WO2016049915A1 - 数据传输方法、传输***、控制方法、控制***和设备 - Google Patents

数据传输方法、传输***、控制方法、控制***和设备 Download PDF

Info

Publication number
WO2016049915A1
WO2016049915A1 PCT/CN2014/088041 CN2014088041W WO2016049915A1 WO 2016049915 A1 WO2016049915 A1 WO 2016049915A1 CN 2014088041 W CN2014088041 W CN 2014088041W WO 2016049915 A1 WO2016049915 A1 WO 2016049915A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink channel
subframe
channel detection
detection subframe
uplink
Prior art date
Application number
PCT/CN2014/088041
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Priority to PCT/CN2014/088041 priority Critical patent/WO2016049915A1/zh
Publication of WO2016049915A1 publication Critical patent/WO2016049915A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method when an LTE system operates in an unlicensed frequency band in a time division duplex mode, and a data transmission when an LTE system operates in an unlicensed frequency band in a time division duplex mode.
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrum are currently mainly used in systems such as Wi-Fi, Bluetooth, radar, and medical.
  • LTE Long Term Evolution
  • CA Carrier Aggregation
  • 3GPP proposes the concept of LAA (LTE Assisted Access), which uses the help of LTE licensed spectrum to use unlicensed spectrum.
  • the unlicensed spectrum can work in two modes. One is the downlink (SDL), that is, only the downlink transmission subframe, and the other is the TDD mode, which includes the downlink subframe and the uplink subframe.
  • SDL downlink
  • TDD mode which includes the downlink subframe and the uplink subframe.
  • the carrier aggregation technology as shown in Figure 1).
  • the TDD mode can also be used by DC (Dual Connectivity) or independently.
  • LTE systems operating in unlicensed bands have the ability to provide higher spectral efficiency and greater coverage, while relying on the same core network to allow data traffic between licensed and unlicensed bands. Sew switch. For the user, this means a better broadband experience, higher speed, better stability and mobility.
  • Wi-Fi Wireless Fidelity
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the basic principle of this method is Wi-Fi. Before the AP (Access Point) or the terminal sends signaling or data, it must first monitor whether other APs or other terminals are transmitting/receiving signaling or data, and if so, continue to listen. Until it is not detected; if not, a random number is generated as the backoff time. If no signaling or data transmission is detected during this backoff time, the AP or the terminal may start signaling after the backoff time is over. Or data. The process is shown in Figure 2.
  • the LTE network has good orthogonality to ensure the interference level, the uplink and downlink transmissions between the base station and the user do not need to consider whether other base stations or other users are transmitting data. If LTE is used on an unlicensed band, it does not consider whether other devices are using unlicensed bands nearby, which will cause great interference to Wi-Fi devices. Because LTE transmits as long as there is traffic, there is no monitoring rule, then the Wi-Fi device cannot transmit when LTE has service transmission, and can only detect the channel idle state for data transmission after the LTE service transmission is completed.
  • the present invention is based on the above problems, and proposes a new technical solution, and proposes a new LTE system data transmission scheme when operating in a time-division duplex mode in an unlicensed frequency band, which can ensure that the LTE system is in an unlicensed frequency band.
  • the LTE system Under the premise of work, the LTE system is prevented from causing large interference to other systems when working in the unlicensed frequency band, and the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • an aspect of the present invention provides a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band, and is used in a terminal, which includes: receiving an uplink from a device having a base station function. a channel detection subframe configuration command, configured according to the uplink channel detection subframe configuration command, in the frame structure of the time division duplex mode, the uplink channel for periodically detecting whether an uplink channel of the unlicensed frequency band is idle Detecting a subframe; if the uplink channel detection subframe detects that the uplink channel is idle in any detection period, the uplink data is sent in an uplink subframe in any one of the detection periods in the frame structure.
  • the uplink channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode according to the received uplink channel detection subframe configuration command, to detect the uplink channel detection in the uplink channel.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system works in the time division duplex mode when the unlicensed frequency band is used.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that the frame structure in the time division duplex mode is not required. Additional subframes are additionally set to carry the uplink channel detection subframe. Meanwhile, the uplink channel detection subframe may be set in one or more subframes in the frame structure of the time division duplex mode according to the actual situation of the LTE system, and the uplink channel detection is performed. The set position of the subframe may be at one or more of the uplink subframe, the downlink subframe, and the special subframe.
  • the uplink channel detection subframe is set in a downlink subframe adjacent to the special subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in a downlink subframe adjacent to the special subframe in the frame structure of the time division duplex mode by using the uplink channel detection subframe configuration command, so that the downlink subframe is in the downlink subframe.
  • the detection of the uplink channel can be implemented, thereby determining whether data transmission can be performed through the uplink subframe.
  • the uplink channel detection subframe does not occupy the uplink subframe, Ensure that the uplink subframe is completely used for uplink data transmission, and realize the full utilization of the uplink subframe.
  • the uplink channel detection subframe is set at a back end of the downlink subframe according to the uplink channel detection subframe configuration command, and the uplink channel detection subframe occupies the first A number of symbols, the first number having a value ranging from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the downlink subframe according to the uplink channel detection subframe configuration command, so that the timeliness of channel detection can be ensured to ensure that the uplink data is detected before being transmitted.
  • the channel state is the latest state, avoiding the channel detection earlier and transmitting the uplink data later, and the channel state has changed when the uplink data needs to be transmitted, which affects the transmission of the uplink data. Specifically, if the channel detection is earlier and the channel is in a busy state, but the uplink data transmission is late (ie, the uplink channel detection subframe is far away from the uplink subframe), if the channel is in an idle state during uplink data transmission.
  • the LTE system since the channel detection result is busy, the LTE system does not send uplink data and waits for the last channel detection, so that the uplink data cannot be transmitted; similarly, if the channel detection is earlier and the channel is detected to be idle, The uplink data transmission is late. If the channel is in a busy state during uplink data transmission, but the channel detection result is idle, the LTE system will continue to send uplink data without waiting for the last channel detection, which may cause other systems. interference.
  • the uplink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe in the frame structure.
  • the uplink channel detection subframe is set in the uplink subframe adjacent to the downlink subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that When the uplink is transmitted, the measurement of the uplink channel is performed in time.
  • the downlink subframe since the uplink channel detection subframe does not occupy the downlink subframe, the downlink subframe can be completely used for downlink data transmission, and the downlink subframe can be fully utilized.
  • the uplink channel detection subframe is set at a back end of the uplink subframe according to the uplink channel detection subframe configuration command, and the uplink channel detection subframe occupies a second The number of symbols, the second number ranges from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the uplink subframe according to the uplink channel detection subframe configuration command, so that other portions of the uplink subframe can continue to be used for uplink data transmission, and the uplink is ensured.
  • the guard time needs to be set, and the uplink channel detection subframe is equivalent to one downlink signal when detecting the state of the uplink channel, and thus, the uplink channel is detected.
  • the subframe is set at the back end of the uplink subframe adjacent to the downlink subframe, so that it is possible to avoid setting extra guard time in the uplink subframe.
  • the uplink channel detection subframe is set in a special subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in the special subframe according to the uplink channel detection subframe configuration command, so that the downlink subframe and the uplink subframe do not need to be occupied, thereby ensuring uplink transmission and downlink of the system.
  • the transmission is not affected; at the same time, if different base stations of the same carrier set the uplink channel detection subframe on the special subframe on the same carrier frequency and are set at the same position of the frame structure, the different base stations are measuring the channel state.
  • the base stations of other operators are used as reference, the channel is not busy because the base station signals of the same carrier are detected.
  • the uplink channel detection subframe is set in the special subframe and is adjacent to a downlink pilot slot in the special subframe according to the uplink channel detection subframe configuration command. And the location of the uplink channel detection subframe occupies a third number of symbols, wherein the third number ranges from 1 to 9.
  • the guard time needs to be set, and the uplink channel detection subframe needs to monitor the uplink signal to detect the channel state. Therefore, by setting the uplink channel detection subframe to a position adjacent to the downlink pilot time slot, that is, between the downlink pilot time slot (DwPTS) and the guard time (GP) or before the downlink pilot time slot, it may be unnecessary. Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • DwPTS downlink pilot time slot
  • GP guard time
  • Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • the number of symbols occupied by the uplink pilot time slot and the guard time is at least 1 symbol.
  • the number of symbols occupied by the downlink pilot time slot is at least three, and one subframe contains 14 symbols, so the number of symbols occupied by the uplink channel detection subframe set in the special subframe is at most 9, at least 1 One.
  • the uplink channel detection subframe when the uplink channel detection subframe periodically detects whether an uplink channel of the unlicensed frequency band is idle, if the uplink channel detection subframe is detected in each of the symbols When the uplink channel is idle, the uplink channel detection subframe determines that the uplink channel is idle.
  • the detection strength of the uplink channel detection subframe is one symbol detection, it is possible to determine the uplink when the uplink channel is in an idle state when detecting each symbol occupied by the uplink channel detection subframe.
  • the channel is in an idle state.
  • the method further includes: acquiring, according to the uplink channel detection subframe configuration command, a detection period of the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command received by the terminal further includes a detection period of the uplink channel detection subframe, and the uplink is detected from the upstream channel.
  • the acquisition of the detection period in the channel detection subframe configuration command can detect whether the uplink channel is busy in real time, and the detection period and the number of uplink subframes included in each transition point period of the frame structure or the load state of the LTE system
  • the rate is related to the rate of change of the load state of other systems, for example, when the number of uplink subframes included in each transition point period in the frame structure is small (such as configuration mode 3, configuration mode 4, and configuration mode 5).
  • the detection period in the uplink channel detection subframe configuration command is large, and when the number of uplink subframes in each transition point period is large, the detection period in the uplink channel detection subframe configuration command is small.
  • the subframe configuration manner of the frame structure is acquired according to the uplink channel detection subframe configuration command.
  • the subframe configuration mode of the frame structure is any one of configuration mode 0, configuration mode 1, configuration mode 2, configuration mode 3, configuration mode 4, configuration mode 5, and configuration mode 6.
  • the method further includes: determining whether the uplink service needs to be processed, and if yes, periodically detecting, by the uplink channel detection subframe in the frame structure, whether the uplink channel is idle.
  • the terminal when the terminal detects the state of the uplink channel by using the uplink channel detection subframe, the terminal may perform the determination when there is an uplink service, and may be performed regardless of whether the uplink service is always performed.
  • a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band comprising: a receiving unit that receives an uplink channel detection subframe configuration command from a device having a base station function; a setting unit, configured to: in the frame structure of the time division duplex mode, set the uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed band is idle, according to the uplink channel detection subframe configuration command; Sending unit, In any detection period, if the uplink channel detection subframe detects that the uplink channel is idle, the uplink data is sent in an uplink subframe in any one of the detection periods in the frame structure.
  • the uplink channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode according to the received uplink channel detection subframe configuration command, to detect the uplink channel detection in the uplink channel.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system works in the time division duplex mode when the unlicensed frequency band is used.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the setting unit is configured to: set the uplink channel detection subframe in at least one subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that the frame structure in the time division duplex mode is not required. Additional subframes are additionally set to carry the uplink channel detection subframe. Meanwhile, the uplink channel detection subframe may be set in one or more subframes in the frame structure of the time division duplex mode according to the actual situation of the LTE system, and the uplink channel detection is performed. The set position of the subframe may be at one or more of the uplink subframe, the downlink subframe, and the special subframe.
  • the setting unit is configured to: set the uplink channel detection subframe in the frame structure adjacent to the special subframe according to the uplink channel detection subframe configuration command. Within the downlink subframe.
  • the uplink channel detection subframe is set in a downlink subframe adjacent to the special subframe in the frame structure of the time division duplex mode by using the uplink channel detection subframe configuration command, so that the downlink subframe is in the downlink subframe.
  • the detection of the uplink channel can be implemented, thereby determining whether data transmission can be performed through the uplink subframe.
  • the uplink channel detection subframe does not occupy the uplink subframe, Ensure that the uplink subframe is completely used for uplink data transmission, and realize the full utilization of the uplink subframe.
  • the setting unit is further configured to: set the uplink channel detection subframe to a back end of the downlink subframe according to the uplink channel detection subframe configuration command, and
  • the uplink channel detection subframe occupies a first number of symbols, and the first number ranges from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the downlink subframe according to the uplink channel detection subframe configuration command, so that the timeliness of channel detection can be ensured to ensure that the uplink data is detected before being transmitted.
  • the channel status is the latest state, avoiding channel detection
  • the transmission of uplink data earlier and the channel state has changed when the uplink data needs to be transmitted affects the transmission of the uplink data. Specifically, if the channel detection is earlier and the channel is in a busy state, but the uplink data transmission is late (ie, the uplink channel detection subframe is far away from the uplink subframe), if the channel is in an idle state during uplink data transmission.
  • the LTE system since the channel detection result is busy, the LTE system does not send uplink data and waits for the last channel detection, so that the uplink data cannot be transmitted; similarly, if the channel detection is earlier and the channel is detected to be idle, The uplink data transmission is late. If the channel is in a busy state during uplink data transmission, but the channel detection result is idle, the LTE system will continue to send uplink data without waiting for the last channel detection, which may cause other systems. interference.
  • the setting unit is further configured to: set the uplink channel detection subframe in the frame structure and be adjacent to the downlink subframe according to the uplink channel detection subframe configuration command. Within the uplink subframe.
  • the uplink channel detection subframe is set in the uplink subframe adjacent to the downlink subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that When the uplink is transmitted, the measurement of the uplink channel is performed in time.
  • the downlink subframe since the uplink channel detection subframe does not occupy the downlink subframe, the downlink subframe can be completely used for downlink data transmission, and the downlink subframe can be fully utilized.
  • the setting unit is further configured to: set the uplink channel detection subframe to a back end of the uplink subframe according to the uplink channel detection subframe configuration command, and
  • the uplink channel detection subframe occupies a second number of symbols, and the second number ranges from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the uplink subframe according to the uplink channel detection subframe configuration command, so that other portions of the uplink subframe can continue to be used for uplink data transmission, and the uplink is ensured.
  • the guard time needs to be set, and the uplink channel detection subframe is equivalent to one downlink signal when detecting the state of the uplink channel, and thus, the uplink channel is detected.
  • the subframe is set at the back end of the uplink subframe adjacent to the downlink subframe, so that it is possible to avoid setting extra guard time in the uplink subframe.
  • the setting unit is further configured to: set the uplink channel detection subframe in a special subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in the special subframe according to the uplink channel detection subframe configuration command, so that the downlink subframe and the uplink subframe do not need to be occupied, thereby ensuring uplink transmission and downlink of the system.
  • the transmission is not affected; at the same time, if different base stations of the same carrier set the uplink channel detection subframe on the special subframe on the same carrier frequency and are set at the same position of the frame structure, the different base stations are measuring the channel state. At the same time, they are all referenced by the base stations of other operators, and the channel is not determined because the base station signals of the same carrier are detected. busy.
  • the setting unit is further configured to: set the uplink channel detection subframe in the special subframe and the special sub-frame according to the uplink channel detection subframe configuration command.
  • the position of the downlink pilot slot in the frame is adjacent, and the uplink channel detection subframe occupies a third number of symbols, wherein the third number ranges from 1 to 9.
  • the guard time needs to be set, and the uplink channel detection subframe needs to monitor the uplink signal to detect the channel state. Therefore, by setting the uplink channel detection subframe to a position adjacent to the downlink pilot time slot, that is, between the downlink pilot time slot (DwPTS) and the guard time (GP) or before the downlink pilot time slot, it may be unnecessary. Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • DwPTS downlink pilot time slot
  • GP guard time
  • Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • the downlink pilot time slot occupies at least 3 symbols, and one subframe contains 14 symbols, so it is set in the special sub-frame.
  • the number of symbols occupied by the uplink channel detection subframe in the frame is at most 9, and at least one.
  • the method further includes: a first determining unit, located in the uplink channel detecting subframe, when the uplink channel detecting subframe periodically detects whether an uplink channel of the unlicensed band is idle, And if the uplink channel detection subframe detects that the uplink channel is idle in each of the symbols, determining that the uplink channel is idle.
  • the detection strength of the uplink channel detection subframe is one symbol detection, it is possible to determine the uplink when the uplink channel is in an idle state when detecting each symbol occupied by the uplink channel detection subframe.
  • the channel is in an idle state.
  • the method further includes: acquiring, by the first acquiring unit, the detection period of the uplink channel detection subframe according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe configuration command received by the terminal further includes a detection period of the uplink channel detection subframe, and the uplink is detected from the upstream channel.
  • the acquisition of the detection period in the channel detection subframe configuration command can detect whether the uplink channel is busy in real time, and the detection period and the number of uplink subframes included in each transition point period of the frame structure or the load state of the LTE system
  • the rate is related to the rate of change of the load state of other systems, for example, when the number of uplink subframes included in each transition point period in the frame structure is small (such as configuration mode 3, configuration mode 4, and configuration mode 5).
  • the detection period in the uplink channel detection subframe configuration command is large, and when the number of uplink subframes in each transition point period is large, the detection period in the uplink channel detection subframe configuration command is small.
  • the method further includes: a second acquiring unit, configured to acquire a subframe configuration manner of the frame structure according to the uplink channel detection subframe configuration command.
  • the subframe configuration mode of the frame structure is configuration mode 0, and the configuration mode is 1.
  • Configuration mode 2, configuration mode 3, configuration mode 4, and configuration mode 5 and configuration mode 6 are all configured.
  • the method further includes: a second determining unit, determining whether the uplink service needs to be processed, the detecting unit, and if yes, periodically detecting the subframe by using the uplink channel detecting subframe in the frame structure Whether the upstream channel is idle.
  • the terminal when the terminal detects the state of the uplink channel by using the uplink channel detection subframe, the terminal may perform the determination when there is an uplink service, and may be performed regardless of whether the uplink service is always performed.
  • a terminal comprising: a data transmission system when the LTE system according to any one of the foregoing technical solutions operates in an unlicensed frequency band in a time division duplex mode.
  • the terminal can be configured to set the uplink channel detection subframe pair in the frame structure of the time division duplex mode.
  • the state of the channel is detected, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in a busy state, the uplink data is not sent.
  • the LTE system can adopt the corresponding interference avoidance mechanism when working in the unlicensed frequency band in the time division duplex mode, and can coexist peacefully with other systems working in the unlicensed frequency band (such as Wi-Fi system) when working in the unlicensed frequency band.
  • the LTE system Under the premise of ensuring that the LTE system can work normally in the unlicensed frequency band, the LTE system is prevented from causing large interference to other systems with the interference avoidance mechanism because there is no interference avoidance mechanism when working in the unlicensed frequency band.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • a control method for configuring an uplink channel detection subframe is provided, where the method is used to control the terminal in the foregoing technical solution, and the control method is applicable to a device having a base station function.
  • the method includes: sending an uplink channel detection subframe configuration command to the terminal, so that the terminal is configured to periodically detect the non-period in a frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command.
  • An uplink channel detection subframe in which the uplink channel of the licensed frequency band is idle.
  • the terminal can send the uplink channel detection subframe configuration command to the terminal, so that the terminal can detect the subframe configuration command according to the uplink channel, and the frame in the time division duplex mode.
  • the uplink channel detection subframe is configured to detect the state of the uplink channel, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink data is sent by using the uplink subframe in the frame structure, and the uplink channel is detected.
  • the uplink data is not sent, so that the LTE system can adopt the corresponding interference avoidance mechanism when working in the unlicensed frequency band in the time division duplex mode, and then can work with other systems working in the unlicensed frequency band when working in the unlicensed frequency band (
  • the Wi-Fi system can coexist peacefully, so as to ensure that the LTE system can work in the unlicensed band, and avoid the LTE system working in the unlicensed band, because there is no interference avoidance mechanism, and other systems with interference avoidance mechanism are generated. Larger interference.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure.
  • the uplink channel detection subframe configuration command includes a specific setting position of the uplink channel detection subframe in the frame structure, and
  • the preferred setting method of the uplink channel detection subframe is usually:
  • the uplink channel detection subframe is in the downlink subframe adjacent to the special subframe in the frame structure and is located at the back end of the downlink subframe, occupying the first number of symbols, and the first number ranges from 1 to 14 ,or
  • the uplink channel detection subframe is in the uplink subframe adjacent to the downlink subframe in the frame structure and is located at the back end of the uplink subframe, occupying a second number of symbols, and the second number ranges from 1 to 14,
  • the uplink channel detection subframe is located in a special subframe in the frame structure and is adjacent to a downlink pilot slot in a special subframe, and occupies a third number of symbols, and the third number ranges from 1 to 9.
  • the method further includes: determining whether the device having the function of the base station and the other device having the function of the base station belong to the same operator; and determining that the device having the function of the base station belongs to the other device
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: the uplink channel detection subframe is in the device with the base station function
  • the location in the frame structure is the same as the location of the uplink channel detection subframe configured by the other device in the frame structure of the other device; if it is determined that the device with the base station function and the other device belong to different operations
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: a frame structure of the uplink channel detection subframe in the device with the base station function. Frame structure in the location of the uplink channel detection subframe configured by the other device in the other device having the function of the base station The position is not the same.
  • the purpose of channel detection is to detect a base station of another operator (which may also be a device having a base station function, for convenience of description, the base station is taken as an example below, but those skilled in the art should understand this
  • the base station described in the application may also be a device with a base station function, whether the LAA is used, and whether the Wi-Fi occupies a channel. Therefore, for the base station of the same carrier, in order to avoid mutual base stations belonging to the same carrier, The signal is detected and the channel is determined to be busy.
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the position of the uplink channel detection subframe is the same in the frame structure;
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the uplink channel detection subframe is The position in the frame structure is different.
  • the uplink channel detection subframe is on the same carrier frequency.
  • the step of the location in the frame structure of the device having the base station function and the location of the uplink channel detection subframe configured by the other device in the frame structure of the other device are specifically: determining On the same carrier frequency, whether the frame structure of the device having the base station function is configured in the same manner as the frame structure of the other device having the base station function, and if so, setting the frame structure of the device having the base station function
  • the subframe in the frame has a relative offset from the subframe in the frame structure of the other device.
  • the uplink channel detection subframe can be set.
  • the base station of different operators can set the frame structure at different positions of the frame structure.
  • the uplink channel detection subframe configuration command includes: a number of symbols occupied by the uplink channel detection subframe, and the uplink channel detector during operation of the LTE system
  • the number of symbols occupied by the frame is a fixed value; or during the operation of the LTE system, detecting a rate of change of channel conditions of other systems using the unlicensed frequency band around the LTE system in real time, and detecting according to real-time
  • the rate of change of channel conditions of the other system and/or the channel detection capability of the terminal dynamically sets the number of symbols occupied by the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command further includes the number of symbols occupied by the uplink channel detection subframe, and the base station may The number of symbols is set to a fixed value, and the number of symbols occupied by the uplink channel detection subframe may be dynamically set according to the rate of change of channel conditions of other systems and/or the channel detection capability of the terminal, so that the terminal can The uplink channel detection subframe sufficiently and accurately determines whether the uplink channel is busy, and transmits uplink data in time when detecting that the uplink channel is idle.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the uplink channel detection subframe; a channel detection capability of the terminal and the uplink channel detector The number of symbols occupied by the frame is inversely proportional.
  • the conversion rate of channel conditions of other systems using unlicensed bands around the LTE system is used. The faster the uplink channel is measured, the more the number of symbols occupied by the uplink channel detection subframe is set. If the channel detection capability of the terminal is poor, the state of the uplink channel needs to be measured multiple times, that is, the uplink channel is set.
  • the detection subframe occupies a large number of symbols, so the rate of change of channel conditions of other systems is proportional to the number of symbols occupied by the uplink channel detection subframe, and the channel detection capability of the terminal and the number of symbols occupied by the uplink channel detection subframe In inverse proportional relationship.
  • the uplink channel detection subframe configuration command includes: a detection period of the uplink channel detection subframe, and an uplink subframe number included in each transition point period in the frame structure. Setting a detection period of the uplink channel detection subframe, or During the operation of the LTE system, the rate of change of the load state of the LTE system and the rate of change of the load state of other systems using the unlicensed band around the LTE system are detected in real time, and according to the real-time detected The rate of change of the load state of the LTE system and/or the rate of change of the load state of the other system dynamically sets the detection period of the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command further includes a detection period of the uplink channel detection subframe, specifically, including:
  • the detection period of the uplink channel detection subframe may be set to be larger. And, if there are a large number of uplink subframes in each transition point period, in order to determine whether to transmit uplink data according to the real-time state of the uplink channel, the detection period of the uplink channel detection subframe may be set to be small;
  • the detection period of the uplink channel detection subframe is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • the working state of the system is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • a rate of change of a load state of the LTE system is inversely proportional to a detection period of the uplink channel detection subframe; a rate of change of a load state of the other system and the uplink channel detection The detection period of the subframe is inversely proportional.
  • the rate of change of the load state of the LTE system is larger, the change of the transmission amount of the uplink data is larger; if the rate of change of the load state of other systems is larger, the state of the channel changes greatly. Therefore, in order to transmit uplink data, it is necessary to measure the state of the channel in a short interval, that is, the detection period of the uplink channel detection subframe needs to be set to be smaller.
  • the uplink channel detection subframe configuration command includes: a subframe configuration manner of the frame structure, and a configuration mode 3, a configuration mode 4, and a subframe configuration manner of the frame structure.
  • the detection period of the uplink channel detection subframe in the configuration mode 5 is: M ⁇ 10 ms, where M is a positive integer; configuration mode 0, configuration mode 1, and configuration mode 2 in the subframe configuration mode of the frame structure
  • the detection period of the uplink channel detection subframe in configuration mode 6 is: N ⁇ 5 ms, where N is 1 or a positive even number.
  • the two locations included in the uplink channel detection subframe configuration command may be the same.
  • the sub-frame position can also be a different sub-frame position. Specifically, as in the configuration mode 0, if the period of the uplink channel detection subframe is 5 ms, the position of the subframe 1 (ie, the S subframe) and the position of the subframe 5 (that is, the D subframe) may be separately set.
  • the uplink channel detection subframe that is, the two uplink channel detection subframes in the same frame structure are at different subframe type positions; and for the configuration mode 1, if the period of the uplink channel detection subframe is 5 ms, the subframe 1 may be The position of the frame (ie, the S subframe) and the position of the subframe 6 (ie, the S subframe) respectively set the uplink channel detection subframe, that is, the two uplink channel detection subframes in the same frame structure are in the same subframe type. position.
  • the method further includes: if the frame structure has a plurality of locations, the uplink channel detection subframe is set, and the detection period of the uplink channel detection subframe is M ⁇ 10 ms,
  • the setting position of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: the first one of the plurality of locations.
  • the position of the subframe 1 ie, the S subframe
  • the position of the subframe 6 that is, the S subframe
  • the uplink channel detection subframe if the period of the uplink channel detection subframe is an integer multiple of 10 ms, the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command may be only at the position of the subframe 1 .
  • a control system for configuring an uplink channel detection subframe wherein the control system is configured to control a terminal in the foregoing technical solution, and the control system is adapted to have a base station.
  • the function device includes: a sending unit, configured to send an uplink channel detection subframe configuration command to the terminal, so that the terminal is configured in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command An uplink channel detection subframe that periodically detects whether an uplink channel of the unlicensed band is idle.
  • the terminal can send the uplink channel detection subframe configuration command to the terminal, so that the terminal can detect the subframe configuration command according to the uplink channel, and the frame in the time division duplex mode.
  • the uplink channel detection subframe is configured to detect the state of the uplink channel, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink data is sent by using the uplink subframe in the frame structure, and the uplink channel is detected.
  • the uplink data is not sent, so that the LTE system can adopt the corresponding interference avoidance mechanism when working in the unlicensed frequency band in the time division duplex mode, and then can work with other systems working in the unlicensed frequency band when working in the unlicensed frequency band (
  • the Wi-Fi system can coexist peacefully, so as to ensure that the LTE system can work in the unlicensed band, and avoid the LTE system working in the unlicensed band, because there is no interference avoidance mechanism, and other systems with interference avoidance mechanism are generated. Big interference.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure.
  • the uplink channel detection subframe configuration command includes a specific setting position of the uplink channel detection subframe in the frame structure, and
  • the preferred setting method of the uplink channel detection subframe is usually:
  • the uplink channel detection subframe is in the downlink subframe adjacent to the special subframe in the frame structure and is located at the back end of the downlink subframe, occupying the first number of symbols, and the first number ranges from 1 to 14 ,or
  • the uplink channel detection subframe is in the uplink subframe adjacent to the downlink subframe in the frame structure and is located at the back end of the uplink subframe, occupying a second number of symbols, and the second number ranges from 1 to 14,
  • the uplink channel detection subframe is located in a special subframe in the frame structure and is adjacent to a downlink pilot slot in a special subframe, and occupies a third number of symbols, and the third number ranges from 1 to 9.
  • the determining unit further includes: determining, by the determining unit, whether the device having the function of the base station and the other device having the function of the base station belong to the same operator; and determining the device having the function of the base station and the other If the device belongs to the same carrier, the uplink channel detection subframe includes the uplink channel detection subframe, where the uplink channel detection subframe includes the base station function.
  • the location in the frame structure of the device is the same as the location of the uplink channel detection subframe configured by the other device in the frame structure of the other device; if the device having the base station function is determined to have the function of the base station
  • the other device belongs to a different carrier, and the uplink channel detection subframe includes the location of the uplink channel detection subframe that is set on the same carrier frequency: the uplink channel detection subframe has the a location in a frame structure of a device functioning at the base station and the uplink channel detection subframe configured by the other device in the other device
  • the frame structure is not the same position.
  • the purpose of channel detection is to detect a base station of another operator (which may also be a device having a base station function, for convenience of description, the base station is taken as an example below, but those skilled in the art should understand this
  • the base station described in the application may also be a device with a base station function, whether the LAA is used, and whether the Wi-Fi occupies a channel. Therefore, for the base station of the same carrier, in order to avoid mutual base stations belonging to the same carrier, The signal is detected and the channel is determined to be busy.
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the position of the uplink channel detection subframe is the same in the frame structure;
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the uplink channel detection subframe is The position in the frame structure is different.
  • the determining unit is further configured to, on the same carrier frequency, a location of the uplink channel detection subframe in a frame structure of the device with a base station function, and the function of the base station Determining, on the same carrier frequency, the frame structure of the device having the base station function, when the location of the uplink channel detection subframe of the other device configuration is different in the frame structure of the other device having the function of the base station Whether the configuration of the frame structure is the same as that of the other device having the function of the base station, and the control system further includes: a setting unit, if the frame structure of the device having the function of the base station is configured The frame structure of other devices having the function of the base station is configured in the same manner, and the subframe in the frame structure of the device having the function of the base station is set to have a relative offset from the subframe in the frame structure of the other device.
  • the uplink channel detection subframe can be set.
  • the base station of different operators can set the frame structure at different positions of the frame structure.
  • the uplink channel detection subframe configuration command includes: a number of symbols occupied by the uplink channel detection subframe, and the uplink channel detector during operation of the LTE system The number of symbols occupied by the frame is a fixed value; or the control system further includes: a detecting unit that detects, in real time, the channel of other systems in the LTE system using the unlicensed frequency band a rate of change of the condition, the setting unit is further configured to dynamically set the occupied by the uplink channel detection subframe according to a rate of change of channel conditions of the other system detected in real time and/or a channel detection capability of the terminal The number of symbols.
  • the uplink channel detection subframe configuration command further includes the number of symbols occupied by the uplink channel detection subframe, and the base station may The number of symbols is set to a fixed value, and the number of symbols occupied by the uplink channel detection subframe may be dynamically set according to the rate of change of channel conditions of other systems and/or the channel detection capability of the terminal, so that the terminal can The uplink channel detection subframe sufficiently and accurately determines whether the uplink channel is busy, and transmits uplink data in time when detecting that the uplink channel is idle.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the uplink channel detection subframe; a channel detection capability of the terminal and the uplink channel detector The number of symbols occupied by the frame is inversely proportional.
  • the conversion rate of channel conditions of other systems using unlicensed bands around the LTE system is used. The faster the uplink channel is measured, the more the number of symbols occupied by the uplink channel detection subframe is set. If the channel detection capability of the terminal is poor, the state of the uplink channel needs to be measured multiple times, that is, the uplink channel is set.
  • the detection subframe occupies a large number of symbols, so the rate of change of channel conditions of other systems is proportional to the number of symbols occupied by the uplink channel detection subframe, and the channel detection capability of the terminal and the number of symbols occupied by the uplink channel detection subframe In inverse proportional relationship.
  • the uplink channel detection subframe configuration command includes: a detection period of the uplink channel detection subframe, and the setting unit is further configured to: according to each transition point in the frame structure The number of uplink subframes included in the period is set to the detection period of the uplink channel detection subframe, or the detecting unit is further configured to detect, in real time, the change of the load state of the LTE system during the working process of the LTE system. And a rate of change of a load state of a load system of the LTE system, The rate of change of the load status of other systems is dynamically set to detect the detection period of the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command further includes a detection period of the uplink channel detection subframe, specifically, including:
  • Setting mode 1 If the number of uplink subframes included in each conversion point period in the frame structure is small (In the configuration mode 3, the configuration mode 4, and the configuration mode 5), the detection period of the uplink channel detection subframe may be set to be large; and when the number of uplink subframes in each transition point period is large, If the real-time status of the channel determines whether to transmit uplink data, the detection period of the uplink channel detection subframe may be set to be small;
  • the detection period of the uplink channel detection subframe is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • the working state of the system is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • a rate of change of a load state of the LTE system is inversely proportional to a detection period of the uplink channel detection subframe; a rate of change of a load state of the other system and the uplink channel detection The detection period of the subframe is inversely proportional.
  • the rate of change of the load state of the LTE system is larger, the change of the transmission amount of the uplink data is larger; if the rate of change of the load state of other systems is larger, the state of the channel changes greatly. Therefore, in order to transmit uplink data, it is necessary to measure the state of the channel in a short interval, that is, the detection period of the uplink channel detection subframe needs to be set to be smaller.
  • the uplink channel detection subframe configuration command includes: a subframe configuration manner of the frame structure, and a configuration mode 3, a configuration mode 4, and a subframe configuration manner of the frame structure.
  • the detection period of the uplink channel detection subframe in the configuration mode 5 is: M ⁇ 10 ms, where M is a positive integer; configuration mode 0, configuration mode 1, and configuration mode 2 in the subframe configuration mode of the frame structure
  • the detection period of the uplink channel detection subframe in configuration mode 6 is: N ⁇ 5 ms, where N is 1 or a positive even number.
  • the two locations included in the uplink channel detection subframe configuration command may be the same.
  • the sub-frame position can also be a different sub-frame position. Specifically, as in the configuration mode 0, if the period of the uplink channel detection subframe is 5 ms, the position of the subframe 1 (ie, the S subframe) and the position of the subframe 5 (that is, the D subframe) may be separately set.
  • the uplink channel detection subframe that is, the two uplink channel detection subframes in the same frame structure are at different subframe type positions; and for the configuration mode 1, if the period of the uplink channel detection subframe is 5 ms, the subframe 1 may be The position of the frame (ie, the S subframe) and the position of the subframe 6 (ie, the S subframe) respectively set the uplink channel detection subframe, that is, the two uplink channel detection subframes in the same frame structure are in the same subframe type position. .
  • the method further includes: if the frame structure has a plurality of locations, the uplink channel detection subframe is set, and the detection period of the uplink channel detection subframe is M ⁇ 10 ms,
  • the setting position of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: the first one of the plurality of locations.
  • the position of the subframe 1 ie, the S subframe
  • the position of the subframe 6 that is, the S subframe
  • the uplink channel detection subframe if the period of the uplink channel detection subframe is an integer multiple of 10 ms, the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command may be Only in the position of subframe 1.
  • a device having a base station function comprising: a control system for configuring an uplink channel detection subframe according to any one of the foregoing technical solutions.
  • the uplink channel detection subframe configuration command is sent to the terminal.
  • the terminal may be configured to detect, according to the uplink channel detection subframe configuration command, the uplink channel detection subframe in the frame structure of the time division duplex mode to detect the state of the uplink channel, to detect that the uplink channel is idle in the uplink channel detection subframe.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system can take corresponding interference when working in the unlicensed frequency band in the time division duplex mode.
  • the evasive mechanism which in turn operates in unlicensed bands, can coexist peacefully with other systems operating in unlicensed bands (such as Wi-Fi systems) to avoid LTE systems while ensuring that LTE systems can operate in unlicensed bands.
  • the unlicensed band works, it has interference due to the absence of interference avoidance mechanism. Other systems of the avoidance mechanism generate large interference.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the technical solution of the present invention can ensure that the LTE system does not interfere with other systems when the LTE system works in the unlicensed frequency band, and the LTE system and other systems are in the unlicensed frequency band. Peace coexists.
  • Figure 1 shows a schematic diagram of two modes of operation of an unlicensed spectrum
  • FIG. 2 is a schematic diagram showing an interference avoidance rule of a Wi-Fi system
  • FIG. 3 is a schematic flowchart diagram of a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of controlling an uplink channel detection subframe according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a control system for configuring an uplink channel detection subframe according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a device having a base station function according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a TDD frame structure of a 5 ms downlink to uplink transition
  • FIG. 10 is a schematic structural diagram of an uplink channel detection subframe set in a downlink subframe according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an uplink channel detection subframe set in an uplink subframe according to an embodiment of the present invention.
  • FIG. 12A is a schematic structural diagram of an uplink channel detection subframe set in a special subframe according to an embodiment of the present invention.
  • FIG. 12B is a schematic diagram showing the structure of an uplink channel detection subframe set in a special subframe according to another embodiment of the present invention.
  • FIG. 3 is a flow chart showing a data transmission method when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention.
  • a data transmission method when an LTE system operates in an unlicensed frequency band in a time division duplex mode including: Step 302, receiving uplink channel detection from a device having a base station function. a subframe configuration command; step 304, according to the uplink channel detection subframe configuration command, setting, in the frame structure of the time division duplex mode, the uplink for periodically detecting whether the uplink channel of the unlicensed frequency band is idle a channel detection subframe; in step 306, if the uplink channel detection subframe detects that the uplink channel is idle in any detection period, the uplink subframe is sent in any one of the detection periods in the frame structure. Upstream data.
  • the uplink channel detection subframe is set to detect the state of the uplink channel in the frame structure of the time division duplex mode according to the received uplink channel detection subframe configuration command, to detect the uplink channel detection in the uplink channel.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system works in the time division duplex mode when the unlicensed frequency band is used.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that In the frame structure of the time division duplex mode, other subframes are additionally set to carry the uplink channel detection subframe.
  • the uplink channel may be set in one or more subframes in the frame structure of the time division duplex mode according to the actual situation of the LTE system.
  • the subframe is detected, and the set position of the uplink channel detection subframe may be at one or more of the uplink subframe, the downlink subframe, and the special subframe.
  • the uplink channel detection subframe is set in a downlink subframe adjacent to the special subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in a downlink subframe adjacent to the special subframe in the frame structure of the time division duplex mode by using the uplink channel detection subframe configuration command, so that the downlink subframe is in the downlink subframe.
  • the detection of the uplink channel can be implemented, thereby determining whether data transmission can be performed through the uplink subframe.
  • the uplink channel detection subframe does not occupy the uplink subframe, Ensure that the uplink subframe is completely used for uplink data transmission, and realize the full utilization of the uplink subframe.
  • the uplink channel detection subframe is set at a back end of the downlink subframe according to the uplink channel detection subframe configuration command, and the uplink channel detection subframe occupies the first A number of symbols, the first number having a value ranging from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the downlink subframe according to the uplink channel detection subframe configuration command, so that the timeliness of channel detection can be ensured to ensure that the uplink data is detected before being transmitted.
  • the channel state is the latest state, avoiding the channel detection earlier and transmitting the uplink data later, and the channel state has changed when the uplink data needs to be transmitted, which affects the transmission of the uplink data. Specifically, if the channel detection is earlier and the channel is in a busy state, but the uplink data transmission is late (ie, the uplink channel detection subframe is far away from the uplink subframe), if the channel is in an idle state during uplink data transmission.
  • the LTE system since the channel detection result is busy, the LTE system does not send uplink data and waits for the last channel detection, so that the uplink data cannot be transmitted; similarly, if the channel detection is earlier and the channel is detected to be idle, The uplink data transmission is late. If the channel is in a busy state during uplink data transmission, but the channel detection result is idle, the LTE system will continue to send uplink data without waiting for the last channel detection, which may cause other systems. interference.
  • the uplink channel detection subframe is set in an uplink subframe adjacent to the downlink subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in the uplink subframe adjacent to the downlink subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that When the uplink is transmitted, the measurement of the uplink channel is performed in time.
  • the downlink subframe since the uplink channel detection subframe does not occupy the downlink subframe, the downlink subframe can be completely used for downlink data transmission, and the downlink subframe can be fully utilized.
  • the uplink channel detection subframe is set at a back end of the uplink subframe according to the uplink channel detection subframe configuration command, and the uplink channel detection subframe occupies a second The number of symbols, the second number ranges from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the uplink subframe according to the uplink channel detection subframe configuration command, so that other portions of the uplink subframe can continue to be used for uplink data transmission, and the uplink is ensured.
  • the guard time needs to be set, and the uplink channel detection subframe is equivalent to one downlink signal when detecting the state of the uplink channel, and thus, the uplink channel is detected.
  • the subframe is set at the back end of the uplink subframe adjacent to the downlink subframe, so that it is possible to avoid setting extra guard time in the uplink subframe.
  • the uplink channel detection subframe is set in a special subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in the special subframe according to the uplink channel detection subframe configuration command, so that the downlink subframe and the uplink subframe do not need to be occupied, thereby ensuring uplink transmission and downlink of the system.
  • the transmission is not affected; at the same time, if different base stations of the same carrier set the uplink channel detection subframe on the special subframe on the same carrier frequency and are set at the same position of the frame structure, the different base stations are measuring the channel state.
  • the base stations of other operators are used as reference, the channel is not busy because the base station signals of the same carrier are detected.
  • the uplink channel detection subframe is set in the special subframe and is adjacent to a downlink pilot slot in the special subframe according to the uplink channel detection subframe configuration command. And the location of the uplink channel detection subframe occupies a third number of symbols, wherein the third number ranges from 1 to 9.
  • the guard time needs to be set, and the uplink channel detection subframe needs to monitor the uplink signal to detect the channel state. Therefore, by setting the uplink channel detection subframe to a position adjacent to the downlink pilot time slot, that is, between the downlink pilot time slot (DwPTS) and the guard time (GP) or before the downlink pilot time slot, it may be unnecessary. Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • DwPTS downlink pilot time slot
  • GP guard time
  • Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • the downlink pilot time slot occupies at least 3 symbols, and one subframe contains 14 symbols, so it is set in the special sub-frame.
  • the number of symbols occupied by the uplink channel detection subframe in the frame is at most 9, and at least one.
  • the uplink channel detection subframe when the uplink channel detection subframe periodically detects whether an uplink channel of the unlicensed frequency band is idle, if the uplink channel detection subframe is detected in each of the symbols When the uplink channel is idle, the uplink channel detection subframe determines the upper The line channel is idle.
  • the detection strength of the uplink channel detection subframe is one symbol detection, it is possible to determine the uplink when the uplink channel is in an idle state when detecting each symbol occupied by the uplink channel detection subframe.
  • the channel is in an idle state.
  • the method further includes: acquiring, according to the uplink channel detection subframe configuration command, a detection period of the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command received by the terminal further includes a detection period of the uplink channel detection subframe, and the uplink is detected from the upstream channel.
  • the acquisition of the detection period in the channel detection subframe configuration command can detect whether the uplink channel is busy in real time, and the detection period and the number of uplink subframes included in each transition point period of the frame structure or the load state of the LTE system
  • the rate is related to the rate of change of the load state of other systems, for example, when the number of uplink subframes included in each transition point period in the frame structure is small (such as configuration mode 3, configuration mode 4, and configuration mode 5).
  • the detection period in the uplink channel detection subframe configuration command is large, and when the number of uplink subframes in each transition point period is large, the detection period in the uplink channel detection subframe configuration command is small.
  • the subframe configuration manner of the frame structure is acquired according to the uplink channel detection subframe configuration command.
  • the subframe configuration mode of the frame structure is any one of configuration mode 0, configuration mode 1, configuration mode 2, configuration mode 3, configuration mode 4, configuration mode 5, and configuration mode 6.
  • the method further includes: determining whether the uplink service needs to be processed, and if yes, periodically detecting, by the uplink channel detection subframe in the frame structure, whether the uplink channel is idle.
  • the terminal when the terminal detects the state of the uplink channel by using the uplink channel detection subframe, the terminal may perform the determination when there is an uplink service, and may be performed regardless of whether the uplink service is always performed.
  • FIG. 4 is a schematic structural diagram of a data transmission system when an LTE system operates in a time division duplex mode in an unlicensed frequency band according to an embodiment of the present invention.
  • a data transmission system 400 when an LTE system operates in an unlicensed frequency band in a time division duplex mode includes: a receiving unit 402 that receives an uplink from a device having a base station function. a channel detection subframe configuration command; a setting unit 404, configured to periodically detect, in the frame structure of the time division duplex mode, whether an uplink channel for periodically detecting the unlicensed band is idle according to the uplink channel detection subframe configuration command The uplink channel detection subframe; the sending unit 406, if the uplink channel detection subframe detects that the uplink channel is idle, in any detection period, if the frame structure is in any one of the detection periods The uplink subframe transmits uplink data.
  • the uplink channel detection subframe is set in the frame structure of the time division duplex mode to check the state of the uplink channel by detecting the subframe configuration command according to the received uplink channel.
  • the uplink data is sent by the uplink subframe in the frame structure when the uplink channel detection subframe detects that the uplink channel is in an idle state, and the uplink data is not sent when the uplink channel is in a busy state, so that the LTE system is
  • the unlicensed band works in time division duplex mode, it can adopt the corresponding interference avoidance mechanism, so that it can coexist peacefully with other systems working in the unlicensed band (such as Wi-Fi system) when working in the unlicensed band to ensure the LTE system.
  • the LTE system can avoid large interference to other systems with interference avoidance mechanism because there is no interference avoidance mechanism when working in the unlicensed frequency band.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the setting unit 404 is configured to: set the uplink channel detection subframe in at least one subframe in the frame structure according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe is set in at least one subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that the frame structure in the time division duplex mode is not required. Additional subframes are additionally set to carry the uplink channel detection subframe. Meanwhile, the uplink channel detection subframe may be set in one or more subframes in the frame structure of the time division duplex mode according to the actual situation of the LTE system, and the uplink channel detection is performed. The set position of the subframe may be at one or more of the uplink subframe, the downlink subframe, and the special subframe.
  • the setting unit 404 is specifically configured to: set the uplink channel detection subframe in the frame structure to be adjacent to the special subframe according to the uplink channel detection subframe configuration command. Within the downlink sub-frame.
  • the uplink channel detection subframe is set in a downlink subframe adjacent to the special subframe in the frame structure of the time division duplex mode by using the uplink channel detection subframe configuration command, so that the downlink subframe is in the downlink subframe.
  • the detection of the uplink channel can be implemented, thereby determining whether data transmission can be performed through the uplink subframe.
  • the uplink channel detection subframe does not occupy the uplink subframe, Ensure that the uplink subframe is completely used for uplink data transmission, and realize the full utilization of the uplink subframe.
  • the setting unit 404 is further configured to: set the uplink channel detection subframe to a back end of the downlink subframe according to the uplink channel detection subframe configuration command, and The uplink channel detection subframe is occupied by a first number of symbols, and the first number ranges from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the downlink subframe according to the uplink channel detection subframe configuration command, so that the timeliness of channel detection can be ensured to ensure that the uplink data is detected before being transmitted.
  • the channel state is the latest state, avoiding the channel detection earlier and transmitting the uplink data later, and the channel state has changed when the uplink data needs to be transmitted, which affects the transmission of the uplink data. Specifically, if the channel detection is earlier and the channel is in a busy state, but the uplink data transmission is late (ie, the uplink channel detection subframe is far away from the uplink subframe), if the channel is in an idle state during uplink data transmission.
  • the LTE system does not send uplink data and waits for the last channel detection, resulting in failure to transmit uplink data. Similarly, if the channel detection is earlier and the channel is detected to be idle, but the uplink data transmission is late. If the channel is already in a busy state during uplink data transmission, but the channel detection result is idle, the LTE system will continue to send uplink data without waiting for the last channel detection, which may cause interference to other systems.
  • the setting unit 404 is further configured to: set the uplink channel detection subframe in the frame structure and the downlink subframe according to the uplink channel detection subframe configuration command. Within the adjacent uplink subframe.
  • the uplink channel detection subframe is set in the uplink subframe adjacent to the downlink subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, so that When the uplink is transmitted, the measurement of the uplink channel is performed in time.
  • the downlink subframe since the uplink channel detection subframe does not occupy the downlink subframe, the downlink subframe can be completely used for downlink data transmission, and the downlink subframe can be fully utilized.
  • the setting unit 404 is further configured to: set the uplink channel detection subframe to a back end of the uplink subframe according to the uplink channel detection subframe configuration command, and The uplink channel detection subframe is occupied by a second number of symbols, and the second number ranges from 1 to 14.
  • the uplink channel detection subframe is set at the back end of the uplink subframe according to the uplink channel detection subframe configuration command, so that other portions of the uplink subframe can continue to be used for uplink data transmission, and the uplink is ensured.
  • the guard time needs to be set, and the uplink channel detection subframe is equivalent to one downlink signal when detecting the state of the uplink channel, and thus, the uplink channel is detected.
  • the subframe is set at the back end of the uplink subframe adjacent to the downlink subframe, so that it is possible to avoid setting extra guard time in the uplink subframe.
  • the setting unit 404 is further configured to: set the uplink channel detection subframe in a special subframe in the frame structure according to the uplink channel detection subframe configuration command. .
  • the uplink channel detection subframe is set in the special subframe according to the uplink channel detection subframe configuration command, so that the downlink subframe and the uplink subframe do not need to be occupied, thereby ensuring uplink transmission and downlink of the system.
  • the transmission is not affected; at the same time, if different base stations of the same carrier set the uplink channel detection subframe on the special subframe on the same carrier frequency and are set at the same position of the frame structure, the different base stations are measuring the channel state.
  • the base stations of other operators are used as reference, the channel is not busy because the base station signals of the same carrier are detected.
  • the setting unit 404 is further configured to: set the uplink channel detection subframe in the special subframe and the special according to the uplink channel detection subframe configuration command. a position adjacent to a downlink pilot slot in a subframe, and causing the uplink channel The detection subframe occupies a third number of symbols, wherein the third number ranges from 1 to 9.
  • the guard time needs to be set, and the uplink channel detection subframe needs to monitor the uplink signal to detect the channel state. Therefore, by setting the uplink channel detection subframe to a position adjacent to the downlink pilot time slot, that is, between the downlink pilot time slot (DwPTS) and the guard time (GP) or before the downlink pilot time slot, it may be unnecessary. Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • DwPTS downlink pilot time slot
  • GP guard time
  • Setting the additional guard time avoids setting the uplink channel detection subframe before the uplink pilot time slot (UpPTS) or between the uplink pilot time slot and the guard time, and requires additional guard time.
  • the downlink pilot time slot occupies at least 3 symbols, and one subframe contains 14 symbols, so it is set in the special sub-frame.
  • the number of symbols occupied by the uplink channel detection subframe in the frame is at most 9, and at least one.
  • the method further includes: a first determining unit 408, located in the uplink channel detecting subframe, when the uplink channel detecting subframe periodically detects whether an uplink channel of the unlicensed band is idle And if the uplink channel detection subframe detects that the uplink channel is idle in each of the symbols, determining that the uplink channel is idle.
  • the detection strength of the uplink channel detection subframe is one symbol detection, it is possible to determine the uplink when the uplink channel is in an idle state when detecting each symbol occupied by the uplink channel detection subframe.
  • the channel is in an idle state.
  • the method further includes: the first acquiring unit 410, acquiring the detection period of the uplink channel detection subframe according to the uplink channel detection subframe configuration command.
  • the uplink channel detection subframe configuration command received by the terminal further includes a detection period of the uplink channel detection subframe, and the uplink is detected from the upstream channel.
  • the acquisition of the detection period in the channel detection subframe configuration command can detect whether the uplink channel is busy in real time, and the detection period and the number of uplink subframes included in each transition point period of the frame structure or the load state of the LTE system
  • the rate is related to the rate of change of the load state of other systems, for example, when the number of uplink subframes included in each transition point period in the frame structure is small (such as configuration mode 3, configuration mode 4, and configuration mode 5).
  • the detection period in the uplink channel detection subframe configuration command is large, and when the number of uplink subframes in each transition point period is large, the detection period in the uplink channel detection subframe configuration command is small.
  • the method further includes: a second acquiring unit 412, configured to acquire a subframe configuration manner of the frame structure according to the uplink channel detection subframe configuration command.
  • the subframe configuration mode of the frame structure is any one of configuration mode 0, configuration mode 1, configuration mode 2, configuration mode 3, configuration mode 4, configuration mode 5, and configuration mode 6.
  • the method further includes: a second determining unit 414, determining whether The uplink service needs to be processed, and the detecting unit 416, if yes, periodically detects whether the uplink channel is idle through the uplink channel detecting subframe in the frame structure.
  • the terminal when the terminal detects the state of the uplink channel by using the uplink channel detection subframe, the terminal may perform the determination when there is an uplink service, and may be performed regardless of whether the uplink service is always performed.
  • FIG. 5 shows a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • a terminal 500 including: the data transmission system 400 when the LTE system according to any one of the foregoing technical solutions operates in a time division duplex mode in an unlicensed frequency band. .
  • the terminal 500 can be configured to set the uplink channel detector in the frame structure of the time division duplex mode.
  • the frame detects the state of the uplink channel, and sends the uplink data through the uplink subframe in the frame structure when the uplink channel detection subframe detects that the uplink channel is in the idle state, and does not send when the uplink channel is in the busy state.
  • the uplink data enables the LTE system to adopt the corresponding interference avoidance mechanism when operating in the unlicensed frequency band in the time division duplex mode, and thus can work with other systems working in the unlicensed frequency band (such as Wi-Fi system) when working in the unlicensed frequency band.
  • Coexistence in order to ensure that the LTE system can work in the unlicensed band, avoiding the LTE system from operating in the unlicensed band, because there is no interference avoidance mechanism, it will cause greater interference to other systems with interference avoidance mechanism.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • FIG. 6 is a flow chart showing a control method of configuring an uplink channel detection subframe according to an embodiment of the present invention.
  • a control method for configuring an uplink channel detection subframe includes: Step 602: Send an uplink channel detection subframe configuration command to the terminal, so that the terminal is configured according to The uplink channel detection subframe configuration command is configured to set, in a frame structure of the time division duplex mode, an uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed frequency band is idle.
  • the terminal can send the uplink channel detection subframe configuration command to the terminal, so that the terminal can detect the subframe configuration command according to the uplink channel, and the frame in the time division duplex mode.
  • the uplink channel detection subframe is configured to detect the state of the uplink channel, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink data is sent by using the uplink subframe in the frame structure, and the uplink channel is detected.
  • the uplink data is not sent, so that the LTE system can adopt the corresponding interference avoidance mechanism when working in the unlicensed frequency band in the time division duplex mode, and then can work with other systems working in the unlicensed frequency band when working in the unlicensed frequency band (
  • the Wi-Fi system can coexist peacefully, so as to ensure that the LTE system can work in the unlicensed band, and avoid the LTE system working in the unlicensed band, because there is no interference avoidance mechanism, and other systems with interference avoidance mechanism are generated. Big interference.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure.
  • the uplink channel detection subframe configuration command includes a specific setting position of the uplink channel detection subframe in the frame structure, and
  • the preferred setting method of the uplink channel detection subframe is usually:
  • the uplink channel detection subframe is in the downlink subframe adjacent to the special subframe in the frame structure and is located at the back end of the downlink subframe, occupying the first number of symbols, and the first number ranges from 1 to 14 ,or
  • the uplink channel detection subframe is in the uplink subframe adjacent to the downlink subframe in the frame structure and is located at the back end of the uplink subframe, occupying a second number of symbols, and the second number ranges from 1 to 14,
  • the uplink channel detection subframe is located in a special subframe in the frame structure and is adjacent to a downlink pilot slot in a special subframe, and occupies a third number of symbols, and the third number ranges from 1 to 9.
  • the method further includes: determining whether the device having the function of the base station and the other device having the function of the base station belong to the same operator; and determining that the device having the function of the base station belongs to the other device
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: the uplink channel detection subframe is in the device with the base station function
  • the location in the frame structure is the same as the location of the uplink channel detection subframe configured by the other device in the frame structure of the other device; if it is determined that the device with the base station function and the other device belong to different operations
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: a frame structure of the uplink channel detection subframe in the device with the base station function. Frame structure in the location of the uplink channel detection subframe configured by the other device in the other device having the function of the base station The position is not the same.
  • the purpose of channel detection is to detect a base station of another operator (which may also be a device having a base station function, for convenience of description, the base station is taken as an example below, but those skilled in the art should understand this
  • the base station described in the application may also be a device with a base station function, whether the LAA is used, and whether the Wi-Fi occupies a channel. Therefore, for the base station of the same carrier, in order to avoid mutual base stations belonging to the same carrier, The signal is detected and the channel is determined to be busy.
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the position of the uplink channel detection subframe is the same in the frame structure;
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the uplink channel detection subframe is The position in the frame structure is different.
  • the location of the uplink channel detection subframe in the frame structure of the device having the base station function is the same as the configuration of the other device on the same carrier frequency
  • the step of determining the position of the uplink channel detection subframe in the frame structure of the other device is specifically: determining, by using the base station, a frame structure configuration manner of the device having the base station function on the same carrier frequency Whether the configuration of the frame structure of the other devices of the function is the same, and if so, the subframe in the frame structure of the device having the function of the base station is set to have a relative offset from the subframe in the frame structure of the other device.
  • the uplink channel detection subframe can be set.
  • the base station of different operators can set the frame structure at different positions of the frame structure.
  • the uplink channel detection subframe configuration command includes: a number of symbols occupied by the uplink channel detection subframe, and the uplink channel detector during operation of the LTE system
  • the number of symbols occupied by the frame is a fixed value; or during the operation of the LTE system, detecting a rate of change of channel conditions of other systems using the unlicensed frequency band around the LTE system in real time, and detecting according to real-time
  • the rate of change of channel conditions of the other system and/or the channel detection capability of the terminal dynamically sets the number of symbols occupied by the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command further includes the number of symbols occupied by the uplink channel detection subframe, and the base station may The number of symbols is set to a fixed value, and the number of symbols occupied by the uplink channel detection subframe may be dynamically set according to the rate of change of channel conditions of other systems and/or the channel detection capability of the terminal, so that the terminal can The uplink channel detection subframe sufficiently and accurately determines whether the uplink channel is busy, and transmits uplink data in time when detecting that the uplink channel is idle.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the uplink channel detection subframe; a channel detection capability of the terminal and the uplink channel detector The number of symbols occupied by the frame is inversely proportional.
  • the conversion rate of channel conditions of other systems using unlicensed bands around the LTE system is used. The faster the uplink channel is measured, the more the number of symbols occupied by the uplink channel detection subframe is set. If the channel detection capability of the terminal is poor, the state of the uplink channel needs to be measured multiple times, that is, the uplink channel is set.
  • the detection subframe occupies a large number of symbols, so the rate of change of channel conditions of other systems is proportional to the number of symbols occupied by the uplink channel detection subframe, and the channel detection capability of the terminal and the number of symbols occupied by the uplink channel detection subframe In inverse proportional relationship.
  • the uplink channel detection subframe configuration command includes: a detection period of the uplink channel detection subframe, and an uplink subframe number included in each transition point period in the frame structure. Setting a detection period of the uplink channel detection subframe, or detecting a change speed of a load state of the LTE system in real time during operation of the LTE system Rate and rate of change of load status of other systems using the unlicensed band around the LTE system, and based on the rate of change of the load status of the LTE system detected in real time and/or the load status of the other system The rate of change dynamically sets the detection period of the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command further includes a detection period of the uplink channel detection subframe, specifically, including:
  • the detection period of the uplink channel detection subframe may be set to be larger. And, if there are a large number of uplink subframes in each transition point period, in order to determine whether to transmit uplink data according to the real-time state of the uplink channel, the detection period of the uplink channel detection subframe may be set to be small;
  • the detection period of the uplink channel detection subframe is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • the working state of the system is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • a rate of change of a load state of the LTE system is inversely proportional to a detection period of the uplink channel detection subframe; a rate of change of a load state of the other system and the uplink channel detection The detection period of the subframe is inversely proportional.
  • the rate of change of the load state of the LTE system is larger, the change of the transmission amount of the uplink data is larger; if the rate of change of the load state of other systems is larger, the state of the channel changes greatly. Therefore, in order to transmit downlink data, it is necessary to measure the state of the channel in a short interval, that is, the detection period of the uplink channel detection subframe needs to be set to be smaller.
  • the uplink channel detection subframe configuration command includes: a subframe configuration manner of the frame structure, and a configuration mode 3, a configuration mode 4, and a subframe configuration manner of the frame structure.
  • the detection period of the uplink channel detection subframe in the configuration mode 5 is: M ⁇ 10 ms, where M is a positive integer; configuration mode 0, configuration mode 1, and configuration mode 2 in the subframe configuration mode of the frame structure
  • the detection period of the uplink channel detection subframe in configuration mode 6 is: N ⁇ 5 ms, where N is 1 or a positive even number.
  • the two locations included in the uplink channel detection subframe configuration command may be the same.
  • the sub-frame position can also be a different sub-frame position. Specifically, as in the configuration mode 0, if the period of the uplink channel detection subframe is 5 ms, the position of the subframe 1 (ie, the S subframe) and the position of the subframe 5 (that is, the D subframe) may be separately set.
  • the uplink channel detection subframe that is, the two uplink channel detection subframes in the same frame structure are at different subframe type positions; and for the configuration mode 1, if the period of the uplink channel detection subframe is 5 ms, the subframe 1 may be The position of the frame (ie, the S subframe) and the position of the subframe 6 (ie, the S subframe) respectively set the uplink channel detection subframe, that is, the two uplink channel detection subframes in the same frame structure are in the same subframe type position. .
  • the method further includes: if the frame structure has a plurality of locations, the uplink channel detection subframe is set, and the detection period of the uplink channel detection subframe is M ⁇ 10 ms,
  • the setting position of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: the first one of the plurality of locations.
  • the position of the subframe 1 ie, the S subframe
  • the position of the subframe 6 that is, the S subframe
  • the uplink channel detection subframe if the period of the uplink channel detection subframe is an integer multiple of 10 ms, the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command may be only at the position of the subframe 1 .
  • FIG. 7 shows a schematic structural diagram of a control system configuring an uplink channel detection subframe according to an embodiment of the present invention.
  • a control system 700 for configuring an uplink channel detection subframe includes: a transmitting unit 702, configured to send an uplink channel detection subframe configuration command to the terminal, so that the The terminal sets, in the frame structure of the time division duplex mode, an uplink channel detection subframe for periodically detecting whether the uplink channel of the unlicensed band is idle according to the uplink channel detection subframe configuration command.
  • the terminal can send the uplink channel detection subframe configuration command to the terminal, so that the terminal can detect the subframe configuration command according to the uplink channel, and the frame in the time division duplex mode.
  • the uplink channel detection subframe is configured to detect the state of the uplink channel, so that when the uplink channel detection subframe detects that the uplink channel is in an idle state, the uplink data is sent by using the uplink subframe in the frame structure, and the uplink channel is detected.
  • the uplink data is not sent, so that the LTE system can adopt the corresponding interference avoidance mechanism when working in the unlicensed frequency band in the time division duplex mode, and then can work with other systems working in the unlicensed frequency band when working in the unlicensed frequency band (
  • the Wi-Fi system can coexist peacefully, so as to ensure that the LTE system can work in the unlicensed band, and avoid the LTE system working in the unlicensed band, because there is no interference avoidance mechanism, and other systems with interference avoidance mechanism are generated. Big interference.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the uplink channel detection subframe configuration command includes: a location where the uplink channel detection subframe is set in the frame structure.
  • the uplink channel detection subframe configuration command includes a specific setting position of the uplink channel detection subframe in the frame structure, and
  • the preferred setting method of the uplink channel detection subframe is usually:
  • the uplink channel detection subframe is in the downlink subframe adjacent to the special subframe in the frame structure and is located at the back end of the downlink subframe, occupying the first number of symbols, and the first number ranges from 1 to 14 ,or
  • the uplink channel detection subframe is in the uplink subframe adjacent to the downlink subframe in the frame structure and is located at the back end of the uplink subframe, occupying a second number of symbols, and the second number ranges from 1 to 14,
  • the uplink channel detection subframe is located in a special subframe in the frame structure and is adjacent to a downlink pilot slot in a special subframe, and occupies a third number of symbols, and the third number ranges from 1 to 9.
  • the method further includes: a determining unit 704, determining whether the device having the function of the base station and other devices having the function of the base station belong to the same operator; and determining, by the device having the function of the base station, If the other device belongs to the same carrier, the uplink channel detection subframe includes the uplink channel detection subframe, where the uplink channel detection subframe is in the base station.
  • the location in the frame structure of the functional device is the same as the location of the uplink channel detection subframe configured by the other device in the frame structure of the other device; if it is determined that the device having the base station function and the base station are The other devices of the function belong to different operators, and the uplink channel detection subframe includes the uplink channel detection subframe, where the uplink channel detection subframe is in the same carrier frequency. a location in a frame structure of a device having a base station function and the uplink channel detection subframe configured by the other device in the other Preparation of the frame structure in the same location does not.
  • the purpose of channel detection is to detect a base station of another operator (which may also be a device having a base station function, for convenience of description, the base station is taken as an example below, but those skilled in the art should understand this
  • the base station described in the application may also be a device with a base station function, whether the LAA is used, and whether the Wi-Fi occupies a channel. Therefore, for the base station of the same carrier, in order to avoid mutual base stations belonging to the same carrier, The signal is detected and the channel is determined to be busy.
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the position of the uplink channel detection subframe is the same in the frame structure;
  • the location of the uplink channel detection subframe included in the uplink channel detection subframe configuration command should be: the uplink channel detection subframe is The position in the frame structure is different.
  • the determining unit 704 is further configured to: at the same carrier frequency, a location of the uplink channel detection subframe in a frame structure of the device with a base station function, and the base station Determining, on the same carrier frequency, the frame of the device having the base station function, when the location of the uplink channel detection subframe configured by the other device of the function is different in the frame structure of the other device having the function of the base station Whether the configuration of the structure is the same as the configuration of the frame structure of the other device having the function of the base station, and the control system further includes: a setting unit 706, if the frame structure of the device having the base station function is configured The frame structure of the other device having the function of the base station is configured in the same manner, and the subframe in the frame structure of the device having the function of the base station is set to have a relative offset from the subframe in the frame structure of the other device. .
  • the uplink channel detection subframe can be set.
  • the frame structure configuration of the base station without the carrier is the same, different operators can be configured.
  • the base station sets the frame structure at different positions of the frame structure.
  • the uplink channel detection subframe configuration command includes: a number of symbols occupied by the uplink channel detection subframe, and the uplink channel detector during operation of the LTE system
  • the number of symbols occupied by the frame is a fixed value; or the control system further includes: a detecting unit 708, in real time, detecting, in the working process of the LTE system, other systems using the unlicensed frequency band around the LTE system
  • the setting unit 706 is further configured to: dynamically set the uplink channel detection subframe according to a rate of change of channel conditions of the other system and/or a channel detection capability of the terminal that is detected in real time. The number of symbols occupied.
  • the uplink channel detection subframe configuration command further includes the number of symbols occupied by the uplink channel detection subframe, and the base station may The number of symbols is set to a fixed value, and the number of symbols occupied by the uplink channel detection subframe may be dynamically set according to the rate of change of channel conditions of other systems and/or the channel detection capability of the terminal, so that the terminal can The uplink channel detection subframe sufficiently and accurately determines whether the uplink channel is busy, and transmits uplink data in time when detecting that the uplink channel is idle.
  • a rate of change of channel conditions of the other system is proportional to a number of symbols occupied by the uplink channel detection subframe; a channel detection capability of the terminal and the uplink channel detector The number of symbols occupied by the frame is inversely proportional.
  • the conversion rate of channel conditions of other systems using unlicensed bands around the LTE system is used. The faster the uplink channel is measured, the more the number of symbols occupied by the uplink channel detection subframe is set. If the channel detection capability of the terminal is poor, the state of the uplink channel needs to be measured multiple times, that is, the uplink channel is set.
  • the detection subframe occupies a large number of symbols, so the rate of change of channel conditions of other systems is proportional to the number of symbols occupied by the uplink channel detection subframe, and the channel detection capability of the terminal and the number of symbols occupied by the uplink channel detection subframe In inverse proportional relationship.
  • the uplink channel detection subframe configuration command includes: a detection period of the uplink channel detection subframe
  • the setting unit 706 is further configured to: according to each conversion in the frame structure The number of uplink subframes included in the dot period sets the detection period of the uplink channel detection subframe, or the detecting unit 708 is further configured to detect the load state of the LTE system in real time during the operation of the LTE system.
  • the setting unit 706 is further configured to: according to the rate of change of the load state of the LTE system detected in real time / or the rate of change of the load status of the other system, dynamically setting the detection period of the uplink channel detection subframe.
  • the uplink channel detection subframe configuration command further includes a detection period of the uplink channel detection subframe, specifically, including:
  • the detection period of the uplink channel detection subframe may be set to be larger. And, if there are a large number of uplink subframes in each transition point period, in order to determine whether to transmit uplink data according to the real-time state of the uplink channel, the detection period of the uplink channel detection subframe may be set to be small;
  • the detection period of the uplink channel detection subframe is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • the working state of the system is dynamically set according to the rate of change of the load state of the LTE system detected in real time and/or the rate of change of the load state of other systems, so that the detection period of the uplink channel detection subframe can be more in line with LTE.
  • a rate of change of a load state of the LTE system is inversely proportional to a detection period of the uplink channel detection subframe; a rate of change of a load state of the other system and the uplink channel detection The detection period of the subframe is inversely proportional.
  • the rate of change of the load state of the LTE system is larger, the change of the transmission amount of the uplink data is larger; if the rate of change of the load state of other systems is larger, the state of the channel changes greatly. Therefore, in order to transmit downlink data, it is necessary to measure the state of the channel in a short interval, that is, the detection period of the uplink channel detection subframe needs to be set to be smaller.
  • the uplink channel detection subframe configuration command includes: a subframe configuration manner of the frame structure, and a configuration mode 3, a configuration mode 4, and a subframe configuration manner of the frame structure.
  • the detection period of the uplink channel detection subframe in the configuration mode 5 is: M ⁇ 10 ms, where M is a positive integer; configuration mode 0, configuration mode 1, and configuration mode 2 in the subframe configuration mode of the frame structure
  • the detection period of the uplink channel detection subframe in configuration mode 6 is: N ⁇ 5 ms, where N is 1 or a positive even number.
  • the two locations included in the uplink channel detection subframe configuration command may be the same.
  • the sub-frame position can also be a different sub-frame position. Specifically, as in the configuration mode 0, if the period of the uplink channel detection subframe is 5 ms, the position of the subframe 1 (ie, the S subframe) and the position of the subframe 5 (that is, the D subframe) may be separately set.
  • the uplink channel detection subframe that is, the two uplink channel detection subframes in the same frame structure are at different subframe type positions; and for the configuration mode 1, if the period of the uplink channel detection subframe is 5 ms, the subframe 1 may be The position of the frame (ie, the S subframe) and the position of the subframe 6 (ie, the S subframe) respectively set the uplink channel detection subframe, that is, the two uplink channel detection subframes in the same frame structure are in the same subframe type position. .
  • the method further includes: if the frame structure has a plurality of locations, the uplink channel detection subframe is set, and the detection period of the uplink channel detection subframe is M ⁇ 10 ms,
  • the setting position of the uplink channel detection subframe included in the uplink channel detection subframe configuration command is: the first one of the plurality of locations.
  • the position of the subframe 1 ie, the S subframe
  • the position of the subframe 6 that is, the S subframe
  • the uplink channel detection subframe if the period of the uplink channel detection subframe is an integer multiple of 10 ms, then The setting position of the uplink channel detection subframe included in the uplink channel detection subframe configuration command may be only at the position of the subframe No. 1.
  • FIG. 8 shows a schematic structural diagram of a device having a base station function according to an embodiment of the present invention.
  • a device 800 having a base station function according to an embodiment of the present invention comprising: a control system 700 for configuring an uplink channel detection subframe according to any one of the above technical solutions.
  • the device 800 having the base station function can be connected to the terminal, and then the uplink channel detector is sent to the terminal.
  • the frame configuration command may be configured to enable the terminal to detect an uplink channel detection subframe in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command, to detect an uplink channel state in the uplink channel detection subframe.
  • the uplink data is sent through the uplink subframe in the frame structure, and when the uplink channel is in the busy state, the uplink data is not sent, so that the LTE system can adopt when the unlicensed band works in the time division duplex mode.
  • Corresponding interference avoidance mechanism which in turn can coexist peacefully with other systems operating in unlicensed bands (such as Wi-Fi systems) when operating in unlicensed bands, to avoid LTE systems being able to operate in unlicensed bands When the LTE system works in the unlicensed band, it has no interference avoidance mechanism. Other systems with interference avoidance mechanisms generate large interference.
  • the data includes both normal interaction data and control signaling.
  • a device having a base station function includes a base station, a micro cell base station implemented by a communication device (such as a smart phone, etc.), and the like.
  • the technical solution of the present invention is mainly an interference avoidance mechanism when an unlicensed frequency band is used by an LTE system in a TDD manner.
  • the main principle is to design an LBT mechanism and frame structure for uplink channel measurement. It mainly introduces the LBT body, LBT time and LBT detection period, and the maximum length of time or packet size that can be transmitted if the channel is idle.
  • the TDD frame structure is a 5 ms downlink to uplink transform.
  • one frame includes 8 normal subframes and 2 special subframes.
  • 8 normal subframes that is, for uplink transmission or downlink transmission
  • Table 1 For the TDD structure of the 10ms downlink to uplink conversion period, one frame includes 9 normal subframes and one special subframe, and the 9 normal subframes are used for uplink transmission or downlink transmission, as shown in Table 1.
  • each normal subframe contains 14 symbols.
  • the channel operation for detecting whether the uplink channel is occupied is performed by the terminal.
  • LBT subframes upstream channel detection subframes
  • the preferred setting method is as follows:
  • the LBT subframe is placed in a D (Downlink) subframe that is followed by an S (Special) subframe, specifically, a shaded frame structure position as shown in Table 2.
  • the LBT detection subframe can be set, that is, the case where the LBT repetition period is 5 ms. If the repetition period is 10 ms or more, an LBT detection subframe can be set only at the foremost position in the frame structure.
  • the LBT subframe can be placed in the last few symbols of the D subframe.
  • the value of N1 can be configured statically or semi-statically depending on the situation.
  • PSS/SSS Primary Synchronization Signal/Secondary Synchronization Signal
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference
  • channel quality information reference signal DS (Discovery Signal)
  • PDCCH Physical Downlink Control Channel
  • ePDCCH enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • WiFi-like beacon signal and UL (Uplink) grant
  • HARQ Hybrid Automatic Repeat request
  • a structural diagram of a D subframe for LBT detection is given by taking TDD configuration mode 0 as an example, and an LBT subframe, an LBT subframe is set in a subframe 0 (ie, a D subframe). Located at the back end of subframe 0.
  • the LBT subframe is placed in the U (Uplink) subframe immediately following the D (Downlink) subframe, as shown in Table 3 with the shaded frame structure position.
  • the LBT detection subframe can be set, that is, the case where the LBT repetition period is 5 ms. If the repetition period is 10 ms or more, an LBT detection subframe can be set only at the foremost position in the frame structure.
  • the LBT subframe is placed at the last few symbols of the U subframe.
  • the value of N2 can be configured statically or semi-statically depending on the situation.
  • a structural diagram of a U subframe for LBT detection is given by taking TDD configuration mode 0 as an example, and an LBT subframe, an LBT subframe is set in a subframe 4 (ie, a U subframe). Located at the back end of subframe number 4.
  • the preferred setting method is three:
  • the LBT subframe is placed in an S (Special) sub-frame, as shown in Table 4 with a shaded frame structure position.
  • the LBT detection subframe can be set, that is, the case where the LBT repetition period is 5 ms. If the repetition period is 10 ms or more, an LBT detection subframe can be set only at the foremost position in the frame structure.
  • the S subframe includes a DwPTS (Downlink Pilot Time Slot), an UpPTS (Uplink Pilot Time Slot), and a GP (Guard Period).
  • the LBT time can be as shown in FIG. 12A.
  • the LBT time is placed between the GP and the DwPTS; or the first few symbols of the S subframe are placed, as shown in FIG. 12B, and the LBT time is placed before the DwPTS.
  • the sum of the lengths of DwPTS, UpPTS and GP can only be shortened, the sum of the lengths of time is less than 1ms, and the rest is used for LBT time.
  • the length of UpPTS is relatively fixed, 1 symbol or 2 Symbol, and the length of DwPTS and GP can be configured according to different cell radii.
  • DwPTS can only use a shorter configuration
  • GP can only use a shorter configuration. That is to say, in the configuration of DwPTS and UpPTS given in Table 5, the sum of the DwPTS and UpPTS occupation lengths exceeding 13 symbols cannot be selected because the GP occupies at least 1 symbol, and the UpPTS is at least 1 symbol.
  • the value of N3 can be configured statically or semi-statically depending on the situation.
  • the preferred setting mode 2 because the LBT subframes used in each TDD uplink and downlink configuration are not synchronized, if the neighboring cells use different TDD configurations, then cell #1 may perform uplink or downlink when cell #1 is doing LBT. Transmission, then cell #1 detects that the channel is busy, but in reality the channel can be occupied by cell #1. That is to say, the preferred setting mode 2 is not suitable for the scenario in which the same channel is configured for different TDD uplink and downlink configurations of the same carrier, unless the base station can distinguish signals of different operators or WiFi.
  • the detection strength of the LBT is 1 symbol, which means that each symbol performs an LBT detection and judges that the channel is busy.
  • the time may be divided into multiple symbols, that is, multiple steps. Only the detection channel of each step is idle, and the channel is idle after the LBT time is over.
  • the repetition period of the LBT may be different or the same:
  • the LBT repetition period is the same: since the period of the uplink and downlink conversion is at most 10 ms, and from the case of the subframe in which the LBT time is analyzed, it is known that in some uplink and downlink configurations, the minimum period is 10 ms. Therefore, if the repetition period of the LBT is the same, the repetition period is N4 ⁇ 10 ms, and N4 is a positive integer.
  • Uplink and downlink configuration number LBT repetition period 0 5ms, 10ms, 20ms, 30ms, ... 1 5ms, 10ms, 20ms, 30ms, ... 2 5ms, 10ms, 20ms, 30ms, ... 3 10ms, 20ms, 30ms, ... 4 10ms, 20ms, 30ms, ... 5 10ms, 20ms, 30ms, ... 6 5ms, 10ms, 20ms, 30ms, ...
  • the subframe position where the LBT subframe is located, the number of symbols occupied by the LBT subframe, and the repetition period of the LBT subframe may be any combination.
  • the LBT can be placed in a U subframe, a D subframe or an S subframe; the minimum period can be 5 ms or 10 ms; the symbol occupied by the LBT can also have multiple optional values.
  • the repetition period of the LBT is composed of the LBT detection subframe and other subframes, and the number of U subframes in other subframes is the maximum uplink channel transmission time that can be occupied after each LBT detection channel is idle. If the LBT detection subframe determines that the channel is idle, other U subframes may be used for uplink transmission; otherwise, other subframes may not be used for uplink transmission. That is to say, the repetition period of the LBT limits the maximum time that the LBT can be used for uplink transmission when the channel is detected to be idle.
  • the LBT detection repetition period is 5 ms
  • the largest occupant uplink transmission subframe is the 2nd, 3rd, and 4th subframes, and the 4th. After the U subframe, it may be necessary to perform LBT detection again in the 6th S subframe.
  • the time for doing LBT on the same carrier frequency is the same. Because the LBT is mainly used to detect whether other operators' terminals use the LAA on the carrier frequency or whether there is a Wi-Fi system, and the same carrier's terminals can simultaneously use the unlicensed frequency band, the terminal of the same carrier is At the same time, the LBT is equivalent to the same operator's terminal and does not signal, only the external signal strength is detected.
  • the LBT configuration position in the uplink channel detection subframe configuration command sent by the base station is the U subframe, the D subframe, or the S subframe described above. , can meet all terminals at the same time LBT;
  • the LBT configuration position in the uplink channel detection subframe configuration command can only be in the D subframe or S, in order to meet the same time for the LBT between the base stations of the same carrier. Subframe.
  • the uplink channel is sent by the base station of different operators.
  • the detection of the LBT included in the subframe configuration command is performed in the U subframe described above and the location of the LBT in the subframe is different, so that the time for the uplink channel detection by the terminals of different operators on the same carrier frequency is different.
  • the uplink channel detection subframe configuration command issued by different operators is the same as the TDD uplink and downlink configuration, the different operations are performed to meet the LBTs of the terminals of different base stations at different times.
  • the subframe offsets included in the uplink channel detection subframe configuration command sent by the quotient need to be set to different values, that is, the subframes in the subframe structure included in the uplink channel detection subframe configuration command sent by different operators need to be set to have relative The offset.
  • the LBT measurement of the terminal may be based on a period whether there is an uplink service or not, or may be based on a period only when there is a service.
  • the above mechanism for designing an uplink LBT detection according to the present invention enables LTE to use an unlicensed frequency band to detect whether a Wi-Fi device or other system uses a channel in advance, and if so, does not occupy a channel, thereby ensuring that the LTE system is in use.
  • Unlicensed bands coexist peacefully with existing access technologies such as Wi-Fi.
  • a program product stored on a non-transitory machine readable medium for data transmission when an LTE system operates in a time division duplex mode in an unlicensed frequency band
  • the program product Included with the machine executable instructions for causing a computer system to: receive an uplink channel detection subframe configuration command from a device having a base station function; and according to the uplink channel detection subframe configuration command, in the time division duplex mode Setting, in the frame structure, the uplink channel detection subframe for periodically detecting whether the uplink channel of the unlicensed band is idle; if the uplink channel detection subframe detects that the uplink channel is idle, in any detection period, And transmitting uplink data by using an uplink subframe that is in any one of the detection periods in the frame structure.
  • a non-volatile machine readable medium storing a program product for data transmission when an LTE system operates in an unlicensed frequency band in a time division duplex mode
  • the program product comprising Machine executable instructions for causing a computer system to: receive an uplink channel detection subframe configuration command from a device having a base station function; and frame the time division duplex mode according to the uplink channel detection subframe configuration command Configuring, in the structure, the uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed frequency band is idle; and detecting, in any detection period, the uplink channel if the uplink channel detection subframe detects If the channel is idle, the uplink data is sent in an uplink subframe in the frame structure in any one of the detection periods.
  • a machine readable program the program causing a machine to perform data transmission when an LTE system according to any one of the above-mentioned technical solutions operates in an unlicensed frequency band in a time division duplex mode method.
  • a storage medium storing a machine readable program, wherein the machine readable program causes a machine to execute an LTE system according to any one of the technical solutions described above in an unlicensed frequency band Data transmission method when working in time division duplex mode.
  • a program product stored on a non-transitory machine readable medium for configuring control of an uplink channel detection subframe comprising for causing a computer system to perform the following The machine executable instruction of the step: sending an uplink channel detection subframe configuration command to the terminal, so that the terminal is configured to be used in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command. And detecting an uplink channel detection subframe in which the uplink channel of the unlicensed band is idle.
  • a nonvolatile machine readable medium storing a program product for controlling control of an uplink channel detection subframe in a device having a base station function
  • the program product comprising The system executes the following steps: the machine executable instruction: sending an uplink channel detection subframe configuration command to the terminal, so that the terminal is set in the frame structure of the time division duplex mode according to the uplink channel detection subframe configuration command An uplink channel detection subframe for periodically detecting whether an uplink channel of the unlicensed band is idle.
  • a machine readable program the program causing a machine to perform the control method of configuring an uplink channel detection subframe as described in any one of the above aspects.
  • a storage medium storing a machine readable program, wherein the machine readable program causes a machine to execute the configured uplink channel detection subframe as described in any one of the technical solutions described above Control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种数据传输方法、一种数据传输***、一种终端、一种控制方法、一种控制***和一种具有基站功能的设备,其中,数据传输方法包括:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据上行信道检测子帧配置命令,在时分双工模式的帧结构中设置用于周期性检测非授权频段的上行信道是否空闲的上行信道检测子帧;在任一检测周期内,若上行信道检测子帧检测到上行信道空闲,则通过帧结构中处于任一检测周期内的上行子帧发送上行数据。通过本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。

Description

数据传输方法、传输***、控制方法、控制***和设备 技术领域
本发明涉及通信技术领域,具体而言,涉及一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法、一种LTE***在非授权频段采用时分双工模式工作时的数据传输***、一种终端、一种配置上行信道检测子帧的控制方法、一种配置上行信道检测子帧的控制***和一种具有基站功能的设备。
背景技术
随着通信业务量的急剧增加,3GPP的授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是Wi-Fi、蓝牙、雷达、医疗等***在使用。
通常情况下,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进)不适合在非授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合(CarrierAggregation,CA)功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(LTE Assisted Access,LTE辅助接入)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(SDL,Supplemental Downlink),即只有下行传输子帧;另一种是TDD模式,既包含下行子帧、上行子帧。补充下行这种情况只能是借助载波聚合技术使用(如图1所示)。而TDD模式除了可以借助载波聚合技术使用外,还可以借助DC(Dual Connectivity,双连通)使用,也可以独立使用。
相比于Wi-Fi***,工作在非授权频段的LTE***有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和非授权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、更好的稳定性和移动便利。
现有的在非授权频谱上使用的接入技术,如Wi-Fi,具有较弱的抗干扰能力。为了避免干扰,Wi-Fi***设计了很多干扰避免规则,如CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测方法),这种方法的基本原理是Wi-Fi的AP(Access Point,接入点)或者终端在发送信令或者数据之前,要先监听检测周围是否有其他AP或者其他终端在发送/接收信令或数据,若有,则继续监听, 直到监听到没有为止;若没有,则生成一个随机数作为退避时间,在这个退避时间内,如果没检测到有信令或数据传输,那么在退避时间结束之后,AP或终端可以开始发送信令或数据。该过程如图2所示。
但是,LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有其他基站或其他用户在传输数据。如果LTE在非授权频段上使用时也不考虑周围是否有其他设备在使用非授权频段,那么将对Wi-Fi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么Wi-Fi设备在LTE有业务传输时就不能传输,只能等到LTE业务传输完成,才能检测到信道空闲状态以进行数据传输。
可见,LTE网络在使用非授权频段时,最主要的关键点之一是确保LAA能够在公平友好的基础上和现有的接入技术(比如Wi-Fi)共存。而传统的LTE***中没有LBT(Listen Before Talk,先听后说)的机制来避免碰撞。
因此,如何能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰成为亟待解决的技术问题。
发明内容
本发明正是基于上述问题,提出了一种新的技术方案,提出了一种新的LTE***在非授权频段采用时分双工模式工作时的数据传输方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。
有鉴于此,本发明的一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,用于终端,其特征在于,包括:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于 没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的至少一个子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载上行信道检测子帧;同时,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上行信道检测子帧,并且上行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上行信道检测子帧的几种优选设置方式:
设置方式一:
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与特殊子帧相邻的下行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与特殊子帧相邻的下行子帧内,使得在下行子帧完成下行传输之后并在上行子帧进行上行传输之前,能够实现对上行信道的检测,进而确定是否能够通过上行子帧进行数据传输;同时,由于上行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述下行子帧的后端,并使所述上行信道检测子帧占用第一数目个符号,所述第一数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在下行子帧的后端,使得能够确保信道检测的时效性,以确保在传输上行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上行数据较晚而导致在需要传输上行数据时信道状态已发生变化而影响上行数据的传输。具体地,如信道检测较早并检测到信道处于繁忙状态,但是由于上行数据传输较晚(即上行信道检测子帧距离上行子帧较远),若在上行数据传输时,信道已处于空闲状态但是由于信道检测结果为繁忙状态,此时LTE***不会发送上行数据而等待上次信道检测,导致无法传送上行数据;类似地,再如信道检测较早并检测到信道处于空闲状态,但是由于上行数据传输较晚,若在上行数据传输时,信道已处于繁忙状态但是由于信道检测结果为空闲状态,此时LTE***会继续发送上行数据而不等待上次信道检测,进而会对其他***造成干扰。
设置方式二:
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将 所述上行信道检测子帧设置在所述帧结构中与下行子帧相邻的上行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与下行子帧相邻的上行子帧内,使得能够在需要进行上行传输时,及时进行上行信道的测量;同时,由于上行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述上行子帧的后端,并使所述上行信道检测子帧占用第二数目个符号,所述第二数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在上行子帧的后端,使得上行子帧的其他部分能够继续用于上行数据的传输,确保上行子帧的充分利用,另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在与下行子帧相邻的上行子帧的后端,则可以避免在上行子帧内设置额外的保护时间。
设置方式三:
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的特殊子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在特殊子帧内,使得无需占用下行子帧和上行子帧,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将上行信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述特殊子帧内与所述特殊子帧中的下行导频时隙相邻的位置,并使所述上行信道检测子帧占用第三数目个符号,其中,所述第三数目的取值范围为1至9。
在该技术方案中,由于在时分双工模式的帧结构中,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧是需要监听上行信号来检测信道状态的,因此通过将上行信道检测子帧设置与下行导频时隙相邻的位置,即设置在下行导频时隙(DwPTS)与保护时间(GP)之间或设置在下行导频时隙之前,可以无需设置额外的保护时间,避免了将上行信道检测子帧设置在上行导频时隙(UpPTS)之前或设置在上行导频时隙与保护时间之间而需要额外设置保护时间。
同时,由于上行导频时隙和保护时间占用的符号数量最少均为1个符 号,下行导频时隙占用的符号数量最少为3个,而一个子帧包含14个符号,因此设置在特殊子帧中的上行信道检测子帧占用的符号数量最多为9个,最少为1个。
通过上行信道检测子帧检测上行信道的状态的方式如下:
上述技术方案中,优选地,当所述上行信道检测子帧周期性检测所述非授权频段的上行信道是否空闲时,若所述上行信道检测子帧在每个所述符号内都检测到所述上行信道空闲,则所述上行信道检测子帧判定所述上行信道空闲。
在该技术方案中,由于上行信道检测子帧的检测力度为1个符号检测一次,因此可以在上行信道检测子帧占用的每个符号上检测时均检测到上行信道处于空闲状态时再判定上行信道处于空闲状态。
上述技术方案中,优选地,还包括:根据所述上行信道检测子帧配置命令,获取所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,终端接收到的上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,通过从该上行信道检测子帧配置命令中获取检测周期即可实现实时地检测上行信道是否繁忙,而该检测周期与该帧结构中每个转换点周期内包含的上行子帧数量或LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率有关,例如:当帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5)时,上行信道检测子帧配置命令中的检测周期就较大,而当每个转换点周期内的上行子帧数量较多时,上行信道检测子帧配置命令中的检测周期就较小。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,获取所述帧结构的子帧配置方式。
在该技术方案中,帧结构的子帧配置方式为配置方式0、配置方式1、配置方式2、配置方式3、配置方式4和配置方式5和配置方式6中的任一种配置方式。
上述技术方案中,优选地,还包括:判断是否需要处理上行业务,若是,则通过所述帧结构中的所述上行信道检测子帧周期性地检测所述上行信道是否空闲。
在该技术方案中,具体来说,终端在通过上行信道检测子帧检测上行信道的状态时,可以是在确定有上行业务时才进行的,当然也可以是不管有没有上行业务一直进行的。
根据本发明的另一方面提出了一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,包括:接收单元,接收来自具有基站功能的设备的上行信道检测子帧配置命令;设置单元,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;发送单元, 在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述设置单元用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的至少一个子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载上行信道检测子帧;同时,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上行信道检测子帧,并且上行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上行信道检测子帧的几种优选设置方式:
在上述技术方案中,优选地,所述设置单元具体用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与特殊子帧相邻的下行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与特殊子帧相邻的下行子帧内,使得在下行子帧完成下行传输之后并在上行子帧进行上行传输之前,能够实现对上行信道的检测,进而确定是否能够通过上行子帧进行数据传输;同时,由于上行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
在上述技术方案中,优选地,所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述下行子帧的后端,并使所述上行信道检测子帧占用第一数目个符号,所述第一数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在下行子帧的后端,使得能够确保信道检测的时效性,以确保在传输上行数据之前检测到的信道状态为最新状态,避免信道检测较 早且传输上行数据较晚而导致在需要传输上行数据时信道状态已发生变化而影响上行数据的传输。具体地,如信道检测较早并检测到信道处于繁忙状态,但是由于上行数据传输较晚(即上行信道检测子帧距离上行子帧较远),若在上行数据传输时,信道已处于空闲状态但是由于信道检测结果为繁忙状态,此时LTE***不会发送上行数据而等待上次信道检测,导致无法传送上行数据;类似地,再如信道检测较早并检测到信道处于空闲状态,但是由于上行数据传输较晚,若在上行数据传输时,信道已处于繁忙状态但是由于信道检测结果为空闲状态,此时LTE***会继续发送上行数据而不等待上次信道检测,进而会对其他***造成干扰。
设置方式二:
在上述技术方案中,优选地,所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与下行子帧相邻的上行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与下行子帧相邻的上行子帧内,使得能够在需要进行上行传输时,及时进行上行信道的测量;同时,由于上行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
在上述技术方案中,优选地,所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述上行子帧的后端,并使所述上行信道检测子帧占用第二数目个符号,所述第二数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在上行子帧的后端,使得上行子帧的其他部分能够继续用于上行数据的传输,确保上行子帧的充分利用,另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在与下行子帧相邻的上行子帧的后端,则可以避免在上行子帧内设置额外的保护时间。
设置方式三:
在上述技术方案中,优选地,所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的特殊子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在特殊子帧内,使得无需占用下行子帧和上行子帧,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将上行信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁 忙。
在上述技术方案中,优选地,所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述特殊子帧内与所述特殊子帧中的下行导频时隙相邻的位置,并使所述上行信道检测子帧占用第三数目个符号,其中,所述第三数目的取值范围为1至9。
在该技术方案中,由于在时分双工模式的帧结构中,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧是需要监听上行信号来检测信道状态的,因此通过将上行信道检测子帧设置与下行导频时隙相邻的位置,即设置在下行导频时隙(DwPTS)与保护时间(GP)之间或设置在下行导频时隙之前,可以无需设置额外的保护时间,避免了将上行信道检测子帧设置在上行导频时隙(UpPTS)之前或设置在上行导频时隙与保护时间之间而需要额外设置保护时间。
同时,由于上行导频时隙和保护时间占用的符号数量最少均为1个符号,下行导频时隙占用的符号数量最少为3个,而一个子帧包含14个符号,因此设置在特殊子帧中的上行信道检测子帧占用的符号数量最多为9个,最少为1个。
通过上行信道检测子帧检测上行信道的状态的方式如下:
在上述技术方案中,优选地,还包括:第一判断单元,位于所述上行信道检测子帧中,当所述上行信道检测子帧周期性检测所述非授权频段的上行信道是否空闲时,若所述上行信道检测子帧在每个所述符号内都检测到所述上行信道空闲,则判定所述上行信道空闲。
在该技术方案中,由于上行信道检测子帧的检测力度为1个符号检测一次,因此可以在上行信道检测子帧占用的每个符号上检测时均检测到上行信道处于空闲状态时再判定上行信道处于空闲状态。
在上述技术方案中,优选地,还包括:第一获取单元,根据所述上行信道检测子帧配置命令,获取所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,终端接收到的上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,通过从该上行信道检测子帧配置命令中获取检测周期即可实现实时地检测上行信道是否繁忙,而该检测周期与该帧结构中每个转换点周期内包含的上行子帧数量或LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率有关,例如:当帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5)时,上行信道检测子帧配置命令中的检测周期就较大,而当每个转换点周期内的上行子帧数量较多时,上行信道检测子帧配置命令中的检测周期就较小。
在上述技术方案中,优选地,还包括:第二获取单元,根据所述上行信道检测子帧配置命令,获取所述帧结构的子帧配置方式。
在该技术方案中,帧结构的子帧配置方式为配置方式0、配置方式 1、配置方式2、配置方式3、配置方式4和配置方式5和配置方式6中的任一种配置方式。
在上述技术方案中,优选地,还包括:第二判断单元,判断是否需要处理上行业务,检测单元,若是,则通过所述帧结构中的所述上行信道检测子帧周期性地检测所述上行信道是否空闲。
在该技术方案中,具体来说,终端在通过上行信道检测子帧检测上行信道的状态时,可以是在确定有上行业务时才进行的,当然也可以是不管有没有上行业务一直进行的。
根据本发明的又一方面,提出了一种终端,包括:如上述技术方案中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***。
在该技术方案中,通过在终端上安装该LTE***在非授权频段采用时分双工模式工作时的数据传输***,可以使终端在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
根据本发明的再一方面,提出了一种配置上行信道检测子帧的控制方法,所述方法用于控制上述技术方案中的所述的终端,所述控制方法适用于具有基站功能的设备,包括:向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,在终端与具有基站功能的设备建立连接后,通过向终端发送上行信道检测子帧配置命令,可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生 较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置。
在该技术方案中,为了使能够正确无误地在该帧结构中设置上行信道检测子帧,该上行信道检测子帧配置命令包括该上行信道检测子帧在该帧结构中的具体设置位置,而上行信道检测子帧的优选设置方式通常为:
该上行信道检测子帧在该帧结构中与特殊子帧相邻的下行子帧内且位于该下行子帧的后端,占用第一数目个符号,第一数目的取值范围为1至14,或
该上行信道检测子帧在该帧结构中与下行子帧相邻的上行子帧内且位于上行子帧的后端,占用第二数目个符号,第二数目的取值范围为1至14,
该上行信道检测子帧位于所述帧结构中的特殊子帧内与特殊子帧中的下行导频时隙相邻,占用第三数目个符号,第三数目的取值范围为1至9。
在上述技术方案中,优选地,还包括:判断所述具有基站功能的设备与具有基站功能的其他设备是否归属于同一运营商;若判定所述具有基站功能的设备与所述其他设备归属于同一运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置相同;若判定所述具有基站功能的设备与所述其他设备归属于不同运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述具有基站功能的其他设备的帧结构中的位置不相同。
在该技术方案中,由于信道检测的目的是为了检测其它运营商的基站(也可以是具有基站功能的设备,为了便于描述,以下以基站为例,但是本领域的技术人员应该理解的是本申请中所述的基站也可以是具有基站功能的其他设备)是否使用了LAA,以及Wi-Fi是否占用信道,因此对于同一运营商的基站,为了能够避免归属于同一运营商的基站之间相互检测到信号而判定信道繁忙,在同一载频上,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置相同;而对于不同运营商的基站,在同一载频上,为了检测不同运营商的基站是否占用信道,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置不同。
在上述技术方案中,优选地,在同一载频上,所述上行信道检测子帧 在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置不相同的步骤具体为:判断在所述同一载频上,所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式是否相同,若是,则设置所述具有基站功能的设备的帧结构中的子帧与所述其他设备的帧结构中的子帧具有相对偏移量。
在该技术方案中,若不同运营商的基站的帧结构配置相同,则为了确保上行信道检测子帧在不同时间进行测量,则需要设置基站之间的子帧具有相对偏移量;当然,对于一个帧结构上有多个位置可以设置上行信道检测子帧时,当不用运营商的基站的帧结构配置相同时,可以令不同运营商的基站在帧结构的不同位置处设置帧结构。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧所占用的符号数目,以及在所述LTE***的工作过程中,所述上行信道检测子帧所占用的符号数目为固定值;或在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,并根据实时检测到的所述其他***的信道条件的变化速率和/或所述终端的信道检测能力,动态设置所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保终端可以根据上行信道检测子帧及时而准确无误地判断上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧所占用的符号数目,而基站可以将该符号数目设置为固定值,也可以根据其他***的信道条件的变化速率和/或该终端的信道检测能力,动态设置该上行信道检测子帧所占用的符号数目,以使终端能够根据该上行信道检测子帧充分而准确地判断上行信道是否繁忙,并在检测到上行信道空闲时,及时地发送上行数据。
在上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述上行信道检测子帧所占用的符号数目成正比例关系;所述终端的信道检测能力与所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上行信道检测子帧占用的符号数时,为了能够对上行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多,因此其他***的信道条件的变化速率与上行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧的检测周期,以及根据所述帧结构中每个转换点周期内包含的上行子帧数量设置所述上行信道检测子帧的检测周期,或在所 述LTE***的工作过程中,实时检测所述LTE***的负载状态的变化速率和所述LTE***周围使用所述非授权频段的其他***的负载状态的变化速率,并根据实时检测到的所述LTE***的负载状态的变化速率和/或所述其他***的负载状态的变化速率,动态设置所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,具体地,包括:
设置方式一:若帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5),则可以设置上行信道检测子帧的检测周期较大;而对于每个转换点周期内的上行子帧数量较多时,则为了能够根据上行信道的实时状态确定是否传输上行数据,则可以设置上行信道检测子帧的检测周期较小;
设置方式二:
通过根据实时检测到的LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率,动态设置上行信道检测子帧的检测周期,使得上行信道检测子帧的检测周期能够更加符合LTE***的工作状态。
在上述技术方案中,优选地,所述LTE***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系;所述其他***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系。
在该技术方案中,若LTE***的负载状态的变化速率越大,则说明上行数据的传输量变化越大;若其他***的负载状态的变化速率越大,则说明信道的状态变化较大,因此为了传输上行数据,需要间隔较短时间测量信道的状态,即需要设置上行信道检测子帧的检测周期越小。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述帧结构的子帧配置方式,以及所述帧结构的子帧配置方式中的配置方式3、配置方式4和配置方式5中的所述上行信道检测子帧的检测周期为:M×10ms,其中M为正整数;所述帧结构的子帧配置方式中的配置方式0、配置方式1、配置方式2和配置方式6中的所述上行信道检测子帧的检测周期为:N×5ms,其中N为1或正偶数。
其中,在上行信道检测子帧的周期为5ms时,即在一个帧结构中需要两个位置设置上行信道检测子帧,该上行信道检测子帧配置命令中包含的两个位置既可以是相同的子帧位置,也可以是不同的子帧位置。具体地,如对于配置方式0,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和5号子帧的位置(即D子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在不同的子帧类型位置;而对于配置方式1,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在相同的子帧类型 位置。
在上述技术方案中,优选地,还包括:若所述帧结构中具有多个位置可设置所述上行信道检测子帧,且所述上行信道检测子帧的检测周期为M×10ms,则所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述多个位置中的第一个位置。
在该技术方案中,具体地,如对于配置方式1,由于可以在配置方式1中的1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,若上行信道检测子帧的周期为10ms的整数倍,则该上行信道检测子帧配置命令包含的该上行信道检测子帧的设置位置可以仅在1号子帧的位置上。
根据本发明的再一方面,提出了一种配置上行信道检测子帧的控制***,其特征在于,所述控制***用于控制上述技术方案中所述的终端,所述控制***适用于具有基站功能的设备,包括:发送单元,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,在终端与具有基站功能的设备建立连接后,通过向终端发送上行信道检测子帧配置命令,可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置。
在该技术方案中,为了使能够正确无误地在该帧结构中设置上行信道检测子帧,该上行信道检测子帧配置命令包括该上行信道检测子帧在该帧结构中的具体设置位置,而上行信道检测子帧的优选设置方式通常为:
该上行信道检测子帧在该帧结构中与特殊子帧相邻的下行子帧内且位于该下行子帧的后端,占用第一数目个符号,第一数目的取值范围为1至14,或
该上行信道检测子帧在该帧结构中与下行子帧相邻的上行子帧内且位于上行子帧的后端,占用第二数目个符号,第二数目的取值范围为1至 14,
该上行信道检测子帧位于所述帧结构中的特殊子帧内与特殊子帧中的下行导频时隙相邻,占用第三数目个符号,第三数目的取值范围为1至9。
在上述技术方案中,优选地,还包括:判断单元,判断所述具有基站功能的设备与具有基站功能的其他设备是否归属于同一运营商;若判定所述具有基站功能的设备与所述其他设备归属于同一运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置相同;若判定所述具有基站功能的设备与所述具有基站功能的其他设备归属于不同运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置不相同。
在该技术方案中,由于信道检测的目的是为了检测其它运营商的基站(也可以是具有基站功能的设备,为了便于描述,以下以基站为例,但是本领域的技术人员应该理解的是本申请中所述的基站也可以是具有基站功能的其他设备)是否使用了LAA,以及Wi-Fi是否占用信道,因此对于同一运营商的基站,为了能够避免归属于同一运营商的基站之间相互检测到信号而判定信道繁忙,在同一载频上,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置相同;而对于不同运营商的基站,在同一载频上,为了检测不同运营商的基站是否占用信道,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置不同。
在上述技术方案中,优选地,所述判断单元还用于:在同一载频上,所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述具有基站功能的其他设备配置的所述上行信道检测子帧在所述具有基站功能的其他设备的帧结构中的位置不相同时,判断在所述同一载频上,所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式是否相同,以及,所述控制***还包括:设置单元,若所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式相同,则设置所述具有基站功能的设备的帧结构中的子帧与所述其他设备的帧结构中的子帧具有相对偏移量。
在该技术方案中,若不同运营商的基站的帧结构配置相同,则为了确保上行信道检测子帧在不同时间进行测量,则需要设置基站之间的子帧具有相对偏移量;当然,对于一个帧结构上有多个位置可以设置上行信道检测子帧时,当不用运营商的基站的帧结构配置相同时,可以令不同运营商的基站在帧结构的不同位置处设置帧结构。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧所占用的符号数目,以及在所述LTE***的工作过程中,所述上行信道检测子帧所占用的符号数目为固定值;或,所述控制***还包括:检测单元,在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,所述设置单元还用于:根据实时检测到的所述其他***的信道条件的变化速率和/或所述终端的信道检测能力,动态设置所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保终端可以根据上行信道检测子帧及时而准确无误地判断上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧所占用的符号数目,而基站可以将该符号数目设置为固定值,也可以根据其他***的信道条件的变化速率和/或该终端的信道检测能力,动态设置该上行信道检测子帧所占用的符号数目,以使终端能够根据该上行信道检测子帧充分而准确地判断上行信道是否繁忙,并在检测到上行信道空闲时,及时地发送上行数据。
在上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述上行信道检测子帧所占用的符号数目成正比例关系;所述终端的信道检测能力与所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上行信道检测子帧占用的符号数时,为了能够对上行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多,因此其他***的信道条件的变化速率与上行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧的检测周期,以及所述设置单元还用于:根据所述帧结构中每个转换点周期内包含的上行子帧数量设置所述上行信道检测子帧的检测周期,或所述检测单元还用于:在所述LTE***的工作过程中,实时检测所述LTE***的负载状态的变化速率和所述LTE***周围使用所述非授权频段的其他***的负载状态的变化速率,所述设置单元还用于:根据实时检测到的所述LTE***的负载状态的变化速率和/或所述其他***的负载状态的变化速率,动态设置所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,具体地,包括:
设置方式一:若帧结构中每个转换点周期内包含的上行子帧数量较少 (如配置方式3、配置方式4和配置方式5),则可以设置上行信道检测子帧的检测周期较大;而对于每个转换点周期内的上行子帧数量较多时,则为了能够根据上行信道的实时状态确定是否传输上行数据,则可以设置上行信道检测子帧的检测周期较小;
设置方式二:
通过根据实时检测到的LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率,动态设置上行信道检测子帧的检测周期,使得上行信道检测子帧的检测周期能够更加符合LTE***的工作状态。
在上述技术方案中,优选地,所述LTE***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系;所述其他***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系。
在该技术方案中,若LTE***的负载状态的变化速率越大,则说明上行数据的传输量变化越大;若其他***的负载状态的变化速率越大,则说明信道的状态变化较大,因此为了传输上行数据,需要间隔较短时间测量信道的状态,即需要设置上行信道检测子帧的检测周期越小。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述帧结构的子帧配置方式,以及所述帧结构的子帧配置方式中的配置方式3、配置方式4和配置方式5中的所述上行信道检测子帧的检测周期为:M×10ms,其中M为正整数;所述帧结构的子帧配置方式中的配置方式0、配置方式1、配置方式2和配置方式6中的所述上行信道检测子帧的检测周期为:N×5ms,其中N为1或正偶数。
其中,在上行信道检测子帧的周期为5ms时,即在一个帧结构中需要两个位置设置上行信道检测子帧,该上行信道检测子帧配置命令中包含的两个位置既可以是相同的子帧位置,也可以是不同的子帧位置。具体地,如对于配置方式0,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和5号子帧的位置(即D子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在不同的子帧类型位置;而对于配置方式1,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在相同的子帧类型位置。
在上述技术方案中,优选地,还包括:若所述帧结构中具有多个位置可设置所述上行信道检测子帧,且所述上行信道检测子帧的检测周期为M×10ms,则所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述多个位置中的第一个位置。
在该技术方案中,具体地,如对于配置方式1,由于可以在配置方式1中的1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,若上行信道检测子帧的周期为10ms的整数倍,则该上行信道检测子帧配置命令包含的该上行信道检测子帧的设置位置可以 仅在1号子帧的位置上。
根据本发明的再一方面提出了一种具有基站功能的设备,其特征在于,包括:如上述技术方案中任一项所述的配置上行信道检测子帧的控制***。
在该技术方案中,通过在具有基站功能的设备上安装配置上行信道检测子帧的控制***,可以使该具有基站功能的设备与终端建立连接后,通过向终端发送上行信道检测子帧配置命令,可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
通过本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。
附图说明
图1示出了非授权频谱的两种工作方式的示意图;
图2示出了Wi-Fi***的干扰避免规则的示意图;
图3示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图;
图4示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图;
图5示出了根据本发明的实施例的终端的结构示意图;
图6示出了根据本发明的实施例的配置上行信道检测子帧的控制方法的流程示意图;
图7示出了根据本发明的实施例的配置上行信道检测子帧的控制***的结构示意图;
图8示出了根据本发明的实施例的具有基站功能的设备的结构示意图;
图9示出了5ms下行到上行转换的TDD帧结构的示意图;
图10示出了根据本发明的实施例的上行信道检测子帧设置在下行子帧内的结构示意图;
图11示出了根据本发明的实施例的上行信道检测子帧设置在上行子帧内的结构示意图;
图12A示出了根据本发明的一个实施例的上行信道检测子帧设置在特殊子帧内的结构示意图;
图12B示出了根据本发明的另一个实施例的上行信道检测子帧设置在特殊子帧内的结构示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图3示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法的流程示意图。
如图3所示,示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,包括:步骤302,接收来自具有基站功能的设备的上行信道检测子帧配置命令;步骤304,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;步骤306,在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的至少一个子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,使得无需在 时分双工模式的帧结构中额外地设置其他子帧来承载上行信道检测子帧;同时,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上行信道检测子帧,并且上行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上行信道检测子帧的几种优选设置方式:
设置方式一:
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与特殊子帧相邻的下行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与特殊子帧相邻的下行子帧内,使得在下行子帧完成下行传输之后并在上行子帧进行上行传输之前,能够实现对上行信道的检测,进而确定是否能够通过上行子帧进行数据传输;同时,由于上行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述下行子帧的后端,并使所述上行信道检测子帧占用第一数目个符号,所述第一数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在下行子帧的后端,使得能够确保信道检测的时效性,以确保在传输上行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上行数据较晚而导致在需要传输上行数据时信道状态已发生变化而影响上行数据的传输。具体地,如信道检测较早并检测到信道处于繁忙状态,但是由于上行数据传输较晚(即上行信道检测子帧距离上行子帧较远),若在上行数据传输时,信道已处于空闲状态但是由于信道检测结果为繁忙状态,此时LTE***不会发送上行数据而等待上次信道检测,导致无法传送上行数据;类似地,再如信道检测较早并检测到信道处于空闲状态,但是由于上行数据传输较晚,若在上行数据传输时,信道已处于繁忙状态但是由于信道检测结果为空闲状态,此时LTE***会继续发送上行数据而不等待上次信道检测,进而会对其他***造成干扰。
设置方式二:
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与下行子帧相邻的上行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与下行子帧相邻的上行子帧内,使得能够在需要进行上行传输时,及时进行上行信道的测量;同时,由于上行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述上行子帧的后端,并使所述上行信道检测子帧占用第二数目个符号,所述第二数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在上行子帧的后端,使得上行子帧的其他部分能够继续用于上行数据的传输,确保上行子帧的充分利用,另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在与下行子帧相邻的上行子帧的后端,则可以避免在上行子帧内设置额外的保护时间。
设置方式三:
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的特殊子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在特殊子帧内,使得无需占用下行子帧和上行子帧,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将上行信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述特殊子帧内与所述特殊子帧中的下行导频时隙相邻的位置,并使所述上行信道检测子帧占用第三数目个符号,其中,所述第三数目的取值范围为1至9。
在该技术方案中,由于在时分双工模式的帧结构中,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧是需要监听上行信号来检测信道状态的,因此通过将上行信道检测子帧设置与下行导频时隙相邻的位置,即设置在下行导频时隙(DwPTS)与保护时间(GP)之间或设置在下行导频时隙之前,可以无需设置额外的保护时间,避免了将上行信道检测子帧设置在上行导频时隙(UpPTS)之前或设置在上行导频时隙与保护时间之间而需要额外设置保护时间。
同时,由于上行导频时隙和保护时间占用的符号数量最少均为1个符号,下行导频时隙占用的符号数量最少为3个,而一个子帧包含14个符号,因此设置在特殊子帧中的上行信道检测子帧占用的符号数量最多为9个,最少为1个。
通过上行信道检测子帧检测上行信道的状态的方式如下:
上述技术方案中,优选地,当所述上行信道检测子帧周期性检测所述非授权频段的上行信道是否空闲时,若所述上行信道检测子帧在每个所述符号内都检测到所述上行信道空闲,则所述上行信道检测子帧判定所述上 行信道空闲。
在该技术方案中,由于上行信道检测子帧的检测力度为1个符号检测一次,因此可以在上行信道检测子帧占用的每个符号上检测时均检测到上行信道处于空闲状态时再判定上行信道处于空闲状态。
上述技术方案中,优选地,还包括:根据所述上行信道检测子帧配置命令,获取所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,终端接收到的上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,通过从该上行信道检测子帧配置命令中获取检测周期即可实现实时地检测上行信道是否繁忙,而该检测周期与该帧结构中每个转换点周期内包含的上行子帧数量或LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率有关,例如:当帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5)时,上行信道检测子帧配置命令中的检测周期就较大,而当每个转换点周期内的上行子帧数量较多时,上行信道检测子帧配置命令中的检测周期就较小。
上述技术方案中,优选地,根据所述上行信道检测子帧配置命令,获取所述帧结构的子帧配置方式。
在该技术方案中,帧结构的子帧配置方式为配置方式0、配置方式1、配置方式2、配置方式3、配置方式4和配置方式5和配置方式6中的任一种配置方式。
上述技术方案中,优选地,还包括:判断是否需要处理上行业务,若是,则通过所述帧结构中的所述上行信道检测子帧周期性地检测所述上行信道是否空闲。
在该技术方案中,具体来说,终端在通过上行信道检测子帧检测上行信道的状态时,可以是在确定有上行业务时才进行的,当然也可以是不管有没有上行业务一直进行的。
图4示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***的结构示意图。
如图4所示,示出了根据本发明的实施例的LTE***在非授权频段采用时分双工模式工作时的数据传输***400,包括:接收单元402,接收来自具有基站功能的设备的上行信道检测子帧配置命令;设置单元404,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;发送单元406,在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
在该技术方案中,通过根据接收到的上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检 测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述设置单元404用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的至少一个子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令将上行信道检测子帧设置在时分双工模式的帧结构中的至少一个子帧内,使得无需在时分双工模式的帧结构中额外地设置其他子帧来承载上行信道检测子帧;同时,可以根据LTE***的实际情况在时分双工模式的帧结构中的一个或多个子帧内设置上行信道检测子帧,并且上行信道检测子帧的设置位置可以是在上行子帧、下行子帧和特殊子帧中的一个位置或多个位置处。
以下列举上行信道检测子帧的几种优选设置方式:
在上述技术方案中,优选地,所述设置单元404具体用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与特殊子帧相邻的下行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与特殊子帧相邻的下行子帧内,使得在下行子帧完成下行传输之后并在上行子帧进行上行传输之前,能够实现对上行信道的检测,进而确定是否能够通过上行子帧进行数据传输;同时,由于上行信道检测子帧没有占用上行子帧,因此能够保证上行子帧完全用于上行数据的传输,实现上行子帧的充分利用。
在上述技术方案中,优选地,所述设置单元404具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述下行子帧的后端,并使所述上行信道检测子帧占用第一数目个符号,所述第一数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在下行子帧的后端,使得能够确保信道检测的时效性,以确保在传输上行数据之前检测到的信道状态为最新状态,避免信道检测较早且传输上行数据较晚而导致在需要传输上行数据时信道状态已发生变化而影响上行数据的传输。具体地,如信道检测较早并检测到信道处于繁忙状态,但是由于上行数据传输较晚(即上行信道检测子帧距离上行子帧较远),若在上行数据传输时,信道已处于空闲状态但是由于信道检测结果 为繁忙状态,此时LTE***不会发送上行数据而等待上次信道检测,导致无法传送上行数据;类似地,再如信道检测较早并检测到信道处于空闲状态,但是由于上行数据传输较晚,若在上行数据传输时,信道已处于繁忙状态但是由于信道检测结果为空闲状态,此时LTE***会继续发送上行数据而不等待上次信道检测,进而会对其他***造成干扰。
设置方式二:
在上述技术方案中,优选地,所述设置单元404具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与下行子帧相邻的上行子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在时分双工模式的帧结构中与下行子帧相邻的上行子帧内,使得能够在需要进行上行传输时,及时进行上行信道的测量;同时,由于上行信道检测子帧没有占用下行子帧,因此能够保证下行子帧完全用于下行数据的传输,实现下行子帧的充分利用。
在上述技术方案中,优选地,所述设置单元404具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述上行子帧的后端,并使所述上行信道检测子帧占用第二数目个符号,所述第二数目的取值范围为1至14。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在上行子帧的后端,使得上行子帧的其他部分能够继续用于上行数据的传输,确保上行子帧的充分利用,另外,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧在检测上行信道的状态时,相当于一个下行信号,因而,将上行信道检测子帧设置在与下行子帧相邻的上行子帧的后端,则可以避免在上行子帧内设置额外的保护时间。
设置方式三:
在上述技术方案中,优选地,所述设置单元404具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的特殊子帧内。
在该技术方案中,通过根据该上行信道检测子帧配置命令,将上行信道检测子帧设置在特殊子帧内,使得无需占用下行子帧和上行子帧,进而能够保证***的上行传输和下行传输不受影响;同时,若同一运营商的不同基站在同一载频上均将上行信道检测子帧设置在特殊子帧上,并且设置在帧结构的相同位置处,则不同基站在测量信道状态时,均是以其他运营商的基站为参考,并不会因为检测到同一运营商的基站信号而判定信道繁忙。
在上述技术方案中,优选地,所述设置单元404具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述特殊子帧内与所述特殊子帧中的下行导频时隙相邻的位置,并使所述上行信道 检测子帧占用第三数目个符号,其中,所述第三数目的取值范围为1至9。
在该技术方案中,由于在时分双工模式的帧结构中,下行子帧在转换为上行子帧时,需要设置保护时间,而上行信道检测子帧是需要监听上行信号来检测信道状态的,因此通过将上行信道检测子帧设置与下行导频时隙相邻的位置,即设置在下行导频时隙(DwPTS)与保护时间(GP)之间或设置在下行导频时隙之前,可以无需设置额外的保护时间,避免了将上行信道检测子帧设置在上行导频时隙(UpPTS)之前或设置在上行导频时隙与保护时间之间而需要额外设置保护时间。
同时,由于上行导频时隙和保护时间占用的符号数量最少均为1个符号,下行导频时隙占用的符号数量最少为3个,而一个子帧包含14个符号,因此设置在特殊子帧中的上行信道检测子帧占用的符号数量最多为9个,最少为1个。
通过上行信道检测子帧检测上行信道的状态的方式如下:
在上述技术方案中,优选地,还包括:第一判断单元408,位于所述上行信道检测子帧中,当所述上行信道检测子帧周期性检测所述非授权频段的上行信道是否空闲时,若所述上行信道检测子帧在每个所述符号内都检测到所述上行信道空闲,则判定所述上行信道空闲。
在该技术方案中,由于上行信道检测子帧的检测力度为1个符号检测一次,因此可以在上行信道检测子帧占用的每个符号上检测时均检测到上行信道处于空闲状态时再判定上行信道处于空闲状态。
在上述技术方案中,优选地,还包括:第一获取单元410,根据所述上行信道检测子帧配置命令,获取所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,终端接收到的上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,通过从该上行信道检测子帧配置命令中获取检测周期即可实现实时地检测上行信道是否繁忙,而该检测周期与该帧结构中每个转换点周期内包含的上行子帧数量或LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率有关,例如:当帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5)时,上行信道检测子帧配置命令中的检测周期就较大,而当每个转换点周期内的上行子帧数量较多时,上行信道检测子帧配置命令中的检测周期就较小。
在上述技术方案中,优选地,还包括:第二获取单元412,根据所述上行信道检测子帧配置命令,获取所述帧结构的子帧配置方式。
在该技术方案中,帧结构的子帧配置方式为配置方式0、配置方式1、配置方式2、配置方式3、配置方式4和配置方式5和配置方式6中的任一种配置方式。
在上述技术方案中,优选地,还包括:第二判断单元414,判断是否 需要处理上行业务,检测单元416,若是,则通过所述帧结构中的所述上行信道检测子帧周期性地检测所述上行信道是否空闲。
在该技术方案中,具体来说,终端在通过上行信道检测子帧检测上行信道的状态时,可以是在确定有上行业务时才进行的,当然也可以是不管有没有上行业务一直进行的。
图5示出了根据本发明的实施例的终端的结构示意图。
如图5所示,示出了根据本发明的实施例的终端500,包括:如上述技术方案中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***400。
在该技术方案中,通过在终端500上安装该LTE***在非授权频段采用时分双工模式工作时的数据传输***400,可以使终端500在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
图6示出了根据本发明的实施例的配置上行信道检测子帧的控制方法的流程示意图。
如图6所示,示出了根据本发明的实施例的配置上行信道检测子帧的控制方法,包括:步骤602,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,在终端与具有基站功能的设备建立连接后,通过向终端发送上行信道检测子帧配置命令,可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具 有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置。
在该技术方案中,为了使能够正确无误地在该帧结构中设置上行信道检测子帧,该上行信道检测子帧配置命令包括该上行信道检测子帧在该帧结构中的具体设置位置,而上行信道检测子帧的优选设置方式通常为:
该上行信道检测子帧在该帧结构中与特殊子帧相邻的下行子帧内且位于该下行子帧的后端,占用第一数目个符号,第一数目的取值范围为1至14,或
该上行信道检测子帧在该帧结构中与下行子帧相邻的上行子帧内且位于上行子帧的后端,占用第二数目个符号,第二数目的取值范围为1至14,
该上行信道检测子帧位于所述帧结构中的特殊子帧内与特殊子帧中的下行导频时隙相邻,占用第三数目个符号,第三数目的取值范围为1至9。
在上述技术方案中,优选地,还包括:判断所述具有基站功能的设备与具有基站功能的其他设备是否归属于同一运营商;若判定所述具有基站功能的设备与所述其他设备归属于同一运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置相同;若判定所述具有基站功能的设备与所述其他设备归属于不同运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述具有基站功能的其他设备的帧结构中的位置不相同。
在该技术方案中,由于信道检测的目的是为了检测其它运营商的基站(也可以是具有基站功能的设备,为了便于描述,以下以基站为例,但是本领域的技术人员应该理解的是本申请中所述的基站也可以是具有基站功能的其他设备)是否使用了LAA,以及Wi-Fi是否占用信道,因此对于同一运营商的基站,为了能够避免归属于同一运营商的基站之间相互检测到信号而判定信道繁忙,在同一载频上,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置相同;而对于不同运营商的基站,在同一载频上,为了检测不同运营商的基站是否占用信道,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置不同。
在上述技术方案中,优选地,在同一载频上,所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述 上行信道检测子帧在所述其他设备的帧结构中的位置不相同的步骤具体为:判断在所述同一载频上,所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式是否相同,若是,则设置所述具有基站功能的设备的帧结构中的子帧与所述其他设备的帧结构中的子帧具有相对偏移量。
在该技术方案中,若不同运营商的基站的帧结构配置相同,则为了确保上行信道检测子帧在不同时间进行测量,则需要设置基站之间的子帧具有相对偏移量;当然,对于一个帧结构上有多个位置可以设置上行信道检测子帧时,当不用运营商的基站的帧结构配置相同时,可以令不同运营商的基站在帧结构的不同位置处设置帧结构。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧所占用的符号数目,以及在所述LTE***的工作过程中,所述上行信道检测子帧所占用的符号数目为固定值;或在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,并根据实时检测到的所述其他***的信道条件的变化速率和/或所述终端的信道检测能力,动态设置所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保终端可以根据上行信道检测子帧及时而准确无误地判断上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧所占用的符号数目,而基站可以将该符号数目设置为固定值,也可以根据其他***的信道条件的变化速率和/或该终端的信道检测能力,动态设置该上行信道检测子帧所占用的符号数目,以使终端能够根据该上行信道检测子帧充分而准确地判断上行信道是否繁忙,并在检测到上行信道空闲时,及时地发送上行数据。
在上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述上行信道检测子帧所占用的符号数目成正比例关系;所述终端的信道检测能力与所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上行信道检测子帧占用的符号数时,为了能够对上行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多,因此其他***的信道条件的变化速率与上行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧的检测周期,以及根据所述帧结构中每个转换点周期内包含的上行子帧数量设置所述上行信道检测子帧的检测周期,或在所述LTE***的工作过程中,实时检测所述LTE***的负载状态的变化速 率和所述LTE***周围使用所述非授权频段的其他***的负载状态的变化速率,并根据实时检测到的所述LTE***的负载状态的变化速率和/或所述其他***的负载状态的变化速率,动态设置所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,具体地,包括:
设置方式一:若帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5),则可以设置上行信道检测子帧的检测周期较大;而对于每个转换点周期内的上行子帧数量较多时,则为了能够根据上行信道的实时状态确定是否传输上行数据,则可以设置上行信道检测子帧的检测周期较小;
设置方式二:
通过根据实时检测到的LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率,动态设置上行信道检测子帧的检测周期,使得上行信道检测子帧的检测周期能够更加符合LTE***的工作状态。
在上述技术方案中,优选地,所述LTE***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系;所述其他***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系。
在该技术方案中,若LTE***的负载状态的变化速率越大,则说明上行数据的传输量变化越大;若其他***的负载状态的变化速率越大,则说明信道的状态变化较大,因此为了传输下行数据,需要间隔较短时间测量信道的状态,即需要设置上行信道检测子帧的检测周期越小。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述帧结构的子帧配置方式,以及所述帧结构的子帧配置方式中的配置方式3、配置方式4和配置方式5中的所述上行信道检测子帧的检测周期为:M×10ms,其中M为正整数;所述帧结构的子帧配置方式中的配置方式0、配置方式1、配置方式2和配置方式6中的所述上行信道检测子帧的检测周期为:N×5ms,其中N为1或正偶数。
其中,在上行信道检测子帧的周期为5ms时,即在一个帧结构中需要两个位置设置上行信道检测子帧,该上行信道检测子帧配置命令中包含的两个位置既可以是相同的子帧位置,也可以是不同的子帧位置。具体地,如对于配置方式0,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和5号子帧的位置(即D子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在不同的子帧类型位置;而对于配置方式1,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在相同的子帧类型位置。
在上述技术方案中,优选地,还包括:若所述帧结构中具有多个位置可设置所述上行信道检测子帧,且所述上行信道检测子帧的检测周期为M×10ms,则所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述多个位置中的第一个位置。
在该技术方案中,具体地,如对于配置方式1,由于可以在配置方式1中的1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,若上行信道检测子帧的周期为10ms的整数倍,则该上行信道检测子帧配置命令包含的该上行信道检测子帧的设置位置可以仅在1号子帧的位置上。
图7示出了根据本发明的实施例的配置上行信道检测子帧的控制***的结构示意图。
如图7所示,示出了根据本发明的实施例的配置上行信道检测子帧的控制系700,包括:发送单元702,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
在该技术方案中,在终端与具有基站功能的设备建立连接后,通过向终端发送上行信道检测子帧配置命令,可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置。
在该技术方案中,为了使能够正确无误地在该帧结构中设置上行信道检测子帧,该上行信道检测子帧配置命令包括该上行信道检测子帧在该帧结构中的具体设置位置,而上行信道检测子帧的优选设置方式通常为:
该上行信道检测子帧在该帧结构中与特殊子帧相邻的下行子帧内且位于该下行子帧的后端,占用第一数目个符号,第一数目的取值范围为1至14,或
该上行信道检测子帧在该帧结构中与下行子帧相邻的上行子帧内且位于上行子帧的后端,占用第二数目个符号,第二数目的取值范围为1至 14,
该上行信道检测子帧位于所述帧结构中的特殊子帧内与特殊子帧中的下行导频时隙相邻,占用第三数目个符号,第三数目的取值范围为1至9。
在上述技术方案中,优选地,还包括:判断单元704,判断所述具有基站功能的设备与具有基站功能的其他设备是否归属于同一运营商;若判定所述具有基站功能的设备与所述其他设备归属于同一运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置相同;若判定所述具有基站功能的设备与所述具有基站功能的其他设备归属于不同运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置不相同。
在该技术方案中,由于信道检测的目的是为了检测其它运营商的基站(也可以是具有基站功能的设备,为了便于描述,以下以基站为例,但是本领域的技术人员应该理解的是本申请中所述的基站也可以是具有基站功能的其他设备)是否使用了LAA,以及Wi-Fi是否占用信道,因此对于同一运营商的基站,为了能够避免归属于同一运营商的基站之间相互检测到信号而判定信道繁忙,在同一载频上,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置相同;而对于不同运营商的基站,在同一载频上,为了检测不同运营商的基站是否占用信道,该上行信道检测子帧配置命令包含的上行信道检测子帧的设置位置应为:上行信道检测子帧在帧结构中的位置不同。
在上述技术方案中,优选地,所述判断单元704还用于:在同一载频上,所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述具有基站功能的其他设备配置的所述上行信道检测子帧在所述具有基站功能的其他设备的帧结构中的位置不相同时,判断在所述同一载频上,所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式是否相同,以及,所述控制***还包括:设置单元706,若所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式相同,,则设置所述具有基站功能的设备的帧结构中的子帧与所述其他设备的帧结构中的子帧具有相对偏移量。
在该技术方案中,若不同运营商的基站的帧结构配置相同,则为了确保上行信道检测子帧在不同时间进行测量,则需要设置基站之间的子帧具有相对偏移量;当然,对于一个帧结构上有多个位置可以设置上行信道检测子帧时,当不用运营商的基站的帧结构配置相同时,可以令不同运营商 的基站在帧结构的不同位置处设置帧结构。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧所占用的符号数目,以及在所述LTE***的工作过程中,所述上行信道检测子帧所占用的符号数目为固定值;或,所述控制***还包括:检测单元708,在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,所述设置单元706还用于:根据实时检测到的所述其他***的信道条件的变化速率和/或所述终端的信道检测能力,动态设置所述上行信道检测子帧所占用的符号数目。
在该技术方案中,为了确保终端可以根据上行信道检测子帧及时而准确无误地判断上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧所占用的符号数目,而基站可以将该符号数目设置为固定值,也可以根据其他***的信道条件的变化速率和/或该终端的信道检测能力,动态设置该上行信道检测子帧所占用的符号数目,以使终端能够根据该上行信道检测子帧充分而准确地判断上行信道是否繁忙,并在检测到上行信道空闲时,及时地发送上行数据。
在上述技术方案中,优选地,所述其他***的信道条件的变化速率与所述上行信道检测子帧所占用的符号数目成正比例关系;所述终端的信道检测能力与所述上行信道检测子帧所占用的符号数目成反比例关系。
在该技术方案中,在根据实际情况调整上行信道检测子帧占用的符号数时,为了能够对上行信道的状态进行准确测量,若LTE***周围使用非授权频段的其他***的信道条件的变换速率越快,则需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多;若终端的信道检测能力较差,也需要多次测量上行信道的状态,即设置上行信道检测子帧占用的符号数较多,因此其他***的信道条件的变化速率与上行信道检测子帧所占用的符号数量成正比例关系,终端的信道检测能力与上行信道检测子帧所占用的符号数量成反比例关系。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述上行信道检测子帧的检测周期,以及所述设置单元706还用于:根据所述帧结构中每个转换点周期内包含的上行子帧数量设置所述上行信道检测子帧的检测周期,或所述检测单元708还用于:在所述LTE***的工作过程中,实时检测所述LTE***的负载状态的变化速率和所述LTE***周围使用所述非授权频段的其他***的负载状态的变化速率,所述设置单元706还用于:根据实时检测到的所述LTE***的负载状态的变化速率和/或所述其他***的负载状态的变化速率,动态设置所述上行信道检测子帧的检测周期。
在该技术方案中,为了确保终端可以根据上行信道检测子帧实时地检测上行信道是否繁忙,上行信道检测子帧配置命令还包括上行信道检测子帧的检测周期,具体地,包括:
设置方式一:若帧结构中每个转换点周期内包含的上行子帧数量较少(如配置方式3、配置方式4和配置方式5),则可以设置上行信道检测子帧的检测周期较大;而对于每个转换点周期内的上行子帧数量较多时,则为了能够根据上行信道的实时状态确定是否传输上行数据,则可以设置上行信道检测子帧的检测周期较小;
设置方式二:
通过根据实时检测到的LTE***的负载状态的变化速率和/或其他***的负载状态的变化速率,动态设置上行信道检测子帧的检测周期,使得上行信道检测子帧的检测周期能够更加符合LTE***的工作状态。
在上述技术方案中,优选地,所述LTE***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系;所述其他***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系。
在该技术方案中,若LTE***的负载状态的变化速率越大,则说明上行数据的传输量变化越大;若其他***的负载状态的变化速率越大,则说明信道的状态变化较大,因此为了传输下行数据,需要间隔较短时间测量信道的状态,即需要设置上行信道检测子帧的检测周期越小。
在上述技术方案中,优选地,所述上行信道检测子帧配置命令包括:所述帧结构的子帧配置方式,以及所述帧结构的子帧配置方式中的配置方式3、配置方式4和配置方式5中的所述上行信道检测子帧的检测周期为:M×10ms,其中M为正整数;所述帧结构的子帧配置方式中的配置方式0、配置方式1、配置方式2和配置方式6中的所述上行信道检测子帧的检测周期为:N×5ms,其中N为1或正偶数。
其中,在上行信道检测子帧的周期为5ms时,即在一个帧结构中需要两个位置设置上行信道检测子帧,该上行信道检测子帧配置命令中包含的两个位置既可以是相同的子帧位置,也可以是不同的子帧位置。具体地,如对于配置方式0,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和5号子帧的位置(即D子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在不同的子帧类型位置;而对于配置方式1,若上行信道检测子帧的周期为5ms,则可以在1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,即同一帧结构中的两个上行信道检测子帧在相同的子帧类型位置。
在上述技术方案中,优选地,还包括:若所述帧结构中具有多个位置可设置所述上行信道检测子帧,且所述上行信道检测子帧的检测周期为M×10ms,则所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述多个位置中的第一个位置。
在该技术方案中,具体地,如对于配置方式1,由于可以在配置方式1中的1号子帧的位置(即S子帧)和6号子帧的位置(即S子帧)分别设置上行信道检测子帧,若上行信道检测子帧的周期为10ms的整数倍,则 该上行信道检测子帧配置命令包含的该上行信道检测子帧的设置位置可以仅在1号子帧的位置上。
图8示出了根据本发明的实施例的具有基站功能的设备的结构示意图。
如图8所示,示出了根据本发明的实施例的具有基站功能的设备800,包括:如上述技术方案中任一项所述的配置上行信道检测子帧的控制***700。
在该技术方案中,通过在具有基站功能的设备800上安装配置上行信道检测子帧的控制***700,可以使该具有基站功能的设备800与终端建立连接后,通过向终端发送上行信道检测子帧配置命令,可以使终端根据该上行信道检测子帧配置命令,在时分双工模式的帧结构中设置上行信道检测子帧对上行信道的状态进行检测,以在上行信道检测子帧检测到上行信道处于空闲状态时通过上述帧结构中的上行子帧发送上行数据,而在检测到上行信道处于繁忙状态时,不发送上行数据,使得LTE***在非授权频段采用时分双工模式工作时能够采取相应的干扰避让机制,进而在非授权频段工作时可以与工作在非授权频段的其他***(如Wi-Fi***)和平共存,以在确保LTE***能够在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时由于没有干扰避让机制而对具有干扰避让机制的其他***产生较大的干扰。其中,数据既包括普通的交互数据,也包括控制信令等。具有基站功能的设备包括基站、通过通信设备(如智能手机等)实现的微小区基站等。
以下结合图9至图12B详细说明书本发明的技术方案。
本发明的技术方案主要是非授权频段以TDD的方式被LTE***使用时的干扰避让机制。其主要原理是设计一种用于上行信道测量的LBT机制和帧结构,主要介绍了LBT主体、LBT的时间和LBT的检测周期,以及如果信道空闲最大可传输的时间长度或者数据包大小。
首先介绍TDD的帧结构:
如图9所示为5ms下行到上行转换的TDD帧结构,对于5ms下行到上行转换的TDD帧结构,1个帧包含8个正常子帧和2个特殊子帧。而8个正常子帧的配置方式,即用于上行传输还是下行传输可以参考表1。而对于10ms下行到上行转换周期的TDD结构,1个帧包含9个正常子帧和一个特殊子帧,而9个正常子帧到底是用于上行传输还是下行传输也可以参考表1所示。其中,每个正常子帧又包含14个symbol(符号)。
表1
Figure PCTCN2014088041-appb-000001
当非授权频段以TDD模式被LTE***使用时,检测上行信道是否被占用的信道工作由终端来进行。
其中,LBT子帧(上行信道检测子帧)的设置位置有多种,以下列举其中的三种优选设置方式:
优选设置方式一:
LBT子帧放在后面紧接着是S(Special,特殊)子帧的D(Downlink,下行)子帧内,具体地,如表2中所示的具有阴影的帧结构位置。
表2
Figure PCTCN2014088041-appb-000002
如果1个帧结构中给出了两个位置能够设置LBT检测子帧,那就是LBT重复周期为5ms时的情况。如果重复周期为10ms或者更大时,可以仅在帧结构中排在最前面的位置设置一个LBT检测子帧。
进一步地,LBT子帧可以放在D子帧的最后几个symbol。而LBT的检测时间长度可以是N1个symbol,N1=1,2,3,……14。N1的值可以根据具体情况进行静态或半静态的配置。
此外,D子帧中的其它symbol继续用于下行传输。包括传输PSS/SSS(Primary Synchronization Signal/Secondary Synchronization Signal,主同步信道/辅同步信号),CRS(Cell-specific Reference Signal,小区参考信号),CSI-RS(Channel State Information-Reference  Signal,信道质量信息参考信号),DS(Discovery Signal,发现信号),PDCCH(Physical Downlink Control Channel,物理下行控制信道),ePDCCH(enhanced Physical Downlink Control Channel,增强的物理下行控制信道),PDSCH(Physical Downlink Shared Channel,物理下行共享信道),WiFi类似的beacon signal(信标帧信号)以及UL(Uplink)grant,HARQ(Hybrid Automatic Repeat request,混合自动重传请求)反馈等。具体地,如图10所示,以TDD配置方式0为例给出用于LBT检测的D子帧的结构图,在0号子帧(即D子帧)中设置LBT子帧,LBT子帧位于0号子帧的后端。
优选设置方式二:
LBT子帧放在后面紧接着是D(Downlink,下行)子帧的U(Uplink,上行)子帧内,如表3所示的具有阴影的帧结构位置。
表3
Figure PCTCN2014088041-appb-000003
如果1个帧结构中给出了两个位置能够设置LBT检测子帧,那就是LBT重复周期为5ms时的情况。如果重复周期为10ms或者更大时,可以仅在帧结构中排在最前面的位置设置一个LBT检测子帧。
进一步,LBT子帧是放在U子帧的最后面几个symbol。而LBT检测时间长度可以是N2个symbol,N2=1,2,3,……14。N2的值可以根据具体情况进行静态或半静态的配置。
此外,U子帧中的其它symbol继续用于上行传输,包括PUCCH,PRACH,SRS以及HARQ反馈,CSI反馈等。具体地,如图11所示,以TDD配置方式0为例给出用于LBT检测的U子帧的结构图,在4号子帧(即U子帧)中设置LBT子帧,LBT子帧位于4号子帧的后端。
优选设置方式三:
LBT子帧放在S(Special,特殊)子帧,如表4所示的具有阴影的帧结构位置。
表4
Figure PCTCN2014088041-appb-000004
如果1个帧结构中给出了两个位置能够设置LBT检测子帧,那就是LBT重复周期为5ms时的情况。如果重复周期为10ms或者更大时,可以仅在帧结构中排在最前面的位置设置一个LBT检测子帧。
进一步,S子帧包含DwPTS(Downlink Pilot Time Slot,下行导频时隙)、UpPTS(Uplink Pilot Time Slot,上行导频时隙)和GP(Guard Period,保护时间),LBT time可以如图12A所示在GP和DwPTS之间放入LBT time;或者放在S子帧的最前面几个symbol,如图12B所示,在DwPTS之前放入LBT time。
以下说明在S子帧中LBT time所占用的时间:
如表5所示为36.211标准中给出的DwPTS、UpPTS的长度配置,而除去DwPTS和UpPTS之后,1ms剩下的时间就是GP的长度了。而这里为了在1ms内放入LBT time,只能缩短DwPTS、UpPTS和GP的时间长度之和,使其时间长度之和小于1ms,剩下的用于LBT time。
表5
Figure PCTCN2014088041-appb-000005
基本上来说,UpPTS的长度比较固定,为1个symbol或2个 symbol,而DwPTS和GP的长度根据不同的小区半径有多种配置方式。为了保证LBT time,那么DwPTS只能使用较短的配置,GP也只能使用较短的配置。也就是说,表5中给出的DwPTS、UpPTS的配置中,DwPTS和UpPTS占用长度之和超过13个symbol的就不能被选用,因为GP至少占用1个symbol,而UpPTS最小是1个symbol,DwPTS最小是3个symbol,所以LBT检测时间长度最大是9个symbol,最小保证1个symbol。即LBT检测时间长度可以是N3个symbol,N3=1,2,3,……9。N3的值可以根据具体情况进行静态或半静态的配置。
在上述的三种优选设置方式中,都不需要额外的D子帧到U子帧的保护时间;对于优选设置方式一,由于LBT子帧放在D子帧,没有改变该子帧的下行特性,没有占用U子帧,使得U子帧得以充分使用,同时放在后面紧接着是S子帧的D子帧(S子帧之后大多都是U子帧),可以保证信道检测的时效性;对于优选设置方式二,由于LBT子帧放在U子帧,改变了该子帧的上行特性,但是没有额外占用D子帧去做下行LBT信道检测;对于优选设置方式三,LBT子帧放置在S子帧,没有占用正常的U和D子帧,但是DwPTS和GP值的取值受限,但优点在于各种TDD上下行配置都使用#1号的S子帧进行LBT,这样即使邻小区用不同的TDD配置,因为LBT time相同,那么检测的还是外来的信号强度,不会因为检测到邻LTE小区的信号强度而判断信道忙。
同时,对于优选设置方式二,因为每个TDD上下行配置所用的LBT子帧不同步,如果邻小区使用不同的TDD配置,那么可能小区#1在做LBT时,小区#2在进行上行或下行传输,那么小区#1检测到信道忙,但实际上信道可以被小区#1占用。也就是说优选设置方式二不太适用于同一频道同一运营商用不同TDD上下行配置的场景,除非基站能区分出不同运营商或WiFi的信号。
此外,LBT的检测力度为1个symbol,也就是说每个symbol做一次LBT检测,并判断信道忙闲。而在LBT整个时间里,可能分多个symbol也就是多个step,只有每个step检测信道都是空闲,LBT时间结束后才能判断信道是空闲状态。
以下说明LBT的重复周期:
具体地,对于不同的上下行配置,LBT的重复周期可能不同,也可能相同:
对于LBT重复周期相同的情况:因为上下行转换的周期最大为10ms,而且从前面所分析的LBT time所在的子帧情况,得知有些上下行配置下,最小周期是10ms。所以如果要LBT的重复周期相同,那么重复周期是N4×10ms,N4为正整数。
对于LBT重复周期不同的情况:比如对于编号#0的TDD配置,重复周期是N5×5ms,N5=1,2,4,6,8……,因为每个5ms里有3个U子帧,还值得每5ms花费一次LBT的时间;而对于编号#3、#4、#5的TDD 配置,重复周期是N6×10ms,N6=1,2,3,4……,因为后面5ms没有U,根本不值得去花费一次LBT的时间。表6给出每个配置的LBT的可能重复周期。
表6
上下行配置编号 LBT的重复周期
0 5ms,10ms,20ms,30ms,……
1 5ms,10ms,20ms,30ms,……
2 5ms,10ms,20ms,30ms,……
3 10ms,20ms,30ms,……
4 10ms,20ms,30ms,……
5 10ms,20ms,30ms,……
6 5ms,10ms,20ms,30ms,……
其中,LBT子帧所在的子帧位置,LBT子帧所占的symbol数,以及LBT子帧的重复周期可以是任意组合的关系。比如对于TDD上下行配置方式0来说,LBT可以放在U子帧,D子帧或者S子帧;最小周期可以是5ms或者10ms;LBT所占用的symbol也可以有多个可选值。
由上所述,LBT的重复周期由LBT检测子帧和其它子帧组成,其它子帧中的U子帧的个数就是每次LBT检测信道空闲后可占用的最大上行信道传输时间。若LBT检测子帧判断出信道空闲,则其它U子帧可以用于上行发送;否则,其它子帧不能用于上行发送。也就是说LBT的重复周期限制了LBT检测到信道空闲时,可用于上行发送的最大时间。如TDD上下行配置方式0,当LBT在1号S子帧进行时,LBT检测重复周期为5ms时,那么最大可占用的上行传输子帧是2号、3号、4号子帧,4号U子帧之后,可能需要在6号S子帧再次进行LBT检测。
以下说明相同和不同运营商的基站下发的上行信道检测子帧配置命令中包含的LBT配置方式:
对于同一个运营商的所有终端:在使用非授权频段时,在同一载频上做LBT的时间相同。因为LBT主要是为了检测其它运营商的终端在该载频上是否使用LAA或者是否有Wi-Fi***使用,而同一运营商的终端之间可以同时使用非授权频段,因此同一运营商的终端在相同时间做LBT相当于同一运营商的终端都不发信号,只检测外来信号强度。
具体地,当同一载频上的TDD上下行配置一样时,不管基站下发的上行信道检测子帧配置命令中的LBT配置位置是在以上所述的U子帧、D子帧还是S子帧,都能够满足所有终端在同一时间进行LBT;
当同一载频上的TDD上下行配置不一样时,为了满足同一运营商的基站之间做LBT的时间相同,那么上行信道检测子帧配置命令中的LBT配置位置只能在D子帧或S子帧。
对于不同运营商的终端:在使用非授权频段时,在同一载频上做LBT 的时间不相同。也就是说,A运营商的终端在做LBT而不发信号时,B运营商的终端不是在做LBT而是可能在发信号,这样正好能检测B运营商的终端是否占用信道。
具体地,对于同一载频上的不同运营商的终端,当不同运营商下发的上行信道检测子帧配置命令包含的TDD上下行配置不一样时,如果不同运营商的基站下发的上行信道检测子帧配置命令包含的LBT在以上所述的U子帧进行且LBT在子帧中的位置不同,就可以使得不同运营商的终端在同一载频上做上行信道检测的时间不一样。
对于同一载频上不同运营商的基站,若不同运营商下发的上行信道检测子帧配置命令包含的TDD上下行配置一样时,为了满足不同基站的终端的LBT在不同时间进行,那么不同运营商下发的上行信道检测子帧配置命令包含的子帧偏移量需要取不同值,即不同运营商下发的上行信道检测子帧配置命令包含的子帧结构中的子帧需要设置有相对的偏移量。
此外,终端的LBT测量可以是不管有没有上行业务,都基于周期进行的;也可以是只有等有业务的时候才基于周期进行。
本发明上述的通过设计上行LBT检测的机制,使得LTE使用非授权频段时,也会提前检测是否有Wi-Fi设备或其他***使用信道,若有,则不占用信道,进而能够确保LTE***在非授权频段与现有接入技术如Wi-Fi和平共存。
以上结合附图详细说明了本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,避免LTE***在非授权频段工作时对其他***产生较大的干扰,实现了LTE***与其他***在非授权频段的和平共存。
根据本发明的实施方式,还提供了一种存储在非易失性机器可读介质上的程序产品,用于LTE***在非授权频段采用时分双工模式工作时的数据传输,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
根据本发明的实施方式,还提供了一种非易失机器可读介质,存储有用于终端中LTE***在非授权频段采用时分双工模式工作时的数据传输的程序产品,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:接收来自具有基站功能的设备的上行信道检测子帧配置命令;根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;在任一检测周期内,若所述上行信道检测子帧检测到所述上行信 道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
根据本发明的实施方式,还提供了一种机器可读程序,所述程序使机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储有机器可读程序的存储介质,其中,所述机器可读程序使得机器执行如上所述技术方案中任一所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法。
根据本发明的实施方式,还提供了一种存储在非易失性机器可读介质上的程序产品,用于配置上行信道检测子帧的控制,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
根据本发明的实施方式,还提供了一种非易失机器可读介质,存储有用于具有基站功能的设备中配置上行信道检测子帧的控制的程序产品,所述程序产品包括用于使计算机***执行以下步骤的机器可执行指令:向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
根据本发明的实施方式,还提供了一种机器可读程序,所述程序使机器执行如上所述技术方案中任一所述的配置上行信道检测子帧的控制方法。
根据本发明的实施方式,还提供了一种存储有机器可读程序的存储介质,其中,所述机器可读程序使得机器执行如上所述技术方案中任一所述的配置上行信道检测子帧的控制方法。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (46)

  1. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输方法,用于终端,其特征在于,包括:
    接收来自具有基站功能的设备的上行信道检测子帧配置命令;
    根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;
    在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
  2. 根据权利要求1所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的至少一个子帧内。
  3. 根据权利要求2所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与特殊子帧相邻的下行子帧内。
  4. 根据权利要求3所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述下行子帧的后端,并使所述上行信道检测子帧占用第一数目个符号,所述第一数目的取值范围为1至14。
  5. 根据权利要求2所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与下行子帧相邻的上行子帧内。
  6. 根据权利要求5所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述上行子帧的后端,并使所述上行信道检测子帧占用第二数目个符号,所述第二数目的取值范围为1至14。
  7. 根据权利要求2所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的特殊子帧内。
  8. 根据权利要求6所述的LTE***在非授权频段采用时分双工模式 工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述特殊子帧内与所述特殊子帧中的下行导频时隙相邻的位置,并使所述上行信道检测子帧占用第三数目个符号,其中,所述第三数目的取值范围为1至9。
  9. 根据权利要求4、6或8所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    当所述上行信道检测子帧周期性检测所述非授权频段的上行信道是否空闲时,若所述上行信道检测子帧在每个所述符号内都检测到所述上行信道空闲,则所述上行信道检测子帧判定所述上行信道空闲。
  10. 根据权利要求1至8中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,还包括:
    根据所述上行信道检测子帧配置命令,获取所述上行信道检测子帧的检测周期。
  11. 根据权利要求1至8中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,
    根据所述上行信道检测子帧配置命令,获取所述帧结构的子帧配置方式。
  12. 根据权利要求1至8中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输方法,其特征在于,还包括:
    判断是否需要处理上行业务,若是,则通过所述帧结构中的所述上行信道检测子帧周期性地检测所述上行信道是否空闲。
  13. 一种LTE***在非授权频段采用时分双工模式工作时的数据传输***,用于终端,其特征在于,包括:
    接收单元,接收来自具有基站功能的设备的上行信道检测子帧配置命令;
    设置单元,根据所述上行信道检测子帧配置命令,在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的所述上行信道检测子帧;
    发送单元,在任一检测周期内,若所述上行信道检测子帧检测到所述上行信道空闲,则通过所述帧结构中处于所述任一检测周期内的上行子帧发送上行数据。
  14. 根据权利要求13所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的至少一个子帧内。
  15. 根据权利要求14所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元具体用于:根据所述上行信道检测子帧配置命令,将所 述上行信道检测子帧设置在所述帧结构中与特殊子帧相邻的下行子帧内。
  16. 根据权利要求15所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述下行子帧的后端,并使所述上行信道检测子帧占用第一数目个符号,所述第一数目的取值范围为1至14。
  17. 根据权利要求14所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中与下行子帧相邻的上行子帧内。
  18. 根据权利要求17所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述上行子帧的后端,并使所述上行信道检测子帧占用第二数目个符号,所述第二数目的取值范围为1至14。
  19. 根据权利要求14所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述帧结构中的特殊子帧内。
  20. 根据权利要求19所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,
    所述设置单元具体还用于:根据所述上行信道检测子帧配置命令,将所述上行信道检测子帧设置在所述特殊子帧内与所述特殊子帧中的下行导频时隙相邻的位置,并使所述上行信道检测子帧占用第三数目个符号,其中,所述第三数目的取值范围为1至9。
  21. 根据权利要求16、18或20所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,还包括:
    第一判断单元,位于所述上行信道检测子帧中,当所述上行信道检测子帧周期性检测所述非授权频段的上行信道是否空闲时,若所述上行信道检测子帧在每个所述符号内都检测到所述上行信道空闲,则判定所述上行信道空闲。
  22. 根据权利要求13至20中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,还包括:
    第一获取单元,根据所述上行信道检测子帧配置命令,获取所述上行信道检测子帧的检测周期。
  23. 根据权利要求13至20中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,还包括:
    第二获取单元,根据所述上行信道检测子帧配置命令,获取所述帧结 构的子帧配置方式。
  24. 根据权利要求13至20中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***,其特征在于,还包括:
    第二判断单元,判断是否需要处理上行业务,
    检测单元,若是,则通过所述帧结构中的所述上行信道检测子帧周期性地检测所述上行信道是否空闲。
  25. 一种终端,其特征在于,包括:如权利要求13至24中任一项所述的LTE***在非授权频段采用时分双工模式工作时的数据传输***。
  26. 一种配置上行信道检测子帧的控制方法,其特征在于,所述方法用于控制权利要求25所述的终端,所述控制方法适用于具有基站功能的设备,包括:
    向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
  27. 根据权利要求26所述的配置上行信道检测子帧的控制方法,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置。
  28. 根据权利要求27所述的配置上行信道检测子帧的控制方法,其特征在于,还包括:
    判断所述具有基站功能的设备与具有基站功能的其他设备是否归属于同一运营商;
    若判定所述具有基站功能的设备与所述其他设备归属于同一运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置相同;
    若判定所述具有基站功能的设备与所述其他设备归属于不同运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述具有基站功能的其他设备的帧结构中的位置不相同。
  29. 根据权利要求28所述的配置上行信道检测子帧的控制方法,其特征在于,在同一载频上,所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置不相同的步骤具体为:
    判断在所述同一载频上,所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式是否相同,若是,则设置所述具有基站功能的设备的帧结构中的子帧与所述其他设备的帧结 构中的子帧具有相对偏移量。
  30. 根据权利要求26所述的配置上行信道检测子帧的控制方法,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧所占用的符号数目,以及
    在所述LTE***的工作过程中,所述上行信道检测子帧所占用的符号数目为固定值;或
    在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,并根据实时检测到的所述其他***的信道条件的变化速率和/或所述终端的信道检测能力,动态设置所述上行信道检测子帧所占用的符号数目。
  31. 根据权利要求30所述的配置上行信道检测子帧的控制方法,其特征在于,
    所述其他***的信道条件的变化速率与所述上行信道检测子帧所占用的符号数目成正比例关系;
    所述终端的信道检测能力与所述上行信道检测子帧所占用的符号数目成反比例关系。
  32. 根据权利要求26至31中任一项所述的配置上行信道检测子帧的控制方法,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧的检测周期,以及
    根据所述帧结构中每个转换点周期内包含的上行子帧数量设置所述上行信道检测子帧的检测周期,或
    在所述LTE***的工作过程中,实时检测所述LTE***的负载状态的变化速率和所述LTE***周围使用所述非授权频段的其他***的负载状态的变化速率,并根据实时检测到的所述LTE***的负载状态的变化速率和/或所述其他***的负载状态的变化速率,动态设置所述上行信道检测子帧的检测周期。
  33. 根据权利要求32所述的配置上行信道检测子帧的控制方法,其特征在于,
    所述LTE***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系;
    所述其他***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系。
  34. 根据权利要求32所述的配置上行信道检测子帧的控制方法,其特征在于,
    所述上行信道检测子帧配置命令包括:所述帧结构的子帧配置方式,以及
    所述帧结构的子帧配置方式中的配置方式3、配置方式4和配置方式 5中的所述上行信道检测子帧的检测周期为:M×10ms,其中M为正整数;
    所述帧结构的子帧配置方式中的配置方式0、配置方式1、配置方式2和配置方式6中的所述上行信道检测子帧的检测周期为:N×5ms,其中N为1或正偶数。
  35. 根据权利要求34所述的配置上行信道检测子帧的控制方法,其特征在于,还包括:
    若所述帧结构中具有多个位置可设置所述上行信道检测子帧,且所述上行信道检测子帧的检测周期为M×10ms,则所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述多个位置中的第一个位置。
  36. 一种配置上行信道检测子帧的控制***,其特征在于,所述控制***用于控制权利要求25所述的终端,所述控制***适用于具有基站功能的设备,包括:
    发送单元,向所述终端发送上行信道检测子帧配置命令,以使所述终端根据所述上行信道检测子帧配置命令在所述时分双工模式的帧结构中设置用于周期性检测所述非授权频段的上行信道是否空闲的上行信道检测子帧。
  37. 根据权利要求36所述的配置上行信道检测子帧的控制***,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧在所述帧结构中的设置位置。
  38. 根据权利要求37所述的配置上行信道检测子帧的控制***,其特征在于,还包括:
    判断单元,判断所述具有基站功能的设备与具有基站功能的其他设备是否归属于同一运营商;
    若判定所述具有基站功能的设备与所述其他设备归属于同一运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置相同;
    若判定所述具有基站功能的设备与所述具有基站功能的其他设备归属于不同运营商,则在同一载频上,所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述上行信道检测子帧在所述具有基站功能的设备的帧结构中的位置与所述其他设备配置的所述上行信道检测子帧在所述其他设备的帧结构中的位置不相同。
  39. 根据权利要求38所述的配置上行信道检测子帧的控制***,其特征在于,
    所述判断单元还用于:在同一载频上,所述上行信道检测子帧在所述 具有基站功能的设备的帧结构中的位置与所述具有基站功能的其他设备配置的所述上行信道检测子帧在所述具有基站功能的其他设备的帧结构中的位置不相同时,判断在所述同一载频上,所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式是否相同,以及,所述控制***还包括:
    设置单元,若所述具有基站功能的设备的帧结构的配置方式与所述具有基站功能的其他设备的帧结构的配置方式相同,,则设置所述具有基站功能的设备的帧结构中的子帧与所述其他设备的帧结构中的子帧具有相对偏移量。
  40. 根据权利要求36所述的配置上行信道检测子帧的控制***,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧所占用的符号数目,以及
    在所述LTE***的工作过程中,所述上行信道检测子帧所占用的符号数目为固定值;或,所述控制***还包括:
    检测单元,在所述LTE***的工作过程中,实时检测所述LTE***周围使用所述非授权频段的其他***的信道条件的变化速率,
    所述设置单元还用于:根据实时检测到的所述其他***的信道条件的变化速率和/或所述终端的信道检测能力,动态设置所述上行信道检测子帧所占用的符号数目。
  41. 根据权利要求40所述的配置上行信道检测子帧的控制***,其特征在于,
    所述其他***的信道条件的变化速率与所述上行信道检测子帧所占用的符号数目成正比例关系;
    所述终端的信道检测能力与所述上行信道检测子帧所占用的符号数目成反比例关系。
  42. 根据权利要求36至41中任一项所述的配置上行信道检测子帧的控制***,其特征在于,
    所述上行信道检测子帧配置命令包括:所述上行信道检测子帧的检测周期,以及
    所述设置单元还用于:根据所述帧结构中每个转换点周期内包含的上行子帧数量设置所述上行信道检测子帧的检测周期,或
    所述检测单元还用于:在所述LTE***的工作过程中,实时检测所述LTE***的负载状态的变化速率和所述LTE***周围使用所述非授权频段的其他***的负载状态的变化速率,
    所述设置单元还用于:根据实时检测到的所述LTE***的负载状态的变化速率和/或所述其他***的负载状态的变化速率,动态设置所述上行信道检测子帧的检测周期。
  43. 根据权利要求42所述的配置上行信道检测子帧的控制***,其 特征在于,
    所述LTE***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系;
    所述其他***的负载状态的变化速率与所述上行信道检测子帧的检测周期成反比例关系。
  44. 根据权利要求42所述的配置上行信道检测子帧的控制***,其特征在于,
    所述上行信道检测子帧配置命令包括:所述帧结构的子帧配置方式,以及
    所述帧结构的子帧配置方式中的配置方式3、配置方式4和配置方式5中的所述上行信道检测子帧的检测周期为:M×10ms,其中M为正整数;
    所述帧结构的子帧配置方式中的配置方式0、配置方式1、配置方式2和配置方式6中的所述上行信道检测子帧的检测周期为:N×5ms,其中N为1或正偶数。
  45. 根据权利要求44所述的配置上行信道检测子帧的控制***,其特征在于,还包括:
    若所述帧结构中具有多个位置可设置所述上行信道检测子帧,且所述上行信道检测子帧的检测周期为M×10ms,则所述上行信道检测子帧配置命令包含的所述上行信道检测子帧的设置位置为:所述多个位置中的第一个位置。
  46. 一种具有基站功能的设备,其特征在于,包括:如权利要求36至45中任一项所述的配置上行信道检测子帧的控制***。
PCT/CN2014/088041 2014-09-30 2014-09-30 数据传输方法、传输***、控制方法、控制***和设备 WO2016049915A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088041 WO2016049915A1 (zh) 2014-09-30 2014-09-30 数据传输方法、传输***、控制方法、控制***和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088041 WO2016049915A1 (zh) 2014-09-30 2014-09-30 数据传输方法、传输***、控制方法、控制***和设备

Publications (1)

Publication Number Publication Date
WO2016049915A1 true WO2016049915A1 (zh) 2016-04-07

Family

ID=55629340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088041 WO2016049915A1 (zh) 2014-09-30 2014-09-30 数据传输方法、传输***、控制方法、控制***和设备

Country Status (1)

Country Link
WO (1) WO2016049915A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079414A (zh) * 2014-11-26 2017-08-18 宇龙计算机通信科技(深圳)有限公司 数据传输方法、传输***、控制方法、控制***和设备
WO2018228582A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method and apparatus for uplink partial sub-frame transmission in mobile communications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213061A1 (en) * 2011-02-18 2012-08-23 The Hong Kong University Of Science And Technology Cognitive relay techniques
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及***
CN103069882A (zh) * 2010-08-13 2013-04-24 瑞典爱立信有限公司 用户设备在授权频谱和非授权频谱中的双重操作
CN103188711A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 一种优化频谱资源使用的方法及终端
CN103517456A (zh) * 2012-06-14 2014-01-15 网件公司 双频段lte小蜂窝
CN103596288A (zh) * 2013-12-09 2014-02-19 中国科学院计算技术研究所 一种lte***接入认知频谱的方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069882A (zh) * 2010-08-13 2013-04-24 瑞典爱立信有限公司 用户设备在授权频谱和非授权频谱中的双重操作
US20120213061A1 (en) * 2011-02-18 2012-08-23 The Hong Kong University Of Science And Technology Cognitive relay techniques
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及***
CN103188711A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 一种优化频谱资源使用的方法及终端
CN103517456A (zh) * 2012-06-14 2014-01-15 网件公司 双频段lte小蜂窝
CN103596288A (zh) * 2013-12-09 2014-02-19 中国科学院计算技术研究所 一种lte***接入认知频谱的方法及***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079414A (zh) * 2014-11-26 2017-08-18 宇龙计算机通信科技(深圳)有限公司 数据传输方法、传输***、控制方法、控制***和设备
EP3203794A4 (en) * 2014-11-26 2018-05-23 Nanchang Coolpad Intelligent Technology Company Limited Data transmission method, data transmission system, control method, control system, and device
US10333682B2 (en) 2014-11-26 2019-06-25 Nanchang Coolpad Intelligent Technology Company Limited Data transmission method, data transmission system, control method, control system, and device
CN107079414B (zh) * 2014-11-26 2020-09-11 宇龙计算机通信科技(深圳)有限公司 数据传输方法、传输***、控制方法、控制***和设备
WO2018228582A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Method and apparatus for uplink partial sub-frame transmission in mobile communications
TWI668984B (zh) * 2017-06-16 2019-08-11 聯發科技股份有限公司 行動通訊之上鏈部分子訊框傳輸的方法和裝置

Similar Documents

Publication Publication Date Title
US11516845B2 (en) Method and equipment for channel sensing and signal transmission
CN104333902B (zh) 数据同步方法、同步***、具有基站功能的设备和终端
US11849485B2 (en) Flexible time masks for listen-before-talk based channel access
US10230480B2 (en) Method and device for interference detection on unlicensed band
WO2016045107A1 (zh) 数据传输方法、***和具有基站功能的设备
US9549326B2 (en) Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
US10333682B2 (en) Data transmission method, data transmission system, control method, control system, and device
EP3145264A1 (en) Wireless base station, user terminal, and wireless communication system
WO2016183941A1 (zh) 配置方法、配置***、设备、接收方法、接收***和终端
WO2017028556A1 (zh) 基于非授权频段的发现参考信号配置方法、装置和基站
US10536971B2 (en) Data transmission method and electronic device, and device having base station function
CN114902784A (zh) 免许可频谱中使用保护频带的两步rach传输
WO2016049915A1 (zh) 数据传输方法、传输***、控制方法、控制***和设备
KR102495208B1 (ko) 비면허대역을 이용한 참조 신호 송수신 방법 및 장치
WO2016169400A1 (zh) 一种信道接入方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.08.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14903128

Country of ref document: EP

Kind code of ref document: A1