WO2014156497A1 - Mgo-tio sintered compact target and method for producing same - Google Patents

Mgo-tio sintered compact target and method for producing same Download PDF

Info

Publication number
WO2014156497A1
WO2014156497A1 PCT/JP2014/055346 JP2014055346W WO2014156497A1 WO 2014156497 A1 WO2014156497 A1 WO 2014156497A1 JP 2014055346 W JP2014055346 W JP 2014055346W WO 2014156497 A1 WO2014156497 A1 WO 2014156497A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo
tio
sintered body
sputtering
powder
Prior art date
Application number
PCT/JP2014/055346
Other languages
French (fr)
Japanese (ja)
Inventor
英生 高見
中村 祐一郎
荒川 篤俊
真一 荻野
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to SG11201501372QA priority Critical patent/SG11201501372QA/en
Priority to CN201480002503.0A priority patent/CN104661983A/en
Priority to JP2014543701A priority patent/JP5925907B2/en
Publication of WO2014156497A1 publication Critical patent/WO2014156497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • a method for producing an MgO—TiO sintered body characterized by mixing powder and hot pressing the powder at a temperature of 1250 to 1450 ° C. and a pressure of 200 kgf / cm 2 or more.
  • the content of TiO is 25 mol% to 90 mol%, preferably 35 mol% to 70 mol%. If it is less than 25 mol%, it is difficult to obtain a bulk resistance capable of DC sputtering. On the other hand, if it exceeds 90 mol%, the properties of the formed film are close to those of pure TiO, and the desired properties cannot be obtained. .
  • the present invention includes cases where other materials are added as long as DC sputtering is possible and the characteristics of the film are not significantly changed.
  • Example 2 As raw material powder, TiO powder having an average particle diameter of 1 ⁇ m and a purity of 4N (99.99%), an average particle diameter of 20 ⁇ m and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1. Next, the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and rotated and mixed and ground for 20 hours or more so that both powders were uniformly dispersed. Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere and a holding temperature of 1400 ° C., and a pressure of 300 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
  • the hot press conditions were a vacuum atmosphere and a holding temperature of 1400 ° C., and a pressure of 300 kgf / cm
  • the sintered body was polished into a target shape with a grinding machine to produce a disk-shaped target. This was attached to a DC sputtering apparatus and sputtering was performed, but DC sputtering could not be performed.
  • the sintered body thus produced was measured for density by the Archimedes method, and as a result, it had a relative density of 97%. Moreover, as a result of measuring the bulk resistance of the sintered body by the four-terminal method, it was 0.007 ⁇ ⁇ cm. Further, when the cross section of this sintered body was polished and the center portion was observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the region where the longest diameter of the MgO phase was 50 ⁇ m or more, 30 ⁇ m or more, They were 25 / mm 2 and 53 / mm 2 , respectively.
  • the MgO—TiO sintered body of the present invention can be DC-sputtered, the film formation rate can be remarkably increased compared with the case where the conventional MgO sintered body is RF-sputtered, and the productivity is greatly improved. An effect is obtained. Moreover, since DC sputtering can be realized by using an inexpensive DC power source, existing equipment can be used as it is, and the cost of capital investment can be reduced. As described above, the MgO—TiO sintered body of the present invention is a magnesium oxide-based sputtering used for forming a magnetic recording medium for a magnetic disk device or a thin film for an electro device such as a tunnel magnetoresistive effect (TMR) element. Useful as a target. In addition, as a conductive ceramic material that could not be realized with conventional insulating MgO, it can also be used in new fields such as static electricity removal and heat-resistant members.
  • TMR tunnel magnetoresistive effect

Abstract

A MgO-TiO sintered compact comprising 25 to 90 mol% of TiO, with the remainder made up by MgO and unavoidable impurities. The present invention addresses the problem of providing: a highly dense target which has a high film deposition speed and can be subjected to direct-current (DC) sputtering by which particles are formed in a reduced amount; and a method for producing the target.

Description

MgO-TiO焼結体ターゲット及びその製造方法MgO-TiO sintered compact target and method for producing the same
 本発明は、磁気ディスク装置用の磁気記録媒体やトンネル磁気抵抗効果(TMR)素子と言ったエレクトロデバイス用の酸化マグネシウム層を形成するために用いられる酸化マグネシウム系ターゲット及びその製造方法に関し、特に導電性を有し、かつ高密度のスパッタリング用焼結体酸化マグネシウム系ターゲット及びその製造方法に関するものである。 The present invention relates to a magnesium oxide target used for forming a magnesium oxide layer for an electronic device such as a magnetic recording medium for a magnetic disk device or a tunnel magnetoresistive effect (TMR) element, and a method for manufacturing the same. The present invention relates to a high-density sintered high density magnesium oxide target for sputtering and a method for producing the same.
 近年、磁気ディスクの小型化・高記録密度化に伴い、磁気記録媒体の研究・開発が行われ、特に磁性層や下地層の改良が種々行われてきた。ハードディスクの記録密度は、年々急速に増大しており、現状の600Gbit/inの面密度から、将来は1Tbit/inに達すると考えられている。1Tbit/inに記録密度が達すると、記録bitのサイズが10nm以下になり、その場合、熱揺らぎによる常磁性化が問題となってくると予想され、現在使用されている材料、例えばCo-Cr基合金にPtを添加して、結晶磁気異方性を高めた材料では十分でないことが予想される。10nm以下のサイズで安定的に強磁性として振舞う磁性粒子は、より高い結晶磁気異方性を持っている必要があるからである。 In recent years, with the miniaturization and high recording density of magnetic disks, research and development of magnetic recording media have been conducted, and various improvements have been made to the magnetic layer and the underlayer. The recording density of hard disks is rapidly increasing year by year, and it is considered that the future will reach 1 Tbit / in 2 from the current surface density of 600 Gbit / in 2 . When the recording density reaches 1 Tbit / in 2 , the size of the recording bit becomes 10 nm or less. In that case, paramagnetization due to thermal fluctuation is expected to become a problem, and materials currently used, for example, Co— It is expected that a material in which crystal magnetic anisotropy is increased by adding Pt to a Cr-based alloy is not sufficient. This is because magnetic particles which stably behave as ferromagnetism with a size of 10 nm or less need to have higher crystal magnetic anisotropy.
 上記のような理由から、L1構造を持つFePt相が超高密度記録媒体材料として注目されている。L1構造を持つFePt相は高い結晶磁気異方性とともに、耐食性、耐酸化性に優れているため、磁気記録媒体としての応用に適した材料と期待されているものである。そして、FePt相を超高密度記録媒体材料として使用する場合には、規則化したFePt磁性粒子を磁気的に孤立させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。FePt薄膜に磁気異方性を付与するためには、結晶方向を制御することが必要とされているが、これは単結晶基板を選択することで容易に可能となる。磁化方位軸を垂直に配向させるには、FePt層の下地層として酸化マグネシウム膜が適していることが報告されている。 For the reasons described above, FePt phase having an L1 0 structure is attracting attention as ultra-high density recording media material. FePt phase having an L1 0 structure with a high magnetocrystalline anisotropy, corrosion resistance and excellent oxidation resistance, is what is expected as a material suitable for the application as a magnetic recording medium. When the FePt phase is used as an ultra-high density recording medium material, it is required to develop a technique for aligning and dispersing the ordered FePt magnetic particles in as high a density as possible in a magnetically isolated state. It has been. In order to impart magnetic anisotropy to the FePt thin film, it is necessary to control the crystal direction. This can be easily achieved by selecting a single crystal substrate. It has been reported that a magnesium oxide film is suitable as an underlayer for the FePt layer in order to orient the magnetization azimuth axis perpendicularly.
 さらに、磁気ヘッド(ハードディスク用)やMRAMに用いられるTMR素子の絶縁層(トンネル障壁)として使われる酸化マグネシウム膜等々にも使用されることも知られている。上記のような酸化マグネシウム膜は、古くは真空蒸着法によって形成されていたが、最近は、製造工程の簡略化や大面積化を容易にするために、スパッタリング法を用いた酸化マグネシウム膜の製作が行われている。従来技術としては、下記の公知文献がある。 Further, it is also known to be used for a magnetic head (for hard disk), a magnesium oxide film used as an insulating layer (tunnel barrier) of a TMR element used for MRAM, and the like. The magnesium oxide film as described above was formed by the vacuum evaporation method in the past, but recently, in order to simplify the manufacturing process and facilitate the enlargement of the area, the production of the magnesium oxide film using the sputtering method is performed. Has been done. As the prior art, there are the following known documents.
 前記特許文献1は、酸化マグネシウム純度99.9%以上、相対密度99%以上の酸化マグネシウム焼結体よりなる酸化マグネシウムであって、平均粒径が60μm以下で、結晶粒内に平均粒径2μm以下の丸みを帯びた気孔が存在している微構造を有し、スパッタ製膜速度1000Å/min以上に対応可能な酸化マグネシウムターゲットを開示する。これは、高純度酸化マグネシウム粉末に平均粒径100nm以下の酸化マグネシウム微粉末を添加混合して成形し、成形体を一次焼結及び二次焼結する方法を基礎としている。 Patent Document 1 is magnesium oxide made of a magnesium oxide sintered body having a magnesium oxide purity of 99.9% or more and a relative density of 99% or more, having an average particle size of 60 μm or less and an average particle size of 2 μm in the crystal grains. Disclosed is a magnesium oxide target having a microstructure in which the following rounded pores are present and capable of handling a sputter deposition rate of 1000 Å / min or more. This is based on a method in which a magnesium oxide fine powder having an average particle size of 100 nm or less is added to and mixed with high-purity magnesium oxide powder, and the compact is subjected to primary sintering and secondary sintering.
 前記特許文献2は、相対密度99%以上の酸化マグネシウム焼結体よりなり、Ar雰囲気或いはAr-O混合雰囲気中でのスパッタ成膜において500Å/min以上の成膜速度が得られることを特徴とする酸化マグネシウムターゲットであり、平均粒径0.1~2μmの高密度酸化マグネシウム粉末を3t/cm以上の圧力でCIP成形し、得られた成形体を焼結することを提案している。 Patent Document 2 is composed of a magnesium oxide sintered body having a relative density of 99% or more, and a film formation speed of 500 Å / min or more can be obtained in sputter film formation in an Ar atmosphere or an Ar—O 2 mixed atmosphere. Proposed that CIP molding of high-density magnesium oxide powder having an average particle size of 0.1 to 2 μm at a pressure of 3 t / cm 2 or more and sintering the resulting molded body. .
 前記特許文献3には、酸化マグネシウム純度99.9%以上、相対密度99.0%以上の酸化マグネシウム焼結体よりなる酸化マグネシウムターゲットであって、スパッタ成膜速度600Å/min以上に対応可能な酸化マグネシウムからなるターゲットが記載され、高純度酸化マグネシウム粉末に電融酸化マグネシウム粉末と平均粒径100nm以下の酸化マグネシウム微粉末を添加混合して成形し、成形体を一次焼結及び二次焼結する方法であり、良好な配向性、結晶性及び膜特性を有する酸化マグネシウム膜をスパッタ法により高い成膜速度で成膜できると記載されている。 Patent Document 3 discloses a magnesium oxide target made of a magnesium oxide sintered body having a magnesium oxide purity of 99.9% or more and a relative density of 99.0% or more, and can cope with a sputter deposition rate of 600 Å / min or more. A target composed of magnesium oxide is described, and a high-purity magnesium oxide powder is mixed with an electrofused magnesium oxide powder and a magnesium oxide fine powder having an average particle size of 100 nm or less and molded, and the compact is subjected to primary sintering and secondary sintering. It is described that a magnesium oxide film having good orientation, crystallinity, and film characteristics can be formed at a high film formation rate by a sputtering method.
 前記特許文献4には、MgOを主成分とするターゲット及びその製造方法であり、放電電圧が低く、放電時の耐スパッタリング性、速い放電の応答性、絶縁性を目途とし、A型のPDPの誘電体層の保護膜に利用するために、MgOを主成分とするターゲット内にLa粒子、Y粒子、Sc粒子を分散させることが提案されている。 The Patent Document 4, a target and a manufacturing method thereof mainly containing MgO, discharge voltage is low, the sputtering resistance during discharge, the response of the fast discharge, the prospect of insulating, A C-type PDP In order to use this as a protective film for the dielectric layer, it has been proposed to disperse La particles, Y particles, and Sc particles in a target mainly composed of MgO.
 前記特許文献5には、MgOを主成分とするターゲットにおいて、強度、破壊靭性値、耐熱衝撃性を向上させることを目途とし、MgOマトリックス中にLaB粒子を分散させると共に、焼結前の還元ガス雰囲気中での還元処理、所定温度での一次焼結、二次焼結が提案されている。 In Patent Document 5, LaB 6 particles are dispersed in an MgO matrix and reduced before sintering with the aim of improving strength, fracture toughness value, and thermal shock resistance in a target mainly composed of MgO. Reduction treatment in a gas atmosphere, primary sintering at a predetermined temperature, and secondary sintering have been proposed.
 前記特許文献6には、MgOを主成分とするターゲットにおいて、相対密度と平均結晶粒径を0.5~100μmに規定するとともに、MgOマトリックス中に希土類元素であるSc、Y、La、Ce、Gd、Yb、Ndを分散させることが記載されている。前記特許文献7には、高密度焼結体を製造することを目途とし、MgO圧粉体を放電プラズマ焼結法により焼結することが提案されている。 In the above-mentioned Patent Document 6, in a target mainly composed of MgO, the relative density and the average crystal grain size are regulated to 0.5 to 100 μm, and the rare earth elements Sc, Y, La, Ce, It describes that Gd, Yb, and Nd are dispersed. Patent Document 7 proposes to sinter MgO green compacts by a discharge plasma sintering method with the aim of producing a high-density sintered body.
 前記特許文献8及び特許文献9には、最終到達密度を3.568g/cmとし、機械的性質及び熱伝導性が良好で、ガス発生による雰囲気の汚染を低減することを目途とし、一軸加圧焼結により、(111)面を多く配向させたMgO焼結体を得るものであり、粒径が1μm以下のMgO原料粉末を一軸加圧焼結し、その後酸素雰囲気中で1273K以上の温度で熱処理することが提案されている。この場合は、原料粉末は、MgOが用いられ、密度を向上させる手法が焼結条件に限定されている。 In Patent Document 8 and Patent Document 9, the final achieved density is 3.568 g / cm 3 , the mechanical properties and thermal conductivity are good, and the aim is to reduce atmospheric contamination due to gas generation. An MgO sintered body having a large number of (111) planes is obtained by pressure sintering. A MgO raw material powder having a particle size of 1 μm or less is uniaxially pressed and then heated to a temperature of 1273 K or higher in an oxygen atmosphere. It has been proposed to heat-treat. In this case, MgO is used as the raw material powder, and the technique for improving the density is limited to the sintering conditions.
 前記特許文献10は、MgO膜を大規模にかつ均一に成膜するターゲットを提案するものであり、平均結晶粒径、密度、抗折力、ターゲット表面の中心性平均粗さを規定するとともに、原料粉末の粒径を1μm以下とし、その後造粒工程を経て、所定の荷重と温度で焼結し、ターゲットの中心線平均粗さRaを1μm以下に表面仕上げすることが提案されている。なお、特許文献11には、垂直磁気記録媒体において、非磁性基体と非磁性下地層との間に、NaCl型構造を有するMgO、NiO、TiO、またはTiの炭化物のいずれかの材料からなる非磁性シード層を形成することが記載されている。 Patent Document 10 proposes a target for uniformly forming a MgO film on a large scale, and defines an average crystal grain size, a density, a bending strength, and a central average roughness of a target surface. It has been proposed that the particle size of the raw material powder be 1 μm or less, then undergo a granulation step, sintering at a predetermined load and temperature, and surface finishing the target centerline average roughness Ra to 1 μm or less. In Patent Document 11, in a perpendicular magnetic recording medium, a non-magnetic material made of any one of MgO, NiO, TiO, or Ti carbide having a NaCl type structure is provided between a nonmagnetic substrate and a nonmagnetic underlayer. The formation of a magnetic seed layer is described.
特開平10-130827号公報Japanese Patent Laid-Open No. 10-130827 特開平10-130828号公報Japanese Patent Laid-Open No. 10-130828 特開平10-158826号公報Japanese Patent Laid-Open No. 10-158826 特開平10-237636号公報Japanese Patent Laid-Open No. 10-237636 特開平11-6058号公報Japanese Patent Laid-Open No. 11-6058 特開平11-335824号公報Japanese Patent Laid-Open No. 11-335824 特開平11-139862号公報JP-A-11-139862 特開2009-173502号公報JP 2009-173502 A 国際公開2009/096384号パンフレットInternational Publication No. 2009/096384 Pamphlet 特開2000-169956号公報JP 2000-169956 A 特開2004-213869号公報JP 2004-213869 A
 近年、磁気ディスク装置(ハードディスク)の磁気記録媒体、トンネル磁気抵抗効果(TMR)素子等のエレクトロデバイスを用として、酸化マグネシウム膜の需要が高まりつつある。この酸化マグネシウムは、絶縁性材料であるため、通常、高周波(RF)スパッタリングが用いられる。しかしながら、このRFスパッタリングは、成膜速度が遅いため生産性が悪く、またパーティクルが発生しやすいため膜の品質を劣化させるという問題があった。そこで、本発明は、成膜速度が速く、パーティクルの発生が少ない直流(DC)スパッタリングが可能な高密度のターゲット及びその製造方法を提供することを課題とする。 In recent years, the demand for a magnesium oxide film is increasing by using an electronic device such as a magnetic recording medium of a magnetic disk device (hard disk) or a tunnel magnetoresistive effect (TMR) element. Since this magnesium oxide is an insulating material, radio frequency (RF) sputtering is usually used. However, this RF sputtering has a problem that the productivity is poor because the film forming speed is slow, and the quality of the film is deteriorated because particles are easily generated. In view of the above, an object of the present invention is to provide a high-density target capable of direct current (DC) sputtering with a high deposition rate and less particle generation, and a method for manufacturing the same.
 上記課題を解決するために、本発明者らは鋭意研究を行った結果、酸化マグネシウムMgOに、これと同じNaCl型の結晶構造を持ち、かつ格子定数が近い値を有する、導電性の酸化チタンTiOを混合した複合酸化物のターゲットとすることで、導電性を有する焼結体が得られ、DCスパッタリングが可能となり、しかも、得られた膜は、酸化マグネシウムと同等の結晶構造を持つので、下地膜等としての機能が損なわれないという知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, magnesium oxide MgO has the same NaCl-type crystal structure and has a close lattice constant. By using a composite oxide target in which TiO is mixed, a conductive sintered body can be obtained, and DC sputtering can be performed, and the obtained film has a crystal structure equivalent to that of magnesium oxide. The knowledge that the function as a base film etc. is not impaired was acquired.
 このような知見に基づき、本発明は、
1)TiOを25~90mol%含有し、残部がMgO及び不可避的不純物からなるMgO-TiO焼結体、
2)相対密度が95%以上であることを特徴とする上記1)記載のMgO-TiO焼結体、
3)バルク抵抗率が10Ω・cm以下である上記1)又は2)記載のMgO-TiO焼結体、
4)TiO相とMgO相の2相が存在し、該MgO相の最長径が50μm以上となる領域が1mm当たり10個以下であることを特徴とする上記1)~3)のいずれか一に記載のMgO-TiO焼結体、
5)MgOに25mol%以上90mol%以下のTiOが含有したスパッタリング用焼結体の製造方法であって、平均粒径が10μm以下のMgO粉と平均粒径が50μm以下のTiO粉とからなる原料粉を混合し、これを1250~1450℃の温度、200kgf/cm以上の加圧力で、ホットプレスして作製することを特徴とする、MgO-TiO焼結体の製造方法、を提供する。
Based on such knowledge, the present invention
1) MgO—TiO sintered body containing 25 to 90 mol% of TiO, the balance being MgO and inevitable impurities,
2) The MgO—TiO sintered body according to 1) above, wherein the relative density is 95% or more,
3) The MgO—TiO sintered body according to 1) or 2), wherein the bulk resistivity is 10 Ω · cm or less,
4) Any one of the above 1) to 3), wherein there are two phases of TiO phase and MgO phase, and the maximum diameter of the MgO phase is 10 μm or less per 1 mm 2. MgO—TiO sintered body described in 1.
5) A method for producing a sintered compact for sputtering containing 25 mol% or more and 90 mol% or less of TiO in MgO, and a raw material comprising MgO powder having an average particle diameter of 10 μm or less and TiO powder having an average particle diameter of 50 μm or less There is provided a method for producing an MgO—TiO sintered body characterized by mixing powder and hot pressing the powder at a temperature of 1250 to 1450 ° C. and a pressure of 200 kgf / cm 2 or more.
 本発明は、高密度でバルク抵抗率の低い酸化マグネシウム系焼結体を提供することができる。これをターゲットとして用いた場合には、DCスパッタリングにより成膜することができるので、成膜速度を格段に向上させることができ、しかも安定したスパッタリングが可能となるので、パーティクルの発生量が少ないという優れた効果を有する。また、RFスパッタリング用の高価なRF電源を必要としないので、装置設備のコストを低減することができるという優れた効果を有する。 The present invention can provide a magnesium oxide sintered body having a high density and a low bulk resistivity. When this is used as a target, it is possible to form a film by DC sputtering, so that the film formation speed can be remarkably improved, and moreover stable sputtering is possible, so that the generation amount of particles is small. Has an excellent effect. In addition, since an expensive RF power source for RF sputtering is not required, there is an excellent effect that the cost of equipment can be reduced.
実施例2のターゲットをレーザー顕微鏡で観察した組織画像である。It is the structure | tissue image which observed the target of Example 2 with the laser microscope. 実施例2のターゲットをレーザー顕微鏡で観察した組織画像(図1を約1/5縮尺した画像)である。It is the structure | tissue image (image which reduced FIG. 1 about 1/5 scale) which observed the target of Example 2 with the laser microscope.
 本発明のMgO-TiO焼結体は、MgOにTiOを添加することが、大きな特徴の一つである。導電性を有するTiOを添加することで、MgO-TiOからなる導電性の焼結体が得られるので、この焼結体を用いて作製したスパッタリングターゲットは、DCスパッタが可能となり、また、スパッタリングの際発生するパーティクルの量を低減することができる。 One of the major features of the MgO—TiO sintered body of the present invention is that TiO is added to MgO. By adding TiO having conductivity, a conductive sintered body made of MgO—TiO can be obtained. Therefore, a sputtering target produced using this sintered body can be subjected to DC sputtering, and sputtering can be performed. The amount of particles that occur can be reduced.
 本発明は、上記に示すように、導電性を有するTiOを添加することにより、焼結体に導電性を付与し、DCスパッタリングを可能とするものであるが、さらに重要な点は前記TiOが、MgOと同一のNaCl型の結晶構造を有し、かつ、MgOに近い値の格子定数をとり、MgOと同じ酸化物でMgOと反応して中間化合物を生成しないことである。これにより、スパッタリングによって形成した膜は、従来の酸化マグネシウム単独の膜と比べて、その特性を損なうことがないという優れた効果を有する。
 また、本発明に適用可能な導電性材料として、TiOの他、TiN、TiC、CrN、NbN、NbC、TaN、TaC、ZrN、ZrC、VN、VC、などが挙げられる。格子定数の観点だけからすると、TiC、VC、WC、TiNが有望であるが、これらの炭化物或いは窒化物は、原料粉中に酸素不純物を多く含み、MgOと混合、焼結するときに分解したり、MgOの酸素を還元したり、MgOと中間化合物を生成したりする可能性があり、本来のMgや「TiC、VC、WC、TiN」がもつ特性(格子定数など)が損なわれることが考えられる。
In the present invention, as shown above, by adding TiO having conductivity, the sintered body is imparted with conductivity, and DC sputtering can be performed. It has the same NaCl-type crystal structure as MgO, has a lattice constant close to that of MgO, and does not react with MgO with the same oxide as MgO to produce an intermediate compound. Thereby, the film formed by sputtering has an excellent effect that the characteristics thereof are not impaired as compared with the conventional film of magnesium oxide alone.
In addition to TiO, examples of the conductive material applicable to the present invention include TiN, TiC, CrN, NbN, NbC, TaN, TaC, ZrN, ZrC, VN, and VC. From the viewpoint of lattice constant alone, TiC, VC, WC, and TiN are promising, but these carbides or nitrides contain a large amount of oxygen impurities in the raw material powder and decompose when mixed and sintered with MgO. Or may reduce the oxygen of MgO or generate an intermediate compound with MgO, and the characteristics (lattice constant, etc.) inherent in Mg and “TiC, VC, WC, TiN” may be impaired. Conceivable.
 本発明のMgO-TiO焼結体において、TiOの含有量は、25mol%以上90mol%以下、好ましくは、35mol%以上70mol%以下とする。25mol%未満であると、DCスパッタリングが可能なバルク抵抗が得られにくく、一方、90mol%超であると、形成した膜の特性が純TiOに近づき、所望の特性が得られないため、好ましくない。
 なお、本発明には、DCスパッタリングが可能であり、かつ、膜の特性を著しく変化させない範囲であれば、その他の材料を添加する場合も含まれる。
In the MgO—TiO sintered body of the present invention, the content of TiO is 25 mol% to 90 mol%, preferably 35 mol% to 70 mol%. If it is less than 25 mol%, it is difficult to obtain a bulk resistance capable of DC sputtering. On the other hand, if it exceeds 90 mol%, the properties of the formed film are close to those of pure TiO, and the desired properties cannot be obtained. .
The present invention includes cases where other materials are added as long as DC sputtering is possible and the characteristics of the film are not significantly changed.
 また、本発明のMgO-TiO焼結体において、相対密度が95%以上であることが好ましい。さらに好ましくは、相対密度が98%以上である。このような高密度焼結体をスパッタリング用ターゲットとして用いた場合には、スパッタリングの際、パーティクルの発生量を低減することができる。 In the MgO—TiO sintered body of the present invention, the relative density is preferably 95% or more. More preferably, the relative density is 98% or more. When such a high-density sintered body is used as a sputtering target, the amount of generated particles can be reduced during sputtering.
 また、本発明のMgO-TiO焼結体において、バルク抵抗率が10Ω・cm以下であることが好ましい。さらに好ましくは、0.01Ω・cm以下である。このように、バルク抵抗値が低い焼結体をスパッタリング用ターゲットとして用いた場合には、より安定的なDCスパッタリングが可能となる。これにより、従来のRFスパッタに比べて成膜速度を速くすることができるので、生産性を向上することができる。
 なお、上記のバルク抵抗率を超える範囲であっても、DCスパッタリングが可能であれば、本発明に包含されることは当然理解されるべきである。
In the MgO—TiO sintered body of the present invention, the bulk resistivity is preferably 10 Ω · cm or less. More preferably, it is 0.01 Ω · cm or less. Thus, when a sintered body having a low bulk resistance value is used as a sputtering target, more stable DC sputtering is possible. Thereby, since the film-forming speed can be increased as compared with the conventional RF sputtering, productivity can be improved.
In addition, even if it is the range exceeding said bulk resistivity, if DC sputtering is possible, it should be understood that it is included by this invention.
 また、本発明のMgO-TiO焼結体において、TiO相とMgO相の2相が存在し、MgO相の最長径が50μm以上である領域が1mm当たり10個以下であることが好ましい。さらに好ましくは、MgO相の最長径が30μm以上である領域が1mm当たり25個以下である。TiO相は網目状に連なって分散していることが望ましい。 In the MgO—TiO sintered body of the present invention, it is preferable that the TiO phase and the MgO phase have two phases, and the region where the longest diameter of the MgO phase is 50 μm or more is 10 or less per 1 mm 2 . More preferably, the number of the regions where the longest diameter of the MgO phase is 30 μm or more is 25 or less per 1 mm 2 . The TiO phase is desirably dispersed in a network.
 本発明は、導電率がそれぞれ大きく異なるMgOとTiOが共存する焼結体であるが、粗大なMgO相が存在すると、そこを起点とした異常放電が発生しやすくなる。このような粗大なMgO相の領域を極力低減することにより、粗大なMgO相を起点とした異常放電を抑制することが可能となり、パーティクル量を低減することができる。なお、MgO相の最長径とは、ターゲットの一部から採取したサンプルの研磨面において、MgO相を形成する粒子の最大長さを意味する。 The present invention is a sintered body in which MgO and TiO having greatly different electrical conductivities coexist. However, if a coarse MgO phase is present, abnormal discharge starting from the sintered body tends to occur. By reducing the area of such a coarse MgO phase as much as possible, abnormal discharge starting from the coarse MgO phase can be suppressed, and the amount of particles can be reduced. The longest diameter of the MgO phase means the maximum length of particles forming the MgO phase on the polished surface of a sample collected from a part of the target.
 本発明のMgO-TiO焼結体は、以下の方法によって、作製することができる。
 まず、原料として、MgO粉とTiO粉を用意する。MgO粉末は平均粒径が10μm以下、TiO粉末は平均粒径が50μm以下のものを使用するのが好ましい。粉末の粒径がこの範囲を超えると均一な混合が困難となり、また偏析と結晶の粗大化が生じるため好ましくない。原料粉末の粒径は微細な方が良いが、TiOは微細化が難しく、生産上の観点から、平均粒径1μm以上とすることが好ましい。
 次に、これらの原料粉末を所定のモル比となるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。
The MgO—TiO sintered body of the present invention can be produced by the following method.
First, MgO powder and TiO powder are prepared as raw materials. It is preferable to use MgO powder having an average particle diameter of 10 μm or less and TiO powder having an average particle diameter of 50 μm or less. If the particle size of the powder exceeds this range, uniform mixing becomes difficult, and segregation and coarsening of crystals occur, which is not preferable. The particle size of the raw material powder is preferably finer, but TiO is difficult to be miniaturized, and the average particle size is preferably 1 μm or more from the viewpoint of production.
Next, these raw material powders are weighed so as to have a predetermined molar ratio, and are mixed by pulverization using a known method such as a ball mill.
 このようにして得られた混合粉末をホットプレス法で真空雰囲気、あるいは、不活性ガス雰囲気において成型・焼結させる。また、前記ホットプレス以外にも、プラズマ放電焼結法など様々な加圧焼結方法を使用することができる。特に、熱間静水圧焼結法は焼結体の密度向上に有効である。焼結時の保持温度は、1250~1450℃の温度範囲とするのが好ましい。また、焼結時の保持圧力は、200kgf/cm以上の圧力範囲とするのが好ましい。 The mixed powder thus obtained is molded and sintered by a hot press method in a vacuum atmosphere or an inert gas atmosphere. In addition to the hot press, various pressure sintering methods such as a plasma discharge sintering method can be used. In particular, the hot isostatic pressing is effective for improving the density of the sintered body. The holding temperature during sintering is preferably in the temperature range of 1250 to 1450 ° C. The holding pressure during sintering is preferably set to a pressure range of 200 kgf / cm 2 or more.
 また、本発明において、このようにして得られた焼結体を研削等により所望の形状に加工することで、スパッタリングターゲットを作製することができる。このようにして製造したスパッタリングターゲットは、DCスパッタリングが可能となるため、成膜速度が格段に向上し、生産性を大幅に改善することができる。さらに、スパッタリングの際に発生するパーティクル量を低減することができるので、成膜時における歩留まりを向上することができるという優れた効果を有する。 In the present invention, a sputtering target can be produced by processing the sintered body thus obtained into a desired shape by grinding or the like. Since the sputtering target manufactured in this manner can be DC-sputtered, the film formation rate is remarkably improved, and the productivity can be greatly improved. Furthermore, since the amount of particles generated during sputtering can be reduced, the yield can be improved during film formation.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径30μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、20時間以上回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで250kgf/cmで加圧した。
(Example 1)
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 30 μm, and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and rotated and mixed and ground for 20 hours or more so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a holding temperature of 1400 ° C., and a pressure of 250 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、98%の相対密度を有していた。ここで、相対密度は、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度は、ターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度であり、式:計算密度=Σ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の理論密度)なお、MgOの理論密度は3.585g/cm、TiOの理論密度は4.93g/cmを採用した。以下の実施例及び比較例においても同様とした。
 また、4端子法により焼結体のバルク抵抗測定を行った結果、0.01Ω・cmであった。また、この焼結体の断面を研磨し、レーザー顕微鏡で中心部を観察したところ、MgO相とTiO相の2相が観察でき、MgO相の最長径が50μm以上、30μm以上となる領域は、それぞれ5個/mm、15個/mmであった。
The sintered body thus produced was subjected to density measurement by the Archimedes method, and as a result, it had a relative density of 98%. Here, the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density). The calculation density is a density when it is assumed that the target components are mixed together without diffusing or reacting with each other, and the formula: calculation density = Σ (molecular weight of the component × molar ratio of the component) / Σ ( (Molecular Weight of Constituent Component × Molar Ratio of Constituent Component / Theoretical Density of Constituent Component) The theoretical density of MgO was 3.585 g / cm 3 and the theoretical density of TiO was 4.93 g / cm 3 . The same applies to the following examples and comparative examples.
Moreover, it was 0.01 ohm * cm as a result of measuring the bulk resistance of a sintered compact by the 4-terminal method. Further, when the cross section of this sintered body was polished and the center portion was observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the region where the longest diameter of the MgO phase was 50 μm or more, 30 μm or more, They were 5 / mm 2 and 15 / mm 2 , respectively.
 さらに、焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行った。スパッタリングの条件は、スパッタパワー:0.5kW、Arガス圧:5Paとし、シリコン基板上に30秒間成膜した。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は120個であった。 Furthermore, the sintered body was polished into a target shape with a grinder to produce a disk-shaped target. This was attached to a DC sputtering apparatus, and sputtering was performed. The sputtering conditions were sputtering power: 0.5 kW, Ar gas pressure: 5 Pa, and a film was formed on a silicon substrate for 30 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 120.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径20μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、20時間以上回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで300kgf/cmで加圧した。
(Example 2)
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 20 μm and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and rotated and mixed and ground for 20 hours or more so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere and a holding temperature of 1400 ° C., and a pressure of 300 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、98%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行った結果、0.003Ω・cmであった。また、この焼結体の断面を研磨し、レーザー顕微鏡で中心部を観察した。その結果を図1に示す。図1に示すようにMgO相(濃いグレーの部分)とTiO相(薄いグレーの部分)の2相が観察できた。また、MgO相の最長径が50μm以上、30μm以上となる領域は、図2に示すようにそれぞれ1個、2個であり、この画像領域を1mm当たりの面積に換算したとき、それぞれ3個/mm2、5個/mmであった。なお、他の実施例及び比較例(但し、比較例1を除く)においても、図1と同倍率の組織画像でMgO相とTiO相の2相から形成されていることを確認し、図2と同倍率の画像領域において、最長径が50μm以上及び30μm以上のMgO相の個数をカウントし、これを1mm当たりの面積に換算して、単位面積当たりの個数とした。 As a result of measuring the density by the Archimedes method, the sintered body thus produced had a relative density of 98%. Moreover, it was 0.003 ohm * cm as a result of measuring the bulk resistance of a sintered compact by the 4-terminal method. Moreover, the cross section of this sintered compact was grind | polished and the center part was observed with the laser microscope. The result is shown in FIG. As shown in FIG. 1, two phases of MgO phase (dark gray portion) and TiO phase (light gray portion) were observed. In addition, the regions where the longest diameter of the MgO phase is 50 μm or more and 30 μm or more are one and two, respectively, as shown in FIG. 2, and when the image region is converted into an area per 1 mm 2 , three regions each. was / mm2,5 cells / mm 2. In other examples and comparative examples (except for comparative example 1), it was confirmed that the structure image of the same magnification as in FIG. 1 was formed of two phases of MgO phase and TiO phase. In the image area with the same magnification, the number of MgO phases having the longest diameters of 50 μm or more and 30 μm or more was counted, and this was converted into the area per 1 mm 2 to obtain the number per unit area.
 さらに、焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行った。スパッタリングの条件は、スパッタパワー:0.5kW、Arガス圧:5Paとし、シリコン基板上に30秒間成膜した。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は51個であった。 Furthermore, the sintered body was polished into a target shape with a grinder to produce a disk-shaped target. This was attached to a DC sputtering apparatus, and sputtering was performed. The sputtering conditions were sputtering power: 0.5 kW, Ar gas pressure: 5 Pa, and a film was formed on a silicon substrate for 30 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 51.
(実施例3)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径30μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、20時間以上回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで250kgf/cmで加圧した。
(Example 3)
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 30 μm, and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and rotated and mixed and ground for 20 hours or more so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a holding temperature of 1400 ° C., and a pressure of 250 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、99.5%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行った結果、0.002Ω・cmであった。また、この焼結体の断面を研磨し、レーザー顕微鏡で中心部を観察したところ、MgO相とTiO相の2相が観察でき、MgO相の最長径が50μm以上、30μm以上となる領域は、それぞれ0個/mm、5個/mmであった。 The sintered body thus produced was subjected to density measurement by Archimedes method, and as a result, it had a relative density of 99.5%. Moreover, as a result of measuring the bulk resistance of the sintered body by the 4-terminal method, it was 0.002 Ω · cm. Further, when the cross section of this sintered body was polished and the center portion was observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the region where the longest diameter of the MgO phase was 50 μm or more, 30 μm or more, They were 0 / mm 2 and 5 / mm 2 , respectively.
 さらに、焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行った。スパッタリングの条件は、スパッタパワー:0.5kW、Arガス圧:5Paとし、シリコン基板上に30秒間成膜した。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は46個であった。 Furthermore, the sintered body was polished into a target shape with a grinder to produce a disk-shaped target. This was attached to a DC sputtering apparatus, and sputtering was performed. The sputtering conditions were sputtering power: 0.5 kW, Ar gas pressure: 5 Pa, and a film was formed on a silicon substrate for 30 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 46.
(実施例4)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径30μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、10時間回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで250kgf/cmで加圧した。
Example 4
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 30 μm, and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was sealed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and rotated and mixed and ground for 10 hours so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a holding temperature of 1400 ° C., and a pressure of 250 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、99.5%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行った結果、0.0005Ω・cmであった。また、この焼結体の断面を研磨し、レーザー顕微鏡で中心部を観察したところ、MgO相とTiO相の2相が観察でき、MgO相の最長径が50μm以上、30μm以上となる領域は、それぞれ0個/mm、0個/mmであった。 The sintered body thus produced was subjected to density measurement by Archimedes method, and as a result, it had a relative density of 99.5%. Moreover, as a result of measuring the bulk resistance of the sintered body by the 4-terminal method, it was 0.0005 Ω · cm. Further, when the cross section of this sintered body was polished and the center portion was observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the region where the longest diameter of the MgO phase was 50 μm or more, 30 μm or more, They were 0 / mm 2 and 0 / mm 2 , respectively.
 さらに、焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行った。スパッタリングの条件は、スパッタパワー:0.5kW、Arガス圧:5Paとし、シリコン基板上に30秒間成膜した。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は22個であった。 Furthermore, the sintered body was polished into a target shape with a grinder to produce a disk-shaped target. This was attached to a DC sputtering apparatus, and sputtering was performed. The sputtering conditions were sputtering power: 0.5 kW, Ar gas pressure: 5 Pa, and a film was formed on a silicon substrate for 30 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 22.
(比較例1)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末のみを用意した。そして、この粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、10時間回転させて粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1500℃とし、昇温開始時から保持終了まで300kgf/cmで加圧した。
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、99%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行ったが、抵抗値が高く測定できなかった。
 この焼結体を、ターゲット形状へ旋盤で切削加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行ったが、DCスパッタリングができなかった。
(Comparative Example 1)
As the raw material powder, only MgO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%) was prepared. Then, this powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated for 10 hours for grinding.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere and a holding temperature of 1500 ° C., and pressurization was performed at 300 kgf / cm 2 from the start of temperature rise to the end of holding.
The sintered body thus produced was subjected to density measurement by Archimedes method, and as a result, it had a relative density of 99%. Moreover, although the bulk resistance measurement of the sintered compact was performed by the 4-terminal method, the resistance value was high and could not be measured.
This sintered body was cut into a target shape with a lathe to produce a disk-shaped target. This was attached to a DC sputtering apparatus and sputtering was performed, but DC sputtering could not be performed.
(比較例2)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径25μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、20時間以上回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで300kgf/cmで加圧した。
(Comparative Example 2)
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 25 μm, and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and rotated and mixed and ground for 20 hours or more so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere and a holding temperature of 1400 ° C., and a pressure of 300 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、96%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行った結果、抵抗値が高く測定できなかった。また、この焼結体の断面を研磨し、レーザー
顕微鏡で中心部を観察したところ、MgO相とTiO相の2相が観察でき、MgO相の最長径が50μm以上、30μm以上となる領域は、それぞれ13個/mm、35個/mmであった。
As a result of measuring the density by the Archimedes method, the sintered body thus produced had a relative density of 96%. Moreover, as a result of measuring the bulk resistance of the sintered body by the 4-terminal method, the resistance value was high and could not be measured. Further, when the cross section of this sintered body was polished and the center portion was observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the region where the longest diameter of the MgO phase was 50 μm or more, 30 μm or more, They were 13 / mm 2 and 35 / mm 2 , respectively.
 この焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行ったが、DCスパッタリングができなかった。 The sintered body was polished into a target shape with a grinding machine to produce a disk-shaped target. This was attached to a DC sputtering apparatus and sputtering was performed, but DC sputtering could not be performed.
(比較例3)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径100μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、5時間回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで300kgf/cmで加圧した。
(Comparative Example 3)
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 100 μm, and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was sealed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and mixed and pulverized by rotating for 5 hours so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere and a holding temperature of 1400 ° C., and a pressure of 300 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、97%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行った結果、0.007Ω・cmであった。また、この焼結体の断面を研磨し、レーザー顕微鏡で中心部を観察したところ、MgO相とTiO相の2相が観察でき、MgO相の最長径が50μm以上、30μm以上となる領域は、それぞれ25個/mm、53個/mmであった。 The sintered body thus produced was measured for density by the Archimedes method, and as a result, it had a relative density of 97%. Moreover, as a result of measuring the bulk resistance of the sintered body by the four-terminal method, it was 0.007 Ω · cm. Further, when the cross section of this sintered body was polished and the center portion was observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the region where the longest diameter of the MgO phase was 50 μm or more, 30 μm or more, They were 25 / mm 2 and 53 / mm 2 , respectively.
 さらに、焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行った。スパッタリングの条件は、スパッタパワー:0.5kW、Arガス圧:5Paとし、シリコン基板上に30秒間成膜した。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は2000個であった。 Furthermore, the sintered body was polished into a target shape with a grinder to produce a disk-shaped target. This was attached to a DC sputtering apparatus, and sputtering was performed. The sputtering conditions were sputtering power: 0.5 kW, Ar gas pressure: 5 Pa, and a film was formed on a silicon substrate for 30 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 2000.
(比較例4)
 原料粉として、平均粒径1μm、純度4N(99.99%)のMgO粉末、平均粒径100μm、純度3N(99.9%)のTiO粉を用意した。そして、表1に記載される組成比となるようにこれらの原料粉を調合した。
 次に、秤量した粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットにAr雰囲気で封入し、両粉末が均一に分散するように、5時間回転させて混合・粉砕した。
 次に、ポットから取り出した粉末を、直径180mmのグラファイトダイスに充填しホットプレス装置を用いて成形・焼結させた。ホットプレスの条件は、真空雰囲気、保持温度1400℃とし、昇温開始時から保持終了まで300kgf/cmで加圧した。
(Comparative Example 4)
As raw material powder, TiO powder having an average particle diameter of 1 μm and a purity of 4N (99.99%), an average particle diameter of 100 μm, and a purity of 3N (99.9%) was prepared. And these raw material powders were prepared so that it might become the composition ratio described in Table 1.
Next, the weighed powder was sealed in a 10-liter ball mill pot together with zirconia balls as a grinding medium in an Ar atmosphere, and mixed and pulverized by rotating for 5 hours so that both powders were uniformly dispersed.
Next, the powder taken out from the pot was filled in a graphite die having a diameter of 180 mm and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere and a holding temperature of 1400 ° C., and a pressure of 300 kgf / cm 2 was applied from the start of temperature rise to the end of holding.
 このようにして作製した焼結体について、アルキメデス法による密度測定を行った結果、99.5%の相対密度を有していた。また、4端子法により焼結体のバルク抵抗測定を行った結果、0.002Ω・cmであった。また、この焼結体の断面を研磨し、レーザー顕微鏡で観察したところ、MgO相とTiO相の2相が観察でき、MgO相の最長径が50μm以上、30μm以上となる領域は、それぞれ15個/mm、41個/mmであった。 The sintered body thus produced was subjected to density measurement by Archimedes method, and as a result, it had a relative density of 99.5%. Moreover, as a result of measuring the bulk resistance of the sintered body by the 4-terminal method, it was 0.002 Ω · cm. Moreover, when the cross section of this sintered body was polished and observed with a laser microscope, two phases of MgO phase and TiO phase could be observed, and the maximum diameter of the MgO phase was 15 μm or more and 15 μm or more, respectively. / Mm 2 and 41 pieces / mm 2 .
 さらに、焼結体を、ターゲット形状に研削機で研磨加工し、円盤状のターゲットを作製した。これをDCスパッタ装置に取り付け、スパッタリングを行った。スパッタリングの条件は、スパッタパワー:0.5kW、Arガス圧:5Paとし、シリコン基板上に30秒間成膜した。そして、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は500個であった。 Furthermore, the sintered body was polished into a target shape with a grinder to produce a disk-shaped target. This was attached to a DC sputtering apparatus, and sputtering was performed. The sputtering conditions were sputtering power: 0.5 kW, Ar gas pressure: 5 Pa, and a film was formed on a silicon substrate for 30 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 500.
 本発明のMgO-TiO焼結体は、DCスパッタリングが可能であることから、従来のMgO焼結体をRFスパッタリングした場合に比べ、成膜速度を格段に高めることができ、生産性向上という大きな効果が得られる。また、DCスパッタリングは、安価なDC電源を利用することで実現できるので、既存設備をそのまま利用することができ、設備投資のコストを低減することができる。
 以上より、本発明のMgO-TiO焼結体は、磁気ディスク装置用の磁気記録媒体やトンネル磁気抵抗効果(TMR)素子と言ったエレクトロデバイス用の薄膜を形成する際に用いられる酸化マグネシウム系スパッタリングターゲットとして有用である。また、従来の絶縁性MgOでは実現できなかった導電性セラミックス材料として、静電気除去や耐熱部材などの新たな分野に対しても利用可能である。
Since the MgO—TiO sintered body of the present invention can be DC-sputtered, the film formation rate can be remarkably increased compared with the case where the conventional MgO sintered body is RF-sputtered, and the productivity is greatly improved. An effect is obtained. Moreover, since DC sputtering can be realized by using an inexpensive DC power source, existing equipment can be used as it is, and the cost of capital investment can be reduced.
As described above, the MgO—TiO sintered body of the present invention is a magnesium oxide-based sputtering used for forming a magnetic recording medium for a magnetic disk device or a thin film for an electro device such as a tunnel magnetoresistive effect (TMR) element. Useful as a target. In addition, as a conductive ceramic material that could not be realized with conventional insulating MgO, it can also be used in new fields such as static electricity removal and heat-resistant members.

Claims (5)

  1.  TiOを25~90mol%含有し、残部がMgO及び不可避的不純物からなるMgO-TiO焼結体。 An MgO—TiO sintered body containing 25 to 90 mol% of TiO, with the balance being MgO and inevitable impurities.
  2.  相対密度が95%以上であることを特徴とする請求項1記載のMgO-TiO焼結体。 2. The MgO—TiO sintered body according to claim 1, wherein the relative density is 95% or more.
  3.  バルク抵抗率が10Ω・cm以下である請求項1又は2記載のMgO-TiO焼結体。 The MgO-TiO sintered body according to claim 1 or 2, wherein the bulk resistivity is 10 Ω · cm or less.
  4.  TiO相とMgO相の2相が存在し、該MgO相の最長径が50μm以上となる領域が1mm当たり10個以下であることを特徴とする請求項1~3のいずれか一項に記載のMgO-TiO焼結体。 The TiO phase and the MgO phase exist in two phases, and the region where the longest diameter of the MgO phase is 50 µm or more is 10 or less per 1 mm 2. MgO—TiO sintered body.
  5.  MgOに10mol%以上90mol%以下のTiOが含有したスパッタリング用焼結体の製造方法であって、平均粒径が10μm以下のMgO粉末と平均粒径が50μm以下のTiO粉末とからなる原料粉を混合し、これを1250~1450℃の温度、200kgf/cm以上の加圧力で、ホットプレスして作製することを特徴とする、MgO-TiO焼結体の製造方法。
     
    A method for producing a sintered compact for sputtering containing 10 mol% or more and 90 mol% or less of TiO in MgO, comprising a raw material powder comprising an MgO powder having an average particle diameter of 10 μm or less and a TiO powder having an average particle diameter of 50 μm or less A method for producing an MgO—TiO sintered body, comprising mixing and hot pressing at a temperature of 1250 to 1450 ° C. and a pressure of 200 kgf / cm 2 or more.
PCT/JP2014/055346 2013-03-29 2014-03-04 Mgo-tio sintered compact target and method for producing same WO2014156497A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201501372QA SG11201501372QA (en) 2013-03-29 2014-03-04 Mgo-tio sintered compact target and method for producing same
CN201480002503.0A CN104661983A (en) 2013-03-29 2014-03-04 Mgo-tio sintered compact target and method for producing same
JP2014543701A JP5925907B2 (en) 2013-03-29 2014-03-04 MgO-TiO sintered compact target and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073239 2013-03-29
JP2013073239 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156497A1 true WO2014156497A1 (en) 2014-10-02

Family

ID=51623487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055346 WO2014156497A1 (en) 2013-03-29 2014-03-04 Mgo-tio sintered compact target and method for producing same

Country Status (6)

Country Link
JP (1) JP5925907B2 (en)
CN (2) CN111792919A (en)
MY (1) MY169936A (en)
SG (1) SG11201501372QA (en)
TW (1) TWI616425B (en)
WO (1) WO2014156497A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088867A1 (en) * 2014-12-05 2016-06-09 宇部マテリアルズ株式会社 MgO SPUTTERING TARGET MATERIAL AND THIN FILM
JP2017052983A (en) * 2015-09-08 2017-03-16 株式会社高純度化学研究所 Sputtering target
JP2020004467A (en) * 2018-06-27 2020-01-09 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording device
JP2020164959A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Sputtering target member, sputtering target, manufacturing method of sputtering target member, and manufacturing method of sputtered film
US11444292B2 (en) 2018-12-27 2022-09-13 Robert Bosch Gmbh Anticorrosive and conductive material
CN115246732A (en) * 2021-04-28 2022-10-28 光洋应用材料科技股份有限公司 Composite oxide target material and method for producing the same
JP7165787B1 (en) 2021-04-26 2022-11-04 光洋應用材料科技股▲分▼有限公司 Composite oxide target and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421733B (en) * 2021-06-15 2022-05-27 季华实验室 Method for increasing perpendicular magnetic anisotropy of ferromagnetic thin film material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085708B2 (en) * 1987-10-01 1996-01-24 東芝タンガロイ株式会社 Oxide ceramics
WO2013005690A1 (en) * 2011-07-01 2013-01-10 宇部マテリアルズ株式会社 MgO TARGET FOR SPUTTERING

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231823B2 (en) * 2008-01-28 2013-07-10 日本タングステン株式会社 Polycrystalline MgO sintered body, method for producing the same, and MgO target for sputtering
TWI424074B (en) * 2009-03-27 2014-01-21 Jx Nippon Mining & Metals Corp Ti-Nb-based sintered body sputtering target, Ti-Nb-based oxide thin film, and method for producing the same
US8993134B2 (en) * 2012-06-29 2015-03-31 Western Digital Technologies, Inc. Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085708B2 (en) * 1987-10-01 1996-01-24 東芝タンガロイ株式会社 Oxide ceramics
WO2013005690A1 (en) * 2011-07-01 2013-01-10 宇部マテリアルズ株式会社 MgO TARGET FOR SPUTTERING

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088867A1 (en) * 2014-12-05 2016-06-09 宇部マテリアルズ株式会社 MgO SPUTTERING TARGET MATERIAL AND THIN FILM
JPWO2016088867A1 (en) * 2014-12-05 2017-09-21 宇部マテリアルズ株式会社 MgO target material and thin film for sputtering
JP2017052983A (en) * 2015-09-08 2017-03-16 株式会社高純度化学研究所 Sputtering target
JP2020004467A (en) * 2018-06-27 2020-01-09 昭和電工株式会社 Heat-assisted magnetic recording medium and magnetic recording device
US11444292B2 (en) 2018-12-27 2022-09-13 Robert Bosch Gmbh Anticorrosive and conductive material
JP2020164959A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Sputtering target member, sputtering target, manufacturing method of sputtering target member, and manufacturing method of sputtered film
WO2020202649A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Sputtering target member, sputtering target, method for producing sputtering target member, and method for producing sputtering film
JP7246232B2 (en) 2019-03-29 2023-03-27 Jx金属株式会社 Sputtering target member, sputtering target, method for manufacturing sputtering target member, and method for manufacturing sputtered film
JP7165787B1 (en) 2021-04-26 2022-11-04 光洋應用材料科技股▲分▼有限公司 Composite oxide target and manufacturing method thereof
JP2022172036A (en) * 2021-04-26 2022-11-14 光洋應用材料科技股▲分▼有限公司 Composite oxide target and method for manufacturing the same
CN115246732A (en) * 2021-04-28 2022-10-28 光洋应用材料科技股份有限公司 Composite oxide target material and method for producing the same

Also Published As

Publication number Publication date
TW201500323A (en) 2015-01-01
CN104661983A (en) 2015-05-27
JPWO2014156497A1 (en) 2017-02-16
MY169936A (en) 2019-06-18
SG11201501372QA (en) 2015-05-28
CN111792919A (en) 2020-10-20
JP5925907B2 (en) 2016-05-25
TWI616425B (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5925907B2 (en) MgO-TiO sintered compact target and manufacturing method thereof
TWI550114B (en) Fe-Pt-C sputtering target
JP5290468B2 (en) Fe-Pt sputtering target in which C particles are dispersed
EP3015566B1 (en) Magnetic material sputtering target and method for producing same
JP5457615B1 (en) Sputtering target for forming a magnetic recording film and method for producing the same
TWI583814B (en) Fe-Pt magnetic material sintered body
JP5623552B2 (en) Fe-Pt ferromagnetic sputtering target and manufacturing method thereof
JP5913620B2 (en) Fe-Pt sintered sputtering target and method for producing the same
WO2013099832A1 (en) Sintered magnesium oxide target for sputtering, and method for producing same
US20140360871A1 (en) Fe-Pt-Ag-C-Based Sputtering Target Having C Grains Dispersed Therein, and Method for Producing Same
JP5654121B2 (en) Ferromagnetic material sputtering target containing chromium oxide
JP5944580B2 (en) Sputtering target
JP2014041682A (en) Sputtering target for magnetic recording medium film formation, and manufacturing method thereof
JP7108046B2 (en) magnesium oxide sputtering target
JP6396594B2 (en) Mg-Ti-O sputtering target and method for producing the same
CN111183244B (en) Ferromagnetic material sputtering target
WO2019187244A1 (en) Sputtering target
JP2005097657A (en) Sputtering target for forming magnetic layer having reduced production of particle
JP7165023B2 (en) magnesium oxide sputtering target
WO2015141571A1 (en) Magnetic sputtering target

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014543701

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772799

Country of ref document: EP

Kind code of ref document: A1