WO2016108316A1 - 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법 - Google Patents

이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법 Download PDF

Info

Publication number
WO2016108316A1
WO2016108316A1 PCT/KR2014/013130 KR2014013130W WO2016108316A1 WO 2016108316 A1 WO2016108316 A1 WO 2016108316A1 KR 2014013130 W KR2014013130 W KR 2014013130W WO 2016108316 A1 WO2016108316 A1 WO 2016108316A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
photon
fluorescent probe
photon fluorescent
fluorescence
Prior art date
Application number
PCT/KR2014/013130
Other languages
English (en)
French (fr)
Inventor
김환명
Original Assignee
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교 산학협력단 filed Critical 아주대학교 산학협력단
Priority to PCT/KR2014/013130 priority Critical patent/WO2016108316A1/ko
Publication of WO2016108316A1 publication Critical patent/WO2016108316A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/88Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving prostaglandins or their receptors

Definitions

  • the present invention relates to a two-photon fluorescent probe for imaging the pH, and more particularly, to a two-photon fluorescent probe for measuring and imaging the pH by quantifying the concentration of hydrogen ions in the acidic region in the cell or cell tissue, a method of manufacturing the same and pH using the same It relates to an imaging method.
  • Two-photon microscopy offers several advantages over single-photon microscopy because it uses two near-infrared photons with low excitation energy as excitation sources, specifically with increased transmission depth, localized excitation, and long-term imaging. have.
  • Non-Patent Document 1 Recently, studies have been reported that a variable color two-photon fluorescent probe containing 2-aminoflorene can be used in a region close to pH 7 (Non-Patent Document 1).
  • small molecule two-photon fluorescence probes such as DND-160 have been reported to measure pH in living tissues through variable color two-photon fluorescence microscopy.
  • the two-photon fluorescent probe comprising pyridine as a proton binding site has a problem in that the fluorescence expression rate is low, especially in the acidic region, to 0.1 or less.
  • the two-photon fluorescent probe in order to measure the pH of the acidic region, the two-photon fluorescent probe must have a pKa value at 4.5 to 6.5 pH. There is also the inconvenience of having to be able to easily modify it to bind the target material to measure the pH in a particular organelle, and to find a dye that is sensitive to pH.
  • the first problem to be solved by the present invention is the pH of the acidic region in the cell, in particular the acid organelle of the endosomes or lysosomes present in living cells and selectively located inside and outside the oligomer or protein, so that the pH can be directly and in real time. It is to provide a two-photon fluorescent probe to measure and image it concretely and clearly.
  • a second problem to be solved by the present invention provides a method for manufacturing the two-photon fluorescent probe.
  • the last problem to be solved by the present invention provides a method for quantifying the intracellular pH by the two-photon fluorescence microscope using the two-photon fluorescence probe to image.
  • the present invention provides a two-photon fluorescent probe represented by the following formula (1) to in order to solve the above problems:
  • X 1 and X 2 are each independently H, F, Cl, Br, OCH 3 , OH, NH 2 , N (CH 3 ) 2, NHCH 3, NCS, or CO 2 H
  • R 1 and R 2 Are each independently H, CH 3 , CH 2 (CH 2 ) n CH 3 , CH 2 (CH 2 ) n CO 2 H, CH 2 (CH 2 ) n OH, or CH 2 (CH 2 ) n SO 3 H, n is an integer of 0-10, and the same also applies below.
  • the present invention provides a method for producing a two-photon fluorescent probe represented by the formula (1), comprising the step of mixing and reacting a compound represented by the formula (A), a compound represented by the formula (B) and p-toluenesulfonic acid monohydrate It is characterized by.
  • X 1 and X 2 are each independently H, F, Cl, Br, OCH 3 , OH, NH 2 , N (CH 3 ) 2, NHCH 3, NCS, or CO 2 H
  • R 1 and R 2 Are each independently H, CH 3 , CH 2 (CH 2 ) n CH 3 , CH 2 (CH 2 ) n CO 2 H, CH 2 (CH 2 ) n OH, or CH 2 (CH 2 ) n SO 3 H, which is also the same below.
  • the present invention provides a method for producing a two-photon fluorescent probe represented by the formula (2) comprising the following steps:
  • step (b) preparing a compound represented by the following Chemical Formula E by mixing and reacting the compound represented by Chemical Formula D of step (a) with an aqueous LiOH solution;
  • step (c) reacting the compound represented by the formula (E) of step (b) with N, N-dimethylethylenediamine.
  • X 1 and X 2 are each independently H, F, Cl, Br, OCH 3 , OH, NH 2 , N (CH 3 ) 2, NHCH 3, NCS, or CO 2 H
  • R 1 and R 2 Are each independently H, CH 3 , CH 2 (CH 2 ) n CH 3 , CH 2 (CH 2 ) n CO 2 H, CH 2 (CH 2 ) n OH, or CH 2 (CH 2 ) n SO 3 H, which is also the same below.
  • the present invention also provides a method of imaging the intracellular pH using the two-photon fluorescent probe.
  • the imageable depth may be 100-200 ⁇ m.
  • the cells may be living cells, organelles or cellular tissues of pH 4-7.
  • the two-photon fluorescent probe according to the present invention selectively stains inside living cells and biological tissues and simultaneously reacts with protons to show strong color change in fluorescence. Due to its high solubility in water and its low molecular weight, it can be easily loaded into cells and can also selectively detect pH in living cells and in 100-200 ⁇ m deep tissues over a time period of 60 minutes or more. The distribution and activity of pH within can be observed by imaging through a two-photon microscope. This enables quantitative analysis of pH and comparative analysis of different samples, which can greatly contribute to pH-related life science research, early diagnosis of disease, and development of diagnostic reagents and therapeutics.
  • Figure 1 (a) and (b) is the intensity of the pH change of the photon fluorescent spectrum of BH1 (a) and BH1L (b) in the standard buffer, (c) is BH1, BH2, BH3 in the photon mode And pH of BH1L versus I green / I iso (excitation wavelength is 360 nm).
  • (A) is a two-photon activity spectrum of BH1 in standard buffers (pH 3.5, 7.2 and 10)
  • (b) is a graph showing the change in two-photon excitation fluorescence spectrum of BH1 with pH
  • (c) is a two-photon mode in a graph showing the pH versus green I / I iso of BH1, BH2, BH3 and BH1L (excitation wavelength is 470 nm).
  • FIG. 1 Survival graph of HeLa cells through MTS (Micro Technology Services) analysis.
  • Figure 4 (a) is a two-photon excitation fluorescence spectrum of ion-transmitter-Hell cells treated with BH1 3 ⁇ M, (b) is a two-photon I green / I IR titration curve according to the pH of the HeLa cells, (c) is Variable color TPM image of HeLa cells treated with BH1 3 ⁇ M, (d) is an enlarged photograph (arrow number is pH of measurement site, scale bar is (c) 30 ⁇ m, (d) 5 ⁇ m).
  • (a) and (b) are two-photon fluorescence microscope (a) and one-photon fluorescence microscope (b) images of HeLa cells treated with BH1L and LysoTracker Red.
  • (c) is a composite photograph of (a) and (b) (excitation wavelength is 740 nm in a two-photon fluorescence microscope, 543 nm in a one-photon fluorescence microscope, 20 micrometers in a scale bar).
  • Figure 6 (a) is a two-photon excitation fluorescence spectrum of ion permeate-Hell cells treated with BH1 3 ⁇ M.
  • (b) is two-photon I green / I IR titration curves according to pH of HeLa cells.
  • (c) and (d) are variable color TPM images (c) and enlarged photographs (d) of HeLa cells treated with BH1 3 ⁇ M.
  • the number of arrows is the pH of the measurement site, the scale bar is 30 ⁇ m in (c), (d) 5 ⁇ m)
  • (c) and (e) are variable color TPM images of HeLa cells treated with BH1 3 ⁇ M
  • ( c) is before NH 4 Cl addition and (e) is after addition.
  • (d) and (f) are composite pictures corresponding to DIC images.
  • (g) is an enlarged photograph of (c) showing the pH change with time (excitation wavelength 740 nm, scale bar is 20 micrometers in (c), 8 micrometers in (g)).
  • Figure 9 is a graph showing the absorption intensity (right) according to the photon spectra (left) and probe concentration in standard buffer (pH 7.2, 3 mL).
  • (a) and (b) are BH1
  • (c) and (d) are BH2
  • (e) and (f) are BH3
  • (g) and (h) are BH1L
  • (i) and (j) are P1 .
  • (a), (b) and (c) are BH2, (d), (e) and (f) are BH3, (g), (h) and (i) are BH1L.
  • the excitation wavelength is (a), (d) and (g) is 360 nm, (b), (e) and (h) is 740 nm, and the results at (c), (f) and (i) are maximum. Standardized at I green / I iso .
  • (a), (c), (e) and (g) are TPM images of HeLa cells treated with BH1 (a), BH2 (c), BH3 (e), and BH1L (g).
  • (b), (d), (f) and (h) are relative two-photon excitation fluorescence (TPEF; two-photon) over time in the AC region shown in (a), (c), (e) and (g). excited fluorescence) Intensity is a graph showing intensity intensity (numerical intensity measured every 2 seconds for 1 hour in xyt mode, and two-photon excitation fluorescence was collected in femtosecond pulses at 400-600 nm with an excitation wavelength of 740 nm Scale bar is 75 ⁇ m).
  • TPM images of HeLa cells treated with BH1 3 ⁇ M Two-photon excitation fluorescence was collected as femtosecond pulses at (a) 440-460 nm ( I IR ) and (b) 500-550 nm ( I green ) when the excitation wavelength was 740 nm. (c) is pseudocolored variable color two-photon fluorescence microscopy image ( I green / I IR ) (scale bar is 30 ⁇ m).
  • TPM image of rat hippocampal sections (a), (c) and (e) were treated with BH1L for 1 hour, and (b), (d) and (f) were treated with BH1 for 1 hour.
  • Two-photon excitation fluorescence is collected with femtosecond pulses at 440 nm excitation wavelength, (a) and (b) at 440-460 nm ( I IR ), (c) and (d) at 500-550 nm ( I green ) It became.
  • 120 TPM images were accumulated to visualize the pH along the Z-direction at a penetration depth of 90-180 ⁇ m.
  • the present invention relates to a two-photon fluorescence probe for measuring the pH in the cell, and because it uses a low energy excitation source can be measured by quantifying the real-time pH of the cell in real time without destroying the cell.
  • Histidine is an essential amino acid containing imidazole groups that have buffering capacity in the living body, and benzimidazole is a derivative of imidazole having about 5.5 pKa in acidic organelles.
  • the benzimidazole group is used as a proton acceptor, and is introduced at position 6 of 2-aminonaphthalene, which is a phosphor, to change the pH 4-7 region in the cell through color change (blue-green) according to the reaction with hydrogen ions. It provides a two-photon fluorescent probe that can be quantitatively measured and monitored in 0.001 pH units.
  • the present invention provides a two-photon fluorescent probe represented by the following Chemical Formulas 1 to 6.
  • X 1 and X 2 are each independently H, F, Cl, Br, OCH 3 , OH, NH 2 , N (CH 3 ) 2, NHCH 3, NCS, or CO 2 H
  • R 1 and R 2 Are each independently H, CH 3 , CH 2 (CH 2 ) n CH 3 , CH 2 (CH 2 ) n CO 2 H, CH 2 (CH 2 ) n OH, or CH 2 (CH 2 ) n SO 3 H, n is an integer of 0-10, and the same also applies below.
  • the two-photon fluorescent probe represented by Chemical Formula 1 may image pH while reacting with hydrogen ions in an internal pH 4-7 region of a cell, a cell organelle, or a living tissue to exhibit fluorescence.
  • the probe has a pKa 4-6.5 range by substituting an electron donor or electron acceptor with a benzimidazole group.
  • Figure 8 is a schematic diagram showing the fluorescence color change of the two-photon fluorescent probe according to an embodiment of the present invention and the image showing the intracellular pH observed through a two-photon fluorescence microscope.
  • the two-photon fluorescence probe When the cells are irradiated with a low excitation wavelength (740 nm), the two-photon fluorescence probe is protonated to cause a color change from blue to green, and the two-photon fluorescence microscope can observe the change and quantify the pH.
  • the two-photon fluorescent probe represented by Formula 2 and Formula 3 introduces a tertiary amine group to react with protons in an acidic organ to form a quaternary amine salt, and has about pKa 10. In particular, it can be selectively positioned inside the endosome or lysosome to sense the pH.
  • the two-photon fluorescent probe represented by Chemical Formulas 4 to 6 may introduce a maleimide group to selectively covalently bond with a thiol group of a biomolecule or a succinimdyl ester group to selectively introduce an amine group into a covalent bond.
  • pH By selectively labeling oligomers or proteins, pH can be measured.
  • FIG. 2a a graph showing the two-photon active cross-sectional area ( ⁇ ) versus the excitation wavelength of a two-photon fluorescent probe according to an embodiment of the present invention in buffers of pH 3.5, 7.2 and 10. It can be seen that the cross-sectional area is the largest at pH 3.5, which means that the two-photon fluorescent probe of the present invention has high pH measuring activity in the acidic region.
  • FIG. 2C is a calibration graph showing an isotropic point ( I green ) reference emission ( I iso ) ratio ( I green / I iso ) according to pH of a two-photon fluorescent probe according to an embodiment of the present invention. As shown in FIG. 2C, when plotting the plots, the plots show linearity at pH 4.5 to pH 7, which can be obtained from the pH 4.5 to pH 7 region representing a linear section through I green / I iso . Means.
  • Two-photon fluorescence probes of the present invention exhibit high fluorescence intensity two-photon emission spectra for regions with pH 4-7 in cells (FIGS. 4, 6).
  • pH can be imaged in real time in the pH 4-7 region of the cell. More preferably, the pH can be imaged by quantitatively measuring in real time in the pH 4.5-7 region.
  • the present invention is a two-photon fluorescent probe represented by the formula (1) prepared by mixing the compound represented by the formula (A), the compound represented by the formula (B) and p-toluenesulfonic acid monohydrate It provides a method of manufacturing.
  • X 1 and X 2 are each independently H, F, Cl, Br, OCH 3 , OH, NH 2 , N (CH 3 ) 2, NHCH 3, NCS, or CO 2 H
  • R 1 and R 2 Are each independently H, CH 3 , CH 2 (CH 2 ) n CH 3 , CH 2 (CH 2 ) n CO 2 H, CH 2 (CH 2 ) n OH, or CH 2 (CH 2 ) n SO 3 H, which is also the same below.
  • the present invention provides a method for producing a two-photon fluorescent probe represented by the formula (2) comprising the following steps:
  • step (b) preparing a compound represented by the following Chemical Formula E by mixing and reacting the compound represented by Chemical Formula D of step (a) with an aqueous LiOH solution;
  • step (c) reacting the compound represented by the formula (E) of step (b) with N, N-dimethylethylenediamine.
  • X 1 and X 2 are each independently H, F, Cl, Br, OCH 3 , OH, NH 2 , N (CH 3 ) 2, NHCH 3, NCS, or CO 2 H
  • R 1 and R 2 Are each independently H, CH 3 , CH 2 (CH 2 ) n CH 3 , CH 2 (CH 2 ) n CO 2 H, CH 2 (CH 2 ) n OH, or CH 2 (CH 2 ) n SO 3 H, which is also the same below.
  • the two-photon fluorescent probes represented by Chemical Formulas 1 to 6 of the present invention irradiate the cells with a low energy excitation wavelength (740 ⁇ m), the distribution of pH is selectively distributed to living cells and biological tissues of 100-200 ⁇ m depth without cell destruction. It can be seen and measured in real time for more than 60 minutes, so the pH change and activity can be imaged through a two-photon fluorescence microscope.
  • the two-photon fluorescent probe represented by Chemical Formula 1 of the present invention can be prepared as shown in Scheme 1 below, but is not limited thereto.
  • BH2 4,5-difluoro-1,2-phenylenediamine was used instead of o-phenyyenediamine, and a light yellow solid was obtained.
  • BH2 4,5-difluoro-1,2-phenylenediamine
  • BH3 4,5-dimethoxy-1,2-phenylenediamine was used instead of o-phenyyenediamine, and a pale yellow solid was obtained.
  • BH3 4,5-dimethoxy-1,2-phenylenediamine
  • Two-photon fluorescent probe represented by the formula (2) can be prepared as shown in the following schemes 2 to 4, it is not limited thereto.
  • Compound 2 was prepared by the method described in Document 2 (Document 2: Masanta, G .; Lim, CS; Kim, HJ; Han, JH; Kim, HM; Cho, BRJ Am. Chem. Soc. 2011, 133, 5698).
  • Compound 3 was the same as Example 1, except that Compound 2 was used instead of Compound 1, and a pale yellow solid was obtained at a yield of 51%.
  • Compound 4 (6-bromo-N-methyl-2-naphthylamine) was prepared by the method described in Document 1 (Document 1: Kim, HM; Jeong, BH; Hyon, Ju-Y .; An, MJ, Seo, MS; Hong, JH; Lee, KJ; Kim, CH; Joo, T .; Hong, Seok-C .; Cho, BRJ Am. Chem. Soc. 2008, 130, 4246).
  • R is the observed ratio of isotropic point ( I iso ) and 500-550 nm ( I green ) at a given pH.
  • R max and R min are the maximum and minimum limit values of R, and C is the slope.
  • I a / I b is the fluorescence intensity ratio of pH 3.5 to pH 10 at the selected wavelength to find the denominator of R. In this case, the correction is extinguished using the correct isotropic point.
  • the two-photon excitation fluorescence spectra were shown on a DDC meter (Monora 320 spectrograph set with Andor iDus DV401A-BV).
  • Two-photon fluorescent probes are excited at a 740 nm wavelength, 2510 mW (200 mW equivalent in focus) on a model-locked titanium-sapphire laser light source device (Mai Tai HP, Spectra Physics, 80 MHz pulses per second, 100 fs pulse width) It became.
  • Two-photon cross-sectional area ( ⁇ ) was measured using femto second (fs) fluorescence measurement.
  • Probes 1.0 ⁇ 10 ⁇ 6 M
  • two photons indicating fluorescent soils were measured using rhodamine 6G at 720-880 nm.
  • Two-photon excited fluorescence spectral intensities of the reference and the sample were determined at the same excited wavelength.
  • the cross section of the two-photon fluorescent probe was calculated using Equation 1 below.
  • Equation 1 s and r represent the sample and reference molecules, S represents the signal intensity collected from the CCD detector, ⁇ represents the fluorescence quantum yield, f represents the total fluorescence collection efficiency of the experimental instrument, c Represents the molecular density in the solution and ⁇ r represents the cross-sectional area of the two-photon fluorescent probe of the reference molecule.
  • HeLa cervical cancer cells (ATCC, Manassas, VA, USA) were treated with 10% FBS (WelGene), penicillin (100 units / mL) and streptomycin (100 ⁇ g / mL) in DMEM (WelGene Inc, Seoul, Korea). Incubated while feeding. Two days prior to imaging, cells were transferred to a glass bottom dish (NEST). All cells were grown in a humidified environment with an air / CO 2 ratio of 95: 5 at 37 ° C. Growth medium was removed for labeling and changed to serum-free DMEM. The cells were injected with 3 ⁇ M probe and incubated at 37 ° C. for 30 minutes.
  • FBS FelGene
  • penicillin 100 units / mL
  • streptomycin 100 ⁇ g / mL
  • Two-photon fluorescence probe microscopy images excite two-photon fluorescence probes to 2510 mW output at 740 nm wavelength using a model-locked titanium-sapphire laser light source device (Mai Tai HP, Spectra Physics, 80 MHz pulses per second, 100 fs pulse width) Observed by DMI6000B microscope (Leica).
  • a model-locked titanium-sapphire laser light source device Main Tai HP, Spectra Physics, 80 MHz pulses per second, 100 fs pulse width
  • DMI6000B microscope Leica
  • the pH calibration curve is represented by I green / I IR of HeLa cells treated with ion permeate carriers and BH1 or BH1L.
  • Cells were incubated for 30 minutes at 37 ° C., 5% CO 2 in DMSO stock containing 3.0 ⁇ L of 1 mM BH1 or 1 mM BH1L, and the extracellular media was 1 mL of calibration buffer (125 mM KCl, 20 mM NaCl, 0.5 mM CaCl 2 , 0.5 mM MgCl 2 , 5 ⁇ nigericin, 5 ⁇ monensin, and 25 mM buffer; acetates at pH 3.5, 4.0, 4.3, 5.0, 5.2; MES at pH 5.5, 6.0; pH 6.5, 7.0 , HEPES of 8.0).
  • calibration buffer 125 mM KCl, 20 mM NaCl, 0.5 mM CaCl 2 , 0.5 mM MgCl 2
  • the photostability of BH 1-3 and BH1L was shown by monitoring the change in two-photon excitation fluorescence intensity over time at three designated points in the probe-labeled HeLa cells (FIG. 13). Two-photon excitation fluorescence intensity showed high light stability while maintaining almost the same value for one hour.
  • Hippocampus fragments were prepared from hippocampus of 2 week old rats.
  • the coronal fragments were in artificial cerebrospinal fluid (ACSF; 138.6 mM NaCl, 3.5 mM KCl, 21 mM NaHCO 3 , 0.6 mM NaH 2 PO 4 , 9.9 mM D-glucose, 1 mM CaCl 2 , and 3 mM MgCl 2 ).
  • ADF cerebrospinal fluid
  • 138.6 mM NaCl 3.5 mM KCl, 21 mM NaHCO 3 , 0.6 mM NaH 2 PO 4 , 9.9 mM D-glucose, 1 mM CaCl 2 , and 3 mM MgCl 2
  • the pieces were incubated with 10 mM BCa1 and 20 mM BH1 and BH1L in ACSF
  • a certain amount of the two-photon fluorescent probe prepared in the above example was dissolved in DMSO (dimethyl sulfoxide, 1.0 ⁇ 10 ⁇ 2 M) and stored. Dilute the solution from 6.0 ⁇ 10 ⁇ 3 to 6.0 ⁇ 10 ⁇ 5 and buffer solution ((0.1 M citric acid, 0.1 M KH 2 PO 4 , 0.1 M Na 2 B 4 O 7 , 0.1 M Tris, 0.1 M KCl , pH 7.2) was added by micro syringe to a cuvette containing 3 mL The concentration of DMSO in the buffer solution was maintained at 0.2%.
  • FIG. 9 is a graph showing the absorption rate according to the concentration of the two-photon fluorescent probe prepared according to the Examples and Comparative Examples of the present invention. Plots in the graph were linear at low concentrations and downward curves at higher concentrations.
  • the maximum point in the straight line means solubility.
  • the solubility of Examples (BH1, BH2, BH3, BH1L) and Comparative Example (P1) of the present invention is 6, 2, 10, 10 and 2 ⁇ M, respectively, in pH 7.2 buffer solution, which is sufficient for cell staining. .
  • PKa and photophysical experimental results of the two-photon fluorescent probes prepared in Examples and Comparative Examples are shown in Table 1 below. All measurements were performed in standard buffer solutions (0.1 M citric acid, 0.1 M KH 2 PO 4 , 0.1 M Na 2 B 4 O 7 , 0.1 M tris (hydroxymethyl) aminomethane, 0.1 M KCl).
  • e pKa measured in daylight mode. In parentheses are pKa. Measured in two-photon mode.
  • the pKa of the conjugate acid of BH1 to 3 was obtained from a titration curve of the isotropic point ( I iso ) and the emission ratio ( I green / I iso ) of 500-550 nm ( I green ).
  • the pKa 4.92-6.11 range means that acidic regions can be detected.
  • the pKa shift is due to electron withdrawing (F in BH2) or electron donating (OMe in BH3).
  • the pKa value of BH1L was found to be almost the same as BH1.
  • the pH measuring capability in the two-photon mode of the two-photon fluorescent probe of the present invention was evaluated.
  • the two-photon fluorescence spectra ( ⁇ ) of BH1 at pH 7.2 and 3.5 showed 40 and 140 GM, respectively (Table 1 and FIG. 2A).
  • the maximum two-photon fluorescence spectrum ( ⁇ max ) of BH1-H + with electron withdrawing groups is 3.5 times larger than BH1, which enhances molecular charge transfer (ICT) between the electron acceptor and electron donor.
  • ICT molecular charge transfer
  • Intracellular pH was measured by TPM using BH1.
  • BH1 was injected into HeLa cells treated with ionopheres at 740 nm two-photon excitation (TP exctation).
  • TP exctation two-photon excitation
  • the two-photon emission fluorescence spectra were emitted at lambda fl values of 445 and 490 nm, respectively. This value almost coincides with the buffer and shift values in and around the 10 nm difference.
  • the emission spectrum of BH1 shows a gradual shift with increasing solvent polarity, which means that the probes of the invention are more homogeneous and hydrophobic in the intracellular buffer.
  • variable color imaging ( I green / I IR ) results were obtained using an internal reference window of 440-460 nm ( I IR ) and a pH recognition window of 500-550 nm ( I green ). It was obtained by (Fig. 4a).
  • the imaging values ( I green / I IR ) of HeLa cells treated with BH1 appeared in the pH range of 5.6-7.4 across the various compartments in the cells (FIGS. 4D and S7).
  • the slope of the graph is almost linear, which means that the pH can be quantified using variable color imaging ( I green / I IR ) in the pH 4-7 region.
  • BH1L a lysosomal target two-photon fluorescent probe.
  • LTR Lysotracker Red DND-99
  • 5 is a two-photon fluorescence microscopy image (FIG. 5A) and a one-photon fluorescence microscopy image (FIG. 5B) and superimposed images (FIG. 5C) (Pearson colocalization coefficient: 0.095).
  • Variable color imaging ( I green / I IR ) of HeLa cells treated with BH1L shows various pH values in lysosomes (FIG. 6). This means that BH1L can be used to measure the pH in each zone in the pH 4.6-5.9 range ( Figure 16).
  • the micro flakes of the hippocampus of rats which are responsible for learning and memory, were monitored. Since the structure of the brain tissue is heterogeneous, 120 variable color imaging ( I green / I IR ) were measured at a depth of 90-180 ⁇ m (FIG. 18).
  • I green / I IR 120 variable color imaging
  • the two-photon fluorescent probe of the present invention can clearly measure the pH value of the acidic compartment in the cells in living cells and tissues using two-photon microscopy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 pH를 이미지화하는 이광자 형광 프로브에 관한 것으로서, 본 발명의 이광자 형광 프로브는 벤즈이미다졸 구조 유도체를 기반으로 하여 산성 영역의 pH 및 그 변화량을 감지한다. 상기 프로브는 고유 등방사성 점, 적은 독성 및 높은 광안정성을 가지며, pH 4-7에서 이광자 형광의 색 변화를 나타내면서 pH를 0.001 단위로 측정할 수 있다. 본 발명에 따른 이광자 형광 프로브는 살아있는 세포와 생체 조직 내부에 선택적으로 염색됨과 동시에 산성 pH와 반응하여 강한 형광의 색 변화(청색-녹색)를 나타낸다. 또한 물에 대한 높은 용해도와 적은 분자량으로 인하여 세포에 쉽게 로딩될 수 있다. 또한, 60분 이상의 시간에 걸쳐 생체 세포 및 100-200 μm 깊이의 생체 조직에서 선택적으로 pH를 탐지할 수 있으므로 생체 세포 또는 온건한 생체 조직 내의 pH의 분포 및 활성을 비율영상으로 조사할 수 있다. 이에 따라 pH의 정량적인 분석이 가능하고 서로 다른 시료의 비교 분석이 가능하게 됨으로써 pH와 관련된 생명과학 연구와 질병의 조기 진단, 진단 시약과 치료제의 개발 등에 크게 기여할 수 있다.

Description

이광자 형광 프로브, 이의 제조방법 및 이를 이용한 PH 이미지화 방법
본 발명은 pH를 이미지화하는 이광자 형광 프로브에 관한 것으로서, 더욱 상세하게는 세포 내 또는 세포 조직 내 산성 영역의 수소 이온 농도를 정량화하여 pH를 측정 및 이미지화하는 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 pH 이미지화화 방법에 관한 것이다.
세포 내식 작용(endocytic processes), 신호, 세포 사멸 및 방어 등의 수많은 세포 물질 대사는 산성 환경과 관련이 있다. 산성 환경은 효소의 기능 및 단백질의 분해를 활성화한다. 진핵 세포에서, 리소좀(pH 4.5-5.5) 및 엔도솜(pH 4.5-6.8) 등의 산성 기관은 다양한 활성 및 기능을 가진 많은 효소들과 단백질을 포함한다. 반면, 이러한 기관이 중성 pH를 가지면 세포의 기능에 장애가 발생하여 암이나 퇴행성 질환 등 많은 질병을 야기한다. 따라서, 생리학 및 병리학적으로 산성 환경의 역할을 이해하기 위하여, 세포, 조직 및 기관 수준에서 세포 내 pH 값을 측정할 필요성이 있다.
이러한 기능을 이해하기 위하여, 녹색 형광 단백질(green fluorescent proteins; GFPs) 또는 Lyso Sensor DND-160 등과 같은 수많은 단일광자 형광 프로브가 개발되어 왔으나 짧은 여기 파장(< 500 ㎚)으로 인해 얕은 투과 깊이(< 100 ㎛), 광표백(photobleaching) 및 세포 자가 형광 등으로 인하여 조직 이미지화에 대한 적용을 제한한다. 이러한 문제에 대한 해결책으로 제시된 것이 이광자 형광 현미경(two-photon microscopy; TPM)이다. 이광자 현미경은 낮은 여기 에너지를 갖는 2개의 근적외선 광자들을 여기원으로 사용하기 때문에 단일광자 현미경에 비해서 여러 가지 장점들을 제공하는데, 구체적으로는 증가된 투과 깊이, 국소화된 여기 및 장시간 이미지화 등의 장점을 가지고 있다.
최근, 2-아미노플로렌을 포함하는 가변색 이광자 형광 프로브를 pH 7에 가까운 영역에서 사용할 수 있다는 연구가 보고되었다(비특허문헌1). 또한, DND-160과 같은 작은 분자 이광자 형광 프로브 역시 가변색 이광자 형광 현미경을 통해서 살아있는 조직 내 pH를 측정할 수 있다는 연구가 보고되었다. 그러나, 프로톤 결합부위인 피리딘을 포함하는 이광자 형광 프로브는 특히, 산성 영역에서 0.1 이하로 형광 발현율이 낮다는 문제점이 있다. 또한, 산성 영역의 pH를 측정하기 위해 이광자 형광 프로브는 반드시 4.5 내지 6.5 pH에서 pKa값을 가져야 한다. 또한, 특정 세포기관 내의 pH를 측정하기 위해 표적 물질과 결합하기 위해 쉽게 개질될 수 있어야하고, pH에 민감한 염료를 찾아야하는 불편함도 있다.
[선행기술문헌]
[비특허문헌]
Yao, S.; Schafer-Hales, K. J.; Belfield, K. D. Org. Lett. 2007, 9, 5645.
따라서, 본 발명이 해결하려는 첫 번째 과제는 세포 내 산성 영역의 pH, 특히 살아있는 세포 내에 존재하는 엔도솜 또는 리소좀의 산성 소기관과 올리고머 또는 단백질의 내/외부에 선택적으로 위치하여 pH를 직접적이고 실시간으로 측정하고, 이를 구체적이고 선명하게 이미지화하는 이광자 형광 프로브를 제공하는 것이다.
또한, 본 발명이 해결하려는 두 번째 과제는 상기 이광자 형광 프로브의 제조방법을 제공한다.
또한, 본 발명이 해결하려는 마지막 과제는 상기 이광자 형광 프로브를 이용하여 세포 내 pH를 이광자 형광 현미경을 통해 정량화하여 이미지화하는 방법을 제공한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 화학식 1 내지 6으로 표시되는 이광자 형광 프로브를 제공한다:
[화학식 1]
Figure PCTKR2014013130-appb-I000001
[화학식 2]
Figure PCTKR2014013130-appb-I000002
[화학식 3]
Figure PCTKR2014013130-appb-I000003
[화학식 4]
Figure PCTKR2014013130-appb-I000004
[화학식 5]
Figure PCTKR2014013130-appb-I000005
[화학식 6]
Figure PCTKR2014013130-appb-I000006
여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이고, n은 0-10의 정수이며, 이하에서도 동일하다.
또한, 본 발명은 상기 화학식 1로 표시되는 이광자 형광 프로브의 제조방법으로서, 하기 화학식 A로 표시되는 화합물, 하기 화학식 B로 표시되는 화합물 및 p-톨루엔술폰산 일수화물을 혼합하여 반응시키는 단계를 포함하는 것을 특징으로 한다.
[화학식 A]
Figure PCTKR2014013130-appb-I000007
[화학식 B]
Figure PCTKR2014013130-appb-I000008
여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이며, 이하에서도 동일하다.
또한, 본 발명은 하기 단계를 포함하는 상기 화학식 2로 표시되는 이광자 형광 프로브의 제조방법을 제공한다:
(a) 하기 화학식 B로 표시되는 화합물, 하기 화학식 C로 표시되는 화합물 및 p-톨루엔술폰산 일수화물을 혼합하여 반응시켜 하기 화학식 D로 표시되는 화합물을 제조하는 단계;
(b) 상기 (a) 단계의 화학식 D로 표시되는 화합물과 LiOH 수용액을 혼합하여 반응시켜 하기 화학식 E로 표시되는 화합물을 제조하는 단계; 및
(c) 상기 (b) 단계의 화학식 E로 표시되는 화합물과 N,N-다이메틸에틸렌다이아민을 혼합하여 반응시키는 단계.
[화학식 B]
Figure PCTKR2014013130-appb-I000009
[화학식 C]
Figure PCTKR2014013130-appb-I000010
[화학식 D]
Figure PCTKR2014013130-appb-I000011
[화학식 E]
Figure PCTKR2014013130-appb-I000012
여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이며, 이하에서도 동일하다.
또한, 본 발명은 상기 이광자 형광 프로브를 이용하여 세포 내 pH를 이미지화화 하는 방법을 제공한다.
상기 이미지화가 가능한 깊이는 100-200 ㎛일 수 있다.
상기 세포는 pH 4-7의 생세포, 세포소기관 또는 세포 조직일 수 있다.
본 발명에 따른 이광자 형광 프로브는 살아있는 세포와 생체 조직 내부에 선택적으로 염색됨과 동시에 프로톤과 반응하여 강한 형광의 색 변화를 나타낸다. 물에 대한 용해도가 크고 적은 분자량으로 인하여 세포에 쉽게 로딩될 수 있으며 또한, 60분 이상의 시간에 걸쳐 생체 세포 및 100-200 μm 깊이의 생체 조직에서 선택적으로 pH를 탐지할 수 있으므로 생체 세포 또는 생체 조직 내의 pH의 분포 및 활성을 이광자 현미경을 통해 이미지화하여 관측할 수 있다. 이에 따라 pH의 정량적인 분석이 가능하고 서로 다른 시료의 비교 분석이 가능하게 됨으로써 pH와 관련된 생명과학 연구와 질병의 조기 진단, 진단 시약과 치료제의 개발 등에 크게 기여할 수 있다.
도 1. (a) 및 (b)는 표준 버퍼에서 BH1(a) 및 BH1L(b)의 일광자 형광 스페트럼의 pH 변화에 따른 강도이고, (c )는 일광자 모드에서 BH1, BH2, BH3 및 BH1L의 pH 대 I green/I iso를 나타낸 그래프이다 (여기파장은 360 ㎚).
도 2. (a)는 표준 버퍼(pH 3.5, 7.2 및 10)에서 BH1의 이광자 활성 스펙트럼이고, (b)는 pH에 따른 BH1의 이광자 여기 형광 스펙트럼 변화를 나타낸 그래프이고, (c )는 이광자 모드에서 BH1, BH2, BH3 및 BH1L의 pH 대 I green/I iso를 나타낸 그래프이다 (여기파장은 470 ㎚).
도 3. MTS(Micro Technology Services) 분석을 통한 헬라 세포의 생존 그래프이다. (a) BH1, (b) BH2, (c) BH3, 및 (d) BH1L.
도 4. (a)는 BH1 3 μM로 처리한 이온투과담체-헬라 세포의 이광자 여기 형광 스펙트럼이고, (b)는 헬라 세포의 pH에 따른 이광자 I green/I IR 적정 곡선이며, (c )는 BH1 3 μM로 처리한 헬라 세포의 가변색 TPM 이미지이고, (d)는 확대사진이다(화살표의 숫자는 측정 부위의 pH, 스케일바는 (c) 30 ㎛, (d) 5 ㎛).
도 5. (a) 및 (b)는 BH1L와 LysoTracker Red를 처리한 헬라 세포의 이광자 형광 현미경(a), 일광자 형광 현미경(b) 이미지이다. (c)는 (a)와 (b)의 합성 사진이다(여기 파장은 이광자 형광 현미경에서 740 ㎚, 일광자 형광 현미경에서 543 ㎚, 스케일바는 20 ㎛).
도 6. (a)는 BH1 3 μM로 처리한 이온투과담체-헬라 세포의 이광자 여기 형광 스펙트럼이다. (b)는 헬라 세포의 pH에 따른 이광자 I green/I IR 적정 곡선이다. (c ) 및 (d)는 BH1 3μM로 처리한 헬라(HeLa) 세포의 가변색 TPM 이미지(c) 및 확대사진(d)이다. (화살표의 숫자는 측정 부위의 pH, 스케일바는 (c )에서 30 ㎛, (d)에서 5 ㎛) (c ) 및 (e)는 BH1 3 μM로 처리한 헬라 세포의 가변색 TPM 이미지로 (c )는 NH4Cl 첨가 전, (e)는 첨가 후 이다. (d) 및 (f)는 DIC 이미지에 대응하는 합성사진이다. (g)는 시간에 따른 pH 변화량을 나타낸 (c )의 확대사진이다 (여기 파장 740 ㎚, 스케일 바는 (c )에서 20 ㎛ , (g)에서 8 ㎛).
도 7. 쥐의 해마 절편 슈도화된 가변색(pseudocolored Ratiometric) 이광자 형광 현미경 이미지이다. (a) 및 (b)는 BH1L으로 처리한 것이, (c )및 (d)는 BH1으로 처리한 것이다. (a) 및 (c )는 투과 깊이 90-180 ㎛에서 Z-방향에 따른 pH를 시각화하기 위해 축적한 120 TPM 이미지이다. (b) 및 (d) DG 영역의 63배 확대사진이다(여기파장은 740 ㎚, 스케일바는 (a) 및 (c )에서 300 ㎛, (b) 및 (d)에서 47 ㎛).
도 8. 이광자 형광 프로브의 형광 색 변화를 나타낸 모식도 및 세포 내 pH를 나타낸 이미지이다.
도 9. 표준 버퍼 (pH 7.2, 3 mL)에서 일광자 스펙트럼(왼쪽) 및 프로브 농도에 따른 흡수 강도(오른쪽)를 나타낸 그래프이다. (a) 및 (b)는 BH1, (c ) 및 (d)는 BH2, (e) 및 (f)는 BH3, (g) 및 (h)는 BH1L 및 (i) 및 (j)는 P1 이다.
도 10. 표준 버퍼 pH에 따른 일광자(a, d 및 g), 이광자(b, e 및 h) 형광 스펙트럼 및 pH에 따른 I green/I iso 플롯(c, f 및 i)이다. (a), (b) 및 (c)는 BH2, (d), (e) 및 (f)는 BH3, (g), (h) 및 (i)는 BH1L이다. 여기 파장은 (a), (d) 및 (g)은 360 ㎚, (b), (e) 및 (h)은 740 ㎚이고, (c ), (f) 및 (i)에서의 결과가 최대 I green/I iso에서 표준화된다.
도 11. 표준 버퍼(pH 3.5, 7.2 및 10)에서 P1의 일광자 흡수(a) 및 방출(b) 스펙트럼이다.
도 12. 표준 버퍼(pH 3.5, 7.2 및 10)에서 BH2, BH3 및 BH1L의 이광자 활성 스펙트럼이다. (a)는 BH2, (b)는 BH3 및 (c )는 BH1L이다(이광자 활성 단면적(δΦ)의 오차율은 15%).
도 13. (a), (c ), (e) 및 (g)은 BH1(a), BH2(c), BH3(e), 및 BH1L(g)로 처리한 헬라 세포의 TPM 이미지이다. (b), (d), (f) 및 (h)는 (a), (c ), (e) 및 (g)에 표시한 A-C 영역의 시간에 따른 상대적 이광자 여기 형광(TPEF; two-photon excited fluorescence) 강도 강도를 나타낸 그래프이다(수치화된 강도는 xyt 모드에서 1시간 동안 2초 마다 측정한 값이며, 이광자 여기 형광은 여기 파장 740 ㎚일 때, 400-600 ㎚에서 펨토 초 펄스로 수집되었다. 스케일바는 75 ㎛).
도 14. BH1(a), BH1L(b)로 처리한 헬라 세포에서 획득한 이광자 여기 형광 스펙트럼이다.
도 15. BH1 3 μM 처리한 헬라 세포의 TPM 이미지이다. 이광자 여기 형광은 여기 파장 740 ㎚일 때, (a) 440-460 ㎚(I IR) 및 (b) 500-550 ㎚ (I green)에서 펨토 초 펄스로 수집되었다. (c )는 슈도화된(pseudocolored) 가변색 이광자 형광 현미경 이미지(I green/I IR)이다 (스케일바는 30 ㎛).
도 16. NH4Cl 첨가하기 전(a, b 및 c)과 후(e, f 및 g)의 BH1L로 처리한 헬라 세포의 TPM 이미지이다. 이광자 여기 형광은 여기 파장 740 ㎚일 때, (a) 및 (e)는 440-460 ㎚(I IR)에서, (b) 및 (f)는 500-550 ㎚ (I green)에서 펨토 초 펄스로 수집되었다.
도 17. NH4Cl 첨가하기 전(a)과 후(b)의 BH1L로 처리한 헬라 세포의 실시간 가변색 이광자 형광 현미경 이미지 (I green/I IR)이다 (스케일바는 8 ㎛).
도 18. 쥐 해마 절편의 TPM 이미지이다. (a), (c ) 및 (e)는 BH1L으로 1시간 처리한 것이고, (b), (d) 및 (f)는 BH1으로 1시간 처리한 것이다. 이광자 여기 형광은 여기 파장 740 ㎚일 때, (a) 및 (b)는 440-460 ㎚(I IR), (c ) 및 (d)는 500-550 ㎚(I green)에서 펨토 초 펄스로 수집되었다. 투과 깊이 90-180 ㎛에서 Z-방향에 따른 pH를 시각화하기 위해 120 TPM 이미지를 축적하였다.
도 19. 쥐 해마 절편의 TPM 이미지이다. (a), (b) 및 (c )는 30 μM BH1L으로 1시간 처리한 것이고, (d), (e) 및 (f)는 BH1으로 1시간 처리한 것이다. 이광자 여기 형광은 여기 파장 740 ㎚일 때, (a) 및 (b)는 440-460 ㎚(I IR)에서, (c ) 및 (d)는 500-550 ㎚(I green)에서 펨토 초 펄스로 수집되었다. (c ) 및 (f)는 슈도화된(pseudocolored) 가변색 이광자 형광 현미경 이미지(I green/I IR)이다 (스케일바는 47 ㎛).
본 발명은 세포 내 pH를 측정하는 이광자 형광 프로브에 관한 것으로서, 낮은 에너지 여기원을 사용하므로 세포를 파괴하지 않고, 세포 내 pH를 실시간으로 정량화하여 측정할 수 있다.
히스티딘은 생체계에서 완충 능력을 가지는 이미다졸기를 포함하는 필수 아미노산이며, 벤즈이미다졸은 산성 세포 소기관에서 pKa 약 5.5를 가지는 이미다졸의 유도체이다. 본 발명은 벤즈이미다졸기를 양성자 수용체로 하여, 형광체인 2-아미노나프탈렌의 6번 위치에 도입시켜 수소 이온과의 반응에 따른 색 변화(청색-녹색)를 통해 세포 내 pH 4-7 영역을 0.001 pH 단위로 정량적으로 측정하고 실시간 모니터링 할 수 있는 이광자 형광 프로브를 제공한다.
이하, 본 발명을 상세하게 설명한다.
본 발명은 하기 화학식 1 내지 6으로 표시되는 이광자 형광 프로브를 제공한다.
[화학식 1]
Figure PCTKR2014013130-appb-I000013
[화학식 2]
Figure PCTKR2014013130-appb-I000014
[화학식 3]
Figure PCTKR2014013130-appb-I000015
[화학식 4]
Figure PCTKR2014013130-appb-I000016
[화학식 5]
Figure PCTKR2014013130-appb-I000017
[화학식 6]
Figure PCTKR2014013130-appb-I000018
여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이고, n은 0-10의 정수이며, 이하에서도 동일하다.
상기 화학식 1로 표시되는 이광자 형광 프로브는 세포, 세포 소기관 또는 생체 조직 등의 내부 pH 4-7 영역에서 수소 이온과 반응하여 형광을 나타내면서 pH를 이미지화할 수 있다. 상기 프로브는 벤즈이미다졸기에 전자 주개(electron donor) 또는 전자받개(electron acceptor)를 치환시켜 pKa 4-6.5 범위를 가진다. 도 8은 본 발명의 일 실시예에 따른 이광자 형광 프로브의 형광 색 변화를 나타낸 모식도 및 이광자 형광 현미경을 통해 관측한 세포 내 pH를 나타낸 이미지이다. 낮은 여기 파장(740 ㎚)을 세포에 조사하면 이광자 형광 프로브가 프로톤화되면서 청색에서 녹색으로의 색변화가 일어나게 되고 이광자 형광 현미경을 통해 상기 변화를 관측하고 pH를 정량화 시킬 수 있다.
또한, 상기 화학식 2 및 화학식 3으로 표시되는 이광자 형광 프로브는 삼차아민기를 도입하여 산성 기관에서 프로톤과 반응하여 4차 아민염을 형성하며, 약 pKa 10을 가진다. 특히, 엔도솜 또는 리소좀 내부에 선택적으로 위치하여 pH를 감지할 수 있다.
또한, 상기 화학식 4 내지 6으로 표시되는 이광자 형광 프로브는 말레이미드(maleimide)기를 도입하여 생체 분자의 티올기와 선택적인 공유결합을 하거나 숙신이미딜 에스터(succinimdyl ester)기를 도입하여 아민기와 선택적인 공유결합을 함으로써 올리고머 또는 단백질을 선택적으로 표식시켜 pH를 측정할 수 있다.
도 2a에서 볼 수 있는 바와 같이, pH 3.5, 7.2 및 10의 버퍼에서 본 발명의 일 실시예에 따른 이광자 형광 프로브의 여기 파장에 대한 이광자 활성 단면적(δΦ)을 나타낸 그래프이다. pH 3.5에서 단면적이 가장 큰 것을 알 수 있으며, 이는 산성 영역에서 본 발명의 이광자 형광 프로브가 pH 측정 활성이 높은 것을 의미한다.
도 2c는 본 발명의 일 실시예에 따른 이광자 형광 프로브를 pH에 따라 등방사성 점(I green) 기준 방출(I iso) 비(I green/I iso)를 나타낸 칼리브레이션 그래프이다. 도 2c에 나타난 바와 같이, 각 플롯(plots)들을 연결하면 pH 4.5 내지 pH 7에서 선형을 나타내는데, 이는 I green/I iso를 통해 선형 구간을 나타내는 pH 4.5 내지 pH 7 영역에서의 pH를 구할 수 있음을 의미한다.
본 발명의 이광자 형광 프로브는 세포 내 pH가 4-7인 영역에 대해 높은 형광 강도의 이광자 방출 스펙트럼을 나타낸다(도 4,6). 따라서, 세포 내 pH 4-7 영역에서 실시간으로 pH를 이미지화할 수 있다. 더 바람직하게는 pH 4.5-7 영역에서 pH를 실시간으로 정량적으로 측정하여 이미지화할 수 있다.
본 발명의 일 실시예에 의하면, 본 발명은 하기 화학식 A로 표시되는 화합물, 하기 화학식 B로 표시되는 화합물 및 p-톨루엔술폰산 일수화물을 혼합하여 반응시켜 제조되는 상기 화학식 1로 표시되는 이광자 형광 프로브의 제조방법을 제공한다.
[화학식 A]
Figure PCTKR2014013130-appb-I000019
[화학식 B]
Figure PCTKR2014013130-appb-I000020
여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이며, 이하에서도 동일하다.
본 발명의 다른 일 실시예에 의하면, 본 발명은 하기 단계를 포함하는 상기 화학식 2로 표시되는 이광자 형광 프로브의 제조방법을 제공한다:
(a) 하기 화학식 B로 표시되는 화합물, 하기 화학식 C로 표시되는 화합물 및 p-톨루엔술폰산 일수화물을 혼합하여 반응시켜 제조되는 하기 화학식 D로 표시되는 화합물을 제조하는 단계;
(b) 상기 (a) 단계의 화학식 D로 표시되는 화합물과 LiOH 수용액을 혼합하여 반응시켜 하기 화학식 E로 표시되는 화합물을 제조하는 단계; 및
(c ) 상기 (b) 단계의 화학식 E로 표시되는 화합물과 N,N-다이메틸에틸렌다이아민을 혼합하여 반응시키는 단계.
[화학식 B]
Figure PCTKR2014013130-appb-I000021
[화학식 C]
Figure PCTKR2014013130-appb-I000022
[화학식 D]
Figure PCTKR2014013130-appb-I000023
[화학식 E]
Figure PCTKR2014013130-appb-I000024
여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이며, 이하에서도 동일하다.
본 발명의 상기 화학식 1 내지 6으로 표시되는 이광자 형광 프로브는 낮은 에너지의 여기 파장(740 ㎛)을 세포에 조사하므로 세포 파괴 없이 생체 세포 및 100-200 ㎛ 깊이의 생체 조직까지 선택적으로 pH의 분포를 알 수 있고, 60분 이상 동안 실시간으로 측정이 가능하므로 pH 변화 및 활성을 이광자 형광 현미경을 통하여 이미지화할 수 있다.
이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
<실시예>
본 발명의 화학식 1로 표시되는 이광자 형광 프로브는 하기 반응식 1에 나타나는 바와 같이 제조할 수 있으며, 이에 의해 한정되지 않는다.
[반응식 1]
Figure PCTKR2014013130-appb-I000025
하기 화합물 1은 문헌 1에 기재된 방법으로 제조하였다(문헌 1: Kim, H. M.; Jeong, B. H.; Hyon, Ju-Y.; An, M. J., Seo, M. S.; Hong, J. H.; Lee, K. J.; Kim, C. H.; Joo, T.; Hong, Seok-C.; Cho, B. R. J. Am. Chem. Soc. 2008, 130, 4246).
실시예 1. 이광자 형광 프로브의 제조(BH1)
DMF 10 mL에 화합물 1 0.35 g, 1.9 mmol, o-페닐렌다이아민(o-phenylenediamine; 0.31 g, 22.9 mmol) 및 p-톨루엔술폰산 일수화물(p-tolunesulfonic acid monohydrate 0.072 g, 0.38 mmol)을 120 ℃, 질소분위기 하에서 6시간 동안 혼합 교반하였다. 실온에서 식힌 후, 혼합물에 물 50 mL를 첨가하여 여과하였다. 침전물을 증류수로 세척하고, 진공에서 건조시켰다. 조생성물(crude product)를 용리액(eluent)인 EtOAc/hexane(에틸렌아세테이트/헥산, 1 : 1 v/v)을 사용하여 컬럼 크로마토그래피(실리카 젤)로 정제하여 밝은 갈색 고형물을 수득하였다. 이하 BH1이라 한다.
수득률: 0.16 g (31%); 녹는점: 214-216 ℃; 1H NMR (d6-DMSO): δ 12.82 (br s, 1H), 8.46 (s, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.72-7.70 (m, 2H), 7.56 (br s, 2H), 7.18-7.16 (m, 2H), 7.02 (dd, J = 8.8, 1.6 Hz, 1H), 6.70 (d, J = 1.6 Hz, 1H), 6.27 (d, J = 4.8 Hz, 1H). 2.80 (d, J = 4.8 Hz, 3H). 13C NMR (100 MHz, d6-DMSO): δ 151.9, 148.6, 135.8, 128.9, 125.7, 125.6, 123.9, 122.3, 121.6, 118.7, 101.4, 29.6 ppm; HRMS (FAB+): m/z calcd for [C18H15N3+H+]: 274.1344, found: 274.1343.
실시예 2. 이광자 형광 프로브의 제조(BH2)
실시예 1와 동일하되 o-페닐렌다이아민(o-phenyyenediamine) 대신 4,5-다이플루오로-1,2-페닐렌다이아민을 사용하였으며, 밝은 노란색 고형물을 수득하였다. 이하 BH2이라 한다.
수득률: 33%; 녹는점: 237-240 ℃; 1H NMR (d6-DMSO): δ 13.01 (br s, 1H), 8.43 (s, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.71-7.69 (m, 2H), 7.60 (br s , 2H), 7.02 (d, J = 8.8, 1H), 6.70 (s, 1H), 6.29 (d, J = 4.8 Hz, 1H), 2.80 (d, J = 4.8 Hz, 3H). 13C NMR (100 MHz, d6-DMSO): δ 153.9, 148.7, 147.6, 147.5, 145.1, 136.0, 128.9, 125.8, 125.7, 125.6, 123.7, 121.7, 118.8, 101.4, 29.6 ppm; HRMS (FAB+): m/z calcd for [C18H13N3F2+H+]: 310.1156, found: 310.1156.
실시예 3. 이광자 형광 프로브의 제조(BH3)
실시예 1과 동일하되 o-페닐렌다이아민(o-phenyyenediamine) 대신 4,5-다이메톡시-1,2-페닐렌다이아민을 사용하였으며, 엷은 노란색 고형물을 수득하였다. 이하 BH3이라 한다.
수득률: 36%; 녹는점: 235-238 ℃; 1H NMR (d6-DMSO): δ 12.56 (br s, 1H), 8.34 (d, J = 1.6 Hz, 1H), 8.02 (dd, J = 8.8, 1.6 Hz, 1H), 7.69-7.67(m, 2H), 7.09 (br s, 2H), 7.00 (dd, J = 8.8, 1.6 Hz, 1H), 6.69 (d, J = 1.6 Hz, 1H), 6.20 (d, J = 4.4 Hz, 1H), 3.81 (s, 6H), 2.80 (d, J = 4.4 Hz, 3H); 13C NMR (100 MHz, d6-DMSO): δ 150.4, 148.3, 146.2, 135.5, 128.8, 125.8, 125.7, 124.7, 123.7, 122.9, 118.7, 101.5, 55.9, 29.7 ppm; HRMS (FAB+): m/z calcd for [C20H19O2N3+H+]: 334.1556, found: 334.1555.
실시예 4. 이광자 형광 프로브의 제조(BH1L)
화학식 2로 표시되는 이광자 형광 프로브는 하기 반응식 2 내지 4에 나타나는 바와 같이 제조할 수 있으며, 이에 의해 한정되지 않는다.
[반응식 2]
Figure PCTKR2014013130-appb-I000026
[반응식 3]
Figure PCTKR2014013130-appb-I000027
[반응식 4]
Figure PCTKR2014013130-appb-I000028
상기 화합물 2는 문헌 2에 기재된 방법으로 제조하였다(문헌 2: Masanta, G.; Lim, C. S.; Kim, H. J.; Han, J. H.; Kim, H. M.; Cho, B. R. J. Am. Chem.Soc. 2011, 133, 5698).
상기 화합물 3은 실시예 1과 동일하되 화합물 1 대신 상기 화합물 2를 사용하였으며, 수득률 51%로 엷은 노랑색 고형물을 수득하였다.
수득률: 51%; 녹는점: 163-165 ℃; 1H NMR (d6-DMSO): δ 12.87 (br s, 1H), 8.54 (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.60 (br s, 2H), 7.23-7.19 (m, 3H), 7.00 (s, 1H), 4.40 (s, 2H), 3.65 (s, 3H), 3.12 (s, 3H); 13C NMR (100 MHz, d6-DMSO): δ 170.6, 151.7, 147.6, 135.0, 129.2, 126.3, 125.6, 125.4, 124.0, 123.3, 116.0, 105.4, 53.1, 51.6, 39.0 ppm.
화합물 A는 화합물 3(0.03 g, 0.91 mmol)을 THF 5 mL에 용해하여 LiOH(0.22 g, 9.2 mmol) 수용액 3 mL를 관(cannula)을 통해 첨가하였다. 상기 반응 혼합물을 25 ℃에서 6시간 동안 교반하였다. 용매를 증발시키고, 증류수 5 mL를 혼합물에 첨가하였다. 혼합물을 pH가 3이 될 때까지 37%의 HCl용액으로 산성화하였다. 침전물을 필터로 정제하고 증류수, 다이에틸 에터 순으로 세척하고 진공관에서 건조하였다. 더 이상의 정제없이 노란색의 고형물인 화합물 A를 얻었다.
수득률: 0.27 g (90 %); 녹는점: 205-208 ℃; 1H NMR (d6-DMSO): δ 12.80 (br s, 1H), 8.51 (s, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.82 (d, J = 9.2 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.58 (br s, 2H), 7.22-7.16 (m, 3H), 6.96 (d, J = 2.4 Hz, 1H), 4.24 (s, 2H), 3.11 (s, 3H). 13C NMR (100 MHz, d6-DMSO): δ 171.7, 151.8, 147.9, 135.2, 129.1, 126.3, 125.5, 124.0, 123.0, 121.7, 116.1, 105.1, 53.5, 39.1 ppm.
화합물 A(0.2 g, 0.06 mmol), 1,3-다이클로로헥실 카보다이이미드(1,3-dicyclohexyl carbodiimide, 0.14 g, 0.66 mmol) 및 1-하이드록시벤조트리아졸(0.089 g, 0.66 mmol)을 10 mL CH2Cl2 첨가하여 질소 분위기하에서 실온에서 1 시간동안 교반하였다. 혼합물에 N,N-다이메틸에틸렌다이아민((N,N-dimethyl)ethylenediamine, 0.058 g, 0.66 mmol)을 첨가하여 질소 분위기하에서 12시간 동안 교반하였다. 침전물을 정제하고, 감압농축하였다. 수득물을 컬럼 크로마토그래피 (실리카 겔, CHCl3/MeOH (10:1 - 4:1) )로 여과하여 밝은 노란색의 고형물을 얻었다. 이하 BH1L라고 한다.
수득률: 0.17 g (71 %); 녹는점. 235-240 °C; 1H NMR (d6-DMSO): δ 12.84 (br s, 1H), 8.52 (s, 1H), 8.13 (dd, J = 8.4, 1.6 Hz, 1H), 7.89(br t, J = 6.0 Hz, 1H, amide-NH), 7.83 (d, J = 9.2 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.51 (d J = 7.2 Hz, 1H), 7.19-7.15 (m, 3H), 6.95 (d, J = 2.4 Hz, 1H), 4.06 (s, 2H), 3.18 (q, J = 6.4 Hz, 2H), 3.12 (s, 3H), 2.29 (t, J = 6.4 Hz, 2H), 2.13 (s, 6H). 13C NMR (100 MHz, d6-DMSO): δ 169.0, 151.7, 147.9, 135.1, 129.0, 126.2, 125.5, 125.4, 124.0, 123.1, 116.2, 105.2, 58.1, 55.7, 45.1, 39.1, 36.6 ppm HRMS (FAB+): m/z calcd for [C24H27O1N5+H+]: 402.2294, found: 402.2293.
비교예 1. 피리딘기를 포함하고 있는 이광자 형광 프로브의 제조(P1)
하기 화학식 P1으로 표시되는 이광자 형광 프로브는 하기 반응식 5에 나타나는 바와 같이 제조하였다.
[반응식 5]
Figure PCTKR2014013130-appb-I000029
화합물 4(6-브로모-N-메틸-2-나프틸아민)는 문헌 1에 기재된 방법으로 제조하였다(문헌 1: Kim, H. M.; Jeong, B. H.; Hyon, Ju-Y.; An, M. J., Seo, M. S.; Hong, J. H.; Lee, K. J.; Kim, C. H.; Joo, T.; Hong, Seok-C.; Cho, B. R. J. Am. Chem. Soc. 2008, 130, 4246).
화합물 4(0.2 g, 0.85 mmol), 4-피리디닐보린 산(0.16 g, 1.28 mmol), 키스(트리페닐포스핀)팔라듐(0)(Tetrakis(triphenylphosphine)palladium(0), 0.093 g, 0.034 mmol)을 10 mL N,N-다이메틸아세트아마이드에 용해하였다. 상기 혼합물에 Cs2CO3 (0.55 g, 1.69 mmol) 수용액 1 mL를 진공에서 첨가하였다. 혼합물에서 질소로 15분 동안 가스를 제거하고, 질소 분위기하에서 18시간 동안 120 ℃에서 교반하였다. 실온으로 식힌 후, 혼합물을 물 50 mL로 여과하였다. 침전물을 증류수로 세척하고 진공에서 건조하였다. 수득물을 CH2Cl2로 재결정하여 밝은 갈색의 고형물을 얻었다.
수득률: 0.11 g (55 %); 녹는점: 223-226 ℃; 1H NMR (d6-DMSO): δ 8.60-8.59 (m, 2H), 8.15 (s, 1H), 7.77-7.69 (m, 5H), 7.00 (dd, J = 8.8, 2.0 Hz, 1H), 6.69 (s, 1H), 6.19 (d, J = 4.8 Hz, 1H), 2.80 (d, J = 4.8 Hz, 3H). 13C NMR (100 MHz, d6-DMSO): δ 149.8, 148.4, 147.0, 135.4, 128.9, 128.7, 126.1, 125.7, 124.0, 120.4, 118.6, 101.1, 29.6 ppm HRMS (FAB+): m/z calcd for [C16H14N2+H+]: 235.1236, found: 235.1235.
<재료의 준비 및 시험 방법>
1. 분광기 장치
흡수 스펙트럼은 S-3100 UV-Vis 스펙트로미터, 형광 스펙트럼은 FluoroMate FS-2 형광 스펙트로미터로 1 cm 표준 쿼츠 세포에서 측정하였다. 형광 양자 효율은 9,10-다이페닐안트라센 (Φ = 사이클로헥산에서 0.93)으로 구하였다.
2. pH 값
DMSO(디메틸설폭사이드, 1.0 × 10-3 M)에 이광자 형광 프로브 3 μL를 표준 용액 3 mL가 들어있는 큐벳에 첨가하였다. 본 발명의 일 실시예에 따라 제조된 이광자 형광 프로브, BH 1-3 및 BH1L의 pH는 하기 식에 의해 구하였다.
Figure PCTKR2014013130-appb-I000030
R은 주어진 pH에서 등방사성 점(I iso) 및 500-550 ㎚ (I green)의 관측된 비이다. R maxR min는 R의 최대, 최소 한계 값이고, C는 기울기이다. I a/I b는 R의 분모를 구하기 위해 선택된 파장에서의 pH 10에 대한 pH 3.5의 형광 강도 비이다. 이 경우, 상기 정정은 정확한 등방사성 점을 이용하여 소멸된다. 이광자 모드에서의 pKa 값을 구하기 위해, 이광자 여기 형광 스펙트럼을 DDC 측정기(Monora 320 spectrograph set with Andor iDus DV401A-BV)로 나타내었다. 이광자 형광 프로브들은 모델-잠금 티타늄-사파이어 레이져 광원 장치(Mai Tai HP, Spectra Physics, 초당 80 MHz 펄스, 100 fs 펄스 폭)에 740 ㎚ 파장, 2510 mW(초점 양상에서 200 mW에 상응) 출력에서 여기되었다.
3. 이광자 형광 단면적 측정
이광자 단면적(δ)은 펨토 초단위(femto second, fs) 형광 측정법을 이용하여 측정하였다. 프로브(1.0×10-6 M)를 각각 표준 버퍼(pH 3.5, 7.2 및 10)에 용해하고, 형광 강토를 나타내는 이광자를 720-880 ㎚에서 로다민(rhodamine) 6G를 사용하여 측정하였다. 레퍼런스와 샘플의 이광자 여기 형광 스펙트럼 강도는 동일한 여기상태 파장에서 결정되었다. 이광자 형광 프로브의 단면은 하기 수학식 1을 이용하여 계산하였다.
[수학식 1]
δ = δr(SsФrfrcr)/(SrФsfscs)
상기 수학식 1에서, s 및 r은 샘플 및 레퍼런스 분자를 나타내고, S는 CCD 검출기로부터 수집된 신호 강도를 나타내며, Ф는 형광 양자 수율을 나타내고, f는 실험기기의 전체 형광 수집 효율을 나타내며, c는 용액 내 분자밀도를 나타내고, δr는 레퍼런스 분자의 이광자 형광 프로브 단면적을 나타낸다.
4. 세포 배양
헬라(HeLa) 자궁경부암 세포(ATCC, Manassas, VA, USA)를 DMEM(WelGene Inc, 서울, 한국)에서 10% FBS(WelGene), 페니실린(100 units/mL) 및 스트렙토마이신(100 μg/mL)을 공급하면서 배양하였다. 이미지화하기 이틀 전, 세포를 유리바닥 디쉬(NEST)에 옮겼다. 모든 세포들이 37 ℃에서 공기/CO2 비율이 95 : 5인 가습환경에서 성장되었다. 라벨링을 하기위해 성장 매체를 제거하였고, 무세럼(serum-free) DMEM으로 변경하였다. 상기 세포에 3 μM 프로브를 주입하여 37 ℃에서 30분 동안 배양하였다.
5. 이광자 형광 현미경(TPFM; Two-Photon Fluorescence Microscopy)
세포 및 조직에 주입(labeled)된 이광자 형광 프로브의 현미경 이미지는 스펙트럼 공 초점 및 다중광자 현미경(spectral confocal and multiphoton microscopes, Leica TCS SP8 MP)을 사용하였다. 이광자 형광 프로브 현미경 이미지는 이광자 형광 프로브를 모델-잠금 티타늄-사파이어 레이져 광원 장치(Mai Tai HP, Spectra Physics, 초당 80 MHz 펄스, 100 fs 펄스 폭)를 이용하여 740 ㎚ 파장에서 2510 mW 출력으로 여기시켜 DMI6000B 현미경 (Leica)으로 관측하였다. 440-460 ㎚(IR) 및 500-550 ㎚(green) 범위에서 이미지를 얻기 위해, 내부 PMTs가 신호를 수집하기위해 사용하였다. 가변색(Ratiometric) 이미지 프로세싱 및 분석은 MetaMorph 소프트웨어를 사용하여 수행하였다.
6. 세포 pH 칼리브레이션
pH 칼리브레이션 곡선은 이온투과담체 및 BH1 또는 BH1L로 처리한 헬라 세포의 I green/I IR에 의해 나타내었다. 세포를 3.0 μL의 1 mM BH1 또는 1 mM BH1L가 포함된 DMSO 저장액에서 37 ℃, 5% CO2 하에 30분 동안 배양하였고, 세포 미디어(extracellular media)는 1 mL 칼리브레이션 버퍼(125 mM KCl, 20 mM NaCl, 0.5 mM CaCl2, 0.5 mM MgCl2, 5 μM nigericin, 5 μM monensin, 및 25 mM buffer; pH 3.5, 4.0, 4.3, 5.0, 5.2의 아세테이트; pH 5.5, 6.0의 MES; pH 6.5, 7.0, 8.0의 HEPES)에 두었다. 그 후 상온에서 세포를 칼리브레이션 버퍼에 15-20분 동안 처리하였다. BH1 또는 BH1L의 440-460 nm (I IR) 및 500-550 nm (I green) 에서의 이광자 형광 프로브 강도는 pH에 따라 변하는데, pH 대 I green/I IR 의 플롯(plots)들을 pH 칼리브레이션 곡선에 나타내었다.
7. 광안정성
BH 1-3 및 BH1L의 광안정성은 프로브가 라벨링된 헬라 세포의 지정된 세 지점에서 시간에 따라 이광자 여기 형광 강도의 변화를 모니터링하면서 나타내었다(도 13). 이광자 여기 형광 강도는 한 시간 동안 거의 같은 값을 유지하면서 높은 광 안정성을 나타내었다.
8. 세포 독성
본 발명의 이광자 형광 프로브의 헬라 세포에 대한 독성을 측정하기 위해, MTS 분석(Cell Titer 96H; Promega, Madison, WI, USA)방법을 사용하여, 도 3에 나타내었다.
9. 쥐 해마 조직의 제조 및 착색
2주된 쥐의 해마로부터 해마 단편을 준비하였다. 관상 단편은 인공뇌척수액(artificial cerebrospinal fluid, ACSF; 138.6 mM NaCl, 3.5 mM KCl, 21 mM NaHCO3, 0.6 mM NaH2PO4, 9.9 mM D-glucose, 1 mM CaCl2, 및 3 mM MgCl2) 내에서 진동 블레이드 절단기(vibrating-blade microtome)를 이용하여 400 ㎛ 두께로 절단하였다. 조각들을 37 ℃에서 40분 동안 95% O2 및 5% CO2를 내뿜는 ACSF 내에서 10 mM의 BCa1 및 20 mM의 BH1 및 BH1L로 배양시켰다. 그 후, 단편들을 ACSF로 3회 세척하고, 유리 바닥 디쉬(glass-bottomed dishes)로 이동시키고, 이를 전자현미경으로 관찰하였다. 이광자 현미경 이미지는 90-180 ㎛ 깊이에서 관측하였다.
시험예 1. 용해도 측정
상기 실시예에서 제조한 이광자 형광 프로브 일정 양을 DMSO(디메틸설폭사이드, 1.0 × 10-2 M) 에 용해하여 저장하였다. 상기 용액을 6.0 × 10-3 내지 6.0 × 10-5로 희석하고, 버퍼 용액((0.1 M citric acid, 0.1 M KH2PO4, 0.1 M Na2B4O7, 0.1 M Tris, 0.1 M KCl, pH 7.2) 3 mL가 들어있는 큐벳(cuvette)에 마이크로 주사(micro syringe)로 첨가하였다. 버퍼 용액에서 DMSO의 농도는 0.2%로 유지하였다.
도 9는 본 발명의 본 발명의 실시예 및 비교예에 따라 제조된 이광자 형광 프로브의 농도에 따른 흡수율을 나타낸 그래프이다. 상기 그래프에서 플롯(plots)은 낮은 농도에서는 선형을 나타내며, 농도가 높아질수록 하향 곡선을 나타냈다.
직선 구간의 최대점은 용해도를 의미한다. 본 발명의 실시예(BH1, BH2, BH3, BH1L) 및 비교예(P1)의 용해도는 pH 7.2 버퍼 용액에서 각각 6, 2, 10, 10 및 2 μM 이며, 이는 세포 염색을 하기에 충분한 값이다.
시험예 2. pH, pKa 및 광물리적 특성 평가
실시예 및 비교예에서 제조한 이광자 형광 프로브의 pKa 및 광물리적 실험 결과를 하기 표 1에 나타내었다. 모든 측정은 표준 버퍼 용액(0.1 M citric acid, 0.1 M KH2PO4, 0.1 M Na2B4O7, 0.1 M tris(hydroxymethyl)aminomethane, 0.1 M KCl)에서 수행하였다.
표 1
Figure PCTKR2014013130-appb-T000001
b: 일광자 흡수 스펙트럼 최대 파장 (단위: ㎚).
c: 일광자 방출 스펙트럼 최대 파장 (단위: ㎚).
d: 형광 양자 효율(Fluorescence quantum yield).
e: 일광자 모드에서 측정한 pKa. 괄호 안은 이광자 모드에서 측정한 pKa.
f: 이광자 흡수 스펙트럼 최대 파장 (단위: ㎚).
g: 10-50 cm4s/photon에서의 광자당 피크 이광자 단면적 (단위: GM).
h: 이광자 동작 단면적(two photon action cross-section) (단위: 10-50 cm4s, 오차 범위: ± 15%).
(1) 일광자 모드에서의 광물리적 특성
pH 7.2에서, BH1은 337 ㎚에서 최대 흡수를, 118 ㎚에서 최대 형광 방출을 나타나 스토크스 이동(Stodes shift)이 118 ㎚로 비교적 큰 값을 나타냈다(표 1). pH 10에서도 거의 유사한 결과가 나타났다. 반면, pH가 7.2에서 3.5로 변화하면서, BH1의 최대 흡수 및 최대 형광 방출은 더 긴 파장인 368, 494 ㎚로 이동하였다(도 1a 및 표 1). 이와 같은 적색 이동은 벤즈이미다졸기의 질소가 양이온화되기 때문인 것으로 보인다. 따라서, 분자 전하 이동(intramolecular charge transfer; ICT)을 강화시킨다. 이는 BH1 및 BH1-H+의 형광 양자 효율(Φ)이 각각 1 및 0.76으로 가장 큰 값을 가지며, 생체 버퍼에서 pH 프로브로서 적합한 것임을 의미한다. 또한, λfl인 455 ㎚ 및 494 ㎚ 사이에서 등방사성 점(isoemission point, 474 ㎚)이 관측되었다. 이와 유사한 결과가 BH2 및 BH3에서도 나타났다(도 10 및 표1). 예상대로, BH1L의 스펙트럼 역시 BH1과 거의 동일하게 나타났다(도 1b 및 표 1). 반면, P1은 pH 2에서 무시할만한 형광 양자 효율(Φ= 0.008)이 관측되었고, pH 3.5에서는 형광이 나타나지 않았다. 반면, 최대 흡수(λabs)는 점진적으로 333 ㎚에서 395 ㎚로 이동하였다(표 1 및 도 11). 따라서, BH1 내지 BH3은 pH가 중성에서 산성으로 변화하면서 청색에서 녹색으로의 방출 색 변화 및 생체 버퍼에서 가장 큰 형광 양자 효율을 보였다.
(2) pH 및 pKa
BH1 내지 3의 짝산의 pKa는 등방사성 점(I iso)과 500-550 ㎚(I green)의 방출비(emission; I green/I iso)의 적정 곡선으로부터 구하였다. pKa 4.92-6.11 범위는 산성 영역을 감지할 수 있음을 의미한다. pKa 이동은 이온화 부위의 전자 받개(electron withdrawing, BH2에서 F) 또는 전자 주개(electron donating, BH3에서 OMe) 때문이다. 또한, BH1L의 pKa 값은 BH1과 거의 동일한 것으로 나타났다.
(3) 이광자 모드에서의 광물리적 특성
본 발명의 이광자 형광 프로브의 이광자 모드에서의 pH 측정능력을 평가하였다. pH 7.2 및 3.5에서 BH1의 이광자 형광 스펙트럼(Φδ)는 각각 40 및 140 GM을 나타냈다(표 1 및 도 2a). 전자 끄는 기를 가지고 있는 BH1-H+의 최대 이광자 형광 스펙트럼(Φδmax)은 BH1 보다 3.5 배 더 크므로 전자 받개 및 전자 주개 사이에서 분자전하이동(ICT)을 강화할 수 있다. 이와 유사한 결과가 BH2 및 이의 양이온에서도 나타났으며, BH3은 BH1 보다 약 2배 더 작은 최대 Φδ을 나타냈다(표 1 및 도 12). 특히, BH1L과 이의 양이온은 BH1 보다 2배 더 큰 최대 Φδ을 나타냈다(표 1 및 도 12). 아마도 이는 주변에 치환된 작용기 때문인 것으로 보인다. 또한, pH에 대한 BH1의 이광자 여기 형광(TPEP) 스펙트럼의 특성은 일광자 모드의 결과와 유사하게 나타났다(표 1 및 도 2의b,c) 반면, 이광자 형광 방출 비(I green/I iso)는 pH 값이 7.2에서 3.5로 변화함에 따라 10배 정도 증가하였고, 이 값은 일광자 모드에서 얻은 값 보다 2배 이상 높다. BH1-H+의 Φδmax이 BH1 보다 3배 크기 때문에(도 2a), 이와 같은 결과는 일광자 모드와 비교해서 500-550 ㎚(I iso )에서 더 큰 이광자 여기 형광 강화에 기여할 수 있음을 나타낸다(도 1a 및 2b). 유사한 결과가 BH2, BH3 및 BH1L에서도 나타났다(도 10).
시험예 3. 세포 독성 평가
BH1을 사용하여 TPM으로 세포 내 pH를 측정하였다. 740 ㎚ 이광자 여기(TP exctation)에서 이온투과담체(ionophere)로 처리한 헬라 세포에 BH1을 주입하였다. 그 결과 각각 λfl 값이 445 및 490 ㎚에서 이광자 방출 형광 스펙트럼을 방출했다. 이 값은 버퍼와 이동 값이 10 ㎚ 차 내외로서 거의 일치한다. BH1의 방출 스펙트럼이 용매 극성 증가에 따라 점진적인 이동을 나타내는데 이는 본 발명의 프로브가 세포 내가 버퍼 내에서 보다 더 균질하고 소수성임을 의미한다. 상기 가변색 이미징(I green/I IR) 결과는 내부 기준 창(internal reference window)인 440-460 ㎚(I IR) 및 pH 인식 창(pH recognition window)인 500-550 ㎚(I green)를 이용하여 구하였다(도 4a). 또한, BH1으로 처리한 헬라 세포의 이미지화 값(I green/I IR)은 세포 내 여러 구획에 거쳐 pH 5.6-7.4 범위에서 나타났다(도 4d 및 S7). 도 4b에 나타난 바와 같이, 그래프의 기울기가 거의 선형에 가까우며 이는 pH 4-7 영역에서 가변색 이미징(I green/I IR)를 이용하여 pH를 정량화할 수 있는 것을 의미한다.
실시예 5. 리소좀 내 pH 이미지화
리소좀 표적 이광자 형광 프로브인 BH1L을 이용하여 리소좀 내 pH를 측정하였다. BH1L이 리소좀 내 특정 부위에 위치하는지 알아보기 위해, 헬라(HELA) 세포에 각각 BH1L 및 리소좀 일광자 형광 프로브로 알려진 Lysotracker Red DND-99 (LTR)를 처리하였다. 도 5는 이광자 형광 현미경 이미지(도5a) 및 일광자 형광 현미경 이미지(도 5b) 및 각 이미지를 겹친 사진(도 5c)이다(피어슨 colocalization 계수: 0.095). 또한, 이온투과담체로 처리한 헬라 세포에 pH 8 및 3.5에서 BH1L을 주입하여 이미지화한 결과, λfl이 445 및 485 ㎚에서 이광자 여기 형광 스펙트럼이 방출되었다(도 6a). 이는 버퍼에서 측정한 결과와 거의 유사하다(도 10). 따라서 이온투과담체 및 BH1L로 처리한 헬라 세포의 pKa는 버퍼에서와 비슷한 5.63 ± 0.08 임을 알 수 있다.
BH1L로 처리한 헬라 세포의 가변색 이미징(I green/I IR)은 리소좀 내에서 다양한 pH 값을 나타낸다(도 6). 이는 BH1L을 이용하여 pH 4.6-5.9 범위에서 각 구역에서의 pH를 측정할 수 있음을 의미한다(도 16).
또한, 실시간으로 리소좀 내의 pH 변화를 관측하였다. 리소좀 내 pH를 서서히 증가시키기 위해 약염기인 NH4Cl 5 mL를 첨가하였고, pH 값이 올라가기 시작하면서 4분 내에 pH 6.5-6.7 까지 도달하였다(도 6g 및 S9). 가장 특징적인 것은 0.1 pH마다 작은 파동이 눈에 띄게 관찰되었다(도 17). 이는 BH1L이 살아있는 세포에서 리소좀 내 pH 값을 측정할 수 있음을 의미한다.
실시예 6. 쥐의 뇌 조직 pH 이미지화
본 발명의 이광자 형광 프로브를 이용하여 학습과 기억을 담당하는 부분인 쥐의 해마 돌기의 미세 박편을 모니터링하였다. 뇌 조직의 구조는 비균질하기 때문에 90-180 ㎛ 깊이에서 120개의 가변색 이미징(I green/I IR)을 측정하였다(도 18). 조직 내 세포의 영상화에 있어서 본 발명의 BH1L이 갖는 유용성을 증명하기 위하여, 쥐의 해마상 돌기의 미세박편을 모니터링하였다.
산성 pH 영역인 CA1, CA3 및 DG(dentate gyrus) 구역에서 전체적인 pH 분포가 나타났다(도 7a). 특히 신경과 유전자 발현을 담당하는 세포 유형 및 기능면에서 DG 구역과 CA 구역의 구별이 잘 나타났다. DG에서의 산성 pH는 상기 구역에서 세포 대사과정과 관련이 있는 것으로 보이며, 이는 생물학적 기능을 조사하기위한 연구의 필요성을 나타낸다. 또한, 고배율의 이미지는 투과깊이 약 100 ㎛에서 DG 내 각 세포의 산성 부분을 명확히 나타낼 수 있다(도 7b 및 S11). 이와 비슷한 결과가 BH1로 처리한 조직에서 관측되었다(도 7c,d).
따라서, 이상의 실험 결과들은 본 발명의 이광자 형광 프로브가 이광자 현미경을 이용하여 살아있는 세포 및 조직에서 세포 내 산성 구획의 pH 값을 명확하게 측정할 수 있음을 나타낸다.

Claims (12)

  1. 하기 화학식 1 내지 6으로 표시되는 이광자 형광 프로브:
    [화학식 1]
    Figure PCTKR2014013130-appb-I000031
    [화학식 2]
    Figure PCTKR2014013130-appb-I000032
    [화학식 3]
    Figure PCTKR2014013130-appb-I000033
    [화학식 4]
    Figure PCTKR2014013130-appb-I000034
    [화학식 5]
    Figure PCTKR2014013130-appb-I000035
    [화학식 6]
    Figure PCTKR2014013130-appb-I000036
    여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이고, n은 0-10의 정수이다.
  2. 제1항에 있어서, 상기 이광자 형광 프로브는 세포, 세포 소기관 또는 생체 조직의 pH 4-7 영역에서 수소 이온과 반응하여 형광을 나타내는 것을 특징으로 하는 이광자 형광 프로브.
  3. 제1항에 있어서, 상기 화학식 2 및 화학식 3으로 표시되는 이광자 형광 프로브는 엔도솜 내 또는 리소좀 내 수소 이온과 반응하여 형광을 나타내는 것을 특징으로 하는 이광자 형광 프로브.
  4. 제1항에 있어서, 상기 화학식 4 내지 화학식 6으로 표시되는 이광자 형광 프로브는 올리고머 또는 단백질의 수소 이온과 반응하여 형광을 나타내는 것을 특징으로 하는 이광자 형광 프로브.
  5. 하기 화학식 A로 표시되는 화합물, 하기 화학식 B로 표시되는 화합물 및 p-톨루엔술폰산 일수화물을 혼합하여 반응시켜 제조되는 하기 화학식 1로 표시되는 이광자 형광 프로브의 제조방법:
    [화학식 A]
    Figure PCTKR2014013130-appb-I000037
    [화학식 B]
    Figure PCTKR2014013130-appb-I000038
    [화학식 1]
    Figure PCTKR2014013130-appb-I000039
    여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이다.
  6. (a) 하기 화학식 B로 표시되는 화합물, 하기 화학식 C로 표시되는 화합물 및 p-톨루엔술폰산 일수화물을 혼합하여 반응시켜 하기 화학식 D로 표시되는 화합물을 제조하는 단계;
    (b) 상기 (a) 단계의 화학식 D로 표시되는 화합물과 LiOH 수용액을 혼합하여 반응시켜 하기 화학식 E로 표시되는 화합물을 제조하는 단계; 및
    (c) 상기 (b) 단계의 화학식 E로 표시되는 화합물과 N,N-다이메틸에틸렌다이아민을 혼합하여 반응시키는 단계를 포함하는 하기 화학식 2로 표시되는 화합물의 제조방법:
    [화학식 B]
    Figure PCTKR2014013130-appb-I000040
    [화학식 C]
    Figure PCTKR2014013130-appb-I000041
    [화학식 D]
    Figure PCTKR2014013130-appb-I000042
    [화학식 E]
    Figure PCTKR2014013130-appb-I000043
    [화학식 2]
    Figure PCTKR2014013130-appb-I000044
    여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R2는 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이다.
  7. 하기 화학식 1 내지 6으로 표시되는 이광자 형광 프로브 중 어느 하나를 이용하여 이광자 형광 현미경을 통해 세포 내 pH를 이미지화하는 방법:
    [화학식 1]
    Figure PCTKR2014013130-appb-I000045
    [화학식 2]
    Figure PCTKR2014013130-appb-I000046
    [화학식 3]
    Figure PCTKR2014013130-appb-I000047
    [화학식 4]
    Figure PCTKR2014013130-appb-I000048
    [화학식 5]
    Figure PCTKR2014013130-appb-I000049
    [화학식 6]
    Figure PCTKR2014013130-appb-I000050
    여기서, X1 및 X2는 각각 독립적으로 H, F, Cl, Br, OCH3, OH, NH2, N(CH3)2, NHCH3, NCS, 또는 CO2H이고, R1 및 R2는 각각 독립적으로 H, CH3, CH2(CH2)nCH3, CH2(CH2)nCO2H, CH2(CH2)nOH 또는 CH2(CH2)nSO3H이고, n은 0-10의 정수이다.
  8. 제7항에 있어서, 상기 이미지화의 깊이는 100-200 ㎛인 것을 특징으로 하는 세포 내 pH를 이미지화하는 방법.
  9. 제7항에 있어서, 상기 세포는 pH 4-7의 생세포, 세포소기관 또는 세포 조직인 것을 특징으로 하는 세포 내 pH를 이미지화하는 방법.
  10. 제9항에 있어서, 상기 세포소기관은 엔도솜 또는 리소좀인 것을 특징으로 하는 세포 내 pH를 이미지화하는 방법.
  11. 제10항에 있어서, 상기 화학식 2 또는 화학식 3으로 표시되는 이광자 형광 프로브를 이용하는 것을 특징으로 하는 세포 내 pH를 이미지화하는 방법.
  12. 제7항에 있어서, 상기 화학식 4 내지 6으로 표시되는 이광자 형광 프로브 중 어느 하나를 이용하여 올리고머 또는 단백질 포함하는 세포 내 pH를 이미지화하는 방법.
PCT/KR2014/013130 2014-12-31 2014-12-31 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법 WO2016108316A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/013130 WO2016108316A1 (ko) 2014-12-31 2014-12-31 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/013130 WO2016108316A1 (ko) 2014-12-31 2014-12-31 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법

Publications (1)

Publication Number Publication Date
WO2016108316A1 true WO2016108316A1 (ko) 2016-07-07

Family

ID=56284468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/013130 WO2016108316A1 (ko) 2014-12-31 2014-12-31 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법

Country Status (1)

Country Link
WO (1) WO2016108316A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928949A (zh) * 2018-09-12 2019-06-25 兰州大学 一种新型荧光探针的制备及其长期稳定成像溶酶体的应用
CN113831291A (zh) * 2021-09-29 2021-12-24 山西大学 基于苯并咪唑的多功能溶酶体pH探针及其制备方法和应用
CN117263915A (zh) * 2023-11-23 2023-12-22 山东海化集团有限公司 一种磺酸盐类三联吡啶衍生物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035522A1 (ja) * 2002-08-30 2004-04-29 Bf Research Institute, Inc. プリオン蛋白蓄積性疾患の診断プローブおよび治療薬ならびにプリオン蛋白の染色剤
JP2004250411A (ja) * 2003-02-21 2004-09-09 Bf Kenkyusho:Kk アミロイドβ蓄積性疾患の診断プローブおよび治療用化合物
KR20120013627A (ko) * 2010-08-05 2012-02-15 아주대학교산학협력단 서로 다른 형광색의 이광자 형광 프로브를 이용하여 나트륨/칼슘 활성을 동시에 이미지화하는 방법 및 이광자 형광 프로브의 제조방법
KR20130100620A (ko) * 2012-03-02 2013-09-11 아주대학교산학협력단 생체 조직 내 일산화질소 활성 감지를 위한 이광자 형광 프로브 및 이의 제조 방법과 이를 이용한 생체 조직 내 일산화질소 활성의 영상화 방법
KR20150051009A (ko) * 2013-11-01 2015-05-11 아주대학교산학협력단 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 pH 이미지화 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035522A1 (ja) * 2002-08-30 2004-04-29 Bf Research Institute, Inc. プリオン蛋白蓄積性疾患の診断プローブおよび治療薬ならびにプリオン蛋白の染色剤
JP2004250411A (ja) * 2003-02-21 2004-09-09 Bf Kenkyusho:Kk アミロイドβ蓄積性疾患の診断プローブおよび治療用化合物
KR20120013627A (ko) * 2010-08-05 2012-02-15 아주대학교산학협력단 서로 다른 형광색의 이광자 형광 프로브를 이용하여 나트륨/칼슘 활성을 동시에 이미지화하는 방법 및 이광자 형광 프로브의 제조방법
KR20130100620A (ko) * 2012-03-02 2013-09-11 아주대학교산학협력단 생체 조직 내 일산화질소 활성 감지를 위한 이광자 형광 프로브 및 이의 제조 방법과 이를 이용한 생체 조직 내 일산화질소 활성의 영상화 방법
KR20150051009A (ko) * 2013-11-01 2015-05-11 아주대학교산학협력단 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 pH 이미지화 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, H. J. ET AL.: "Benzimidazole-Based Ratiometric Two-Photon Fluorescent Probes for Acidic pH in Live Cells and Tissues", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, 6 November 2013 (2013-11-06), pages 17969 - 17977 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928949A (zh) * 2018-09-12 2019-06-25 兰州大学 一种新型荧光探针的制备及其长期稳定成像溶酶体的应用
CN113831291A (zh) * 2021-09-29 2021-12-24 山西大学 基于苯并咪唑的多功能溶酶体pH探针及其制备方法和应用
CN117263915A (zh) * 2023-11-23 2023-12-22 山东海化集团有限公司 一种磺酸盐类三联吡啶衍生物及其制备方法和应用
CN117263915B (zh) * 2023-11-23 2024-04-05 山东海化集团有限公司 一种磺酸盐类三联吡啶衍生物及其制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam
Ye et al. A dual-channel responsive near-infrared fluorescent probe for multicolour imaging of cysteine in living cells
Vegesna et al. pH-activatable near-infrared fluorescent probes for detection of lysosomal pH inside living cells
Hall et al. PET modulated fluorescent sensing from the BF 2 chelated azadipyrromethene platform
Wang et al. A novel p-aminophenylthio-and cyano-substituted BODIPY as a fluorescence turn-on probe for distinguishing cysteine and homocysteine from glutathione
Niu et al. BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths
JP6351511B2 (ja) 非対称Siローダミン及びロドールの合成
Zhang et al. A ratiometric lysosomal pH probe based on the coumarin–rhodamine FRET system
WO2013172544A1 (ko) 새로운 이광자 흡수 형광체 및 이를 이용한 기질 감지 방법
Yang et al. A turn-on near-infrared fluorescence probe with aggregation-induced emission based on dibenzo [a, c] phenazine for detection of superoxide anions and its application in cell imaging
WO2015072627A1 (ko) 황화수소 감지용 일광자 및/또는 이광자 형광 프로브, 이를 이용한 세포 내 황화수소의 영상화 방법 및 이의 제조방법
WO2018052243A1 (ko) 황화수소 검출용 형광 프로브 및 이의 제조방법
WO2016108316A1 (ko) 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 ph 이미지화 방법
WO2014181960A2 (ko) 타이로신 인산화효소를 감지하는 형광 프로브 및 이의 용도
WO2019039888A1 (ko) 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법
WO2021015544A1 (ko) 벤조퀴놀리지늄계 화합물, 이의 제조 방법 및 이를 포함하는 조영제 조성물
Chao et al. A Ni-NTA-based red fluorescence probe for protein labelling in live cells
KR101584606B1 (ko) 이광자 형광 프로브, 이의 제조방법 및 이를 이용한 pH 이미지화 방법
Yuan et al. A novel highly selective near-infrared and naked-eye fluorescence probe for imaging peroxynitrite
WO2018062811A1 (ko) 포름알데히드 검출 또는 농도 측정용 프로브, 이를 이용한 세포 또는 조직 내 포름알데히드의 이광자 비율 기준 형광 영상화 및 농도 측정
Gong et al. A novel near-infrared fluorescent probe with an improved Stokes shift for specific detection of Hg 2+ in mitochondria
WO2014011005A1 (ko) 시아닌계 형광 프로브, 이를 이용한 아연 이온 검출방법, 및 이의 제조방법
WO2013141465A1 (ko) 미토콘드리아 내 과산화수소 활성 감지를 위한 가변색 이광자 형광 프로브 및 이의 제조 방법과 이를 이용한 미토콘드리아 내 과산화수소 활성의 영상화 방법
WO2015020281A1 (ko) 황화수소 검출용 가변색 이광자 형광 프로브, 이의 제조 방법 및 이를 이용한 생체 내 황화수소의 정량적 영상화 방법
Zhang et al. A facile ratiometric near-infrared fluorescent probe using conjugated 1, 8-naphthalimide and dicyanoisophorone with a vinylene linker for detection and bioimaging of hypochlorite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909598

Country of ref document: EP

Kind code of ref document: A1