WO2016082113A1 - 数据传输方法、传输***、控制方法、控制***和设备 - Google Patents

数据传输方法、传输***、控制方法、控制***和设备 Download PDF

Info

Publication number
WO2016082113A1
WO2016082113A1 PCT/CN2014/092238 CN2014092238W WO2016082113A1 WO 2016082113 A1 WO2016082113 A1 WO 2016082113A1 CN 2014092238 W CN2014092238 W CN 2014092238W WO 2016082113 A1 WO2016082113 A1 WO 2016082113A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
channel detection
uplink
downlink
detection subframe
Prior art date
Application number
PCT/CN2014/092238
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Priority to CN201480082729.6A priority Critical patent/CN107079414B/zh
Priority to EP14907020.3A priority patent/EP3203794B1/en
Priority to PCT/CN2014/092238 priority patent/WO2016082113A1/zh
Publication of WO2016082113A1 publication Critical patent/WO2016082113A1/zh
Priority to US15/589,525 priority patent/US10333682B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method when an LTE system operates in an unlicensed frequency band in a time division duplex mode, and a data transmission when an LTE system operates in an unlicensed frequency band in a time division duplex mode.
  • the system a control method for configuring a channel detection subframe, a control system for configuring a channel detection subframe, and a device having a base station function.
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrum are currently mainly used in systems such as Wi-Fi, Bluetooth, radar, and medical.
  • LTE Long Term Evolution
  • CA Carrier Aggregation
  • 3GPP proposes the concept of LAA (LTE Assisted Access), which uses the help of LTE licensed spectrum to use unlicensed spectrum.
  • the unlicensed spectrum can work in two modes. One is the downlink (SDL), that is, only the downlink transmission subframe, and the other is the TDD mode, which includes the downlink subframe and the uplink subframe.
  • SDL downlink
  • TDD mode which includes the downlink subframe and the uplink subframe.
  • the carrier aggregation technology as shown in Figure 1).
  • the TDD mode can also be used by DC (Dual Connectivity) or independently.
  • LTE systems operating in unlicensed bands have the ability to provide higher spectral efficiency and greater coverage, while relying on the same core network to allow data traffic between licensed and unlicensed bands. Sew switch. For the user, this means a better broadband experience, higher speed, better stability and mobility.
  • Wi-Fi Wireless Fidelity
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the basic principle of this method is Wi-Fi. Before the AP (Access Point) or the terminal sends signaling or data, it must first monitor whether other APs or other terminals are transmitting/receiving signaling or data, and if so, continue to listen. Until it is not detected; if not, a random number is generated as the backoff time. If no signaling or data transmission is detected during this backoff time, the AP or the terminal may start signaling after the backoff time is over. Or data. The process is shown in Figure 2.
  • the LTE network has good orthogonality to ensure the interference level, the uplink and downlink transmissions between the base station and the user do not need to consider whether other base stations or other users are transmitting data. If LTE is used on an unlicensed band, it does not consider whether other devices are using unlicensed bands nearby, which will cause great interference to Wi-Fi devices. Because LTE transmits as long as there is traffic, there is no monitoring rule, then the Wi-Fi device cannot transmit when LTE has service transmission, and can only detect the channel idle state for data transmission after the LTE service transmission is completed.
  • the present invention is based on the above problems, and proposes a new technical solution, and proposes a new LTE system data transmission scheme when operating in a time-division duplex mode in an unlicensed frequency band, which can ensure that the LTE system is in an unlicensed frequency band.
  • the LTE system Under the premise of work, the LTE system is prevented from causing large interference to other systems when working in the unlicensed frequency band, and the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • an aspect of the present invention provides a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band, and is used in a terminal, which includes: receiving an uplink from a device having a base station function. a channel detection subframe configuration command, configured according to the uplink channel detection subframe configuration command, in the frame structure of the time division duplex mode, the channel detection for periodically detecting whether an uplink channel of the unlicensed frequency band is idle If the channel detection subframe detects that the uplink channel is idle, the uplink data is sent in an uplink subframe in any one of the detection periods in the frame structure.
  • the channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode by detecting the subframe configuration command according to the received uplink channel, to detect the uplink in the channel detection subframe.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system can adopt when the unlicensed band works in the time division duplex mode.
  • Corresponding interference avoidance mechanism which in turn can coexist peacefully with other systems operating in unlicensed bands (such as Wi-Fi systems) when operating in unlicensed bands, to avoid LTE systems being able to operate in unlicensed bands LTE system operates without interference in unlicensed bands
  • the avoidance mechanism causes greater interference to other systems with interference avoidance mechanisms.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure and a number of symbols occupied by the uplink channel detection subframe.
  • the uplink channel detection subframe by setting the specific location of the uplink channel detection subframe in the frame structure and the number of occupied symbols according to the uplink channel detection subframe configuration command, it is ensured that the uplink channel is effectively detected to determine that only the uplink is uplinked.
  • the uplink data is sent through the uplink subframe in the frame structure, thereby avoiding large interference to other systems with interference avoidance mechanism.
  • Another aspect of the present invention provides a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band, including: a receiving unit that receives an uplink channel detection subframe configuration command from a device having a base station function; The unit, according to the uplink channel detection subframe configuration command, setting, in the frame structure of the time division duplex mode, the uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed frequency band is idle; And, in any detection period, if the uplink channel detection subframe detects that the uplink channel is idle, transmitting uplink data in an uplink subframe that is in any one of the detection periods in the frame structure.
  • the channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode by detecting the subframe configuration command according to the received uplink channel, to detect the uplink in the channel detection subframe.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system can adopt when the unlicensed band works in the time division duplex mode.
  • Corresponding interference avoidance mechanism which in turn can coexist peacefully with other systems operating in unlicensed bands (such as Wi-Fi systems) when operating in unlicensed bands, to avoid LTE systems being able to operate in unlicensed bands
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure and a number of symbols occupied by the uplink channel detection subframe.
  • the uplink channel detection subframe by setting the specific location of the uplink channel detection subframe in the frame structure and the number of occupied symbols according to the uplink channel detection subframe configuration command, it is ensured that the uplink channel is effectively detected to determine that only the uplink is uplinked.
  • the uplink data is sent through the uplink subframe in the frame structure, thereby avoiding large interference to other systems with interference avoidance mechanism.
  • a still further aspect of the present invention provides a method for controlling a channel detection subframe, including: setting, in a frame structure of the time division duplex mode, for periodically detecting the unlicensed frequency band a downlink channel detection subframe in which the channel is idle; and an uplink channel detection subframe configuration command is sent to the terminal according to the configuration manner of the downlink channel detection subframe, so that the terminal configures the subframe according to the uplink channel
  • the command sets an uplink channel detection subframe for periodically detecting whether the uplink channel of the unlicensed band is idle in the frame structure.
  • the device with the base station function can be detected by detecting the subframe through the downlink channel.
  • the downlink channel is idle, the downlink data is sent through the downlink subframe, and when the downlink channel is busy, the downlink data is not sent, and the uplink channel detection subframe configuration command is sent to the terminal, so that the terminal can detect the subframe configuration according to the uplink channel.
  • the uplink channel detection subframe is set to detect the state of the uplink channel, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink subframe is sent in the frame structure.
  • the uplink data is not transmitted when the uplink channel is in a busy state. Therefore, the technical solution of the present invention can enable the LTE system to adopt a corresponding interference avoidance mechanism when the unlicensed frequency band operates in the time division duplex mode.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • the downlink channel detection subframe is set in at least one subframe in the frame structure, and the uplink channel detection subframe included in a configuration command of the uplink channel detection subframe And the downlink channel detection subframe is located in the same subframe.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode, and is placed in the same subframe as the downlink channel detection subframe, so that no time division is needed.
  • additional subframes are additionally set to carry the channel detection subframes, and the number of subframes occupied by the uplink and downlink channel detection subframes can also be avoided.
  • the time division can be doubled according to the actual situation of the LTE system.
  • the uplink and downlink channel detection subframes are set in one or more subframes in the frame structure of the working mode, and the setting positions of the uplink and downlink channel detection subframes may be one of an uplink subframe, a downlink subframe, and a special subframe. Location or multiple locations.
  • the downlink channel detection subframe is set at a front end of a downlink subframe adjacent to the uplink subframe and the special subframe, and the configuration command included in the uplink channel detection subframe is included.
  • the setting position of the uplink channel detection subframe is the back end of the downlink subframe.
  • the downlink channel detection subframe is set at the front end of the downlink subframe adjacent to the uplink subframe and the special subframe, and the uplink channel detection subframe is located at the back end of the downlink subframe, so that the upper ( The next (down) line before the sub-frame is transmitted on the upper (lower) line.
  • the detection of the line channel thereby determining whether the data can be transmitted through the upper (lower) line subframe, and ensuring the timeliness of the channel detection, ensuring that the channel state detected before transmitting the (down) line data is the latest state, avoiding the channel Detecting earlier and transmitting the upper (lower) line data later, causing the channel state to change when the upper (lower) line data needs to be transmitted, affecting the transmission of the upper (lower) line data; meanwhile, due to the upper (lower) line channel
  • the detection subframe does not occupy the uplink subframe, so that the uplink subframe is completely used for the uplink data transmission, and the uplink subframe is fully utilized.
  • the protection time needs to be set.
  • the uplink channel detection subframe is equivalent to one downlink signal when detecting the state of the uplink channel. Therefore, if the uplink channel detection subframe is set at the back end of the downlink channel detection subframe, it is possible to avoid setting an additional subframe in the downlink subframe.
  • the guard time can also ensure that the remaining time between the downlink channel detection subframe and the uplink channel detection subframe can still be used to transmit downlink data.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is the second The number, and the sum of the first number and the second number ranges from 2 to 14.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection subframes occupy at least one symbol, the symbols occupied by the upper (lower) channel detection subframes The sum of the numbers is 2 to 14.
  • the downlink channel detection subframe is set in a target downlink subframe that is immediately adjacent to other downlink subframes and a special subframe, and a guard time is set at a front end of the target downlink subframe.
  • the downlink channel detection subframe is in the immediate vicinity of the protection time, and the location of the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is a back end of the target downlink subframe.
  • the guard time needs to be set, and the downlink channel detection subframe is equivalent to an uplink signal when detecting the state of the downlink channel, and therefore, if the downlink channel is detected If the subframe is set at the front end of the downlink subframe, it is necessary to first set a guard time at the forefront of the downlink subframe, and set the downlink channel detection subframe to the target downlink immediately adjacent to other downlink subframes and special subframes.
  • the uplink channel detection subframe configuration command includes the uplink channel detector.
  • the number of symbols occupied by the frame is the fourth number, and the sum of the third number and the fourth number ranges from 2 to 13.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection subframes occupy at least one symbol, the guard time also occupies at least one symbol, and thus, the upper (lower) The sum of the number of symbols occupied by the channel detection subframe is 2 to 13.
  • the downlink channel detection subframe when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, and the uplink channel detector included in the configuration command of the uplink channel detection subframe
  • the set position of the frame is the back end of the uplink subframe to be adjacent to the downlink channel detection subframe.
  • the uplink channel detection subframe when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, the uplink channel detection subframe is set at the back end of the uplink subframe, so that the uplink subframe can be performed.
  • the measurement of the upper (lower) line channel is performed in time, and the additional guard time can be avoided.
  • the uplink (down) line channel detection subframe since the uplink (down) line channel detection subframe does not occupy the downlink subframe, the downlink sub-frame can be guaranteed.
  • the frame is completely used for downlink data transmission, and the downlink subframe is fully utilized.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is sixth.
  • the number, and the sum of the fifth number and the sixth number ranges from 2 to 14.
  • the downlink channel detection subframe is set in the special subframe, so that the downlink channel detection subframe is adjacent to the uplink pilot time slot, and the configuration command of the uplink channel detection subframe includes The set position of the uplink channel detection subframe is a position immediately adjacent to the downlink pilot time slot.
  • the downlink channel detection subframe is in close proximity to the uplink pilot time slot, and the uplink channel detection is immediately adjacent to the downlink pilot time slot, so that no occupation is required.
  • the downlink subframe and the uplink subframe do not need to be set with additional guard time, thereby ensuring that the uplink and downlink transmissions of the system are not affected.
  • different base stations of the same carrier have channel detectors on the same carrier frequency,
  • the frames are set on the special subframes and are set at the same position of the frame structure. When the base stations measure the channel state, they are all referenced by the base stations of other operators, and the base station signals of the same carrier are not detected. And the decision channel is busy.
  • the eighth channel number of the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe ranges from 2 to 9.
  • each subframe in each frame structure has a total of 14 symbols
  • the upper (lower) channel detection subframes occupy at least one symbol
  • the uplink pilot time slot occupies at least one.
  • the symbol and the downlink pilot time slot occupy at least three symbols
  • the guard time occupies at least one symbol. Therefore, the sum of the number of symbols occupied by the upper (lower) channel detection subframe is 2 to 9.
  • the number of symbols occupied by the uplink channel detection subframe and the downlink channel detection subframe is a fixed value during operation of the LTE system; or working in the LTE system.
  • the device having the function of the base station And/or the channel detection capability of the terminal, dynamically setting the number of symbols occupied by the downlink channel detection subframe and/or the number of symbols occupied by the uplink channel detection subframe.
  • the number of symbols occupied by the upper (lower) channel detection subframe may be a fixed value or may be dynamically changed, that is, The device having the function of the base station dynamically sets the number of symbols occupied by the channel detection subframe according to the rate of change of channel conditions of other systems, the device with the function of the base station, and/or the channel detection capability of the terminal, so as to have the terminal and/or
  • a device having a base station function can sufficiently and accurately determine whether the upper (lower) line channel is busy according to the upper (lower) line channel detection subframe, and send the upper (lower) in time when detecting that the upper (lower) line channel is idle. Row data.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe;
  • the channel detection capability of the device and the channel detection capability of the terminal are inversely proportional to the number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe, respectively.
  • the channel detection capability of the device with the base station function is poor, the state of the downlink channel needs to be measured multiple times. That is, the number of symbols occupied by the downlink channel detection subframe is set to be large. Therefore, the rate of change of channel conditions of other systems is proportional to the number of symbols occupied by the upper (lower) channel detection subframe, and the channel detection capability of the terminal is inversely proportional to the number of symbols occupied by the uplink channel detection subframe, and has a base station.
  • the channel detection capability of the functional device is inversely proportional to the number of symbols occupied by the downlink channel detection subframe.
  • a further aspect of the present invention provides a control system for configuring a channel detection subframe, comprising: a setting unit, configured to periodically detect, in a frame structure of the time division duplex mode, whether a downlink channel for periodically detecting the unlicensed band is An idle downlink channel detection subframe; the sending unit sends an uplink channel detection subframe configuration command to the terminal according to the configuration manner of the downlink channel detection subframe, so that the terminal configures the subframe according to the uplink channel Commanding, in the frame structure, an uplink channel detector for periodically detecting whether an uplink channel of the unlicensed band is idle frame.
  • the device with the base station function can be detected by detecting the subframe through the downlink channel.
  • the downlink channel is idle, the downlink data is sent through the downlink subframe, and when the downlink channel is busy, the downlink data is not sent, and the uplink channel detection subframe configuration command is sent to the terminal, so that the terminal can detect the subframe configuration according to the uplink channel.
  • the uplink channel detection subframe is set to detect the state of the uplink channel, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink subframe is sent in the frame structure.
  • the uplink data is not transmitted when the uplink channel is in a busy state. Therefore, the technical solution of the present invention can enable the LTE system to adopt a corresponding interference avoidance mechanism when the unlicensed frequency band operates in the time division duplex mode.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • the setting unit is further configured to: set the downlink channel detection subframe in at least one subframe in the frame structure, and configure a configuration command of the uplink channel detection subframe to include The uplink channel detection subframe is located in the same subframe as the downlink channel detection subframe.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode, and is placed in the same subframe as the downlink channel detection subframe, so that no time division is needed.
  • additional subframes are additionally set to carry the channel detection subframes, and the number of subframes occupied by the uplink and downlink channel detection subframes can also be avoided.
  • the time division can be doubled according to the actual situation of the LTE system.
  • the uplink and downlink channel detection subframes are set in one or more subframes in the frame structure of the working mode, and the setting positions of the uplink and downlink channel detection subframes may be one of an uplink subframe, a downlink subframe, and a special subframe. Location or multiple locations.
  • the setting unit is further configured to: set the downlink channel detection subframe to a front end of a downlink subframe adjacent to the uplink subframe and the special subframe, and enable the uplink channel detection
  • the setting position of the uplink channel detection subframe included in the configuration command of the subframe is the back end of the downlink subframe.
  • the downlink channel detection subframe is set at the front end of the downlink subframe adjacent to the uplink subframe and the special subframe, and the uplink channel detection subframe is located at the back end of the downlink subframe, so that the upper ( (b) before the line subframe performs the uplink (lower) line transmission, the detection of the upper (lower) line channel can be implemented, thereby determining whether the data can be transmitted through the upper (lower) line subframe, and Ensure the timeliness of channel detection, ensure that the channel status detected before transmitting the (down) line data is up-to-date, avoiding channel detection earlier and transmitting the upper (lower) line data later, resulting in the need for transmission (below) When the line data is changed, the channel state has changed to affect the transmission of the upper (lower) line data.
  • the uplink subframe can be completely used for the uplink data transmission.
  • the uplink subframe is fully utilized.
  • the guard time needs to be set, and the uplink channel detection subframe is equivalent to a downlink signal when detecting the state of the uplink channel, and thus,
  • the uplink channel detection subframe is set at the back end of the downlink channel detection subframe, so that it is possible to avoid setting an additional guard time in the downlink subframe, and also ensure the remaining between the downlink channel detection subframe and the uplink channel detection subframe. Time can still be used to transmit downstream data.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is the second The number, and the sum of the first number and the second number ranges from 2 to 14.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection subframes occupy at least one symbol, the symbols occupied by the upper (lower) channel detection subframes The sum of the numbers is 2 to 14.
  • the setting unit is further configured to: set the downlink channel detection subframe in a target downlink subframe that is immediately adjacent to the other downlink subframes and the special subframe, and is in the target downlink. Setting a guard time in a front end of the subframe, so that the downlink channel detection subframe is in the immediate vicinity of the guard time, and the setting position of the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is the target The back end of the downlink subframe.
  • the guard time needs to be set, and the downlink channel detection subframe is equivalent to an uplink signal when detecting the state of the downlink channel, and therefore, if the downlink channel is detected If the subframe is set at the front end of the downlink subframe, it is necessary to first set a guard time at the forefront of the downlink subframe, and set the downlink channel detection subframe to the target downlink immediately adjacent to other downlink subframes and special subframes.
  • the uplink channel detection subframe configuration command includes a fourth number of symbols occupied by the uplink channel detection subframe And the value of the sum of the third number and the fourth number The range is 2 to 13.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection subframes occupy at least one symbol, the guard time also occupies at least one symbol, and thus, the upper (lower) The sum of the number of symbols occupied by the channel detection subframe is 2 to 13.
  • the setting unit is further configured to: when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, and the configuration command of the uplink channel detection subframe
  • the set position of the uplink channel detection subframe included is a back end of the uplink subframe to be adjacent to the downlink channel detection subframe.
  • the uplink channel detection subframe when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, the uplink channel detection subframe is set at the back end of the uplink subframe, so that the uplink subframe can be performed.
  • the measurement of the upper (lower) line channel is performed in time, and the extra guard time can be avoided.
  • the uplink (down) channel detection subframe since the uplink (down) channel detection subframe does not occupy the downlink subframe, the downlink subframe can be guaranteed. It is fully used for downlink data transmission and realizes full utilization of downlink subframes.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is sixth.
  • the number, and the sum of the fifth number and the sixth number ranges from 2 to 14.
  • the setting unit is further configured to: set the downlink channel detection subframe in the special subframe, and make the downlink channel detection subframe and the uplink pilot slot immediately, and the uplink channel
  • the setting position of the uplink channel detection subframe included in the configuration command of the detection subframe is a position immediately adjacent to the downlink pilot time slot.
  • the downlink channel detection subframe is in close proximity to the uplink pilot time slot, and the uplink channel detection is immediately adjacent to the downlink pilot time slot, so that no occupation is required.
  • the downlink subframe and the uplink subframe do not need to be set with additional guard time, thereby ensuring that the uplink and downlink transmissions of the system are not affected.
  • different base stations of the same carrier have channel detectors on the same carrier frequency,
  • the frames are set on the special subframes and are set at the same position of the frame structure. When the base stations measure the channel state, they are all referenced by the base stations of other operators, and the base station signals of the same carrier are not detected. And the decision channel is busy.
  • the eighth channel number of the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe ranges from 2 to 9.
  • each subframe in each frame structure has a total of 14 symbols
  • the upper (lower) channel detection subframes occupy at least one symbol
  • the uplink pilot time slot occupies at least one symbol and downlink pilots.
  • the gap takes up at least three symbols
  • the guard time takes up at least one symbol, because However, the sum of the number of symbols occupied by the upper (lower) channel detection subframe is 2 to 9.
  • the setting unit includes: detecting a unit, in a working process of the LTE system, detecting, in real time, a rate of change of a channel condition of another system using the unlicensed band around the LTE system, where the setting unit is further configured to: according to the real-time detected Dynamically setting the number of symbols occupied by the downlink channel detection subframe and/or the uplink channel detector, the rate of change of channel conditions of other systems, the device with base station function, and/or the channel detection capability of the terminal The number of symbols occupied by the frame.
  • the number of symbols occupied by the upper (lower) channel detection subframe may be a fixed value or may be dynamically changed, that is, The device having the function of the base station dynamically sets the number of symbols occupied by the channel detection subframe according to the rate of change of channel conditions of other systems, the device with the function of the base station, and/or the channel detection capability of the terminal, so as to have the terminal and/or
  • a device having a base station function can sufficiently and accurately determine whether the upper (lower) line channel is busy according to the upper (lower) channel detection subframe, and send the upper (lower) line in time when detecting that the upper (lower) line channel is idle. data.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe;
  • the channel detection capability of the device and the channel detection capability of the terminal are inversely proportional to the number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe, respectively.
  • the channel detection capability of the device with the function of the base station is poor, the state of the downlink channel needs to be measured multiple times, that is, the number of symbols occupied by the downlink channel detection subframe is set to be large, and therefore, the rate of change of channel conditions of other systems is required.
  • the channel detection capability of the terminal is inversely proportional to the number of symbols occupied by the uplink channel detection subframe, and the channel detection capability and downlink of the device with the base station function are The number of symbols occupied by the channel detection subframe is inversely proportional.
  • a further aspect of the present invention provides a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band, including: setting, in a frame structure of the time division duplex mode, periodically detecting a downlink channel state. a channel detection subframe; in any period, detecting, by the channel detection subframe, whether the downlink channel is in an idle state, and determining, according to a state detection result of the downlink channel, whether a downlink sub-segment in any one of the periods Sending downlink data to the frame, and sending the status detection result of the downlink channel to the terminal, so that the terminal determines whether it is in the The uplink subframe in one cycle transmits uplink data.
  • a channel detection subframe for periodically detecting whether the downlink channel of the unlicensed band is idle is set in a frame structure, so that a device having a base station function can detect that the downlink channel is idle in a channel detection subframe.
  • the downlink data is transmitted through the downlink subframe, when the downlink channel is busy, the downlink data is not transmitted, and the state detection result of the downlink channel is sent to the terminal, so that the terminal can detect the status of the downlink channel as being idle.
  • the uplink data is sent by using the uplink subframe in the frame structure, and when the state detection result of the downlink channel is busy, the uplink data is not sent.
  • the LTE system can be used in the unlicensed frequency band by using the technical solution of the present invention.
  • the duplex mode works, it can adopt the corresponding interference avoidance mechanism, so that it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) when working in the unlicensed band to ensure that the LTE system can be in the unlicensed band.
  • the interference avoidance mechanism generates a large interference to other systems having the interference avoidance mechanism.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • a further aspect of the present invention provides a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band, including: a setting unit, configured to periodically detect in a frame structure of the time division duplex mode a channel detection subframe of a downlink channel state; the transmitting unit detects whether the downlink channel is in an idle state by using the channel detection subframe in any period, and determines whether the node is in the idle state according to the state detection result of the downlink channel
  • the downlink subframe in one cycle transmits downlink data, and the state detection result of the downlink channel is sent to the terminal, so that the terminal determines whether the uplink data is sent in the uplink subframe in any one of the periods.
  • a channel detection subframe for periodically detecting whether the downlink channel of the unlicensed band is idle is set in a frame structure, so that a device having a base station function can detect that the downlink channel is idle in a channel detection subframe.
  • the downlink data is transmitted through the downlink subframe, when the downlink channel is busy, the downlink data is not transmitted, and the state detection result of the downlink channel is sent to the terminal, so that the terminal can detect the status of the downlink channel as being idle.
  • the uplink data is sent by using the uplink subframe in the frame structure, and when the state detection result of the downlink channel is busy, the uplink data is not sent.
  • the LTE system can be used in the unlicensed frequency band by using the technical solution of the present invention.
  • the duplex mode works, it can adopt the corresponding interference avoidance mechanism, so that it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) when working in the unlicensed band to ensure that the LTE system can be in the unlicensed band.
  • the interference avoidance mechanism generates a large interference to other systems having the interference avoidance mechanism.
  • the data includes both normal interaction data and control signaling.
  • the device with the function of the base station includes the base station and the communication device (such as a smart phone, etc.) Realized micro cell base station, etc.
  • a further aspect of the present invention provides a device with a base station function, including: the control system for configuring a channel detection subframe described in the foregoing technical solution or the LTE system described in the foregoing technical solution adopts a time division double in an unlicensed frequency band. Data transmission system when working in mode.
  • the LTE system adopts a time-division method in an unlicensed frequency band by setting a control system for configuring a channel detection subframe in a device having a base station function or a data transmission system when the LTE system operates in a time-division duplex mode in an unlicensed frequency band.
  • the duplex mode works, it can adopt the corresponding interference avoidance mechanism, so that it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) when working in the unlicensed band to ensure that the LTE system can be in the unlicensed band.
  • the LTE system Under the premise of normal operation, the LTE system is prevented from causing large interference to other systems with interference avoidance mechanism when there is no interference avoidance mechanism when working in the unlicensed frequency band.
  • a further aspect of the present invention provides a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band, including: receiving a state detection result of the downlink channel from the device having the base station function, and When the status detection result is that the downlink channel is in an idle state, the uplink data is sent in an uplink subframe in the any one of the frames in the frame structure; otherwise, the uplink data is not sent in any one of the periods. .
  • the terminal by receiving the state detection result of the downlink channel from the base station, when the state detection result of the downlink channel is idle, the terminal can send the uplink data through the uplink subframe in the frame structure, and the downlink channel.
  • the status detection result is in a busy state, the uplink data is not sent. Therefore, the technical solution of the present invention can enable the LTE system to adopt a corresponding interference avoidance mechanism when operating in the time division duplex mode in the unlicensed frequency band, thereby When the band works, it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) to ensure that the LTE system can work in the unlicensed band without the LTE system working in the unlicensed band.
  • the unlicensed band such as Wi-Fi system
  • the interference avoidance mechanism generates a large interference to other systems having the interference avoidance mechanism.
  • the terminal by causing the terminal to determine whether to transmit the uplink data according to the state detection result of the downlink channel, it is possible to avoid setting the uplink channel detection subframe in the frame structure.
  • a further aspect of the present invention provides a data transmission system for an LTE system operating in an unlicensed frequency band in a time division duplex mode, comprising: a receiving unit, receiving status detection of the downlink channel from the device having the base station function As a result, the sending unit sends the uplink data in the uplink subframe in the any one of the frame structures in the frame structure when the status detection result is that the downlink channel is in an idle state, otherwise, in any one of the periods No uplink data is sent inside.
  • the terminal by receiving the state detection result of the downlink channel from the base station, when the state detection result of the downlink channel is idle, the terminal can send the uplink data through the uplink subframe in the frame structure, and the downlink channel.
  • the status detection result is in a busy state, the uplink data is not sent. Therefore, the technical solution of the present invention can enable the LTE system to adopt a corresponding interference avoidance mechanism when operating in the time division duplex mode in the unlicensed frequency band, thereby Bands can work in peace with other systems operating in unlicensed bands (such as Wi-Fi systems) to ensure that LTE systems can operate in unlicensed bands.
  • An uplink channel detection subframe is set in the frame structure.
  • the technical solution of the present invention can ensure that the LTE system does not interfere with other systems when the LTE system works in the unlicensed frequency band, and the LTE system and other systems are in the unlicensed frequency band. Peace coexists.
  • Figure 1 shows a schematic diagram of two modes of operation of an unlicensed spectrum
  • FIG. 2 is a schematic diagram showing an interference avoidance rule of a Wi-Fi system
  • FIG. 3 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 5 is a flow chart showing a method of controlling a channel detection subframe according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a control system for configuring a channel detection subframe according to an embodiment of the present invention
  • FIG. 7 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to another embodiment of the present invention.
  • FIG. 9A is a schematic structural diagram of a device having a base station function according to an embodiment of the present invention.
  • FIG. 9B is a schematic structural diagram of a device having a base station function according to another embodiment of the present invention.
  • FIG. 10 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to still another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to still another embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a TDD frame structure of a 5 ms downlink to uplink conversion
  • FIG. 13A is a schematic diagram showing the structure of an upper (lower) channel detection subframe set in a downlink subframe according to an embodiment of the present invention
  • FIG. 13B is a schematic diagram showing the structure of an upper (lower) channel detection subframe set in a downlink subframe according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the structure of an upper (lower) channel detection subframe set in an uplink subframe according to an embodiment of the present invention.
  • FIG. 15 illustrates an upper (lower) channel detection subframe set in a special according to an embodiment of the present invention. Schematic diagram of the structure within the special sub-frame.
  • FIG. 3 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention.
  • a data transmission method when an LTE system operates in an unlicensed frequency band in a time division duplex mode including: Step 302, receiving uplink channel detection from a device having a base station function. a subframe configuration command; step 304, according to the uplink channel detection subframe configuration command, setting, in a frame structure of the time division duplex mode, a channel for periodically detecting whether an uplink channel of the unlicensed frequency band is idle Detecting a subframe; in step 306, if the channel detection subframe detects that the uplink channel is idle in any detection period, sending uplink data in an uplink subframe in any one of the detection periods in the frame structure. .
  • the channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode by detecting the subframe configuration command according to the received uplink channel, to detect the uplink in the channel detection subframe.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system can adopt when the unlicensed band works in the time division duplex mode.
  • Corresponding interference avoidance mechanism which in turn can coexist peacefully with other systems operating in unlicensed bands (such as Wi-Fi systems) when operating in unlicensed bands, to avoid LTE systems being able to operate in unlicensed bands
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure and a number of symbols occupied by the uplink channel detection subframe.
  • the uplink channel detection subframe by setting the specific location of the uplink channel detection subframe in the frame structure and the number of occupied symbols according to the uplink channel detection subframe configuration command, it is ensured that the uplink channel is effectively detected to determine that only the uplink is uplinked.
  • the uplink data is sent through the uplink subframe in the frame structure, thereby avoiding large interference to other systems with interference avoidance mechanism.
  • FIG. 4 illustrates an LTE system employed in an unlicensed band in accordance with an embodiment of the present invention. Schematic diagram of the data transmission system when working in time division duplex mode.
  • the data transmission system 400 when the LTE system operates in the time division duplex mode in the unlicensed frequency band includes: a receiving unit 402, which receives uplink channel detection from a device having a base station function. a sub-frame configuration command; the setting unit 404, according to the uplink channel detection sub-frame configuration command, setting, in the frame structure of the time division duplex mode, the method for periodically detecting whether an uplink channel of the unlicensed band is idle An uplink channel detection subframe; the transmitting unit 406, if the uplink channel detection subframe detects that the uplink channel is idle in any detection period, passes the uplink subframe in the frame structure in any one of the detection periods The frame sends uplink data.
  • the channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode by detecting the subframe configuration command according to the received uplink channel, to detect the uplink in the channel detection subframe.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system can adopt when the unlicensed band works in the time division duplex mode.
  • Corresponding interference avoidance mechanism which in turn can coexist peacefully with other systems operating in unlicensed bands (such as Wi-Fi systems) when operating in unlicensed bands, to avoid LTE systems being able to operate in unlicensed bands
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure and a number of symbols occupied by the uplink channel detection subframe.
  • the uplink channel detection subframe by setting the specific location of the uplink channel detection subframe in the frame structure and the number of occupied symbols according to the uplink channel detection subframe configuration command, it is ensured that the uplink channel is effectively detected to determine that only the uplink is uplinked.
  • the uplink data is sent through the uplink subframe in the frame structure, thereby avoiding large interference to other systems with interference avoidance mechanism.
  • FIG. 5 is a flow chart showing a method of controlling a channel detection subframe according to an embodiment of the present invention.
  • a method for controlling a channel detection subframe includes: Step 502, setting, in a frame structure of the time division duplex mode, periodically detecting the unlicensed frequency band. a downlink channel detection subframe in which the downlink channel is idle; in step 504, the uplink channel detection subframe configuration command is sent to the terminal according to the configuration manner of the downlink channel detection subframe, so that the terminal detects the uplink channel according to the uplink channel.
  • the subframe configuration command sets, in the frame structure, an uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed band is idle.
  • a device having a base station function can be enabled by setting a downlink channel detection subframe for periodically detecting whether a downlink channel of the unlicensed band is idle in a frame structure.
  • the downlink channel detection subframe When the downlink channel is detected by the downlink channel detection subframe, the downlink data is transmitted through the downlink subframe, and when the downlink channel is busy, the uplink channel detection subframe configuration command is not transmitted, and the uplink channel detection subframe configuration command is sent to the terminal.
  • the terminal sets the uplink channel detection subframe to detect the state of the uplink channel in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, to detect when the uplink channel detection subframe detects that the uplink channel is in an idle state.
  • the uplink subframe in the frame structure sends the uplink data, and when the uplink channel is in the busy state, the uplink data is not sent. Therefore, the LTE system can adopt the time division duplex mode in the unlicensed frequency band by using the technical solution of the present invention.
  • Work can adopt the corresponding interference avoidance mechanism, and then work in the unlicensed frequency band and can coexist peacefully with other systems working in the unlicensed frequency band (such as Wi-Fi system) to ensure that the LTE system can work normally in the unlicensed band. Under the premise, avoid the LTE system working in the unlicensed band because there is no interference.
  • the avoidance mechanism causes greater interference to other systems with interference avoidance mechanisms.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • the downlink channel detection subframe is set in at least one subframe in the frame structure, and the uplink channel detection subframe included in a configuration command of the uplink channel detection subframe And the downlink channel detection subframe is located in the same subframe.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode, and is placed in the same subframe as the downlink channel detection subframe, so that no time division is needed.
  • additional subframes are additionally set to carry the channel detection subframes, and the number of subframes occupied by the uplink and downlink channel detection subframes can also be avoided.
  • the time division can be doubled according to the actual situation of the LTE system.
  • the uplink and downlink channel detection subframes are set in one or more subframes in the frame structure of the working mode, and the setting positions of the uplink and downlink channel detection subframes may be one of an uplink subframe, a downlink subframe, and a special subframe. Location or multiple locations.
  • the downlink channel detection subframe is set at a front end of a downlink subframe adjacent to the uplink subframe and the special subframe, and the configuration command included in the uplink channel detection subframe is included.
  • the setting position of the uplink channel detection subframe is the back end of the downlink subframe.
  • the downlink channel detection subframe is set at the front end of the downlink subframe adjacent to the uplink subframe and the special subframe, and the uplink channel detection subframe is located at the back end of the downlink subframe, so that the upper ( The next subrow frame can detect the upper (lower) line channel before the upper (lower) line transmission, and then determine whether the data can be transmitted through the upper (lower) line subframe and ensure the timeliness of the channel detection. Ensure that the channel status detected before transmitting the upper (lower) line data is the latest state, avoiding the channel detection earlier and transmitting the upper (lower) line data later, so that the channel status has occurred when the upper (down) line data needs to be transmitted.
  • the change affects the transmission of the upper (lower) line data.
  • the uplink (down) line channel detection subframe since the uplink (down) line channel detection subframe does not occupy the uplink subframe, it can ensure that the uplink subframe is completely used for uplink data transmission, and the uplink subframe is fully realized. Use; in addition, When the downlink subframe is converted into an uplink subframe, the guard time needs to be set, and the uplink channel detection subframe is equivalent to one downlink signal when detecting the state of the uplink channel. Therefore, the uplink channel detection subframe is set in the downlink channel detector. The back end of the frame can avoid setting extra guard time in the downlink subframe, and can also ensure that the remaining time between the downlink channel detection subframe and the uplink channel detection subframe can still be used to transmit downlink data.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is the second The number, and the sum of the first number and the second number ranges from 2 to 14.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection subframes occupy at least one symbol, the symbols occupied by the upper (lower) channel detection subframes The sum of the numbers is 2 to 14.
  • the downlink channel detection subframe is set in a target downlink subframe that is immediately adjacent to other downlink subframes and a special subframe, and a guard time is set at a front end of the target downlink subframe.
  • the downlink channel detection subframe is in the immediate vicinity of the protection time, and the location of the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is a back end of the target downlink subframe.
  • the guard time needs to be set, and the downlink channel detection subframe is equivalent to an uplink signal when detecting the state of the downlink channel, and therefore, if the downlink channel is detected If the subframe is set at the front end of the downlink subframe, it is necessary to first set a guard time at the forefront of the downlink subframe, and set the downlink channel detection subframe to the target downlink immediately adjacent to other downlink subframes and special subframes.
  • the uplink channel detection subframe In the frame, and setting the uplink channel detection subframe at the rear end of the target downlink subframe, so that the uplink (lower) row channel is detected before the uplink (lower) row transmission is performed, Further, it is determined whether data transmission can be performed through the upper (lower) row subframe, and the timeliness of channel detection is ensured, ensuring that the channel state detected before transmitting the (down) line data is the latest state, avoiding channel detection earlier and transmitting
  • the upper (lower) row data is later, which causes the channel state to change when the upper (lower) row data needs to be transmitted, which affects the transmission of the uplink data; meanwhile, due to the upper (lower) row channel
  • the detection subframe does not occupy the uplink subframe, so that the uplink subframe can be completely used for uplink data transmission, and the uplink subframe can be fully utilized.
  • the uplink channel detection subframe configuration command includes a fourth number of symbols occupied by the uplink channel detection subframe And the sum of the third number and the fourth number ranges from 2 to 13.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection sub-frames occupy at least one symbol, the guard time also occupies at least one symbol, and thus, the upper (lower) The sum of the number of symbols occupied by the line channel detection subframe is 2 to 13.
  • the downlink channel detection subframe when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, and the uplink channel detector included in the configuration command of the uplink channel detection subframe
  • the set position of the frame is the back end of the uplink subframe to be adjacent to the downlink channel detection subframe.
  • the uplink channel detection subframe when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, the uplink channel detection subframe is set at the back end of the uplink subframe, so that the uplink subframe can be performed.
  • the measurement of the upper (lower) line channel is performed in time, and the additional guard time can be avoided.
  • the uplink (down) line channel detection subframe since the uplink (down) line channel detection subframe does not occupy the downlink subframe, the downlink sub-frame can be guaranteed.
  • the frame is completely used for downlink data transmission, and the downlink subframe is fully utilized.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is sixth.
  • the number, and the sum of the fifth number and the sixth number ranges from 2 to 14.
  • the downlink channel detection subframe is set in the special subframe, so that the downlink channel detection subframe is adjacent to the uplink pilot time slot, and the configuration command of the uplink channel detection subframe includes The set position of the uplink channel detection subframe is a position immediately adjacent to the downlink pilot time slot.
  • the downlink channel detection subframe is in close proximity to the uplink pilot time slot, and the uplink channel detection is immediately adjacent to the downlink pilot time slot, so that no occupation is required.
  • the downlink subframe and the uplink subframe do not need to be set with additional guard time, thereby ensuring that the uplink and downlink transmissions of the system are not affected.
  • different base stations of the same carrier have channel detectors on the same carrier frequency,
  • the frames are set on the special subframes and are set at the same position of the frame structure. When the base stations measure the channel state, they are all referenced by the base stations of other operators, and the base station signals of the same carrier are not detected. And the decision channel is busy.
  • the eighth channel number of the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe ranges from 2 to 9.
  • each subframe in each frame structure has a total of 14 symbols
  • the upper (lower) channel detection subframes occupy at least one symbol
  • the uplink pilot time slot occupies at least one symbol and downlink pilots.
  • the slot occupies at least three symbols
  • the guard time occupies at least one symbol. Therefore, the sum of the number of symbols occupied by the upper (lower) channel detection subframe is 2 to 9.
  • the number of symbols occupied by the uplink channel detection subframe and the downlink channel detection subframe is a fixed value during operation of the LTE system; or working in the LTE system.
  • real-time detection of the use of the non-around the LTE system Dynamically setting the rate of change of channel conditions of other systems of the licensed frequency band and according to the rate of change of the channel conditions of the other system detected in real time, the device having the function of the base station, and/or the channel detecting capability of the terminal The number of symbols occupied by the downlink channel detection subframe and/or the number of symbols occupied by the uplink channel detection subframe.
  • the number of symbols occupied by the upper (lower) channel detection subframe may be a fixed value or may be dynamically changed, that is, The device having the function of the base station dynamically sets the number of symbols occupied by the channel detection subframe according to the rate of change of channel conditions of other systems, the device with the function of the base station, and/or the channel detection capability of the terminal, so as to have the terminal and/or
  • a device having a base station function can sufficiently and accurately determine whether the upper (lower) line channel is busy according to the upper (lower) line channel detection subframe, and send the upper (lower) in time when detecting that the upper (lower) line channel is idle. Row data.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe;
  • the channel detection capability of the device and the channel detection capability of the terminal are inversely proportional to the number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe, respectively.
  • the rate of change of channel conditions of other systems is proportional to the number of symbols occupied by the uplink (lower) channel detection subframe
  • the channel detection capability of the terminal is inversely proportional to the number of symbols occupied by the uplink channel detection subframe.
  • the channel detection capability of the base station-enabled device is inversely proportional to the number of symbols occupied by the downlink channel detection subframe.
  • FIG. 6 shows a schematic structural diagram of a control system for configuring a channel detection subframe according to an embodiment of the present invention.
  • a control system 600 for configuring a channel detection subframe includes: a setting unit 602, configured to periodically detect the unauthorized in a frame structure of the time division duplex mode a downlink channel detection subframe in which the downlink channel of the frequency band is idle; the sending unit 604, according to the configuration manner of the downlink channel detection subframe, sending an uplink channel detection subframe configuration command to the terminal, so that the terminal is configured according to the
  • the uplink channel detection subframe configuration command sets, in the frame structure, an uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed frequency band is idle.
  • a device having a base station function can be enabled by setting a downlink channel detection subframe for periodically detecting whether a downlink channel of the unlicensed band is idle in a frame structure.
  • the downlink channel detection subframe When the downlink channel is detected by the downlink channel detection subframe, the downlink data is transmitted through the downlink subframe, and when the downlink channel is busy, the uplink channel detection subframe configuration command is not transmitted, and the uplink channel detection subframe configuration command is sent to the terminal.
  • the terminal sets the uplink channel detection subframe to detect the state of the uplink channel in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, to detect when the uplink channel detection subframe detects that the uplink channel is in an idle state.
  • the uplink subframe in the frame structure sends the uplink data, and when the uplink channel is in the busy state, the uplink data is not sent. Therefore, the LTE system can adopt the time division duplex mode in the unlicensed frequency band by using the technical solution of the present invention.
  • Work can adopt the corresponding interference avoidance mechanism, and then work in the unlicensed frequency band and can coexist peacefully with other systems working in the unlicensed frequency band (such as Wi-Fi system) to ensure that the LTE system can work normally in the unlicensed band. Under the premise, avoid the LTE system working in the unlicensed band because there is no interference.
  • the avoidance mechanism causes greater interference to other systems with interference avoidance mechanisms.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • the setting unit 602 is further configured to: set the downlink channel detection subframe in at least one subframe in the frame structure, and configure a configuration command of the uplink channel detection subframe.
  • the included uplink channel detection subframe is located in the same subframe as the downlink channel detection subframe.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode, and is placed in the same subframe as the downlink channel detection subframe, so that no time division is needed.
  • additional subframes are additionally set to carry the channel detection subframes, and the number of subframes occupied by the uplink and downlink channel detection subframes can also be avoided.
  • the time division can be doubled according to the actual situation of the LTE system.
  • the uplink and downlink channel detection subframes are set in one or more subframes in the frame structure of the working mode, and the setting positions of the uplink and downlink channel detection subframes may be one of an uplink subframe, a downlink subframe, and a special subframe. Location or multiple locations.
  • the setting unit 602 is further configured to: set the downlink channel detection subframe to a front end of a downlink subframe adjacent to the uplink subframe and the special subframe, and enable the uplink channel
  • the setting position of the uplink channel detection subframe included in the configuration command of the detection subframe is the back end of the downlink subframe.
  • the downlink channel detection subframe is set at the front end of the downlink subframe adjacent to the uplink subframe and the special subframe, and the uplink channel detection subframe is located at the back end of the downlink subframe, so that the upper ( The next subrow frame can detect the upper (lower) line channel before the upper (lower) line transmission, and then determine whether the data can be transmitted through the upper (lower) line subframe and ensure the timeliness of the channel detection. Ensure that the channel status detected before transmitting the upper (lower) line data is the latest state, avoiding the channel detection earlier and transmitting the upper (lower) line data later, so that the channel status has occurred when the upper (down) line data needs to be transmitted.
  • the uplink (lower) channel detection subframe since the uplink (lower) channel detection subframe does not occupy the uplink subframe, it can ensure that the uplink subframe is completely used for uplink data transmission, and the uplink subframe is fully utilized; in addition, the downlink subframe is converted into In the uplink subframe, the guard time needs to be set, and when the uplink channel detection subframe detects the state of the uplink channel, it is equivalent to one downlink signal.
  • the uplink channel detection subframe is set at the back end of the downlink channel detection subframe, It is possible to avoid setting an extra guard time in the downlink subframe, and also ensure that the remaining time between the downlink channel detection subframe and the uplink channel detection subframe can still be used to transmit downlink data.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is the second The number, and the sum of the first number and the second number ranges from 2 to 14.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection subframes occupy at least one symbol, the symbols occupied by the upper (lower) channel detection subframes The sum of the numbers is 2 to 14.
  • the setting unit 602 is further configured to: set the downlink channel detection subframe in a target downlink subframe that is immediately adjacent to other downlink subframes and special subframes, and in the target Setting a guard time in the front end of the downlink subframe, the downlink channel detection subframe is in the immediate vicinity of the guard time, and the setting position of the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is the The back end of the target downlink subframe.
  • the guard time needs to be set, and the downlink channel detection subframe is equivalent to an uplink signal when detecting the state of the downlink channel, and therefore, if the downlink channel is detected If the subframe is set at the front end of the downlink subframe, it is necessary to first set a guard time at the forefront of the downlink subframe, and set the downlink channel detection subframe to the target downlink immediately adjacent to other downlink subframes and special subframes.
  • the uplink channel detection subframe is set at the back end of the target downlink subframe, so that the uplink (lower) row channel can be detected before the uplink transmission of the upper (lower) row subframe, thereby determining whether Data transmission through the upper (lower) line subframe, and ensure the timeliness of channel detection, ensuring that the channel state detected before transmitting the (down) line data is the latest state, avoiding channel detection earlier and transmitting up (down)
  • the row data is late, which causes the channel state to change when the uplink data needs to be transmitted, which affects the transmission of the uplink data.
  • the upper (lower) channel detector Unoccupied uplink subframe an uplink subframe can be fully guaranteed for transmitting uplink data, full utilization of uplink subframes.
  • the uplink channel detection subframe configuration command includes a fourth number of symbols occupied by the uplink channel detection subframe And the sum of the third number and the fourth number ranges from 2 to 13.
  • each subframe in each frame structure has a total of 14 symbols, and the upper (lower) channel detection sub-frames occupy at least one symbol, the guard time also occupies at least one The symbol, thus, the sum of the number of symbols occupied by the upper (lower) line channel detection subframe is 2 to 13.
  • the setting unit 602 is further configured to: when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, and the configuration of the uplink channel detection subframe
  • the setting position of the uplink channel detection subframe included in the command is a back end of the uplink subframe to be adjacent to the downlink channel detection subframe.
  • the uplink channel detection subframe when the downlink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe, the uplink channel detection subframe is set at the back end of the uplink subframe, so that the uplink subframe can be performed.
  • the measurement of the upper (lower) line channel is performed in time, and the additional guard time can be avoided.
  • the uplink (down) line channel detection subframe since the uplink (down) line channel detection subframe does not occupy the downlink subframe, the downlink sub-frame can be guaranteed.
  • the frame is completely used for downlink data transmission, and the downlink subframe is fully utilized.
  • the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe is sixth.
  • the number, and the sum of the fifth number and the sixth number ranges from 2 to 14.
  • the setting unit 602 is further configured to: set the downlink channel detection subframe in the special subframe, and make the downlink channel detection subframe and the uplink pilot time slot in close proximity, and the uplink
  • the setting position of the uplink channel detection subframe included in the configuration command of the channel detection subframe is a position immediately adjacent to the downlink pilot time slot.
  • the downlink channel detection subframe is in close proximity to the uplink pilot time slot, and the uplink channel detection is immediately adjacent to the downlink pilot time slot, so that no occupation is required.
  • the downlink subframe and the uplink subframe do not need to be set with additional guard time, thereby ensuring that the uplink and downlink transmissions of the system are not affected.
  • different base stations of the same carrier have channel detectors on the same carrier frequency,
  • the frames are set on the special subframes and are set at the same position of the frame structure. When the base stations measure the channel state, they are all referenced by the base stations of other operators, and the base station signals of the same carrier are not detected. And the decision channel is busy.
  • the eighth channel number of the number of symbols occupied by the uplink channel detection subframe included in the configuration command of the uplink channel detection subframe ranges from 2 to 9.
  • each subframe in each frame structure has a total of 14 symbols
  • the upper (lower) channel detection subframes occupy at least one symbol
  • the uplink pilot time slot occupies at least one symbol and downlink pilots.
  • the slot occupies at least three symbols
  • the guard time occupies at least one symbol. Therefore, the sum of the number of symbols occupied by the up (down) line channel detection subframe is 2 to 9.
  • the setting unit 602 includes: a detecting unit 6022, which detects the LTE system in real time during the operation of the LTE system a rate of change of channel conditions of other systems in which the unlicensed band is used, the setting unit 602 is further configured to: according to a rate of change of channel conditions of the other system detected in real time, the device with base station function, and And/or the channel detection capability of the terminal, dynamically setting the number of symbols occupied by the downlink channel detection subframe and/or the number of symbols occupied by the uplink channel detection subframe.
  • the number of symbols occupied by the upper (lower) channel detection subframe may be a fixed value or may be dynamically changed, that is, The device having the function of the base station dynamically sets the number of symbols occupied by the channel detection subframe according to the rate of change of channel conditions of other systems, the device with the function of the base station, and/or the channel detection capability of the terminal, so as to have the terminal and/or
  • a device having a base station function can sufficiently and accurately determine whether the upper (lower) line channel is busy according to the upper (lower) line channel detection subframe, and send the upper (lower) in time when detecting that the upper (lower) line channel is idle. Row data.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe;
  • the channel detection capability of the device and the channel detection capability of the terminal are inversely proportional to the number of symbols occupied by the downlink channel detection subframe and the uplink channel detection subframe, respectively.
  • the channel detection capability of the device with the function of the base station is poor, the state of the downlink channel needs to be measured multiple times, that is, the number of symbols occupied by the downlink channel detection subframe is set to be large, and therefore, the rate of change of channel conditions of other systems is required.
  • the channel detection capability of the terminal is inversely proportional to the number of symbols occupied by the uplink channel detection subframe, and the channel detection capability and downlink of the device with the base station function are The number of symbols occupied by the channel detection subframe is inversely proportional.
  • FIG. 7 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to another embodiment of the present invention.
  • the data transmission method when the LTE system of the other embodiment of the present invention operates in the time division duplex mode in the unlicensed frequency band includes: Step 702, setting in the frame structure of the time division duplex mode And detecting, by the channel detection subframe, whether the downlink channel is in an idle state, and determining, according to the state detection result of the downlink channel, whether the channel detection subframe of the downlink channel state is periodically detected. Transmitting downlink data in the downlink subframe in any one of the periods, and transmitting the status detection result of the downlink channel to the end End, so that the terminal determines whether uplink data is sent in an uplink subframe in any one of the periods.
  • a channel detection subframe for periodically detecting whether the downlink channel of the unlicensed band is idle is set in a frame structure, so that a device having a base station function can detect that the downlink channel is idle in a channel detection subframe.
  • the downlink data is transmitted through the downlink subframe, when the downlink channel is busy, the downlink data is not transmitted, and the state detection result of the downlink channel is sent to the terminal, so that the terminal can detect the status of the downlink channel as being idle.
  • the uplink data is sent by using the uplink subframe in the frame structure, and when the state detection result of the downlink channel is busy, the uplink data is not sent.
  • the LTE system can be used in the unlicensed frequency band by using the technical solution of the present invention.
  • the duplex mode works, it can adopt the corresponding interference avoidance mechanism, so that it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) when working in the unlicensed band to ensure that the LTE system can be in the unlicensed band.
  • the interference avoidance mechanism generates a large interference to other systems having the interference avoidance mechanism.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • FIG. 8 is a schematic diagram showing the structure of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to another embodiment of the present invention.
  • a data transmission system 800 when an LTE system operates in a time division duplex mode in an unlicensed frequency band includes: a setting unit 802, a frame structure in the time division duplex mode a channel detection subframe for periodically detecting a downlink channel state is set; the sending unit 804 detects, by using the channel detection subframe, whether the downlink channel is in an idle state, according to the state of the downlink channel, in any period The detection result determines whether the downlink data is sent in the downlink subframe in any one of the periods, and sends the status detection result of the downlink channel to the terminal, so that the terminal determines whether the uplink subframe is sent in any one of the periods. Upstream data.
  • a channel detection subframe for periodically detecting whether the downlink channel of the unlicensed band is idle is set in a frame structure, so that a device having a base station function can detect that the downlink channel is idle in a channel detection subframe.
  • the downlink data is transmitted through the downlink subframe, when the downlink channel is busy, the downlink data is not transmitted, and the state detection result of the downlink channel is sent to the terminal, so that the terminal can detect the status of the downlink channel as being idle.
  • the uplink data is sent by using the uplink subframe in the frame structure, and when the state detection result of the downlink channel is busy, the uplink data is not sent.
  • the LTE system can be used in the unlicensed frequency band by using the technical solution of the present invention.
  • the duplex mode works, it can adopt the corresponding interference avoidance mechanism, so that it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) when working in the unlicensed band to ensure that the LTE system can be in the unlicensed band.
  • the interference avoidance mechanism generates greater interference to other systems with interference avoidance mechanisms, and at the same time, by making the terminal
  • the status detection result of the line channel determines whether to transmit the uplink data, and it is possible to avoid setting the uplink channel detection subframe in the frame structure.
  • the data includes both normal interaction data and control signaling.
  • the device having the function of the base station includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.).
  • FIG. 9A shows a schematic structural diagram of a device having a base station function according to an embodiment of the present invention.
  • a device having a base station function includes: a control system 600 for configuring a channel detection subframe according to the above technical solution.
  • the LTE system can adopt a corresponding interference avoidance mechanism when operating in an unlicensed frequency band in a time division duplex mode, and further, in an unlicensed frequency band. It can work in peace with other systems working in unlicensed bands (such as Wi-Fi systems) to ensure that the LTE system can work in the unlicensed band without interference when ensuring that the LTE system can work in the unlicensed band.
  • the avoidance mechanism causes greater interference to other systems with interference avoidance mechanisms.
  • FIG. 9B is a block diagram showing the structure of a device having a base station function according to another embodiment of the present invention.
  • a device with a base station function includes: a data transmission system 800 when the LTE system described in the above technical solution operates in an unlicensed frequency band in a time division duplex mode.
  • the data transmission system when the LTE system operates in the time-division duplex mode in the unlicensed frequency band enables the LTE system to adopt a corresponding interference avoidance mechanism when operating in the time-division duplex mode in the unlicensed frequency band, and further
  • the licensed band works, it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) to ensure that the LTE system can work in the unlicensed band while ensuring that the LTE system can work in the unlicensed band.
  • FIG. 10 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to still another embodiment of the present invention.
  • a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band includes: Step 1002: Receive the message from the device having the base station function a state detection result of the downlink channel, and when the state detection result is that the downlink channel is in an idle state, sending uplink data in an uplink subframe in any one of the frame structures in the frame structure, otherwise, in the No uplink data is sent during any period.
  • the terminal by receiving the state detection result of the downlink channel from the base station, when the state detection result of the downlink channel is idle, the terminal can send the uplink data through the uplink subframe in the frame structure, and the downlink channel.
  • the status detection result is in a busy state, the uplink data is not sent. Therefore, the technical solution of the present invention can enable the LTE system to adopt a corresponding interference avoidance mechanism when the unlicensed frequency band operates in the time division duplex mode, and further Unlicensed bands can work in peace with other systems operating in unlicensed bands (such as Wi-Fi systems) to ensure that LTE systems can operate in unlicensed bands while ensuring that LTE systems can operate in unlicensed bands.
  • unlicensed bands such as Wi-Fi systems
  • FIG. 11 is a block diagram showing the structure of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to still another embodiment of the present invention.
  • a data transmission system 1100 when an LTE system operates in a time division duplex mode in an unlicensed frequency band includes: a receiving unit 1102, which receives a device from the base station function.
  • the sending unit 1104 when the status detection result is that the downlink channel is in an idle state, sends uplink data in an uplink subframe in any one of the frames in the frame structure. Otherwise, no uplink data is sent during any of the periods.
  • the terminal by receiving the state detection result of the downlink channel from the base station, when the state detection result of the downlink channel is idle, the terminal can send the uplink data through the uplink subframe in the frame structure, and the downlink channel.
  • the status detection result is in a busy state, the uplink data is not sent. Therefore, the technical solution of the present invention can enable the LTE system to adopt a corresponding interference avoidance mechanism when operating in the time division duplex mode in the unlicensed frequency band, thereby When the band works, it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) to ensure that the LTE system can work in the unlicensed band without the LTE system working in the unlicensed band.
  • the unlicensed band such as Wi-Fi system
  • the interference avoidance mechanism generates a large interference to other systems having the interference avoidance mechanism.
  • the terminal by causing the terminal to determine whether to transmit the uplink data according to the state detection result of the downlink channel, it is possible to avoid setting the uplink channel detection subframe in the frame structure.
  • the technical solution of the present invention is mainly an interference avoidance mechanism when an unlicensed frequency band is used by an LTE system in a TDD manner.
  • the main principle is to design an LBT mechanism and frame structure for uplink channel measurement. It mainly introduces the time of the uplink and downlink LBT body and the uplink and downlink LBT, and the maximum length of time or packet size that can be transmitted if the channel is idle.
  • the TDD frame structure of the 5ms downlink to uplink conversion for a 5ms downlink to uplink converted TDD frame structure, one frame includes 8 normal subframes and 2 special subframes.
  • 8 normal subframes that is, for uplink transmission or downlink transmission
  • Table 1 For the TDD structure of the 10ms downlink to uplink conversion period, one frame includes 9 normal subframes and one special subframe, and the 9 normal subframes are used for uplink transmission or downlink transmission, as shown in Table 1.
  • each normal subframe contains 14 symbols.
  • the setting positions of the uplink and downlink LBT subframes are various, and four preferred setting manners are listed below:
  • the preferred setting method is as follows:
  • the uplink and downlink LBT detection time is simultaneously placed in the D (Downlink) subframe: the D subframe is for the LBT detection of the downlink channel, and the D subframe is preceded by a U (Uplink) subframe; For the LBT detection, it is hoped that there will be a U sub-frame, of course, there will be an S (Special) sub-frame in the middle.
  • the uplink and downlink LBT detection subframes can be set, that is, when the repetition period of the uplink and downlink detection subframes LBT is 5 ms. If the LBT repetition period of the uplink and downlink detection subframes is 10 ms or more, the uplink and downlink LBT detection subframes may be placed in the previous position.
  • the LBT time of the DL for detecting the idle state of the downlink channel is placed in the first few symbols of the D subframe, and the LBT of the UL detecting the idle state of the uplink channel is placed at the last symbol of the D subframe.
  • the value of N1 can be static according to the specific situation. State or semi-static configuration.
  • a structure diagram of a D subframe for LBT detection is given by taking TDD configuration mode 0 as an example, and uplink and downlink LBT subframes are set in uplink subframe 5 (ie, D subframe), and uplink is performed.
  • the LBT subframe is located at the back end of subframe 5
  • the downlink LBT subframe is located at the front end of subframe 5.
  • the uplink and downlink LBT detection time is simultaneously placed in the D (Downlink) sub-frame: the D (Downlink) sub-frame is followed by the S (Special) sub-frame, and the front is the D (Downlink) sub-frame.
  • the uplink and downlink LBT detection subframes can be set, that is, when the repetition period of the uplink and downlink detection subframes LBT is 5 ms. If the LBT repetition period of the uplink and downlink detection subframes is 10 ms or more, the uplink and downlink LBT detection subframes may be placed in the previous position.
  • the LBT time (downlink channel detection subframe) of the DL for detecting the idle state of the downlink channel is placed at the back end of the immediately adjacent guard time Gap and occupies several symbols
  • the LBT time of the UL for detecting the idle state of the uplink channel (upstream channel detector) Frame) Several symbols placed at the end of the D subframe.
  • the value of N2 can be configured statically or semi-statically depending on the situation.
  • the TDD configuration mode 1 is taken as an example to provide a structure diagram for the uplink and downlink LBT detection subframes to be simultaneously located in the D subframe, and the uplink and downlink are set in the subframe 5 (ie, the D subframe).
  • the uplink LBT detection subframe is located at the back end of the subframe 5, and the downlink LBT detection subframe is adjacent to the Gap.
  • the preferred setting method is three:
  • the uplink and downlink LBT detection time is simultaneously placed in the U sub-frame: this U sub-frame is followed by the D sub-frame, as shown in Table 4 with the shaded frame structure position.
  • the uplink and downlink LBT detection subframes can be set, that is, when the repetition period of the uplink and downlink detection subframes LBT is 5 ms. If the LBT repetition period of the uplink and downlink detection subframes is 10 ms or more, the uplink and downlink LBT detection subframes may be placed in the previous position.
  • the LBT time of the UL detecting the idle state of the uplink channel is placed at the rear of the U subframe, and the LBT time of the DL detecting the idle state of the downlink channel is placed to the left of the LBT time of the UL detecting the idle state of the uplink channel.
  • Figure 14 shows a block diagram of a U subframe for LBT detection, taking TDD configuration #0 as an example, assuming a repetition period of 10 ms.
  • the uplink and downlink LBT detection time is simultaneously placed in the S (Special) sub-frame, as shown in Table 5 with the shaded frame structure position.
  • the uplink and downlink LBT detection subframes can be set, that is, when the repetition period of the uplink and downlink detection subframes LBT is 5 ms. If up and down When the row detection sub-frame LBT repetition period is 10 ms or more, the uplink and downlink LBT detection subframes may be placed in the previous position.
  • the S subframe includes a DwPTS (Downlink Pilot Time Slot), an UpPTS (Uplink Pilot Time Slot), and a GP (Guard Period), and detects an idle state of the uplink channel.
  • UL's LBT time is placed on the left side of the GP and is tied to the DwPTS.
  • the LBT detection time of the DL for detecting the idle state of the downlink channel is placed on the right side of the GP, together with the UpPTS, and FIG. 15 shows a structure diagram of the S subframe for the uplink and downlink LBT detection subframes, taking TDD configuration #0 as an example. Assume that the repetition period is 10ms. The following describes the time taken by LBT time in the S subframe:
  • the sum of the lengths of DwPTS, UpPTS and GP can only be shortened, so that the sum of the lengths of time is less than 1ms, and the remaining LBT time for uplink and downlink.
  • the length of the UpPTS is relatively fixed, which is 1 symbol or 2 symbols, and the lengths of the DwPTS and GP are variously configured according to different cell radii.
  • the DwPTS can only use a shorter configuration, and the GP can only use a shorter configuration. That is to say, in the configuration of DwPTS and UpPTS given in Table 6, the sum of the DwPTS and UpPTS occupation lengths exceeding 11 symbols cannot be selected because the GP occupies at least 1 symbol, and the UpPTS is at least 1 symbol.
  • the value of N4 can be configured statically or semi-statically depending on the situation.
  • the U subframe or the D subframe can be used for LBT, which partially changes the uplink and downlink properties of the U subframe or the D subframe.
  • LBT LBT
  • S sub-frames no extra U sub-frames and D sub-frames are occupied, but the disadvantage is that the values of DwPTS and GP values are limited.
  • the cell #1 may be performing uplink or cell #2 when performing LBT. Downstream transmission, then cell #1 detects that the channel is busy, but in reality the channel can be occupied by cell #1. That is to say, the preferred setting mode 3 is not suitable for the scenario where the same channel has the same TDD uplink and downlink configuration of the same operator, unless the base station can distinguish signals from different operators or WiFi.
  • the preferred setting mode 1 also has the advantage that neighboring cells of different TDD configurations perform LBT detection in the same subframe.
  • the above-mentioned mechanism for designing (upper) LBT detection according to the present invention enables LTE to use an unlicensed frequency band to detect in advance whether a Wi-Fi device or other system uses a channel, and if so, does not occupy a channel, and thus can Ensure that LTE systems coexist peacefully with existing access technologies such as Wi-Fi in unlicensed bands.
  • a program product stored on a non-transitory machine readable medium for data transmission when an LTE system operates in a time division duplex mode in an unlicensed frequency band
  • the program product Included with the machine executable instructions for causing a computer system to: receive an uplink channel detection subframe configuration command from a device having a base station function; and according to the uplink channel detection subframe configuration command, in the time division duplex mode Setting, in the frame structure, the uplink channel detection subframe for periodically detecting whether the uplink channel of the unlicensed band is idle; if the uplink channel detection subframe detects that the uplink channel is idle, in any detection period, And transmitting uplink data by using an uplink subframe that is in any one of the detection periods in the frame structure.
  • a non-volatile machine readable medium storing a program product for data transmission when an LTE system operates in an unlicensed frequency band in a time division duplex mode
  • the program product comprising Machine executable instructions for causing a computer system to: receive an uplink channel detection subframe configuration command from a device having a base station function; and frame the time division duplex mode according to the uplink channel detection subframe configuration command Structure design And the uplink channel detection subframe configured to periodically detect whether the uplink channel of the unlicensed band is idle; if the uplink channel detection subframe detects that the uplink channel is idle, in any detection period, The uplink subframe in any one of the detection periods in the frame structure transmits uplink data.
  • a machine readable program the program causing a machine to perform data transmission when an LTE system according to any one of the above-mentioned technical solutions operates in an unlicensed frequency band in a time division duplex mode method.
  • a storage medium storing a machine readable program, wherein the machine readable program causes a machine to execute an LTE system according to any one of the technical solutions described above in an unlicensed frequency band Data transmission method when working in time division duplex mode.
  • a program product stored on a non-transitory machine readable medium for configuring control of a channel detection subframe comprising means for causing a computer system to perform the following steps
  • the machine executable instruction setting, in a frame structure of the time division duplex mode, a downlink channel detection subframe for periodically detecting whether a downlink channel of the unlicensed band is idle; and configuring a subframe according to the downlink channel And sending an uplink channel detection subframe configuration command to the terminal, so that the terminal sets, in the frame structure, an uplink channel for periodically detecting the unlicensed frequency band according to the uplink channel detection subframe configuration command. Whether the uplink channel is idle or not.
  • a nonvolatile machine readable medium storing a program product for controlling control of configuring a channel detection subframe in a device having a base station function
  • the program product comprising for causing a computer system Performing the following steps: a machine executable instruction: setting, in a frame structure of the time division duplex mode, a downlink channel detection subframe for periodically detecting whether a downlink channel of the unlicensed band is idle; according to the downlink channel detector Sending an uplink channel detection subframe configuration command to the terminal, so that the terminal is configured to periodically detect the unlicensed frequency band in the frame structure according to the uplink channel detection subframe configuration command. Whether the uplink channel is idle or not, and the uplink channel detects the subframe.
  • a machine readable program the program causing a machine to perform a control method of configuring a channel detection subframe as described in any one of the above aspects.
  • a storage medium storing a machine readable program, wherein the machine readable program causes a machine to perform the configuration channel detecting subframe of any one of the above-described technical solutions Control Method.
  • a program product stored on a non-transitory machine readable medium for data transmission when an LTE system operates in a time division duplex mode in an unlicensed frequency band
  • the program product Included with the machine executable instructions for causing a computer system to: set a channel detection subframe for periodically detecting a downlink channel state in a frame structure of the time division duplex mode; pass the channel in any period And detecting, by the detection subframe, whether the downlink channel is in an idle state, determining, according to the state detection result of the downlink channel, whether downlink data is sent in a downlink subframe in any one of the periods, and detecting a state of the downlink channel The method is sent to the terminal, so that the terminal determines whether the uplink data is sent in the uplink subframe in any one of the periods.
  • a non-volatile machine readable medium storing a program product for data transmission when an LTE system operates in an unlicensed frequency band in a time division duplex mode
  • the program product comprising A machine executable instruction for causing a computer system to: set a channel detection subframe for periodically detecting a downlink channel state in a frame structure of the time division duplex mode; and detect the channel through the channel in any period
  • the subframe detects whether the downlink channel is in an idle state, and determines, according to the state detection result of the downlink channel, whether downlink data is sent in a downlink subframe in any one of the periods, and sends a status detection result of the downlink channel. And to the terminal, so that the terminal determines whether the uplink data is sent in the uplink subframe in any one of the periods.
  • a machine readable program the program causing a machine to perform data transmission when an LTE system according to any one of the above-mentioned technical solutions operates in an unlicensed frequency band in a time division duplex mode method.
  • a storage medium storing a machine readable program, wherein the machine readable program causes a machine to execute an LTE system according to any one of the technical solutions described above in an unlicensed frequency band Data transmission method when working in time division duplex mode.
  • a program product stored on a non-transitory machine readable medium for data transmission when an LTE system operates in a time division duplex mode in an unlicensed frequency band
  • the program product Included with the machine executable instructions for causing a computer system to: receive a status detection result of the downlink channel from the device having a base station function, and when the status detection result is that the downlink channel is in an idle state And transmitting uplink data in an uplink subframe in any one of the frame structures in the frame, otherwise, uplink data is not sent in any one of the periods.
  • a non-volatile machine readable medium storing a program product for data transmission when an LTE system operates in an unlicensed frequency band in a time division duplex mode
  • the program product comprising Machine executable instructions for causing a computer system to: receive a status detection result of the downlink channel from the device having a base station function, and when the status detection result is that the downlink channel is in an idle state, The uplink data is sent by the uplink subframe in the any one of the frames in the frame structure. Otherwise, the uplink data is not sent in any one of the periods.
  • a machine readable program the program causing a machine to perform data transmission when an LTE system according to any one of the above-mentioned technical solutions operates in an unlicensed frequency band in a time division duplex mode method.
  • a storage medium storing a machine readable program, wherein the machine readable program causes a machine to execute an LTE system according to any one of the technical solutions described above in an unlicensed frequency band Data transmission method when working in time division duplex mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、一种数据传输***、一种控制方法、一种控制***和一种具有基站功能的设备,其中,控制方法包括:在时分双工模式的帧结构中设置用于周期性检测非授权频段的下行信道是否空闲的下行信道检测子帧(502);根据下行信道检测子帧的配置方式,向终端发送上行信道检测子帧配置命令,以使终端根据上行信道检测子帧配置命令在帧结构中设置用于周期性检测非授权频段的上行信道是否空闲的上行信道检测子帧(504)。通过该技术方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。

Description

数据传输方法、传输***、控制方法、控制***和设备 技术领域
本发明涉及通信技术领域,具体而言,涉及一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法、一种LTE***在非授权频段采用时分双工模式工作时的数据传输***、一种配置信道检测子帧的控制方法、一种配置信道检测子帧的控制***和一种具有基站功能的设备。
背景技术
随着通信业务量的急剧增加,3GPP的授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是Wi-Fi、蓝牙、雷达、医疗等***在使用。
通常情况下,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进)不适合在非授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合(Carrier Aggregation,CA)功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(LTE Assisted Access,LTE辅助接入)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(SDL,Supplemental Downlink),即只有下行传输子帧;另一种是TDD模式,既包含下行子帧、上行子帧。补充下行这种情况只能是借助载波聚合技术使用(如图1所示)。而TDD模式除了可以借助载波聚合技术使用外,还可以借助DC(Dual Connectivity,双连通)使用,也可以独立使用。
相比于Wi-Fi***,工作在非授权频段的LTE***有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和非授权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、更好的稳定性和移动便利。
现有的在非授权频谱上使用的接入技术,如Wi-Fi,具有较弱的抗干扰能力。为了避免干扰,Wi-Fi***设计了很多干扰避免规则,如CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测方法),这种方法的基本原理是Wi-Fi的AP(Access Point,接入点)或者终端在发送信令或者数据之前,要先监听检测周围是否有其他AP或者其他终端在发送/接收信令或数据,若有,则继续监听, 直到监听到没有为止;若没有,则生成一个随机数作为退避时间,在这个退避时间内,如果没检测到有信令或数据传输,那么在退避时间结束之后,AP或终端可以开始发送信令或数据。该过程如图2所示。
但是,LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有其他基站或其他用户在传输数据。如果LTE在非授权频段上使用时也不考虑周围是否有其他设备在使用非授权频段,那么将对Wi-Fi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么Wi-Fi设备在LTE有业务传输时就不能传输,只能等到LTE业务传输完成,才能检测到信道空闲状态以进行数据传输。
可见,LTE网络在使用非授权频段时,最主要的关键点之一是确保LAA能够在公平友好的基础上和现有的接入技术(比如Wi-Fi)共存。而传统的LTE***中没有LBT(Listen Before Talk,先听后说)的机制来避免碰撞。
因此,如何能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰成为亟待解决的技术问题。
发明内容
本发明正是基于上述问题,提出了一种新的技术方案,提出了一种新的LTE***在非授权频段采用时分双工模式工作时的数据传输方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。
有鉴于此,本发明的一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,用于终端,其特征在于,包括:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述信道检测子帧;在任一检测周期内,若所述信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置信道检测子帧对上行信道的状态进行检测,以在信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰 避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置和所述上行信道检测子帧所占用的符号数目。
在该技术方案中,通过根据上行信道检测子帧配置命令设置该上行信道检测子帧在帧结构中的具***置和占用的符号数目,可以确保对上行信道进行有效地检测,以确定只在上行信道处于空闲状态时才通过上述帧结构中的上行子帧发送上行数据,从而避免对具有干扰避让机制的其他***产生较大的干扰。
本发明的另一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,包括:接收单元,接收来自具有基站功能的设备的上行信道检测子帧配置命令;设置单元,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;发送单元,在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置信道检测子帧对上行信道的状态进行检测,以在信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置和所述上行信道检测子帧所占用的符号数目。
在该技术方案中,通过根据上行信道检测子帧配置命令设置该上行信道检测子帧在帧结构中的具***置和占用的符号数目,可以确保对上行信道进行有效地检测,以确定只在上行信道处于空闲状态时才通过上述帧结构中的上行子帧发送上行数据,从而避免对具有干扰避让机制的其他***产生较大的干扰。
本发明的又一方面提出了一种配置信道检测子帧的控制方法,包括:在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下 行信道是否空闲的下行信道检测子帧;根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,通过在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧,可以使具有基站功能的设备在通过下行信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送上行信道检测子帧配置命令,则可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,将所述下行信道检测子帧设置在所述帧结构中的至少一个子帧内,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧与所述下行信道检测子帧位于同一个所述子帧内。
在该技术方案中,通过将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,并使其与下行信道检测子帧位于同一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载信道检测子帧,同时也可以避免上、下行信道检测子帧占用过多的子帧数目;另外,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上、下行信道检测子帧,并且上、下行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上下行信道检测子帧的几种优选设置方式:
设置方式一:
上述技术方案中,优选地,将所述下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端,并使所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述下行子帧的后端。
在该技术方案中,通过将下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端并使上行信道检测子帧位于该下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下) 行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上(下)行数据的传输;同时,由于上(下)行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用;另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在下行信道检测子帧的后端,则可以避免在该下行子帧内设置额外的保护时间,同时也可以确保下行信道检测子帧与上行信道检测子帧之间的剩余时间依然可以用来传输下行数据。
上述技术方案中,优选地,当所述下行信道检测子帧占用第一数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第二数目,且所述第一数目与所述第二数目之和的取值范围为2至14。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至14。
设置方式二:
上述技术方案中,优选地,将所述下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并在所述目标下行子帧的前端设置保护时间,使所述下行信道检测子帧与所述保护时间紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述目标下行子帧的后端。
在该技术方案中,由于下行子帧在转换为上行子帧时,需要设置保护时间,而下行信道检测子帧在检测下行信道的状态时,相当于一个上行信号,因而,如果将下行信道检测子帧设置在下行子帧的前端,则需要先在下行子帧的最前端设置一个保护时间;而通过将下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并将上行信道检测子帧的设置在目标下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上(下)行数据的传输;同时,由于上(下)信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第三符号数目个符号,所述上行信道检测子帧的配置命令包含的所述上行信道检测子 帧占用的符号数目第四数目,且所述第三数目与所述第四数目之和的取值范围为2至13。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号,保护时间也至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至13。
设置方式三:
上述技术方案中,优选地,将所述下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述上行子帧的后端,以与所述下行信道检测子帧紧邻。
在该技术方案中,将下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,将上行信道检测子帧的设置在该上行子帧的后端,使得能够在需要进行上(下)行传输时,及时进行上(下)行信道的测量,且可以避免设置额外的保护时间;同时,由于上(下)行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第五数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第六数目,且所述第五数目与所述第六数目之和的取值范围为2至14。
设置方式四:
上述技术方案中,优选地,将下行信道检测子帧设置在特殊子帧内,使所述下行信道检测子帧与上行导频时隙紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为与所述下行导频时隙紧邻的位置。
在该技术方案中,通过将下行信道检测子帧设置在特殊子帧内,使下行信道检测子帧与上行导频时隙紧邻,且使上行信道检测与下行导频时隙紧邻,使得无需占用下行子帧和上行子帧,也不需设置额外的保护时间,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
上述技术方案中,优选地,当所述下行信道检测子帧占用第七数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第八数目,且所述第七数目与所述第八数目之和的取值范围为2至9。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号、上行导频时隙至少占用一个 符号、下行导频时隙至少占用三个符号,保护时间至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至9。
上述技术方案中,优选地,在所述LTE***的工作过程中,所述上行信道检测子帧和所述下行信道检测子帧所占用的符号数目为固定值;或在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,并根据实时检测到的所述其他***的信道条件的变化速率、所述具有基站功能的设备和/或所述终端的信道检测能力,动态设置所述下行信道检测子帧所占用的符号数目和/或所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保及时而准确无误地判断上(下)行信道是否繁忙,上(下)行信道检测子帧所占用的符号数目可以为固定值,也可以为动态变化的,即具有基站功能的设备根据其他***的信道条件的变化速率、具有基站功能的设备和/或该终端的信道检测能力,动态设置该信道检测子帧所占用的符号数目,以使具终端和/或有基站功能的设备能够根据上(下)行信道检测子帧充分而准确地判断上(下)行信道是否繁忙,并在检测到上(下)行信道空闲时,及时地发送上(下)行数据。
上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目均成正比例关系;所述具有基站功能的设备的信道检测能力和所述终端的信道检测能力分别与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上(下)信道检测子帧占用的符号数时,为了能够对上(下)行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上(下)行信道的状态,即设置上(下)行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多,同样地,如果具有基站功能的设备的信道检测能力较差,也需要多次测量下行信道的状态,即设置下行信道检测子帧占用的符号数较多。因此,其他***的信道条件的变化速率与上(下)信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系,具有基站功能的设备的信道检测能力与下行信道检测子帧所占用的符号数量成反比例关系。
本发明的再一方面提出了一种配置信道检测子帧的控制***,包括:设置单元,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;发送单元,根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子 帧。
在该技术方案中,通过在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧,可以使具有基站功能的设备在通过下行信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送上行信道检测子帧配置命令,则可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,所述设置单元还用于:将所述下行信道检测子帧设置在所述帧结构中的至少一个子帧内,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧与所述下行信道检测子帧位于同一个所述子帧内。
在该技术方案中,通过将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,并使其与下行信道检测子帧位于同一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载信道检测子帧,同时也可以避免上、下行信道检测子帧占用过多的子帧数目;另外,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上、下行信道检测子帧,并且上、下行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上下行信道检测子帧的几种优选设置方式:
设置方式一:
上述技术方案中,优选地,所述设置单元还用于:将所述下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端,并使所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述下行子帧的后端。
在该技术方案中,通过将下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端并使上行信道检测子帧位于该下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并 确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上(下)行数据的传输;同时,由于上(下)行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用;另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在下行信道检测子帧的后端,则可以避免在该下行子帧内设置额外的保护时间,同时也可以确保下行信道检测子帧与上行信道检测子帧之间的剩余时间依然可以用来传输下行数据。
上述技术方案中,优选地,当所述下行信道检测子帧占用第一数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第二数目,且所述第一数目与所述第二数目之和的取值范围为2至14。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至14。
设置方式二:
上述技术方案中,优选地,所述设置单元还用于:将所述下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并在所述目标下行子帧的前端设置保护时间,使所述下行信道检测子帧与所述保护时间紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述目标下行子帧的后端。
在该技术方案中,由于下行子帧在转换为上行子帧时,需要设置保护时间,而下行信道检测子帧在检测下行信道的状态时,相当于一个上行信号,因而,如果将下行信道检测子帧设置在下行子帧的前端,则需要先在下行子帧的最前端设置一个保护时间;而通过将下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并将上行信道检测子帧的设置在目标下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上(下)行数据的传输;同时,由于上(下)信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第三符号数目个符号,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第四数目,且所述第三数目与所述第四数目之和的取值 范围为2至13。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号,保护时间也至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至13。
设置方式三:
上述技术方案中,优选地,所述设置单元还用于:将所述下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述上行子帧的后端,以与所述下行信道检测子帧紧邻。
在该技术方案中,将下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,将上行信道检测子帧的设置在该上行子帧的后端,使得能够在需要进行上(下)行传输时,及时进行上(下)行信道的测量,且可以避免设置额外的保护时间;同时,由于上(下)信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第五数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第六数目,且所述第五数目与所述第六数目之和的取值范围为2至14。
设置方式四:
上述技术方案中,优选地,所述设置单元还用于:将下行信道检测子帧设置在特殊子帧内,使所述下行信道检测子帧与上行导频时隙紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为与所述下行导频时隙紧邻的位置。
在该技术方案中,通过将下行信道检测子帧设置在特殊子帧内,使下行信道检测子帧与上行导频时隙紧邻,且使上行信道检测与下行导频时隙紧邻,使得无需占用下行子帧和上行子帧,也不需设置额外的保护时间,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
上述技术方案中,优选地,当所述下行信道检测子帧占用第七数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第八数目,且所述第七数目与所述第八数目之和的取值范围为2至9。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号、上行导频时隙至少占用一个符号、下行导频时隙至少占用三个符号,保护时间至少占用一个符号,因 而,上(下)信道检测子帧所占用的符号数目之和为2至9。
上述技术方案中,优选地,在所述LTE***的工作过程中,所述上行信道检测子帧和所述下行信道检测子帧所占用的符号数目为固定值;或所述设置单元包括:检测单元,在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,所述设置单元还用于:根据实时检测到的所述其他***的信道条件的变化速率、所述具有基站功能的设备和/或所述终端的信道检测能力,动态设置所述下行信道检测子帧所占用的符号数目和/或所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保及时而准确无误地判断上(下)行信道是否繁忙,上(下)行信道检测子帧所占用的符号数目可以为固定值,也可以为动态变化的,即具有基站功能的设备根据其他***的信道条件的变化速率、具有基站功能的设备和/或该终端的信道检测能力,动态设置该信道检测子帧所占用的符号数目,以使具终端和/或有基站功能的设备能够根据上(下)信道检测子帧充分而准确地判断上(下)行信道是否繁忙,并在检测到上(下)行信道空闲时,及时地发送上(下)行数据。
上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目均成正比例关系;所述具有基站功能的设备的信道检测能力和所述终端的信道检测能力分别与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上(下)信道检测子帧占用的符号数时,为了能够对上(下)行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上(下)行信道的状态,即设置上(下)行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多。同样地,如果具有基站功能的设备的信道检测能力较差,也需要多次测量下行信道的状态,即设置下行信道检测子帧占用的符号数较多,因此,其他***的信道条件的变化速率与上(下)行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系,具有基站功能的设备的信道检测能力与下行信道检测子帧所占用的符号数量成反比例关系。
本发明的再一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,包括:在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使终端判断是否在所述任 一周期内的上行子帧发送上行数据。
在该技术方案中,在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的信道检测子帧,可以使具有基站功能的设备在通过信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送下行信道的状态检测结果,则可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
本发明的再一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,包括:设置单元,在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;发送单元,在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使终端判断是否在所述任一周期内的上行子帧发送上行数据。
在该技术方案中,在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的信道检测子帧,可以使具有基站功能的设备在通过信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送下行信道的状态检测结果,则可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等) 实现的微小区基站等。
本发明的再一方面提出了一种具有基站功能的设备,包括:上述技术方案中所述的配置信道检测子帧的控制***或上述技术方案中所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***。
在该技术方案中,通过在具有基站功能的设备设置配置信道检测子帧的控制***或LTE***在非授权频段采用时分双工模式工作时的数据传输***,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。
本发明的再一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,包括:接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,并在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
在该技术方案中,通过接收来自基站的下行信道的状态检测结果,可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。
本发明的再一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,包括:接收单元,接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,发送单元,在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
在该技术方案中,通过接收来自基站的下行信道的状态检测结果,可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避 免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。
通过本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。
附图说明
图1示出了非授权频谱的两种工作方式的示意图;
图2示出了Wi-Fi***的干扰避免规则的示意图;
图3示出了根据本发明的一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图;
图4示出了根据本发明的一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图;
图5示出了根据本发明的实施例的配置信道检测子帧的控制方法的流程示意图;
图6示出了根据本发明的实施例的配置信道检测子帧的控制***的结构示意图;
图7示出了根据本发明的另一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图;
图8示出了根据本发明的另一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图;
图9A示出了根据本发明的一个实施例的具有基站功能的设备的结构示意图;
图9B示出了根据本发明的另一个实施例的具有基站功能的设备的结构示意图;
图10示出了根据本发明的又一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图;
图11示出了根据本发明的又一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图;
图12示出了5ms下行到上行转换的TDD帧结构的示意图;
图13A示出了根据本发明的一个实施例的上(下)信道检测子帧设置在下行子帧内的结构示意图;
图13B示出了根据本发明的另一个实施例的上(下)信道检测子帧设置在下行子帧内的结构示意图;
图14示出了根据本发明的实施例的上(下)信道检测子帧设置在上行子帧内的结构示意图;
图15示出了根据本发明的实施例的上(下)信道检测子帧设置在特 殊子帧内的结构示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图3示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图。
如图3所示,示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,包括:步骤302,接收来自具有基站功能的设备的上行信道检测子帧配置命令;步骤304,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述信道检测子帧;步骤306,在任一检测周期内,若所述信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置信道检测子帧对上行信道的状态进行检测,以在信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置和所述上行信道检测子帧所占用的符号数目。
在该技术方案中,通过根据上行信道检测子帧配置命令设置该上行信道检测子帧在帧结构中的具***置和占用的符号数目,可以确保对上行信道进行有效地检测,以确定只在上行信道处于空闲状态时才通过上述帧结构中的上行子帧发送上行数据,从而避免对具有干扰避让机制的其他***产生较大的干扰。
图4示出了根据本发明的一个实施例的LTE***在非授权频段采用 时分双工模式工作时的数据传输***的结构示意图。
如图4所示,根据本发明的一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***400,包括:接收单元402,接收来自具有基站功能的设备的上行信道检测子帧配置命令;设置单元404,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;发送单元406,在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置信道检测子帧对上行信道的状态进行检测,以在信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置和所述上行信道检测子帧所占用的符号数目。
在该技术方案中,通过根据上行信道检测子帧配置命令设置该上行信道检测子帧在帧结构中的具***置和占用的符号数目,可以确保对上行信道进行有效地检测,以确定只在上行信道处于空闲状态时才通过上述帧结构中的上行子帧发送上行数据,从而避免对具有干扰避让机制的其他***产生较大的干扰。
图5示出了根据本发明的实施例的配置信道检测子帧的控制方法的流程示意图。
如图5所示,根据本发明的实施例的配置信道检测子帧的控制方法,包括:步骤502,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;步骤504,根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,通过在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧,可以使具有基站功能的设备 在通过下行信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送上行信道检测子帧配置命令,则可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,将所述下行信道检测子帧设置在所述帧结构中的至少一个子帧内,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧与所述下行信道检测子帧位于同一个所述子帧内。
在该技术方案中,通过将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,并使其与下行信道检测子帧位于同一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载信道检测子帧,同时也可以避免上、下行信道检测子帧占用过多的子帧数目;另外,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上、下行信道检测子帧,并且上、下行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上下行信道检测子帧的几种优选设置方式:
设置方式一:
上述技术方案中,优选地,将所述下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端,并使所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述下行子帧的后端。
在该技术方案中,通过将下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端并使上行信道检测子帧位于该下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上(下)行数据的传输;同时,由于上(下)行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用;另外, 下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在下行信道检测子帧的后端,则可以避免在该下行子帧内设置额外的保护时间,同时也可以确保下行信道检测子帧与上行信道检测子帧之间的剩余时间依然可以用来传输下行数据。
上述技术方案中,优选地,当所述下行信道检测子帧占用第一数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第二数目,且所述第一数目与所述第二数目之和的取值范围为2至14。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至14。
设置方式二:
上述技术方案中,优选地,将所述下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并在所述目标下行子帧的前端设置保护时间,使所述下行信道检测子帧与所述保护时间紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述目标下行子帧的后端。
在该技术方案中,由于下行子帧在转换为上行子帧时,需要设置保护时间,而下行信道检测子帧在检测下行信道的状态时,相当于一个上行信号,因而,如果将下行信道检测子帧设置在下行子帧的前端,则需要先在下行子帧的最前端设置一个保护时间;而通过将下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并将上行信道检测子帧的设置在目标下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上行数据的传输;同时,由于上(下)行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第三符号数目个符号,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第四数目,且所述第三数目与所述第四数目之和的取值范围为2至13。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)行信道检测子帧均至少占用一个符号,保护时间也至少占用一个符号,因而,上(下)行信道检测子帧所占用的符号数目之和为2至13。
设置方式三:
上述技术方案中,优选地,将所述下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述上行子帧的后端,以与所述下行信道检测子帧紧邻。
在该技术方案中,将下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,将上行信道检测子帧的设置在该上行子帧的后端,使得能够在需要进行上(下)行传输时,及时进行上(下)行信道的测量,且可以避免设置额外的保护时间;同时,由于上(下)行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第五数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第六数目,且所述第五数目与所述第六数目之和的取值范围为2至14。
设置方式四:
上述技术方案中,优选地,将下行信道检测子帧设置在特殊子帧内,使所述下行信道检测子帧与上行导频时隙紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为与所述下行导频时隙紧邻的位置。
在该技术方案中,通过将下行信道检测子帧设置在特殊子帧内,使下行信道检测子帧与上行导频时隙紧邻,且使上行信道检测与下行导频时隙紧邻,使得无需占用下行子帧和上行子帧,也不需设置额外的保护时间,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
上述技术方案中,优选地,当所述下行信道检测子帧占用第七数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第八数目,且所述第七数目与所述第八数目之和的取值范围为2至9。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号、上行导频时隙至少占用一个符号、下行导频时隙至少占用三个符号,保护时间至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至9。
上述技术方案中,优选地,在所述LTE***的工作过程中,所述上行信道检测子帧和所述下行信道检测子帧所占用的符号数目为固定值;或在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非 授权频段的其他***的信道条件的变化速率,并根据实时检测到的所述其他***的信道条件的变化速率、所述具有基站功能的设备和/或所述终端的信道检测能力,动态设置所述下行信道检测子帧所占用的符号数目和/或所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保及时而准确无误地判断上(下)行信道是否繁忙,上(下)行信道检测子帧所占用的符号数目可以为固定值,也可以为动态变化的,即具有基站功能的设备根据其他***的信道条件的变化速率、具有基站功能的设备和/或该终端的信道检测能力,动态设置该信道检测子帧所占用的符号数目,以使具终端和/或有基站功能的设备能够根据上(下)行信道检测子帧充分而准确地判断上(下)行信道是否繁忙,并在检测到上(下)行信道空闲时,及时地发送上(下)行数据。
上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目均成正比例关系;所述具有基站功能的设备的信道检测能力和所述终端的信道检测能力分别与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上(下)行信道检测子帧占用的符号数时,为了能够对上(下)行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上(下)行信道的状态,即设置上(下)行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多,同样地,如果具有基站功能的设备的信道检测能力较差,也需要多次测量下行信道的状态,即设置下行信道检测子帧占用的符号数较多。因此,其他***的信道条件的变化速率与上(下)行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系,具有基站功能的设备的信道检测能力与下行信道检测子帧所占用的符号数量成反比例关系。
图6示出了根据本发明的实施例的配置信道检测子帧的控制***的结构示意图。
如图6所示,根据本发明的实施例的配置信道检测子帧的控制***600,包括:设置单元602,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;发送单元604,根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,通过在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧,可以使具有基站功能的设备 在通过下行信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送上行信道检测子帧配置命令,则可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,所述设置单元602还用于:将所述下行信道检测子帧设置在所述帧结构中的至少一个子帧内,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧与所述下行信道检测子帧位于同一个所述子帧内。
在该技术方案中,通过将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,并使其与下行信道检测子帧位于同一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载信道检测子帧,同时也可以避免上、下行信道检测子帧占用过多的子帧数目;另外,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上、下行信道检测子帧,并且上、下行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上下行信道检测子帧的几种优选设置方式:
设置方式一:
上述技术方案中,优选地,所述设置单元602还用于:将所述下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端,并使所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述下行子帧的后端。
在该技术方案中,通过将下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端并使上行信道检测子帧位于该下行子帧的后端,使得上(下)行子帧进行上(下)行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上(下)行数据时信道状态已发生变化而影响上(下)行数据的传 输;同时,由于上(下)行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用;另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在下行信道检测子帧的后端,则可以避免在该下行子帧内设置额外的保护时间,同时也可以确保下行信道检测子帧与上行信道检测子帧之间的剩余时间依然可以用来传输下行数据。
上述技术方案中,优选地,当所述下行信道检测子帧占用第一数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第二数目,且所述第一数目与所述第二数目之和的取值范围为2至14。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号,因而,上(下)信道检测子帧所占用的符号数目之和为2至14。
设置方式二:
上述技术方案中,优选地,所述设置单元602还用于:将所述下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并在所述目标下行子帧的前端设置保护时间,使所述下行信道检测子帧与所述保护时间紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述目标下行子帧的后端。
在该技术方案中,由于下行子帧在转换为上行子帧时,需要设置保护时间,而下行信道检测子帧在检测下行信道的状态时,相当于一个上行信号,因而,如果将下行信道检测子帧设置在下行子帧的前端,则需要先在下行子帧的最前端设置一个保护时间;而通过将下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并将上行信道检测子帧的设置在目标下行子帧的后端,使得上(下)行子帧进行上行传输之前,能够实现对上(下)行信道的检测,进而确定是否能够通过上(下)行子帧进行数据传输,并确保信道检测的时效性,确保在传输上(下)行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上(下)行数据较晚而导致在需要传输上行数据时信道状态已发生变化而影响上行数据的传输;同时,由于上(下)行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第三符号数目个符号,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第四数目,且所述第三数目与所述第四数目之和的取值范围为2至13。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)行信道检测子帧均至少占用一个符号,保护时间也至少占用一个 符号,因而,上(下)行信道检测子帧所占用的符号数目之和为2至13。
设置方式三:
上述技术方案中,优选地,所述设置单元602还用于:将所述下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述上行子帧的后端,以与所述下行信道检测子帧紧邻。
在该技术方案中,将下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,将上行信道检测子帧的设置在该上行子帧的后端,使得能够在需要进行上(下)行传输时,及时进行上(下)行信道的测量,且可以避免设置额外的保护时间;同时,由于上(下)行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
上述技术方案中,优选地,当所述下行信道检测子帧占用第五数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第六数目,且所述第五数目与所述第六数目之和的取值范围为2至14。
设置方式四:
上述技术方案中,优选地,所述设置单元602还用于:将下行信道检测子帧设置在特殊子帧内,使所述下行信道检测子帧与上行导频时隙紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为与所述下行导频时隙紧邻的位置。
在该技术方案中,通过将下行信道检测子帧设置在特殊子帧内,使下行信道检测子帧与上行导频时隙紧邻,且使上行信道检测与下行导频时隙紧邻,使得无需占用下行子帧和上行子帧,也不需设置额外的保护时间,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
上述技术方案中,优选地,当所述下行信道检测子帧占用第七数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目第八数目,且所述第七数目与所述第八数目之和的取值范围为2至9。
在该技术方案中,由于每个帧结构中的每个子帧共有14个符号,而上(下)信道检测子帧均至少占用一个符号、上行导频时隙至少占用一个符号、下行导频时隙至少占用三个符号,保护时间至少占用一个符号,因而,上(下)行信道检测子帧所占用的符号数目之和为2至9。
上述技术方案中,优选地,在所述LTE***的工作过程中,所述上 行信道检测子帧和所述下行信道检测子帧所占用的符号数目为固定值;或所述设置单元602包括:检测单元6022,在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,所述设置单元602还用于:根据实时检测到的所述其他***的信道条件的变化速率、所述具有基站功能的设备和/或所述终端的信道检测能力,动态设置所述下行信道检测子帧所占用的符号数目和/或所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保及时而准确无误地判断上(下)行信道是否繁忙,上(下)行信道检测子帧所占用的符号数目可以为固定值,也可以为动态变化的,即具有基站功能的设备根据其他***的信道条件的变化速率、具有基站功能的设备和/或该终端的信道检测能力,动态设置该信道检测子帧所占用的符号数目,以使具终端和/或有基站功能的设备能够根据上(下)行信道检测子帧充分而准确地判断上(下)行信道是否繁忙,并在检测到上(下)行信道空闲时,及时地发送上(下)行数据。
上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目均成正比例关系;所述具有基站功能的设备的信道检测能力和所述终端的信道检测能力分别与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上(下)行信道检测子帧占用的符号数时,为了能够对上(下)行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上(下)行信道的状态,即设置上(下)行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多。同样地,如果具有基站功能的设备的信道检测能力较差,也需要多次测量下行信道的状态,即设置下行信道检测子帧占用的符号数较多,因此,其他***的信道条件的变化速率与上(下)行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系,具有基站功能的设备的信道检测能力与下行信道检测子帧所占用的符号数量成反比例关系。
图7示出了根据本发明的另一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图。
如图7所示,本发明的另一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,包括:步骤702,在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;步骤704,在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终 端,以使终端判断是否在所述任一周期内的上行子帧发送上行数据。
在该技术方案中,在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的信道检测子帧,可以使具有基站功能的设备在通过信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送下行信道的状态检测结果,则可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
图8示出了根据本发明的另一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图。
如图8所示,根据本发明的另一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***800,包括:设置单元802,在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;发送单元804,在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使终端判断是否在所述任一周期内的上行子帧发送上行数据。
在该技术方案中,在帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的信道检测子帧,可以使具有基站功能的设备在通过信道检测子帧检测到下行信道空闲时,通过下行子帧发送下行数据,在检测到下行信道繁忙时,不发送下行数据,而向终端发送下行信道的状态检测结果,则可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下 行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。其中,数据既包括普通的交互数据,也包括控制信令等。而具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
图9A示出了根据本发明的一个实施例的具有基站功能的设备的结构示意图。
如图9A所示,根据本发明的一个实施例的具有基站功能的设备,包括:上述技术方案中所述的配置信道检测子帧的控制***600。
在该技术方案中,通过在具有基站功能的设备设置配置信道检测子帧的控制***,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。
图9B示出了根据本发明的另一个实施例的具有基站功能的设备的结构示意图。
如图9B所示,根据本发明的另一个实施例的具有基站功能的设备,包括:上述技术方案中所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***800。
在该技术方案中,通过LTE***在非授权频段采用时分双工模式工作时的数据传输***,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。
图10示出了根据本发明的又一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图。
如图10所示,根据本发明的又一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,包括:步骤1002,接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,并在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
在该技术方案中,通过接收来自基站的下行信道的状态检测结果,可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在 非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。
图11示出了根据本发明的又一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图。
如图11所示,根据本发明的又一个实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输系1100,包括:接收单元1102,接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,发送单元1104,在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
在该技术方案中,通过接收来自基站的下行信道的状态检测结果,可以使终端在下行信道的状态检测结果为空闲状态时,通过上述帧结构中的上行子帧发送上行数据,而在下行信道的状态检测结果为繁忙状态时,不发送上行数据,因而,通过本发明的技术方案,可以使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰,同时,通过使终端根据下行信道的状态检测结果来判断是否发送上行数据,可以避免在帧结构中设置上行信道检测子帧。
以下结合图12至图16详细说明书本发明的技术方案。
本发明的技术方案主要是非授权频段以TDD的方式被LTE***使用时的干扰避让机制。其主要原理是设计一种用于上行信道测量的LBT机制和帧结构,主要介绍了上下行LBT主体和上下行LBT的时间,以及如果信道空闲最大可传输的时间长度或者数据包大小。
首先介绍TDD的帧结构:
如图12所示为5ms下行到上行转换的TDD帧结构,对于5ms下行到上行转换的TDD帧结构,1个帧包含8个正常子帧和2个特殊子帧。而8个正常子帧的配置方式,即用于上行传输还是下行传输可以参考表1。而对于10ms下行到上行转换周期的TDD结构,1个帧包含9个正常子帧和一个特殊子帧,而9个正常子帧到底是用于上行传输还是下行传输也可以参考表1所示。其中,每个正常子帧又包含14个symbol(符号)。
表1
Figure PCTCN2014092238-appb-000001
其中,上下行LBT子帧(上下行信道检测子帧)的设置位置有多种,以下列举其中的四种优选设置方式:
优选设置方式一:
上下行LBT检测时间同时放在D(Downlink,下行)子帧进行:这个D子帧对于下行信道的LBT检测来说,希望D子帧前面是U(Uplink,上行)子帧;而对于上行信道的LBT检测来说,希望接下里是U子帧,当然中间会隔一个S(Special,特殊)子帧。
满足这个条件的只有TDD上下行配置#0号的第#0号和第#5号子帧,以及TDD上下行配置#6号的第#5号子帧,具体地,如表2中所示的具有阴影的帧结构位置。
表2
Figure PCTCN2014092238-appb-000002
如果1个帧结构中给出了两个位置能够设置上下行LBT检测子帧,那就是当上下行检测子帧LBT的重复周期均为5ms时的情况。如果上下行检测子帧LBT重复周期均为10ms或者更大时,选择排在前面的位置可能放置上下行LBT检测子帧。
进一步地,检测下行信道空闲状态的DL的LBT时间放在该D子帧的最前面的几个symbol,检测上行信道空闲状态的UL的LBT时间放在该D子帧的最后面的几个symbol。而上下行LBT的检测时间长度之和可以是N1个symbol,N1=2,3,……14。N1的值可以根据具体情况进行静 态或半静态的配置。
除去两个LBT检测时间,中间就是该D子帧的剩余时间。而D子帧剩余时间的symbol继续用于任何下行传输。具体地,如图13A所示,以TDD配置方式0为例给出用于LBT检测的D子帧的结构图,在5号子帧(即D子帧)中设置上下行LBT子帧,上行LBT子帧位于5号子帧的后端,下行LBT子帧位于5号子帧的前端。
优选设置方式二:
上下行LBT检测时间同时放在D(Downlink,下行)子帧进行:这个D(Downlink,下行)子帧后面是S(Special,特殊)子帧,前面是D(Downlink,下行)子帧,如表3所示的具有阴影的帧结构位置。
表3
Figure PCTCN2014092238-appb-000003
如果1个帧结构中给出了两个位置能够设置上下行LBT检测子帧,那就是当上下行检测子帧LBT的重复周期均为5ms时的情况。如果上下行检测子帧LBT重复周期均为10ms或者更大时,选择排在前面的位置可能放置上下行LBT检测子帧。
进一步,检测下行信道空闲状态的DL的LBT时间(下行信道检测子帧)放在该紧邻保护时间Gap的后端并占用几个symbol,检测上行信道空闲状态的UL的LBT时间(上行信道检测子帧)放在该D子帧的最后面的几个symbol。而上下行LBT的检测时间长度之和可以是N2个symbol,N2=2,3,……13。N2的值可以根据具体情况进行静态或半静态的配置。
具体地,如图13B所示,以TDD配置方式1为例给出用于上下行LBT检测子帧同时位于D子帧的结构图,在5号子帧(即D子帧)中设置上下行LBT子帧,上行LBT检测子帧位于5号子帧的后端,下行LBT检测子帧与Gap紧邻。
优选设置方式三:
上下行LBT检测时间同时放在U子帧:这个U子帧后面紧跟着是D子帧,如表4所示的具有阴影的帧结构位置。
表4
Figure PCTCN2014092238-appb-000004
如果1个帧结构中给出了两个位置能够设置上下行LBT检测子帧,那就是当上下行检测子帧LBT的重复周期均为5ms时的情况。如果上下行检测子帧LBT重复周期均为10ms或者更大时,选择排在前面的位置可能放置上下行LBT检测子帧。
进一步,检测上行信道空闲状态的UL的LBT时间放在该U子帧的最后面,检测下行信道空闲状态的DL的LBT时间放在检测上行信道空闲状态的UL的LBT时间的左边。而上下行LBT检测时间长度之和可以是N3个symbol,N3=2,3,……14。这个可以有多个可配置的值,根据具体情况进行静态或半静态的配置,而且上下行的LBT检测时间长度可以不一样,也可以一样。
除去上下行LBT检测时间,最前面就是该U子帧的剩余时间。而这些剩余symbol继续用于任何上行传输。图14给出用于LBT检测的U子帧的结构图,以TDD配置#0为例子,假设重复周期为10ms。
优选设置方式四:
上下行LBT检测时间同时放在S(Special,特殊)子帧,如表5所示的具有阴影的帧结构位置。
表5
Figure PCTCN2014092238-appb-000005
如果1个帧结构中给出了两个位置能够设置上下行LBT检测子帧,那就是当上下行检测子帧LBT的重复周期均为5ms时的情况。如果上下 行检测子帧LBT重复周期均为10ms或者更大时,选择排在前面的位置可能放置上下行LBT检测子帧。
进一步,S子帧包含DwPTS(Downlink Pilot Time Slot,下行导频时隙)、UpPTS(Uplink Pilot Time Slot,上行导频时隙)和GP(Guard Period,保护时间),而检测上行信道空闲状态的UL的LBT时间放在GP左边,与DwPTS挨在一起。检测下行信道空闲状态的DL的LBT检测时间放在GP右边,与UpPTS挨在一起,图15给出用于上下行LBT检测子帧的S子帧的结构图,以TDD配置#0为例子,假设重复周期为10ms。以下说明在S子帧中LBT time所占用的时间:
如表6所示为36.211标准中给出的DwPTS、UpPTS的长度配置,而除去DwPTS和UpPTS之后,1ms剩下的时间就是GP的长度了。而这里为了在1ms内放入上行和下行的LBT time,只能缩短DwPTS、UpPTS和GP的时间长度之和,使其时间长度之和小于1ms,剩下的用于上行和下行的LBT time。
表6
Figure PCTCN2014092238-appb-000006
基本上来说,UpPTS的长度比较固定,为1个symbol或2个symbol,而DwPTS和GP的长度根据不同的小区半径有多种配置方式。为了保证上行和下行的LBT time,那么DwPTS只能使用较短的配置,GP也只能使用较短的配置。也就是说,表6中给出的DwPTS、UpPTS的配置中,DwPTS和UpPTS占用长度之和超过11个symbol的就不能被选用,因为GP至少占用1个symbol,而UpPTS最小是1个symbol,DwPTS最小是3个symbol,所以上下行信道空闲状态的上下行LBT检测时间长度最大是9个symbol,最小保证2个symbol。即上下行LBT检测时间长度可以是N4个symbol,N4=2,3,……9。N4的值可以根据具体情况进行静态或半静态的配置。
在上述的四种优选设置方式中,只有优选设置方式二需要额外的D子帧到U子帧的保护时间。
其次,如果由于上下行业务不对称,可以使用U子帧或D子帧来进行LBT,这样会部分改变U子帧或D子帧的上下行性质。当使用S子帧时,不会占用额外的U子帧和D子帧,但缺点在于DwPTS和GP值的取值受限。
另外,放在U子帧时,因为每个TDD上下行配置所用的LBT子帧不同步,如果邻小区使用不同的TDD配置,那么可能小区#1在做LBT时,小区#2在进行上行或下行传输,那么小区#1检测到信道忙,但实际上信道可以被小区#1占用。也就是说优选设置方式三不太适用于同一频道同一运营商用不同TDD上下行配置的场景,除非基站能区分出不同运营商或WiFi来的信号。而其它几种设置方式,由于各种TDD上下行配置都使用同样的S子帧或D子帧进行LBT,这样即使邻小区用不同的TDD配置,因为上下行LBT time的设置位置相同,那么检测的还是外来的信号强度,不会因为检测到邻LTE小区的信号强度而判断信道忙。优选设置方式一也有这个优点,即不同TDD配置的邻小区在同一子帧进行LBT检测。
本发明上述的通过设计下(上)行LBT检测的机制,使得LTE使用非授权频段时,也会提前检测是否有Wi-Fi设备或其他***使用信道,若有,则不占用信道,进而能够确保LTE***在非授权频段与现有接入技术如Wi-Fi和平共存。
以上结合附图详细说明了本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。
根据本发明的实施方式,还提供了一种存储在非易失性机器可读介质上的程序产品,用于LTE***在非授权频段采用时分双工模式工作时的数据传输,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
根据本发明的实施方式,还提供了一种非易失机器可读介质,存储有用于终端中LTE***在非授权频段采用时分双工模式工作时的数据传输的程序产品,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设 置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
根据本发明的实施方式,还提供了一种机器可读程序,所述程序使机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储有机器可读程序的存储介质,其中,所述机器可读程序使得机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储在非易失性机器可读介质上的程序产品,用于配置信道检测子帧的控制,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
根据本发明的实施方式,还提供了一种非易失机器可读介质,存储有用于具有基站功能的设备中配置信道检测子帧的控制的程序产品,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
根据本发明的实施方式,还提供了一种机器可读程序,所述程序使机器执行如上所述技术方案中任一所述的配置信道检测子帧的控制方法。
根据本发明的实施方式,还提供了一种存储有机器可读程序的存储介质,其中,所述机器可读程序使得机器执行如上所述技术方案中任一所述的配置信道检测子帧的控制方法。
根据本发明的实施方式,还提供了一种存储在非易失性机器可读介质上的程序产品,用于LTE***在非授权频段采用时分双工模式工作时的数据传输,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使终端判断是否在所述任一周期内的上行子帧发送上行数据。
根据本发明的实施方式,还提供了一种非易失机器可读介质,存储有用于终端中LTE***在非授权频段采用时分双工模式工作时的数据传输的程序产品,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使终端判断是否在所述任一周期内的上行子帧发送上行数据。
根据本发明的实施方式,还提供了一种机器可读程序,所述程序使机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储有机器可读程序的存储介质,其中,所述机器可读程序使得机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储在非易失性机器可读介质上的程序产品,用于LTE***在非授权频段采用时分双工模式工作时的数据传输,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,并在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
根据本发明的实施方式,还提供了一种非易失机器可读介质,存储有用于终端中LTE***在非授权频段采用时分双工模式工作时的数据传输的程序产品,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,并在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
根据本发明的实施方式,还提供了一种机器可读程序,所述程序使机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储有机器可读程序的存储介质,其中,所述机器可读程序使得机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (33)

  1. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,用于终端,其特征在于,包括:
    接收来自具有基站功能的设备的上行信道检测子帧配置命令;
    根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;
    在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
  2. 根据权利要求1所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置和所述上行信道检测子帧所占用的符号数目。
  3. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,用于终端,其特征在于,包括:
    接收单元,接收来自具有基站功能的设备的上行信道检测子帧配置命令;
    设置单元,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;
    发送单元,在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
  4. 根据权利要求3所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置和所述上行信道检测子帧所占用的符号数目。
  5. 一种配置信道检测子帧的控制方法,其特征在于,所述方法用于控制权利要求1所述的终端,所述控制方法适用于具有基站功能的设备,包括:
    在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;
    根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
  6. 根据权利要求5所述的配置信道检测子帧的控制方法,其特征在于,
    将所述下行信道检测子帧设置在所述帧结构中的至少一个子帧内,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧与所述下行信道检测子帧位于同一个所述子帧内。
  7. 根据权利要求6所述的配置信道检测子帧的控制方法,其特征在于,
    将所述下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端,并使所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述下行子帧的后端。
  8. 根据权利要求7所述的配置信道检测子帧的控制方法,其特征在于,
    当所述下行信道检测子帧占用第一数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第二数目,且所述第一数目与所述第二数目之和的取值范围为2至14。
  9. 根据权利要求6所述的配置信道检测子帧的控制方法,其特征在于,
    将所述下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并在所述目标下行子帧的前端设置保护时间,使所述下行信道检测子帧与所述保护时间紧邻,且所述上行信道检测子帧的配置 命令包含的所述上行信道检测子帧的设置位置为所述目标下行子帧的后端。
  10. 根据权利要求9所述的配置信道检测子帧的控制方法,其特征在于,
    当所述下行信道检测子帧占用第三符号数目个符号,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第四数目,且所述第三数目与所述第四数目之和的取值范围为2至13。
  11. 根据权利要求6所述的配置信道检测子帧的控制方法,其特征在于,
    将所述下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述上行子帧的后端,以与所述下行信道检测子帧紧邻。
  12. 根据权利要求11所述的配置信道检测子帧的控制方法,其特征在于,
    当所述下行信道检测子帧占用第五数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第六数目,且所述第五数目与所述第六数目之和的取值范围为2至14。
  13. 根据权利要求6所述的配置信道检测子帧的控制方法,其特征在于,
    将下行信道检测子帧设置在特殊子帧内,使所述下行信道检测子帧与上行导频时隙紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为与下行导频时隙紧邻的位置。
  14. 根据权利要求13所述的配置信道检测子帧的控制方法,其特征在于,
    当所述下行信道检测子帧占用第七数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第八数目,且所述第七数目与所述第八数目之和的取值范围为2至9。
  15. 根据权利要求8、10、12或14所述的配置信道检测子帧的控制方法,其特征在于,
    在所述具有基站功能的设备控制所述终端的过程中,所述上行信道检测子帧和所述下行信道检测子帧所占用的符号数目为固定值;或
    在所述具有基站功能的设备控制所述终端的过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,并根据实时检测到的所述其他***的信道条件的变化速率、所述具有基站功能的设备和/或所述终端的信道检测能力,动态设置所述下行信道检测子帧所占用的符号数目和/或所述上行信道检测子帧所占用的符号数目。
  16. 根据权利要求15所述的配置信道检测子帧的控制方法,其特征在于,
    所述其他***的信道条件的变化速率与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目均成正比例关系;
    所述具有基站功能的设备的信道检测能力和所述终端的信道检测能力分别与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目成反比例关系。
  17. 一种配置信道检测子帧的控制***,其特征在于,所述***用于控制权利要求1所述的终端,所述控制***适用于具有基站功能的设备,包括:
    设置单元,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的下行信道是否空闲的下行信道检测子帧;
    发送单元,根据所述下行信道检测子帧的配置方式,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
  18. 根据权利要求17所述的配置信道检测子帧的控制***,其特征在于,
    所述设置单元还用于:将所述下行信道检测子帧设置在所述帧结构中的至少一个子帧内,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧与所述下行信道检测子帧位于同一个所述子帧内。
  19. 根据权利要求18所述的配置信道检测子帧的控制***,其特征 在于,
    所述设置单元还用于:将所述下行信道检测子帧设置在与上行子帧和特殊子帧相邻的下行子帧的前端,并使所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述下行子帧的后端。
  20. 根据权利要求19所述的配置信道检测子帧的控制***,其特征在于,
    当所述下行信道检测子帧占用第一数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第二数目,且所述第一数目与所述第二数目之和的取值范围为2至14。
  21. 根据权利要求18所述的配置信道检测子帧的控制***,其特征在于,
    所述设置单元还用于:将所述下行信道检测子帧设置在与其他下行子帧和特殊子帧同时紧邻的目标下行子帧内,并在所述目标下行子帧的前端设置保护时间,使所述下行信道检测子帧与所述保护时间紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述目标下行子帧的后端。
  22. 根据权利要求21所述的配置信道检测子帧的控制***,其特征在于,
    当所述下行信道检测子帧占用第三符号数目个符号,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第四数目,且所述第三数目与所述第四数目之和的取值范围为2至13。
  23. 根据权利要求18所述的配置信道检测子帧的控制***,其特征在于,
    所述设置单元还用于:将所述下行信道检测子帧设置在与下行子帧相邻的上行子帧内时,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为所述上行子帧的后端,以与所述下行信道检测子帧紧邻。
  24. 根据权利要求23所述的配置信道检测子帧的控制***,其特征在于,
    当所述下行信道检测子帧占用第五数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第六数目,且所述第五数目与所述第六数目之和的取值范围为2至14。
  25. 根据权利要求18所述的配置信道检测子帧的控制***,其特征在于,
    所述设置单元还用于:将下行信道检测子帧设置在特殊子帧内,使所述下行信道检测子帧与上行导频时隙紧邻,且所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧的设置位置为与下行导频时隙紧邻的位置。
  26. 根据权利要求25所述的配置信道检测子帧的控制***,其特征在于,
    当所述下行信道检测子帧占用第七数目个符号时,所述上行信道检测子帧的配置命令包含的所述上行信道检测子帧占用的符号数目为第八数目,且所述第七数目与所述第八数目之和的取值范围为2至9。
  27. 根据权利要求20、22、24或26所述的配置信道检测子帧的控制***,其特征在于,
    在所述具有基站功能的设备控制所述终端的过程中,所述上行信道检测子帧和所述下行信道检测子帧所占用的符号数目为固定值;或
    所述设置单元包括:
    检测单元,在所述具有基站功能的设备控制所述终端的过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,
    所述设置单元还用于:根据实时检测到的所述其他***的信道条件的变化速率、所述具有基站功能的设备和/或所述终端的信道检测能力,动态设置所述下行信道检测子帧所占用的符号数目和/或所述上行信道检测子帧所占用的符号数目。
  28. 根据权利要求27所述的配置信道检测子帧的控制***,其特征在于,
    所述其他***的信道条件的变化速率与所述下行信道检测子帧和所述 上行信道检测子帧所占用的符号数目均成正比例关系;
    所述具有基站功能的设备的信道检测能力和所述终端的信道检测能力分别与所述下行信道检测子帧和所述上行信道检测子帧所占用的符号数目成反比例关系。
  29. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,适用于具有基站功能的设备,其特征在于,包括:
    在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;
    在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使所述终端判断是否在所述任一周期内的上行子帧发送上行数据。
  30. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,适用于具有基站功能的设备,其特征在于,包括:
    设置单元,在所述时分双工模式的帧结构中设置用于周期性检测下行信道状态的信道检测子帧;
    发送单元,在任一周期内,通过所述信道检测子帧检测到所述下行信道是否处于空闲状态,根据所述下行信道的状态检测结果判断是否在所述任一周期内的下行子帧发送下行数据,并将所述下行信道的状态检测结果发送至终端,以使所述终端判断是否在所述任一周期内的上行子帧发送上行数据。
  31. 一种具有基站功能的设备,其特征在于,包括:如权利要求17至28中任一项所述的配置信道检测子帧的控制***;或
    如权利要求30所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***。
  32. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,适用于终端与权利要求29所述具有基站功能的设备相连接,其特征在于,包括:
    接收来自所述具有基站功能的设备的所述下行信道的状态检测结果, 并在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
  33. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,适用于终端与权利要求29所述具有基站功能的设备相连接,其特征在于,包括:
    接收单元,接收来自所述具有基站功能的设备的所述下行信道的状态检测结果,
    发送单元,在所述状态检测结果为所述下行信道处于空闲状态时,通过所述帧结构中处于所述任一周期内的上行子帧发送上行数据,否则,在所述任一周期内不发送上行数据。
PCT/CN2014/092238 2014-11-26 2014-11-26 数据传输方法、传输***、控制方法、控制***和设备 WO2016082113A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480082729.6A CN107079414B (zh) 2014-11-26 2014-11-26 数据传输方法、传输***、控制方法、控制***和设备
EP14907020.3A EP3203794B1 (en) 2014-11-26 2014-11-26 Coexistence of lte and other systems
PCT/CN2014/092238 WO2016082113A1 (zh) 2014-11-26 2014-11-26 数据传输方法、传输***、控制方法、控制***和设备
US15/589,525 US10333682B2 (en) 2014-11-26 2017-05-08 Data transmission method, data transmission system, control method, control system, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092238 WO2016082113A1 (zh) 2014-11-26 2014-11-26 数据传输方法、传输***、控制方法、控制***和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/589,525 Continuation US10333682B2 (en) 2014-11-26 2017-05-08 Data transmission method, data transmission system, control method, control system, and device

Publications (1)

Publication Number Publication Date
WO2016082113A1 true WO2016082113A1 (zh) 2016-06-02

Family

ID=56073320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092238 WO2016082113A1 (zh) 2014-11-26 2014-11-26 数据传输方法、传输***、控制方法、控制***和设备

Country Status (4)

Country Link
US (1) US10333682B2 (zh)
EP (1) EP3203794B1 (zh)
CN (1) CN107079414B (zh)
WO (1) WO2016082113A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133612A1 (zh) * 2016-02-02 2017-08-10 索尼公司 信道检测装置和方法、用户设备和基站
WO2018228582A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method and apparatus for uplink partial sub-frame transmission in mobile communications

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252966B1 (en) * 2015-03-31 2019-04-24 Huawei Technologies Co., Ltd. Communication method, base station and user equipment in time division duplex (tdd) system
CN107027123A (zh) 2016-02-02 2017-08-08 索尼公司 用于无线通信***的装置和方法、频谱管理装置
MX2020011216A (es) 2018-05-08 2020-11-09 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo de comunicacion inalambrica, chip y sistema.
CN110557834B (zh) * 2018-05-31 2022-06-28 华为技术有限公司 一种数据传输方法和通信装置
US20220256372A1 (en) * 2019-01-30 2022-08-11 Beijing Xiaomi Mobile Software Co., Ltd. Downlink transmission detecting method and device, configuration information transmission method and device, and downlink transmission method and device
US11582796B2 (en) * 2020-05-15 2023-02-14 Qualcomm Incorporated Listen-before-talk (LBT) failure detection in dormant cell and outside discontinuous reception (DRX) active time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051383A1 (en) * 2011-08-26 2013-02-28 Renesas Mobile Corporation Apparatus and Method for Communication
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
WO2014168226A1 (en) * 2013-04-09 2014-10-16 Nec Corporation Communications system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990944B2 (en) * 2007-09-06 2011-08-02 Wi-Lan, Inc. Contention-based communication
TWI615043B (zh) * 2011-02-07 2018-02-11 內數位專利控股公司 在免頻譜執照中操作補充胞元方法及裝置
KR20140113976A (ko) * 2011-12-22 2014-09-25 인터디지탈 패튼 홀딩스, 인크 동적 스펙트럼 할당을 위한 방법, 장치 및 시스템
WO2013112983A2 (en) * 2012-01-26 2013-08-01 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
JP6472440B2 (ja) * 2014-05-15 2019-02-20 株式会社Nttドコモ 無線基地局、ユーザ端末および無線通信システム
JP6609252B2 (ja) * 2014-07-31 2019-11-20 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JPWO2016047727A1 (ja) * 2014-09-25 2017-07-27 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107079483B (zh) * 2014-09-26 2020-05-19 宇龙计算机通信科技(深圳)有限公司 数据传输方法、***和具有基站功能的设备
CN106031267B (zh) * 2014-09-26 2019-10-11 宇龙计算机通信科技(深圳)有限公司 数据传输方法、***和具有基站功能的设备
WO2016049915A1 (zh) * 2014-09-30 2016-04-07 宇龙计算机通信科技(深圳)有限公司 数据传输方法、传输***、控制方法、控制***和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051383A1 (en) * 2011-08-26 2013-02-28 Renesas Mobile Corporation Apparatus and Method for Communication
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
WO2014168226A1 (en) * 2013-04-09 2014-10-16 Nec Corporation Communications system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED.: "Extending LTE Advanced to unlicensed spectrum", 31 December 2013 (2013-12-31), XP055192621, Retrieved from the Internet <URL:https://www.qualcomm.com/documents/white-paper-extending-Ite-advanced-unlicensed-spectrum> *
QUALCOMM TECHNOLOGIES, INC.: "Qualcomm Research LTE in Unlicensed Spectrum: Harmonious Coexistence with Wi-Fi", 31 March 2014 (2014-03-31), Retrieved from the Internet <URL:https://www.qualcomm.com/documents/Ite-unlicensed-coexistence-whitepaper> *
See also references of EP3203794A4 *
WEI, HAIYAN ET AL.: "A method of rapid transmission on ISM band for LTE system", JOURNAL OF ANHUI UNIVERSITY ( NATURAL SCIENCE EDITION, vol. 37, no. 2, 31 March 2013 (2013-03-31), pages 75 - 80, XP008185460 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133612A1 (zh) * 2016-02-02 2017-08-10 索尼公司 信道检测装置和方法、用户设备和基站
US11019649B2 (en) 2016-02-02 2021-05-25 Sony Corporation Channel detection apparatus and method, user equipment, and base station
US11729777B2 (en) 2016-02-02 2023-08-15 Sony Group Corporation Channel detection apparatus and method, user equipment, and base station
WO2018228582A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method and apparatus for uplink partial sub-frame transmission in mobile communications
TWI668984B (zh) * 2017-06-16 2019-08-11 聯發科技股份有限公司 行動通訊之上鏈部分子訊框傳輸的方法和裝置

Also Published As

Publication number Publication date
US20170244536A1 (en) 2017-08-24
EP3203794B1 (en) 2021-11-10
EP3203794A1 (en) 2017-08-09
CN107079414B (zh) 2020-09-11
CN107079414A (zh) 2017-08-18
US10333682B2 (en) 2019-06-25
EP3203794A4 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
WO2016082113A1 (zh) 数据传输方法、传输***、控制方法、控制***和设备
CN104333902B (zh) 数据同步方法、同步***、具有基站功能的设备和终端
KR101923114B1 (ko) 데이터 전송 방법 및 데이터 전송 장치
US10230480B2 (en) Method and device for interference detection on unlicensed band
WO2016045107A1 (zh) 数据传输方法、***和具有基站功能的设备
WO2016183941A1 (zh) 配置方法、配置***、设备、接收方法、接收***和终端
WO2016155134A1 (zh) 一种未授权频段的信道检测方法及网元设备
WO2017028556A1 (zh) 基于非授权频段的发现参考信号配置方法、装置和基站
EP3373628A1 (en) Signal processing method and base station
CN105357162A (zh) 一种信号处理方法、基站和终端
KR20170102528A (ko) 비면허 무선 주파수 대역에서의 시분할 lte 전송을 위한 방법 및 장치
CN106465138A (zh) 用于通过载波侦听在共享频谱中发送lte波形的方法和装置
CN104363657A (zh) 数据传输方法、***和具有基站功能的设备
US10536971B2 (en) Data transmission method and electronic device, and device having base station function
WO2017075922A1 (zh) 一种非授权频谱的drs配置方法、测量方法和相关设备
EP3198978B1 (en) Method and apparatus for mitigating hidden node interference
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
WO2016049915A1 (zh) 数据传输方法、传输***、控制方法、控制***和设备
KR102495208B1 (ko) 비면허대역을 이용한 참조 신호 송수신 방법 및 장치
KR20200050821A (ko) Nr 시스템에서 사이드링크를 위한 자원 풀 구성 방법 및 장치
WO2018094652A1 (zh) 一种数据传输方法和装置
TWI552637B (zh) 基地台及其通訊方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907020

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014907020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE