WO2016183941A1 - 配置方法、配置***、设备、接收方法、接收***和终端 - Google Patents

配置方法、配置***、设备、接收方法、接收***和终端 Download PDF

Info

Publication number
WO2016183941A1
WO2016183941A1 PCT/CN2015/085864 CN2015085864W WO2016183941A1 WO 2016183941 A1 WO2016183941 A1 WO 2016183941A1 CN 2015085864 W CN2015085864 W CN 2015085864W WO 2016183941 A1 WO2016183941 A1 WO 2016183941A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
subframe
discovery
signal
discovery reference
Prior art date
Application number
PCT/CN2015/085864
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016183941A1 publication Critical patent/WO2016183941A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • H04L5/26Arrangements affording multiple use of the transmission path using time-division multiplexing combined with the use of different frequencies

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for configuring a reference signal, a configuration system for a reference signal, a device having a base station function, a method for receiving a reference signal, and receiving a reference signal.
  • System and a terminal a method for configuring a reference signal, a configuration system for a reference signal, a device having a base station function, a method for receiving a reference signal, and receiving a reference signal.
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrum are currently mainly used in systems such as Wi-Fi, Bluetooth, radar, and medical.
  • LTE Long Term Evolution
  • CA Carrier Aggregation
  • 3GPP proposes the concept of LAA (LTE Assisted Access), which uses the help of LTE licensed spectrum to use unlicensed spectrum.
  • the unlicensed spectrum can work in two modes. One is the downlink (SDL), that is, only the downlink transmission subframe, and the other is the TDD mode, which includes the downlink subframe and the uplink subframe.
  • SDL downlink
  • TDD mode which includes the downlink subframe and the uplink subframe.
  • the carrier aggregation technology as shown in Figure 1).
  • the TDD mode can also be used by DC (Dual Connectivity) or independently.
  • LTE systems operating in unlicensed bands have the ability to provide higher spectral efficiency and greater coverage, while relying on the same core network to allow data traffic between licensed and unlicensed bands. Sew switch. For the user, this means a better broadband experience, a higher rate, Better stability and mobility.
  • Wi-Fi Wireless Fidelity
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the basic principle of this method is Wi-Fi. Before the AP (Access Point) or the terminal sends signaling or data, it must first monitor whether other APs or other terminals are transmitting/receiving signaling or data. If so, continue to listen until it is monitored. If not, generate a random number N as the backoff time.
  • next channel detection if the channel is detected to be busy, then N does not change until the channel is detected to be idle again, and N-1; When 0, the backoff time ends and the AP or terminal can start to send signaling or data.
  • the process is shown in Figure 2.
  • the LTE network has good orthogonality to ensure the interference level, the uplink and downlink transmissions between the base station and the user do not need to consider whether other base stations or other users are transmitting data. If LTE is used on an unlicensed band, it does not consider whether other devices are using unlicensed bands nearby, which will cause great interference to Wi-Fi devices. Because LTE transmits as long as there is traffic, there is no monitoring rule, then the Wi-Fi device cannot transmit when LTE has service transmission, and can only detect the channel idle state for data transmission after the LTE service transmission is completed.
  • LAA LTE assisted access
  • existing access technologies such as WiFi
  • LBT Listen Before Talk
  • LTE requires an LBT mechanism. In this way, if the LTE detects that the channel is busy on the unlicensed spectrum, the LTE cannot occupy the frequency band, and if the channel is detected to be idle, it can be occupied.
  • a LBT mechanism based on frame structure (FBE, Framed based equipment) is proposed (as shown in Figure 3), and the left slash is the channel detection time of CCA (Clear Channel Assessment).
  • CCA Car Channel Assessment
  • the CCA detection time is periodically repeated. If the channel is idle, the channel is occupied. After the channel occupancy time reaches the maximum channel occupation time, there is an idle time. At the idle time, the transmission point does not send signals and data, so as to facilitate other channels. The sending point preempts the channel. After the idle time, the CCA detection time occurs again. If the channel is detected to be busy, the channel is not occupied, and the channel is detected again until the CCA detection time of the next period occurs. Of course, the channel The detection time also belongs to the idle time, and the idle duration must be greater than 5% of the maximum channel occupation time. The CCA time plus the Idle time plus the maximum time occupied by the channel is the period.
  • an LBT mechanism based on load-based is proposed as shown in Figure 4:
  • the LBT-based LBT mechanism is cycle-free. As long as the service arrives, the CCA detection is triggered. If the CCA detection is idle, Then, signaling or data is sent immediately; if the channel is detected to be busy, a random number N, N is taken in the range of 1 to q (ie, the length of the contention window), and the value range of q is 4 to 32.
  • the extended CCA (extended channel detection time) mechanism is adopted, that is, the random value N, N ranges from 1 to 16. If the value is 8, it means that in the next consecutive CCA detection time.
  • the channel is detected every CCA detection time. If the channel is detected to be idle, N-1, if the channel is detected to be busy, N is unchanged, and when N is 0, signaling or data is sent.
  • reference signals for RRM (Radio Resource Management) measurement, cell identification, downlink synchronization, time-frequency estimation, etc. in the LAA are implemented in two ways: one is short control signaling (short-time control signal) The requirement that this method needs to be met is that 5% of the time can be sent within 50ms, which is 2.5ms. The other is to send a non-periodic DRS (Discovery Reference Signal), because it takes 6ms to send DRS, and if it is sent when it detects that the channel is busy, it will cause more interference to other systems. Therefore, if the DRS is sent, it can only be sent when the channel is detected to be idle, then the DRS is aperiodic.
  • short control signaling short-time control signal
  • DRS Discovery Reference Signal
  • the first method DRS must be transmitted in a fixed subframe (subframe) within DMTC (DRS Measurement Timing Configuration) like R12.
  • DRS DRS Measurement Timing Configuration
  • the PSS/SSS in the DRS must be guaranteed to be sent on the original symbol (symbol) of the original subframe.
  • FDD Frequency Division Duplexing
  • the PSS is the last symbol of the first slot (time slot) of the 0# subframe and the 5# subframe (ie, number 6).
  • the seventh symbol is sent on; the SSS (Secondary Synchronization Signal) and the PSS (Primary Synchronization Signal) are transmitted in the same slot in the same subframe, but the SSS is in the penultimate symbol, which is earlier than the PSS. a symbol (ie number 6 of number 6) Symbols).
  • the PSS is transmitted in the third symbol of the number 2 of the 1# subframe and the 6# subframe (ie, DwPTS); and the SSS is in the child.
  • the frame 0# subframe and the last symbol of the 5# subframe ie, the fourteenth symbol of number 13) are sent, 3 symbols ahead of the PSS.
  • This method reduces the complexity of UE detection, and at the same time, when performing RRM measurement, symbol synchronization, subframe synchronization, and frame synchronization can be implemented.
  • this disadvantage is that the transmission opportunity of the DRS is small, and if the channel is not detected in the only transmission opportunity within one DMTC period (minimum 40 ms), it cannot be transmitted. Waiting for the transmission opportunity in the next DMTC period, where the terminal is the same according to the two PSSs in the 10ms period (ie, one frame structure), and the two SSSs are different, and it can be determined whether the base station transmits the DRS in subframe#0 or subframe#5. .
  • the second method During the DMTC, the DRS can be sent in an unfixed subframe, and when the channel is detected to be sent when it is idle.
  • the advantage of this method is that there are many transmission opportunities.
  • the disadvantage is that the complexity of the UE detection is increased, and the location of the subframe is not determined due to the transmission symbol occupied by the PSS/SSS, so that the terminal cannot implement the functions of subframe synchronization and frame synchronization.
  • the third method transmitting DRS outside the DMTC period, that is, as long as the channel is detected to be idle, the DRS can be transmitted.
  • the advantage of this method is that the transmission opportunity is further increased compared with the second method.
  • the disadvantage is that the detection complexity is higher than that of the first UE, and even DCI signaling (downlink control information of the eNB (base station) may be required. Information) to further indicate the transmission time of the DRS.
  • the present invention is based on the above problems, and proposes a new technical solution, which can reduce the complexity of the UE detecting DRS while increasing the DRS transmission probability, so that the terminal can accurately receive the DRS, thereby realizing frame synchronization and subframe. Synchronization.
  • an aspect of the present invention provides a method for configuring a reference signal for a device having a base station function, including: setting at least one discovery reference signal in a DMTC; and configuring a transmission parameter for the at least one discovery reference signal. Transmitting the transmission parameter to the base station function The terminal of the device service, so that the terminal receives the at least one discovery reference signal according to the transmission parameter.
  • the sending parameter includes: the number of the at least one discovery reference signal, wherein the number of the at least one discovery reference signal is: 1 to 5, and the said is at least
  • the process of configuring a transmission parameter for a discovery reference signal includes: configuring a time offset of a transmission period and/or a subframe level for the DMTC where the at least one discovery reference signal is located, and/or for the at least one discovery reference Signaling a total transmission time, and/or configuring a time offset of the number of symbols and/or symbol level that can be occupied for each of the at least one discovery reference signal, and/or for the at least one
  • Each of the discovery reference signals in the discovery reference signal is configured with at least one cell-specific reference signal and/or a non-zero power channel state information reference signal.
  • each of the discovery reference signals after configuring the at least one cell-specific reference signal and/or the channel state information reference signal for each of the discovery reference signals, controlling each of the discovery reference signals to continuously occupy
  • the symbol can be occupied, and the number of symbols of the occupiable symbol is N, where N is greater than or equal to 3 and less than or equal to 14.
  • each of the discovery reference signals includes: a primary synchronization signal and a secondary synchronization signal, and configuring the discovery reference signal for each of the at least one discovery reference signal If the frame structure of each of the discovery reference signals is an FDD frame structure, controlling the primary synchronization signal in each of the discovery reference signals to occupy a target subframe in the FDD frame structure.
  • each frame structure in which the discovery reference signal is located is a TDD frame structure, controlling each of the discovery reference signals
  • the primary synchronization signal occupies a third symbol in a target subframe of the TDD frame structure, and controls the secondary synchronization signal to occupy a fourteenth of a preamble subframe adjacent to the target subframe a symbol, wherein the target subframe is any one of the FDD frame structure or the TDD frame structure.
  • the frame number refers to the first operator reference table of the table and/or the subcarrier position corresponding to the operator, so that the terminal according to the received channel state information reference signal occupies the position of the subcarrier and the received location Describe the type of the secondary synchronization signal, from the first subframe number reference table Determining a real number of the target subframe or a real number of the preamble, and/or determining, from the first operator reference table, an operator that transmits each of the discovery reference signals.
  • the terminal after configuring the channel state information reference signal for each of the discovery reference signals, transmitting, to the terminal, the channel state information reference signal carrying the scrambling code, and the scrambling code and a second subframe reference table of the subframe number correspondence relationship and/or a second operator reference table of the scrambling code corresponding to the operator, so that the terminal according to the difference of the scrambling code and the received secondary synchronization Determining, according to the type of the signal, the real number of the target subframe or the real number of the pre-subframe from the second subframe number reference table, and/or determining to send from the second operator reference table The operator of each of the discovery reference signals.
  • the discovery reference signal is sent to the terminal.
  • a third subframe number reference table in which the attribute information is associated with the subframe number and/or a third operator reference table in which the attribute information of the discovery reference signal and the subframe number correspond to each other, so that the terminal according to any of the findings Determining, from the third subframe number reference table, a real number of the target subframe or a real number of the preamble subframe, by using the attribute information of the reference signal and the type of the secondary synchronization signal received, And/or determining, from the third operator reference table, an operator that transmits the any discovery reference signal, wherein the attribute information comprises: the any discovery reference signal in the target subframe or the The number of occupiable symbols in the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, and the at least one cell-specific reference configured on the symbol position Number and /
  • the configuring the at least one cell-specific reference signal and/or the non-zero-power channel state information reference signal for each of the at least one discovery reference signal The process specifically includes: configuring the at least one cell-specific reference signal and each of the discovery reference signals according to a type of the frame structure and/or a type of the secondary synchronization signal in each of the discovery reference signals And the channel state information reference signal, wherein the type of the frame structure comprises: an FDD frame structure and a TDD frame structure.
  • the preamble subframe occupied by the secondary synchronization signal is any one of the first to fifth subframes of the TDD frame structure, or the secondary synchronization
  • the target subframe occupied by the signal is any one of the first to fifth subframes of the FDD frame structure, Determining that the type of the secondary synchronization signal is a first type; when the preamble subframe occupied by the secondary synchronization signal is any one of a sixth to a tenth subframe of the TDD frame structure, or When the target subframe occupied by the secondary synchronization signal is any one of the sixth to the tenth subframes of the FDD frame structure, determining that the type of the secondary synchronization signal is the second type.
  • the downlink channel detects a post-discovery reference signal that is closest to the symbol position occupied by the subframe, and stops transmitting other discovery reference signals in the DMTC period; otherwise, the post-discovery reference signal is not sent; and when the downlink is detected After the channel is idle, the channel occupancy signal is sent before the post-discovery reference signal is sent, and the number of symbols occupied by the signal occupation signal is less than M, where M is a positive integer.
  • a downlink control channel on the licensed spectrum or the unlicensed spectrum is used to send, to the terminal, whether to send each of the discovery reference signals. Downstream control information.
  • the channel state information reference signal when the channel state information reference signal is configured for each of the discovery reference signals, if the channel state information reference signal and other devices having a base station function are used for each of the discovery references
  • the channel state information reference signal of the signal configuration occupies the target sub-frame or the pre-subframe of the same real number, and then controls the sub-carrier occupied by the channel state information reference signal and other devices with the function of the base station as each of the discovery reference signals.
  • the configured channel state information reference signal occupies different positions of the subcarriers.
  • the sending the sending parameter to the terminal served by the device having the function of the base station specifically: sending, by using RRC signaling, the sending parameter to be a device serviced terminal; and the configuration method is applicable to a reference signal in an LTE system.
  • Another aspect of the present invention provides a configuration system for a reference signal, comprising: a setting unit that sets at least one discovery reference signal in a DMTC; a configuration unit that configures a transmission parameter for the at least one discovery reference signal; and a sending unit that The sending parameter is sent to a terminal served by the device having the function of the base station, so that the terminal receives the at least one discovery reference signal according to the sending parameter.
  • the sending parameter includes: the number of the at least one discovery reference signal, wherein the number of the at least one discovery reference signal is: 1 to 5, and the configuration unit is specifically used Configuring a time offset of a transmission period and/or a subframe level for the DMTC in which the at least one discovery reference signal is located, and/or configuring a total transmission time for the at least one discovery reference signal, and/or Determining, for each of the at least one discovery reference signal, a time offset of a number of symbols that can be occupied and/or a symbol level, and/or for each of the at least one discovery reference signal
  • the signal configures at least one cell-specific reference signal and/or a non-zero power channel state information reference signal.
  • the method further includes: after configuring the at least one cell-specific reference signal and/or the channel state information reference signal for each of the discovery reference signals, controlling each The discovery reference signal continuously occupies the occupant symbol, and the number of symbols of the occupiable symbol is N, where N is greater than or equal to 3 and less than or equal to 14.
  • each of the discovery reference signals includes: a primary synchronization signal and a secondary synchronization signal
  • the configuration system further includes: a second control unit, for the at least one discovery reference Controlling, when each of the discovery reference signals in the signal configures the number of symbols that can be occupied, if the frame structure in which each of the discovery reference signals is located is an FDD frame structure, controlling the primary synchronization signal in each of the discovery reference signals And occupying a seventh symbol in the target subframe of the FDD frame structure, and controlling the secondary synchronization signal to occupy a sixth symbol in the target subframe; if each frame structure of the discovery reference signal is a TDD frame structure, controlling the third synchronization symbol in each of the discovery reference signals to occupy a third symbol in a target subframe of the TDD frame structure, and controlling the secondary synchronization signal to occupy the target subframe a fourteenth symbol in the adjacent preamble, wherein the target subframe is any one of the FDD frame structure or the TDD frame structure
  • the sending unit is configured to: after configuring the channel state information reference signal for each of the discovery reference signals, send a subcarrier position and a subframe to the terminal by using RRC signaling.
  • the first subframe number of the number correspondence relationship refers to the first operator reference table of the table and/or the subcarrier position corresponding to the operator, so that the terminal uses the subcarrier occupied by the reference signal according to the received channel state information.
  • a location of the received secondary synchronization signal, determining a real number of the target subframe or a real number of the preamble from the first subframe number reference table, and/or from The operator that transmits each of the discovery reference signals is determined in the first carrier reference table.
  • the sending unit is further configured to: after configuring the channel state information reference signal for each of the discovery reference signals, send the channel state carrying the scrambling code to the terminal An information reference signal, and a second subframe reference table corresponding to the scrambling code and the subframe number, and/or a second operator reference table corresponding to the operator and the scrambling code, so that the terminal is different according to the scrambling code And determining, according to the type of the secondary synchronization signal, the real number of the target subframe or the real number of the pre-subframe from the second subframe number reference table, and/or from the The operator in the second operator reference table determines to transmit each of the discovery reference signals.
  • the sending unit is further configured to: after configuring the channel state information reference signal for each of the discovery reference signals, if sending any discovery reference signal to the terminal, Transmitting, by the terminal, a third subframe number reference table corresponding to the subframe information corresponding to the attribute information of the discovery reference signal and/or a third operator reference table corresponding to the attribute information of the discovery reference signal and the subframe number, so that the terminal Determining, according to the attribute information of any one of the discovery reference signals and the type of the received secondary synchronization signal, the real number of the target subframe from the third subframe number reference table or the a real number of the preamble, and/or an operator that sends the any discovery reference signal from the third operator reference table, where the attribute information includes: any one of the discovery reference signals is The number of symbols that can be occupied in the target subframe or the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, and the At least one cell-specific reference signal and / or channel state
  • the configuration unit is further configured to: according to the type of the frame structure and/or the type of the secondary synchronization signal in each of the discovery reference signals,
  • the discovery reference signal configures the at least one cell-specific reference signal and/or the channel state information reference signal, wherein the type of the frame structure comprises: an FDD frame structure and a TDD frame structure.
  • the method further includes: determining, when the preamble frame occupied by the secondary synchronization signal is any one of the first to fifth subframes of the TDD frame structure Or determining that the type of the secondary synchronization signal is the first type when the target subframe occupied by the secondary synchronization signal is any one of the first to fifth subframes of the FDD frame structure; When the preamble subframe occupied by the secondary synchronization signal is any one of the sixth to tenth subframes of the TDD frame structure, or the target subframe occupied by the secondary synchronization signal is When any one of the sixth to tenth subframes of the FDD frame structure is determined, the type of the secondary synchronization signal is determined to be the second type.
  • the method further includes: a detecting unit, configured to detect, by using a downlink channel detection subframe set in the DMTC, whether the downlink channel is idle before sending each of the discovery reference signals; the sending unit is further configured to: When detecting that the downlink channel is idle, transmitting a post-discovery reference signal that is closest to the symbol position occupied by the downlink channel detection subframe, and stops transmitting other discovery reference signals in the DMTC period; otherwise, does not send the a post-detection reference signal; and after detecting the downlink channel being idle, sending a channel occupation signal before transmitting the post-discovery reference signal, and the number of symbols occupied by the channel occupation signal is less than M, wherein M is a positive integer less than 14.
  • the sending unit is further configured to: when transmitting each of the discovery reference signals, send, by using a downlink control channel on the licensed spectrum or the unlicensed spectrum, to the terminal, to indicate whether to send Downlink control information of each of the discovery reference signals.
  • the third control unit when configuring the channel state information reference signal for each of the discovery reference signals, if the channel state information reference signal and other devices having the base station function are each The channel state information reference signal configured by the discovery reference signal occupies the target subframe or the preamble subframe of the same real number, and then controls the subcarrier occupied by the channel state information reference signal and other devices having the function of the base station for each The location of the subcarrier occupied by the channel state information reference signal of the discovery reference signal configuration is different.
  • the sending unit is further configured to: send, by using RRC signaling, the sending parameter to a terminal that is served by the device with the function of the base station; and the configuration system is applicable to the LTE system. Reference signal.
  • Yet another aspect of the present invention provides an apparatus having a base station function, including a processor and a memory, wherein the memory stores a set of program codes, and the processor is configured to call program code stored in the memory, Used to do the following:
  • At least one discovery reference signal in the DMTC configuring a transmission parameter for the at least one discovery reference signal; transmitting the transmission parameter to a terminal served by the device having the base station function, so that the terminal transmits according to the The parameter receives the at least one discovery reference signal.
  • the sending parameter includes: the number of the at least one discovery reference signal, wherein the number of the at least one discovery reference signal is: 1 to 5, and the processor is The process of configuring the sending parameter by the at least one discovery reference signal includes: The DMTC in which the at least one discovery reference signal is located configures a time offset of a transmission period and/or a subframe level, and/or configures a total transmission time for the at least one discovery reference signal, and/or, Each of the at least one discovery reference signal configures a time offset of a number of symbols and/or a symbol level that can be occupied, and/or, for each of the at least one discovery reference signal, the discovery reference The signal configures at least one cell-specific reference signal and/or a non-zero power channel state information reference signal.
  • the processor controls each of the discovery references after configuring the at least one cell-specific reference signal and/or the channel state information reference signal for each of the discovery reference signals.
  • the signal continuously occupies the occupiable symbol, and the number of symbols of the occupiable symbol is N, where N is greater than or equal to 3 and less than or equal to 14.
  • each of the discovery reference signals includes: a primary synchronization signal and a secondary synchronization signal
  • the processor is configured for each of the at least one discovery reference signal
  • the frame structure of each of the discovery reference signals is an FDD frame structure
  • controlling the primary synchronization signal in each of the discovery reference signals to occupy the FDD frame structure a seventh symbol in the target subframe, and controlling the secondary synchronization signal to occupy a sixth symbol in the target subframe
  • each frame structure in which the discovery reference signal is located is a TDD frame structure
  • control each The primary synchronization signal in the discovery reference signal occupies a third symbol in a target subframe of the TDD frame structure, and controls the secondary synchronization signal to occupy a preamble subframe adjacent to the target subframe.
  • the fourteenth symbol in the medium, wherein the target subframe is any one of the FDD frame structure or the TDD frame structure.
  • the processor sends a correspondence between a subcarrier position and a subframe number to the terminal by using RRC signaling.
  • the first subframe number refers to the first operator reference table of the table and/or the subcarrier position and the operator correspondence relationship, so that the terminal according to the received channel state information reference signal occupies the position of the subcarrier and Determining the type of the secondary synchronization signal, determining a real number of the target subframe or a real number of the preamble from the first subframe number reference table, and/or from the first
  • the operator determines the operator that transmits each of the discovery reference signals in the reference table.
  • the processor after configuring the channel state information reference signal for each of the discovery reference signals, sends the channel state letter carrying the scrambling code to the terminal. a reference signal, and a second subframe reference table corresponding to the scrambling code and the subframe number, and/or a second operator reference table corresponding to the operator and the scrambling code, so that the terminal is different according to the scrambling code And determining, according to the type of the secondary synchronization signal, the real number of the target subframe or the real number of the pre-subframe from the second subframe number reference table, and/or from the The operator in the second operator reference table determines to transmit each of the discovery reference signals.
  • the processor sends any discovery reference signal to the terminal, sending, to the terminal, And discovering, by the third carrier number reference table corresponding to the attribute information of the reference signal and the subframe number, and/or the third operator reference table of the relationship between the attribute information of the discovery reference signal and the subframe number, so that the terminal according to the Determining, by the attribute information of any discovery reference signal and the type of the secondary synchronization signal received, determining a real number of the target subframe or the preamble from the third subframe number reference table a real number, and/or an operator that transmits the any discovery reference signal from the third operator reference table, wherein the attribute information includes: the any discovery reference signal is in the target a number of occupiable symbols in the frame or the preamble, a symbol position, and the primary synchronization signal, the secondary synchronization signal, the at least one small configured on the symbol position Dedicated reference signal and / or channel state information
  • the processor configures the channel state information reference of the at least one cell-specific reference signal and/or non-zero power for each of the at least one discovery reference signal.
  • the process of the signal specifically includes: configuring the at least one cell-specific reference for each of the discovery reference signals according to a type of the frame structure and/or a type of the secondary synchronization signal in each of the discovery reference signals a signal and/or the channel state information reference signal, wherein the type of the frame structure comprises: an FDD frame structure and a TDD frame structure.
  • the preamble subframe occupied by the secondary synchronization signal is any one of the first to fifth subframes of the TDD frame structure, or the secondary synchronization
  • the processor determines that the type of the secondary synchronization signal is the first type;
  • the preamble frame occupied by the secondary synchronization signal is any one of the sixth to tenth subframes of the TDD frame structure, or the target subframe occupied by the secondary synchronization signal is the
  • the processor determines that the type of the secondary synchronization signal is the second type when any one of the sixth to tenth subframes of the FDD frame structure is used.
  • the processor detects, by using a downlink channel detection subframe set in the DMTC, whether the downlink channel is idle before transmitting each of the discovery reference signals; the processor is detecting the downlink When the channel is idle, transmitting a post-discovery reference signal that is closest to the symbol position occupied by the downlink channel detection subframe, and stops transmitting other discovery reference signals in the DMTC period; otherwise, the post-discovery reference signal is not sent. And after detecting that the downlink channel is idle, sending a channel occupation signal before transmitting the post-discovery reference signal, and the number of symbols occupied by the channel occupation signal is less than M, where M is less than 14 A positive integer.
  • the processor when the processor sends each of the discovery reference signals, the downlink control channel on the licensed spectrum or the unlicensed spectrum is used to send, to the terminal, whether to send each of the The downlink control information of the reference signal is found.
  • the processor configures the channel state information reference signal for each of the discovery reference signals, if the channel state information reference signal and other devices having a base station function are each
  • the channel state information reference signal configured by the discovery reference signal occupies the target subframe or the preamble subframe of the same real number, and then controls the subcarrier occupied by the channel state information reference signal and other devices having the function of the base station for each It is found that the position of the subcarrier occupied by the channel state information reference signal configured by the reference signal is different.
  • the sending, by the processor, the sending parameter to the terminal served by the device having the function of the base station specifically: sending, by using RRC signaling, the sending parameter to be A terminal served by a base station-enabled device; and the configuration method is applicable to a reference signal in an LTE system.
  • a further aspect of the present invention provides a method for receiving a reference signal, comprising: receiving the transmission parameter delivered by the device with a base station function; and synchronously receiving at least one discovery reference in the DMTC according to the transmission parameter. signal.
  • the process of receiving the sending parameter that is sent by the device with the function of the base station specifically includes: receiving the DMTC delivered by the device with the function of the base station by using the RRC signaling a transmission period and/or a time offset of the subframe level to determine a subframe occupied by the DMTC according to the transmission period and/or a time offset of the subframe level; and/or receiving the The total transmission time of the at least one discovery reference signal delivered by the device with the function of the base station by the RRC signaling to determine the at least one discovery reference signal according to the total transmission time The number and location of the used subframes; and/or the number of the at least one discovery reference signal delivered by the device having the function of the base station through RRC signaling, the number of symbols occupied by each of the discovery reference signals, and/or Or a time offset of the symbol level to determine the location occupied by each of the transmit reference signals based on the number, the number of symbols occupied by each of the discovery reference signals, and/or
  • the device having the function of the base station by using RRC signaling
  • the first subframe number reference table and/or the first operator reference table according to the location of the subcarrier occupied by the channel state information reference signal and the type of the secondary synchronization signal received, Determining, in the first subframe number reference table, a real number of the target subframe or a real number of the preamble, and/or determining, from the first carrier reference table, each of the discovery references The operator of the signal.
  • the channel state information reference signal carrying the scrambling code delivered by the device with the base station function and the second subframe number reference table and/or Determining, by the second operator, a real number or a location of the target subframe from the second subframe number reference table according to the difference of the scrambling code and the type of the secondary synchronization signal received.
  • the real number of the preamble frame is determined, and/or the operator transmitting each of the discovery reference signals is determined from the second operator reference table.
  • the attribute information includes: the any discovery reference signal is in the The number of occupiable symbols in the target subframe or the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, the at least one cell-specific reference signal, and the configured at the symbol position / or the non-zero power channel state information reference signal.
  • a further aspect of the present invention provides a receiving system for a reference signal, comprising: a first receiving unit, And receiving the sending parameter that is sent by the device with the function of the base station; and receiving, by the second receiving unit, the at least one discovery reference signal in the DMTC according to the sending parameter.
  • the first receiving unit is specifically configured to: receive a sending period of the DMTC and/or a time of the subframe level delivered by the device with a base station function by using RRC signaling Determining to determine a subframe occupied by the DMTC according to the transmission period and/or a time offset of the subframe level; and/or receiving a device that is sent by the device with a base station function by using RRC signaling Determining the total transmission time of the at least one discovery reference signal to determine the number and location of subframes occupied by the at least one discovery reference signal according to the total transmission time; and/or receiving the device with the base station function by using RRC
  • the number of the at least one discovery reference signal delivered by the signaling, the number of symbols occupied by each of the discovery reference signals, and/or the time offset of the symbol level, according to the number, each of the discovery references The number of symbols occupied by the signal and/or the time offset of the symbol level to determine the location of the target subframe and/or the symbol
  • the method further includes: an acquiring unit, after receiving the channel state information reference signal, acquiring a position of a subcarrier occupied by the channel state information reference signal; the second receiving unit further Receiving: the first subframe number reference table and/or the first operator reference table that are sent by the device with the function of the base station by using the RRC signaling; the receiving system further includes: a first determining unit, Determining, according to the location of the subcarrier occupied by the channel state information reference signal and the type of the secondary synchronization signal received, the real number or the front of the target subframe from the first subframe number reference table The real number of the subframe is set, and/or an operator that transmits each of the discovery reference signals is determined from the first operator reference table.
  • the second receiving unit is further configured to: receive the channel state information reference signal carrying the scrambling code delivered by the device with the base station function by using the RRC signaling, and the a second subframe number reference table and/or the second operator reference table; the receiving system further comprising: a second determining unit, according to the difference of the scrambling code and the type of the secondary synchronization signal received, Determining, from the second subframe number reference table, a real number of the target subframe or a real number of the preamble subframe, and/or determining to send each of the discoveries from the second carrier reference table The operator of the reference signal.
  • the method further includes: a third determining unit, when receiving any one of the at least one discovery reference signal, and the third subframe number reference table and/or the When the third carrier refers to the table, determining the target subframe from the third subframe number reference table according to the attribute information of the any discovery reference signal and the type of the received secondary synchronization signal.
  • the attribute information includes: The primary synchronization signal, the secondary synchronization signal, the primary synchronization signal, the secondary synchronization signal, the location of the symbol, the symbol position, and the symbol position of any of the discovery reference signals in the target subframe or the preamble subframe Said at least one cell-specific reference signal and/or said non-zero power channel state information reference signal.
  • a further aspect of the present invention provides a terminal, the terminal being connected to a device having a base station function according to any one of the above aspects, wherein the terminal comprises a processor and a memory, wherein the memory is stored a set of program code, and the processor is configured to call program code stored in the memory for performing the following operations:
  • the process of the processor receiving the sending parameter that is sent by the device with the function of the base station specifically includes: receiving, by using the RRC signaling, the device with the function of the base station Determining a transmission period of the DMTC and/or a time offset of the subframe level to determine a subframe occupied by the DMTC according to the transmission period and/or a time offset of the subframe level; and/or, And the total transmission time of the at least one discovery reference signal that is sent by the device with the function of the base station by using the RRC signaling, to determine the number of subframes occupied by the at least one discovery reference signal according to the total transmission time.
  • the location; and/or the number of the at least one discovery reference signal delivered by the device having the function of the base station through RRC signaling, the number of symbols occupied by each of the discovery reference signals, and/or the symbol level Time offset to determine the occupancy of each of the transmit reference signals based on the number, the number of symbols occupied by each of the discovery reference signals, and/or the time offset of the symbol level The target position of the symbols of said subframe and / or the front subframe; and / or receiving apparatus having a base station function of the information reference signal via the non-zero channel state power delivered by the RRC signaling.
  • the processor receives the channel state information reference After acquiring the signal, acquiring the location of the subcarrier occupied by the channel state information reference signal; receiving the first subframe number reference table and/or the first operation delivered by the device with the base station function by using the RRC signaling Determining a real reference number of the target subframe from the first subframe number reference table according to the location of the subcarrier occupied by the channel state information reference signal and the type of the received secondary synchronization signal Or a real number of the preamble, and/or an operator that transmits each of the discovery reference signals from the first operator reference table.
  • the processor receives the channel state information reference signal carried by the device with the base station function and carries the scrambling code, and the second subframe number reference a table and/or the second operator reference table; the processor determining, according to the difference of the scrambling code and the type of the secondary synchronization signal received, from the second subframe number reference table The real number of the target subframe or the real number of the preamble, and/or an operator that transmits each of the discovery reference signals is determined from the second carrier reference table.
  • the processor receives any one of the at least one discovery reference signal, and the third subframe number reference table and/or the third carrier.
  • the processor determines the real number of the target subframe from the third subframe number reference table according to the attribute information of any of the discovery reference signals and the type of the received secondary synchronization signal a real number of the preamble, and/or an operator that sends the any discovery reference signal from the third carrier reference table, where the attribute information includes: any one of the discovery references The primary synchronization signal, the secondary synchronization signal, and the at least one cell configured by the signal in the target subframe or the preamble subframe, the symbol number, the symbol location, and the symbol location A dedicated reference signal and/or a channel state information reference signal of the non-zero power.
  • the complexity of detecting the DRS by the UE can be minimized, so that the terminal can accurately receive the DRS, thereby realizing frame synchronization and synchronization of the subframe.
  • Figure 1 shows a schematic diagram of two modes of operation of an unlicensed spectrum
  • FIG. 2 is a schematic diagram showing an interference avoidance rule of a Wi-Fi system
  • FIG. 3 is a schematic structural diagram of a FBE-based frame structure in the related art
  • FIG. 4 is a schematic structural diagram of an LBE-based LBT frame structure in the related art
  • FIG. 5 is a schematic structural diagram of PSS/SSS in an FDD frame structure in the related art
  • FIG. 6 is a schematic structural diagram of a PSS/SSS in a TDD frame structure in the related art
  • FIG. 7 is a flow chart showing a method of configuring a reference signal according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a configuration system of reference signals according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a device having a base station function according to an embodiment of the present invention.
  • FIG. 10 is a flow chart showing a method of receiving a reference signal according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of a receiving system of a reference signal according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the structure of a terminal according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of configuring a DRS in an FDD frame structure according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of configuring a DRS in a TDD frame structure according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a positional relationship between a subcarrier position and a subframe number according to an embodiment of the present invention.
  • 16 is a schematic screenshot showing a positional relationship between a subcarrier position and a subframe number according to another embodiment of the present invention.
  • FIG. 17 is a block diagram showing the structure of a device having a base station function according to another embodiment of the present invention.
  • Fig. 18 is a block diagram showing the structure of a terminal of one embodiment of the present invention.
  • FIG. 7 is a flow chart showing a method of configuring a reference signal according to an embodiment of the present invention.
  • a method for configuring a reference signal includes: Step 702: setting at least one discovery reference signal in a DMTC; Step 704, configuring sending for the at least one discovery reference signal a parameter; step 706, transmitting the sending parameter to a terminal served by the device having the function of the base station, so that the terminal receives the at least one discovery reference signal according to the sending parameter.
  • the terminal can be made according to the device having the base station function.
  • the configured transmission parameters are clear, the DMTC period, the total transmission time of the discovery reference signal in a DMTC, the number, the number of symbols in each discovery reference signal, the location, and the like, thereby increasing the transmission of the discovery reference signal.
  • the complexity of the terminal detecting DRS can be reduced, so that the terminal can accurately receive the DRS, thereby realizing frame synchronization and subframe synchronization, wherein a DMTC has multiple frame structures (for example, when the DMTC period is 40 ms, 4 frame structures), and the plurality of transmission reference signals, that is, DRSs, may be in different subframes of the same frame structure, or in different subframes of different frame structures, and in addition, the device having the function of the base station includes the base station, A micro cell base station or the like implemented by a communication device such as a smart phone or the like.
  • the sending parameter includes: the number of the at least one discovery reference signal, wherein the number of the at least one discovery reference signal is: 1 to 5, and
  • the process of configuring the sending parameter for the at least one discovery reference signal includes: configuring a time offset of a transmission period and/or a subframe level for the DMTC where the at least one discovery reference signal is located, and/or Determining at least one discovery reference signal to configure a total transmission time, and/or configuring a time offset of the number of symbols and/or symbol level that can be occupied for each of the at least one discovery reference signal, and/or Configuring at least one cell-specific reference signal and/or a non-zero power channel state information reference signal for each of the at least one discovery reference signal.
  • the terminal may first determine which subframes the DMTC occupies to accurately receive the DMTC, which is to further accurately receive the DRS. Sending the parameters to lay the foundation for the synchronization; in addition, by sending the total transmission time to the terminal, the terminal can determine the number and location of the subframes occupied by the at least one DRS; and deliver at least one DRS number to the terminal, and each DRS is occupied.
  • the number of symbols and/or the time offset of the symbol level may enable the terminal to accurately determine the total number of receptions of the DRS, the position of the target subframe occupied by each DRS, and/or the position of the symbols of the pre-subframe, thereby implementing subframe synchronization;
  • the channel state information reference signal of the non-zero power is sent by the RRC signaling, so that the terminal can accurately determine the subframe occupied by the DRS according to the position or the scrambling code of the subcarrier occupied by the channel state information reference signal (CSI-RS, Rererence Signal). Real numbering to achieve frame synchronization.
  • each of the discovery reference signals after configuring the at least one cell-specific reference signal and/or the channel state information reference signal for each of the discovery reference signals, controlling each of the discovery reference signals to continuously occupy
  • the symbol can be occupied, and the number of symbols of the occupiable symbol is N, where N is greater than or equal to 3 and less than or equal to 14.
  • At least one CRS (Cell-specific Rererence Signal) and CSI-RS are configured for each DRS, and by controlling the DRS to continuously occupy 3-14 symbols, it is possible to prevent the DRS from being continuously occupied. Multiple symbols of the frame structure, so that the downlink channel is occupied by other devices, thereby affecting the transmission and reception of the DRS.
  • CRS Cell-specific Rererence Signal
  • each of the discovery reference signals includes: a primary synchronization signal and a secondary synchronization signal, and configuring the discovery reference signal for each of the at least one discovery reference signal If the frame structure of each of the discovery reference signals is an FDD frame structure, controlling the primary synchronization signal in each of the discovery reference signals to occupy a target subframe in the FDD frame structure.
  • each frame structure in which the discovery reference signal is located is a TDD frame structure, controlling the primary synchronization signal in each of the discovery reference signals to occupy a target subframe of the TDD frame structure a third symbol in the control, and controlling the secondary synchronization signal to occupy a fourteenth symbol in a preamble subframe adjacent to the target subframe, wherein the target subframe is the FDD frame structure or Any one of the TDD frame structures.
  • the frame structure in which each of the discovery reference signals is located is an FDD frame structure
  • the primary synchronization signal in each discovery reference signal that is, the PSS occupies the seventh symbol in the target subframe of the FDD frame structure. That is, the symbol numbered 6 and the control secondary synchronization signal, that is, the SSS occupies the sixth symbol in the target subframe, that is, the symbol numbered 5; and the frame structure in which each reference signal is found is a TDD frame structure
  • the primary synchronization signal in the discovery reference signal occupies the third symbol in the target subframe of the TDD frame structure, that is, the symbol numbered 2, and controls the secondary synchronization signal, that is, the SSS occupies the preamble subframe adjacent to the target subframe.
  • the fourteenth symbol that is, the symbol numbered by 13, makes the PSS/SSS in the DRS in the present invention and the symbol occupied by the PSS/SSS in the prior art unchanged, so that the UE implements subframe synchronization and is certain To a certain extent, the complexity of the terminal detecting DRS is reduced.
  • the target subframe may be any subframe in the FDD frame structure or the TDD frame structure, and is not necessarily the first subframe numbered 0 in the FDD frame structure. Or numbered 5 Six sub-frames, a TDD frame structure is not necessarily the number of the second sub-frame number 1 or the seventh subframes 6, and the second number is M subframes of subframe M-1.
  • the frame number refers to the first operator reference table of the table and/or the subcarrier position corresponding to the operator, so that the terminal according to the received channel state information reference signal occupies the position of the subcarrier and the received location
  • Determining a type of the secondary synchronization signal determining, from the first subframe number reference table, a real number of the target subframe or a real number of the preamble subframe, and/or from the first carrier reference table
  • the operator that sends each of the discovery reference signals is determined.
  • the first subframe number reference table and/or the subcarrier position corresponding to the correspondence between the subcarrier position and the subframe number are transmitted to the terminal through RRC signaling (Radio Resource Control).
  • the first carrier reference table of the operator's correspondence relationship may enable the terminal to refer to the channel state information reference signal, that is, the location of the subcarrier actually occupied by the CSI-RS and the class of the SSS.
  • Type the actual number of the target subframe or the real number of the pre-subframe is accurately determined from the first subframe number reference table, so that the terminal implements frame synchronization, and/or accurately determines the transmission from the first carrier reference table.
  • Each operator that discovers the reference signal so that the terminal distinguishes the signal powers of different operators according to each DRS, and can obtain RRM measurement results of different cells of different operators; also enables the terminal or base station in channel state detection.
  • the signal power from the same carrier can be removed and compared with the power threshold to accurately determine the channel condition of the uplink or downlink channel.
  • the terminal after configuring the channel state information reference signal for each of the discovery reference signals, transmitting, to the terminal, the channel state information reference signal carrying the scrambling code, and the scrambling code and a second subframe reference table of the subframe number correspondence relationship and/or a second operator reference table of the scrambling code corresponding to the operator, so that the terminal according to the difference of the scrambling code and the received secondary synchronization Determining, according to the type of the signal, the real number of the target subframe or the real number of the pre-subframe from the second subframe number reference table, and/or determining to send from the second operator reference table The operator of each of the discovery reference signals.
  • the second subframe number reference table and/or the scrambling code corresponding to the correspondence between the scrambling code and the subframe number are transmitted to the terminal through RRC signaling (Radio Resource Control) and the operator.
  • the second operator refers to the table, so that the terminal can accurately determine the real number or preamble of the target subframe from the second subframe number reference table according to the scrambling code of the channel state information reference signal and the type of the received secondary synchronization signal.
  • the real number of the frame so that the terminal realizes the synchronization of the frame, and/or accurately determines the operator that transmits each discovery reference signal from the second operator reference table, so that the terminal will signal the signal of different operators according to each DRS.
  • RRM measurement results of different cells of different operators can be obtained; also, when the channel state is detected, the terminal or the base station can remove the signal power from the same operator, and then compare with the power threshold to accurately determine the uplink. Or the channel condition of the downlink channel.
  • the discovery reference signal is sent to the terminal.
  • a third subframe number reference table in which the attribute information is associated with the subframe number and/or a third operator reference table in which the attribute information of the discovery reference signal and the subframe number correspond to each other, so that the terminal according to any of the findings Determining the real number of the target subframe or the preamble from the third subframe number reference table, the attribute information of the reference signal and the type of the secondary synchronization signal received a real number of the subframe, and/or an operator that transmits the any discovery reference signal from the third operator reference table, wherein the attribute information includes: the any discovery reference signal is in the The number of occupiable symbols in the target subframe or the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, the at least one cell-specific reference signal, and the configured at the symbol position / or the non-zero
  • the RRC signaling (Radio Resource Control) is used to transmit, to the terminal, attribute information corresponding to any discovery reference signal, that is, any discovery reference signal in the target subframe or the preamble subframe.
  • any discovery reference signal that is, any discovery reference signal in the target subframe or the preamble subframe.
  • the third operator reference table corresponding to the attribute information of the operator and the operator may enable the terminal to occupy the number of symbols, the symbol position, and each symbol position in the target subframe or the pre-subframe according to any discovery reference signal.
  • the content of the configuration ie, PSS ⁇ SSS ⁇ CRS ⁇ CSI-RS
  • the type of the secondary synchronization signal received accurately determine the real number of the target subframe or the reality of the pre-subframe from the third subframe number reference table. Numbering, thereby enabling the terminal to synchronize the frames, and/or accurately determining the operator transmitting each discovery reference signal from the third carrier reference table, so that the terminal distinguishes the signal power of different operators according to each DRS.
  • the RRM measurement results of different cells of different operators can be obtained; also, when the channel state is detected, the terminal or the base station can remove the signal power from the same operator, and then compare with the power threshold to accurately determine the uplink or downlink channel. Channel situation.
  • the configuring the at least one cell-specific reference signal and/or the non-zero-power channel state information reference signal for each of the at least one discovery reference signal The process specifically includes: configuring the at least one cell-specific reference signal and each of the discovery reference signals according to a type of the frame structure and/or a type of the secondary synchronization signal in each of the discovery reference signals And the channel state information reference signal, wherein the type of the frame structure comprises: an FDD frame structure and a TDD frame structure.
  • At least one cell-specific reference is configured for each discovery reference signal according to the type of frame structure, ie, (FDD frame structure and TDD frame structure) and/or the type of secondary synchronization signal in each discovery reference signal.
  • the signal and/or channel state information reference signal may cause the DRS to continuously occupy several symbols in the frame structure, thereby preventing the DRS from being occupied by other devices because the multiple symbols of the frame structure are not continuously occupied, thereby affecting the DRS.
  • the preamble subframe occupied by the secondary synchronization signal is any one of the first to fifth subframes of the TDD frame structure, or the secondary synchronization
  • the target subframe occupied by the signal is any one of the first to fifth subframes of the FDD frame structure, determining that the type of the secondary synchronization signal is the first type; when the secondary synchronization signal
  • the pre-positioned subframe is any one of the sixth to tenth subframes of the TDD frame structure, or the target subframe occupied by the secondary synchronization signal is the FDD frame structure
  • the type of the secondary synchronization signal is determined to be the second type.
  • any one of the first to fifth subframes or the sixth to tenth subframes in the TDD or FDD frame structure is occupied by the secondary synchronization signal, that is, the SSS.
  • the secondary synchronization signal that is, the SSS. Separating the SSS into a first type and a second type in one subframe, so that the terminal can accurately lock the target subframe from the first subframe number reference table in combination with the type of the SSS after determining the location of the subcarrier occupied by the CSI-RS.
  • the number of the pre-subframe, or the operator that accurately transmits the discovery reference signal from the first carrier reference table while facilitating the base station for each DRS according to the type of the frame structure and/or the type of SSS in each DRS.
  • At least one CSR and/or CSI-RS is configured such that the DRS can continuously occupy several symbols in the frame structure.
  • the downlink channel detects a post-discovery reference signal that is closest to the symbol position occupied by the subframe, and stops transmitting other discovery reference signals in the DMTC period; otherwise, the post-discovery reference signal is not sent; and when the downlink is detected After the channel is idle, the channel occupancy signal is sent before the post-discovery reference signal is sent, and the number of symbols occupied by the signal occupation signal is less than M, where M is a positive integer.
  • the terminal when the downlink channel detection subframe (ie, CCA, Clear Channel Assessment) detects that the downlink signal is idle, the terminal can accurately detect the terminal by transmitting the post DRS closest to the symbol position occupied by the CCA to the terminal.
  • DRS which implements frame synchronization and subframe synchronization. If a DRS is sent within one DMTC period, other DRSs can be stopped to prevent the DRS from being transmitted too much, so that the DRS occupies too long a downlink channel, thereby affecting other downlink signals.
  • the channel occupation signal is transmitted (such as a reserved signal) No.) or initial signal (initial signal) or CRS or CSI-RS, but the sum of the time to send these signals is limited, such as less than M symbols, so that the post-sending reference signal can be used to win the transmission opportunity, and can avoid These reserved channels are too long for other devices to preempt the channel.
  • a downlink control channel on the licensed spectrum or the unlicensed spectrum is used to send, to the terminal, whether to send each of the discovery reference signals. Downstream control information.
  • the terminal since the base station notifies the terminal how many DRSs can be sent in a DMTC, the terminal will blindly check how many times, but in fact, when the base station detects that the downlink channel is busy, the DRS will not be transmitted.
  • the detection complexity of the terminal is large. Therefore, by transmitting downlink control information, that is, DCI, to the terminal, it is possible to indicate whether the terminal base station actually transmits the DRS, which further reduces the complexity of detecting the DRS by the terminal.
  • the channel state information reference signal when the channel state information reference signal is configured for each of the discovery reference signals, if the channel state information reference signal and other devices having a base station function are used for each of the discovery references
  • the channel state information reference signal of the signal configuration occupies the target sub-frame or the pre-subframe of the same real number, and then controls the sub-carrier occupied by the channel state information reference signal and other devices with the function of the base station as each of the discovery reference signals.
  • the configured channel state information reference signal occupies different positions of the subcarriers.
  • the CSI-RS when the CSI-RS is configured for each DRS, if the device with the base station function of the current cell and the other device with the base station function of other cells occupy the same real number target for the CSI-RS configured for each DRS. If the subframe or the preamble, that is, the subframe that occupies the same number, the CSI of the CSI-RS configured by the device with the base station function of the current cell and the CSI configured by the other device with the function of the base station for each DRS should be controlled.
  • the positions of the subcarriers occupied by the RS are different, so that when the terminal of the device with the base station function of the current cell measures the CSI-RS, it is affected by other cells.
  • the sending the sending parameter to the terminal served by the device having the function of the base station specifically: sending, by using RRC signaling, the sending parameter to be a device serviced terminal; and the configuration method is applicable to a reference signal in an LTE system.
  • the sending parameter is sent to the terminal through RRC signaling, and the DRS can be increased. While transmitting the probability, the complexity of detecting the DRS by the UE is minimized, so that the terminal accurately receives the DRS, thereby realizing frame synchronization and synchronization of the subframe.
  • FIG. 8 is a block diagram showing the configuration of a reference signal according to an embodiment of the present invention.
  • a configuration system 800 for a reference signal includes a setting unit 802 that sets at least one discovery reference signal in a DMTC, and a configuration unit 804 that is the at least one discovery reference.
  • the signal configuration sends a parameter; the sending unit 806 sends the sending parameter to the terminal served by the device having the function of the base station, so that the terminal receives the at least one discovery reference signal according to the sending parameter.
  • the terminal can be made according to the device having the base station function.
  • the configured transmission parameters are clear, the DMTC period, the total transmission time of the discovery reference signal in a DMTC, the number, the number of symbols in each discovery reference signal, the location, and the like, thereby increasing the transmission of the discovery reference signal.
  • the complexity of the terminal detecting DRS can be reduced, so that the terminal can accurately receive the DRS, thereby realizing frame synchronization and subframe synchronization, wherein a DMTC has multiple frame structures (for example, when the DMTC period is 40 ms, 4 frame structures), and the plurality of transmission reference signals, that is, DRSs, may be in different subframes of the same frame structure, or in different subframes of different frame structures, and in addition, the device having the function of the base station includes the base station, A micro cell base station or the like implemented by a communication device such as a smart phone or the like.
  • the sending parameter includes: the number of the at least one discovery reference signal, wherein the number of the at least one discovery reference signal is: 1 to 5, and the configuration unit 804 is specific And configured to: configure a time offset of a transmission period and/or a subframe level for the DMTC where the at least one discovery reference signal is located, and/or configure a total transmission time for the at least one discovery reference signal, and/or Each of the at least one discovery reference signal configures a time offset of a number of symbols that can be occupied and/or a symbol level, and/or for each of the at least one discovery reference signal
  • the reference signal configures at least one cell-specific reference signal and/or a non-zero power channel state information reference signal.
  • the terminal may first determine which subframes the DMTC occupies to accurately receive the DMTC. In order to further accurately receive the transmission parameters of the DRS, the system provides a basis for the synchronization. In addition, the terminal can determine the number and location of the subframes occupied by the at least one DRS by sending the total transmission time to the terminal.
  • the number of DRSs, the number of symbols occupied by each DRS, and/or the time offset of the symbol level may enable the terminal to accurately determine the total number of receptions of the DRS, the target subframes occupied by each DRS, and/or the positions of the symbols of the preambles, Further, the subframe synchronization is implemented, and the channel state information reference signal of the non-zero power is sent by the RRC signaling, so that the location or the scrambling code of the subcarrier occupied by the terminal according to the channel state information reference signal (CSI-RS, Rererence Signal) can be made accurate.
  • the real number of the subframe occupied by the DRS is determined, thereby realizing the synchronization of the frame.
  • the first control unit 808 controls each of the at least one cell-specific reference signal and/or the channel state information reference signal after configuring the discovery reference signal for each
  • the discovery reference signal continuously occupies the occupant symbol, and the number of symbols of the occupiable symbol is N, where N is greater than or equal to 3 and less than or equal to 14.
  • At least one CRS (Cell-specific Rererence Signal) and CSI-RS are configured for each DRS, and by controlling the DRS to continuously occupy 3-14 symbols, it is possible to prevent the DRS from being continuously occupied. Multiple symbols of the frame structure, so that the downlink channel is occupied by other devices, thereby affecting the transmission and reception of the DRS.
  • CRS Cell-specific Rererence Signal
  • each of the discovery reference signals includes: a primary synchronization signal and a secondary synchronization signal
  • the configuration system further includes: a second control unit 810, for the at least one discovery
  • each of the discovery reference signals in the reference signal configures the number of symbols that can be occupied
  • the frame structure in which each of the discovery reference signals is located is an FDD frame structure
  • controlling the primary synchronization in each of the discovery reference signals The signal occupies a seventh symbol in the target subframe of the FDD frame structure, and controls the secondary synchronization signal to occupy a sixth symbol in the target subframe; if each frame structure of the discovery reference signal is located
  • controlling the primary synchronization signal in each of the discovery reference signals to occupy a third symbol in a target subframe of the TDD frame structure, and controlling the secondary synchronization signal to occupy the target subframe a fourteenth symbol in a preamble subframe adjacent to the frame, where the target subframe is any one of the FDD frame structure or the
  • the frame structure in which each of the discovery reference signals is located is an FDD frame structure
  • the primary synchronization signal in each discovery reference signal that is, the PSS occupies the seventh symbol in the target subframe of the FDD frame structure. That is, the symbol numbered 6 and the control secondary synchronization signal, that is, the SSS occupancy target
  • the sixth symbol in the subframe is a symbol numbered 5;
  • the frame structure in which each of the discovery reference signals is located is a TDD frame structure, and the target of the TDD frame structure is occupied by controlling the primary synchronization signal in each of the found reference signals.
  • the PSS/SSS in the DRS and the symbol occupied by the PSS/SSS in the prior art are unchanged, so that the UE implements subframe synchronization, and to some extent, reduces the complexity of detecting the DRS by the terminal, of course, the target subframe.
  • It may be any one of an FDD frame structure or a TDD frame structure, and is not necessarily the first subframe numbered 0 or the sixth subframe numbered 5 in the FDD frame structure, and is not necessarily a TDD frame.
  • the second subframe numbered 1 or the seventh subframe numbered 6 in the structure, and the Mth subframe is a subframe numbered M-1.
  • the sending unit 806 is configured to: after configuring the channel state information reference signal for each of the discovery reference signals, send a subcarrier position and a subcarrier to the terminal by using RRC signaling.
  • the first subframe number of the frame number correspondence relationship refers to the first operator reference table of the table and/or the subcarrier position corresponding to the operator, so that the terminal occupies the reference signal according to the received channel state information reference signal. Determining a real number of the target subframe or a real number of the pre-subframe from the first subframe number reference table, and/or from a location of the carrier and a type of the secondary synchronization signal received
  • the first operator refers to an operator that determines to send each of the discovery reference signals.
  • the first subframe number reference table and/or the subcarrier position corresponding to the correspondence between the subcarrier position and the subframe number are transmitted to the terminal through RRC signaling (Radio Resource Control).
  • the first carrier reference table of the correspondence relationship of the operator may enable the terminal to accurately determine the target from the first subframe number reference table according to the channel state information reference signal, that is, the location of the subcarrier actually occupied by the CSI-RS and the type of the SSS.
  • the real number of the subframe or the real number of the pre-subframe so that the terminal realizes the synchronization of the frame, and/or accurately determines the operator that sends each discovery reference signal from the first carrier reference table, so that the terminal according to each
  • the DRSs distinguish the signal powers of different operators and can obtain the RRM measurement results of different cells of different operators.
  • the terminal or the base station can remove the signal power from the same carrier, and then The power threshold is compared to accurately determine the channel condition of the uplink or downlink channel.
  • the sending unit 806 is further configured to: After configuring the channel state information reference signal with reference to the signal, transmitting, to the terminal, the channel state information reference signal carrying the scrambling code, and the second subframe reference table and/or the subframe number corresponding to the subframe number reference table and/or And a second operator reference table matching the operator with the scrambling code, so that the terminal is referenced from the second subframe number reference table according to the difference of the scrambling code and the type of the secondary synchronization signal received. Determining a real number of the target subframe or a real number of the preamble, and/or determining, from the second operator reference table, an operator that transmits each of the discovery reference signals.
  • the second subframe number reference table and/or the scrambling code corresponding to the correspondence between the scrambling code and the subframe number are transmitted to the terminal through RRC signaling (Radio Resource Control) and the operator.
  • the second operator refers to the table, so that the terminal can accurately determine the real number or preamble of the target subframe from the second subframe number reference table according to the scrambling code of the channel state information reference signal and the type of the received secondary synchronization signal.
  • the real number of the frame so that the terminal realizes the synchronization of the frame, and/or accurately determines the operator that transmits each discovery reference signal from the second operator reference table, so that the terminal will signal the signal of different operators according to each DRS.
  • RRM measurement results of different cells of different operators can be obtained; also, when the channel state is detected, the terminal or the base station can remove the signal power from the same operator, and then compare with the power threshold to accurately determine the uplink. Or the channel condition of the downlink channel.
  • the sending unit 806 is further configured to: after configuring the channel state information reference signal for each of the discovery reference signals, if sending any discovery reference signal to the terminal, Transmitting, to the terminal, a third subframe number reference table corresponding to the subframe information corresponding to the attribute information of the discovery reference signal and/or a third operator reference table corresponding to the attribute information of the discovery reference signal and the subframe number, so that Determining, by the terminal, the real number or location of the target subframe from the third subframe number reference table according to the attribute information of the any discovery reference signal and the type of the received secondary synchronization signal.
  • the primary synchronization signal, the secondary synchronization signal, and the configured number of symbols, symbol positions, and symbol positions in the target subframe or the preamble subframe At least one cell-specific reference signal and / or channel state information reference signal is non-zero power.
  • the RRC signaling (Radio Resource Control) is used to transmit, to the terminal, attribute information corresponding to any discovery reference signal, that is, any discovery reference signal.
  • the frame number reference table and/or the third operator reference table of the relationship between the attribute information of the discovery reference signal and the operator may enable the terminal to occupy the target sub-frame or the pre-subframe according to any discovery reference signal.
  • the DRSs distinguish the signal powers of different operators and can obtain the RRM measurement results of different cells of different operators.
  • the terminal or the base station can remove the signal power from the same carrier, and then power The threshold is compared to accurately determine the channel condition of the uplink or downlink channel.
  • the configuration unit 804 is further configured to: according to the type of the frame structure and/or the type of the secondary synchronization signal in each of the discovery reference signals, for each The discovery reference signal configures the at least one cell-specific reference signal and/or the channel state information reference signal, wherein the type of the frame structure comprises: an FDD frame structure and a TDD frame structure.
  • At least one cell-specific reference is configured for each discovery reference signal according to the type of frame structure, ie, (FDD frame structure and TDD frame structure) and/or the type of secondary synchronization signal in each discovery reference signal.
  • the signal and/or channel state information reference signal may cause the DRS to continuously occupy several symbols in the frame structure, thereby preventing the DRS from being occupied by other devices because the multiple symbols of the frame structure are not continuously occupied, thereby affecting the DRS.
  • the method further includes: a determining unit 812, where the preamble subframe occupied by the secondary synchronization signal is any one of a first to a fifth subframe of the TDD frame structure Determining that the type of the secondary synchronization signal is the first type when the frame or the target subframe occupied by the secondary synchronization signal is any one of the first to fifth subframes of the FDD frame structure.
  • the preamble subframe occupied by the secondary synchronization signal is any one of a sixth to a tenth subframe of the TDD frame structure, or the target subframe occupied by the secondary synchronization signal;
  • the type of the secondary synchronization signal is the second type.
  • any one of the first to fifth subframes or the sixth to tenth subframes in the TDD or FDD frame structure is occupied by the secondary synchronization signal, that is, the SSS.
  • the SSS is divided into a first type and a second type, so that the terminal can accurately lock the target subframe from the first subframe number reference table, after determining the location of the subcarrier occupied by the CSI-RS, in combination with the type of the SSS.
  • the number of the pre-subframe, or the operator that accurately transmits the discovery reference signal from the first carrier reference table and facilitates the base station to configure each DRS according to the type of the frame structure and/or the type of SSS in each DRS.
  • the method further includes: a detecting unit 814, before detecting each of the discovery reference signals, detecting, by using a downlink channel detection subframe set in the DMTC, whether the downlink channel is idle; the sending unit 806 further uses After detecting that the downlink channel is idle, transmitting a post-discovery reference signal that is closest to the symbol position occupied by the downlink channel detection subframe, and stops transmitting other discovery reference signals in the DMTC period; otherwise, Transmitting the post-discovery reference signal; and after detecting that the downlink channel is idle, sending a channel occupation signal before transmitting the post-discovery reference signal, and the number of symbols occupied by the channel occupation signal is less than M, Where M is a positive integer less than 14.
  • the terminal when the downlink channel detection subframe (ie, CCA, Clear Channel Assessment) detects that the downlink signal is idle, the terminal can accurately detect the terminal by transmitting the post DRS closest to the symbol position occupied by the CCA to the terminal.
  • DRS which implements frame synchronization and subframe synchronization. If a DRS is sent within one DMTC period, other DRSs can be stopped to prevent the DRS from being transmitted too much, so that the DRS occupies too long a downlink channel, thereby affecting other downlink signals.
  • the channel occupation signal (such as a reserved signal) or initial signal (initial signal) is transmitted.
  • the sum of the time for transmitting these signals is limited, for example, less than M symbols, so that the post-sending reference signal can be used to obtain the transmission opportunity, and the reserved channels can be avoided for too long. This makes it impossible for other devices to preempt the channel.
  • the sending unit 806 is further configured to: when sending each of the discovery reference signals, use a downlink control channel on the licensed spectrum or the unlicensed spectrum to send to the terminal, to indicate whether Sending downlink control information of each of the discovery reference signals.
  • the base station since the base station notifies the terminal how many DRSs can be transmitted in one DMTC When the location is sent, the terminal will blindly check how many times, but in fact, when the base station detects that the downlink channel is busy, it will not transmit DRS, which increases the detection complexity of the terminal. Therefore, by sending downlink control information to the terminal, DCI is transmitted. It can indicate whether the terminal base station actually transmits the DRS, which further reduces the complexity of detecting the DRS by the terminal.
  • the third control unit 816 when configuring the channel state information reference signal for each of the discovery reference signals, if the channel state information reference signal and other devices having the function of the base station are Each of the channel state information reference signals configured by the discovery reference signal occupies a target subframe or a preamble subframe of the same real number, and then controls the subcarriers occupied by the channel state information reference signal and other devices having the function of the base station as each The locations of the subcarriers occupied by the channel state information reference signals of the discovery reference signal configuration are different.
  • the CSI-RS when the CSI-RS is configured for each DRS, if the device with the base station function of the current cell and the other device with the base station function of other cells occupy the same real number target for the CSI-RS configured for each DRS. If the subframe or the preamble, that is, the subframe that occupies the same number, the CSI of the CSI-RS configured by the device with the base station function of the current cell and the CSI configured by the other device with the function of the base station for each DRS should be controlled.
  • the positions of the subcarriers occupied by the RS are different, so that when the terminal of the device with the base station function of the current cell measures the CSI-RS, it is affected by other cells.
  • the sending unit 806 is further configured to: send, by using RRC signaling, the sending parameter to a terminal that is served by the device with the function of the base station; and the configuration system is applicable to the LTE system. Reference signal in .
  • the DRS transmission probability can be increased, and the complexity of detecting the DRS by the UE can be reduced as much as possible, so that the terminal can accurately receive the DRS, thereby implementing frame synchronization and subframe. Synchronization.
  • FIG. 9 is a block diagram showing the structure of a device having a base station function according to an embodiment of the present invention.
  • a device 900 having a base station function according to an embodiment of the present invention comprising: a configuration system 800 for a reference signal according to any one of the above aspects.
  • the device 900 having the function of the base station can have the same technical effect as the configuration system 800 of the reference signal described above, and details are not described herein again. .
  • FIG. 10 is a flow chart showing a method of receiving a reference signal according to an embodiment of the present invention.
  • a method for receiving a reference signal includes: Step 1002: Receive the sending parameter delivered by the device with a base station function; Step 1004, send according to the sending The parameter synchronously receives at least one discovery reference signal in the DMTC.
  • the period of the DMTC, the total sending time and number of the discovery reference signals in one DMTC, and the number of the DMTCs may be clarified according to the transmission parameters configured by the device having the function of the base station.
  • Each type of information such as the number and location of symbols in the reference signal is found, so that the complexity of transmitting the discovery reference signal can be increased, and the complexity of detecting the DRS by the terminal can be reduced to accurately receive the DRS, thereby realizing frame synchronization and sub-frames.
  • the multiple transmission reference signals may be in different subframes of the same frame structure. , can also be in different subframes of different frame structures.
  • the process of receiving the sending parameter that is sent by the device with the function of the base station specifically includes: receiving the DMTC delivered by the device with the function of the base station by using the RRC signaling a transmission period and/or a time offset of the subframe level to determine a subframe occupied by the DMTC according to the transmission period and/or a time offset of the subframe level; and/or receiving the The total transmission time of the at least one discovery reference signal that is sent by the device with the base station function by the RRC signaling to determine the number and location of the subframes occupied by the at least one discovery reference signal according to the total transmission time; And/or receiving the number of the at least one discovery reference signal delivered by the base station function by the RRC signaling, the number of symbols occupied by each of the discovery reference signals, and/or the time offset of the symbol level Determining, according to the number, the number of symbols occupied by each of the discovery reference signals, and/or the time offset of the symbol level, the target sub-occupied
  • the DMTC by receiving the transmission period of the DMTC and/or the time offset of the subframe level, it is first determined which subframes the DMTC occupies to accurately receive the DMTC, which is to further accurately receive the transmission parameters of the DRS.
  • the number and location of the subframes occupied by at least one DRS can be determined;
  • the number of at least one DRS transmitted, the number of symbols occupied by each DRS, and/or the time offset of the symbol level may accurately determine the total number of receptions of the DRS, the target subframes occupied by each DRS, and/or the symbols of the preamble subframes.
  • the location, and the sub-frame synchronization is implemented.
  • the channel state information reference signal of the non-zero power transmitted by the RRC signaling may be based on the position or the interference of the subcarrier occupied by the channel state information reference signal (CSI-RS, Rererence Signal).
  • CSI-RS channel state information reference signal
  • the code accurately determines the real number of the subframe occupied by the DRS, thereby realizing the synchronization of the frame.
  • the device having the function of the base station by using RRC signaling
  • the first subframe number reference table and/or the first operator reference table according to the location of the subcarrier occupied by the channel state information reference signal and the type of the secondary synchronization signal received, Determining, in the first subframe number reference table, a real number of the target subframe or a real number of the preamble, and/or determining, from the first carrier reference table, each of the discovery references The operator of the signal.
  • a first subframe number reference table corresponding to a subcarrier position and a subframe number stored in the RRC signaling is received by the device having the function of the base station, and/or
  • the subcarrier position and the operator's first carrier reference table may accurately determine the target sub-frame from the first subframe number reference table according to the channel state information reference signal, that is, the location of the subcarrier actually occupied by the CSI-RS and the type of the SSS.
  • the signal power of the quotient is separated, and the RRM measurement results of different cells of different operators can be obtained.
  • the terminal can remove the signal power from the same operator and compare it with the power threshold, thereby accurately Determine the channel condition of the upstream channel.
  • the channel state information reference signal carrying the scrambling code delivered by the device with the base station function and the second subframe number reference table and/or Determining, by the second operator, a real number or a location of the target subframe from the second subframe number reference table according to the difference of the scrambling code and the type of the secondary synchronization signal received.
  • the real number of the preamble frame is determined, and/or the operator transmitting each of the discovery reference signals is determined from the second operator reference table.
  • the second subframe number reference table and/or the scrambling code and the operator corresponding to the correspondence between the scrambling code and the subframe number stored by the RRC signaling are received.
  • the second operator reference table of the correspondence relationship may enable the terminal to accurately determine the real number of the target subframe from the second subframe number reference table according to the scrambling code of the channel state information reference signal and the type of the received secondary synchronization signal.
  • the real number of the pre-subframe thereby realizing the synchronization of the frame, and/or accurately determining the operator transmitting each discovery reference signal from the second operator reference table to distinguish the signal power of different operators according to each DRS Open, can obtain RRM measurement results of different cells of different operators; also enable the terminal to remove the signal power from the same operator after channel state detection, and then compare with the power threshold to accurately determine the channel of the uplink channel happening.
  • the attribute information includes: the any discovery reference signal is in the The number of occupiable symbols in the target subframe or the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, the at least one cell-specific reference signal, and the configured at the symbol position / or the non-zero power channel state information reference signal.
  • the attribute information corresponding to any discovery reference signal is in the target subframe or the pre-subframe.
  • the third operator reference table corresponding to the attribute information of the reference signal and the operator may be based on the number of occupied symbols, the symbol position, and each symbol position in the target subframe or the pre-subframe according to any discovery reference signal.
  • the configured content ie, PSS ⁇ SSS ⁇ CRS ⁇ CSI-RS
  • the type of the secondary synchronization signal received, and the real number of the target subframe or the real number of the pre-subframe is accurately determined from the third subframe number reference table.
  • the RRM measurement results of different cell also makes During channel state detection, the terminal can remove the signal power from the same operator and compare it with the power threshold to accurately determine the channel condition of the uplink channel.
  • Fig. 11 is a block diagram showing the structure of a receiving system of a reference signal according to an embodiment of the present invention.
  • a receiving system 1100 for a reference signal includes: a first receiving unit 1102, receiving the sending parameter delivered by the device having the function of the base station;
  • the unit 1104 is configured to synchronously receive at least one discovery reference signal in the DMTC according to the sending parameter.
  • the period of the DMTC, the total sending time and number of the discovery reference signals in one DMTC, and the number of the DMTCs may be clarified according to the transmission parameters configured by the device having the function of the base station.
  • Each type of information such as the number and location of symbols in the reference signal is found, so that the complexity of transmitting the discovery reference signal can be increased, and the complexity of detecting the DRS by the terminal can be reduced to accurately receive the DRS, thereby realizing frame synchronization and sub-frames.
  • the multiple transmission reference signals may be in different subframes of the same frame structure. , can also be in different subframes of different frame structures.
  • the first receiving unit 1102 is specifically configured to: receive, by the RRC signaling, a sending period of the DMTC and/or the subframe level of the device with the function of the base station Time offset, to determine a subframe occupied by the DMTC according to the transmission period and/or a time offset of the subframe level; and/or receiving the device with the function of the base station by using RRC signaling
  • the total transmission time of the at least one discovery reference signal to determine the number and location of subframes occupied by the at least one discovery reference signal according to the total transmission time; and/or to receive the device with the base station function
  • the number of the at least one discovery reference signal delivered by the RRC signaling, the number of symbols occupied by each of the discovery reference signals, and/or the time offset of the symbol level, according to the number, each of the discoveries Determining a position of a symbol of the target subframe and/or a symbol of the preamble occupied by each of the transmission reference signals by a number of symbols occupied by the
  • the sending period of the DMTC and/or the time of the subframe level Offset by receiving the sending period of the DMTC and/or the time of the subframe level Offset, firstly, it can determine which subframes the DMTC occupies to receive the DMTC accurately. This is to further accurately receive the transmission parameters of the DRS, and lay the foundation for synchronization.
  • at least one DRS can be determined by receiving the total transmission time. The number and location of the occupied subframes; the total number of received DRSs and the target occupied by each DRS can be accurately determined by receiving the number of at least one DRS delivered, the number of symbols occupied by each DRS, and/or the time offset of the symbol level.
  • the position of the symbol of the subframe and/or the pre-subframe, thereby implementing subframe synchronization; and receiving the channel state information reference signal of the non-zero power delivered by the RRC signaling, may be based on the channel state information reference signal (CSI-RS)
  • CSI-RS channel state information reference signal
  • the method further includes: an obtaining unit 1106, after acquiring the channel state information reference signal, acquiring a position of a subcarrier occupied by the channel state information reference signal; the second receiving unit 1104
  • the method further includes: receiving the first subframe number reference table and/or the first operator reference table that is sent by the device with the function of the base station by using the RRC signaling; the receiving system further includes: first determining The unit 1108 determines, according to the location of the subcarrier occupied by the channel state information reference signal and the type of the received secondary synchronization signal, from the first subframe number reference table, the real number of the target subframe or The real number of the preamble subframe, and/or an operator that transmits each of the discovery reference signals from the first operator reference table.
  • a first subframe number reference table corresponding to a subcarrier position and a subframe number stored in the RRC signaling is received by the device having the function of the base station, and/or
  • the subcarrier position and the operator's first carrier reference table may accurately determine the target sub-frame from the first subframe number reference table according to the channel state information reference signal, that is, the location of the subcarrier actually occupied by the CSI-RS and the type of the SSS.
  • the signal power of the quotient is separated, and the RRM measurement results of different cells of different operators can be obtained.
  • the terminal can remove the signal power from the same operator and compare it with the power threshold, thereby accurately Determine the channel condition of the upstream channel.
  • the second receiving unit 1104 is further configured to: receive, by using a device with a base station function, the channel state information carried by the RRC signaling and carrying the scrambling code. a test signal, and the second subframe number reference table and/or the second operator reference table; the receiving system further includes: a second determining unit 1110, according to the difference of the scrambling code and the received Determining a type of the secondary synchronization signal, determining, from the second subframe number reference table, a real number of the target subframe or a real number of the preamble subframe, and/or from the second carrier reference table An operator that transmits each of the discovery reference signals is determined.
  • the second subframe number reference table and/or the scrambling code and the operator corresponding to the correspondence between the scrambling code and the subframe number stored by the RRC signaling are received.
  • the second operator reference table of the correspondence relationship may enable the terminal to accurately determine the real number of the target subframe from the second subframe number reference table according to the scrambling code of the channel state information reference signal and the type of the received secondary synchronization signal.
  • the real number of the pre-subframe thereby realizing the synchronization of the frame, and/or accurately determining the operator transmitting each discovery reference signal from the second operator reference table to distinguish the signal power of different operators according to each DRS Open, can obtain RRM measurement results of different cells of different operators; also enable the terminal to remove the signal power from the same operator after channel state detection, and then compare with the power threshold to accurately determine the channel of the uplink channel happening.
  • the method further includes: a third determining unit 1112, when receiving any one of the at least one discovery reference signal, and the third subframe number reference table and/or When the third operator refers to the table, determining the target sub-from the third subframe number reference table according to the attribute information of the any discovery reference signal and the type of the received secondary synchronization signal.
  • the attribute information includes: Decoding the number of symbols that can be occupied in the target subframe or the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, The at least one cell-specific reference signal and/or the non-zero power channel state information reference signal.
  • the attribute information corresponding to any discovery reference signal is in the target subframe or the pre-subframe.
  • the third operator reference table corresponding to the attribute information of the reference signal and the operator may be based on the number of symbols that can be occupied in the target subframe or the pre-subframe according to any discovery reference signal,
  • the symbol position, the content configured at each symbol position (ie, PSS ⁇ SSS ⁇ CRS ⁇ CSI-RS) and the type of the received secondary synchronization signal, and the true number of the target subframe is accurately determined from the third subframe number reference table.
  • the terminal can remove the signal power from the same operator and compare it with the power threshold, thereby accurately determining the uplink channel. Channel condition.
  • FIG. 12 is a block diagram showing the structure of a terminal according to an embodiment of the present invention.
  • a terminal 1200 of one embodiment of the present invention comprising: a reference signal receiving system 1100 according to any of the above aspects.
  • the terminal 1200 can detect and receive the DRS more easily and accurately, thereby realizing frame synchronization and synchronization of the subframe.
  • a transmittable location of multiple DRSs in a DMTC For example, if the length of the traditional DRS is 1 to 5 ms, then 1 to 5 transmittable locations can be configured, and each transmit location length is less than or equal to 1 ms.
  • each transmission position the relative positions of PSS and SSS in DRS remain unchanged.
  • SSS is in front of a symbol in front of PSS
  • TDD SSS is in front of PSS and two symbols are separated. .
  • the PSS and SSS in the DRS occupy a fixed symbol position.
  • the PSS is set in the last symbol of the first slot of any subframe, and the SSS and PSS are set in the same slot of the same subframe, but the SSS is located in the penultimate symbol.
  • the PSS is set in the third symbol of any subframe, and the SSS is set in the preceding subframe adjacent to any one of the subframes (such as any one of the sub-frames)
  • the pre-subframe is a 0# sub-frame of the same frame structure, and when any one of the sub-frames is a 6# sub-frame, the pre-subframe is a 5# sub-frame of the same frame structure.
  • the last symbol is sent, 3 symbols ahead of PSS.
  • N is greater than or equal to 3 (the number of symbols occupied by DRS in FDD is greater than or equal to 3, as shown in Figure 5; in TDD, the number of symbols occupied by DRS is greater than or equal to 4, as shown in Figure 6.
  • the two symbols between the indicated PSS and SSS must be filled) and populated with existing CRS and/or NZP CSI-RS and/or new RS.
  • CRS in addition to PSS and SSS in DRS, CRS must occupy at least 1 symbol, and NZP CSI-RS and new RS may or may not be available.
  • the present invention provides a method for representing a subframe number: that is, according to different filling methods, combined with the difference of SSS, the terminal can determine the real number of the DRS.
  • the specific process is as follows:
  • 0# ⁇ 4#subframe uses the traditional subframe#0 SSS; 5# ⁇ 9#subframe uses the traditional subframe#5 SSS, so the sub-frames are divided into two groups, and then according to different filling methods, The sub-frame number within the zone group.
  • FIG. 13 shows the transmittable time-frequency position of the CSI-RS when two transmit antennas (ie, the antenna ports are 15, 16);
  • FIG. 16 shows The transmittable time-frequency position of the CSI-RS when four transmit antennas are present (ie, the antenna ports are 15, 16, 17, 18).
  • the abscissa symbol index represents the real number of the symbol
  • R 15, 16 represents the CSI-RS transmission at antenna ports 15 and 16
  • R 17, 18 represents the CSI-RS transmission at antenna ports 17 and 18, and the number in the upper right corner of R represents the transmittable time-frequency position number of the CSI-RS
  • the subcarrier index represents the position of the subcarrier, that is, the position of the subcarrier, and symbol#5, #6 is occupied by PSS/SSS, so the CSI-RS selects to occupy symbols #9 and #10, and does not choose to occupy symbol#12.
  • #13 are to ensure the shortest DRS length. Then a DRS occasion (DRS can be sent) takes up symbol #5 ⁇ #10 in one subframe, a total of 6 symbols.
  • Symbol #5, #6, and #7 are fixed to SSS, PSS, and CRS, respectively.
  • Symbol#8 is filled with CRS, which is the same as when the number of antennas is 4, but this does not mean that the number of antennas is 4, and the number of antennas is 2 such.
  • Symbol #9 and #10 are filled by CSI-RS, and the subcarrier positions of CSI-RSs of different resource configurations are different, thereby representing different subframe numbers.
  • CSI-RS chooses to occupy symbols #9 and #10 in order to ensure that the CSI-RS resource configuration has more than five data configurations. Then a DRS occasion occupies symbol #9 ⁇ 13 in one subframe and 0 ⁇ 2 in the next subframe, for a total of 8 symbols.
  • CSI-RS in a new symbol position, such as symbol#11 and #12 of the previous subframe, or symbols#3 and #4 of the subsequent subframe, so that DRS can occupy only 6 symbols.
  • the DRS of the TDD occupies two subframes, and the subframe number indicated by the CSI-RS is the number of the subframe in which the CSI-RS is located (ie, the number of the pre-subframe), as shown in FIG. .
  • a reservation signal or an initial signal may be sent before the DRS or CRS or CSI-RS, but the sum of the time to send these signals is limited, such as less than M symbols, which can avoid the reserved channel taking too long, so that other devices cannot seize the channel.
  • the RRC signaling notifies the period of the DMTC, offset (ie, the offset of the subframe level);
  • RRC signaling informs the DMTC of the length of time required to detect the DRS, 1 to 5 ms;
  • RRC signaling notifies the number of locations in the DMTC that can transmit DRS, 1 to 5, and the position offset of the symbol level, that is, the time offset of the symbol level (such as symbol #5), and the number of symbols occupied by each DRS. Objective (such as 6).
  • RRC signaling notifies different subframe numbers corresponding to different CSI-RS resource configurations.
  • Table 1 i.e., the first subframe number reference table
  • RRC signaling includes the following four columns.
  • the first column identifies the number of the resource configuration of the CSI-RS.
  • the number is obtained directly from the index (label) in the upper right corner of the figure. It is just a representation but can represent the number. For example, index is 1 for every 12 subcarriers.
  • CSI-RSs that transmit non-zero power on the #5 and #11 subcarriers, that is, non-zero-power CSI-RS occupy the #5 and #11 subcarriers, while other locations do not transmit CSI-RS, but number 6 Indicates that CSI-RSs of non-zero power are transmitted on #4 and #10 subcarriers per 12 subcarriers, while other locations are not transmitting CSI-RSs, and so on.
  • the second column is the intra-group subframe number corresponding to the transmission of the non-zero-power CSI-RS at the position, and only represents 0 to 4;
  • the third column is the type of SSS in the DRS, and it is said that if the subframe is 0 to 4,
  • the SSS type sent when using subframe#0 is the first type, otherwise the SSS type sent when using subframe#5 is the second type.
  • the fourth column is the subframe number of the final DRS occupied by the second column and the third column, that is, the real number, and the process is: the second column frame number of the SSS number is 1 plus 5, and the final subframe number is obtained. That is the fourth column.
  • the UE can perform blind detection multiple times.
  • the number of the DRSs in the DMTC is notified, and the UE will check the number of times at most until the DRS is detected. For example, if the base station informs the terminal that each of the five subframes in the DMTC has a fixed position to transmit DRS, the UE needs to perform blind detection for up to 5 times, but in fact, some transmit positions are busy because the channel detection is busy, and the base station does not have Send a DRS.
  • the base station may send the indication signaling to the UE when the DRS is actually transmitted, for example, by using a PDCCH (Physical Downlink Control Channel) or an Enhanced Physical Downlink Control Channel (EPDCCH).
  • the downlink physical control channel transmits DCI (Downlink Control Information) indication signaling to the UE on the licensed spectrum or the unlicensed spectrum. Then, the UE knows that the location does send the DRS.
  • DCI Downlink Control Information
  • the resource configuration of the NZP CSI-RS sent by the same subframe of the neighboring cell is preferably different. It is convenient to use NZP CSI-RS to measure signal strength. If the same subframe is sent in the same resource configuration, the NZP CSI-RS will be interfered by the neighboring cell when the measurement is performed. If the neighboring cell is sent at another symbol location, the same one. If the symbol position is empty, the test result will be more accurate.
  • the UE receives the RRC signaling, obtains the period of the DMTC, offset; thereby, which subframes the DMTC is located in.
  • the UE receives the RRC signaling, and obtains the length of time that the DRS needs to be detected in the DMTC, 1 to 5 ms, so as to know how many times the DRS needs to be detected.
  • the UE receives the RRC signaling, and obtains the number of locations in the DMTC that can transmit the DRS, 1 to 5, and the location offset of the symbol level (such as symbol #5), and the number of symbols occupied by each DRS (such as 6). So to know which symbols are included in each DRS sending location.
  • the UE receives the RRC signaling, and obtains different subframe numbers corresponding to different CSI-RS resource configurations.
  • the final subframe number is obtained by referring to Table 1 by the detected position information of the CSI-RS and the type of the SSS.
  • the specific process is as follows:
  • RRC signaling includes the following four columns. The first column identifies the number of the resource configuration of the CSI-RS. The number is obtained directly from the index in the upper right corner of R in Fig. 15 and Fig. 16, but is a representation but can indicate the number.
  • an index of 1 indicates that a CSI-RS that transmits non-zero power on the #5 and #11 subcarriers per 12 subcarriers, that is, a non-zero power CSI-RS occupies #5 and #11 subcarriers, and the other The location is not to send CSI-RS, and the number 6 indicates CSI-RS transmitting non-zero power on #4 and #10 subcarriers per 12 subcarriers, while other locations are not transmitting CSI-RS, and so on. .
  • the second column is the intra-group subframe number corresponding to the transmission of the non-zero-power CSI-RS at the position, and only represents 0 to 4;
  • the third column is the type of SSS in the DRS, and it is said that if the subframe is 0 to 4, Then use the SSS type sent when subframe#0, otherwise the SSS type sent when using subframe#5.
  • the fourth column is the subframe number of the final DRS occupied by the second column and the third column, that is, the real number, and the process is: the second column frame number of the SSS number is 1 plus 5, and the final subframe number is obtained. That is the fourth column.
  • the filling method in the DRS can also be used to identify different operators.
  • the identification method can replace the operator with the second and fourth column frame numbers in Table 1.
  • Table 2 indicates the first operator reference table).
  • Table 3 indicates the second subframe number reference table
  • different operators as shown in Table 4, Table 4 indicates
  • the second operator refers to the table), such as the E-UTRAN Cell Global Identifier (EC-GIRAN), where the E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) is an evolved UMTS Terrestrial Radio Access Network. ), that is, the mobile communication wireless network in LTE.
  • EC-GIRAN E-UTRAN Cell Global Identifier
  • the PLMN ID can also be displayed directly in the NZP CSI-RS resource configuration or scrambling code. Just fine. In this way, if the terminal is required to determine the carrier identifier during the CCA detection, so as to remove the signal power of the same carrier and then the threshold (power threshold), the duration of the CCA may include the entire symbol, and is limited to the identifier of the transmitting carrier. Symbol. Or the signal transmission granularity of transmitting the carrier identifier is reduced, so that the operator identity can also be detected in a shorter CCA time.
  • Table 2 and Figure 16 show that the CSI-RS time-frequency position when using the four transmit antennas of symbol #9 and #10, combined with the SSS type, can indicate up to 12 operators; if using symbols #9 and #10
  • the CSI-RS time-frequency position when transmitting the antenna, combined with the SSS type, can indicate up to 24 operators.
  • Table 1 and Table 2 can also be combined, that is, the CSI-RS time-frequency position, that is, the occupied sub-carrier position (for example, R 1 15,16 in FIG. 15 indicates that the CSI-RS occupied time-frequency number is 11
  • the 12th subcarrier, issued at antenna port numbers 15, 16, and so on, and the type of SSS, are combined to indicate the subframe number and the carrier.
  • Table 4 using 5 types of scrambling codes, combined with the SSS type, up to 10 operators can be indicated; if more operators are required to be indicated, the number of scrambling codes can be increased.
  • Tables 3 and 4 can also be combined, that is, the types of CSI-RS scrambling codes and SSSs, which are combined to indicate the subframe number and the operator.
  • the time-frequency position, scrambling code and SSS type of the CSI-RS are combined to indicate the subframe number and the operator.
  • the attribute information of the composition of the DRS can also identify different subframe numbers (as shown in Table 5, Table 5 indicates the third subframe number reference table) or the operator (as shown in Table 6, Table 6 is the table) Show third operator reference table), such as FDD has a variety of DRS components:
  • Composition 1 contains symbol#4 (filled CRS), #5 (filled SSS), #6 (filled PSS);
  • Composition 2 contains symbol#5 (filled SSS), #6 (filled PSS), #7 (filled CRS);
  • Composition 3 contains symbol#4 (filled CRS), #5 (filled SSS), #6 (filled PSS), 7 (filled CRS);
  • Composition 4 contains symbol#5 (filled SSS), #6 (filled PSS), 7 (filled CRS), #8 (filled CRS), #9 (filled NZP CSI-RS), 10 (filled NZP CSI-RS) ;
  • Composition 5 contains symbol#4 (filled CRS), #5 (filled SSS), #6 (filled PSS), #7 (filled CRS), #8 (filled CRS), #9 (filled NZP CSI-RS), #10(fill NZP CSI-RS);
  • Composition 6 contains symbol#4 (filled CRS), #5 (filled SSS), #6 (filled PSS), #7 (filled CRS), #8 (filled CRS), #9 (filled NZP CSI-RS), #10(NZP CSI-RS fill), #11 (fill CRS);
  • Composition 7 contains symbol#5 (filled SSS), #6 (filled PSS), 7 (filled CRS), #8 (filled CRS), #9 (filled NZP CSI-RS), #10 (filled NZP CSI-RS ), #11 (filled CRS).
  • the signaling and UE behavior are similar, and different DRS composition attribute information indicates different subframe numbers.
  • Table 5 shows that the attribute information according to the DRS composition is different, such as the number of occupied symbols, the location and the content filled by each symbol are different, and the subframe number is indicated in combination with the type of the SSS.
  • Table 6 differs according to the attribute information of the DRS, such as the number of occupied symbols, the location and the content filled by each symbol, and the type of SSS is used to indicate the operator. If more operators are to be indicated, more different ones are used. Attribute information.
  • Table 2 to Table 6 can be notified to the terminal through RRC signaling as in Table 1.
  • the behavior of the terminal is also the same as that when the RRC signaling of Table 1 is received, and the subframe number and the reference table are determined by the received information and the reference table. / or operator.
  • FIG. 17 is a schematic structural diagram of a device having a base station function according to another embodiment of the present invention.
  • the device having a base station function may include: at least one processor 171, such as a CPU, at least one communication Bus 172 and memory 173; communication bus 172 is used to implement this The connection communication between the components; the memory 173 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • a set of program codes is stored in the memory 173, and the processor 171 is configured to call the program code stored in the memory 173 to perform the following operations:
  • At least one discovery reference signal in the DMTC configuring a transmission parameter for the at least one discovery reference signal; transmitting the transmission parameter to a terminal served by the device having the base station function, so that the terminal transmits according to the The parameter receives the at least one discovery reference signal.
  • the sending parameter includes: the number of the at least one discovery reference signal, where the number of the at least one discovery reference signal is: 1 to 5, and the processor 171 is the at least one discovery reference.
  • the process of configuring a transmission parameter includes: configuring a time offset of a transmission period and/or a subframe level for the DMTC where the at least one discovery reference signal is located, and/or configuring the at least one discovery reference signal a total transmission time, and/or, configured, for each of the at least one discovery reference signal, a time offset of a number of symbols and/or a symbol level that can be occupied, and/or for the at least one
  • Each of the discovery reference signals in the discovery reference signal is configured with at least one cell-specific reference signal and/or a non-zero power channel state information reference signal.
  • the processor 171 configures the at least one cell-specific reference signal and/or the channel state information reference signal for each of the discovery reference signals, controlling each of the discovery reference signals to continuously occupy the The symbol may be occupied, and the number of symbols of the occupiable symbol is N, where N is greater than or equal to 3 and less than or equal to 14.
  • each of the discovery reference signals includes: a primary synchronization signal and a secondary synchronization signal, and the processor 171 configures the discovery reference signal for each of the at least one discovery reference signal. If the frame structure of each of the discovery reference signals is an FDD frame structure, controlling the primary synchronization signal in each of the discovery reference signals to occupy a target subframe in the FDD frame structure.
  • each frame structure in which the discovery reference signal is located is a TDD frame structure, controlling each of the discovery reference signals
  • the primary synchronization signal occupies a third symbol in a target subframe of the TDD frame structure, and controls the secondary synchronization signal to occupy a fourteenth of a preamble subframe adjacent to the target subframe a symbol, wherein the target subframe is any one of the FDD frame structure or the TDD frame structure.
  • the processor 171 sends, by using RRC signaling, the first subframe corresponding to the subcarrier position and the subframe number to the terminal. And refer to a first operator reference table corresponding to the operator and the subcarrier position and the carrier, so that the terminal according to the received channel state information reference signal, the position of the subcarrier and the received Determining a type of the secondary synchronization signal, determining, from the first subframe number reference table, a real number of the target subframe or a real number of the preamble subframe, and/or from the first carrier reference table An operator that transmits each of the discovery reference signals is determined.
  • the processor 171 sends the channel state information reference signal carrying the scrambling code to the terminal, and the scrambling code and the sub a second subframe reference table of the frame number correspondence relationship and/or a second operator reference table of the scrambling code corresponding to the operator, so that the terminal according to the different scrambling code and the received secondary synchronization signal a type, determining a real number of the target subframe or a real number of the preamble from the second subframe number reference table, and/or determining to send each from the second carrier reference table The operator of the discovery reference signal.
  • the processor 171 sends an attribute of the discovery reference signal to the terminal if any discovery reference signal is sent to the terminal.
  • a third subframe number reference table corresponding to the subframe number corresponding to the subframe number and/or a third operator reference table corresponding to the subframe information of the attribute information of the discovery reference signal, so that the terminal according to any of the discovery references Determining, by the attribute information of the signal and the type of the secondary synchronization signal received, a real number of the target subframe or a real number of the pre-subframe from the third subframe number reference table, and And determining, from the third operator reference table, an operator that sends the any discovery reference signal, where the attribute information includes: any one of the discovery reference signals in the target subframe or the front The number of occupiable symbols in the sub-frame, the symbol position, and the primary synchronization signal, the secondary synchronization signal, the at least one cell-specific reference signal, and/or configured at the symbol
  • the processor 171 processes the at least one cell-specific reference signal and/or the non-zero-power channel state information reference signal for each of the at least one discovery reference signal, specifically Include: configuring the at least one for each of the discovery reference signals according to a type of the frame structure and/or a type of the secondary synchronization signal in each of the discovery reference signals a cell-specific reference signal and/or the channel state information reference signal, wherein the type of the frame structure comprises: an FDD frame structure and a TDD frame structure.
  • the preamble subframe occupied by the secondary synchronization signal is any one of the first to fifth subframes of the TDD frame structure, or the target occupied by the secondary synchronization signal
  • the processor 171 determines that the type of the secondary synchronization signal is the first type; when the secondary synchronization signal occupies
  • the preamble subframe is any one of the sixth to tenth subframes of the TDD frame structure, or the target subframe occupied by the secondary synchronization signal is the first part of the FDD frame structure
  • the processor 171 determines that the type of the secondary synchronization signal is the second type when any one of the six to tenth subframes is used.
  • the processor 171 detects, by using a downlink channel detection subframe set in the DMTC, whether the downlink channel is idle before transmitting each of the discovery reference signals; when the processor 171 detects that the downlink channel is idle, Transmitting a post-discovery reference signal that is closest to a symbol position occupied by the downlink channel detection subframe, and stops transmitting other discovery reference signals in the DMTC period; otherwise, transmitting the post-discovery reference signal; and, After detecting that the downlink channel is idle, before the transmitting the discovery reference signal, the channel occupation signal is sent, and the number of symbols occupied by the channel occupation signal is less than M, where M is a positive integer less than 14.
  • the processor 171 when transmitting each of the discovery reference signals, sends a downlink to the terminal to indicate whether to send each of the discovery reference signals by using a downlink control channel on the licensed spectrum or the unlicensed spectrum. Control information.
  • the processor 171 when configuring the channel state information reference signal for each of the discovery reference signals, if the channel state information reference signal and other devices having a base station function are each of the discovery reference signals If the configured channel state information reference signal occupies the target sub-frame or the pre-subframe of the same real number, control the sub-carrier occupied by the channel state information reference signal and other devices with the base station function to configure each of the discovery reference signals.
  • the location of the subcarriers occupied by the channel state information reference signal is different.
  • the sending by the processor 171, the sending parameter to the terminal served by the device with the function of the base station, specifically: sending the sending parameter to the device that is functioning by the base station by using RRC signaling
  • the configuration method is applicable to a reference signal in an LTE system.
  • the terminal may include: at least one processor 181, such as a CPU, at least one communication bus 182, and a memory 183; a communication bus 182 is used to implement connection communication between these components; the memory 183 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • a set of program codes is stored in the memory 183, and the processor 181 is configured to call the program code stored in the memory 183 to perform the following operations:
  • the process for the processor 181 to receive the sending parameter that is sent by the device with the function of the base station specifically includes: receiving a sending period of the DMTC delivered by the device with the function of the base station by using the RRC signaling And/or a time offset of the subframe level to determine a subframe occupied by the DMTC according to the transmission period and/or a time offset of the subframe level; and/or receiving the base station Determining, by the RRC signaling, the total transmission time of the at least one discovery reference signal delivered by the RRC signaling, to determine the number and location of the subframes occupied by the at least one discovery reference signal according to the total transmission time; and Or the number of the at least one discovery reference signal that is sent by the device with the function of the base station by using the RRC signaling, the number of symbols occupied by each of the discovery reference signals, and/or the time offset of the symbol level.
  • the processor 181 after receiving the channel state information reference signal, acquires a location of a subcarrier occupied by the channel state information reference signal, and receives the device with the base station function and sends the RRC signaling
  • the first subframe number reference table and/or the first operator reference table according to the location of the subcarrier occupied by the channel state information reference signal and the type of the secondary synchronization signal received, from the Determining, in the first subframe number reference table, a real number of the target subframe or a real number of the preamble, and/or determining, from the first carrier reference table, each of the discovery reference signals Operator.
  • the processor 181 receives the device with the function of the base station by using RRC signaling. Transmitting the channel state information reference signal carrying the scrambling code, and the second subframe number reference table and/or the second operator reference table; the processor 181 is different according to the different scrambling codes Determining the type of the secondary synchronization signal, determining a real number of the target subframe or a real number of the preamble from the second subframe number reference table, and/or from the second The operator determines the operator that transmits each of the discovery reference signals in the reference table.
  • the processor 181 when receiving any one of the at least one discovery reference signal, and the third subframe number reference table and/or the third carrier reference table, according to Determining the real number of the target subframe or the preamble from the third subframe number reference table, the attribute information of the any discovery reference signal and the type of the secondary synchronization signal received a real number of the frame, and/or an operator that transmits the any discovery reference signal from the third operator reference table, wherein the attribute information includes: any one of the discovery reference signals at the target The number of occupiable symbols in the subframe or the preamble, the symbol position, and the primary synchronization signal, the secondary synchronization signal, the at least one cell-specific reference signal, and/or configured at the symbol position Or the non-zero power channel state information reference signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种参考信号的配置方法及配置***、一种具有基站功能的设备、一种参考信号的接收方法、一种参考信号的接收***和一种终端,其中,所述参考信号的配置方法包括:在DMTC(DRS测量时间配置)中设置至少一个发现参考信号;为所述至少一个发现参考信号配置发送参数;将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。通过本发明的技术方案,可以在增大DRS发送机率的同时,能尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步。

Description

配置方法、配置***、设备、接收方法、接收***和终端
本申请要求于2015年05月15日提交中国专利局,申请号为201510251247.5、发明名称为“配置方法、配置***、设备、接收方法、接收***和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体而言,涉及一种参考信号的配置方法、一种参考信号的配置***、一种具有基站功能的设备、一种参考信号的接收方法、一种参考信号的接收***和一种终端。
背景技术
随着通信业务量的急剧增加,3GPP的授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是Wi-Fi、蓝牙、雷达、医疗等***在使用。
通常情况下,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进)不适合在非授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合(Carrier Aggregation,CA)功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(LTE Assisted Access,LTE辅助接入)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(SDL,Supplemental Downlink),即只有下行传输子帧;另一种是TDD模式,既包含下行子帧、上行子帧。补充下行这种情况只能是借助载波聚合技术使用(如图1所示)。而TDD模式除了可以借助载波聚合技术使用外,还可以借助DC(Dual Connectivity,双连通)使用,也可以独立使用。
相比于Wi-Fi***,工作在非授权频段的LTE***有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和非授权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、 更好的稳定性和移动便利。
现有的在非授权频谱上使用的接入技术,如Wi-Fi,具有较弱的抗干扰能力。为了避免干扰,Wi-Fi***设计了很多干扰避免规则,如CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测方法),这种方法的基本原理是Wi-Fi的AP(Access Point,接入点)或者终端在发送信令或者数据之前,要先监听检测周围是否有其他AP或者其他终端在发送/接收信令或数据,若有,则继续监听,直到监听到没有为止;若没有,则生成一个随机数N作为退避时间,在接下来的信道检测中,若检测到信道忙,则N不变,直到检测到信道再次空闲,才能N-1;当N减为0时,退避时间结束,AP或终端可以开始发送信令或数据。该过程如图2所示。
但是,LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有其他基站或其他用户在传输数据。如果LTE在非授权频段上使用时也不考虑周围是否有其他设备在使用非授权频段,那么将对Wi-Fi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么Wi-Fi设备在LTE有业务传输时就不能传输,只能等到LTE业务传输完成,才能检测到信道空闲状态以进行数据传输。
所以LTE在使用非授权频段时,最主要的关键点之一是确保LAA(LTE assisted access,LTE辅助的接入技术)能够在公平友好的基础上和现有的接入技术(比如WiFi)共存。而传统的LTE***中没有LBT(Listen Before Talk,先听后说)的机制来避免碰撞。为了与WiFi更好的共存,LTE需要一种LBT机制。这样,LTE在非授权频谱上如果检测到信道忙,则不能占用该频段,如果检测到信道闲,才能占用。
基于上述问题,目前,提出了一种基于帧结构的(FBE,Framed based equipment)的LBT机制(如图3所示),左斜线是CCA(Clear Channel Assessment,空闲信道评估)的信道检测时间,CCA检测时间周期性重复出现,若检测到信道空闲,则占用信道,在信道占用时间达到最大信道占用时间之后,有一个idle时间,在idle时间,发送点不发送信号和数据,以便于其它发送点抢占信道。在idle时间之后,又出现CCA检测时间,若检测到信道忙,则不占用信道,直到下一周期的CCA检测时间出现时再次检测信道。当然,信道 检测时间也属于idle时间,idle时长必须大于信道最大占用时间的5%。CCA时间加上Idle时间加上信道占用最大时间即周期。
目前,还提出了一种基于负载的(LBE,Load based equipment)的LBT机制如下图4所示:基于LBE的LBT机制是无周期的,只要业务到达,则触发CCA检测,如果CCA检测空闲,则马上发送信令或数据;若检测到信道忙,则取一个随机数N,N的取值范围为1到q(即竞争窗口长度),q的取值范围是4到32。图4示出了q=16的情况,此时,当检测到信道空闲时,信道最大占用时间为(13/32)x q=6.5ms。在6.5ms之后,采取extended CCA(延长的信道检测时间)机制,即也是随机取值N,N的范围为1到16,若取值为8,则表示在接下来的连续的CCA检测时间中,每个CCA检测时间都要检测信道,若检测到信道空闲,则N-1,若检测到信道忙,则N不变,当N为0时,发送信令或数据。
另外,LAA中的用于RRM(Radio Resource Management,无线资源管理)测量、小区识别、下行同步、时频估计等的参考信号有两种方式实现:一种是short control signaling(短时控制信号),这种方式需要满足的要求是50ms内可以有5%的时间在发送短时控制信号,也就是2.5ms。另一种是发送非周期的DRS(Discovery Reference Signal,发现参考信号),因为发送DRS需占用6ms的时间,而如果在检测到信道忙时也发送,将给其它***带来较大的干扰,所以如果是发送DRS,就只能在检测到信道空闲时发送,那么DRS就是非周期的。
当DRS必须在检测到信道空闲才能发送时,目前有多种方法:
第一种方法:DRS像R12一样必须在DMTC(DRS Measurement Timing Configuration,DRS测量时间配置)内固定的subframe(子帧)中发送。比如DRS中的PSS/SSS必须保证在原来的subframe原来的symbol(符号)上发送。对于FDD(Frequency Division Duplexing,频分双工)而言,如图5所示PSS在0#子帧和5#子帧的第一个slot(时隙)的最后一个symbol(即编号为6的第七个符号)上发送;SSS(Secondary Synchronization Signal,辅同步信号)与PSS(Primary Synchronization signal,主同步信号)在同一子帧同一slot发送,但SSS位于倒数第二个symbol中,比PSS提前一个symbol(即编号为5的第6 个符号)。对于TDD(Time Division Duplexing,时分双工)而言,如图6所示,PSS在1#子帧和6#子帧(即DwPTS)的编号2的第三个symbol中发送;而SSS在子帧0#子帧和5#子帧的最后一个symbol(即编号13的第十四个符号)中发送,比PSS提前3个symbol。这种方法减少了UE检测复杂度,同时在进行RRM测量时,可以实现符号同步,子帧同步,帧同步。但这个缺点是DRS的发送机会少,如果在一个DMTC周期(最小为40ms)内仅有的发送机会中没有检测到信道空闲,则没法发送。需要等到下一个DMTC周期内的发送机会,其中,终端根据10ms周期(即一个帧结构)内的两个PSS相同,两个SSS不同,可以判断出基站是在subframe#0还是subframe#5发送DRS。
第二种方法:在DMTC期间,DRS可以在不固定的subframe中发送,什么时候检测到信道空闲则什么时候发送,这种方法的优点是发送机会多。缺点是UE检测复杂度增大,且由于PSS/SSS占用的发送symbol,subframe等位置不确定,使得终端无法实现subframe同步,帧同步等功能。
第三种方法:在DMTC周期的外部发送DRS,也就是说只要检测到信道空闲,就可以发送DRS。而这种方法的优点相比于第二种方法进一步增加了发送机会,缺点是比第一种UE检测复杂度更高,甚至可能需要eNB(基站)的DCI信令(Downlink Control Information,下行控制信息)去进一步指示DRS的发送时间。
因此,如何在增大DRS发送机率的同时,能尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步,成为亟待解决的问题。
发明内容
本发明正是基于上述问题,提出了一种新的技术方案,在增大DRS发送机率的同时,能尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步。
有鉴于此,本发明的一方面提出了一种参考信号的配置方法,用于具有基站功能的设备,包括:在DMTC中设置至少一个发现参考信号;为所述至少一个发现参考信号配置发送参数;将所述发送参数发送至被所述具有基站功能 的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
在上述技术方案中,优选地,所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及所述为所述至少一个发现参考信号配置发送参数的过程,具体包括:为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或为所述至少一个发现参考信号配置总发送时间,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
在上述技术方案中,优选地,每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确 定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,所述为所述至少一个发现参考信号中的每个所述发现参考信号配置所述至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号的过程,具体包括:根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
在上述技术方案中,优选地,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时, 确定所述辅同步信号的类型为第一类型;当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,确定所述辅同步信号的类型为第二类型。
在上述技术方案中,优选地,在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信号占用信号占用的符号数小于M个,其中,M为正整数。
在上述技术方案中,优选地,在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
在上述技术方案中,优选地,所述将所述发送参数发送至被所述具有基站功能的设备服务的终端,具体包括:通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及所述配置方法适用于LTE***中的参考信号。
本发明的另一方面提出了一种参考信号的配置***,包括:设置单元,在DMTC中设置至少一个发现参考信号;配置单元,为所述至少一个发现参考信号配置发送参数;发送单元,将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
在上述技术方案中,优选地,所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及所述配置单元具体用于:为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或为所述至少一个发现参考信号配置总发送时间,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,还包括:第一控制单元,在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
在上述技术方案中,优选地,每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及所述配置***还包括:第二控制单元,在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
在上述技术方案中,优选地,所述发送单元用于:在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述发送单元还用于:在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述发送单元还用于:在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,所述配置单元具体还用于:根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
在上述技术方案中,优选地,还包括:确定单元,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,确定所述辅同步信号的类型为第一类型;当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,确定所述辅同步信号的类型为第二类型。
在上述技术方案中,优选地,还包括:检测单元,在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;所述发送单元还用于:在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
在上述技术方案中,优选地,所述发送单元还用于:在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
在上述技术方案中,优选地,第三控制单元,在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
在上述技术方案中,优选地,所述发送单元还用于:通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及所述配置***适用于LTE***中的参考信号。
本发明的又一方面提出了一种具有基站功能的设备,包括处理器和存储器,其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
在DMTC中设置至少一个发现参考信号;为所述至少一个发现参考信号配置发送参数;将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
在上述技术方案中,优选地,所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及,所述处理器为所述至少一个发现参考信号配置发送参数的过程,具体包括:为 所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或,为所述至少一个发现参考信号配置总发送时间,和/或,为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或,为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,所述处理器在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
在上述技术方案中,优选地,每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及,所述处理器在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
在上述技术方案中,优选地,所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信 息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,所述处理器为所述至少一个发现参考信号中的每个所述发现参考信号配置所述至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号的过程,具体包括:根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
在上述技术方案中,优选地,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,所述处理器确定所述辅同步信号的类型为第一类型;当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,所述处理器确定所述辅同步信号的类型为第二类型。
在上述技术方案中,优选地,所述处理器在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;所述处理器在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及,在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
在上述技术方案中,优选地,所述处理器在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
在上述技术方案中,优选地,所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
在上述技术方案中,优选地,所述处理器将所述发送参数发送至被所述具有基站功能的设备服务的终端,具体包括:通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及,所述配置方法适用于LTE***中的参考信号。
本发明的再一方面提出了一种参考信号的接收方法,包括:接收所述具有基站功能的设备下发的所述发送参数;根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
在上述技术方案中,优选地,所述接收所述具有基站功能的设备下发的所述发送参数的过程,具体包括:接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占 用的子帧的数目和位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
本发明的再一方面提出了一种参考信号的接收***,包括:第一接收单元, 接收所述具有基站功能的设备下发的所述发送参数;第二接收单元,根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
在上述技术方案中,优选地,所述第一接收单元具体用于:接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,还包括:获取单元,在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;所述第二接收单元还用于:接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;所述接收***还包括:第一确定单元,根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述第二接收单元还用于:接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;所述接收***还包括:第二确定单元,根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,还包括:第三确定单元,当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
本发明的再一方面提出了一种终端,所述终端与上述技术方案中任一项所述的具有基站功能的设备相连接,所述终端包括处理器和存储器,其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
接收所述具有基站功能的设备下发的所述发送参数;根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
在上述技术方案中,优选地,所述处理器接收所述具有基站功能的设备下发的所述发送参数的过程,具体包括:接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或,接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或,接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或,接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
在上述技术方案中,优选地,所述处理器在接收到所述信道状态信息参考 信号后,获取所述信道状态信息参考信号占用的子载波的位置;接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述处理器接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;所述处理器根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在上述技术方案中,优选地,所述处理器当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
通过本发明的技术方案,在增大DRS发送机率的同时,能尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步。
附图说明
图1示出了非授权频谱的两种工作方式的示意图;
图2示出了Wi-Fi***的干扰避免规则的示意图;
图3示出了相关技术中基于FBE的帧结构的结构示意图;
图4示出了相关技术中基于LBE的LBT帧结构的结构示意图;
图5示出了相关技术中FDD帧结构中的PSS/SSS的结构示意图;
图6示出了相关技术中TDD帧结构中的PSS/SSS的结构示意图;
图7示出了根据本发明的一个实施例的参考信号的配置方法的流程示意图;
图8示出了根据本发明的一个实施例的参考信号的配置***的结构示意图;
图9示出了根据本发明的一个实施例的具有基站功能的设备的结构示意图;
图10示出了根据本发明的一个实施例的参考信号的接收方法的流程示意图;
图11示出了根据本发明的一个实施例的参考信号的接收***的结构示意图;
图12示出了根据本发明的一个实施例的终端的结构示意图;
图13示出了根据本发明的一个实施例的FDD帧结构中配置DRS的结构示意图;
图14示出了根据本发明的一个实施例的TDD帧结构中配置DRS的结构示意图;
图15示出了根据本发明的一个实施例的子载波位置与子帧编号的位置关系示意截图;
图16示出了根据本发明的另一个实施例的子载波位置与子帧编号的位置关系示意截图;
图17示出了本发明的另一个实施例的具有基站功能的设备的结构示意图;
图18示出了本发明的一个实施例的终端的结构示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图7示出了根据本发明的一个实施例的参考信号的配置方法的流程示意图。
如图7所示,示出了本发明的一个实施例的参考信号的配置方法,包括:步骤702,在DMTC中设置至少一个发现参考信号;步骤704,为所述至少一个发现参考信号配置发送参数;步骤706,将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
在该技术方案中,通过在DMTC中设置一个或多个发现参考信号,并为至少一个发现参考信号配置发送参数,然后将配置好的发送参数发送至终端,可以使终端根据具有基站功能的设备配置的发送参数,明确DMTC的周期、一个DMTC中的发现参考信号的总发送时间、数目、每个发现参考信号中的符号的数目、位置等各种信息,从而在增大发送发现参考信号的机率的同时,可以降低终端检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步,其中,一个DMTC中有多个帧结构(如DMTC周期是40ms时,就有4个帧结构),而该多个发送参考信号即DRS可以在同一个帧结构的不同子帧中,也可以在不同帧结构的不同子帧中,另外,具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及所 述为所述至少一个发现参考信号配置发送参数的过程,具体包括:为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或为所述至少一个发现参考信号配置总发送时间,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
在该技术方案中,通过向终端下发DMTC的发送周期和/或子帧级别的时间偏置,可以使终端首先确定DMTC占用了哪些子帧,以准确接收DMTC,这为进一步准确接收DRS的发送参数,为实现同步奠定基础;另外,通过向终端下发总发送时间,可以使终端确定至少一个DRS占用的子帧的数目和位置;通过向终端下发至少一个DRS数目、每个DRS占用的符号数和/或符号级别的时间偏置可以使终端准确确定DRS的总接收次数、每个DRS占用的目标子帧和/或前置子帧的符号的位置,进而实现子帧同步;而通过RRC信令下发非零功率的信道状态信息参考信号,可以使终端根据信道状态信息参考信号(CSI-RS,Rererence Signal)占用的子载波的位置或扰码准确确定DRS占用的子帧的真实编号,从而实现帧的同步。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
在该技术方案中,在为每个DRS配置至少一个CRS(Cell-specific Rererence Signal,小区专用参考信号)和CSI-RS,通过控制DRS连续占用3-14个符号,可以防止DRS因为没有连续占用帧结构的多个符号,而使得下行信道被其它设备占用,从而影响DRS的发送和接收。
在上述技术方案中,优选地,每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子 帧中的第六个符号;若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
在该技术方案中,在每个发现参考信号所在的帧结构为FDD帧结构时,通过控制每个发现参考信号中的主同步信号即PSS占用FDD帧结构的目标子帧中的第七个符号即编号为6的符号,以及控制辅同步信号即SSS占用目标子帧中的第六个符号即编号为5的符号;以及在每个发现参考信号所在的帧结构为TDD帧结构,通过控制每个发现参考信号中的主同步信号占用TDD帧结构的目标子帧中的第三个符号即编号为2的符号,以及控制辅同步信号即SSS占用与目标子帧相邻的前置子帧中的第十四个符号即编号为13的符号,使得本发明中的DRS中的PSS/SSS与现有技术中的PSS/SSS占用的symbol不变,从而使得UE实现子帧同步,并在一定程度上降低了终端检测DRS的复杂度,当然,目标子帧可以是FDD帧结构或TDD帧结构中的任一子帧,而不一定是FDD帧结构中的编号为0的第一个子帧或编号为5的第六个子帧,也不一定是TDD帧结构中的编号为1的第二个子帧或编号为6的第七个子帧,且第M个子帧为编号为M-1的子帧。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过RRC信令(Radio Resource Control,无线资源控制)向终端发送对应存储有子载波位置与子帧编号的对应关系的第一子帧编号参照表和/或子载波位置与运营商的对应关系的第一运营商参照表,可以使终端根据信道状态信息参考信号即CSI-RS实际占用的子载波的位置和SSS的类 型,从第一子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而使终端实现帧的同步,和/或从第一运营商参照表中准确确定发送每个发现参考信号的运营商,以使终端根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端或基站能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行或下行信道的信道情况。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过RRC信令(Radio Resource Control,无线资源控制)向终端发送对应存储有扰码与子帧编号对应关系的第二子帧编号参照表和/或扰码与运营商的第二运营商参照表,可以使终端根据信道状态信息参考信号的扰码和接收到的辅同步信号的类型,从第二子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而使终端实现帧的同步,和/或从第二运营商参照表中准确确定发送每个发现参考信号的运营商,以使终端根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端或基站能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行或下行信道的信道情况。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置 子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在该技术方案中,通过RRC信令(Radio Resource Control,无线资源控制)向终端发送对应存储有任一发现参考信号的属性信息即任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)与子帧编号对应关系的第三子帧编号参照表和/或任一发现参考信号的属性信息与运营商对应关系的第三运营商参照表,可以使终端根据任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)和接收到的辅同步信号的类型,从第三子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而使终端实现帧的同步,和/或从第三运营商参照表中准确确定发送每个发现参考信号的运营商,以使终端根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端或基站能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行或下行信道的信道情况。
在上述技术方案中,优选地,所述为所述至少一个发现参考信号中的每个所述发现参考信号配置所述至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号的过程,具体包括:根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
在该技术方案中,通过根据帧结构的类型即(FDD帧结构和TDD帧结构)和/或每个发现参考信号中的辅同步信号的类型,为每个发现参考信号配置至少一个小区专用参考信号和/或信道状态信息参考信号,可以使DRS连续占用帧结构中的若干个符号,从而防止DRS因为没有连续占用帧结构的多个符号,而使得下行信道被其它设备占用,从而影响DRS的发送和接收。
在上述技术方案中,优选地,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,确定所述辅同步信号的类型为第一类型;当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,确定所述辅同步信号的类型为第二类型。
在该技术方案中,通过按照辅同步信号即SSS占用的是TDD或FDD帧结构中的第一个至第五个子帧中的任一子帧、或第六个至第十个子帧中的任一子帧而将SSS分为第一类型和第二类型,便于终端在确定CSI-RS占用的子载波的位置后,结合SSS的类型,从第一子帧编号参照表中准确锁定目标子帧或前置子帧的编号,或从第一运营商参照表中准确发送发现参考信号的运营商,同时便于基站根据帧结构的类型和/或每个DRS中的SSS的类型,为每个DRS配置至少一个CSR和/或CSI-RS,以使DRS可以连续占用帧结构中的若干个符号。
在上述技术方案中,优选地,在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信号占用信号占用的符号数小于M个,其中,M为正整数。
在该技术方案中,在下行信道检测子帧(即CCA,Clear Channel Assessment)检测到下行信号空闲时,通过向终端发送与CCA占用的符号位置最近的后置DRS,可以使终端准确地检测到DRS,从而实现帧同步和子帧同步,而若在一个DMTC周期内发送过一个DRS后,就可以停止发送其他DRS,以防止发送DRS过多而使得DRS占用太久下行信道,进而影响其他下行信号的正常发送或其它设备的下行发送;以及在检测到下行信道空闲之后,若还没有到达后置发现参考信号的发送位置,则发送信道占用信号(如预留信 号)或initial signal(初始信号)或CRS或CSI-RS,但是发送这些信号的时间总和得有限制,比如小于M个symbol,这样既可以为后置发送参考信号争得发送机会,又可以避免这些预留信道的时间过长,而使得其它设备无法抢占到信道。
在上述技术方案中,优选地,在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
在该技术方案中,由于基站通知终端一个DMTC中有多少个DRS的可发送位置,终端就会盲检多少次,但事实上,基站检测到下行信道繁忙时,就不会发送DRS,这增大了终端的检测复杂性,因此,通过向终端发送下行控制信息即DCI,可以指示终端基站是否真的发送DRS,这进一步降低了终端检测DRS的复杂度。
在上述技术方案中,优选地,在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
在该技术方案中,在为每个DRS配置CSI-RS时,若当前小区的具有基站功能的设备与其他小区的其他具有基站功能的设备为每DRS配置的CSI-RS占用相同真实编号的目标子帧或前置子帧即占用同一编号的子帧,则应该控制当前小区的具有基站功能的设备配置的CSI-RS占用的子载波与其他具有基站功能的设备为每个DRS配置的CSI-RS占用的子载波的位置不同,从而防止当前小区的具有基站功能的设备的终端测量CSI-RS时,受到其他小区的影响。
在上述技术方案中,优选地,所述将所述发送参数发送至被所述具有基站功能的设备服务的终端,具体包括:通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及所述配置方法适用于LTE***中的参考信号。
在该技术方案中,通过RRC信令将发送参数发送至终端,可以在增大DRS 发送机率的同时,尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步。
图8示出了根据本发明的一个实施例的参考信号的配置***的结构示意图。
如图8所示,示出了本发明的一个实施例的参考信号的配置***800,包括:设置单元802,在DMTC中设置至少一个发现参考信号;配置单元804,为所述至少一个发现参考信号配置发送参数;发送单元806,将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
在该技术方案中,通过在DMTC中设置一个或多个发现参考信号,并为至少一个发现参考信号配置发送参数,然后将配置好的发送参数发送至终端,可以使终端根据具有基站功能的设备配置的发送参数,明确DMTC的周期、一个DMTC中的发现参考信号的总发送时间、数目、每个发现参考信号中的符号的数目、位置等各种信息,从而在增大发送发现参考信号的机率的同时,可以降低终端检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步,其中,一个DMTC中有多个帧结构(如DMTC周期是40ms时,就有4个帧结构),而该多个发送参考信号即DRS可以在同一个帧结构的不同子帧中,也可以在不同帧结构的不同子帧中,另外,具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及所述配置单元804具体用于:为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或为所述至少一个发现参考信号配置总发送时间,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
在该技术方案中,通过向终端下发DMTC的发送周期和/或子帧级别的时间偏置,可以使终端首先确定DMTC占用了哪些子帧,以准确接收DMTC, 这为进一步准确接收DRS的发送参数,为实现同步奠定基础;另外,通过向终端下发总发送时间,可以使终端确定至少一个DRS占用的子帧的数目和位置;通过向终端下发至少一个DRS数目、每个DRS占用的符号数和/或符号级别的时间偏置可以使终端准确确定DRS的总接收次数、每个DRS占用的目标子帧和/或前置子帧的符号的位置,进而实现子帧同步;而通过RRC信令下发非零功率的信道状态信息参考信号,可以使终端根据信道状态信息参考信号(CSI-RS,Rererence Signal)占用的子载波的位置或扰码准确确定DRS占用的子帧的真实编号,从而实现帧的同步。
在上述技术方案中,优选地,还包括:第一控制单元808,在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
在该技术方案中,在为每个DRS配置至少一个CRS(Cell-specific Rererence Signal,小区专用参考信号)和CSI-RS,通过控制DRS连续占用3-14个符号,可以防止DRS因为没有连续占用帧结构的多个符号,而使得下行信道被其它设备占用,从而影响DRS的发送和接收。
在上述技术方案中,优选地,每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及所述配置***还包括:第二控制单元810,在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
在该技术方案中,在每个发现参考信号所在的帧结构为FDD帧结构时,通过控制每个发现参考信号中的主同步信号即PSS占用FDD帧结构的目标子帧中的第七个符号即编号为6的符号,以及控制辅同步信号即SSS占用目标 子帧中的第六个符号即编号为5的符号;以及在每个发现参考信号所在的帧结构为TDD帧结构,通过控制每个发现参考信号中的主同步信号占用TDD帧结构的目标子帧中的第三个符号即编号为2的符号,以及控制辅同步信号即SSS占用与目标子帧相邻的前置子帧中的第十四个符号即编号为13的符号,使得本发明中的DRS中的PSS/SSS与现有技术中的PSS/SSS占用的symbol不变,从而使得UE实现子帧同步,并在一定程度上降低了终端检测DRS的复杂度,当然,目标子帧可以是FDD帧结构或TDD帧结构中的任一子帧,而不一定是FDD帧结构中的编号为0的第一个子帧或编号为5的第六个子帧,也不一定是TDD帧结构中的编号为1的第二个子帧或编号为6的第七个子帧,且第M个子帧为编号为M-1的子帧。
在上述技术方案中,优选地,所述发送单元806用于:在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过RRC信令(Radio Resource Control,无线资源控制)向终端发送对应存储有子载波位置与子帧编号的对应关系的第一子帧编号参照表和/或子载波位置与运营商的对应关系的第一运营商参照表,可以使终端根据信道状态信息参考信号即CSI-RS实际占用的子载波的位置和SSS的类型,从第一子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而使终端实现帧的同步,和/或从第一运营商参照表中准确确定发送每个发现参考信号的运营商,以使终端根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端或基站能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行或下行信道的信道情况。
在上述技术方案中,优选地,所述发送单元806还用于:在为每个所述发 现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过RRC信令(Radio Resource Control,无线资源控制)向终端发送对应存储有扰码与子帧编号对应关系的第二子帧编号参照表和/或扰码与运营商的第二运营商参照表,可以使终端根据信道状态信息参考信号的扰码和接收到的辅同步信号的类型,从第二子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而使终端实现帧的同步,和/或从第二运营商参照表中准确确定发送每个发现参考信号的运营商,以使终端根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端或基站能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行或下行信道的信道情况。
在上述技术方案中,优选地,所述发送单元806还用于:在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在该技术方案中,通过RRC信令(Radio Resource Control,无线资源控制)向终端发送对应存储有任一发现参考信号的属性信息即任一发现参考信号 在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)与子帧编号对应关系的第三子帧编号参照表和/或任一发现参考信号的属性信息与运营商对应关系的第三运营商参照表,可以使终端根据任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)和接收到的辅同步信号的类型,从第三子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而使终端实现子帧的同步,和/或从第三运营商参照表中准确确定发送每个发现参考信号的运营商,以使终端根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端或基站能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行或下行信道的信道情况。
在上述技术方案中,优选地,所述配置单元804具体还用于:根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
在该技术方案中,通过根据帧结构的类型即(FDD帧结构和TDD帧结构)和/或每个发现参考信号中的辅同步信号的类型,为每个发现参考信号配置至少一个小区专用参考信号和/或信道状态信息参考信号,可以使DRS连续占用帧结构中的若干个符号,从而防止DRS因为没有连续占用帧结构的多个符号,而使得下行信道被其它设备占用,从而影响DRS的发送和接收。
在上述技术方案中,优选地,还包括:确定单元812,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,确定所述辅同步信号的类型为第一类型;当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,确定所述辅同步信号的类型为第二类型。
在该技术方案中,通过按照辅同步信号即SSS占用的是TDD或FDD帧结构中的第一个至第五个子帧中的任一子帧、或第六个至第十个子帧中的任一 子帧而将SSS分为第一类型和第二类型,便于终端在确定CSI-RS占用的子载波的位置后,结合SSS的类型,从第一子帧编号参照表中准确锁定目标子帧或前置子帧的编号,或从第一运营商参照表中准确发送发现参考信号的运营商,同时便于基站根据帧结构的类型和/或每个DRS中的SSS的类型,为每个DRS配置至少一个CSR和/或CSI-RS,以使DRS可以连续占用帧结构中的若干个符号。
在上述技术方案中,优选地,还包括:检测单元814,在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;所述发送单元806还用于:在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
在该技术方案中,在下行信道检测子帧(即CCA,Clear Channel Assessment)检测到下行信号空闲时,通过向终端发送与CCA占用的符号位置最近的后置DRS,可以使终端准确地检测到DRS,从而实现帧同步和子帧同步,而若在一个DMTC周期内发送过一个DRS后,就可以停止发送其他DRS,以防止发送DRS过多而使得DRS占用太久下行信道,进而影响其他下行信号的正常发送或其它设备的下行发送;以及在检测到下行信道空闲之后,若还没有到达后置发现参考信号的发送位置,则发送信道占用信号(如预留信号)或initial signal(初始信号)或CRS或CSI-RS,但是发送这些信号的时间总和得有限制,比如小于M个symbol,这样既可以为后置发送参考信号争得发送机会,又可以避免这些预留信道的时间过长,而使得其它设备无法抢占到信道。
在上述技术方案中,优选地,所述发送单元806还用于:在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
在该技术方案中,由于基站通知终端一个DMTC中有多少个DRS的可发 送位置,终端就会盲检多少次,但事实上,基站检测到下行信道繁忙时,就不会发送DRS,这增大了终端的检测复杂性,因此,通过向终端发送下行控制信息即DCI,可以指示终端基站是否真的发送DRS,这进一步降低了终端检测DRS的复杂度。
在上述技术方案中,优选地,第三控制单元816,在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
在该技术方案中,在为每个DRS配置CSI-RS时,若当前小区的具有基站功能的设备与其他小区的其他具有基站功能的设备为每DRS配置的CSI-RS占用相同真实编号的目标子帧或前置子帧即占用同一编号的子帧,则应该控制当前小区的具有基站功能的设备配置的CSI-RS占用的子载波与其他具有基站功能的设备为每个DRS配置的CSI-RS占用的子载波的位置不同,从而防止当前小区的具有基站功能的设备的终端测量CSI-RS时,受到其他小区的影响。
在上述技术方案中,优选地,所述发送单元806还用于:通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及所述配置***适用于LTE***中的参考信号。
在该技术方案中,通过RRC信令将发送参数发送至终端,可以在增大DRS发送机率的同时,尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步。
图9示出了根据本发明的一个实施例的具有基站功能的设备的结构示意图。
如图9所示,示出了本发明的一个实施例的具有基站功能的设备900,包括:如上述技术方案中任一项所述的参考信号的配置***800。
在该技术方案中,通过在具有基站功能的设备900上配置参考信号的配置***800,可以使具有基站功能的设备900具有与上述参考信号的配置***800相同的技术效果,此处不再赘述。
图10示出了根据本发明的一个实施例的参考信号的接收方法的流程示意图。
如图10所示,示出了本发明的一个实施例的参考信号的接收方法,包括:步骤1002,接收所述具有基站功能的设备下发的所述发送参数;步骤1004,根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
在该技术方案中,通过接收DMTC中设置一个或多个发现参考信号,可以根据具有基站功能的设备配置的发送参数,明确DMTC的周期、一个DMTC中的发现参考信号的总发送时间、数目、每个发现参考信号中的符号的数目、位置等各种信息,从而在增大发送发现参考信号的机率的同时,可以降低终端检测DRS的复杂度,以准确地接收DRS,从而实现帧同步和子帧的同步,其中,一个DMTC中有多个帧结构(如DMTC周期是40ms时,就有4个帧结构)时,该多个发送参考信号即DRS可以在同一个帧结构的不同子帧中,也可以在不同帧结构的不同子帧中。
在上述技术方案中,优选地,所述接收所述具有基站功能的设备下发的所述发送参数的过程,具体包括:接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
在该技术方案中,通过接收下发DMTC的发送周期和/或子帧级别的时间偏置,首先可以确定DMTC占用了哪些子帧,以准确接收DMTC,这为进一步准确接收DRS的发送参数,为实现同步奠定基础;另外,通过接收下发的总发送时间,可以确定至少一个DRS占用的子帧的数目和位置;通过接收下 发的至少一个DRS数目、每个DRS占用的符号数和/或符号级别的时间偏置可以准确确定DRS的总接收次数、每个DRS占用的目标子帧和/或前置子帧的符号的位置,进而实现子帧同步;而通过RRC信令接收下发的非零功率的信道状态信息参考信号,可以根据信道状态信息参考信号(CSI-RS,Rererence Signal)占用的子载波的位置或扰码准确确定DRS占用的子帧的真实编号,从而实现帧的同步。
在上述技术方案中,优选地,在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过接收具有基站功能的设备通过RRC信令(Radio Resource Control,无线资源控制)下发的对应存储有子载波位置与子帧编号的第一子帧编号参照表和/或子载波位置与运营商的第一运营商参照表,可以根据信道状态信息参考信号即CSI-RS实际占用的子载波的位置和SSS的类型,从第一子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而实现帧的同步,和/或从第一运营商参照表中准确确定发送每个发现参考信号的运营商,以根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行信道的信道情况。
在上述技术方案中,优选地,接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过接收RRC信令(Radio Resource Control,无线资源控制)下发的对应存储有扰码与子帧编号对应关系的第二子帧编号参照表和/或扰码与运营商对应关系的第二运营商参照表,可以使终端根据信道状态信息参考信号的扰码和接收到的辅同步信号的类型,从第二子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而实现帧的同步,和/或从第二运营商参照表中准确确定发送每个发现参考信号的运营商,以根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行信道的信道情况。
在上述技术方案中,优选地,当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在该技术方案中,通过接收RRC信令(Radio Resource Control,无线资源控制)下发的对应存储有任一发现参考信号的属性信息即任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)与子帧编号对应关系的第三子帧编号参照表和/或任一发现参考信号的属性信息与运营商对应关系的第三运营商参照表,可以根据任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)和接收到的辅同步信号的类型,从第三子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而实现帧的同步,和/或从第三运营商参照表中准确确定发送每个发现参考信号的运营商,以根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在 信道状态检测时,终端能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行信道的信道情况。
图11示出了根据本发明的一个实施例的参考信号的接收***的结构示意图。
如图11所示,示出了本发明的一个实施例的参考信号的接收***1100,包括:第一接收单元1102,接收所述具有基站功能的设备下发的所述发送参数;第二接收单元1104,根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
在该技术方案中,通过接收DMTC中设置一个或多个发现参考信号,可以根据具有基站功能的设备配置的发送参数,明确DMTC的周期、一个DMTC中的发现参考信号的总发送时间、数目、每个发现参考信号中的符号的数目、位置等各种信息,从而在增大发送发现参考信号的机率的同时,可以降低终端检测DRS的复杂度,以准确地接收DRS,从而实现帧同步和子帧的同步,其中,一个DMTC中有多个帧结构(如DMTC周期是40ms时,就有4个帧结构)时,该多个发送参考信号即DRS可以在同一个帧结构的不同子帧中,也可以在不同帧结构的不同子帧中。
在上述技术方案中,优选地,所述第一接收单元1102具体用于:接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
在该技术方案中,通过接收下发DMTC的发送周期和/或子帧级别的时间 偏置,首先可以确定DMTC占用了哪些子帧,以准确接收DMTC,这为进一步准确接收DRS的发送参数,为实现同步奠定基础;另外,通过接收下发的总发送时间,可以确定至少一个DRS占用的子帧的数目和位置;通过接收下发的至少一个DRS数目、每个DRS占用的符号数和/或符号级别的时间偏置可以准确确定DRS的总接收次数、每个DRS占用的目标子帧和/或前置子帧的符号的位置,进而实现子帧同步;而通过RRC信令接收下发的非零功率的信道状态信息参考信号,可以根据信道状态信息参考信号(CSI-RS,Rererence Signal)占用的子载波的位置或扰码准确确定DRS占用的子帧的真实编号,从而实现帧的同步。
在上述技术方案中,优选地,还包括:获取单元1106,在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;所述第二接收单元1104还用于:接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;所述接收***还包括:第一确定单元1108,根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过接收具有基站功能的设备通过RRC信令(Radio Resource Control,无线资源控制)下发的对应存储有子载波位置与子帧编号的第一子帧编号参照表和/或子载波位置与运营商的第一运营商参照表,可以根据信道状态信息参考信号即CSI-RS实际占用的子载波的位置和SSS的类型,从第一子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而实现帧的同步,和/或从第一运营商参照表中准确确定发送每个发现参考信号的运营商,以根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行信道的信道情况。
在上述技术方案中,优选地,所述第二接收单元1104还用于:接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参 考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;所述接收***还包括:第二确定单元1110,根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表确定发送每个所述发现参考信号的运营商。
在该技术方案中,通过接收RRC信令(Radio Resource Control,无线资源控制)下发的对应存储有扰码与子帧编号对应关系的第二子帧编号参照表和/或扰码与运营商对应关系的第二运营商参照表,可以使终端根据信道状态信息参考信号的扰码和接收到的辅同步信号的类型,从第二子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而实现帧的同步,和/或从第二运营商参照表中准确确定发送每个发现参考信号的运营商,以根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行信道的信道情况。
在上述技术方案中,优选地,还包括:第三确定单元1112,当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
在该技术方案中,通过接收RRC信令(Radio Resource Control,无线资源控制)下发的对应存储有任一发现参考信号的属性信息即任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)与子帧编号对应关系的第三子帧编号参照表和/或任一发现参考信号的属性信息与运营商对应关系的第三运营商参照表,可以根据任一发现参考信号在目标子帧或前置子帧中的可占用的符号数、 符号位置、每个符号位置上配置的内容(即PSS\SSS\CRS\CSI-RS)和接收到的辅同步信号的类型,从第三子帧编号参照表中准确确定目标子帧的真实编号或前置子帧的真实编号,从而实现帧的同步,和/或从第三运营商参照表中准确确定发送每个发现参考信号的运营商,以根据每个DRS将不同运营商的信号功率区分开,能够获得不同运营商的不同cell的RRM测量结果;也使得在信道状态检测时,终端能将来自同一运营商的信号功率去除后,再与功率门槛比较,从而准确的确定上行信道的信道情况。
图12示出了根据本发明的一个实施例的终端的结构示意图。
如图12所示,示出了本发明的一个实施例的终端1200,包括:如上述技术方案中任一项所述的参考信号的接收***1100。
在该技术方案中,通过在终端1200上设置参考信号的接收***1100,可以使终端1200能够较为容易、准确地检测并接收DRS,从而实现帧同步和子帧的同步。
下面将结合图13至图16进一步详细说明本发明中的技术方案(本发明主要针对背景技术中的第二种方法提出的改进方案):
1、在一个DMTC中配置多个DRS的可发送位置,比如传统DRS的长度是1~5ms,那么可以配置1~5个可发送位置,每个发送位置长度小于或等于1ms。
2、每个发送位置中,DRS中的PSS和SSS的相对位置保持不变,如在FDD中,SSS在PSS前面紧挨着的一个symbol;而TDD中,SSS在PSS前面且间隔两个symbol。
3、每个发送位置中,DRS中的PSS和SSS占用固定的symbol位置。比如,在FDD中,将PSS设置在任一子帧的第一个slot(时隙)的最后一个symbol中,并将SSS与PSS设置在同一子帧同一slot中,但SSS位于倒数第二个symbol中,比PSS提前一个symbol;对于TDD而言,将PSS设置在任一子帧的第三个symbol中,而SSS设置在与该任一子帧相邻的前置子帧(如该任一子帧是1#子帧时,前置子帧就是同一帧结构的0#子帧,而该任一子帧是6#子帧时,前置子帧就是同一帧结构的5#子帧)的最后一个symbol中发送,比PSS提前3个symbol。
4、控制DRS连续占用N个symbol数,N是大于等于3(FDD中DRS占用的symbol数大于等于3,如图5所示;TDD中,DRS占用的symbol数大于等于4,如图6所示的PSS和SSS中间的两个symbol必须被填充),并用已有的CRS和/或NZP CSI-RS和/或新的RS填充。另外,DRS中除了PSS和SSS外,CRS必须占用至少1个symbol,NZP CSI-RS和新的RS可有可没有。
5、另外,由于现有技术中的PSS/SSS是在固定的subframe发送,所以可以实现帧同步。而该方法PSS/SSS在任意subframe都可以发送,所以为了实现帧同步,本发明给出了表示subframe编号的方法:即根据不同的填充方法,结合SSS的区别,可以使终端确定DRS的真实编号,具体过程如下:
0#~4#subframe用传统的subframe#0号的SSS;5#~9#subframe用传统的subframe#5号的SSS,这样子帧就被区分为两组,接下来根据不同的填充方法,区分组内子帧号。
因为每组有5个subframe,所以至少要5种填充方法。且DRS中的PSS和SSS占用了两个symbol了,而DRS中的CRS必须占用一个symbol:
1)针对FDD帧结构:
如图13所示,对于FDD的情况(以DRS占用FDD帧结构中的#5子帧为例),因为CSI-RS可能占用的符号位置有symbol#5和#6,#9和10#5,12#和#13(如图15和图16所示,其中,图15示出了两个发送天线(即天线端口为15、16)时CSI-RS的可发送时频位置;图16示出了四个发送天线(即天线端口为15、16、17、18)时CSI-RS的可发送时频位置。在图15和图16中,横坐标symbol index代表符号的真实编号,而R15,16代表CSI-RS在天线端口15和16处传输,而R17,18代表CSI-RS在天线端口17和18处传输,R右上角的编号代表CSI-RS的可发送时频位置编号。纵坐标subcarrier index代表子载波的标号即子载波的位置),而symbol#5,#6被PSS/SSS占用了,所以CSI-RS选择占用symbol#9和#10,不选择占用symbol#12和#13是为了保证最短的DRS长度。那么一个DRS occasion(DRS可发送位置)占用了1个subframe内的symbol#5~#10,一共6个symbol。
Symbol#5、#6、#7分别固定为SSS、PSS、CRS。Symbol#8用CRS填充,与天线数为4时情况一样,但这不表示天线数为4,天线数为2时也可以 这样。Symbol#9和#10由CSI-RS填充,不同resource configuration(资源结构)的CSI-RS所在的子载波位置不一样,从而代表不同的subframe编号。这里可以选择12个子载波中只占用1个子载波的情况(这种相当于有12种CSI-RS能指示12种subframe编号,如图15所示:两个发送天线时的CSI-RS时频位置),也可以选择12个子载波中能均匀分布占用两个子载波的情况(这种相当于有6种CSI-RS能指示6种subframe编号,如图16所示:四个发送天线时的CSI-RS时频位置)。
2)针对TDD帧结构(以DRS占用FDD帧结构中的#5、#6子帧为例):
如图14所示,对于TDD的情况,因为CSI-RS可能占用的符号位置有symbol#5和#6,#9和#10,#12和#13(如图15和图16所示),而symbol#13、#2被PSS/SSS占用了,所以CSI-RS选择占用symbol#9和#10是为了保证CSI-RS的resource configuration的数据多于5个。那么一个DRS occasion占用了1个subframe内的symbol#9~13和下1个subframe的0~2,一共8个symbol。
当然,也可以选择将CSI-RS放在新的symbol位置,比如前面subframe的symbol#11和#12,或者后面subframe的symbol#3和#4,这样,DRS就可以只占用6个symbol了。
另外,从上述分析中可见,因为TDD的DRS占用了两个subframe,而CSI-RS指示的subframe号是CSI-RS所在的subframe的编号(即前置子帧的编号),如图14所示。
另外,如果每个DRS发送之前,CCA检测到下行信道空闲,而没有到DRS的发送位置,则为了占用信道,在DRS之前也可以发送reservation signal(预留信号)或initial signal(初始信号)或CRS或CSI-RS,但是发送这些信号的时间总和得有限制,比如小于M个symbol,这可以避免预留信道占用时间过长,使得其它设备无法抢占到信道。
6、下面介绍基站如何通知UE,DRS的发送参数:
RRC信令通知DMTC的周期,offset(即子帧级别的偏置);
RRC信令通知DMTC中需要检测DRS的时间长度,1~5ms;
RRC信令通知DMTC中可发送DRS的位置数目,1~5,以及符号级别的位置offset即符号级别的时间偏置(比如symbol#5),每个DRS占用的符号数 目(比如6)。
RRC信令通知不同的CSI-RS resource configuration对应的不同的subframe编号。如表1(即第一子帧编号参照表)所示,参考图16:RRC信令包含以下4列。第1列标识CSI-RS的resource configuration的编号,编号直接从图中R右上角的index(标号)获得,只是个表示形式,但能表示编号,例如:index为1表示在每12个子载波中的#5和#11号子载波上发送非零功率的CSI-RS即非零功率的CSI-RS占用#5和#11号子载波,而其它位置为不发送CSI-RS,而编号为6表示每12个子载波中的#4和#10号子载波上发送非零功率的CSI-RS,而其它位置为不发送CSI-RS,依此类推。第二列,是该位置的非零功率CSI-RS的发送对应表示的组内subframe编号,只表示0~4;第三列是DRS中SSS的类型,之前说了如果subframe是0~4,则使用subframe#0时发送的SSS类型即第一类型,否则使用subframe#5时发送的SSS类型即第二类型。第四列是结合第二列和第三列给出的最终的DRS占用的subframe编号即真实编号,其过程为:SSS编号为1的第二列subframe编号加上5,得出最终的subframe编号,即是第四列。
表1
Figure PCTCN2015085864-appb-000001
Figure PCTCN2015085864-appb-000002
通过以上信令,UE可以盲检多次,RRC信令中通知了DMTC中有多少个可发送DRS的位置,则UE就会最多盲检多少次,直到检测到发送DRS为止。比如:基站通知终端DMTC中的5个subframe中的每个subframe都有1个固定位置发送DRS,则UE就需要盲检最多5次,但实际上有些可发送位置因为信道检测忙,基站并没有发送DRS。
因此,为了进一步减少UE盲检次数,基站可以在真正发送了DRS的时候发送指示信令给UE,比如:通过PDCCH(physical Downlink Control Channel物理下行控制信道)或者EPDCCH(Enhanced Physical Downlink Control Channel,增强下行物理控制信道)在授权频谱或者非授权频谱上发送DCI(Downlink Control Information,下行控制信息)指示信令给UE,那么UE就获知了该位置确实发送了DRS。
相邻小区的同一个subframe发送的NZP CSI-RS的resource configuration最好不同。便于利用NZP CSI-RS测量信号强度,如果同一个subframe都在同一个resource configuration发送的话,测量时NZP CSI-RS就会受到邻小区的干扰,如果邻小区在别的符号位置发送,即同一个符号位置是空着的话,则检测结果会比较准确。
7、下面介绍UE的行为:
UE接收RRC信令,获得DMTC的周期,offset;从而定位到DMTC是在哪些subframe。
UE接收RRC信令,获得DMTC中需要检测DRS的时间长度,1~5ms,从而了解到最多需要检测多少次DRS。
UE接收RRC信令,获得DMTC中可发送DRS的位置数目,1~5,以及符号级别的位置offset(比如symbol#5),每个DRS占用的符号数目(比如6)。从而了解到每个DRS发送位置具体包含哪些symbol。
UE接收RRC信令,获得不同的CSI-RS resource configuration对应的不同的subframe编号。通过检测到的CSI-RS的位置信息,以及SSS的类型,在参照表1得出最终的subframe编号。具体过程如下:RRC信令包含以下4列。 第1列标识CSI-RS的resource configuration的编号,编号直接从图15和图16中R右上角的index获得,只是个表示形式,但能表示编号。例如:index为1表示在每12个子载波中的#5和#11号子载波上发送非零功率的CSI-RS即非零功率的CSI-RS占用#5和#11号子载波,而其它位置为不发送CSI-RS,而编号为6表示每12个子载波中的#4和#10号子载波上发送非零功率的CSI-RS,而其它位置为不发送CSI-RS,依此类推。第二列,是该位置的非零功率CSI-RS的发送对应表示的组内subframe编号,只表示0~4;第三列是DRS中SSS的类型,之前说了如果subframe是0~4,则使用subframe#0时发送的SSS类型,否则使用subframe#5时发送的SSS类型。第四列是结合第二列和第三列给出的最终的DRS占用的subframe编号即真实编号,其过程为:SSS编号为1的第二列subframe编号加上5,得出最终的subframe编号,即是第四列。
8、DRS中的填充方式比如CSI-RS的resource configuration的不同也能用来标识不同的运营商,标识方法可以将运营商换成表1中的第二列和第四列subframe编号即可(如表2所示,表2即表示第一运营商参照表)。或者利用NZP CSI-RS的扰码标识不同的subframe编号(如表3所示,表3即表示第二子帧编号参照表)和不同的运营商(如表4所示,表4即表示第二运营商参照表),如扰码为ECGI(E-UTRAN Cell Global Identifier,E-UTRAN小区全局标识符),其中,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进的UMTS陆地无线接入网),即LTE中的移动通信无线网络。因为ECGI就是PLMN ID(Public Land Mobile Network Identity,公共陆地移动网络标识)+PCI(physical-layer Cell identity,物理层小区标识),所以也可以直接NZP CSI-RS的resource configuration或者扰码显示PLMN ID即可。这样,如果需要终端在CCA检测时判断出运营商标识,以便将同一运营商的信号功率去除后再与threshold(功率阈值),则CCA的时长得包含整个symbol,而且限定在发送运营商标识的symbol。或者将发送运营商标识的信号发送粒度降低,以便在较短的CCA时间内也能检测到运营商标识。
表2
Figure PCTCN2015085864-appb-000003
Figure PCTCN2015085864-appb-000004
表2和图16可以看出,使用symbol#9和#10的四发送天线时的CSI-RS时频位置,结合SSS类型,最多可以指示12种运营商;如果使用symbol#9和#10的二发送天线时的CSI-RS时频位置,结合SSS类型,则最多可以指示24种运营商。另外,表1和表2也可以结合起来,也就是CSI-RS时频位置即占用的子载波位置(例如,图15中的R1 15,16表示CSI-RS占用时频中的编号为11的第12个子载波,且在天线端口号15、16处发出,依次类推)和SSS的类型,联合起来指示subframe编号和运营商。
表3
Figure PCTCN2015085864-appb-000005
Figure PCTCN2015085864-appb-000006
表3所示,因为只需要指示10个subframe编号,而且由SSS类型能区分为两组,所以只需要指示组内5种subframe编号,则5组不同的扰码即可。
表4
Figure PCTCN2015085864-appb-000007
表4可以看出,使用5种扰码,结合SSS类型,最多可以指示10种运营商;如果需要指示更多种运营商,则增加扰码数目即可。另外,表3和表4也可以结合起来,也就是CSI-RS扰码和SSS的类型,联合起来指示subframe编号和运营商。
或者前面4个表任意组合起来,CSI-RS的时频位置、扰码和SSS的类型,联合起来指示subframe编号和运营商。
最后,DRS的组成的属性信息不一样也能标识不同的subframe号(如表5所示,表5即表示第三子帧编号参照表)或运营商(如表6所示,表6即表 示第三运营商参照表),比如FDD有多种DRS的组成:
组成1:包含symbol#4(填充CRS),#5(填充SSS),#6(填充PSS);
组成2:包含symbol#5(填充SSS),#6(填充PSS),#7(填充CRS);
组成3:包含symbol#4(填充CRS),#5(填充SSS),#6(填充PSS),7(填充CRS);
组成4:包含symbol#5(填充SSS),#6(填充PSS),7(填充CRS),#8(填充CRS),#9(填充NZP CSI-RS),10(填充NZP CSI-RS);
组成5:包含symbol#4(填充CRS),#5(填充SSS),#6(填充PSS),#7(填充CRS),#8(填充CRS),#9(填充NZP CSI-RS),#10(填充NZP CSI-RS);
组成6:包含symbol#4(填充CRS),#5(填充SSS),#6(填充PSS),#7(填充CRS),#8(填充CRS),#9(填充NZP CSI-RS),#10(NZP CSI-RS填充),#11(填充CRS);
组成7:包含symbol#5(填充SSS),#6(填充PSS),7(填充CRS),#8(填充CRS),#9(填充NZP CSI-RS),#10(填充NZP CSI-RS),#11(填充CRS)。
而其信令和UE行为类似,DRS组成属性信息不同就会指示不同的subframe号。
表5
Figure PCTCN2015085864-appb-000008
Figure PCTCN2015085864-appb-000009
表5给出根据DRS组成的属性信息不同,比如占用的符号数目,位置和每个符号填充的内容不同,结合SSS的类型来指示subframe编号。
表6
Figure PCTCN2015085864-appb-000010
表6根据DRS组成的属性信息不同,比如占用的符号数目,位置和每个符号填充的内容不同,结合SSS的类型来指示运营商,如果想指示更多的运营商,则使用更多不同的属性信息。
表2-表6的内容都可以与表1一样通过RRC信令通知给终端,终端的行为也与接收到表1的RRC信令时一样,通过接收到的信息和参照表来决定subframe编号和/或运营商。
图17示出了本发明的另一个实施例的具有基站功能的设备的结构示意图;如图17所示,所述具有基站功能的设备可以包括:至少一个处理器171,例如CPU,至少一个通信总线172以及存储器173;通信总线172用于实现这 些组件之间的连接通信;存储器173可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器173中存储一组程序代码,且处理器171用于调用存储器173中存储的程序代码,执行以下操作:
在DMTC中设置至少一个发现参考信号;为所述至少一个发现参考信号配置发送参数;将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
其中,所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及,所述处理器171为所述至少一个发现参考信号配置发送参数的过程,具体包括:为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或,为所述至少一个发现参考信号配置总发送时间,和/或,为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或,为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
优选地,所述处理器171在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
优选地,每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及,所述处理器171在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
优选地,所述处理器171在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
优选地,所述处理器171在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
优选地,所述处理器171在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
优选地,所述处理器171为所述至少一个发现参考信号中的每个所述发现参考信号配置所述至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号的过程,具体包括:根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个 小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
优选地,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,所述处理器171确定所述辅同步信号的类型为第一类型;当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,所述处理器171确定所述辅同步信号的类型为第二类型。
优选地,所述处理器171在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;所述处理器171在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及,在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
优选地,所述处理器171在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
优选地,所述处理器171在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
优选地,所述处理器171将所述发送参数发送至被所述具有基站功能的设备服务的终端,具体包括:通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及,所述配置方法适用于LTE***中的参考信号。
图18示出了本发明的另一个实施例的终端的结构示意图;如图18所示,所述终端可以包括:至少一个处理器181,例如CPU,至少一个通信总线182以及存储器183;通信总线182用于实现这些组件之间的连接通信;存储器183可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器183中存储一组程序代码,且处理器181用于调用存储器183中存储的程序代码,执行以下操作:
接收所述具有基站功能的设备下发的所述发送参数;根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
优选地,所述处理器181接收所述具有基站功能的设备下发的所述发送参数的过程,具体包括:接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或,接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或,接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或,接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
优选地,所述处理器181在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
优选地,所述处理器181接收所述具有基站功能的设备通过RRC信令下 发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;所述处理器181根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
优选地,所述处理器181当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
以上结合附图详细说明了本发明的技术方案,在增大DRS发送机率的同时,能尽量降低UE检测DRS的复杂度,以使终端准确地接收DRS,从而实现帧同步和子帧的同步。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (54)

  1. 一种参考信号的配置方法,用于具有基站功能的设备,其特征在于,包括:
    在DMTC中设置至少一个发现参考信号;
    为所述至少一个发现参考信号配置发送参数;
    将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
  2. 根据权利要求1所述的参考信号的配置方法,其特征在于,
    所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及
    所述为所述至少一个发现参考信号配置发送参数的过程,具体包括:
    为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或
    为所述至少一个发现参考信号配置总发送时间,和/或
    为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或
    为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
  3. 根据权利要求2所述的参考信号的配置方法,其特征在于,
    在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
  4. 根据权利要求2所述的参考信号的配置方法,其特征在于,
    每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及
    在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中 的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;
    若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
  5. 根据权利要求4所述的参考信号的配置方法,其特征在于,
    在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
  6. 根据权利要求4所述的参考信号的配置方法,其特征在于,
    在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
  7. 根据权利要求4所述的参考信号的配置方法,其特征在于,
    在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属 性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
  8. 根据权利要求3所述的参考信号的配置方法,其特征在于,
    所述为所述至少一个发现参考信号中的每个所述发现参考信号配置所述至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号的过程,具体包括:
    根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
  9. 根据权利要求5至8中任一项所述的参考信号的配置方法,其特征在于,
    当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,确定所述辅同步信号的类型为第一类型;
    当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,确定所述辅同步信号的类型为第二类型。
  10. 根据权利要求1至8中任一项所述的参考信号的配置方法,其特征在于,
    在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;
    在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及
    在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
  11. 根据权利要求1至8中任一项所述的参考信号的配置方法,其特征在于,
    在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
  12. 根据权利要求1至8中任一项所述的参考信号的配置方法,其特征在于,
    在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
  13. 根据权利要求1至8中任一项所述的参考信号的配置方法,其特征在于,
    所述将所述发送参数发送至被所述具有基站功能的设备服务的终端,具体包括:
    通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及
    所述配置方法适用于LTE***中的参考信号。
  14. 一种参考信号的配置***,用于具有基站功能的设备,其特征在于,包括:
    设置单元,在DMTC中设置至少一个发现参考信号;
    配置单元,为所述至少一个发现参考信号配置发送参数;
    发送单元,将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
  15. 根据权利要求14所述的参考信号的配置***,其特征在于,
    所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及
    所述配置单元具体用于:
    为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或
    为所述至少一个发现参考信号配置总发送时间,和/或
    为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或
    为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
  16. 根据权利要求15所述的参考信号的配置***,其特征在于,还包括:
    第一控制单元,在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
  17. 根据权利要求15所述的参考信号的配置***,其特征在于,
    每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及
    所述配置***还包括:
    第二控制单元,在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;
    若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
  18. 根据权利要求17所述的参考信号的配置***,其特征在于,
    所述发送单元用于:
    在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
  19. 根据权利要求17所述的参考信号的配置***,其特征在于,
    所述发送单元还用于:在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
  20. 根据权利要求17所述的参考信号的配置***,其特征在于,
    所述发送单元还用于:
    在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
  21. 根据权利要求16所述的参考信号的配置***,其特征在于,
    所述配置单元具体还用于:
    根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
  22. 根据权利要求18至21中任一项所述的参考信号的配置***,其特征在于,还包括:
    确定单元,当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,确定所述辅同步信号的类型为第一类型;
    当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,确定所述辅同步信号的类型为第二类型。
  23. 根据权利要求14至21中任一项所述的参考信号的配置***,其特征在于,
    检测单元,在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;
    所述发送单元还用于:
    在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及
    在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
  24. 根据权利要求14至21中任一项所述的参考信号的配置***,其特征在于,
    所述发送单元还用于:
    在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
  25. 根据权利要求14至21中任一项所述的参考信号的配置***,其特征在于,
    第三控制单元,在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
  26. 根据权利要求14至21中任一项所述的参考信号的配置***,其特征在于,
    所述发送单元还用于:
    通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及
    所述配置***适用于LTE***中的参考信号。
  27. 一种具有基站功能的设备,其特征在于,包括处理器和存储器,其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
    在DMTC中设置至少一个发现参考信号;
    为所述至少一个发现参考信号配置发送参数;
    将所述发送参数发送至被所述具有基站功能的设备服务的终端,以使所述终端根据所述发送参数接收所述至少一个发现参考信号。
  28. 根据权利要求27所述的具有基站功能的设备,其特征在于,
    所述发送参数包括:所述至少一个发现参考信号的数目,其中,所述至少一个发现参考信号的数目为:1至5个,以及
    所述处理器为所述至少一个发现参考信号配置发送参数的过程,具体包 括:
    为所述至少一个发现参考信号所在的所述DMTC配置发送周期和/或子帧级别的时间偏置,和/或
    为所述至少一个发现参考信号配置总发送时间,和/或
    为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数和/或符号级别的时间偏置,和/或
    为所述至少一个发现参考信号中的每个所述发现参考信号配置至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号。
  29. 根据权利要求28所述的具有基站功能的设备,其特征在于,
    所述处理器在为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号后,控制每个所述发现参考信号连续占用所述可占用符号,且所述可占用符号的符号数目为N,其中,N大于或等于3,且小于或等于14。
  30. 根据权利要求28所述的具有基站功能的设备,其特征在于,
    每个所述发现参考信号均包括:一个主同步信号和一个辅同步信号,以及
    所述处理器在为所述至少一个发现参考信号中的每个所述发现参考信号配置可占用的符号数时,若每个所述发现参考信号所在的帧结构为FDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述FDD帧结构的目标子帧中的第七个符号,以及控制所述辅同步信号占用所述目标子帧中的第六个符号;
    若每个所述发现参考信号所在的帧结构为TDD帧结构,控制每个所述发现参考信号中的所述主同步信号占用所述TDD帧结构的目标子帧中的第三个符号,以及控制所述辅同步信号占用与所述目标子帧相邻的前置子帧中的第十四个符号,其中,所述目标子帧为所述FDD帧结构或所述TDD帧结构中的任一子帧。
  31. 根据权利要求30所述的具有基站功能的设备,其特征在于,
    所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号后,通过RRC信令向所述终端发送子载波位置与子帧编号对应关系的第一子帧编号参照表和/或子载波位置与运营商对应关系的第一运营商参照表,以使 所述终端根据接收到的所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
  32. 根据权利要求30所述的具有基站功能的设备,其特征在于,
    所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号后,向所述终端发送携带有扰码的所述信道状态信息参考信号,以及扰码与子帧编号对应关系的第二子帧参照表和/或扰码与运营商对应关系的第二运营商参照表,以使所述终端根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
  33. 根据权利要求30所述的具有基站功能的设备,其特征在于,
    所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号后,若向所述终端发送任一发现参考信号,则向所述终端发送发现参考信号的属性信息与子帧编号对应关系的第三子帧编号参照表和/或发现参考信号的属性信息与子帧编号对应关系的第三运营商参照表,以使所述终端根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
  34. 根据权利要求29所述的具有基站功能的设备,其特征在于,
    所述处理器为所述至少一个发现参考信号中的每个所述发现参考信号配置所述至少一个小区专用参考信号和/或非零功率的信道状态信息参考信号的过程,具体包括:
    根据所述帧结构的类型和/或每个所述发现参考信号中的所述辅同步信号 的类型,为每个所述发现参考信号配置所述至少一个小区专用参考信号和/或所述信道状态信息参考信号,其中,所述帧结构的类型包括:FDD帧结构和TDD帧结构。
  35. 根据权利要求31至34中任一项所述的具有基站功能的设备,其特征在于,
    当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第一个至第五个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第一个至第五个子帧中的任一子帧时,所述处理器确定所述辅同步信号的类型为第一类型;
    当所述辅同步信号占用的所述前置子帧为所述TDD帧结构的第六个至第十个子帧中的任一子帧、或所述辅同步信号占用的所述目标子帧为所述FDD帧结构的第六个至第十个子帧中的任一子帧时,所述处理器确定所述辅同步信号的类型为第二类型。
  36. 根据权利要求27至34中任一项所述的具有基站功能的设备,其特征在于,
    所述处理器在发送每个所述发现参考信号之前,通过DMTC中设置的下行信道检测子帧检测下行信道是否空闲;
    所述处理器在检测到所述下行信道空闲时,发送与所述下行信道检测子帧占用的符号位置最近的后置发现参考信号,并在所述DMTC周期中停止发送其他发现参考信号;否则,不发送所述后置发现参考信号;以及
    在检测到所述下行信道空闲之后,在发送所述后置发现参考信号之前,发送信道占用信号,且所述信道占用信号占用的符号数小于M个,其中,M为小于14的正整数。
  37. 根据权利要求27至34中任一项所述的具有基站功能的设备,其特征在于,
    所述处理器在发送每个所述发现参考信号时,使用授权频谱或非授权频谱上的下行控制信道向所述终端发送用于指示是否发送每个所述发现参考信号的下行控制信息。
  38. 根据权利要求27至34中任一项所述的具有基站功能的设备,其特征 在于,
    所述处理器在为每个所述发现参考信号配置所述信道状态信息参考信号时,若所述信道状态信息参考信号与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用相同真实编号的目标子帧或前置子帧,则控制所述信道状态信息参考信号占用的子载波与其他具有基站功能的设备为每个所述发现参考信号配置的信道状态信息参考信号占用的子载波的位置不同。
  39. 根据权利要求27至34中任一项所述的具有基站功能的设备,其特征在于,
    所述处理器将所述发送参数发送至被所述具有基站功能的设备服务的终端,具体包括:
    通过RRC信令将所述发送参数发送至被所述具有基站功能的设备服务的终端;以及
    所述配置方法适用于LTE***中的参考信号。
  40. 一种参考信号的接收方法,用于终端,其特征在于,所述终端与权利要求27至39中任一项所述的具有基站功能的设备相连接,所述接收方法包括:
    接收所述具有基站功能的设备下发的所述发送参数;
    根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
  41. 根据权利要求40所述的参考信号的接收方法,其特征在于,
    所述接收所述具有基站功能的设备下发的所述发送参数的过程,具体包括:
    接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参 考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
  42. 根据权利要求41所述的参考信号的接收方法,其特征在于,
    在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;
    接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;
    根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
  43. 根据权利要求41所述的参考信号的接收方法,其特征在于,
    接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;
    根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
  44. 根据权利要求41所述的参考信号的接收方法,其特征在于,
    当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可 占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
  45. 一种参考信号的接收***,用于终端,其特征在于,所述终端与权利要求27至39中任一项所述的具有基站功能的设备相连接,所述接收***包括:
    第一接收单元,接收所述具有基站功能的设备下发的所述发送参数;
    第二接收单元,根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
  46. 根据权利要求45所述的参考信号的接收***,其特征在于,
    所述第一接收单元具体用于:
    接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
  47. 根据权利要求46所述的参考信号的接收***,其特征在于,还包括:
    获取单元,在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;
    所述第二接收单元还用于:
    接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;
    所述接收***还包括:
    第一确定单元,根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
  48. 根据权利要求46所述的参考信号的接收***,其特征在于,
    所述第二接收单元还用于:
    接收所述具有基站功能的设备通过RRC信令下发的携带有扰码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;
    所述接收***还包括:
    第二确定单元,根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表确定发送每个所述发现参考信号的运营商。
  49. 根据权利要求46所述的参考信号的接收***,其特征在于,还包括:
    第三确定单元,当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
  50. 一种终端,其特征在于,所述终端与权利要求27至39中任一项所述的具有基站功能的设备相连接,所述终端包括处理器和存储器,其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
    接收所述具有基站功能的设备下发的所述发送参数;
    根据所述发送参数同步接收所述DMTC中的至少一个发现参考信号。
  51. 根据权利要求50所述的终端,其特征在于,
    所述处理器接收所述具有基站功能的设备下发的所述发送参数的过程,具体包括:
    接收所述具有基站功能的设备通过RRC信令下发的所述DMTC的发送周期和/或所述子帧级别的时间偏置,以根据所述发送周期和/或所述子帧级别的时间偏置,确定所述DMTC占用的子帧;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的所述总发送时间,以根据所述总发送时间确定所述至少一个发现参考信号占用的子帧的数目和位置;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述至少一个发现参考信号的数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置,以根据所述数目、每个所述发现参考信号占用的符号数和/或所述符号级别的时间偏置来确定每个所述发送参考信号占用的所述目标子帧和/或所述前置子帧的符号的位置;和/或
    接收所述具有基站功能的设备通过RRC信令下发的所述非零功率的信道状态信息参考信号。
  52. 根据权利要求51所述的终端,其特征在于,
    所述处理器在接收到所述信道状态信息参考信号后,获取所述信道状态信息参考信号占用的子载波的位置;
    接收所述具有基站功能的设备通过RRC信令下发的所述第一子帧编号参照表和/或所述第一运营商参照表;
    根据所述信道状态信息参考信号占用的子载波的位置和接收到的所述辅同步信号的类型,从所述第一子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第一运营商参照表中确定发送每个所述发现参考信号的运营商。
  53. 根据权利要求51所述的终端,其特征在于,
    所述处理器接收所述具有基站功能的设备通过RRC信令下发的携带有扰 码的所述信道状态信息参考信号、以及所述第二子帧编号参照表和/或所述第二运营商参照表;
    所述处理器根据所述扰码的不同和接收到的所述辅同步信号的类型,从所述第二子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第二运营商参照表中确定发送每个所述发现参考信号的运营商。
  54. 根据权利要求51所述的终端,其特征在于,
    所述处理器当接收到所述至少一个发现参考信号中的任一发现参考信号、以及所述第三子帧编号参照表和/或所述第三运营商参照表时,根据所述任一发现参考信号的所述属性信息和接收到的所述辅同步信号的类型,从所述第三子帧编号参照表中确定所述目标子帧的真实编号或所述前置子帧的真实编号,和/或从所述第三运营商参照表中确定发送所述任一发现参考信号的运营商,其中,所述属性信息包括:所述任一发现参考信号在所述目标子帧或所述前置子帧中的可占用的符号数、符号位置以及所述符号位置上被配置的所述主同步信号、所述辅同步信号、所述至少一个小区专用参考信号和/或所述非零功率的信道状态信息参考信号。
PCT/CN2015/085864 2015-05-15 2015-07-31 配置方法、配置***、设备、接收方法、接收***和终端 WO2016183941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510251247.5 2015-05-15
CN201510251247.5A CN104968052B (zh) 2015-05-15 2015-05-15 配置方法、配置***、设备、接收方法、接收***和终端

Publications (1)

Publication Number Publication Date
WO2016183941A1 true WO2016183941A1 (zh) 2016-11-24

Family

ID=54221965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085864 WO2016183941A1 (zh) 2015-05-15 2015-07-31 配置方法、配置***、设备、接收方法、接收***和终端

Country Status (2)

Country Link
CN (1) CN104968052B (zh)
WO (1) WO2016183941A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541772B2 (en) 2017-04-28 2020-01-21 Qualcomm Incorporated Techniques for transmission of discovery reference signals in new radio shared spectrum
TWI751277B (zh) * 2017-02-03 2022-01-01 美商高通公司 多子訊框探索參考信號傳遞(drs)量測時序配置(dmtc)訊窗
EP3911066A4 (en) * 2019-01-10 2022-03-02 Beijing Xiaomi Mobile Software Co., Ltd. METHODS AND DEVICES FOR SETTING UP, SENDING AND RECEIVING A DISCOVERY REFERENCE SIGNAL (DRS)
RU2776676C1 (ru) * 2019-01-10 2022-07-25 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способы и устройства для конфигурирования, отправки и приема опорного сигнала обнаружения

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925494B (zh) * 2015-07-10 2019-11-29 Lg 电子株式会社 在支持未授权带的无线接入***中发送发现参考信号的方法和设备
CN107852741B (zh) * 2015-08-13 2022-05-03 英特尔公司 未授权频带中用于lte的发现参考信号设计
CN105050190B (zh) * 2015-08-14 2018-11-30 宇龙计算机通信科技(深圳)有限公司 基于非授权频段的发现参考信号配置方法、装置和基站
WO2017049631A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种通信信号的处理方法、装置及通信服务器
WO2017063779A1 (en) * 2015-10-16 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for discovery reference signal aligned scheduling
CN108353369B (zh) * 2015-10-23 2020-12-04 瑞典爱立信有限公司 用于自适应发现信号测量定时配置的设备和方法
CN106656895B (zh) * 2015-11-04 2019-08-13 ***通信集团公司 一种发现参考信号drs传输的方法及装置
CN106658724A (zh) * 2015-11-04 2017-05-10 中兴通讯股份有限公司 一种基于非授权载波的信令配置、传输方法、站点、终端
US10492225B2 (en) * 2015-11-05 2019-11-26 Intel IP Corporation Listen before talk for discovery reference signal transmission in unlicensed spectrum
CN108141425B (zh) * 2015-11-05 2020-06-26 华为技术有限公司 一种参考信号的传输设备、方法和***
WO2017078656A1 (en) * 2015-11-05 2017-05-11 Intel IP Corporation Synchronization signals for license assisted access
CN105451251B (zh) * 2015-11-06 2019-01-11 东莞酷派软件技术有限公司 一种非授权频谱的drs配置方法、测量方法和相关设备
CN106686604A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 一种信号处理方法及基站
US10958404B2 (en) 2015-11-06 2021-03-23 Qualcomm Incorporated Discovery reference signal configuration and scrambling in licensed-assisted access
US10674535B2 (en) * 2015-11-13 2020-06-02 Futurewei Technologies, Inc. Device, network, and method for communications with opportunistic transmission and reception
CN106817764B (zh) * 2015-11-27 2019-08-27 北京信威通信技术股份有限公司 下行参考信号的发送方法、传输方法、基站及传输***
JP2019016824A (ja) * 2015-11-27 2019-01-31 シャープ株式会社 端末装置、基地局装置および通信方法
JP6731484B2 (ja) 2015-12-24 2020-07-29 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル予約信号を送信する方法、及び基地局
US10142980B2 (en) * 2016-02-26 2018-11-27 Qualcomm Incorporated Discovery reference signal transmission window detection and discovery reference signal measurement configuration
WO2017156711A1 (zh) * 2016-03-15 2017-09-21 华为技术有限公司 信号发送的方法和基站
CN105898883B (zh) * 2016-04-01 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种前导码的配置方法、发送方法和相关设备
CN107302424A (zh) * 2016-04-15 2017-10-27 中兴通讯股份有限公司 一种***信息的发送方法和装置
US10492168B2 (en) 2016-05-03 2019-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Paging detection utilizing a discovery reference signal (DRS) within a subframe time window
TWI636700B (zh) * 2016-05-13 2018-09-21 諾基亞科技公司 用於授權輔助接取中未授權副服務區檢測、量測及啟動之最大時間技術
WO2018014256A1 (en) * 2016-07-20 2018-01-25 Nec Corporation Methods and apparatuses for information transmission and information reception
CN107787004A (zh) * 2016-08-24 2018-03-09 北京佰才邦技术有限公司 配置信息方法及装置
US10547494B2 (en) * 2016-10-31 2020-01-28 Qualcomm Incorporated Unlicensed spectrum coverage enhancement for industrial internet of things
CN108124289B (zh) * 2016-11-28 2020-06-02 北京佰才邦技术有限公司 获取邻区发现信号测量时间配置dmtc信息的方法及装置
CN108242985B (zh) * 2016-12-23 2022-04-12 维沃移动通信有限公司 一种参考信号配置方法、网络侧设备和用户设备
WO2018137230A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 非授权频谱上drs传输方法及装置
US10405262B2 (en) * 2017-02-21 2019-09-03 Qualcomm Incorporated Techniques for signaling a public land mobile network identifier over a shared radio frequency spectrum band
CN108989001B (zh) * 2017-05-31 2021-03-26 北京佰才邦技术有限公司 一种eDRS的发送及接收方法、基站及移动通信终端
CN109392000A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院 一种定位、测量上报方法及装置
CN107682133B (zh) * 2017-09-20 2020-08-14 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备
CN110166393B (zh) * 2018-02-13 2021-06-25 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置
CN110149188A (zh) * 2018-02-13 2019-08-20 展讯通信(上海)有限公司 参考信号的发送及接收方法、基站、终端、可读介质
WO2020019298A1 (zh) * 2018-07-27 2020-01-30 华为技术有限公司 信号传输的方法和装置
CN110784293B (zh) 2018-07-31 2022-08-26 维沃移动通信有限公司 信号传输方法和通信设备
CN110971353B (zh) * 2018-09-28 2021-12-28 华为技术有限公司 通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250631A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Multiplexing Logical Channels in Mixed Licensed and Unlicensed Spectrum Carrier Aggregation
CN104579518A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 Csi测量及反馈方法、csi测量及反馈***和基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238483B2 (en) * 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
JP2013211749A (ja) * 2012-03-30 2013-10-10 Ntt Docomo Inc 無線通信方法、無線基地局、ユーザ端末及び無線通信システム
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
CN109194437B (zh) * 2013-01-18 2019-09-03 华为技术有限公司 发现参考信号的发送和检测方法及装置
US9749075B2 (en) * 2013-09-27 2017-08-29 Mediatek Inc. Methods of discovery and measurements for small cells in OFDM/OFDMA systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250631A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Multiplexing Logical Channels in Mixed Licensed and Unlicensed Spectrum Carrier Aggregation
CN104579518A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 Csi测量及反馈方法、csi测量及反馈***和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on RRM Measurement for LAA", 3GPP TSG RAN WG1 LAAAD-HOC MEETING, R1-151114, 26 March 2015 (2015-03-26), XP050951453 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751277B (zh) * 2017-02-03 2022-01-01 美商高通公司 多子訊框探索參考信號傳遞(drs)量測時序配置(dmtc)訊窗
US11310695B2 (en) 2017-02-03 2022-04-19 Qualcomm Incorporated Multi-subframe discovery reference signaling (DRS) measurement timing configuration (DMTC) window
US10541772B2 (en) 2017-04-28 2020-01-21 Qualcomm Incorporated Techniques for transmission of discovery reference signals in new radio shared spectrum
EP3911066A4 (en) * 2019-01-10 2022-03-02 Beijing Xiaomi Mobile Software Co., Ltd. METHODS AND DEVICES FOR SETTING UP, SENDING AND RECEIVING A DISCOVERY REFERENCE SIGNAL (DRS)
RU2776676C1 (ru) * 2019-01-10 2022-07-25 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способы и устройства для конфигурирования, отправки и приема опорного сигнала обнаружения

Also Published As

Publication number Publication date
CN104968052A (zh) 2015-10-07
CN104968052B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2016183941A1 (zh) 配置方法、配置***、设备、接收方法、接收***和终端
US10491263B2 (en) Data transmission method and data transmission device
EP3709763A1 (en) Methods and apparatuses for release of a wireless device context
CN112351505B (zh) 用于基于竞争的载波的传输调度
CN114070536B (zh) 一种信号发送与接收的方法和用户设备
CN106658584B (zh) 信号发送与接收和干扰测量的方法及设备
CN115362727A (zh) 用于基于突发的副链路传输的方法及设备
WO2017028556A1 (zh) 基于非授权频段的发现参考信号配置方法、装置和基站
EP3306996A1 (en) Data transmission method, wireless network device and communication system
WO2017024988A1 (zh) 信息处理方法、装置及***
US9763267B2 (en) Techniques for using collision avoidance signaling for co-existence with unlicensed networks
US10390198B2 (en) Coverage extension in wireless communication
US10419185B2 (en) System and method for listen before talk-based random access with partial subframes
CN107770872B (zh) 一种非授权频谱上的数据传输方法和设备
EP3332601B1 (en) Techniques for using traffic monitoring for co-existence with unlicensed networks
CN107079483B (zh) 数据传输方法、***和具有基站功能的设备
EP3927083B1 (en) Initial signal transmission method and device
EP2820908A1 (en) Access response signaling in a cellular communication system
WO2016201771A1 (zh) 在非授权频段上识别运营商标识的方法、装置和终端
KR20190007520A (ko) 비동기 네트워크들에서의 scell들에 대한 발견 신호 측정 타이밍 구성
WO2016049915A1 (zh) 数据传输方法、传输***、控制方法、控制***和设备
WO2018073812A1 (en) Coverage extension frequency hopping scheme
EP4318986A1 (en) Method and device for carrying out communication in wireless communication system
EP3737168B1 (en) Signal transmission method and apparatus, and computer storage medium
CN117596656A (zh) 信息传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15892319

Country of ref document: EP

Kind code of ref document: A1