K. A method of charging and discharging capacitors in a vehicle with a combustion engine and system thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822456B2 (ja) * 2017-09-22 2021-01-27 株式会社デンソー 車両電源システム、および電源制御装置
JP6922846B2 (ja) * 2018-05-24 2021-08-18 株式会社オートネットワーク技術研究所 車載用の電源装置
US10882407B2 (en) * 2018-06-21 2021-01-05 Bae Systems Controls Inc. Low engine speed electric accessory load regulation on moving vehicles
CN113165525B (zh) * 2018-11-29 2024-02-23 三菱电机株式会社 旋转电机的驱动装置
JP7205451B2 (ja) * 2019-12-04 2023-01-17 トヨタ自動車株式会社 車両および車両の制御方法
JP2021162067A (ja) * 2020-03-31 2021-10-11 日本電産トーソク株式会社 油圧制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288357A (ja) * 2009-06-11 2010-12-24 Panasonic Corp 電源装置
JP2011250494A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 車両用電源システム
JP2015063215A (ja) * 2013-09-25 2015-04-09 日産自動車株式会社 車両の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322314A (ja) * 1996-05-31 1997-12-12 Isuzu Motors Ltd 電気自動車電源制御装置
JP3982247B2 (ja) * 2001-12-06 2007-09-26 株式会社デンソー 車両用発電機の制御装置
JP2008199860A (ja) * 2007-02-15 2008-08-28 Auto Network Gijutsu Kenkyusho:Kk 目標充電量算出方法、目標充電量算出装置及び充電量制御装置
CN101777840B (zh) * 2010-02-25 2012-06-06 北京航空航天大学 一种升降压复合dc/dc变换器
CN102823103B (zh) * 2010-03-31 2015-03-11 松下电器产业株式会社 车辆用电源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288357A (ja) * 2009-06-11 2010-12-24 Panasonic Corp 電源装置
JP2011250494A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 車両用電源システム
JP2015063215A (ja) * 2013-09-25 2015-04-09 日産自動車株式会社 車両の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172789A1 (en) 2018-02-14 2019-09-12 Vers Produkcja Sp. Z O.O. Sp. K. A method of charging and discharging capacitors in a vehicle with a combustion engine and system thereof

Also Published As

Publication number Publication date
US20180022223A1 (en) 2018-01-25
JP2016141356A (ja) 2016-08-08
CN107683225A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2016125852A1 (ja) 自動車用電源装置及び自動車用電源装置の制御方法
JP5262084B2 (ja) 車両の制御装置
US20180233943A1 (en) Power supply system for vehicle
JP5941019B2 (ja) 車両用電源装置
EP3505411B1 (en) Power source for electric vehicle and power source selection method
JP5682515B2 (ja) ハイブリッド電気自動車の制御装置
CN109715426B (zh) 用于运行混合动力车辆的方法
JP6969357B2 (ja) 車両のハイブリッドシステム
WO2008007540A1 (fr) Dispositif d'alimentation
US20150222208A1 (en) Vehicle
US20120316719A1 (en) Method for Controlling the State of Charge of an Electrical Energy Store
JP5182514B2 (ja) 電動車両の制御装置
CN106347358B (zh) 一种用于电动车辆的动力源及动力源切换控制方法
CN106167021B (zh) 用于在混合动力车辆中回收能量的方法及控制设备
US9533675B2 (en) Method for controlling battery of mild hybrid vehicle
JP2009173147A (ja) 車両電気系システム制御装置および制御方法
JP2015009791A (ja) 車両用電源装置
US9637106B2 (en) Power-generation control device and power-generation control method for hybrid vehicle
CN103097704A (zh) 发动机的控制装置及控制方法
JP5915390B2 (ja) 車両用電源制御方法及び装置
WO2013035763A2 (ja) 電力供給制御装置
JP2016137803A (ja) 自動車用電源装置及び自動車用電源装置の制御方法
CN105730434A (zh) 用于控制混合动力车的充电的***和方法
JP2004312926A (ja) 車両の制御装置および制御方法
US9000700B2 (en) Motor control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746683

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15547912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746683

Country of ref document: EP

Kind code of ref document: A1