WO2016121662A1 - Transparent electroconductive film - Google Patents

Transparent electroconductive film Download PDF

Info

Publication number
WO2016121662A1
WO2016121662A1 PCT/JP2016/051951 JP2016051951W WO2016121662A1 WO 2016121662 A1 WO2016121662 A1 WO 2016121662A1 JP 2016051951 W JP2016051951 W JP 2016051951W WO 2016121662 A1 WO2016121662 A1 WO 2016121662A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
metallic particles
binder resin
conductive layer
Prior art date
Application number
PCT/JP2016/051951
Other languages
French (fr)
Japanese (ja)
Inventor
祥一 松田
由紀 長谷川
寛 友久
一正 岡田
武本 博之
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015179341A external-priority patent/JP6580432B2/en
Priority claimed from JP2015179340A external-priority patent/JP6580431B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/546,928 priority Critical patent/US20180017715A1/en
Priority to CN201680007507.7A priority patent/CN107210091B/en
Publication of WO2016121662A1 publication Critical patent/WO2016121662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a transparent conductive film.
  • transparent conductive films are used for electrodes of electronic device parts such as touch panels, electromagnetic wave shields that block electromagnetic waves that cause malfunction of electronic devices, and the like.
  • a method of forming a conductive layer composed of a metal oxide layer such as ITO, a metal nanowire, a metal mesh, or the like has been proposed (for example, Patent Documents 1 and 2).
  • a protective layer is formed on such a conductive layer, particularly a conductive layer including metal nanowires.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a transparent conductive film excellent in both scratch resistance and conductivity.
  • the transparent conductive film of the present invention includes a transparent substrate and a transparent conductive layer disposed on one side or both sides of the transparent substrate, and the transparent conductive layer includes a binder resin, metal nanowires, and metallic particles. And part of the metallic particles protrudes from the region constituted by the binder resin.
  • the average particle diameter X of the metallic particles and the thickness Y of the region constituted by the binder resin satisfy the relationship of Y ⁇ X ⁇ 20Y.
  • the metallic particles have an average primary particle size of 5 nm to 100 ⁇ m.
  • the content ratio of the metallic particles is 0.1 to 20 parts by weight with respect to 100 parts by weight of the binder resin.
  • the average flatness of the metallic particles is 40% or less.
  • the metallic particles are silver particles.
  • the metallic particles are silver-coated copper particles.
  • an optical laminate is provided. This optical laminate includes the transparent conductive film and a polarizing plate.
  • the present invention by including metallic particles protruding from the transparent conductive layer, it is possible to provide a transparent conductive film excellent in both scratch resistance and conductivity.
  • FIG. 1 is a schematic sectional view of a transparent conductive film according to one embodiment of the present invention.
  • the transparent conductive film 100 includes a transparent substrate 10 and a transparent conductive layer 20 disposed on both sides or one side (one side in the illustrated example) of the transparent substrate 10.
  • the transparent conductive layer 20 includes a binder resin 21, metal nanowires 22, and metallic particles 23.
  • a part of the metallic particles 23 protrudes from the region constituted by the binder resin 21 toward the surface of the transparent conductive film. That is, metallic particles are exposed in the transparent conductive film.
  • electrical_connection can be taken favorably in the surface of a transparent conductive film.
  • the contact resistance can be lowered.
  • the binder resin can protect the metal nanowires.
  • the amount of the binder resin used is increased (that is, the region constituted by the binder resin is thickened). be able to.
  • a transparent conductive film excellent in scratch resistance can be obtained. Thickening the binder resin region as a protective layer to increase scratch resistance, while being able to achieve a transparent conductive film excellent in conductivity, ensuring conduction from the surface, and having low contact resistance, This is one of the achievements of the present invention.
  • the surface resistance value of the transparent conductive film of the present invention is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and particularly preferably 1 ⁇ / ⁇ to 200 ⁇ . / ⁇ .
  • the haze value of the transparent conductive film of the present invention is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 5%.
  • the total light transmittance of the transparent conductive film of the present invention is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more, and particularly preferably 89% or more. Preferably it is 90% or more. The higher the total light transmittance of the transparent conductive film is, the better. However, the upper limit is, for example, 98%.
  • the transparent conductive layer includes a binder resin, metal nanowires, and metallic particles.
  • the binder resin is present so as to cover at least part of the metal nanowires and the metallic particles, and the region constituted by the binder resin can function as a protective layer. A part of the metallic particles protrudes from a region constituted by a binder resin.
  • the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the thickness Y of the region constituted by the binder resin is preferably 0.15 ⁇ m to 5 ⁇ m, more preferably 0.15 ⁇ m to 3 ⁇ m, and still more preferably 0.15 ⁇ m to 2 ⁇ m.
  • the thickness Y of the region constituted by the binder resin is a distance from one flat surface to the other flat surface of the transparent conductive layer, as shown in FIG. It means the thickness of the transparent conductive layer when it is assumed that the protruding part of the conductive particles is excluded.
  • the region constituted by the binder resin can be made relatively thick. As a result, a transparent conductive film excellent in scratch resistance can be obtained.
  • any appropriate resin can be used as the binder resin.
  • the resin include acrylic resins; polyester resins such as polyethylene terephthalate; aromatic resins such as polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, and polyamideimide; polyurethane resins; epoxy resins; Resin; Acrylonitrile-butadiene-styrene copolymer (ABS); Cellulose; Silicon resin; Polyvinyl chloride; Polyacetate; Polynorbornene; Synthetic rubber;
  • a curable resin is used as the binder resin.
  • the curable resin can be obtained from a monomer composition containing a polyfunctional monomer.
  • the polyfunctional monomer include tricyclodecane dimethanol diacrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol tetra (meth) acrylate, and dimethylolpropanthate.
  • Tetraacrylate dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol (meth) acrylate, 1,9-nonanediol diacrylate, 1,10-decanediol (meth) acrylate, polyethylene glycol di (meth) acrylate , Polypropylene glycol di (meth) acrylate, dipropylene glycol diacrylate, isocyanuric acid tri (meth) acrylate, ethoxylated glycerin Examples include triacrylate and ethoxylated pentaerythritol tetraacrylate.
  • a polyfunctional monomer may be used independently and may be used in combination of multiple.
  • the monomer composition may further contain a monofunctional monomer.
  • the content ratio of the monofunctional monomer is preferably 40 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the monomer in the monomer composition. is there.
  • Examples of the monofunctional monomer include ethoxylated o-phenylphenol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isooctyl acrylate, and isostearyl.
  • Examples include acrylate, cyclohexyl acrylate, isophoronyl acrylate, benzyl acrylate, 2-hydroxy-3-phenoxy acrylate, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and hydroxyethyl acrylamide. .
  • a monomer having a hydroxyl group is used as the monofunctional monomer.
  • the metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer.
  • the metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that even with a small amount of metal nanowires, a good electrical conduction path can be formed, and transparent with low electrical resistance. A conductive film can be obtained. Furthermore, when the metal nanowire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having high light transmittance can be obtained.
  • the ratio between the thickness d and the length L of the metal nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a transparent conductive film having a high light transmittance can be obtained.
  • the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a transparent conductive layer with high light transmittance can be formed.
  • the length of the metal nanowire is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 10 ⁇ m to 100 ⁇ m. If it is such a range, a highly conductive transparent conductive film can be obtained.
  • any appropriate metal can be used as long as it is a conductive metal.
  • a metal which comprises the said metal nanowire silver, gold
  • silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
  • any appropriate method can be adopted as a method for producing the metal nanowire.
  • a method of reducing silver nitrate in a solution a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc. .
  • silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone.
  • Uniform sized silver nanowires are, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
  • the content ratio of the metal nanowires in the transparent conductive layer is preferably 0.1 to 50 parts by weight, more preferably 0.1 parts by weight to 100 parts by weight of the binder resin constituting the transparent conductive layer. 30 parts by weight. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
  • the metallic particles in the transparent conductive layer may exist as single particles or may exist as aggregates. Single particles and aggregates may be mixed.
  • the average particle diameter X of the metallic particles and the thickness Y of the region constituted by the binder resin preferably satisfy the relationship of Y ⁇ X ⁇ 20Y, and more preferably satisfy the relationship of Y ⁇ X ⁇ 15Y. More preferably, the relationship of Y ⁇ X ⁇ 10Y is satisfied. This is because by setting Y ⁇ X, a part of the metallic particles can protrude from the region constituted by the binder resin, contribute to conduction, and ensure higher conductivity. On the other hand, when X ⁇ 20Y, the metallic particles are favorably retained in the transparent conductive layer. Further, by setting X ⁇ 10Y, the retention of the metallic particles becomes better, and a transparent conductive film having a remarkably low resistance can be obtained.
  • the “average particle diameter” means the average particle diameter (primary particle diameter) of metallic particles existing as single particles and the metallic particles existing as aggregates. This is a concept including both the average particle size (secondary particle size) of the aggregate.
  • the average particle size and the average primary particle size (described later) of the metallic particles constituting the aggregate are randomly determined from the surface of the transparent conductive layer or a cross-sectional image using a microscope (for example, an optical microscope, a scanning electron microscope, or a transmission electron microscope).
  • the median diameter (50% diameter; number basis) of the particle diameter (major axis diameter) measured by observing 100 extracted particles.
  • the average primary particle size of the metallic particles present in the transparent conductive layer is preferably 5 nm to 100 ⁇ m, more preferably 10 nm to 50 ⁇ m, and further preferably 20 nm to 10 ⁇ m. If it is such a range, the transparent conductive layer excellent in conduction
  • the aspect ratio (thickness (minor axis diameter) d to length (major axis diameter) L: L / d) of the metallic particles is preferably 2.0 or less. More preferably, it is 1.5 or less. If it is such a range, the protrusion part (part protruded from the area
  • the average flatness of the metallic particles is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10% or less. is there.
  • the lower limit of the average flatness of the metallic particles is, for example, 1%.
  • the “average flatness” is calculated from the flatness of metallic particles existing as single particles and the flatness of the aggregates of metallic particles existing as aggregates. More specifically, 30 particles (metallic particles present as single particles, as well as aggregates) randomly extracted from a cross-sectional image of the transparent conductive layer by a microscope (for example, an optical microscope, a scanning electron microscope, or a transmission electron microscope).
  • the average flatness (%) (1 ⁇ D2 / D1) ⁇ from the major median diameter (50% diameter; number basis) D1 of the aggregate) and the short median diameter (50% diameter; number basis) D2. It is calculated by the equation of 100. It should be noted that the definition of “average flatness ratio” also means that not all individual metallic particles (or aggregates of metallic particles) need be in the above range.
  • the number of the metallic particles having an aspect ratio of 40% or less is preferably 80 or more, more preferably 90 or more, with respect to 100 metallic particles.
  • the present invention by using metallic particles having the above average flatness, it is possible to suppress a decrease in light transmittance due to metallic particles.
  • the high flatness particles are oriented so that they fall down (that is, the surface including the major axis is substantially parallel to the front and back surfaces of the transparent conductive film). It is thought that backscattering becomes stronger. In the said embodiment, such backscattering is suppressed and it is thought that the fall of the light transmittance is suppressed as mentioned above.
  • the metallic particles having the above-described flatness can be obtained by any appropriate method as long as the effects of the present invention can be obtained.
  • the metallic particles can be obtained by a wet reduction method.
  • a wet reduction method for example, an alkali or complexing agent is added to a silver salt-containing aqueous solution to produce a silver oxide-containing slurry or a silver complex salt-containing aqueous solution, and the reducing agent is added to reduce silver particles The method of making it precipitate is mentioned. Details of the wet reduction method are described in JP-A-7-76710, JP-A-2013-189704, JP-A-8-176620, and the like. Incorporated.
  • the aggregate having the average flatness is formed by using single particles having a low flatness (for example, an average flatness of 40% or less) by any appropriate method (for example, wet reduction method). Can be done.
  • the content of the metallic particles is preferably 0.1 to 20 parts by weight, more preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of the binder resin. If it is such a range, the transparent conductive film which is excellent in both conduction
  • the content ratio of the metallic particles is preferably 1 to 100 parts by weight, more preferably 10 to 70 parts by weight with respect to 100 parts by weight of the metal nanowires. If it is such a range, the transparent conductive film excellent in electroconductivity and transparency can be obtained.
  • the metallic particles include a conductive metal.
  • single-layered metallic particles are used.
  • metallic particles obtained by coating the surface of any appropriate core particles with the conductive metal are used.
  • the material constituting the core particles include the above conductive metals; insulator particles made of an organic or inorganic substance; and semiconductor particles. Any appropriate metal can be used as the conductive metal.
  • Specific examples of the conductive metal include silver, gold, copper, nickel, palladium and the like.
  • metallic particles using silver, copper or gold are used as the conductive metal, more preferably metallic particles using silver.
  • a silver coat copper particle is mentioned as an example of the metallic particle obtained by a coating process.
  • grains comprised from a metal oxide are used, there exists a possibility that sufficient electroconductivity may not be obtained.
  • the said transparent conductive layer can be formed by applying the composition for transparent conductive layer formation on the said transparent base material, for example.
  • the composition for forming a transparent conductive layer includes a binder resin, metal nanowires, and metallic particles.
  • a transparent conductive layer forming composition (R) containing a binder resin after coating (applying and drying) a transparent conductive layer forming composition (NP) containing metal nanowires and metallic particles.
  • the composition for forming a transparent conductive layer (NP) containing metal nanowires and metallic particles may contain a binder resin or any suitable resin that can improve dispersion stability.
  • the composition for forming a transparent conductive layer (N) containing metal nanowires is coated (applied and dried), and then the composition for forming a transparent conductive layer containing a binder resin and metallic particles ( RP) can be applied to form a transparent conductive layer.
  • the transparent conductive layer forming composition (N) containing metal nanowires may also contain a binder resin or any appropriate resin that can improve dispersion stability.
  • the composition for forming a transparent conductive layer (P) containing metallic particles is coated (applied and dried), and then the composition for forming a transparent conductive layer containing a binder resin and metal nanowires ( RN) can be applied to form a transparent conductive layer.
  • the transparent conductive layer forming composition (P) containing metallic particles may also contain a binder resin or any appropriate resin that can improve dispersion stability.
  • the composition for forming a transparent conductive layer (NP, N, RP, P, RN) containing the metal particles and / or metal nanowires is dispersed in any appropriate solvent. It is the dispersion liquid obtained by making it.
  • the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like.
  • the dispersion concentration of the metal nanowires in the composition for forming a transparent conductive layer (NP, N, RN) containing the metal nanowires is preferably 0.01% by weight to 5% by weight. If it is such a range, the transparent conductive layer excellent in electroconductivity and light transmittance can be formed.
  • the dispersion concentration of the metallic particles in the transparent conductive layer forming composition (NP, RP, P) containing the metallic particles is preferably 0.001 to 5% by weight. If it is such a range, the transparent conductive layer excellent in electroconductivity and light transmittance can be formed.
  • the transparent conductive layer forming composition (NP, N, RP, P, RN) containing the metallic particles and / or metal nanowires may further contain any appropriate additive depending on the purpose.
  • the additive include a corrosion inhibitor that prevents corrosion of metal nanowires and / or metallic particles, and a surfactant that prevents aggregation of metal nanowires.
  • the composition for forming a transparent conductive layer comprises a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, an antistatic agent, a compatibilizer, a crosslinking agent, Additives such as sticky agents, inorganic particles, surfactants, and dispersants may be included.
  • the composition (R) for transparent conductive layer formation containing binder resin may contain arbitrary appropriate solvents. The type, number and amount of additives used can be appropriately set according to the purpose.
  • any appropriate method can be adopted as a method for applying the transparent conductive layer forming composition.
  • the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, and gravure printing method.
  • Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer.
  • the drying temperature is typically 80 ° C. to 150 ° C.
  • the drying time is typically 1 to 20 minutes.
  • a hardening process for example, heat processing, an ultraviolet irradiation process
  • Transparent substrate Any appropriate material can be used as the material constituting the transparent substrate .
  • a polymer substrate such as a film or a plastics substrate is preferably used. It is because it is excellent in the smoothness of a transparent base material, and the wettability with respect to the composition for transparent conductive layer formation, and productivity can be improved significantly by the continuous production by a roll.
  • the material constituting the transparent base material is typically a polymer film mainly composed of a thermoplastic resin.
  • the thermoplastic resin include polyester resins; cycloolefin resins such as polynorbornene; acrylic resins; polycarbonate resins; and cellulose resins. Of these, polyester resins, cycloolefin resins, and acrylic resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like. You may use the said thermoplastic resin individually or in combination of 2 or more types.
  • an optical film used for a polarizing plate for example, a low retardation substrate, a high retardation substrate, a retardation plate, a brightness enhancement film, or the like can be used as the substrate.
  • the thickness of the transparent substrate is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 150 ⁇ m.
  • the total light transmittance of the transparent substrate is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
  • the transparent conductive film can be used for a touch sensor.
  • the transparent conductive film can function as an electrode, an electromagnetic wave shield, or the like.
  • an optical laminate obtained by laminating the transparent conductive film and the polarizing plate is provided.
  • the transparent conductive film and the polarizing plate can be bonded together via any appropriate adhesive or pressure-sensitive adhesive. Any appropriate polarizing plate can be used as the polarizing plate.
  • the optical layered body can be suitably used as a polarizing element having touch sensor characteristics or electromagnetic wave shielding characteristics, and is used, for example, as a viewing side polarizing plate or a back side polarizing plate of a liquid crystal cell of a liquid crystal display device.
  • Examples A1 to 11, Comparative Examples A1 and 2 Evaluation methods in Examples A1 to 11 and Comparative Examples A1 and A2 are as follows.
  • the thickness was measured by using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation by forming a cross section by cutting with an ultramicrotome after embedding with an epoxy resin.
  • Haze value A sample was attached to a glass with an adhesive, and measured at 23 ° C. using a trade name “HR-100” manufactured by Murakami Color Research Laboratory.
  • (2) Surface Resistance Value The surface resistance value of the transparent conductive film was measured by an eddy current method using a non-contact surface resistance meter trade name “EC-80” manufactured by Napson Corporation. The measurement temperature was 23 ° C.
  • a silver paste line (length 20 mm x width 1 mm) is applied at a predetermined interval (5 mm, 15 mm and 35 mm), and the resistance value between the two points is calculated by Sanwa Electric Meter. It measured using the brand name "Digital Multimeter CD800a" made by a company. A linear form was obtained from the correlation between the distance between the two points and the resistance value, and the value obtained by dividing the intercept by 2 was defined as the contact resistance value of the transparent conductive film.
  • the average particle diameter was defined as the median diameter (50% diameter; several standards) of the particle diameter measured by observing 100 particles randomly extracted on the surface or cross section of the transparent conductive layer with the microscope.
  • the ten-point average roughness Rz having a measurement area of 200 ⁇ m ⁇ was defined as the protrusion height.
  • the reaction was carried out until the AgNO 3 was completely reduced by heating to 160 ° C. over 1 hour to produce silver nanowires. Then, acetone is added to the reaction mixture containing silver nanowires obtained as described above until the volume of the reaction mixture becomes 5 times, and then the reaction mixture is centrifuged (2000 rpm, 20 minutes), Silver nanowires were obtained.
  • the obtained silver nanowire had a minor axis of 30 nm to 40 nm, a major axis of 30 nm to 50 nm, and a length of 5 ⁇ m to 50 ⁇ m.
  • the silver nanowire (concentration: 0.2% by weight) and pentaethylene glycol dodecyl ether (concentration: 0.1% by weight) were dispersed in pure water to prepare a silver nanowire dispersion liquid a.
  • Example A1 (Preparation of first transparent conductive layer forming composition (PN)) 25 parts by weight of the silver nanowire dispersion a, 1% by weight of silver particles (average primary particle size: 1.3 ⁇ m) 2 parts by weight of the aqueous dispersion was diluted with 73 parts by weight of pure water to obtain a solid content concentration of 0.07% by weight. 1 transparent conductive layer forming composition (PN) was prepared.
  • Second transparent conductive layer forming composition (R) Pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industries, Ltd.) 3.6 parts by weight, organosilica sol (product name “MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd., concentration 40%) 2 7 parts by weight, 0.2 parts by weight of photopolymerization initiator (BASF, trade name “Irgacure 907”) was diluted with 93 parts by weight of cyclopentanone to give a second transparent conductive material having a solid content concentration of 5% by weight. A layer forming composition (R) was obtained.
  • the first transparent conductive layer forming composition (PN) was applied using 26 (Mitsui Electric Seiki Co., Ltd.) and dried. Furthermore, the second transparent conductive layer forming composition (R) was applied by spin coating (1000 rpm, 5 seconds), dried at 90 ° C. for 1 minute, and then irradiated with 300 mJ / cm 2 of ultraviolet rays, A transparent conductive film (content ratio of metallic particles to 100 parts by weight of binder resin: 2.5 parts by weight) was obtained.
  • the thickness Y of the region constituted by the binder resin (for convenience, expressed as the film thickness of the transparent conductive layer in Table 1) is 0.3 ⁇ m, and the height of the protruding portion of the metallic particles Z was 0.9 ⁇ m. Further, this transparent conductive film had a surface resistance value of 50.3 ⁇ / ⁇ , a contact resistance value of 1.2 ⁇ , a haze value of 2.9%, and a scratch resistance of ⁇ .
  • Example A2 The thickness Y of the region composed of the binder resin is 1 ⁇ m in the same manner as in Example A1, except that the spin coating conditions at the time of applying the second transparent conductive layer forming composition (R) are 400 rpm and 5 seconds.
  • a transparent conductive film (content ratio of metallic particles to 0.7 parts by weight with respect to 100 parts by weight of binder resin) was obtained in which the height Z of the protruding part of the metallic particles was 0.4 ⁇ m.
  • the transparent conductive film had a surface resistance value of 51.2 ⁇ / ⁇ , a contact resistance value of 3.7 ⁇ , a haze value of 3.0%, and an abrasion resistance of ⁇ .
  • Example A3 Similar to Example A1, except that 1 wt% silver particles (average primary particle size: 20 nm) aqueous dispersion was used instead of the 1 wt% silver particles (average primary particle size: 1.3 ⁇ m) aqueous dispersion. Thus, a transparent conductive film (content ratio of metallic particles with respect to 100 parts by weight of binder resin: 2.4 parts by weight) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m, and the height Z of the protruding portion of the metallic particles was 1.3 ⁇ m.
  • the transparent conductive film had a surface resistance value of 49.8 ⁇ / ⁇ , a contact resistance value of 0.4 ⁇ , a haze value of 2.5%, and an abrasion resistance of ⁇ .
  • a transmission electron microscope silver aggregates having an average particle diameter (major axis diameter) of 1.5 ⁇ m were observed.
  • Example A4 Example A1 except that 1 wt% silver particles (average primary particle size: 1.7 ⁇ m) aqueous dispersion was used instead of the 1 wt% silver particles (average primary particle size: 1.3 ⁇ m) aqueous dispersion.
  • a transparent conductive film content ratio of metallic particles to 2.5 parts by weight with respect to 100 parts by weight of the binder resin
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m
  • the height Z of the protruding portion of the metallic particles was 1.5 ⁇ m.
  • the transparent conductive film had a surface resistance value of 49.1 ⁇ / ⁇ , a contact resistance value of 2.8 ⁇ , a haze value of 2.0%, and a scratch resistance of ⁇ .
  • Example A5 Example A1 except that 1 wt% silver particles (average primary particle size: 5.1 ⁇ m) aqueous dispersion was used instead of the 1 wt% silver particles (average primary particle size: 1.3 ⁇ m) aqueous dispersion.
  • a transparent conductive film content ratio of metallic particles to 2.5 parts by weight with respect to 100 parts by weight of the binder resin
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m
  • the height Z of the protruding portion of the metallic particles was 4.8 ⁇ m.
  • this transparent conductive film had a surface resistance value of 53.0 ⁇ / ⁇ , a contact resistance value of 11.3 ⁇ , a haze value of 1.8%, and a scratch resistance of ⁇ .
  • Example A6 Instead of an aqueous dispersion of 1% by weight silver particles (average primary particle size: 1.3 ⁇ m), an aqueous dispersion of 1% by weight silver-coated copper particles (average primary particle size: 1.1 ⁇ m, 10% of silver coating) is used.
  • a transparent conductive film (content ratio of metallic particles to 2.5 parts by weight with respect to 100 parts by weight of the binder resin) was obtained in the same manner as Example A1 except for the above.
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m, and the height Z of the protruding portion of the metallic particles was 0.7 ⁇ m.
  • the transparent conductive film had a surface resistance value of 52.1 ⁇ / ⁇ , a contact resistance value of 3.0 ⁇ , a haze value of 2.5%, and an abrasion resistance of ⁇ .
  • Example A7 (Preparation of first transparent conductive layer forming composition (N)) 25 parts by weight of the silver nanowire dispersion a was diluted with 75 parts by weight of pure water to prepare a first transparent conductive layer forming composition (N) having a solid content concentration of 0.05%.
  • Second transparent conductive layer forming composition (RP) Pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industries, Ltd.) 3.6 parts by weight, organosilica sol (product name “MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd., concentration 40%) 2 0.7 parts by weight, photopolymerization initiator (manufactured by BASF, trade name “Irgacure 907”) and 1 part by weight of silver particles (average primary particle size: 1.3 ⁇ m) 15 parts by weight of cyclopentanone dispersion Was diluted with 78.5 parts by weight of cyclopentanone to obtain a second transparent conductive layer forming composition (N) having a solid concentration of 5% by weight.
  • organosilica sol product name “MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd., concentration 40%
  • photopolymerization initiator manufactured by BASF, trade name “Irgacure 907”
  • the transparent conductive film (Preparation of transparent conductive film) Implementation was performed except that the first transparent conductive layer forming composition (N) and the second transparent conductive layer forming composition (RP) were used as the first and second transparent conductive layer forming compositions.
  • a transparent conductive film (content ratio of metallic particles to 3.1 parts by weight of binder resin: 3.1 parts by weight) was obtained in the same manner as Example A1.
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m
  • the height Z of the protruding portion of the metallic particles was 1.1 ⁇ m.
  • the transparent conductive film had a surface resistance value of 53.2 ⁇ / ⁇ , a contact resistance value of 1.5 ⁇ , a haze value of 2.8%, and a scratch resistance of ⁇ .
  • Example A8 Implementation was performed except that 1 wt% silver particles (average primary particle size: 1.3 ⁇ m) cyclopentanone dispersion was used instead of 1 wt% silver particles (average primary particle size: 20 nm) cyclopentanone dispersion.
  • a transparent conductive film (content ratio of metallic particles to 3.1 parts by weight with respect to 100 parts by weight of binder resin) was obtained in the same manner as Example A7. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m, and the height Z of the protruding portion of the metallic particles was 0.7 ⁇ m.
  • the transparent conductive film had a surface resistance value of 50.9 ⁇ / ⁇ , a contact resistance value of 0.8 ⁇ , a haze value of 2.6%, and a scratch resistance of ⁇ .
  • a transmission electron microscope silver aggregates having an average particle diameter (major axis diameter) of 1.5 ⁇ m were observed.
  • Example A9 1 wt% silver particles (average primary particle size: 1.3 ⁇ m) A cyclopentanone dispersion was used instead of 1 wt% silver particles (average primary particle size: 1.7 ⁇ m).
  • a transparent conductive film content ratio of metallic particles to 3.1 parts by weight with respect to 100 parts by weight of the binder resin
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m
  • the height Z of the protruding portion of the metallic particles was 1.6 ⁇ m.
  • the transparent conductive film had a surface resistance value of 52.3 ⁇ / ⁇ , a contact resistance value of 2.4 ⁇ , a haze value of 3.0%, and a scratch resistance of ⁇ .
  • Example A10 Except for using 1 wt% silver particles (average primary particle size: 5.1 ⁇ m) cyclopentanone dispersion instead of 1 wt% silver particles (average primary particle size: 1.3 ⁇ m) cyclopentanone dispersion.
  • a transparent conductive film (content ratio of metallic particles to 3.1 parts by weight with respect to 100 parts by weight of the binder resin) was obtained.
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m
  • the height Z of the protruding portion of the metallic particles was 4.9 ⁇ m.
  • the transparent conductive film had a surface resistance value of 54.2 ⁇ / ⁇ , a contact resistance value of 8.4 ⁇ , a haze value of 2.0%, and a scratch resistance of ⁇ .
  • Example A11 1% by weight silver particles (average primary particle size: 1.3 ⁇ m) instead of cyclopentanone dispersion 1% by weight silver-coated copper particles (average primary particle size: 1.1 ⁇ m, silver-coated content 10%) cyclopentanone
  • a transparent conductive film (content ratio of metallic particles with respect to 100 parts by weight of binder resin: 3.1 parts by weight) was obtained in the same manner as Example A7, except that the dispersion was used.
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m, and the height Z of the protruding portion of the metallic particles was 0.9 ⁇ m.
  • the transparent conductive film had a surface resistance value of 57.4 ⁇ / ⁇ , a contact resistance value of 3.4 ⁇ , a haze value of 2.1%, and an abrasion resistance of ⁇ .
  • the thickness Y of the region constituted by the binder resin was 0.3 ⁇ m.
  • the surface resistance value of this transparent conductive film was 52.1 ⁇ / ⁇ , the contact resistance value exceeded 300 ⁇ and was not measurable.
  • the haze value was 1.6%, and the scratch resistance was ⁇ .
  • Examples B1 to B3, Reference examples B1 to B2> The evaluation methods in Examples B1 to B3 and Reference Examples B1 and B2 are as follows.
  • the thickness was measured by using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation by forming a cross section by cutting with an ultramicrotome after embedding with an epoxy resin.
  • Total light transmittance A transparent conductive film was attached to a glass with an adhesive, and measured at 23 ° C. using a trade name “HR-100” manufactured by Murakami Color Research Laboratory.
  • (3) Contact resistance value Measured in the same manner as in Examples A1 to A11.
  • the average particle size is the median of the particle size (major axis) measured by observing 100 particles (metallic particles and aggregates present as single particles) randomly extracted from the surface of the transparent conductive layer by the microscope. The diameter (50% diameter; number basis) was used.
  • Example B1 (Preparation of first transparent conductive layer forming composition (NP-1)) 25 parts by weight of the above-mentioned silver nanowire dispersion a and 1% by weight silver particle aqueous dispersion A (containing the trade name “Silbest AgS-050” manufactured by Tokuke Chemical Laboratory as silver particles; average primary particle diameter of silver particles:
  • the first transparent conductive layer-forming composition (NP-) having a solid content of 0.07% by weight was diluted with 75 parts by weight of pure water by 2 parts by weight of 5 ⁇ m and the average flatness of silver particles: 10.3%. 1) was prepared.
  • a transparent conductive film was obtained in the same manner as in Production Example B2, except that the first transparent conductive layer forming composition (NP-1) was used as the first transparent conductive layer forming composition.
  • the thickness of the region constituted by the binder resin was 0.3 ⁇ m.
  • region comprised with binder resin, and the height of the protrusion part was 0.1 micrometer.
  • the obtained transparent conductive film had a surface resistance value of 52.0 ⁇ / ⁇ , a contact resistance value of 0.6 ⁇ , a total light transmittance of 89.3%, and a total light transmittance of the reference film.
  • the difference ⁇ T from the rate was 0.5%.
  • Example B2 (Preparation of first transparent conductive layer forming composition (NP-2)) Instead of the 1% by weight silver particle aqueous dispersion A, 1% by weight silver particle aqueous dispersion B (containing trade name “SPN05S” manufactured by Mitsui Kinzoku Kogyo Co., Ltd. as silver particles; average primary particle diameter of silver particles: 1.
  • a first transparent conductive layer forming composition (NP-2) was prepared in the same manner as in Example B1, except that 3 ⁇ m and the average flatness of silver particles: 4.0% were used.
  • a transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-2) was used as the first transparent conductive layer forming composition.
  • the thickness of the region constituted by the binder resin was 0.3 ⁇ m.
  • region comprised with binder resin, and the height of the protrusion part was 0.9 micrometer.
  • the obtained transparent conductive film has a surface resistance value of 53.0 ⁇ / ⁇ , a contact resistance value of 2.7 ⁇ , a total light transmittance of 89.1%, and a total light transmittance of the reference film.
  • the difference ⁇ T from the rate was 0.7%.
  • Example B3 (Preparation of first transparent conductive layer forming composition (NP-3)) Instead of the 1% by weight silver particle aqueous dispersion A, 1% by weight silver particle aqueous dispersion C (containing trade name “SPN08S” manufactured by Mitsui Kinzoku Kogyo Co., Ltd. as silver particles; average primary particle diameter of silver particles: 1.
  • a first transparent conductive layer-forming composition (NP-3) was prepared in the same manner as in Example B1, except that 7 ⁇ m and the average flatness of silver particles: 2.7% were used.
  • a transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-3) was used as the first transparent conductive layer forming composition.
  • the thickness of the region constituted by the binder resin was 0.3 ⁇ m.
  • region comprised with binder resin, and the height of the protrusion part was 1.3 micrometers.
  • the obtained transparent conductive film had a surface resistance value of 49.1 ⁇ / ⁇ , a contact resistance value of 2.8 ⁇ , a total light transmittance of 89.2%, and a total light transmission of the reference film.
  • the difference ⁇ T from the rate was 0.6%.
  • a transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-4) was used as the first transparent conductive layer forming composition.
  • the thickness of the region constituted by the binder resin was 0.3 ⁇ m.
  • region comprised with binder resin, and the height of the protrusion part was 0.7 micrometer.
  • the obtained transparent conductive film had a surface resistance value of 51.1 ⁇ / ⁇ , a contact resistance value of 1.2 ⁇ , a total light transmittance of 88.1%, and a total light transmittance of the reference film.
  • the difference ⁇ T from the rate was 1.7%.
  • the thickness of the region constituted by the binder resin was 0.3 ⁇ m. Moreover, a part of metallic particle protruded from the area
  • the obtained transparent conductive film had a surface resistance value of 51.9 ⁇ / ⁇ , a contact resistance value of 1.5 ⁇ , a total light transmittance of 87.9%, and a total light transmittance of the reference film. The difference ⁇ T from the rate was 1.9%.
  • the transparent conductive film of the present invention can be used in electronic devices such as display elements.

Abstract

Provided is a transparent electroconductive film having both excellent scratch resistance and excellent electrical conductivity. This transparent electroconductive film includes a transparent substrate and a transparent electroconductive layer disposed on one or both sides of the transparent substrate. The transparent electroconductive layer includes a binder resin, metal nanowires, and metal particles. A part of the metal particles protrudes from a region composed of the binder resin. In one embodiment, the average grain size X of the metal particles and the thickness Y of the region composed of the binder resin satisfy the relationship Y ≤ X ≤ 20Y.

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明導電性フィルムに関する。 The present invention relates to a transparent conductive film.
 従来、透明導電性フィルムはタッチパネル等の電子機器部品の電極、電子機器の誤作動の原因となる電磁波を遮断する電磁波シールド等に使用されている。透明導電性フィルムは、ITOなどの金属酸化物層や、金属ナノワイヤ、金属メッシュ等から構成された導電層を形成する方法が提案されている(例えば、特許文献1、2)。このような導電層、特に金属ナノワイヤを含む導電層には、導電層形成材料の保護のため、保護層を形成することが行われている。 Conventionally, transparent conductive films are used for electrodes of electronic device parts such as touch panels, electromagnetic wave shields that block electromagnetic waves that cause malfunction of electronic devices, and the like. For the transparent conductive film, a method of forming a conductive layer composed of a metal oxide layer such as ITO, a metal nanowire, a metal mesh, or the like has been proposed (for example, Patent Documents 1 and 2). In order to protect the conductive layer forming material, a protective layer is formed on such a conductive layer, particularly a conductive layer including metal nanowires.
 保護層の表面から導通を得るためには、保護層の厚みを薄くする必要があるが、保護層の厚みを薄くすると、透明導電性フィルムの耐擦傷性が低下したり、信頼性が損なわれたりするという問題がある。一方、保護層の厚みを厚くすると、電気接続用の配線や金属ペーストとの接触抵抗が高くなったり、それらと導通がとれないという問題が生じる。このように、耐擦傷性に優れ、かつ、導電性に優れる透明導電性フィルム(特に、金属ナノワイヤを含む透明導電性フィルム)を実現することは困難である。 In order to obtain conduction from the surface of the protective layer, it is necessary to reduce the thickness of the protective layer. However, reducing the thickness of the protective layer reduces the scratch resistance of the transparent conductive film or impairs the reliability. There is a problem that. On the other hand, when the thickness of the protective layer is increased, there arises a problem that the contact resistance with the wiring for electrical connection or the metal paste is increased or the electrical connection cannot be established. As described above, it is difficult to realize a transparent conductive film (in particular, a transparent conductive film containing metal nanowires) having excellent scratch resistance and excellent conductivity.
特表2009-505358号公報Special table 2009-505358 特開2014-112510号公報JP 2014-112510 A
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、耐擦傷性および導電性の両方に優れる透明導電性フィルムを提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a transparent conductive film excellent in both scratch resistance and conductivity.
 本発明の透明導電性フィルムは、透明基材と、該透明基材の片側または両側に配置される透明導電層とを含み、該透明導電層が、バインダー樹脂と、金属ナノワイヤと、金属性粒子とを含み、該金属性粒子の一部が、バインダー樹脂により構成される領域から突出している。
 1つの実施形態においては、上記金属性粒子の平均粒径Xと、前記バインダー樹脂により構成される領域の厚みYとが、Y≦X≦20Yの関係を満たす。
 1つの実施形態においては、上記金属性粒子の平均一次粒径が5nm~100μmである。
 1つの実施形態においては、上記金属性粒子の含有割合が、上記バインダー樹脂100重量部に対し、0.1重量部~20重量部である。
 1つの実施形態においては、上記金属性粒子の平均扁平率が、40%以下である。
 1つの実施形態においては、上記金属性粒子が、銀粒子である。
 1つの実施形態においては、上記金属性粒子が、銀コート銅粒子である。
 本発明の別の局面によれば、光学積層体が提供される。この光学積層体は、上記透明導電性フィルムと偏光板とを含む。
The transparent conductive film of the present invention includes a transparent substrate and a transparent conductive layer disposed on one side or both sides of the transparent substrate, and the transparent conductive layer includes a binder resin, metal nanowires, and metallic particles. And part of the metallic particles protrudes from the region constituted by the binder resin.
In one embodiment, the average particle diameter X of the metallic particles and the thickness Y of the region constituted by the binder resin satisfy the relationship of Y ≦ X ≦ 20Y.
In one embodiment, the metallic particles have an average primary particle size of 5 nm to 100 μm.
In one embodiment, the content ratio of the metallic particles is 0.1 to 20 parts by weight with respect to 100 parts by weight of the binder resin.
In one embodiment, the average flatness of the metallic particles is 40% or less.
In one embodiment, the metallic particles are silver particles.
In one embodiment, the metallic particles are silver-coated copper particles.
According to another aspect of the present invention, an optical laminate is provided. This optical laminate includes the transparent conductive film and a polarizing plate.
 本発明によれば、透明導電層から突出する金属性粒子を含むことにより、耐擦傷性および導電性の両方に優れる透明導電性フィルムを提供することができる。 According to the present invention, by including metallic particles protruding from the transparent conductive layer, it is possible to provide a transparent conductive film excellent in both scratch resistance and conductivity.
本発明の1つの実施形態による透明導電性フィルムの概略断面図である。It is a schematic sectional drawing of the transparent conductive film by one Embodiment of this invention.
A.透明導電性フィルムの全体構成
 図1は、本発明の1つの実施形態による透明導電性フィルムの概略断面図である。この透明導電性フィルム100は、透明基材10と、該透明基材10の両側または片側(図示例では片側)に配置される透明導電層20とを含む。透明導電層20は、バインダー樹脂21と、金属ナノワイヤ22と、金属性粒子23とを含む。
A. Overall Configuration of Transparent Conductive Film FIG. 1 is a schematic sectional view of a transparent conductive film according to one embodiment of the present invention. The transparent conductive film 100 includes a transparent substrate 10 and a transparent conductive layer 20 disposed on both sides or one side (one side in the illustrated example) of the transparent substrate 10. The transparent conductive layer 20 includes a binder resin 21, metal nanowires 22, and metallic particles 23.
 金属性粒子23の一部は、バインダー樹脂21により構成される領域から透明導電性フィルムの表面へ向けて突出している。すなわち、透明導電性フィルムにおいては、金属性粒子が表出している。このような構成とすることにより、透明導電性フィルムの表面において良好に導通をとることができる。また、接触抵抗を低くすることができる。さらに、バインダー樹脂は金属ナノワイヤを保護し得るところ、本願発明においては、表出する金属性粒子を含むことにより、バインダー樹脂の使用量を増やすこと(すなわち、バインダー樹脂により構成される領域を厚くすること)ができる。その結果、耐擦傷性に優れる透明導電性フィルムを得ることができる。保護層としてのバインダー樹脂領域を厚くして耐擦傷性を高めつつも、導電性に優れ、表面からの導通を確保でき、かつ、接触抵抗の低い透明導電性フィルムを実現し得たことは、本発明の成果のひとつである。 A part of the metallic particles 23 protrudes from the region constituted by the binder resin 21 toward the surface of the transparent conductive film. That is, metallic particles are exposed in the transparent conductive film. By setting it as such a structure, conduction | electrical_connection can be taken favorably in the surface of a transparent conductive film. Further, the contact resistance can be lowered. Further, the binder resin can protect the metal nanowires. In the present invention, by including the exposed metallic particles, the amount of the binder resin used is increased (that is, the region constituted by the binder resin is thickened). be able to. As a result, a transparent conductive film excellent in scratch resistance can be obtained. Thickening the binder resin region as a protective layer to increase scratch resistance, while being able to achieve a transparent conductive film excellent in conductivity, ensuring conduction from the surface, and having low contact resistance, This is one of the achievements of the present invention.
 本発明の透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、特に好ましくは1Ω/□~200Ω/□である。 The surface resistance value of the transparent conductive film of the present invention is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 300Ω / □, and particularly preferably 1Ω / □ to 200Ω. / □.
 本発明の透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~5%である。 The haze value of the transparent conductive film of the present invention is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 5%.
 本発明の透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは35%以上であり、さらに好ましくは40%以上であり、特に好ましくは89%以上であり、最も好ましくは90%以上である。透明導電性フィルムの全光線透過率は高いほど好ましいが、その上限は、例えば、98%である。 The total light transmittance of the transparent conductive film of the present invention is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more, and particularly preferably 89% or more. Preferably it is 90% or more. The higher the total light transmittance of the transparent conductive film is, the better. However, the upper limit is, for example, 98%.
B.透明導電層
 上記のとおり、透明導電層は、バインダー樹脂と、金属ナノワイヤと、金属性粒子とを含む。バインダー樹脂は、金属ナノワイヤおよび金属性粒子の少なくとも一部を覆うようにして存在し、該バインダー樹脂により構成される領域は、保護層として機能し得る。上記金属性粒子は、その一部がバインダー樹脂により構成される領域から突出している。
B. Transparent conductive layer As described above, the transparent conductive layer includes a binder resin, metal nanowires, and metallic particles. The binder resin is present so as to cover at least part of the metal nanowires and the metallic particles, and the region constituted by the binder resin can function as a protective layer. A part of the metallic particles protrudes from a region constituted by a binder resin.
 上記透明導電層の全光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 The total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
B-1.バインダー樹脂
 上記バインダー樹脂により構成される領域の厚みYは、好ましくは0.15μm~5μmであり、より好ましくは0.15μm~3μmであり、さらに好ましくは0.15μm~2μmである。なお、本明細書において、バインダー樹脂により構成される領域の厚みYとは、図1に示すように、透明導電層の一方の平坦面から他方の平坦面までの距離であり、言い換えれば、金属性粒子の突出部を除外したと仮定した場合の透明導電層の厚みを意味する。本発明においては、金属性粒子により導通を確保することができるため、バインダー樹脂により構成される領域を比較的厚くすることができる。その結果、耐擦傷性に優れる透明導電性フィルムを得ることができる。
B-1. Binder resin The thickness Y of the region constituted by the binder resin is preferably 0.15 μm to 5 μm, more preferably 0.15 μm to 3 μm, and still more preferably 0.15 μm to 2 μm. In the present specification, the thickness Y of the region constituted by the binder resin is a distance from one flat surface to the other flat surface of the transparent conductive layer, as shown in FIG. It means the thickness of the transparent conductive layer when it is assumed that the protruding part of the conductive particles is excluded. In the present invention, since conduction can be ensured by the metallic particles, the region constituted by the binder resin can be made relatively thick. As a result, a transparent conductive film excellent in scratch resistance can be obtained.
 上記バインダー樹脂としては、任意の適切な樹脂が用いられ得る。該樹脂としては、例えば、アクリル系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド等の芳香族系樹脂;ポリウレタン系樹脂;エポキシ系樹脂;ポリオレフィン系樹脂;アクリロニトリル-ブタジエン-スチレン共重合体(ABS);セルロース;シリコン系樹脂;ポリ塩化ビニル;ポリアセテート;ポリノルボルネン;合成ゴム;フッ素系樹脂等が挙げられる。 Any appropriate resin can be used as the binder resin. Examples of the resin include acrylic resins; polyester resins such as polyethylene terephthalate; aromatic resins such as polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, and polyamideimide; polyurethane resins; epoxy resins; Resin; Acrylonitrile-butadiene-styrene copolymer (ABS); Cellulose; Silicon resin; Polyvinyl chloride; Polyacetate; Polynorbornene; Synthetic rubber;
 1つの実施形態においては、上記バインダー樹脂として、硬化性樹脂が用いられる。該硬化性樹脂は多官能モノマーを含むモノマー組成物から得られ得る。多官能モノマーとしては、例えば、トリシクロデカンジメタノールジアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパントテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジアクリレート、イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート等が挙げられる。多官能モノマーは、単独で用いてもよく、複数を組み合わせて用いてもよい。 In one embodiment, a curable resin is used as the binder resin. The curable resin can be obtained from a monomer composition containing a polyfunctional monomer. Examples of the polyfunctional monomer include tricyclodecane dimethanol diacrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol tetra (meth) acrylate, and dimethylolpropanthate. Tetraacrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol (meth) acrylate, 1,9-nonanediol diacrylate, 1,10-decanediol (meth) acrylate, polyethylene glycol di (meth) acrylate , Polypropylene glycol di (meth) acrylate, dipropylene glycol diacrylate, isocyanuric acid tri (meth) acrylate, ethoxylated glycerin Examples include triacrylate and ethoxylated pentaerythritol tetraacrylate. A polyfunctional monomer may be used independently and may be used in combination of multiple.
 上記モノマー組成物は、単官能モノマーをさらに含んでいてもよい。上記モノマー組成物が単官能モノマーを含む場合、単官能モノマーの含有割合は、モノマー組成物中のモノマー100重量部に対して、好ましくは40重量部以下であり、より好ましくは20重量部以下である。 The monomer composition may further contain a monofunctional monomer. When the monomer composition contains a monofunctional monomer, the content ratio of the monofunctional monomer is preferably 40 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the monomer in the monomer composition. is there.
 上記単官能モノマーとしては、例えば、エトキシ化o-フェニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソホロニルアクリレート、ベンジルアクリレート、2-ヒドロキシ-3-フェノキシアクリレート、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチルアクリルアミド等が挙げられる。1つの実施形態においては、上記単官能モノマーとして、水酸基を有するモノマーが用いられる。 Examples of the monofunctional monomer include ethoxylated o-phenylphenol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isooctyl acrylate, and isostearyl. Examples include acrylate, cyclohexyl acrylate, isophoronyl acrylate, benzyl acrylate, 2-hydroxy-3-phenoxy acrylate, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and hydroxyethyl acrylamide. . In one embodiment, a monomer having a hydroxyl group is used as the monofunctional monomer.
B-2.金属ナノワイヤ
 金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電性フィルムを得ることができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電性フィルムを得ることができる。
B-2. Metal nanowire The metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer. The metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that even with a small amount of metal nanowires, a good electrical conduction path can be formed, and transparent with low electrical resistance. A conductive film can be obtained. Furthermore, when the metal nanowire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having high light transmittance can be obtained.
 上記金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い透明導電性フィルムを得ることができる。なお、本明細書において、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。 The ratio between the thickness d and the length L of the metal nanowire (aspect ratio: L / d) is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a transparent conductive film having a high light transmittance can be obtained. In the present specification, the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
 上記金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10nm~100nmであり、最も好ましくは10nm~50nmである。このような範囲であれば、光透過率の高い透明導電層を形成することができる。 The thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a transparent conductive layer with high light transmittance can be formed.
 上記金属ナノワイヤの長さは、好ましくは1μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは10μm~100μmである。このような範囲であれば、導電性の高い透明導電性フィルムを得ることができる。 The length of the metal nanowire is preferably 1 μm to 1000 μm, more preferably 10 μm to 500 μm, and particularly preferably 10 μm to 100 μm. If it is such a range, a highly conductive transparent conductive film can be obtained.
 上記金属ナノワイヤを構成する金属としては、導電性金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。なかでも好ましくは、導電性の観点から、銀、銅または金であり、より好ましくは銀である。 As the metal constituting the metal nanowire, any appropriate metal can be used as long as it is a conductive metal. As a metal which comprises the said metal nanowire, silver, gold | metal | money, copper, nickel etc. are mentioned, for example. Moreover, you may use the material which performed the plating process (for example, gold plating process) to these metals. Among these, silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
 上記金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩を液相還元することにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia, Y.etal., Chem.Mater.(2002)、14、4736-4745、Xia, Y.etal., Nano letters(2003)3(7)、955-960に記載される方法に準じて、大量生産が可能である。 Any appropriate method can be adopted as a method for producing the metal nanowire. For example, a method of reducing silver nitrate in a solution, a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc. . In the method of reducing silver nitrate in a solution, silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform sized silver nanowires are, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
 上記透明導電層における金属ナノワイヤの含有割合は、透明導電層を構成するバインダー樹脂100重量部に対して、好ましくは0.1重量部~50重量部であり、より好ましくは0.1重量部~30重量部である。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。  The content ratio of the metal nanowires in the transparent conductive layer is preferably 0.1 to 50 parts by weight, more preferably 0.1 parts by weight to 100 parts by weight of the binder resin constituting the transparent conductive layer. 30 parts by weight. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained. *
B-3.金属性粒子
 上記透明導電層中での金属性粒子は、単粒子として存在していてもよく、凝集体として存在していてもよい。また、単粒子と凝集体とが混在していてもよい。
B-3. Metallic particles The metallic particles in the transparent conductive layer may exist as single particles or may exist as aggregates. Single particles and aggregates may be mixed.
 上記金属性粒子の平均粒径Xと、バインダー樹脂により構成される領域の厚みYとは、Y≦X≦20Yの関係を満たすことが好ましく、Y≦X≦15Yの関係を満たすことがより好ましく、Y≦X≦10Yの関係を満たすことがさらに好ましい。Y≦Xとすることで該金属性粒子の一部が、バインダー樹脂により構成される領域から突出し、導通に寄与することができ、より高い導通性を確保できるからである。一方、X≦20Yとすることにより、透明導電層中、金属性粒子が良好に保持される。また、X≦10Yとすることにより、金属性粒子の保持はより良好になり、抵抗が顕著に低い透明導電性フィルムを得ることができる。なお、本明細書において、単に「平均粒径」という場合、該「平均粒径」は、単粒子として存在する金属性粒子の平均粒径(一次粒径)および凝集体として存在する金属性粒子の該凝集体の平均粒径(二次粒径)の両方を含む概念である。平均粒径および凝集体を構成する金属性粒子の平均一次粒径(後述)は、顕微鏡(例えば、光学顕微鏡、走査型電子顕微鏡または透過型電子顕微鏡)により透明導電層表面あるいは断面像から無作為に抽出した100個の粒子を観察して測定された粒径(長軸径)のメジアン径(50%径;数基準)である。 The average particle diameter X of the metallic particles and the thickness Y of the region constituted by the binder resin preferably satisfy the relationship of Y ≦ X ≦ 20Y, and more preferably satisfy the relationship of Y ≦ X ≦ 15Y. More preferably, the relationship of Y ≦ X ≦ 10Y is satisfied. This is because by setting Y ≦ X, a part of the metallic particles can protrude from the region constituted by the binder resin, contribute to conduction, and ensure higher conductivity. On the other hand, when X ≦ 20Y, the metallic particles are favorably retained in the transparent conductive layer. Further, by setting X ≦ 10Y, the retention of the metallic particles becomes better, and a transparent conductive film having a remarkably low resistance can be obtained. In the present specification, when simply referred to as “average particle diameter”, the “average particle diameter” means the average particle diameter (primary particle diameter) of metallic particles existing as single particles and the metallic particles existing as aggregates. This is a concept including both the average particle size (secondary particle size) of the aggregate. The average particle size and the average primary particle size (described later) of the metallic particles constituting the aggregate are randomly determined from the surface of the transparent conductive layer or a cross-sectional image using a microscope (for example, an optical microscope, a scanning electron microscope, or a transmission electron microscope). The median diameter (50% diameter; number basis) of the particle diameter (major axis diameter) measured by observing 100 extracted particles.
 上記透明導電層中に存在する金属性粒子の平均一次粒径は、好ましくは5nm~100μmであり、より好ましくは10nm~50μmであり、さらに好ましくは20nm~10μmである。このような範囲であれば、導通に優れる透明導電層を形成することができる。また、金属性粒子の平均一次粒径を10μm以下とすることにより、耐擦傷性により優れる透明導電性フィルムを得ることができる。 The average primary particle size of the metallic particles present in the transparent conductive layer is preferably 5 nm to 100 μm, more preferably 10 nm to 50 μm, and further preferably 20 nm to 10 μm. If it is such a range, the transparent conductive layer excellent in conduction | electrical_connection can be formed. In addition, by setting the average primary particle size of the metallic particles to 10 μm or less, a transparent conductive film having better scratch resistance can be obtained.
 1つの実施形態においては、上記金属性粒子のアスペクト比(太さ(短軸径)dと長さ(長軸径)Lとの比:L/d)は、好ましくは2.0以下であり、より好ましくは1.5以下である。このような範囲であれば、金属性粒子の突出部(バインダー樹脂により構成される領域から突出した部分)が容易に形成され得る。 In one embodiment, the aspect ratio (thickness (minor axis diameter) d to length (major axis diameter) L: L / d) of the metallic particles is preferably 2.0 or less. More preferably, it is 1.5 or less. If it is such a range, the protrusion part (part protruded from the area | region comprised with binder resin) of a metal particle may be formed easily.
 別の実施形態においては、上記金属性粒子の平均扁平率は、好ましくは40%以下であり、より好ましくは30%以下であり、さらに好ましくは20%以下であり、特に好ましくは10%以下である。上記金属性粒子の平均扁平率の下限は、例えば、1%である。なお、本明細書において、「平均扁平率」は、単粒子として存在する金属性粒子の扁平率と凝集体として存在する金属性粒子の該凝集体の扁平率とから算出される。より詳細には、顕微鏡(例えば、光学顕微鏡、走査型電子顕微鏡または透過型電子顕微鏡)により透明導電層断面像から無作為に抽出した30個の粒子(単粒子として存在する金属性粒子、ならびに凝集体)の長径のメジアン径(50%径;数基準)D1と、短径のメジアン径(50%径;数基準)D2とから、平均扁平率(%)=(1-D2/D1)×100の式により算出される。なお、「平均扁平率」の規定は、個々の金属性粒子(あるいは、金属性粒子の凝集体)のすべてが、上記範囲である必要はないことを意味するものでもある。扁平率が40%以下の金属性粒子は、金属性粒子100個に対して、好ましくは80個以上であり、より好ましくは90個以上である。 In another embodiment, the average flatness of the metallic particles is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 10% or less. is there. The lower limit of the average flatness of the metallic particles is, for example, 1%. In the present specification, the “average flatness” is calculated from the flatness of metallic particles existing as single particles and the flatness of the aggregates of metallic particles existing as aggregates. More specifically, 30 particles (metallic particles present as single particles, as well as aggregates) randomly extracted from a cross-sectional image of the transparent conductive layer by a microscope (for example, an optical microscope, a scanning electron microscope, or a transmission electron microscope). The average flatness (%) = (1−D2 / D1) × from the major median diameter (50% diameter; number basis) D1 of the aggregate) and the short median diameter (50% diameter; number basis) D2. It is calculated by the equation of 100. It should be noted that the definition of “average flatness ratio” also means that not all individual metallic particles (or aggregates of metallic particles) need be in the above range. The number of the metallic particles having an aspect ratio of 40% or less is preferably 80 or more, more preferably 90 or more, with respect to 100 metallic particles.
 本発明においては、上記平均扁平率の金属性粒子を用いることにより、金属性粒子による光透過率の低下を抑制することができる。一方、高扁平率の金属性粒子を用いた場合、該高扁平率粒子が倒れるように(すなわち、長径を含む面が透明導電性フィルム表裏面と略平行となるように)配向し、その結果、後方散乱が強くなると考えられる。上記実施形態においては、このような後方散乱が抑制されて、上記のように光透過率の低下が抑制されると考えられる。 In the present invention, by using metallic particles having the above average flatness, it is possible to suppress a decrease in light transmittance due to metallic particles. On the other hand, when high flatness metallic particles are used, the high flatness particles are oriented so that they fall down (that is, the surface including the major axis is substantially parallel to the front and back surfaces of the transparent conductive film). It is thought that backscattering becomes stronger. In the said embodiment, such backscattering is suppressed and it is thought that the fall of the light transmittance is suppressed as mentioned above.
 上記扁平率を有する金属性粒子は、本発明の効果が得られる限り、任意の適切な方法により得ることができる。例えば、湿式還元法により上記金属性粒子を得ることができる。湿式還元法により銀粒子を得る方法としては、例えば、銀塩含有水溶液にアルカリ又は錯化剤を加えて、酸化銀含有スラリー又は銀錯塩含有水溶液を生成し、還元剤を加えて銀粒子を還元析出させる方法が挙げられる。湿式還元法の詳細は、特開平7-76710号公報、特開2013-189704号公報、特開平8-176620号公報等に記載されており、当該特許文献の記載は、本明細書に参考として援用される。また、上記平均扁平率を有する凝集体は、例えば、任意の適切な方法(例えば、湿式還元法)により、扁平率が低い(例えば、平均扁平率が40%以下)単粒子を用いることにより形成され得る。 The metallic particles having the above-described flatness can be obtained by any appropriate method as long as the effects of the present invention can be obtained. For example, the metallic particles can be obtained by a wet reduction method. As a method of obtaining silver particles by a wet reduction method, for example, an alkali or complexing agent is added to a silver salt-containing aqueous solution to produce a silver oxide-containing slurry or a silver complex salt-containing aqueous solution, and the reducing agent is added to reduce silver particles The method of making it precipitate is mentioned. Details of the wet reduction method are described in JP-A-7-76710, JP-A-2013-189704, JP-A-8-176620, and the like. Incorporated. Moreover, the aggregate having the average flatness is formed by using single particles having a low flatness (for example, an average flatness of 40% or less) by any appropriate method (for example, wet reduction method). Can be done.
 上記金属性粒子の含有割合は、上記バインダー樹脂100重量部に対して、好ましくは0.1重量部~20重量部であり、より好ましくは0.2重量部~10重量部である。このような範囲であれば、導通と耐擦傷性との両方に優れる透明導電性フィルムを得ることができる。また、透明性に優れる透明導電性フィルムを得ることができる。 The content of the metallic particles is preferably 0.1 to 20 parts by weight, more preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of the binder resin. If it is such a range, the transparent conductive film which is excellent in both conduction | electrical_connection and abrasion resistance can be obtained. Moreover, the transparent conductive film excellent in transparency can be obtained.
 上記金属性粒子の含有割合は、上記金属ナノワイヤ100重量部に対して、好ましくは1重量部~100重量部であり、より好ましくは10重量部~70重量部である。このような範囲であれば、導電性および透明性に優れる透明導電性フィルムを得ることができる。 The content ratio of the metallic particles is preferably 1 to 100 parts by weight, more preferably 10 to 70 parts by weight with respect to 100 parts by weight of the metal nanowires. If it is such a range, the transparent conductive film excellent in electroconductivity and transparency can be obtained.
 上記金属性粒子は導電性金属を含む。1つの実施形態においては、単層構成の金属性粒子が用いられる。別の実施形態においては、任意の適切なコア粒子の表面に、上記導電性金属によるコート処理(例えば、メッキ処理)を行った金属性粒子が用いられる。コア粒子を構成する材料としては、例えば、上記導電性金属;有機物または無機物からなる絶縁体粒子;半導体粒子等が挙げられる。導電性金属としては、任意の適切な金属が用いられ得る。導電性金属の具体例としては、例えば、銀、金、銅、ニッケル、パラジウム等が挙げられる。好ましくは、導電性金属として、銀、銅または金を用いた金属性粒子が用いられ、より好ましくは銀を用いた金属性粒子が用いられる。また、コート処理により得られる金属性粒子の一例として、銀コート銅粒子が挙げられる。なお、金属酸化物から構成される粒子を用いた場合、十分な導通が得られないおそれがある。 The metallic particles include a conductive metal. In one embodiment, single-layered metallic particles are used. In another embodiment, metallic particles obtained by coating the surface of any appropriate core particles with the conductive metal (for example, plating treatment) are used. Examples of the material constituting the core particles include the above conductive metals; insulator particles made of an organic or inorganic substance; and semiconductor particles. Any appropriate metal can be used as the conductive metal. Specific examples of the conductive metal include silver, gold, copper, nickel, palladium and the like. Preferably, metallic particles using silver, copper or gold are used as the conductive metal, more preferably metallic particles using silver. Moreover, a silver coat copper particle is mentioned as an example of the metallic particle obtained by a coating process. In addition, when the particle | grains comprised from a metal oxide are used, there exists a possibility that sufficient electroconductivity may not be obtained.
B-4.透明導電層の形成方法
 上記透明導電層は、例えば、上記透明基材上に、透明導電層形成用組成物を塗工して形成され得る。1つの実施形態においては、透明導電層形成用組成物は、バインダー樹脂、金属ナノワイヤおよび金属性粒子を含む。
B-4. Formation method of a transparent conductive layer The said transparent conductive layer can be formed by applying the composition for transparent conductive layer formation on the said transparent base material, for example. In one embodiment, the composition for forming a transparent conductive layer includes a binder resin, metal nanowires, and metallic particles.
 別の実施形態においては、金属ナノワイヤと金属性粒子とを含む透明導電層形成用組成物(NP)を塗工(塗布、乾燥)した後、バインダー樹脂を含む透明導電層形成用組成物(R)を塗工して、透明導電層が形成され得る。この時、金属ナノワイヤと金属性粒子とを含む透明導電層形成用組成物(NP)にも、バインダー樹脂、または分散安定性を向上させ得る任意の適切な樹脂等を含有させてよい。 In another embodiment, a transparent conductive layer forming composition (R) containing a binder resin after coating (applying and drying) a transparent conductive layer forming composition (NP) containing metal nanowires and metallic particles. ) To form a transparent conductive layer. At this time, the composition for forming a transparent conductive layer (NP) containing metal nanowires and metallic particles may contain a binder resin or any suitable resin that can improve dispersion stability.
 さらに別の実施形態においては、金属ナノワイヤを含む透明導電層形成用組成物(N)を塗工(塗布、乾燥)した後、バインダー樹脂と金属性粒子とを含む透明導電層形成用組成物(RP)を塗工して、透明導電層が形成され得る。この時、金属ナノワイヤを含む透明導電層形成用組成物(N)にも、バインダー樹脂、または分散安定性を向上させ得る任意の適切な樹脂等を含有させてよい。 In still another embodiment, the composition for forming a transparent conductive layer (N) containing metal nanowires is coated (applied and dried), and then the composition for forming a transparent conductive layer containing a binder resin and metallic particles ( RP) can be applied to form a transparent conductive layer. At this time, the transparent conductive layer forming composition (N) containing metal nanowires may also contain a binder resin or any appropriate resin that can improve dispersion stability.
 さらに別の実施形態においては、金属性粒子を含む透明導電層形成用組成物(P)を塗工(塗布、乾燥)した後、バインダー樹脂と金属ナノワイヤとを含む透明導電層形成用組成物(RN)を塗工して、透明導電層が形成され得る。この時、金属性粒子を含む透明導電層形成用組成物(P)にも、バインダー樹脂、または分散安定性を向上させ得る任意の適切な樹脂等を含有させてよい。 In still another embodiment, the composition for forming a transparent conductive layer (P) containing metallic particles is coated (applied and dried), and then the composition for forming a transparent conductive layer containing a binder resin and metal nanowires ( RN) can be applied to form a transparent conductive layer. At this time, the transparent conductive layer forming composition (P) containing metallic particles may also contain a binder resin or any appropriate resin that can improve dispersion stability.
 好ましくは、上記金属性粒子および/または金属ナノワイヤを含む透明導電層形成用組成物(NP、N、RP、P、RN)は、任意の適切な溶媒に金属ナノワイヤおよび/または金属性粒子を分散させて得られる分散液である。該溶媒としては、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられる。 Preferably, the composition for forming a transparent conductive layer (NP, N, RP, P, RN) containing the metal particles and / or metal nanowires is dispersed in any appropriate solvent. It is the dispersion liquid obtained by making it. Examples of the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like.
 上記金属ナノワイヤを含む透明導電層形成用組成物(NP、N、RN)中の金属ナノワイヤの分散濃度は、好ましくは0.01重量%~5重量%である。このような範囲であれば、導電性および光透過性に優れる透明導電層を形成することができる。 The dispersion concentration of the metal nanowires in the composition for forming a transparent conductive layer (NP, N, RN) containing the metal nanowires is preferably 0.01% by weight to 5% by weight. If it is such a range, the transparent conductive layer excellent in electroconductivity and light transmittance can be formed.
 上記金属性粒子を含む透明導電層形成用組成物(NP、RP、P)中の金属性粒子の分散濃度は、好ましくは0.001重量%~5重量%である。このような範囲であれば、導電性および光透過性に優れる透明導電層を形成することができる。 The dispersion concentration of the metallic particles in the transparent conductive layer forming composition (NP, RP, P) containing the metallic particles is preferably 0.001 to 5% by weight. If it is such a range, the transparent conductive layer excellent in electroconductivity and light transmittance can be formed.
 上記金属性粒子および/または金属ナノワイヤを含む透明導電層形成用組成物(NP、N、RP、P、RN)は、目的に応じて任意の適切な添加剤をさらに含有し得る。上記添加剤としては、例えば、金属ナノワイヤおよび/または金属性粒子の腐食を防止する腐食防止材、金属ナノワイヤの凝集を防止する界面活性剤等が挙げられる。また、透明導電層形成用組成物は、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、増粘剤、無機粒子、界面活性剤、および分散剤等の添加剤を含み得る。また、バインダー樹脂を含む透明導電層形成用組成物(R)は、任意の適切な溶媒を含んでいてもよい。使用される添加剤の種類、数および量は、目的に応じて適切に設定され得る。 The transparent conductive layer forming composition (NP, N, RP, P, RN) containing the metallic particles and / or metal nanowires may further contain any appropriate additive depending on the purpose. Examples of the additive include a corrosion inhibitor that prevents corrosion of metal nanowires and / or metallic particles, and a surfactant that prevents aggregation of metal nanowires. In addition, the composition for forming a transparent conductive layer comprises a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, an antistatic agent, a compatibilizer, a crosslinking agent, Additives such as sticky agents, inorganic particles, surfactants, and dispersants may be included. Moreover, the composition (R) for transparent conductive layer formation containing binder resin may contain arbitrary appropriate solvents. The type, number and amount of additives used can be appropriately set according to the purpose.
 上記透明導電層形成用組成物の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。塗布層の乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には80℃~150℃であり、乾燥時間は代表的には1~20分である。また、バインダー樹脂を含む透明導電層形成用組成物(R、RP、RN)を塗工した後、塗工層に硬化処理(例えば、加熱処理、紫外線照射処理)を施してもよい。 Any appropriate method can be adopted as a method for applying the transparent conductive layer forming composition. Examples of the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, and gravure printing method. Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer. For example, in the case of heat drying, the drying temperature is typically 80 ° C. to 150 ° C., and the drying time is typically 1 to 20 minutes. Moreover, after coating the composition for transparent conductive layer formation (R, RP, RN) containing binder resin, you may perform a hardening process (for example, heat processing, an ultraviolet irradiation process) to a coating layer.
C.透明基材
 上記透明基材を構成する材料は、任意の適切な材料が用いられ得る。具体的には、例えば、フィルムやプラスチックス基材などの高分子基材が好ましく用いられる。透明基材の平滑性および透明導電層形成用組成物に対する濡れ性に優れ、また、ロールによる連続生産により生産性を大幅に向上させ得るからである。
C. Transparent substrate Any appropriate material can be used as the material constituting the transparent substrate . Specifically, for example, a polymer substrate such as a film or a plastics substrate is preferably used. It is because it is excellent in the smoothness of a transparent base material, and the wettability with respect to the composition for transparent conductive layer formation, and productivity can be improved significantly by the continuous production by a roll.
 上記透明基材を構成する材料は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリエステル系樹脂;ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリカーボネート樹脂;セルロース系樹脂等が挙げられる。なかでも好ましくは、ポリエステル系樹脂、シクロオレフィン系樹脂またはアクリル系樹脂である。これらの樹脂は、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。また、偏光板に用いられるような光学フィルム、例えば、低位相差基材、高位相差基材、位相差板、輝度向上フィルム等を基材として用いることも可能である。 The material constituting the transparent base material is typically a polymer film mainly composed of a thermoplastic resin. Examples of the thermoplastic resin include polyester resins; cycloolefin resins such as polynorbornene; acrylic resins; polycarbonate resins; and cellulose resins. Of these, polyester resins, cycloolefin resins, and acrylic resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like. You may use the said thermoplastic resin individually or in combination of 2 or more types. In addition, an optical film used for a polarizing plate, for example, a low retardation substrate, a high retardation substrate, a retardation plate, a brightness enhancement film, or the like can be used as the substrate.
 上記透明基材の厚みは、好ましくは20μm~200μmであり、より好ましくは30μm~150μmである。 The thickness of the transparent substrate is preferably 20 μm to 200 μm, more preferably 30 μm to 150 μm.
 上記透明基材の全光線透過率は、好ましくは30%以上であり、より好ましくは35%以上であり、さらに好ましくは40%以上である。 The total light transmittance of the transparent substrate is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
D.光学積層体
 上記透明導電性フィルムは、タッチセンサーに用いられ得る。上記透明導電性フィルムを含むタッチセンサーにおいて、例えば、該透明導電性フィルムは、電極、電磁波シールド等として機能し得る。1つの実施形態においては、上記透明導電性フィルムと偏光板とを積層して得られる光学積層体が提供される。透明導電性フィルムと偏光板とは、任意の適切な接着剤または粘着剤を介して、貼り合わせられ得る。上記偏光板としては、任意の適切な偏光板が用いられ得る。当該光学積層体はタッチセンサー特性あるいは電磁波シールド特性を備える偏光要素として好適に用いられ得、例えば、液晶表示装置の液晶セルの視認側偏光板あるいは背面側偏光板として用いられる。
D. Optical laminate The transparent conductive film can be used for a touch sensor. In the touch sensor including the transparent conductive film, for example, the transparent conductive film can function as an electrode, an electromagnetic wave shield, or the like. In one embodiment, an optical laminate obtained by laminating the transparent conductive film and the polarizing plate is provided. The transparent conductive film and the polarizing plate can be bonded together via any appropriate adhesive or pressure-sensitive adhesive. Any appropriate polarizing plate can be used as the polarizing plate. The optical layered body can be suitably used as a polarizing element having touch sensor characteristics or electromagnetic wave shielding characteristics, and is used, for example, as a viewing side polarizing plate or a back side polarizing plate of a liquid crystal cell of a liquid crystal display device.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
<実施例A1~11、比較例A1~2>
 実施例A1~11および比較例A1~2における評価方法は以下のとおりである。なお、厚みは、エポキシ樹脂にて包埋処理後ウルトラマイクロトームで切削することで断面を形成し、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」を使用して測定した。
(1)ヘイズ値
 粘着剤付ガラスに試料を貼り、村上色彩研究所社製の商品名「HR-100」を用いて23℃にて測定した。
(2)表面抵抗値
 透明導電性フィルムの表面抵抗値は、ナプソン株式会社製の非接触表面抵抗計 商品名「EC-80」を用いて、渦電流法により測定した。測定温度は23℃とした。
(3)接触抵抗値
 透明導電層上に、所定の間隔(5mm、15mmおよび35mm)で銀ペーストのライン(長さ20mm×幅1mm)を塗布し、2点間の抵抗値を三和電気計器社製の商品名「デジタルマルチメータCD800a」を用いて計測した。2点間の距離と抵抗値との相関から線形式を得、切片を2で除した値を透明導電性フィルムの接触抵抗値とした。
(4)耐擦傷性
 スチールウール#0000を使用し、半径25mmのプローブを荷重300gで長さ10cm×10往復させる条件にて、透明導電性フィルムの透明導電層の耐擦傷性を評価した。中心部(25mm×25mm)において目視にて確認されたキズが10本以下の場合を〇、10本を超えた場合を×とした。
(5)金属ナノワイヤ、金属性粒子のサイズ測定
 オリンパス社製の光学顕微鏡「BX-51」、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」および日立ハイテクノロジーズ社製の電界放出形透過電子顕微鏡「HF-2000」を用いて測定した。平均粒径は、該顕微鏡により透明導電層表面あるいは断面において無作為に抽出した100個の粒子を観察して測定された粒径のメジアン径(50%径;数基準)とした。
(6)突出部高さ
 キーエンス社製ナノスケールハイブリッド顕微鏡(製品名:VN-8000)を用い、JIS B 0031:2001に従って測定した。測定面積200μm□の十点平均粗さRzを突出部高さとした。
<Examples A1 to 11, Comparative Examples A1 and 2>
Evaluation methods in Examples A1 to 11 and Comparative Examples A1 and A2 are as follows. The thickness was measured by using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation by forming a cross section by cutting with an ultramicrotome after embedding with an epoxy resin.
(1) Haze value A sample was attached to a glass with an adhesive, and measured at 23 ° C. using a trade name “HR-100” manufactured by Murakami Color Research Laboratory.
(2) Surface Resistance Value The surface resistance value of the transparent conductive film was measured by an eddy current method using a non-contact surface resistance meter trade name “EC-80” manufactured by Napson Corporation. The measurement temperature was 23 ° C.
(3) Contact resistance value On the transparent conductive layer, a silver paste line (length 20 mm x width 1 mm) is applied at a predetermined interval (5 mm, 15 mm and 35 mm), and the resistance value between the two points is calculated by Sanwa Electric Meter. It measured using the brand name "Digital Multimeter CD800a" made by a company. A linear form was obtained from the correlation between the distance between the two points and the resistance value, and the value obtained by dividing the intercept by 2 was defined as the contact resistance value of the transparent conductive film.
(4) Scratch resistance Using steel wool # 0000, the scratch resistance of the transparent conductive layer of the transparent conductive film was evaluated under the condition that a probe with a radius of 25 mm was reciprocated 10 cm × 10 times with a load of 300 g. A case where the number of scratches visually confirmed in the central portion (25 mm × 25 mm) was 10 or less was marked as “O”, and a case where it exceeded 10 was marked as “X”.
(5) Size measurement of metal nanowires and metallic particles Olympus optical microscope “BX-51”, Hitachi High-Technologies scanning electron microscope “S-4800” and Hitachi High-Technologies field emission transmission Measurement was performed using an electron microscope “HF-2000”. The average particle diameter was defined as the median diameter (50% diameter; several standards) of the particle diameter measured by observing 100 particles randomly extracted on the surface or cross section of the transparent conductive layer with the microscope.
(6) Projection Height Using a nanoscale hybrid microscope (product name: VN-8000) manufactured by Keyence Corporation, the height was measured according to JIS B 0031: 2001. The ten-point average roughness Rz having a measurement area of 200 μm □ was defined as the protrusion height.
[製造例A1]
(金属ナノワイヤの製造)
 攪拌装置を備えた反応容器中、160℃下で、無水エチレングリコール5ml、PtClの無水エチレングリコール溶液(濃度:1.5×10-4mol/L)0.5mlを加えた。4分経過後、得られた溶液に、AgNOの無水エチレングリコール溶液(濃度:0.12mol/l)2.5mlと、ポリビニルピロリドン(MW:55000)の無水エチレングリコール溶液(濃度:0.36mol/l)5mlとを同時に、6分かけて滴下した。この滴下後、160℃に加熱して1時間以上かけて、AgNOが完全に還元されるまで反応を行い、銀ナノワイヤを生成した。次いで、上記のようにして得られた銀ナノワイヤを含む反応混合物に、該反応混合物の体積が5倍になるまでアセトンを加えた後、該反応混合物を遠心分離して(2000rpm、20分)、銀ナノワイヤを得た。
 得られた銀ナノワイヤは、短径が30nm~40nmであり、長径が30nm~50nmであり、長さは5μm~50μmであった。
 純水中に、該銀ナノワイヤ(濃度:0.2重量%)、およびペンタエチレングリコールドデシルエーテル(濃度:0.1重量%)を分散させ、銀ナノワイヤ分散液aを調製した。
[Production Example A1]
(Manufacture of metal nanowires)
In a reaction vessel equipped with a stirrer, at 160 ° C., 5 ml of anhydrous ethylene glycol and 0.5 ml of an anhydrous ethylene glycol solution of PtCl 2 (concentration: 1.5 × 10 −4 mol / L) were added. After 4 minutes, the obtained solution was mixed with 2.5 ml of an anhydrous ethylene glycol solution (concentration: 0.12 mol / l) of AgNO 3 and an anhydrous ethylene glycol solution (concentration: 0.36 mol) of polyvinylpyrrolidone (MW: 55000). / L) 5 ml was added dropwise simultaneously over 6 minutes. After this dripping, the reaction was carried out until the AgNO 3 was completely reduced by heating to 160 ° C. over 1 hour to produce silver nanowires. Then, acetone is added to the reaction mixture containing silver nanowires obtained as described above until the volume of the reaction mixture becomes 5 times, and then the reaction mixture is centrifuged (2000 rpm, 20 minutes), Silver nanowires were obtained.
The obtained silver nanowire had a minor axis of 30 nm to 40 nm, a major axis of 30 nm to 50 nm, and a length of 5 μm to 50 μm.
The silver nanowire (concentration: 0.2% by weight) and pentaethylene glycol dodecyl ether (concentration: 0.1% by weight) were dispersed in pure water to prepare a silver nanowire dispersion liquid a.
[実施例A1]
(第1の透明導電層形成用組成物(PN)の調製)
 上記銀ナノワイヤ分散液a25重量部、1重量%銀粒子(平均一次粒径:1.3μm)水分散液2重量部を純水73重量部で希釈して固形分濃度0.07重量%の第1の透明導電層形成用組成物(PN)を調製した。
(第2の透明導電層形成用組成物(R)の調製)
 ペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」)3.6重量部、オルガノシリカゾル(日産化学工業社製、商品名「MEK-AC-2140Z」、濃度40%)2.7重量部、光重合開始剤(BASF社製、商品名「イルガキュア907」)0.2重量部をシクロペンタノン93重量部で希釈して、固形分濃度5重量%の第2の透明導電層形成用組成物(R)を得た。
(透明導電性フィルムの作製)
 PET基材(三菱樹脂株式会社製、商品名「T602」、厚み:50μm)上に、ワイヤーバーNo.26(三井電気精機株式会社製)を用いて第1の透明導電層形成用組成物(PN)を塗布し、乾燥させた。
 さらに、第2の透明導電層形成用組成物(R)を、スピンコート(1000rpm、5秒)により、塗布し、90℃で1分間乾燥し、その後、300mJ/cmの紫外線を照射し、透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:2.5重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みY(便宜上、表1中、透明導電層の膜厚と表記する)は0.3μmであり、金属性粒子の突出部の高さZは0.9μmであった。また、この透明導電性フィルムの表面抵抗値は50.3Ω/□、接触抵抗値は1.2Ω、ヘイズ値は2.9%、耐擦傷性は○であった。
[Example A1]
(Preparation of first transparent conductive layer forming composition (PN))
25 parts by weight of the silver nanowire dispersion a, 1% by weight of silver particles (average primary particle size: 1.3 μm) 2 parts by weight of the aqueous dispersion was diluted with 73 parts by weight of pure water to obtain a solid content concentration of 0.07% by weight. 1 transparent conductive layer forming composition (PN) was prepared.
(Preparation of second transparent conductive layer forming composition (R))
Pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industries, Ltd.) 3.6 parts by weight, organosilica sol (product name “MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd., concentration 40%) 2 7 parts by weight, 0.2 parts by weight of photopolymerization initiator (BASF, trade name “Irgacure 907”) was diluted with 93 parts by weight of cyclopentanone to give a second transparent conductive material having a solid content concentration of 5% by weight. A layer forming composition (R) was obtained.
(Preparation of transparent conductive film)
On a PET base material (Mitsubishi Resin Co., Ltd., trade name “T602”, thickness: 50 μm), a wire bar No. The first transparent conductive layer forming composition (PN) was applied using 26 (Mitsui Electric Seiki Co., Ltd.) and dried.
Furthermore, the second transparent conductive layer forming composition (R) was applied by spin coating (1000 rpm, 5 seconds), dried at 90 ° C. for 1 minute, and then irradiated with 300 mJ / cm 2 of ultraviolet rays, A transparent conductive film (content ratio of metallic particles to 100 parts by weight of binder resin: 2.5 parts by weight) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin (for convenience, expressed as the film thickness of the transparent conductive layer in Table 1) is 0.3 μm, and the height of the protruding portion of the metallic particles Z was 0.9 μm. Further, this transparent conductive film had a surface resistance value of 50.3Ω / □, a contact resistance value of 1.2Ω, a haze value of 2.9%, and a scratch resistance of ◯.
[実施例A2]
 第2の透明導電層形成用組成物(R)塗布時のスピンコート条件を400rpm、5秒としたこと以外は実施例A1と同様にして、バインダー樹脂により構成される領域の厚みYを1μm、金属性粒子の突出部の高さZを0.4μmとした透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:0.7重量部)を得た。この透明導電性フィルムの表面抵抗値は51.2Ω/□、接触抵抗値は3.7Ω、ヘイズ値は3.0%、耐擦傷性は○であった。
[Example A2]
The thickness Y of the region composed of the binder resin is 1 μm in the same manner as in Example A1, except that the spin coating conditions at the time of applying the second transparent conductive layer forming composition (R) are 400 rpm and 5 seconds. A transparent conductive film (content ratio of metallic particles to 0.7 parts by weight with respect to 100 parts by weight of binder resin) was obtained in which the height Z of the protruding part of the metallic particles was 0.4 μm. The transparent conductive film had a surface resistance value of 51.2Ω / □, a contact resistance value of 3.7Ω, a haze value of 3.0%, and an abrasion resistance of ◯.
[実施例A3]
 1重量%銀粒子(平均一次粒径:1.3μm)水分散液に代えて、1重量%銀粒子(平均一次粒径:20nm)水分散液を用いたこと以外は、実施例A1と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:2.4重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは1.3μmであった。また、この透明導電性フィルムの表面抵抗値は49.8Ω/□、接触抵抗値は0.4Ω、ヘイズ値は2.5%、耐擦傷性は○であった。このフィルムの断面を透過電子顕微鏡で確認したところ、平均粒径(長軸径)が1.5μmの銀凝集体が観察された。
[Example A3]
Similar to Example A1, except that 1 wt% silver particles (average primary particle size: 20 nm) aqueous dispersion was used instead of the 1 wt% silver particles (average primary particle size: 1.3 μm) aqueous dispersion. Thus, a transparent conductive film (content ratio of metallic particles with respect to 100 parts by weight of binder resin: 2.4 parts by weight) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 1.3 μm. The transparent conductive film had a surface resistance value of 49.8Ω / □, a contact resistance value of 0.4Ω, a haze value of 2.5%, and an abrasion resistance of ◯. When the cross section of this film was confirmed with a transmission electron microscope, silver aggregates having an average particle diameter (major axis diameter) of 1.5 μm were observed.
[実施例A4]
 1重量%銀粒子(平均一次粒径:1.3μm)水分散液に代えて、1重量%銀粒子(平均一次粒径:1.7μm)水分散液を用いたこと以外は、実施例A1と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:2.5重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは1.5μmであった。また、この透明導電性フィルムの表面抵抗値は49.1Ω/□、接触抵抗値は2.8Ω、ヘイズ値は2.0%、耐擦傷性は○であった。
[Example A4]
Example A1 except that 1 wt% silver particles (average primary particle size: 1.7 μm) aqueous dispersion was used instead of the 1 wt% silver particles (average primary particle size: 1.3 μm) aqueous dispersion. In the same manner, a transparent conductive film (content ratio of metallic particles to 2.5 parts by weight with respect to 100 parts by weight of the binder resin) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 1.5 μm. The transparent conductive film had a surface resistance value of 49.1 Ω / □, a contact resistance value of 2.8 Ω, a haze value of 2.0%, and a scratch resistance of ◯.
[実施例A5]
 1重量%銀粒子(平均一次粒径:1.3μm)水分散液に代えて、1重量%銀粒子(平均一次粒径:5.1μm)水分散液を用いたこと以外は、実施例A1と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:2.5重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは4.8μmであった。また、この透明導電性フィルムの表面抵抗値は53.0Ω/□、接触抵抗値は11.3Ω、ヘイズ値は1.8%、耐擦傷性は○であった。
[Example A5]
Example A1 except that 1 wt% silver particles (average primary particle size: 5.1 μm) aqueous dispersion was used instead of the 1 wt% silver particles (average primary particle size: 1.3 μm) aqueous dispersion. In the same manner, a transparent conductive film (content ratio of metallic particles to 2.5 parts by weight with respect to 100 parts by weight of the binder resin) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 4.8 μm. Further, this transparent conductive film had a surface resistance value of 53.0Ω / □, a contact resistance value of 11.3Ω, a haze value of 1.8%, and a scratch resistance of ○.
[実施例A6]
 1重量%銀粒子(平均一次粒径:1.3μm)水分散液に代えて、1重量%銀コート銅粒子(平均一次粒径:1.1μm、銀コート分10%)水分散液を用いたこと以外は、実施例A1と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:2.5重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは0.7μmであった。また、この透明導電性フィルムの表面抵抗値は52.1Ω/□、接触抵抗値は3.0Ω、ヘイズ値は2.5%、耐擦傷性は○であった。
[Example A6]
Instead of an aqueous dispersion of 1% by weight silver particles (average primary particle size: 1.3 μm), an aqueous dispersion of 1% by weight silver-coated copper particles (average primary particle size: 1.1 μm, 10% of silver coating) is used A transparent conductive film (content ratio of metallic particles to 2.5 parts by weight with respect to 100 parts by weight of the binder resin) was obtained in the same manner as Example A1 except for the above. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 0.7 μm. The transparent conductive film had a surface resistance value of 52.1Ω / □, a contact resistance value of 3.0Ω, a haze value of 2.5%, and an abrasion resistance of ◯.
[実施例A7]
(第1の透明導電層形成用組成物(N)の調製)
 上記銀ナノワイヤ分散液a25重量部を純水75重量部で希釈して固形分濃度0.05%の第1の透明導電層形成用組成物(N)を調製した。
(第2の透明導電層形成用組成物(RP)の調製)
 ペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」)3.6重量部、オルガノシリカゾル(日産化学工業社製、商品名「MEK-AC-2140Z」、濃度40%)2.7重量部、光重合開始剤(BASF社製、商品名「イルガキュア907」)0.2重量部および1重量%銀粒子(平均一次粒径:1.3μm)シクロペンタノン分散液15重量部をシクロペンタノン78.5重量部で希釈して、固形分濃度5重量%の第2の透明導電層形成用組成物(N)を得た。
(透明導電性フィルムの作製)
 第1および第2の透明導電層形成用組成物として、第1の透明導電層形成用組成物(N)および第2の透明導電層形成用組成物(RP)を用いたこと以外は、実施例A1と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:3.1重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは1.1μmであった。また、この透明導電性フィルムの表面抵抗値は53.2Ω/□、接触抵抗値は1.5Ω、ヘイズ値は2.8%、耐擦傷性は○であった。
[Example A7]
(Preparation of first transparent conductive layer forming composition (N))
25 parts by weight of the silver nanowire dispersion a was diluted with 75 parts by weight of pure water to prepare a first transparent conductive layer forming composition (N) having a solid content concentration of 0.05%.
(Preparation of second transparent conductive layer forming composition (RP))
Pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industries, Ltd.) 3.6 parts by weight, organosilica sol (product name “MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd., concentration 40%) 2 0.7 parts by weight, photopolymerization initiator (manufactured by BASF, trade name “Irgacure 907”) and 1 part by weight of silver particles (average primary particle size: 1.3 μm) 15 parts by weight of cyclopentanone dispersion Was diluted with 78.5 parts by weight of cyclopentanone to obtain a second transparent conductive layer forming composition (N) having a solid concentration of 5% by weight.
(Preparation of transparent conductive film)
Implementation was performed except that the first transparent conductive layer forming composition (N) and the second transparent conductive layer forming composition (RP) were used as the first and second transparent conductive layer forming compositions. A transparent conductive film (content ratio of metallic particles to 3.1 parts by weight of binder resin: 3.1 parts by weight) was obtained in the same manner as Example A1. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 1.1 μm. The transparent conductive film had a surface resistance value of 53.2 Ω / □, a contact resistance value of 1.5 Ω, a haze value of 2.8%, and a scratch resistance of ◯.
[実施例A8]
 1重量%銀粒子(平均一次粒径:1.3μm)シクロペンタノン分散液に代えて、1重量%銀粒子(平均一次粒径:20nm)シクロペンタノン分散液を用いたこと以外は、実施例A7と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:3.1重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは0.7μmであった。また、この透明導電性フィルムの表面抵抗値は50.9Ω/□、接触抵抗値は0.8Ω、ヘイズ値は2.6%、耐擦傷性は○であった。このフィルムの断面を透過電子顕微鏡で確認したところ、平均粒径(長軸径)が1.5μmの銀凝集体が観察された。
[Example A8]
Implementation was performed except that 1 wt% silver particles (average primary particle size: 1.3 μm) cyclopentanone dispersion was used instead of 1 wt% silver particles (average primary particle size: 20 nm) cyclopentanone dispersion. A transparent conductive film (content ratio of metallic particles to 3.1 parts by weight with respect to 100 parts by weight of binder resin) was obtained in the same manner as Example A7. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 0.7 μm. The transparent conductive film had a surface resistance value of 50.9 Ω / □, a contact resistance value of 0.8 Ω, a haze value of 2.6%, and a scratch resistance of ◯. When the cross section of this film was confirmed with a transmission electron microscope, silver aggregates having an average particle diameter (major axis diameter) of 1.5 μm were observed.
[実施例A9]
 1重量%銀粒子(平均一次粒径:1.3μm)シクロペンタノン分散液に代えて、1重量%銀粒子(平均一次粒径:1.7μm)シクロペンタノン分散液を用いたこと以外は、実施例A7と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:3.1重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは1.6μmであった。また、この透明導電性フィルムの表面抵抗値は52.3Ω/□、接触抵抗値は2.4Ω、ヘイズ値は3.0%、耐擦傷性は○であった。
[Example A9]
1 wt% silver particles (average primary particle size: 1.3 μm) A cyclopentanone dispersion was used instead of 1 wt% silver particles (average primary particle size: 1.7 μm). In the same manner as in Example A7, a transparent conductive film (content ratio of metallic particles to 3.1 parts by weight with respect to 100 parts by weight of the binder resin) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 1.6 μm. The transparent conductive film had a surface resistance value of 52.3 Ω / □, a contact resistance value of 2.4 Ω, a haze value of 3.0%, and a scratch resistance of ◯.
[実施例A10]
 1重量%銀粒子(平均一次粒径:1.3μm)シクロペンタノン分散液に代えて、1重量%銀粒子(平均一次粒径:5.1μm)シクロペンタノン分散液を用いたこと以外は、実施例A7と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:3.1重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは4.9μmであった。また、この透明導電性フィルムの表面抵抗値は54.2Ω/□、接触抵抗値は8.4Ω、ヘイズ値は2.0%、耐擦傷性は○であった。
[Example A10]
Except for using 1 wt% silver particles (average primary particle size: 5.1 μm) cyclopentanone dispersion instead of 1 wt% silver particles (average primary particle size: 1.3 μm) cyclopentanone dispersion. In the same manner as in Example A7, a transparent conductive film (content ratio of metallic particles to 3.1 parts by weight with respect to 100 parts by weight of the binder resin) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 4.9 μm. The transparent conductive film had a surface resistance value of 54.2 Ω / □, a contact resistance value of 8.4 Ω, a haze value of 2.0%, and a scratch resistance of ◯.
[実施例A11]
 1重量%銀粒子(平均一次粒径:1.3μm)シクロペンタノン分散液に代えて、1重量%銀コート銅粒子(平均一次粒径:1.1μm、銀コート分10%)シクロペンタノン分散液を用いたこと以外は、実施例A7と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:3.1重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは0.9μmであった。また、この透明導電性フィルムの表面抵抗値は57.4Ω/□、接触抵抗値は3.4Ω、ヘイズ値は2.1%、耐擦傷性は○であった。
[Example A11]
1% by weight silver particles (average primary particle size: 1.3 μm) instead of cyclopentanone dispersion 1% by weight silver-coated copper particles (average primary particle size: 1.1 μm, silver-coated content 10%) cyclopentanone A transparent conductive film (content ratio of metallic particles with respect to 100 parts by weight of binder resin: 3.1 parts by weight) was obtained in the same manner as Example A7, except that the dispersion was used. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 0.9 μm. The transparent conductive film had a surface resistance value of 57.4Ω / □, a contact resistance value of 3.4Ω, a haze value of 2.1%, and an abrasion resistance of ◯.
[比較例A1]
 PET基材(三菱樹脂株式会社製、商品名「T602」、厚み:50μm)上に、ワイヤーバーNo.26(三井電気精機株式会社製)を用いて、実施例A4で調製した第1の透明導電層形成用組成物(N)を塗布し、乾燥させた。
 さらに、実施例A1で調製した第2の透明導電層形成用組成物(R)を、スピンコート(1000rpm、5秒)により、塗布し、90℃で1分間乾燥し、その後、300mJ/cmの紫外線を照射し、透明導電性フィルム(すなわち、金属性粒子を含まない透明導電性フィルム)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであった。また、この透明導電性フィルムの表面抵抗値は52.1Ω/□であったが、接触抵抗値は300Ωを超えており、測定不可であった。ヘイズ値は1.6%であり、耐擦傷性は○であった。
[Comparative Example A1]
On a PET base material (Mitsubishi Resin Co., Ltd., trade name “T602”, thickness: 50 μm), a wire bar No. 26 (made by Mitsui Electric Seiki Co., Ltd.), the first composition for forming a transparent conductive layer (N) prepared in Example A4 was applied and dried.
Further, the second transparent conductive layer forming composition (R) prepared in Example A1 was applied by spin coating (1000 rpm, 5 seconds), dried at 90 ° C. for 1 minute, and then 300 mJ / cm 2. The transparent conductive film (namely, the transparent conductive film which does not contain metallic particles) was obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm. Moreover, although the surface resistance value of this transparent conductive film was 52.1Ω / □, the contact resistance value exceeded 300Ω and was not measurable. The haze value was 1.6%, and the scratch resistance was ◯.
[比較例A2]
 1重量%銀粒子(平均一次粒径:1.3μm)水分散液に代えて、半導体粒子である酸化スズアンチモン粒子(シグマアルドリッチ社製、平均一次粒径:20nm)と純水を用いて調整した1重量%酸化スズアンチモン粒子水分散液を用いたこと以外は、実施例A1と同様にして透明導電性フィルム(バインダー樹脂100重量部に対する金属性粒子の含有割合:2.5重量部)を得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みYは0.3μmであり、金属性粒子の突出部の高さZは0.8μmであった。また、この透明導電性フィルムの表面抵抗値は53.2Ω/□であったが、接触抵抗値は300Ωを超えており、測定不可であった。ヘイズ値は3.3%であり、耐擦傷性は○であった。
[Comparative Example A2]
1% by weight silver particles (average primary particle size: 1.3 μm) In place of an aqueous dispersion, tin oxide antimony particles (sigma aldrich, average primary particle size: 20 nm) and pure water are used as semiconductor particles. A transparent conductive film (content ratio of metallic particles to 100 parts by weight of binder resin: 2.5 parts by weight) was obtained in the same manner as in Example A1 except that the 1% by weight tin oxide antimony particle aqueous dispersion was used. Obtained. In this transparent conductive film, the thickness Y of the region constituted by the binder resin was 0.3 μm, and the height Z of the protruding portion of the metallic particles was 0.8 μm. Moreover, although the surface resistance value of this transparent conductive film was 53.2Ω / □, the contact resistance value exceeded 300Ω, and measurement was impossible. The haze value was 3.3%, and the scratch resistance was ◯.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例B1~3、参考例B1~2>
 実施例B1~3および参考例B1~2における評価方法は以下のとおりである。なお、厚みは、エポキシ樹脂にて包埋処理後ウルトラマイクロトームで切削することで断面を形成し、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」を使用して測定した。
(1)全光線透過率
 粘着剤付ガラスに透明導電性フィルムを貼り、村上色彩研究所社製の商品名「HR-100」を用いて23℃にて測定した。
(2)表面抵抗値
 実施例A1~11と同様にして測定した。
(3)接触抵抗値
 実施例A1~11と同様にして測定した。
(4)金属性粒子の平均粒径および平均扁平率測定
 オリンパス社製の光学顕微鏡「BX-51」および日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」、日立ハイテクノロジーズ社製の電界放出形透過電子顕微鏡「HF-2000」を用いて測定した。平均粒径は、該顕微鏡により透明導電層表面から無作為に抽出した100個の粒子(単粒子として存在する金属性粒子、ならびに凝集体)を観察して測定された粒径(長径)のメジアン径(50%径;数基準)とした。平均扁平率は、該顕微鏡により透明導電層断面から無作為に抽出した30個の粒子を観察して測定された長径のメジアン径(50%径;数基準)D1と、短径のメジアン径(50%径;数基準)D2とから、平均扁平率(%)=(1-D2/D1)×100の式により算出した。
(5)金属ナノワイヤのサイズ測定
 実施例A1~11と同様にして測定した。
<Examples B1 to B3, Reference examples B1 to B2>
The evaluation methods in Examples B1 to B3 and Reference Examples B1 and B2 are as follows. The thickness was measured by using a scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation by forming a cross section by cutting with an ultramicrotome after embedding with an epoxy resin.
(1) Total light transmittance A transparent conductive film was attached to a glass with an adhesive, and measured at 23 ° C. using a trade name “HR-100” manufactured by Murakami Color Research Laboratory.
(2) Surface resistance value Measured in the same manner as in Examples A1 to A11.
(3) Contact resistance value Measured in the same manner as in Examples A1 to A11.
(4) Measurement of average particle size and average flatness of metallic particles Olympus optical microscope “BX-51”, Hitachi High-Technologies scanning electron microscope “S-4800”, Hitachi High-Technologies electric field Measurement was performed using an emission transmission electron microscope “HF-2000”. The average particle size is the median of the particle size (major axis) measured by observing 100 particles (metallic particles and aggregates present as single particles) randomly extracted from the surface of the transparent conductive layer by the microscope. The diameter (50% diameter; number basis) was used. The average flatness is determined by observing 30 particles randomly extracted from the cross section of the transparent conductive layer with the microscope and measuring the major median diameter (50% diameter; several standards) D1 and the minor median diameter ( 50% diameter; based on number) D2 and calculated by the formula of average flatness (%) = (1−D2 / D1) × 100.
(5) Size measurement of metal nanowires Measurement was performed in the same manner as in Examples A1 to A11.
[製造例B1]<金属ナノワイヤの製造>
 製造例A1と同様にして、銀ナノワイヤ分散液aを調製した。
[Production Example B1] <Production of metal nanowires>
A silver nanowire dispersion liquid a was prepared in the same manner as in Production Example A1.
[製造例B2]<リファレンスフィルムの製造>
(第1の透明導電層形成用組成物(Ref)の調製)
 上記銀ナノワイヤ分散液a25重量部を純水75重量部で希釈して固形分濃度0.05重量%の第1の透明導電層形成用組成物(Ref)を調製した。
(第2の透明導電層形成用組成物の調製)
 ペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」)3.6重量部、オルガノシリカゾル(日産化学工業社製、商品名「MEK-AC-2140Z」、濃度40%)2.7重量部、光重合開始剤(BASF社製、商品名「イルガキュア907」)0.2重量部をシクロペンタノン93重量部で希釈して、固形分濃度5重量%の第2の透明導電層形成用組成物を得た。
(透明導電性フィルムの作製)
 PET基材(三菱樹脂株式会社製、商品名「T602」、厚み:50μm)上に、ワイヤーバーNo.26(三井電気精機株式会社製)を用いて第1の透明導電層形成用組成物(Ref)を塗布し、乾燥させた。
 さらに、形成された塗布層上に、第2の透明導電層形成用組成物(Ref)を、スピンコート(1000rpm、5秒)により、塗布し、90℃で1分間乾燥し、その後、300mJ/cmの紫外線を照射し、透明導電性フィルムを得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚み(便宜上、表1中、透明導電層の膜厚と表記する)は0.3μmであった。この透明導電性フィルムの全光線透過率は89.8%であった。
[Production Example B2] <Production of Reference Film>
(Preparation of first transparent conductive layer forming composition (Ref))
25 parts by weight of the silver nanowire dispersion a was diluted with 75 parts by weight of pure water to prepare a first transparent conductive layer forming composition (Ref) having a solid concentration of 0.05% by weight.
(Preparation of second transparent conductive layer forming composition)
Pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industries, Ltd.) 3.6 parts by weight, organosilica sol (product name “MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd., concentration 40%) 2 7 parts by weight, 0.2 parts by weight of photopolymerization initiator (BASF, trade name “Irgacure 907”) was diluted with 93 parts by weight of cyclopentanone to give a second transparent conductive material having a solid content concentration of 5% by weight. A layer forming composition was obtained.
(Preparation of transparent conductive film)
On a PET base material (Mitsubishi Resin Co., Ltd., trade name “T602”, thickness: 50 μm), a wire bar No. The first composition for forming a transparent conductive layer (Ref) was applied using 26 (manufactured by Mitsui Electric Seiki Co., Ltd.) and dried.
Further, the second transparent conductive layer forming composition (Ref) was applied onto the formed coating layer by spin coating (1000 rpm, 5 seconds), dried at 90 ° C. for 1 minute, and then 300 mJ / A transparent conductive film was obtained by irradiating cm 2 ultraviolet rays. In this transparent conductive film, the thickness of the region constituted by the binder resin (for convenience, expressed as the film thickness of the transparent conductive layer in Table 1) was 0.3 μm. The total light transmittance of this transparent conductive film was 89.8%.
[実施例B1]
(第1の透明導電層形成用組成物(NP-1)の調製)
 上記銀ナノワイヤ分散液a25重量部と、1重量%銀粒子水分散液A(銀粒子として徳力化学研究所製の商品名「シルベストAgS-050」を含有;銀粒子の平均一次粒径:0.5μm、銀粒子の平均扁平率:10.3%)2重量部とを純水75重量部で希釈して固形分濃度0.07重量%の第1の透明導電層形成用組成物(NP-1)を調製した。
(透明導電性フィルムの作製)
 第1の透明導電層形成用組成物として、上記第1の透明導電層形成用組成物(NP-1)を用いた以外は、製造例B2と同様にして、透明導電性フィルムを得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みは0.3μmであった。また、金属性粒子の一部は、バインダー樹脂により構成される領域から突出しており、突出部の高さは0.1μmであった。また、得られた透明導電性フィルムの表面抵抗値は52.0Ω/□であり、接触抵抗値は0.6Ωであり、全光線透過率は89.3%であり、リファレンスフィルムの全光線透過率との差ΔTは0.5%であった。
[Example B1]
(Preparation of first transparent conductive layer forming composition (NP-1))
25 parts by weight of the above-mentioned silver nanowire dispersion a and 1% by weight silver particle aqueous dispersion A (containing the trade name “Silbest AgS-050” manufactured by Tokuke Chemical Laboratory as silver particles; average primary particle diameter of silver particles: The first transparent conductive layer-forming composition (NP-) having a solid content of 0.07% by weight was diluted with 75 parts by weight of pure water by 2 parts by weight of 5 μm and the average flatness of silver particles: 10.3%. 1) was prepared.
(Preparation of transparent conductive film)
A transparent conductive film was obtained in the same manner as in Production Example B2, except that the first transparent conductive layer forming composition (NP-1) was used as the first transparent conductive layer forming composition. In this transparent conductive film, the thickness of the region constituted by the binder resin was 0.3 μm. Moreover, a part of metallic particle protruded from the area | region comprised with binder resin, and the height of the protrusion part was 0.1 micrometer. The obtained transparent conductive film had a surface resistance value of 52.0Ω / □, a contact resistance value of 0.6Ω, a total light transmittance of 89.3%, and a total light transmittance of the reference film. The difference ΔT from the rate was 0.5%.
[実施例B2]
(第1の透明導電層形成用組成物(NP-2)の調製)
 1重量%銀粒子水分散液Aに代えて、1重量%銀粒子水分散液B(銀粒子として三井金属工業社製の商品名「SPN05S」を含有;銀粒子の平均一次粒径:1.3μm、銀粒子の平均扁平率:4.0%)を用いたこと以外は、実施例B1と同様にして第1の透明導電層形成用組成物(NP-2)を調製した。
(透明導電性フィルムの作製)
 第1の透明導電層形成用組成物として、上記第1の透明導電層形成用組成物(NP-2)を用いた以外は、実施例B1と同様にして、透明導電性フィルムを得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みは0.3μmであった。また、金属性粒子の一部は、バインダー樹脂により構成される領域から突出しており、突出部の高さは0.9μmであった。また、得られた透明導電性フィルムの表面抵抗値は53.0Ω/□であり、接触抵抗値は2.7Ωであり、全光線透過率は89.1%であり、リファレンスフィルムの全光線透過率との差ΔTは0.7%であった。
[Example B2]
(Preparation of first transparent conductive layer forming composition (NP-2))
Instead of the 1% by weight silver particle aqueous dispersion A, 1% by weight silver particle aqueous dispersion B (containing trade name “SPN05S” manufactured by Mitsui Kinzoku Kogyo Co., Ltd. as silver particles; average primary particle diameter of silver particles: 1. A first transparent conductive layer forming composition (NP-2) was prepared in the same manner as in Example B1, except that 3 μm and the average flatness of silver particles: 4.0% were used.
(Preparation of transparent conductive film)
A transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-2) was used as the first transparent conductive layer forming composition. In this transparent conductive film, the thickness of the region constituted by the binder resin was 0.3 μm. Moreover, some metallic particles protruded from the area | region comprised with binder resin, and the height of the protrusion part was 0.9 micrometer. The obtained transparent conductive film has a surface resistance value of 53.0Ω / □, a contact resistance value of 2.7Ω, a total light transmittance of 89.1%, and a total light transmittance of the reference film. The difference ΔT from the rate was 0.7%.
[実施例B3]
(第1の透明導電層形成用組成物(NP-3)の調製)
 1重量%銀粒子水分散液Aに代えて、1重量%銀粒子水分散液C(銀粒子として三井金属工業社製の商品名「SPN08S」を含有;銀粒子の平均一次粒径:1.7μm、銀粒子の平均扁平率:2.7%)を用いたこと以外は、実施例B1と同様にして第1の透明導電層形成用組成物(NP-3)を調製した。
(透明導電性フィルムの作製)
 第1の透明導電層形成用組成物として、上記第1の透明導電層形成用組成物(NP-3)を用いた以外は、実施例B1と同様にして、透明導電性フィルムを得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みは0.3μmであった。また、金属性粒子の一部は、バインダー樹脂により構成される領域から突出しており、突出部の高さは1.3μmであった。また、得られた透明導電性フィルムの表面抵抗値は49.1Ω/□であり、接触抵抗値は2.8Ωであり、全光線透過率は89.2%であり、リファレンスフィルムの全光線透過率との差ΔTは0.6%であった。
[Example B3]
(Preparation of first transparent conductive layer forming composition (NP-3))
Instead of the 1% by weight silver particle aqueous dispersion A, 1% by weight silver particle aqueous dispersion C (containing trade name “SPN08S” manufactured by Mitsui Kinzoku Kogyo Co., Ltd. as silver particles; average primary particle diameter of silver particles: 1. A first transparent conductive layer-forming composition (NP-3) was prepared in the same manner as in Example B1, except that 7 μm and the average flatness of silver particles: 2.7% were used.
(Preparation of transparent conductive film)
A transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-3) was used as the first transparent conductive layer forming composition. In this transparent conductive film, the thickness of the region constituted by the binder resin was 0.3 μm. Moreover, a part of metallic particle protruded from the area | region comprised with binder resin, and the height of the protrusion part was 1.3 micrometers. The obtained transparent conductive film had a surface resistance value of 49.1Ω / □, a contact resistance value of 2.8Ω, a total light transmittance of 89.2%, and a total light transmission of the reference film. The difference ΔT from the rate was 0.6%.
[参考例B1]
(第1の透明導電層形成用組成物(NP-4)の調製)
 1重量%銀粒子水分散液Aに代えて、1重量%銀粒子水分散液D(銀粒子として三井金属工業社製の商品名「Q03Rフレーク」を含有;銀粒子の平均一次粒径:1.1μm、銀粒子の平均扁平率:90.1%)を用いたこと以外は、実施例B1と同様にして第1の透明導電層形成用組成物(NP-4)を調製した。
(透明導電性フィルムの作製)
 第1の透明導電層形成用組成物として、上記第1の透明導電層形成用組成物(NP-4)を用いた以外は、実施例B1と同様にして、透明導電性フィルムを得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みは0.3μmであった。また、金属性粒子の一部は、バインダー樹脂により構成される領域から突出しており、突出部の高さは0.7μmであった。また、得られた透明導電性フィルムの表面抵抗値は51.1Ω/□であり、接触抵抗値は1.2Ωであり、全光線透過率は88.1%であり、リファレンスフィルムの全光線透過率との差ΔTは1.7%であった。
[Reference Example B1]
(Preparation of first transparent conductive layer forming composition (NP-4))
Instead of the 1% by weight silver particle aqueous dispersion A, 1% by weight silver particle aqueous dispersion D (containing trade name “Q03R flake” manufactured by Mitsui Kinzoku Kogyo Co., Ltd. as silver particles; average primary particle diameter of silver particles: 1 A first transparent conductive layer-forming composition (NP-4) was prepared in the same manner as in Example B1, except that 0.1 μm and the average flatness of silver particles: 90.1% were used.
(Preparation of transparent conductive film)
A transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-4) was used as the first transparent conductive layer forming composition. In this transparent conductive film, the thickness of the region constituted by the binder resin was 0.3 μm. Moreover, a part of metallic particle protruded from the area | region comprised with binder resin, and the height of the protrusion part was 0.7 micrometer. The obtained transparent conductive film had a surface resistance value of 51.1Ω / □, a contact resistance value of 1.2Ω, a total light transmittance of 88.1%, and a total light transmittance of the reference film. The difference ΔT from the rate was 1.7%.
[参考例B2]
(第1の透明導電層形成用組成物(NP-5)の調製)
 1重量%銀粒子水分散液Aに代えて、1重量%銀粒子水分散液E(銀粒子として徳力化学研究所製の商品名「シルベストTCG-1」を含有;銀粒子の平均一次粒径:3.5μm、銀粒子の平均扁平率:78.7%)を用いたこと以外は、実施例B1と同様にして第1の透明導電層形成用組成物(NP-5)を調製した。
(透明導電性フィルムの作製)
 第1の透明導電層形成用組成物として、上記第1の透明導電層形成用組成物(NP-5)を用いた以外は、実施例B1と同様にして、透明導電性フィルムを得た。この透明導電性フィルムにおいて、バインダー樹脂により構成される領域の厚みは0.3μmであった。また、金属性粒子の一部は、バインダー樹脂により構成される領域から突出しており、突出部の高さは2.6μmであった。また、得られた透明導電性フィルムの表面抵抗値は51.9Ω/□であり、接触抵抗値は1.5Ωであり、全光線透過率は87.9%であり、リファレンスフィルムの全光線透過率との差ΔTは1.9%であった。
[Reference Example B2]
(Preparation of first transparent conductive layer forming composition (NP-5))
Instead of 1 wt% silver particle aqueous dispersion A, 1 wt% silver particle aqueous dispersion E (containing the trade name “Silbest TCG-1” manufactured by Tokuke Chemical Laboratory as silver particles; average primary particle diameter of silver particles) The first transparent conductive layer forming composition (NP-5) was prepared in the same manner as in Example B1 except that 3.5 μm and the average flatness of silver particles: 78.7% were used.
(Preparation of transparent conductive film)
A transparent conductive film was obtained in the same manner as in Example B1, except that the first transparent conductive layer forming composition (NP-5) was used as the first transparent conductive layer forming composition. In this transparent conductive film, the thickness of the region constituted by the binder resin was 0.3 μm. Moreover, a part of metallic particle protruded from the area | region comprised with binder resin, and the height of the protrusion part was 2.6 micrometers. The obtained transparent conductive film had a surface resistance value of 51.9Ω / □, a contact resistance value of 1.5Ω, a total light transmittance of 87.9%, and a total light transmittance of the reference film. The difference ΔT from the rate was 1.9%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の透明導電性フィルムは、表示素子等の電子機器に用いられ得る。 The transparent conductive film of the present invention can be used in electronic devices such as display elements.
 10     透明基材
 20     透明導電層
 21     樹脂バインダー
 22     金属ナノワイヤ
 23     金属性粒子
 100    透明導電性フィルム
DESCRIPTION OF SYMBOLS 10 Transparent base material 20 Transparent conductive layer 21 Resin binder 22 Metal nanowire 23 Metallic particle 100 Transparent conductive film

Claims (8)

  1.  透明基材と、該透明基材の片側または両側に配置される透明導電層とを含み、
     該透明導電層が、バインダー樹脂と、金属ナノワイヤと、金属性粒子とを含み、
     該金属性粒子の一部が、バインダー樹脂により構成される領域から突出している、
     透明導電性フィルム。
    A transparent base material, and a transparent conductive layer disposed on one or both sides of the transparent base material,
    The transparent conductive layer includes a binder resin, metal nanowires, and metallic particles,
    A part of the metallic particles protrudes from a region constituted by a binder resin.
    Transparent conductive film.
  2.  前記金属性粒子の平均粒径Xと、前記バインダー樹脂により構成される領域の厚みYとが、Y≦X≦20Yの関係を満たす、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the average particle diameter X of the metallic particles and the thickness Y of the region constituted by the binder resin satisfy a relationship of Y ≦ X ≦ 20Y.
  3.  前記金属性粒子の平均一次粒径が5nm~100μmである、請求項1に記載の透明導電性フィルム。 2. The transparent conductive film according to claim 1, wherein the average primary particle size of the metallic particles is 5 nm to 100 μm.
  4.  前記金属性粒子の含有割合が、前記バインダー樹脂100重量部に対し、0.1重量部~20重量部である、請求項1に記載の透明導電性フィルム。 2. The transparent conductive film according to claim 1, wherein a content ratio of the metallic particles is 0.1 to 20 parts by weight with respect to 100 parts by weight of the binder resin.
  5.  前記金属性粒子の平均扁平率が、40%以下である、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the average flatness of the metallic particles is 40% or less.
  6.  前記金属性粒子が、銀粒子である、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the metallic particles are silver particles.
  7.  前記金属性粒子が、銀コート銅粒子である、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the metallic particles are silver-coated copper particles.
  8.  請求項1に記載の透明導電性フィルムと偏光板とを含む、光学積層体。 An optical laminate comprising the transparent conductive film according to claim 1 and a polarizing plate.
PCT/JP2016/051951 2015-01-27 2016-01-25 Transparent electroconductive film WO2016121662A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/546,928 US20180017715A1 (en) 2015-01-27 2016-01-25 Transparent conductive film
CN201680007507.7A CN107210091B (en) 2015-01-27 2016-01-25 Transparent and electrically conductive film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-013652 2015-01-27
JP2015013652 2015-01-27
JP2015052126 2015-03-16
JP2015-052126 2015-03-16
JP2015-179341 2015-09-11
JP2015179341A JP6580432B2 (en) 2015-03-16 2015-09-11 Transparent conductive film
JP2015179340A JP6580431B2 (en) 2015-01-27 2015-09-11 Transparent conductive film
JP2015-179340 2015-09-11

Publications (1)

Publication Number Publication Date
WO2016121662A1 true WO2016121662A1 (en) 2016-08-04

Family

ID=56543275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051951 WO2016121662A1 (en) 2015-01-27 2016-01-25 Transparent electroconductive film

Country Status (1)

Country Link
WO (1) WO2016121662A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514342A (en) * 1996-10-28 2002-05-14 トーマス アンド ベッツ インターナショナル インコーポレイテッド Conductive elastomer and method of making the same
JP2011029099A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Substrate with transparent conductive film
JP2011029098A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Substrate with transparent conductive film
JP2011198642A (en) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd Base material with transparent conductive film, and manufacturing method thereof
JP2012204023A (en) * 2011-03-23 2012-10-22 Panasonic Corp Transparent conductive film, base material with transparent conductive film, organic electroluminescent element using the same, and manufacturing method thereof
JP2013246976A (en) * 2012-05-25 2013-12-09 Panasonic Corp Supporting material for conductive optical member, conductive optical member including the same, and electronic device including conductive optical member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514342A (en) * 1996-10-28 2002-05-14 トーマス アンド ベッツ インターナショナル インコーポレイテッド Conductive elastomer and method of making the same
JP2011029099A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Substrate with transparent conductive film
JP2011029098A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Substrate with transparent conductive film
JP2011198642A (en) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd Base material with transparent conductive film, and manufacturing method thereof
JP2012204023A (en) * 2011-03-23 2012-10-22 Panasonic Corp Transparent conductive film, base material with transparent conductive film, organic electroluminescent element using the same, and manufacturing method thereof
JP2013246976A (en) * 2012-05-25 2013-12-09 Panasonic Corp Supporting material for conductive optical member, conductive optical member including the same, and electronic device including conductive optical member

Similar Documents

Publication Publication Date Title
JP6181698B2 (en) Liquid crystal display cell
JP5516077B2 (en) Electrode film for touch panel and touch panel
JP5418121B2 (en) Transparent conductive material
JP6580432B2 (en) Transparent conductive film
US9318230B2 (en) Nanostructure dispersions and transparent conductors
JP6580431B2 (en) Transparent conductive film
US20080044651A1 (en) Coatings Comprising Carbon Nanotubes
US20180017715A1 (en) Transparent conductive film
JP2005277405A (en) Optically transparent antinoise formed body for image display device
JP2006049843A (en) Antistatic molding for image display apparatus
WO2016121662A1 (en) Transparent electroconductive film
JP6978227B2 (en) Dimming film
JP2017228353A (en) Transparent conductive film
JP6744104B2 (en) Transparent conductive film
JP2022042664A (en) Method for manufacturing transparent electroconductive film
JP5593848B2 (en) Transparent conductive material
JP2017129812A (en) Conductive reflection type polarizing film
JP2011071375A (en) Electromagnetic wave shielding material
WO2021065828A1 (en) Method for producing transparent conductive film
WO2021065829A1 (en) Method for producing a transparent electroconductive film
JP6712860B2 (en) Transparent conductive film
WO2022153959A1 (en) Production method for transparent conductive film
JP2017183195A (en) Transparent conductive film
KR20230114757A (en) transparent conductive film
CN117954147A (en) Transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546928

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743265

Country of ref document: EP

Kind code of ref document: A1