WO2016088867A1 - MgO SPUTTERING TARGET MATERIAL AND THIN FILM - Google Patents

MgO SPUTTERING TARGET MATERIAL AND THIN FILM Download PDF

Info

Publication number
WO2016088867A1
WO2016088867A1 PCT/JP2015/084109 JP2015084109W WO2016088867A1 WO 2016088867 A1 WO2016088867 A1 WO 2016088867A1 JP 2015084109 W JP2015084109 W JP 2015084109W WO 2016088867 A1 WO2016088867 A1 WO 2016088867A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo
target material
phase
tio
sputtering
Prior art date
Application number
PCT/JP2015/084109
Other languages
French (fr)
Japanese (ja)
Inventor
敦志 三谷
真人 財田
寛明 久保
宗佑 横山
Original Assignee
宇部マテリアルズ株式会社
日本タングステン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社, 日本タングステン株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to JP2016562691A priority Critical patent/JPWO2016088867A1/en
Publication of WO2016088867A1 publication Critical patent/WO2016088867A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a sputtering MgO target material and a thin film, and in particular, a sputtering MgO target material mainly composed of Mg (magnesium), Ti (titanium), and O (oxygen), and a thin film formed using the same. It is about.
  • a sputtering method that can easily control the film thickness and components from the angstrom unit to the micron order has been widely used as one of the film formation methods for materials for electronic and electrical parts.
  • a sputtering apparatus having a positive electrode and a negative electrode is used, the substrate and the target material are opposed to each other, and a high voltage is applied between the substrate and the target material in an inert gas atmosphere.
  • the ionized electrons collide with an inert gas to form plasma.
  • the cations in the plasma collide with the surface of the target material (negative electrode) and strike out the target material constituent atoms, and the ejected atoms adhere to the opposing substrate surface to form a film. is there.
  • a target material mainly composed of MgO (magnesium oxide) is used. Since MgO is an insulator, it is usually necessary to use a radio frequency (RF) sputtering method. However, in RF sputtering, an AC voltage is applied between the substrate and the target material. There was a problem of being inferior. Therefore, conventionally, there has been known an MgO target material containing MgO and a conductive material as main components and imparting orientation when deposited by a DC (direct current) sputtering method (see, for example, Patent Document 1). In this document, TiC, VC, WC, and TiN are cited as conductive compounds.
  • a sintered body containing TiO (titanium monoxide) as a main component and added with MgO is also known (for example, see Non-Patent Document 1).
  • This document describes physical properties of a TiO sintered body to which 0 to 20 mol% of MgO is added.
  • MgO is solid-dissolved to 15% in the TiO phase, that the sintered body has a maximum micro Vickers hardness of 1350, an electrical resistivity of 2.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, MgO It is described that the relative density decreases with an increase in the amount of added.
  • Non-Patent Document 2 a technique for forming a (Mg 0.2 Ti 0.8 ) O film on a glass substrate by DC sputtering is also known (see, for example, Non-Patent Document 2).
  • Non-Patent Document 2 and Patent Document 2 with a target material composed of Mg, Ti, and O and having a low ratio of Mg to the total amount of Mg and Ti, the crystallinity of the formed alignment film (hereinafter, simply “ In some cases, the crystallinity is low).
  • Patent Document 2 there is a disadvantage that a DC material cannot be formed because a low volume resistivity cannot be obtained when the above-described target material having a high Mg ratio, for example, Mg is 90 mol%.
  • the present invention has an object to provide an MgO target material for sputtering that can be suitably used particularly for DC sputtering, increase the film formation speed, and also has good crystallinity of the alignment film after film formation. To do.
  • Another object of the present invention is to provide a thin film formed using such a sputtering MgO target material.
  • the inventors of the present invention have Mg, Ti, and O as main components as a sputtering target material, and control the ratio of Mg to the total amount of Mg and Ti.
  • the present inventors have found that the volume resistivity of the target material itself is low, DC film formation is possible, and the crystallinity after film formation is good, leading to the present invention.
  • the present invention is an MgO target material for sputtering mainly composed of Mg, Ti, and O, and the ratio of Mg to the total amount of Mg and Ti is in the range of more than 75 and 95 mol% or less, and the volume resistance
  • the present invention relates to an MgO target material for sputtering, wherein the rate is 1 ⁇ 10 2 ⁇ ⁇ cm or less.
  • an MgO phase that is a crystal phase in which Ti and O are the main components and Mg and O are the main components
  • a TiO phase that is a crystal phase in which Ti and O are the main components and Mg is the solid solution.
  • it has a constituent phase containing the MgO phase which has Mg and O as the main ingredients, and the TiO phase which has Ti and O as the main ingredients, and it is preferred that the average particle diameter of the constituent phases is 5 micrometers or less.
  • the relative density is preferably 95% or more.
  • the present invention is a thin film formed using the MgO target material for sputtering described in any of the above.
  • the sputtering MgO target material of the present invention has a low volume resistivity of the target material and a high ratio of Mg, so that the crystallinity of the film after film formation is good.
  • an MgO target material for sputtering that can be suitably used particularly for DC sputtering, increase the film formation speed, and also has good crystallinity of the film after film formation. it can.
  • the sputtering MgO target material of the present invention (hereinafter referred to as “MgO target material”) is a sputtering MgO target (hereinafter referred to as “MgO target”) together with a bonding material such as a backing plate described later.
  • Mg target material a sputtering MgO target (hereinafter referred to as “MgO target”) together with a bonding material such as a backing plate described later.
  • Mg (magnesium), Ti (titanium) and O (oxygen) are the main components, and the ratio of Mg to the total amount of Mg and Ti is more than 75 mol% and not more than 95 mol%.
  • the volume resistivity is 1 ⁇ 10 2 ⁇ ⁇ cm or less.
  • the ratio of Mg to the total amount of Mg and Ti is more than 75 mol% and 95 mol% or less, preferably 80 mol% or more and 95 mol% or less, particularly 90 mol% or more and 95 mol% or less. preferable.
  • the above ratio is 75 mol% or less, the Mg ratio in the thin film formed using the MgO target material becomes low, and the crystallinity of the thin film tends to deteriorate.
  • the above ratio exceeds 95 mol%, the ratio of the MgO phase described later becomes relatively high, and the volume resistivity of the MgO target material tends to be high.
  • the ratio of Mg to the total amount of Mg and Ti can be obtained by composition analysis of the MgO target material.
  • a known analysis method such as an XRF analysis method, an ICP emission analysis method, or a field emission electron beam probe analysis method can be used.
  • the value measured by the method as described in the Example mentioned later is employ
  • the MgO target material can impart orientation to the (002) plane (the same as the (001) plane) on a thin film formed using this MgO target material. Moreover, the thin film after film formation has high crystallinity.
  • the average particle diameter of the constituent phase of the MgO target material is 5 ⁇ m or less, preferably 3 ⁇ m or less, and particularly preferably 1.5 ⁇ m or less.
  • the lower limit of the average particle size of this constituent phase is not particularly limited, but many are limited by the particle size of the raw material powder to be used and the pulverization ability in the process, and therefore it is preferable that it is in a range that can be realized in a normally used process. .
  • the “constituent phase” means all phases constituting the MgO target material, and specifically includes an MgO phase and a TiO phase, which will be described later, in addition to those described later which exist in the MgO target material.
  • a crystalline phase having a structure other than a rock salt structure for example, a spinel phase composed of Mg, Ti, and O
  • an amorphous phase including a single or a plurality of particles filling a region partitioned by these crystalline phases may also be included.
  • the “average particle diameter of the constituent phase” is a minute grain defined by a grain boundary included in a crystal phase constituting the constituent phase (that is, a crystal phase having a structure other than MgO phase, TiO phase, or rock salt structure).
  • grains and an amorphous phase is meant.
  • the MgO target material is a crystal phase mainly composed of Mg and O (hereinafter referred to as “MgO phase”). And a crystal phase mainly composed of Ti and O (hereinafter referred to as “TiO phase”) are mixed. These crystal phases contain a plurality of fine particles defined by grain boundaries.
  • the MgO target material may be in a state where the MgO phase and the TiO phase are completely and uniformly mixed.
  • the MgO phase and the TiO phase basically have a rock salt structure (including a monoclinic structure in which the symmetry of the rock salt structure is reduced).
  • the MgO target material has a crystal phase composed of Mg, Ti and O having a structure other than a rock salt structure (for example, a crystal phase having a spinel structure), a crystal phase mainly composed of Ti and O (for example, A rutile-structured crystal phase), or an amorphous phase composed of a single particle or a plurality of particles filling a region partitioned by these crystal phases.
  • a crystal phase composed of Mg, Ti and O having a structure other than a rock salt structure for example, a crystal phase having a spinel structure
  • a crystal phase mainly composed of Ti and O for example, A rutile-structured crystal phase
  • an amorphous phase composed of a single particle or a plurality of particles filling a region partitioned by these crystal phases.
  • MgO is inherently insulative, but the MgO phase is a crystalline phase containing Mg and O as main components and a small amount of Ti in solid solution, resulting in a decrease in insulation.
  • the TiO phase is a crystalline phase mainly composed of Ti and O and containing a small amount of Mg as a solid solution, and is basically conductive. For this reason, a conductive path is formed in the MgO target material by the crystal particles of the TiO phase contacting each other. Due to the decrease in the insulating properties of the MgO phase, the formation of a conductive path by the TiO phase, and the small average particle size, conductivity capable of DC sputtering can be suitably imparted to the MgO target material.
  • the area of the MgO phase is less than 60% with respect to the whole (that is, the total area of the MgO phase + the area of the TiO phase)
  • the crystallinity of the thin film after film formation tends to be low.
  • the area of the MgO phase exceeds 94% with respect to the whole (the area of the MgO phase + the area of the TiO phase)
  • the overall ratio of the TiO phase becomes too low to form a conductive path, and the MgO target
  • the volume resistivity of the whole material tends to be high.
  • the area of the MgO phase The area of the TiO phase is preferably in the range of 65:35 to 93: 7, more preferably in the range of 70:30 to 92: 8. Note that the image analysis can be performed by a method described in Examples described later.
  • the ratio of the number of Ti atoms to the total number of atoms of Mg and Ti is preferably in the range of 0.05 to 1.00 at% (atomic percent).
  • Ti / Mg + Ti the ratio of the number of Ti atoms to the total number of atoms of Mg and Ti
  • the value of “Ti / Mg + Ti” is less than 0.05 at%, the proportion of Ti contained in the MgO phase decreases, and the volume resistivity of the MgO target material tends to increase.
  • the numerical value of “Ti / Mg + Ti” exceeds 1.00 at%, the proportion of Ti contained in the MgO phase becomes too high and the proportion of the TiO phase relatively decreases, and the volume resistivity of the MgO target material Tends to be higher.
  • the ratio of the number of O atoms to the total number of Mg and Ti atoms is not necessarily 100 at% as long as the MgO target material has the effects of the present invention, for example, by having a rock salt structure. It is not necessary.
  • the ratio of the number of Mg atoms to the total number of Mg and Ti atoms is preferably in the range of 1 to 20 at%.
  • the value of “Mg / Mg + Ti” is less than 1 at%, the ratio of Mg contained in the TiO phase decreases, the ratio of the MgO phase increases relatively, and the volume resistivity of the MgO target material tends to increase.
  • the value of “Mg / Mg + Ti” exceeds 20 at%, the ratio of Mg contained in the TiO phase becomes too high, the resistance of the conductive path is increased, and the volume resistivity of the MgO target material is likely to be increased. .
  • the solid solution amount of atoms in each phase can be calculated by the same method as in the examples described later.
  • the ratio of the number of O atoms to the total number of Mg and Ti atoms is, for example, a rock salt structure or a monoclinic structure in which the symmetry of the rock salt structure is reduced. As long as has the effect of the present invention, it is not necessarily 100 at%.
  • the volume resistivity of the MgO target material is 1 ⁇ 10 2 ⁇ ⁇ cm or less. For this reason, for example, when the film is formed by the DC sputtering method, the discharge can be stably maintained, and the DC sputtering can be performed.
  • the volume resistivity of the MgO target material is preferably 8 ⁇ 10 1 ⁇ ⁇ cm or less, more preferably 5 ⁇ 10 1 ⁇ ⁇ cm or less.
  • the lower limit of the volume resistivity of the MgO target material is not particularly limited, but is preferably lower within the range of ordinary techniques.
  • the relative density of the MgO target material is preferably 95% or more, more preferably 97% or more, and particularly preferably 98% or more. If the relative density of the MgO target material is less than 95%, the MgO target material contains a large number of pores, leading to a decrease in bending strength.
  • the relative density of the MgO target material can be measured by the same method as in the examples described later.
  • the strength of the MgO target material is a three-point bending strength of 250 MPa or more, and more preferably 300 MPa or more. If the three-point bending strength is less than 250 MPa, the MgO target material is likely to break during sputtering film formation, and it is difficult to perform sputtering by applying a large amount of power, so that the film formation rate is suppressed.
  • the bending strength of the MgO target material can be measured by a bending strength test method based on JIS® 1601 (2008 edition).
  • the MgO target material has a low volume resistivity of 1 ⁇ 10 2 ⁇ ⁇ cm or less as described above, it can be suitably formed particularly by a DC sputtering method. For this reason, compared with RF sputtering method, the film-forming speed
  • MgO target material is composed mainly of Mg, Ti and O, and can be manufactured by mixing and sintering magnesium oxide powder and titanium monoxide powder as raw materials. . Each powder is weighed and mixed so that the ratio of Mg to the total amount of Mg and Ti (that is, “Mg / (Mg + Ti)”) is more than 75 mol% and not more than 95 mol%.
  • Mg / (Mg + Ti) magnesium carbonate
  • Mg (OH 2 ) magnesium hydroxide
  • TiH 2 titanium hydride
  • the particle size of the raw material is preferably 1 ⁇ m or less, and may be pulverized to 1 ⁇ m or less during mixing described later.
  • the particle diameter of the raw material is larger than 1 ⁇ m, the average particle diameter of the MgO target material is increased, and as a result, the volume resistivity is increased.
  • a wet ball mill for mixing the raw materials.
  • the solvent an organic solvent such as water or alcohol can be used, and methanol is particularly preferable.
  • the mixing time is not particularly limited, but it is desirable that the mixing time be sufficient for the raw materials to be uniformly mixed. When the raw materials are not uniformly mixed, composition and density unevenness occur in the MgO target material, and the material strength tends to decrease. Further, when mixing the raw materials, a dispersant can be added as necessary.
  • the type of the dispersant is not particularly limited, but is preferably a component that is decomposed by sintering and does not remain.
  • the raw material concentration at the time of mixing is not particularly limited, but generally 15 to 75 wt% is often used with respect to the solvent.
  • the slurry mixed with the raw materials is taken out from the wet ball mill, and the slurry is dried and granulated into a shape suitable for molding.
  • a spray dryer it is preferable to use a spray dryer.
  • a molding aid may be added as necessary.
  • auxiliary agent is not specifically limited, Generally polyvinyl alcohol (PVA), polyethyleneglycol (PEG), cellosol, paraffin, etc. are used.
  • the molding can be performed uniaxially using a mold, CIP (cold isostatic pressing) molding or the like alone or in combination.
  • the molding pressure is not particularly limited, but when a pressure of 100 MPa or more is generally applied, a good molded body can be obtained, which is preferable.
  • the formed body is then subjected to a known sintering method such as magnesium oxide, for example, an atmospheric pressure sintering method, a hot press sintering method, a hot isostatic pressure (HIP) sintering method, a discharge plasma (SPS) sintering method.
  • a known sintering method such as magnesium oxide, for example, an atmospheric pressure sintering method, a hot press sintering method, a hot isostatic pressure (HIP) sintering method, a discharge plasma (SPS) sintering method.
  • Sintering by means of sintering.
  • the sintering temperature is appropriately adjusted depending on the proportion of MgO in the raw material, but is preferably 1000 to 1600 ° C, more preferably 1200 to 1500 ° C. If the sintering temperature is too high, the sintered body will melt, and the desired sintering density and volume resistivity will not be obtained.
  • the sintering pressure is not particularly limited, and may be normal pressure, pressurized or reduced pressure.
  • the sintered body obtained in the above firing step can be used after being processed into a desired shape according to the purpose.
  • a known method such as grinding can be used as a method of the outer shape processing.
  • a sputtering MgO target can be obtained by bonding to a backing plate as required.
  • the thin film of the present invention can be produced by forming a MgO target material by sputtering.
  • the sputtering method the known sputtering method described above can be applied in addition to the DC sputtering method.
  • the sputtering condition is preferably within the range of the substrate temperature of 10 to 500 ° C., particularly preferably within the range of 10 to 300 ° C.
  • the degree of vacuum in the vacuum chamber in which sputtering is performed is preferably 1 ⁇ 10 0 Pa or less.
  • the inside of the vacuum chamber is preferably an inert gas atmosphere such as argon (Ar), helium (He), or nitrogen (N 2 ).
  • the thin film thus obtained becomes an MgO film having a single orientation on the (002) plane.
  • the crystallinity of the thin film is excellent.
  • the MgO film here contains Mg, Ti, and O, and has the same crystal structure as MgO.
  • the thin film of the present invention can be suitably used as an underlayer of a magnetic layer of a magnetic recording medium, for example. Since the magnetic recording medium has a multi-layer structure, when a conventional MgO target material is used, the DC sputtering method and the RF sputtering method have to be properly used depending on the layer. When a material is used, each layer can be manufactured using a DC sputtering method. For this reason, it is possible to increase the manufacturing speed of the magnetic recording medium.
  • the method for measuring the characteristics of the MgO target material and the thin film (sputtered film) is as follows. (1) Measurement of Archimedes density and relative density of MgO target material The sintered density of the MgO target material was measured by the Archimedes method. In addition, the true density in each composition is determined by using a pulverized powder of a target material and a gas pycnometer (Quantachr). ome. The relative density of the MgO target material with respect to the obtained true density was calculated by UPY-2) manufactured by Co.
  • Measurement of relative strength of MgO (002) Measurement of MgO film sputter-deposited on a glass substrate using an MgO target material, using an X-ray diffractometer (manufactured by D8 ADVANCE Bruker AXS), with Out of Plane And the intensity (area) of the MgO (002) peak was calculated.
  • the obtained MgO (002) peak intensity was shown as a relative value with the peak intensity in the MgO target material described in Example 5 described later being 1.
  • SEM Scanning electron microscope
  • Example 1 Preparation of MgO target material and formation and evaluation of sputtered film
  • Example 1 ⁇ Manufacture of MgO target material>
  • Magnesium oxide powder (average particle size 0.2 ⁇ m) and titanium monoxide powder (average particle size 0.15 ⁇ m) are weighed so that MgO is 95 mol% and TiO is 5 mol%.
  • the total weight of magnesium oxide and titanium monoxide was mixed in a resin container containing nylon balls together with 200 parts by weight of a methanol solvent for 100 parts by weight to obtain a raw material slurry.
  • the obtained slurry was dried to obtain granulated powder.
  • the obtained granulated powder is press-molded at a pressure of 100 MPa using a CIP (cold isostatic pressing) molding machine after press molding into a predetermined shape at a surface pressure of 50 MPa using a hydraulic uniaxial molding machine, A compact for a target material was obtained.
  • the obtained compact for target material was fired in an inert gas atmosphere in an electric furnace at a maximum temperature of 1300 ° C. and a holding time of 2 hours to produce an MgO target material.
  • the obtained MgO target material was processed into ⁇ 80 mm ⁇ thickness 4 mm, washed and dried, and then bonded to a backing plate to obtain an MgO target.
  • the obtained MgO target was mounted on a sputtering apparatus (ULVAC CS-L), and was sputter-deposited on a glass substrate (Corning Corporation: EAGLE XG) by a DC magnetron sputtering method, and an MgO film (thickness: 100 nm).
  • the sputtering conditions were as follows: the substrate temperature was 200 ° C., the ultimate vacuum in the chamber was 1 ⁇ 10 ⁇ 4 Pa or less, the Ar gas pressure was 0.2 Pa, and the input power was 100 W.
  • the MgO (002) relative strength of the obtained MgO film was 2.12. The results are shown in Tables 1 and 2.
  • FIG. 1A shows a reflected electron image obtained by SEM observation. From this photograph, it was found that the MgO target material contains an MgO phase (black part) and a TiO phase (white part).
  • Spot 1 of the MgO phase is mainly composed of MgO, and it was found that Ti was dissolved in 0.19% with respect to 99.81% of Mg.
  • Spot 2 of the MgO phase has MgO as the main component, and it was found that 0.16% of Ti was dissolved in 99.84% of Mg.
  • Spot 3 of the TiO phase is mainly composed of TiO, and 6.49% of Mg is dissolved in 93.51% of Ti. That is, it was found that Ti was dissolved in the MgO phase and Mg was dissolved in the TiO phase.
  • Example 2 A MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and method as in Example 1 except that MgO was 92 mol% and TiO was 8 mol%. The results are shown in Tables 1 and 2. Further, the average particle size was measured by the method of “(9) Measurement of average particle size of constituent phases constituting target material”. As a result, the average particle size was 1.5 ⁇ m. The results are shown in Table 5.
  • Example 3 Except that MgO was changed to 90 mol% and TiO was changed to 10 mol%, an MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and methods as in Example 1. The results are shown in Tables 1 and 2.
  • Example 4 A MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and method as in Example 1 except that MgO was 80 mol% and TiO was 20 mol%. The results are shown in Tables 1 and 2.
  • Example 2 Further, TEM observation was performed in the same manner as in Example 1. The obtained backscattered electron image is shown in FIG. Moreover, the area ratio of MgO phase and TiO phase and the amount of solid solution in each phase were calculated. The results are shown in Table 3 and Table 4, respectively.
  • Example 5 A MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and method as in Example 1 except that 77 mol% of MgO and 23 mol% of TiO were used. The results are shown in Tables 1 and 2.
  • Example 6 As in Example 2, MgO was 92 mol%, TiO was 8 mol%, the particle diameter of MgO powder was 0.5 ⁇ m, and the particle diameter of TiO powder was 0.7 ⁇ m.
  • the target material was manufactured. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
  • Example 7 An MgO target material was produced in the same manner as in Example 6 except that the particle diameter of the MgO powder was 0.2 ⁇ m and the particle diameter of the TiO powder was 0.3 ⁇ m. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
  • Example 8 An MgO target material was produced in the same manner as in Example 6 except that the particle diameter of the MgO powder was 0.1 ⁇ m and the particle diameter of the TiO powder was 0.08 ⁇ m. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
  • Example 1 A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was changed to 100 mol%. Since the resistance value of the MgO target material was too high, the volume resistivity could not be measured. Further, since the MgO target material had high resistance and could not be formed, the MgO (002) relative strength could not be evaluated. The results are shown in Tables 1 and 2.
  • Example 2 A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was changed to 98 mol% and TiO was changed to 2 mol%. Further, since the MgO target material had high resistance and could not be formed, the MgO (002) relative strength could not be evaluated. The results are shown in Tables 1 and 2.
  • Example 3 A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was 75 mol% and TiO was 25 mol%. The results are shown in Tables 1 and 2.
  • Example 4 A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was 70 mol% and TiO was 30 mol%. The results are shown in Tables 1 and 2.
  • Example 5 A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was 50 mol% and TiO was 50 mol%. The results are shown in Tables 1 and 2.
  • Example 6 An MgO target material was produced in the same manner as in Example 1 except that MgO was 92 mol%, TiO was 8 mol%, the particle diameter of MgO powder was 1 ⁇ m, and the particle diameter of TiO powder was 1 ⁇ m. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
  • FIG. 2 shows the volume resistivity ( ⁇ plot) of the examples of the present application, comparative examples (both TiO), and the volume resistivity ( ⁇ of the example containing TiC among the MgO target materials described in the examples of Patent Document 1. It is a graph in which the volume resistivity ( ⁇ plot) of an example including TiN is overlaid and plotted.

Abstract

Provided is an MgO sputtering target material including Mg, Ti, and O as main components, the MgO sputtering target material being characterized in that the Mg percentage with respect to the total amount of Mg and Ti is within a range from over 75 to 95 mol% and the volume resistivity thereof is 1×102 Ω·cm or less. It is preferable that the MgO sputtering target material include: an MgO phase which contains Mg and O as main components and contains Ti as a solute in solid solution; and a TiO phase which contains Ti and O as main components and contains Mg as a solute in solid solution. There is also provided a thin film characterized in that the film is formed using said MgO sputtering target material.

Description

スパッタリング用MgOターゲット材及び薄膜MgO target material and thin film for sputtering
 本発明は、スパッタリング用MgOターゲット材及び薄膜に関し、特に、Mg(マグネシウム)とTi(チタン)とO(酸素)とを主成分とするスパッタリング用MgOターゲット材及びこれを用いて成膜された薄膜に関するものである。 TECHNICAL FIELD The present invention relates to a sputtering MgO target material and a thin film, and in particular, a sputtering MgO target material mainly composed of Mg (magnesium), Ti (titanium), and O (oxygen), and a thin film formed using the same. It is about.
 従来、電子・電気部品用材料の成膜法の一つとして、オングストローム単位~ミクロンオーダーまでの膜厚や成分を容易に制御できるスパッタリング法が広く使用されている。スパッタリング法では、正の電極と負の電極とを備えたスパッタリング装置を使用し、基板とターゲット材とを対向させ、不活性ガス雰囲気下でこれらの基板とターゲット材の間に高電圧を印加して電場を発生させることで、電離した電子と不活性ガスが衝突してプラズマを形成させる。そして、このプラズマ中の陽イオンがターゲット材(負の電極)表面に衝突してターゲット材構成原子を叩きだし、この飛び出した原子が対向する基板表面に付着して膜が形成されるという原理である。 Conventionally, a sputtering method that can easily control the film thickness and components from the angstrom unit to the micron order has been widely used as one of the film formation methods for materials for electronic and electrical parts. In the sputtering method, a sputtering apparatus having a positive electrode and a negative electrode is used, the substrate and the target material are opposed to each other, and a high voltage is applied between the substrate and the target material in an inert gas atmosphere. By generating an electric field, the ionized electrons collide with an inert gas to form plasma. The cations in the plasma collide with the surface of the target material (negative electrode) and strike out the target material constituent atoms, and the ejected atoms adhere to the opposing substrate surface to form a film. is there.
 磁気記録媒体などの層構造をしたデバイスの下地層などでは、MgO(酸化マグネシウム)を主成分とするターゲット材(MgOターゲット材)が使用されている。MgOは絶縁体であるため、通常は高周波(RF)スパッタリング法を用いる必要があるが、RFスパッタリングでは基板とターゲット材との間に交流電圧を印加するため、成膜速度が遅く、生産性に劣るという問題があった。そこで従来、MgOと導電性物質とを主成分とし、DC(直流)スパッタリング法によって成膜された際に配向性を付与するMgOターゲット材が知られている(例えば、特許文献1参照)。この文献中には、導電性化合物としてTiC、VC、WC、TiNが挙げられている。 In a base layer of a device having a layer structure such as a magnetic recording medium, a target material (MgO target material) mainly composed of MgO (magnesium oxide) is used. Since MgO is an insulator, it is usually necessary to use a radio frequency (RF) sputtering method. However, in RF sputtering, an AC voltage is applied between the substrate and the target material. There was a problem of being inferior. Therefore, conventionally, there has been known an MgO target material containing MgO and a conductive material as main components and imparting orientation when deposited by a DC (direct current) sputtering method (see, for example, Patent Document 1). In this document, TiC, VC, WC, and TiN are cited as conductive compounds.
 一方、TiO(一酸化チタン)を主成分とし、MgOを添加した焼結体も知られている(例えば、非特許文献1参照)。この文献には、MgOを0~20mol%添加したTiO焼結体の物理的諸性質が記載されている。また、この文献には、TiO相にMgOが15%まで固溶すること、焼結体のマイクロビッカース硬度が最大1350、電気抵抗率が2.8×10-4Ω・cmを示すこと、MgOの添加量の増加により相対密度が減少することなどが記載されている。 On the other hand, a sintered body containing TiO (titanium monoxide) as a main component and added with MgO is also known (for example, see Non-Patent Document 1). This document describes physical properties of a TiO sintered body to which 0 to 20 mol% of MgO is added. In addition, this document describes that MgO is solid-dissolved to 15% in the TiO phase, that the sintered body has a maximum micro Vickers hardness of 1350, an electrical resistivity of 2.8 × 10 −4 Ω · cm, MgO It is described that the relative density decreases with an increase in the amount of added.
 また、TiOを25~90mol%含有し、残部がMgOからなるMgO-TiO焼結体を用いたターゲット材において、DCスパッタリングにより成膜可能であることも知られている(例えば、特許文献2参照)。 It is also known that a target material using an MgO—TiO sintered body containing 25 to 90 mol% of TiO and the balance being MgO can be formed by DC sputtering (see, for example, Patent Document 2). ).
 さらに、DCスパッタリングによって(Mg0.2Ti0.8)O膜をガラス基板上に成膜する技術も知られている(例えば、非特許文献2参照)。 Furthermore, a technique for forming a (Mg 0.2 Ti 0.8 ) O film on a glass substrate by DC sputtering is also known (see, for example, Non-Patent Document 2).
特開2013-241684号公報JP 2013-241684 A 国際公開第2014/156497号International Publication No. 2014/156497
 しかしながら、特許文献1に記載の導電性化合物としてTiC、VC、WC、TiNを使用した場合、MgO比率が高い場合においてMgOターゲット材の体積抵抗率が高くなりやすい傾向があった。このため、MgO比率が高いMgOターゲット材は、DCスパッタリングに用いることが困難であったり、あるいはDCスパッタリングに用いることができたとしても成膜速度が低くなって生産性に劣ったりするという不都合があった。 However, when TiC, VC, WC, or TiN is used as the conductive compound described in Patent Document 1, the volume resistivity of the MgO target material tends to be high when the MgO ratio is high. For this reason, the MgO target material having a high MgO ratio is difficult to use for DC sputtering, or even if it can be used for DC sputtering, the film formation rate is low and the productivity is inferior. there were.
 一方、非特許文献2及び特許文献2のように、MgとTiとOからなりMgとTiの合計量に対するMgの比率が低いターゲット材では、成膜した配向膜の結晶性(以下、単に「結晶性」という場合がある)に乏しいという不都合があった。 On the other hand, as in Non-Patent Document 2 and Patent Document 2, with a target material composed of Mg, Ti, and O and having a low ratio of Mg to the total amount of Mg and Ti, the crystallinity of the formed alignment film (hereinafter, simply “ In some cases, the crystallinity is low).
 また、特許文献2では、前述のMgの比率が高いターゲット材、例えばMgが90mol%において低い体積抵抗率を得ることができず、DC成膜が不能との不都合があった。 Further, in Patent Document 2, there is a disadvantage that a DC material cannot be formed because a low volume resistivity cannot be obtained when the above-described target material having a high Mg ratio, for example, Mg is 90 mol%.
 そこで、本発明は、特にDCスパッタリングに好適に用いることができ、成膜速度を高速化するとともに、成膜後の配向膜の結晶性も良好なスパッタリング用MgOターゲット材を提供することを目的とする。また、本発明の他の目的は、このようなスパッタリング用MgOターゲット材を用いて成膜された薄膜を提供することを目的とする。 Accordingly, the present invention has an object to provide an MgO target material for sputtering that can be suitably used particularly for DC sputtering, increase the film formation speed, and also has good crystallinity of the alignment film after film formation. To do. Another object of the present invention is to provide a thin film formed using such a sputtering MgO target material.
 本発明者らは、以上の目的を達成するために、鋭意検討した結果、スパッタリング用ターゲット材として、MgとTiとOを主成分とし、MgとTiとの合計量に対するMgの比率を制御することによって、ターゲット材自体の体積抵抗率が低く、DC成膜可能でかつ成膜後の結晶性が良好であることを見出し、本発明に至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention have Mg, Ti, and O as main components as a sputtering target material, and control the ratio of Mg to the total amount of Mg and Ti. As a result, the present inventors have found that the volume resistivity of the target material itself is low, DC film formation is possible, and the crystallinity after film formation is good, leading to the present invention.
 本発明は、MgとTiとOとを主成分とするスパッタリング用MgOターゲット材であって、MgとTiとの合計量に対するMgの比率が75を超え95mol%以下の範囲内であり、体積抵抗率が1×10Ω・cm以下であることを特徴とするスパッタリング用MgOターゲット材に関する。 The present invention is an MgO target material for sputtering mainly composed of Mg, Ti, and O, and the ratio of Mg to the total amount of Mg and Ti is in the range of more than 75 and 95 mol% or less, and the volume resistance The present invention relates to an MgO target material for sputtering, wherein the rate is 1 × 10 2 Ω · cm or less.
 この場合、MgとOを主成分としTiが固溶した結晶相であるMgO相と、TiとOを主成分としMgが固溶した結晶相であるTiO相とを含むことが好ましい。
 あるいは、MgとOを主成分としたMgO相と、TiとOを主成分としたTiO相とを含んだ構成相を有し、前記構成相の平均粒子径が5μm以下であることが好ましい。
 さらに、上記において、相対密度が95%以上であることが好適である。
In this case, it is preferable to include an MgO phase that is a crystal phase in which Ti and O are the main components and Mg and O are the main components, and a TiO phase that is a crystal phase in which Ti and O are the main components and Mg is the solid solution.
Or it has a constituent phase containing the MgO phase which has Mg and O as the main ingredients, and the TiO phase which has Ti and O as the main ingredients, and it is preferred that the average particle diameter of the constituent phases is 5 micrometers or less.
Furthermore, in the above, the relative density is preferably 95% or more.
 また、本発明は、上記のいずれかに記載のスパッタリング用MgOターゲット材を用いて成膜されたことを特徴とする薄膜である。 Further, the present invention is a thin film formed using the MgO target material for sputtering described in any of the above.
 以上のように、本発明のスパッタリング用MgOターゲット材は、ターゲット材の体積抵抗率が低く、かつMgの比率が高いため成膜後の膜の結晶性も良好である。このため、本発明によれば、特にDCスパッタリングに好適に用いることができ、成膜速度を高速化
するとともに、成膜後の膜の結晶性も良好なスパッタリング用MgOターゲット材を提供することができる。また、本発明によれば、このようなスパッタリング用MgOターゲット材を用いて成膜された結晶性の優れた薄膜を提供することができる。
As described above, the sputtering MgO target material of the present invention has a low volume resistivity of the target material and a high ratio of Mg, so that the crystallinity of the film after film formation is good. For this reason, according to the present invention, it is possible to provide an MgO target material for sputtering that can be suitably used particularly for DC sputtering, increase the film formation speed, and also has good crystallinity of the film after film formation. it can. Further, according to the present invention, it is possible to provide a thin film with excellent crystallinity formed using such a sputtering MgO target material.
実施例に係るMgOターゲット材の反射電子像を示した写真である。It is the photograph which showed the reflected electron image of the MgO target material which concerns on an Example. 本願の実施例と特許文献1(先願)の実施例に記載されたMgOターゲット材の体積抵抗率を重ねて示したグラフである。It is the graph which accumulated and showed the volume resistivity of the MgO target material described in the Example of this application, and the Example of patent document 1 (prior application).
(1)スパッタリング用MgOターゲット材
 本発明のスパッタリング用MgOターゲット材(以下、「MgOターゲット材」と記す)は、後述のバッキングプレート等のボンディング材と共に、スパッタリング用MgOターゲット(以下、「MgOターゲット」と記す)の構成材であり、Mg(マグネシウム)とTi(チタン)とO(酸素)とを主成分とし、MgとTiとの合計量に対するMgの比率が75mol%を超え95mol%以下の範囲内であり、体積抵抗率が1×10Ω・cm以下である。
(1) Sputtering MgO target material The sputtering MgO target material of the present invention (hereinafter referred to as “MgO target material”) is a sputtering MgO target (hereinafter referred to as “MgO target”) together with a bonding material such as a backing plate described later. In the range where Mg (magnesium), Ti (titanium) and O (oxygen) are the main components, and the ratio of Mg to the total amount of Mg and Ti is more than 75 mol% and not more than 95 mol%. The volume resistivity is 1 × 10 2 Ω · cm or less.
 MgとTiの合計量に対するMgの比率(すなわち、「Mg/(Mg+Ti)」)は、75mol%を超え95mol%以下であり、80mol%以上95mol%以下が好ましく、90mol%以上95mol%以下が特に好ましい。上記の比率が75mol%以
下だと、MgOターゲット材を使用して製膜した薄膜中のMg比率が低くなり、薄膜の結晶性が悪化しやすくなる。一方、上記の比率が95mol%を上回ると、後述のMgO相の比率が相対的に高くなりすぎてしまい、MgOターゲット材の体積抵抗率が高くなりやすい。
The ratio of Mg to the total amount of Mg and Ti (ie, “Mg / (Mg + Ti)”) is more than 75 mol% and 95 mol% or less, preferably 80 mol% or more and 95 mol% or less, particularly 90 mol% or more and 95 mol% or less. preferable. When the above ratio is 75 mol% or less, the Mg ratio in the thin film formed using the MgO target material becomes low, and the crystallinity of the thin film tends to deteriorate. On the other hand, when the above ratio exceeds 95 mol%, the ratio of the MgO phase described later becomes relatively high, and the volume resistivity of the MgO target material tends to be high.
 MgとTiの合計量に対するMgの比率は、MgOターゲット材を組成分析することで求めることができる。測定方法としては、例えばXRF分析法、ICP発光分析法やフィールドエミッション型電子線プローブ分析法など公知の分析法を使用することができる。本発明では、後述する実施例に記載の方法で測定した値を採用している。 The ratio of Mg to the total amount of Mg and Ti can be obtained by composition analysis of the MgO target material. As a measurement method, for example, a known analysis method such as an XRF analysis method, an ICP emission analysis method, or a field emission electron beam probe analysis method can be used. In this invention, the value measured by the method as described in the Example mentioned later is employ | adopted.
 MgOターゲット材は、これを用いて成膜した薄膜に(002)面((001)面と同じである)に配向性を付与することが可能である。また、成膜後の薄膜は高い結晶性を有している。 The MgO target material can impart orientation to the (002) plane (the same as the (001) plane) on a thin film formed using this MgO target material. Moreover, the thin film after film formation has high crystallinity.
 MgOターゲット材は、構成相の平均粒子径が5μm以下であり、3μm以下が好ましく、1.5μm以下が特に好ましい。この平均粒子径が5μmを上回るとMgOターゲット材の体積抵抗率が高くなり、MgとTiの合計量に対するMgの比率が高い組成においては特に、DCスパッタでの成膜が不能あるいは成膜速度が低下する。この構成相の平均粒子径の下限は特に限定されないが、多くは用いる原料粉末の粒子径と工程における粉砕能力により制約されるため、通常用いられる工程で実現可能な範囲であることが好適である。なお、「構成相」とは、MgOターゲット材を構成するすべての相を意味し、具体的には、後述するMgO相とTiO相を含み、これ以外にもMgOターゲット材中に存在する後述の岩塩構造以外の構造を持つ結晶相(例えばMgとTiとOで構成されるスピネル相等)や、これらの結晶相で区画される領域を埋める単数若しくは複数の粒子を含む非晶質の相(非晶質相)も含み得る。また、「構成相の平均粒子径」とは、構成相を構成する結晶相(すなわち、MgO相、TiO相、岩塩構造以外の構造を持つ結晶相)に含まれる粒界で規定される微小な粒子及び非晶質相に含まれる粒子の径の平均値を意味する。 The average particle diameter of the constituent phase of the MgO target material is 5 μm or less, preferably 3 μm or less, and particularly preferably 1.5 μm or less. When the average particle diameter exceeds 5 μm, the volume resistivity of the MgO target material increases, and in particular, in the composition in which the ratio of Mg to the total amount of Mg and Ti is high, film formation by DC sputtering is impossible or the film formation speed is high. descend. The lower limit of the average particle size of this constituent phase is not particularly limited, but many are limited by the particle size of the raw material powder to be used and the pulverization ability in the process, and therefore it is preferable that it is in a range that can be realized in a normally used process. . The “constituent phase” means all phases constituting the MgO target material, and specifically includes an MgO phase and a TiO phase, which will be described later, in addition to those described later which exist in the MgO target material. A crystalline phase having a structure other than a rock salt structure (for example, a spinel phase composed of Mg, Ti, and O), or an amorphous phase including a single or a plurality of particles filling a region partitioned by these crystalline phases (non- A crystalline phase) may also be included. In addition, the “average particle diameter of the constituent phase” is a minute grain defined by a grain boundary included in a crystal phase constituting the constituent phase (that is, a crystal phase having a structure other than MgO phase, TiO phase, or rock salt structure). The average value of the diameter of the particle | grains contained in particle | grains and an amorphous phase is meant.
 MgOターゲット材は、MgとOを主成分とする結晶相(以下、「MgO相」と記す)
と、TiとOを主成分とする結晶相(以下、「TiO相」と記す)とが混ざった状態となっている。これらの結晶相は粒界で規定される微小な粒子を複数含んでいる。また、MgOターゲット材は、上記のMgO相とTiO相とが完全に均一に混ざり合った状態のものでもよい。MgO相とTiO相は、基本的には岩塩構造(岩塩構造の対称性が低下した単斜晶系の構造を含む)を持っている。一方で、MgOターゲット材には、岩塩構造以外の構造を持つ、MgとTiとOで構成される結晶相(例えばスピネル構造の結晶相など)、TiとOを主成分とする結晶相(例えばルチル構造の結晶相など)、更には、これらの結晶相で区画される領域を埋める単数若しくは複数の粒子からなる非晶質相等が含まれていてもよい。
The MgO target material is a crystal phase mainly composed of Mg and O (hereinafter referred to as “MgO phase”).
And a crystal phase mainly composed of Ti and O (hereinafter referred to as “TiO phase”) are mixed. These crystal phases contain a plurality of fine particles defined by grain boundaries. The MgO target material may be in a state where the MgO phase and the TiO phase are completely and uniformly mixed. The MgO phase and the TiO phase basically have a rock salt structure (including a monoclinic structure in which the symmetry of the rock salt structure is reduced). On the other hand, the MgO target material has a crystal phase composed of Mg, Ti and O having a structure other than a rock salt structure (for example, a crystal phase having a spinel structure), a crystal phase mainly composed of Ti and O (for example, A rutile-structured crystal phase), or an amorphous phase composed of a single particle or a plurality of particles filling a region partitioned by these crystal phases.
 MgOは本来絶縁性であるが、MgO相は、MgとOを主成分とし、微量のTiが固溶した結晶相であり、これにより絶縁性が低下する。一方、TiO相は、TiとOを主成分とし、微量のMgが固溶した結晶相であり、基本的に導電性である。このため、TiO相の結晶粒子どうしが互いに接触することで、MgOターゲット材に導電性パスが形成される。MgO相の絶縁性が低下することと、TiO相が導電性パスを形成することと、平均粒子径が小さいことにより、DCスパッタリング可能な導電性をMgOターゲット材に好適に付与することができる。 MgO is inherently insulative, but the MgO phase is a crystalline phase containing Mg and O as main components and a small amount of Ti in solid solution, resulting in a decrease in insulation. On the other hand, the TiO phase is a crystalline phase mainly composed of Ti and O and containing a small amount of Mg as a solid solution, and is basically conductive. For this reason, a conductive path is formed in the MgO target material by the crystal particles of the TiO phase contacting each other. Due to the decrease in the insulating properties of the MgO phase, the formation of a conductive path by the TiO phase, and the small average particle size, conductivity capable of DC sputtering can be suitably imparted to the MgO target material.
 MgO相とTiO相は、画像解析による面積比が、MgO相の面積:TiO相の面積=60:40~94:6となる範囲内であることが好ましい。MgO相の面積が全体(すなわち、MgO相の面積+TiO相の面積の合計)に対して60%を下回ると、成膜後の薄膜の結晶性が低くなりやすい。一方、MgO相の面積が全体(MgO相の面積+TiO相の面積の合計)に対して94%を上回ると、TiO相の全体比率が低くなりすぎて導電性パスが形成されにくくなり、MgOターゲット材全体の体積抵抗率が高くなりやすくなる。MgO相の面積:TiO相の面積は、好ましくは65:35~93:7の範囲内であり、より好ましくは70:30~92:8の範囲内である。なお、画像解析は、後述する実施例に記載の方法で行うことができる。 The area ratio of the MgO phase and the TiO phase by image analysis is preferably in the range of MgO phase area: TiO phase area = 60: 40 to 94: 6. When the area of the MgO phase is less than 60% with respect to the whole (that is, the total area of the MgO phase + the area of the TiO phase), the crystallinity of the thin film after film formation tends to be low. On the other hand, when the area of the MgO phase exceeds 94% with respect to the whole (the area of the MgO phase + the area of the TiO phase), the overall ratio of the TiO phase becomes too low to form a conductive path, and the MgO target The volume resistivity of the whole material tends to be high. The area of the MgO phase: The area of the TiO phase is preferably in the range of 65:35 to 93: 7, more preferably in the range of 70:30 to 92: 8. Note that the image analysis can be performed by a method described in Examples described later.
 MgO相は、MgとTiの合計原子数に対するTiの原子数の割合(Ti/Mg+Ti)が0.05~1.00at%(アトミックパーセント)の範囲内であることが好ましい。上記「Ti/Mg+Ti」の数値が0.05at%を下回ると、MgO相に含まれるTiの割合が少なくなり、MgOターゲット材の体積抵抗率が高くなりやすい。一方、上記「Ti/Mg+Ti」の数値が1.00at%を上回ると、MgO相に含まれるTiの割合が高くなりすぎて相対的にTiO相の割合が減少し、MgOターゲット材の体積抵抗率が高くなりやすくなる。また、MgとTiの合計原子数とに対するOの原子数の割合(O/Mg+Ti)は、例えば岩塩構造を持つことによるなどにより、MgOターゲット材が本発明の効果を有する限り、必ずしも100at%でなくても良い。 In the MgO phase, the ratio of the number of Ti atoms to the total number of atoms of Mg and Ti (Ti / Mg + Ti) is preferably in the range of 0.05 to 1.00 at% (atomic percent). When the value of “Ti / Mg + Ti” is less than 0.05 at%, the proportion of Ti contained in the MgO phase decreases, and the volume resistivity of the MgO target material tends to increase. On the other hand, when the numerical value of “Ti / Mg + Ti” exceeds 1.00 at%, the proportion of Ti contained in the MgO phase becomes too high and the proportion of the TiO phase relatively decreases, and the volume resistivity of the MgO target material Tends to be higher. The ratio of the number of O atoms to the total number of Mg and Ti atoms (O / Mg + Ti) is not necessarily 100 at% as long as the MgO target material has the effects of the present invention, for example, by having a rock salt structure. It is not necessary.
 TiO相は、MgとTiの合計原子数に対するMgの原子数の割合(Mg/Mg+Ti)が1~20at%の範囲内であることが好ましい。上記「Mg/Mg+Ti」の数値が1at%を下回ると、TiO相に含まれるMgの割合が少なくなり、相対的にMgO相の割合が増加し、MgOターゲット材の体積抵抗率が高くなりやすい。一方、上記「Mg/Mg+Ti」の数値が20at%を上回ると、TiO相に含まれるMgの割合が高くなりすぎて導電性パスの抵抗が高くなり、MgOターゲット材の体積抵抗率が高くなりやすい。なお、各相への原子の固溶量は、後述する実施例と同様の方法で算出することができる。また、MgとTiの合計原子数とに対するOの原子数の割合(O/Mg+Ti)は、例えば岩塩構造又は岩塩構造の対称性が低下した単斜晶系の構造を持つなどにより、MgOターゲット材が本発明の効果を有する限り、必ずしも100at%でなくても良い。 In the TiO phase, the ratio of the number of Mg atoms to the total number of Mg and Ti atoms (Mg / Mg + Ti) is preferably in the range of 1 to 20 at%. When the value of “Mg / Mg + Ti” is less than 1 at%, the ratio of Mg contained in the TiO phase decreases, the ratio of the MgO phase increases relatively, and the volume resistivity of the MgO target material tends to increase. On the other hand, if the value of “Mg / Mg + Ti” exceeds 20 at%, the ratio of Mg contained in the TiO phase becomes too high, the resistance of the conductive path is increased, and the volume resistivity of the MgO target material is likely to be increased. . In addition, the solid solution amount of atoms in each phase can be calculated by the same method as in the examples described later. Further, the ratio of the number of O atoms to the total number of Mg and Ti atoms (O / Mg + Ti) is, for example, a rock salt structure or a monoclinic structure in which the symmetry of the rock salt structure is reduced. As long as has the effect of the present invention, it is not necessarily 100 at%.
 MgOターゲット材の体積抵抗率は、1×10Ω・cm以下である。このため、例え
ばDCスパッタリング法によって成膜する際に、放電を安定して維持することができ、DCスパッタリングが可能となる。
The volume resistivity of the MgO target material is 1 × 10 2 Ω · cm or less. For this reason, for example, when the film is formed by the DC sputtering method, the discharge can be stably maintained, and the DC sputtering can be performed.
 MgOターゲット材の体積抵抗率は、好ましくは8×10Ω・cm以下であり、より好ましくは5×10Ω・cm以下である。MgOターゲット材の体積抵抗率の下限は特に限定はないが、通常技術の範囲内で低い方が好ましい。 The volume resistivity of the MgO target material is preferably 8 × 10 1 Ω · cm or less, more preferably 5 × 10 1 Ω · cm or less. The lower limit of the volume resistivity of the MgO target material is not particularly limited, but is preferably lower within the range of ordinary techniques.
 MgOターゲット材の相対密度は、95%以上であることが好ましく、97%以上であることがより好ましく、98%以上であることが特に好ましい。MgOターゲット材の相対密度が95%を下回ると、MgOターゲット材中に気孔が多く含まれており、曲げ強度の低下などを招く。MgOターゲット材の相対密度は、後述する実施例と同様の方法で測定することができる。 The relative density of the MgO target material is preferably 95% or more, more preferably 97% or more, and particularly preferably 98% or more. If the relative density of the MgO target material is less than 95%, the MgO target material contains a large number of pores, leading to a decrease in bending strength. The relative density of the MgO target material can be measured by the same method as in the examples described later.
 MgOターゲット材の強度は、3点曲げ強度で250MPa以上であり、300MPa以上であることがより好ましい。3点曲げ強度が250MPaを下回るとスパッタ成膜時にMgOターゲット材が割れやすくなり、大電力をかけてスパッタすることが困難となるため、成膜速度が抑制されてしまう。なお、MgOターゲット材の曲げ強度は、JIS  R 1601(2008年度版)に準拠した曲げ強度試験法により測定することができる。 The strength of the MgO target material is a three-point bending strength of 250 MPa or more, and more preferably 300 MPa or more. If the three-point bending strength is less than 250 MPa, the MgO target material is likely to break during sputtering film formation, and it is difficult to perform sputtering by applying a large amount of power, so that the film formation rate is suppressed. The bending strength of the MgO target material can be measured by a bending strength test method based on JIS® 1601 (2008 edition).
 MgOターゲット材は、上記のように体積抵抗率が1×10Ω・cm以下と低抵抗であるため、特にDCスパッタリング法によって好適に成膜を行うことができる。このため、RFスパッタリング法と比較して、薄膜の成膜速度が速く生産性を向上することができる。なお、MgOターゲット材は、DCスパッタリング法にのみ適用されるわけでなく、RFスパッタリング、マグネトロンスパッタリング、イオンビームスパッタリングなど、他のスパッタリング法にも適用することができる。 Since the MgO target material has a low volume resistivity of 1 × 10 2 Ω · cm or less as described above, it can be suitably formed particularly by a DC sputtering method. For this reason, compared with RF sputtering method, the film-forming speed | rate of a thin film is quick and productivity can be improved. Note that the MgO target material is not only applied to the DC sputtering method, but can also be applied to other sputtering methods such as RF sputtering, magnetron sputtering, and ion beam sputtering.
(2)MgOターゲット材の製造方法
 MgOターゲット材はMgとTiとOとを主成分とし、原料となる酸化マグネシウム粉末と一酸化チタン粉末とを混合して焼結することで製造することができる。各粉体は、MgとTiの合計量に対するMgの比率(すなわち、「Mg/(Mg+Ti)」)が、75mol%を超え95mol%以下となる割合になるよう秤量し混合する。なお、原料としては、上記材料に特定されるものではなく、工程中において酸化物となるものについても使用することができる。このような原料としては、炭酸マグネシウム(MgCO)、水酸化マグネシウム(Mg(OH))、水素化チタン(TiH)などを挙げることができる。また、原料の粒径は1μm以下であることが好ましく、後述する混合の際に粉砕されて1μm以下となっても良い。原料の粒径が1μmより大きい場合、MgOターゲット材の平均粒径が大きくなり、結果として体積抵抗率が高くなる。
(2) Manufacturing method of MgO target material MgO target material is composed mainly of Mg, Ti and O, and can be manufactured by mixing and sintering magnesium oxide powder and titanium monoxide powder as raw materials. . Each powder is weighed and mixed so that the ratio of Mg to the total amount of Mg and Ti (that is, “Mg / (Mg + Ti)”) is more than 75 mol% and not more than 95 mol%. In addition, as a raw material, it does not specify to the said material, It can use also about what becomes an oxide in a process. Examples of such a raw material include magnesium carbonate (MgCO 3 ), magnesium hydroxide (Mg (OH 2 )), titanium hydride (TiH 2 ), and the like. The particle size of the raw material is preferably 1 μm or less, and may be pulverized to 1 μm or less during mixing described later. When the particle diameter of the raw material is larger than 1 μm, the average particle diameter of the MgO target material is increased, and as a result, the volume resistivity is increased.
 原料の混合には、湿式ボールミルを用いると好適である。溶媒は、水やアルコール等の有機溶媒を用いることができ、特にメタノールが好ましい。混合時間は、特に限定されないが、原料が均一に混合されるのに十分な時間とすることが望ましい。原料が均一に混合されていない場合、MgOターゲット材に組成、密度ムラが生じ、材料強度が低下しやすくなる。また、原料混合の際には、必要に応じ分散剤を添加することができる。分散剤の種類は、特に限定されないが、焼結で分解し、残留しない成分であることが好ましい。混合の際の原料濃度は、特に限定されないが、一般的には溶媒に対し、15~75wt%が用いられる場合が多い。 It is preferable to use a wet ball mill for mixing the raw materials. As the solvent, an organic solvent such as water or alcohol can be used, and methanol is particularly preferable. The mixing time is not particularly limited, but it is desirable that the mixing time be sufficient for the raw materials to be uniformly mixed. When the raw materials are not uniformly mixed, composition and density unevenness occur in the MgO target material, and the material strength tends to decrease. Further, when mixing the raw materials, a dispersant can be added as necessary. The type of the dispersant is not particularly limited, but is preferably a component that is decomposed by sintering and does not remain. The raw material concentration at the time of mixing is not particularly limited, but generally 15 to 75 wt% is often used with respect to the solvent.
 次に、湿式ボールミルから原料が混合されたスラリーを取り出し、このスラリーを乾燥して成形に適する形状に造粒する。乾燥は、スプレードライヤーを用いることが好適であ
る。この際、必要に応じて成形用助剤を加えても良い。助剤の種類は、特に限定されないが、一般的にはポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、セロゾール、パラフィン等が用いられる。
Next, the slurry mixed with the raw materials is taken out from the wet ball mill, and the slurry is dried and granulated into a shape suitable for molding. For drying, it is preferable to use a spray dryer. At this time, a molding aid may be added as necessary. Although the kind of auxiliary agent is not specifically limited, Generally polyvinyl alcohol (PVA), polyethyleneglycol (PEG), cellosol, paraffin, etc. are used.
 続いて、乾燥造粒粉を所定の形状に成形する。成形は、金型を用いた一軸成形、CIP(冷間等方加圧)成形などを単独、あるいは組み合わせて行うことができる。成形圧力は、特に限定されないが、一般的に100MPa以上の圧力をかけた場合、良好な成形体を得ることが可能であり、好ましい。 Subsequently, dry granulated powder is formed into a predetermined shape. The molding can be performed uniaxially using a mold, CIP (cold isostatic pressing) molding or the like alone or in combination. The molding pressure is not particularly limited, but when a pressure of 100 MPa or more is generally applied, a good molded body can be obtained, which is preferable.
 次に、この成形体を、既知の酸化マグネシウムなどの焼結方法、例えば、常圧焼結法、ホットプレス焼結法、熱間等方圧(HIP)焼結法、放電プラズマ(SPS)焼結法などで焼結する。焼結温度は、原料中のMgOの割合によって適宜調整されるが、1000~1600℃が好ましく、1200~1500℃がより好ましい。焼結温度が高すぎると、焼結体が溶解し、所望の焼結密度や体積抵抗率が得られず、焼結温度が低すぎると、焼結できずに、成膜後にガスが内包され均質な膜が得られにくくなる。また、焼結圧力は、特に制限はなく、常圧であっても、加圧下又は減圧下であってもよい。 Next, the formed body is then subjected to a known sintering method such as magnesium oxide, for example, an atmospheric pressure sintering method, a hot press sintering method, a hot isostatic pressure (HIP) sintering method, a discharge plasma (SPS) sintering method. Sintering by means of sintering. The sintering temperature is appropriately adjusted depending on the proportion of MgO in the raw material, but is preferably 1000 to 1600 ° C, more preferably 1200 to 1500 ° C. If the sintering temperature is too high, the sintered body will melt, and the desired sintering density and volume resistivity will not be obtained. If the sintering temperature is too low, sintering will not be possible and gas will be included after film formation. It becomes difficult to obtain a homogeneous film. In addition, the sintering pressure is not particularly limited, and may be normal pressure, pressurized or reduced pressure.
 上記の焼成工程で得られた焼結体は、目的に応じて所望の形状に加工して用いることができる。外形加工の方法としては、研削など公知の方法を用いることができる。また、外形加工後は、必要に応じてバッキングプレートへのボンディングなどを行うことで、スパッタリング用MgOターゲットとすることができる。 The sintered body obtained in the above firing step can be used after being processed into a desired shape according to the purpose. A known method such as grinding can be used as a method of the outer shape processing. In addition, after the outer shape processing, a sputtering MgO target can be obtained by bonding to a backing plate as required.
(3)薄膜
 本発明の薄膜は、MgOターゲット材をスパッタリング法によって成膜することで製造することができる。スパッタリング法としては、DCスパッタリング法のほか、上述した公知のスパッタリング法を適用することができる。DCスパッタリング法で成膜する場合、スパッタ条件としては、基板温度10~500℃の範囲内が好ましく、10~300℃の範囲内が特に好ましい。また、スパッタを行う真空チャンバー内の真空度は、1×10Pa以下が好ましい。また、真空チャンバー内はアルゴン(Ar)やヘリウム(He)、窒素(N)など不活性ガス雰囲気とすることが好ましい。
(3) Thin Film The thin film of the present invention can be produced by forming a MgO target material by sputtering. As the sputtering method, the known sputtering method described above can be applied in addition to the DC sputtering method. When the film is formed by the DC sputtering method, the sputtering condition is preferably within the range of the substrate temperature of 10 to 500 ° C., particularly preferably within the range of 10 to 300 ° C. Further, the degree of vacuum in the vacuum chamber in which sputtering is performed is preferably 1 × 10 0 Pa or less. In addition, the inside of the vacuum chamber is preferably an inert gas atmosphere such as argon (Ar), helium (He), or nitrogen (N 2 ).
 このようにして得られる薄膜は、(002)面に単一配向性のあるMgO膜となる。また、薄膜の結晶性が優れている。ここでのMgO膜は、MgとTiとOを含み、MgOと同様の結晶構造を持つものである。 The thin film thus obtained becomes an MgO film having a single orientation on the (002) plane. In addition, the crystallinity of the thin film is excellent. The MgO film here contains Mg, Ti, and O, and has the same crystal structure as MgO.
 本発明の薄膜は、例えば磁気記録媒体の磁性層の下地層として好適に用いることができる。磁気記録媒体は何層もの層構造を有しているため、従来のMgOターゲット材を用いた場合は、層によってDCスパッタリング法とRFスパッタリング法を使い分けなければならなかったが、本発明のMgOターゲット材を用いると、各層ともDCスパッタリング法を用いて作製することができる。このため、磁気記録媒体の製造速度を高速化することが可能となる。 The thin film of the present invention can be suitably used as an underlayer of a magnetic layer of a magnetic recording medium, for example. Since the magnetic recording medium has a multi-layer structure, when a conventional MgO target material is used, the DC sputtering method and the RF sputtering method have to be properly used depending on the layer. When a material is used, each layer can be manufactured using a DC sputtering method. For this reason, it is possible to increase the manufacturing speed of the magnetic recording medium.
 以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。 Hereinafter, the present invention will be specifically described based on examples, but these do not limit the object of the present invention.
 MgOターゲット材及び薄膜(スパッタ膜)の特性測定法は以下のとおりである。
(1)MgOターゲット材のアルキメデス密度及び相対密度の測定
 MgOターゲット材の焼結密度をアルキメデス法にて測定した。また、各組成における真密度を、ターゲット材の粉砕粉末を用いて気体式ピクノメーター(Quantachr
ome.Co製 UPY-2)で求め、得られた真密度に対するMgOターゲット材の相対密度を算出した。
The method for measuring the characteristics of the MgO target material and the thin film (sputtered film) is as follows.
(1) Measurement of Archimedes density and relative density of MgO target material The sintered density of the MgO target material was measured by the Archimedes method. In addition, the true density in each composition is determined by using a pulverized powder of a target material and a gas pycnometer (Quantachr).
ome. The relative density of the MgO target material with respect to the obtained true density was calculated by UPY-2) manufactured by Co.
(2)MgOターゲット材の体積抵抗率の測定
 抵抗率計(CRESBOX ナプソン製)を用い、4探針法にてMgOターゲット材の電気抵抗を測定した。また、得られた電気抵抗値とターゲット材の形状から体積抵抗率を算出した。
(2) Measurement of volume resistivity of MgO target material Using a resistivity meter (manufactured by CRESBOX Napson), the electrical resistance of the MgO target material was measured by a four-probe method. Further, the volume resistivity was calculated from the obtained electric resistance value and the shape of the target material.
(3)MgOターゲット材の曲げ強度の測定
 テンシロン(エーアンドディ)を用い、MgOターゲット材の曲げ強度を、JIS  R
 1601(2008年度版)に準拠した3点曲げ強度試験法により測定した。
(3) Measurement of bending strength of MgO target material Using Tensilon (A & D), the bending strength of MgO target material is measured according to JIS R.
It was measured by a three-point bending strength test method based on 1601 (2008 edition).
(4)MgOターゲット材のMg/(Mg+Ti)の測定
 XRF装置(Supermini 200 リガク製)を用い、検量線法にてMgOタ
ーゲット材の組成分析をおこなった。得られた組成値より、MgとTiの合計量に対するMgの比率(Mg/(Mg+Ti))を算出した。
(4) Measurement of Mg / (Mg + Ti) of MgO target material Composition analysis of the MgO target material was performed by a calibration curve method using an XRF apparatus (Supermini 200 manufactured by Rigaku). From the obtained composition value, the ratio of Mg to the total amount of Mg and Ti (Mg / (Mg + Ti)) was calculated.
(5)MgO(002)相対強度の測定
 MgOターゲット材を用いて、ガラス基板上にスパッタ成膜したMgO膜について、X線回折装置(D8 ADVANCE Bruker AXS製)を用いてOut of Planeでの測定を行い、MgO(002)ピークの強度(面積)を算出した。各組成のMgOターゲット材において、得られたMgO(002)ピーク強度を、後述の実施例5記載のMgOターゲット材でのピーク強度を1とした相対値で示した。
(5) Measurement of relative strength of MgO (002) Measurement of MgO film sputter-deposited on a glass substrate using an MgO target material, using an X-ray diffractometer (manufactured by D8 ADVANCE Bruker AXS), with Out of Plane And the intensity (area) of the MgO (002) peak was calculated. In the MgO target material of each composition, the obtained MgO (002) peak intensity was shown as a relative value with the peak intensity in the MgO target material described in Example 5 described later being 1.
(6)MgOターゲット材の走査電子顕微鏡(SEM)観察
 MgOターゲット材を表面研磨加工し、SEMで観察を行った。SEMは電界放射型走査電子顕微鏡(日本電子製 JSM-7000F型)を使用し、加速電圧5kV、倍率は5000倍にて、反射電子像を得た。
(6) Scanning electron microscope (SEM) observation of MgO target material The surface of the MgO target material was polished and observed with an SEM. SEM was obtained using a field emission scanning electron microscope (JSM-7000F type, manufactured by JEOL Ltd.), and an reflected electron image was obtained at an acceleration voltage of 5 kV and a magnification of 5000 times.
(7)MgO相とTiO相の面積比の算出
 上記(6)で得られたSEM撮影した画像を用い、Media Cybernetic
s,Inc.製 ImageproPlusを使用して画像解析をおこない、MgO相(黒色部)とTiO相(白色部)の面積比を算出した。
(7) Calculation of area ratio of MgO phase and TiO phase Using the SEM image obtained in (6) above, Media Cybernetic
Image analysis was performed using ImageproPlus manufactured by s, Inc., and the area ratio between the MgO phase (black portion) and the TiO phase (white portion) was calculated.
(8)MgO相及びTiO相への元素の固溶量の算出
 TEM-EDS分析により、MgO相に固溶したTiと、TiO相に固溶したMgの量を算出した。TEMは電界放射型透過電子顕微鏡(日本電子製JEM-2010F型)を使用し、加速電圧200kV,倍率30000倍とし、EDSは、NORAN製UTW型Si(Li)半導体検出器を使用し、ビーム径1nmにて測定を行った。
(8) Calculation of solid solution amount of element in MgO phase and TiO phase The amount of Ti dissolved in the MgO phase and the amount of Mg dissolved in the TiO phase were calculated by TEM-EDS analysis. The TEM uses a field emission transmission electron microscope (JEM-2010F type manufactured by JEOL), the acceleration voltage is 200 kV, and the magnification is 30000 times. The EDS uses a NORAN UTW type Si (Li) semiconductor detector, and the beam diameter. Measurements were taken at 1 nm.
(9)ターゲット材を構成する構成相の平均粒子径の測定
 上記(6)にて加速電圧2kV、倍率を1000倍とし2次電子像を得た。この画像を画像解析ソフト(MacView 株式会社マウンテック製)を用い、MgOターゲット材を構成する構成相の平均粒子径(Heywood径)を測定した。
(9) Measurement of average particle diameter of constituent phases constituting target material In the above (6), a secondary electron image was obtained with an acceleration voltage of 2 kV and a magnification of 1000 times. The average particle diameter (Heywood diameter) of the constituent phase constituting the MgO target material was measured for this image using image analysis software (MacView, manufactured by Mountec Co., Ltd.).
(実験例1:MgOターゲット材の作製及びスパッタ膜の成膜ならびに評価)
(実施例1)
<MgOターゲット材の製造>
 酸化マグネシウム粉末(平均粒子径0.2μm)と一酸化チタン粉末(平均粒子径0.15μm)を、MgOが95mol%、TiOが5mol%になるよう秤量し、酸化マグ
ネシウムと一酸化チタンの総重量を100重量部としてメタノール溶媒200重量部と共に、ナイロンボールを入れた樹脂製容器中で16時間混合し、原料スラリーを得た。得られたスラリーを乾燥し、造粒粉を得た。
(Experimental example 1: Preparation of MgO target material and formation and evaluation of sputtered film)
(Example 1)
<Manufacture of MgO target material>
Magnesium oxide powder (average particle size 0.2 μm) and titanium monoxide powder (average particle size 0.15 μm) are weighed so that MgO is 95 mol% and TiO is 5 mol%. The total weight of magnesium oxide and titanium monoxide Was mixed in a resin container containing nylon balls together with 200 parts by weight of a methanol solvent for 100 parts by weight to obtain a raw material slurry. The obtained slurry was dried to obtain granulated powder.
 得られた造粒粉を、油圧式一軸成形機を用い面圧50MPaにて所定の形状に金型プレス成形後、CIP(冷間等方加圧)成形機を用い圧力100MPaにて加圧し、ターゲット材用成形体を得た。得られたターゲット材用成形体を、電気炉中で、最高温度1300℃、保持時間2時間、不活性ガス雰囲気にて焼成し、MgOターゲット材を製造した。 The obtained granulated powder is press-molded at a pressure of 100 MPa using a CIP (cold isostatic pressing) molding machine after press molding into a predetermined shape at a surface pressure of 50 MPa using a hydraulic uniaxial molding machine, A compact for a target material was obtained. The obtained compact for target material was fired in an inert gas atmosphere in an electric furnace at a maximum temperature of 1300 ° C. and a holding time of 2 hours to produce an MgO target material.
<MgOターゲット材の物性測定>
 得られたMgOターゲット材に対して、上記「(1)MgOターゲット材のアルキメデス密度及び相対密度の測定」、「(2)MgOターゲット材の体積抵抗率の測定」「(3)MgOターゲット材の曲げ強度の測定」「(4)MgOターゲット材のMg/(Mg+Ti)の測定」を行い、物性値を測定した。その結果、焼結密度がアルキメデス法にて3.57g/cm、相対密度は97.8%であった。また、体積抵抗率は4.0×10Ω・cmであった。さらに、曲げ強度は375MPaであり、MgとTiとの合計量に対するMgの比率(Mg/Mg+Ti)は、95mol%であった。これらの結果を表1及び表2に示す。
<Measurement of physical properties of MgO target material>
For the obtained MgO target material, “(1) Measurement of Archimedes density and relative density of MgO target material”, “(2) Measurement of volume resistivity of MgO target material”, “(3) MgO target material “Measurement of bending strength” and “(4) Measurement of Mg / (Mg + Ti) of MgO target material” were performed to measure physical properties. As a result, the sintered density was 3.57 g / cm 3 by Archimedes method, and the relative density was 97.8%. The volume resistivity was 4.0 × 10 1 Ω · cm. Furthermore, the bending strength was 375 MPa, and the ratio of Mg to the total amount of Mg and Ti (Mg / Mg + Ti) was 95 mol%. These results are shown in Tables 1 and 2.
<MgOターゲットの作製及び薄膜の物性測定>
 得られたMgOターゲット材をΦ80mm×厚み4mmに加工し、洗浄・乾燥後、バッキングプレートにボンディングし、MgOターゲットを得た。得られたMgOターゲットを、スパッタ装置(ULVAC製CS-L)に装着し、DCマグネトロンスパッタ法で、ガラス基板(コーニング社製:EAGLE XG)上にスパッタ成膜を行い、MgO膜(厚み:100nm)を得た。スパッタ条件は、基板温度200℃、チャンバーの到達真空度1×10-4Pa以下、Arガス圧0.2Pa、投入電力100Wとした。上記「(5)MgO(002)相対強度の測定」で測定したところ、得られたMgO膜のMgO(002)相対強度は2.12であった。この結果を表1及び表2に示す。
<Preparation of MgO target and measurement of physical properties of thin film>
The obtained MgO target material was processed into Φ80 mm × thickness 4 mm, washed and dried, and then bonded to a backing plate to obtain an MgO target. The obtained MgO target was mounted on a sputtering apparatus (ULVAC CS-L), and was sputter-deposited on a glass substrate (Corning Corporation: EAGLE XG) by a DC magnetron sputtering method, and an MgO film (thickness: 100 nm). ) The sputtering conditions were as follows: the substrate temperature was 200 ° C., the ultimate vacuum in the chamber was 1 × 10 −4 Pa or less, the Ar gas pressure was 0.2 Pa, and the input power was 100 W. When measured in the above-mentioned “(5) Measurement of MgO (002) relative strength”, the MgO (002) relative strength of the obtained MgO film was 2.12. The results are shown in Tables 1 and 2.
<MgOターゲット材のSEM観察>
 得られたMgOターゲット材に対して、上記「(6)MgOターゲット材の走査電子顕微鏡(SEM)観察」の方法でSEM観察を行った。SEM観察で得られた反射電子像を図1(a)に示す。この写真から、MgOターゲット材にはMgO相(黒色部)とTiO相(白色部)が含まれることがわかった。
<SEM observation of MgO target material>
SEM observation was performed with respect to the obtained MgO target material by the method of “(6) Scanning electron microscope (SEM) observation of MgO target material”. FIG. 1A shows a reflected electron image obtained by SEM observation. From this photograph, it was found that the MgO target material contains an MgO phase (black part) and a TiO phase (white part).
<MgO相とTiO相の面積比算出>
 図1(a)のSEM画像をもとに、上記「(7)MgO相とTiO相の面積比の算出」の方法でMgO相とTiO相の面積比(面積%)を算出した。その結果を表3に示す。また、表3には、仕込み組成のモル比(mol%)と体積比(体積%)も示す。仕込み組成の体積%と比較して、面積%が変化している(減少している)ことから、MgOとTiOが互いに固溶していることがわかった。
<Calculation of area ratio of MgO phase and TiO phase>
Based on the SEM image of FIG. 1A, the area ratio (area%) of the MgO phase to the TiO phase was calculated by the method of “(7) Calculation of area ratio of MgO phase to TiO phase” described above. The results are shown in Table 3. Table 3 also shows the molar ratio (mol%) and the volume ratio (volume%) of the charged composition. Compared with the volume% of the charged composition, the area% is changed (decreased), which indicates that MgO and TiO are in solid solution with each other.
<MgO相とTiO相の固溶量算出>
 MgOターゲット材に対して、上記「(8)MgO相及びTiO相への元素の固溶量の算出」の方法でTEM-EDS分析を行い、MgO相へのTiの固溶量と、TiO相へのMgの固溶量を算出した。TEM画像でMgO相(黒色部)の2点(Spot1、Spot2)と、TiO相(白色部)の1点(Spot3)を任意に選び、それぞれのEDS分析結果から、元素の固溶量を算出した。その結果を表4に示す。
<Calculation of solid solution amount of MgO phase and TiO phase>
TEM-EDS analysis was performed on the MgO target material by the method of “(8) Calculation of solid solution amount of element in MgO phase and TiO phase”, and the solid solution amount of Ti in the MgO phase and the TiO phase The solid solution amount of Mg was calculated. Two points (Spot1, Spot2) of MgO phase (black part) and one point (Spot3) of TiO phase (white part) are arbitrarily selected in the TEM image, and the solid solution amount of the element is calculated from the respective EDS analysis results. did. The results are shown in Table 4.
 MgO相のSpot1は主成分がMgOであり、Mgの99.81%に対して、Tiが
0.19%固溶していることがわかった。同様に、MgO相のSpot2は主成分がMgOであり、Mgの99.84%に対して、Tiが0.16%固溶していることがわかった。反対に、TiO相のSpot3は主成分がTiOであり、Tiの93.51%に対して、Mgが6.49%固溶していることがわかった。すなわち、MgO相にはTiが固溶しており、TiO相にはMgが固溶していることがわかった。
Spot 1 of the MgO phase is mainly composed of MgO, and it was found that Ti was dissolved in 0.19% with respect to 99.81% of Mg. Similarly, Spot 2 of the MgO phase has MgO as the main component, and it was found that 0.16% of Ti was dissolved in 99.84% of Mg. On the other hand, it was found that Spot 3 of the TiO phase is mainly composed of TiO, and 6.49% of Mg is dissolved in 93.51% of Ti. That is, it was found that Ti was dissolved in the MgO phase and Mg was dissolved in the TiO phase.
(実施例2)
 MgOを92mol%、TiOを8mol%としたこと以外は実施例1と同様の原料及び方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。また上記「(9)ターゲット材を構成する構成相の平均粒子径の測定」の方法で平均粒子径の測定を行った。その結果、平均粒子径は1.5μmであった。この結果を表5に示す。
(Example 2)
A MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and method as in Example 1 except that MgO was 92 mol% and TiO was 8 mol%. The results are shown in Tables 1 and 2. Further, the average particle size was measured by the method of “(9) Measurement of average particle size of constituent phases constituting target material”. As a result, the average particle size was 1.5 μm. The results are shown in Table 5.
(実施例3)
 MgOを90mol%、TiOを10mol%としたこと以外は実施例1と同様の原料及び方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。
(Example 3)
Except that MgO was changed to 90 mol% and TiO was changed to 10 mol%, an MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and methods as in Example 1. The results are shown in Tables 1 and 2.
(実施例4)
 MgOを80mol%、TiOを20mol%としたこと以外は実施例1と同様の原料及び方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。
Example 4
A MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and method as in Example 1 except that MgO was 80 mol% and TiO was 20 mol%. The results are shown in Tables 1 and 2.
 また、実施例1と同様にして、TEM観察を行った。得られた反射電子像を図1(b)に示す。また、MgO相とTiO相の面積比と各相での固溶量を算出した。その結果をそれぞれ表3、表4に示す。 Further, TEM observation was performed in the same manner as in Example 1. The obtained backscattered electron image is shown in FIG. Moreover, the area ratio of MgO phase and TiO phase and the amount of solid solution in each phase were calculated. The results are shown in Table 3 and Table 4, respectively.
(実施例5)
 MgOを77mol%、TiOを23mol%としたこと以外は実施例1と同様の原料及び方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。
(Example 5)
A MgO target was prepared and a sputtered film was formed and evaluated using the same raw materials and method as in Example 1 except that 77 mol% of MgO and 23 mol% of TiO were used. The results are shown in Tables 1 and 2.
(実施例6)
 実施例2と同様にMgOを92mol%、TiOを8mol%とし、MgO粉末の粒子径を0.5μm、TiO粉末の粒子径を0.7μmとしたこと以外は実施例1と同様の方法でMgOターゲット材の製造を行った。また実施例2と同様の方法で平均粒子径及び体積抵抗率の測定を行った。その結果を表5に示す。
(Example 6)
As in Example 2, MgO was 92 mol%, TiO was 8 mol%, the particle diameter of MgO powder was 0.5 μm, and the particle diameter of TiO powder was 0.7 μm. The target material was manufactured. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
(実施例7)
 MgO粉末の粒子径を0.2μm、TiO粉末の粒子径を0.3μmとしたこと以外は実施例6と同様の方法でMgOターゲット材の製造を行った。また実施例2と同様の方法で平均粒子径及び体積抵抗率の測定を行った。その結果を表5に示す。
(Example 7)
An MgO target material was produced in the same manner as in Example 6 except that the particle diameter of the MgO powder was 0.2 μm and the particle diameter of the TiO powder was 0.3 μm. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
(実施例8)
 MgO粉末の粒子径を0.1μm、TiO粉末の粒子径を0.08μmとしたこと以外は実施例6と同様の方法でMgOターゲット材の製造を行った。また実施例2と同様の方法で平均粒子径及び体積抵抗率の測定を行った。その結果を表5に示す。
(Example 8)
An MgO target material was produced in the same manner as in Example 6 except that the particle diameter of the MgO powder was 0.1 μm and the particle diameter of the TiO powder was 0.08 μm. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
(比較例1)
 MgOを100mol%としたこと以外は実施例1と同様の方法でMgOターゲットの
作製及びスパッタ膜の成膜と評価を行った。MgOターゲット材の抵抗値が高すぎたため、体積抵抗率は測定不能であった。また、MgOターゲット材の抵抗が高くて成膜ができなかったため、MgO(002)相対強度は評価できなかった。その結果を表1及び表2に示す。
(Comparative Example 1)
A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was changed to 100 mol%. Since the resistance value of the MgO target material was too high, the volume resistivity could not be measured. Further, since the MgO target material had high resistance and could not be formed, the MgO (002) relative strength could not be evaluated. The results are shown in Tables 1 and 2.
(比較例2)
 MgOを98mol%、TiOを2mol%としたこと以外は実施例1と同様の方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。また、MgOターゲット材の抵抗が高くて成膜ができなかったため、MgO(002)相対強度は評価できなかった。その結果を表1及び表2に示す。
(Comparative Example 2)
A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was changed to 98 mol% and TiO was changed to 2 mol%. Further, since the MgO target material had high resistance and could not be formed, the MgO (002) relative strength could not be evaluated. The results are shown in Tables 1 and 2.
(比較例3)
 MgOを75mol%、TiOを25mol%としたこと以外は実施例1と同様の方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。
(Comparative Example 3)
A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was 75 mol% and TiO was 25 mol%. The results are shown in Tables 1 and 2.
(比較例4)
 MgOを70mol%、TiOを30mol%としたこと以外は実施例1と同様の方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。
(Comparative Example 4)
A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was 70 mol% and TiO was 30 mol%. The results are shown in Tables 1 and 2.
(比較例5)
 MgOを50mol%、TiOを50mol%としたこと以外は実施例1と同様の方法でMgOターゲットの作製及びスパッタ膜の成膜と評価を行った。その結果を表1及び表2に示す。
(Comparative Example 5)
A MgO target was prepared and a sputtered film was formed and evaluated in the same manner as in Example 1 except that MgO was 50 mol% and TiO was 50 mol%. The results are shown in Tables 1 and 2.
(比較例6)
 MgOを92mol%、TiOを8mol%とし、MgO粉末の粒子径を1μm、TiO粉末の粒子径を1μmとしたこと以外は実施例1と同様の方法でMgOターゲット材の製造を行った。また実施例2と同様の方法で平均粒子径及び体積抵抗率の測定を行った。その結果を表5に示す。
(Comparative Example 6)
An MgO target material was produced in the same manner as in Example 1 except that MgO was 92 mol%, TiO was 8 mol%, the particle diameter of MgO powder was 1 μm, and the particle diameter of TiO powder was 1 μm. The average particle diameter and volume resistivity were measured in the same manner as in Example 2. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、MgとTiとの合計量に対するMgの比率(Mg/(Mg+Ti))が77~95mol%の範囲内にある実施例1~8は、いずれも体積抵抗率が低く、しかも成膜後のMgO膜の結晶性に優れることがわかった。一方、実施例1よりもMgの比率が高い比較例1,2では、体積抵抗率が高すぎて測定できず、DC成膜が不可能であった。また、実施例5よりもMgの比率が低い比較例3では、体積抵抗率は低いが、成膜後のMgO膜の結晶性が劣る結果となった。 From the above results, Examples 1 to 8 in which the ratio of Mg to the total amount of Mg and Ti (Mg / (Mg + Ti)) is in the range of 77 to 95 mol% all have low volume resistivity, and It was found that the crystallinity of the MgO film after the film was excellent. On the other hand, in Comparative Examples 1 and 2 having a higher Mg ratio than Example 1, the volume resistivity was too high to be measured, and DC film formation was impossible. In Comparative Example 3 in which the Mg ratio was lower than that in Example 5, the volume resistivity was low, but the crystallinity of the MgO film after film formation was inferior.
 また、構成相の平均粒子径と体積抵抗率との関係では、Mgの比率(Mg/(Mg+Ti)が同一な物において、平均粒子径が5μm以下を示す実施例3及び実施例6~8で体積抵抗率が低い値を示していた。しかし平均粒子径が5μmより大きい比較例6では、体積抵抗値が高い値を示していた。 Further, regarding the relationship between the average particle diameter of the constituent phase and the volume resistivity, in Examples 3 and 6 to 8 in which the average particle diameter is 5 μm or less in the same Mg ratio (Mg / (Mg + Ti)). The volume resistivity showed a low value, but in Comparative Example 6 where the average particle diameter was larger than 5 μm, the volume resistivity value showed a high value.
 次に、本発明の実施例、比較例に係る体積抵抗率と、特許文献1(特開2013-241684号公報)に記載されたMgOターゲット材の体積抵抗率との比較について説明する。図2は、本願の実施例、比較例(いずれもTiO)の体積抵抗率(◇プロット)、特許文献1の実施例に記載されたMgOターゲット材のうちTiCを含む例の体積抵抗率(□プロット)とTiNを含む例の体積抵抗率(△プロット)を重ねて示したグラフである。これらの結果から、MgOのモル比が全体の80mol%を下回る範囲では、TiO(本願)もTiC、TiN(特許文献1)も、ほぼ同等の体積抵抗率を示しているが、MgOのモル比が全体の80mol%を超えると、TiOは他に比べて体積抵抗率が低くなり、特に90mol%を超えるとその差は非常に顕著となる。このことから、特にMgOのモル比が全体の90mol%を超えると、TiOはTiCやTiNに比べて体積抵抗率が顕著に低くなることがわかった。 Next, a comparison between the volume resistivity according to Examples and Comparative Examples of the present invention and the volume resistivity of the MgO target material described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-241684) will be described. FIG. 2 shows the volume resistivity (□ plot) of the examples of the present application, comparative examples (both TiO), and the volume resistivity (□ of the example containing TiC among the MgO target materials described in the examples of Patent Document 1. It is a graph in which the volume resistivity (Δ plot) of an example including TiN is overlaid and plotted. From these results, in the range where the molar ratio of MgO is less than 80 mol% of the whole, both TiO (this application) and TiC and TiN (Patent Document 1) show almost the same volume resistivity, but the molar ratio of MgO When it exceeds 80 mol% of the whole, TiO has a lower volume resistivity than others, and particularly when it exceeds 90 mol%, the difference becomes very remarkable. From this, it was found that, especially when the molar ratio of MgO exceeds 90 mol%, TiO has a significantly lower volume resistivity than TiC or TiN.

Claims (5)

  1.  MgとTiとOとを主成分とするスパッタリング用MgOターゲット材であって、
     MgとTiとの合計量に対するMgの比率が75を超えて95mol%以下の範囲内であり、体積抵抗率が1×10Ω・cm以下であることを特徴とするスパッタリング用MgOターゲット材。
    A sputtering MgO target material mainly composed of Mg, Ti, and O,
    A MgO target material for sputtering, wherein the ratio of Mg to the total amount of Mg and Ti is in the range of more than 75 to 95 mol% or less, and the volume resistivity is 1 × 10 2 Ω · cm or less.
  2.  MgとOを主成分としTiが固溶した結晶相であるMgO相と、TiとOを主成分としMgが固溶した結晶相であるTiO相とを含むことを特徴とする請求項1に記載のスパッタリング用MgOターゲット材。 An MgO phase that is a crystal phase in which Ti and O are the main components and Mg is solid solution, and a TiO phase that is a crystal phase in which Ti and O are the main components and Mg is a solid solution. The MgO target material for sputtering as described.
  3.  MgとOを主成分としたMgO相と、TiとOを主成分としたTiO相とを含んだ構成相を有し、前記構成相の平均粒子径が5μm以下であることを特徴とする請求項1に記載のスパッタリング用MgOターゲット材。 It has a constituent phase including a MgO phase mainly composed of Mg and O and a TiO phase mainly composed of Ti and O, and the mean particle size of the constituent phase is 5 μm or less. Item 2. The MgO target material for sputtering according to Item 1.
  4.  相対密度が95%以上であることを特徴とする請求項1~3のいずれかに記載のスパッタリング用MgOターゲット材。 4. The MgO target material for sputtering according to claim 1, wherein the relative density is 95% or more.
  5.  請求項1~4のいずれかに記載のスパッタリング用MgOターゲット材を用いて成膜されたことを特徴とする薄膜。 A thin film formed by using the MgO target material for sputtering according to any one of claims 1 to 4.
PCT/JP2015/084109 2014-12-05 2015-12-04 MgO SPUTTERING TARGET MATERIAL AND THIN FILM WO2016088867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562691A JPWO2016088867A1 (en) 2014-12-05 2015-12-04 MgO target material and thin film for sputtering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-247028 2014-12-05
JP2014247028 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088867A1 true WO2016088867A1 (en) 2016-06-09

Family

ID=56091806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084109 WO2016088867A1 (en) 2014-12-05 2015-12-04 MgO SPUTTERING TARGET MATERIAL AND THIN FILM

Country Status (3)

Country Link
JP (1) JPWO2016088867A1 (en)
TW (1) TW201632482A (en)
WO (1) WO2016088867A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019402A (en) * 2017-07-21 2019-02-07 Jx金属株式会社 Sputtering target, production method of sputtering target, and production method of magnetic medium
JP2020147822A (en) * 2019-03-15 2020-09-17 株式会社高純度化学研究所 MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET
JP2020164959A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Sputtering target member, sputtering target, manufacturing method of sputtering target member, and manufacturing method of sputtered film
CN113661143A (en) * 2019-07-23 2021-11-16 松下知识产权经营株式会社 Method for producing thin film and laminate
CN115246732A (en) * 2021-04-28 2022-10-28 光洋应用材料科技股份有限公司 Composite oxide target material and method for producing the same
JP7165787B1 (en) 2021-04-26 2022-11-04 光洋應用材料科技股▲分▼有限公司 Composite oxide target and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085708B2 (en) * 1987-10-01 1996-01-24 東芝タンガロイ株式会社 Oxide ceramics
JP2013241684A (en) * 2011-07-01 2013-12-05 Ube Material Industries Ltd MgO TARGET FOR SPUTTERING
WO2014156497A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Mgo-tio sintered compact target and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085708B2 (en) * 1987-10-01 1996-01-24 東芝タンガロイ株式会社 Oxide ceramics
JP2013241684A (en) * 2011-07-01 2013-12-05 Ube Material Industries Ltd MgO TARGET FOR SPUTTERING
WO2014156497A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Mgo-tio sintered compact target and method for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019402A (en) * 2017-07-21 2019-02-07 Jx金属株式会社 Sputtering target, production method of sputtering target, and production method of magnetic medium
JP7014541B2 (en) 2017-07-21 2022-02-01 Jx金属株式会社 Sputtering target, manufacturing method of sputtering target and manufacturing method of magnetic medium
JP2020147822A (en) * 2019-03-15 2020-09-17 株式会社高純度化学研究所 MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET
JP7178707B2 (en) 2019-03-15 2022-11-28 株式会社高純度化学研究所 Method for manufacturing MgO-TiO-based sputtering target
JP2020164959A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Sputtering target member, sputtering target, manufacturing method of sputtering target member, and manufacturing method of sputtered film
WO2020202649A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Sputtering target member, sputtering target, method for producing sputtering target member, and method for producing sputtering film
JP7246232B2 (en) 2019-03-29 2023-03-27 Jx金属株式会社 Sputtering target member, sputtering target, method for manufacturing sputtering target member, and method for manufacturing sputtered film
CN113661143A (en) * 2019-07-23 2021-11-16 松下知识产权经营株式会社 Method for producing thin film and laminate
CN113661143B (en) * 2019-07-23 2024-03-08 松下知识产权经营株式会社 Method for producing film and laminate
JP7165787B1 (en) 2021-04-26 2022-11-04 光洋應用材料科技股▲分▼有限公司 Composite oxide target and manufacturing method thereof
JP2022172036A (en) * 2021-04-26 2022-11-14 光洋應用材料科技股▲分▼有限公司 Composite oxide target and method for manufacturing the same
CN115246732A (en) * 2021-04-28 2022-10-28 光洋应用材料科技股份有限公司 Composite oxide target material and method for producing the same

Also Published As

Publication number Publication date
TW201632482A (en) 2016-09-16
JPWO2016088867A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2016088867A1 (en) MgO SPUTTERING TARGET MATERIAL AND THIN FILM
KR101731847B1 (en) MgO TARGET FOR SPUTTERING
TWI616425B (en) MgO-TiO sintered body target and manufacturing method thereof
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
KR20120120127A (en) Sb-te based alloy sintered compact sputtering target
JPWO2004079036A1 (en) Sputtering target and manufacturing method thereof
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
JP6052976B2 (en) Electrostatic chuck dielectric layer and electrostatic chuck
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
JPWO2019163710A1 (en) Manufacturing method of composite sintered body, semiconductor manufacturing equipment member and composite sintered body
JP6537715B2 (en) Al2O3 sputtering target and method of manufacturing the same
JP7108046B2 (en) magnesium oxide sputtering target
JP6149804B2 (en) Oxide sintered body and manufacturing method thereof
CN112236403B (en) Target and method for manufacturing the same
WO2012073879A1 (en) Sputtering target
JP6635862B2 (en) Sputtering target made of BiFeO3-based sintered body and method of manufacturing the same
JP6459830B2 (en) Oxide sintered body, method for producing the same, and method for producing oxide film
WO2019177086A1 (en) MgO SINTERED BODY AND SPUTTERING TARGET
JP7178707B2 (en) Method for manufacturing MgO-TiO-based sputtering target
JP7165023B2 (en) magnesium oxide sputtering target
US20220285164A1 (en) Plasma Etching Apparatus Component for Manufacturing Semiconductor Comprising Composite Sintered Body and Manufacturing Method Therefor
JP2009004752A (en) Electrostatic chuck
JP2015227262A (en) Oxide sintered body and production method of the same, and oxide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866122

Country of ref document: EP

Kind code of ref document: A1