WO2016080128A1 - リチウムイオン電池 - Google Patents

リチウムイオン電池 Download PDF

Info

Publication number
WO2016080128A1
WO2016080128A1 PCT/JP2015/079426 JP2015079426W WO2016080128A1 WO 2016080128 A1 WO2016080128 A1 WO 2016080128A1 JP 2015079426 W JP2015079426 W JP 2015079426W WO 2016080128 A1 WO2016080128 A1 WO 2016080128A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
capacity
lithium ion
active material
Prior art date
Application number
PCT/JP2015/079426
Other languages
English (en)
French (fr)
Inventor
晃裕 山野
境 哲男
昌宏 柳田
正典 森下
昌史 樋口
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社村田製作所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201580062095.2A priority Critical patent/CN107112581A/zh
Priority to CN202210725516.7A priority patent/CN115799601A/zh
Priority to US15/527,169 priority patent/US11088391B2/en
Publication of WO2016080128A1 publication Critical patent/WO2016080128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a pre-dope-free high heat-resistant lithium ion battery.
  • Lithium ion rechargeable batteries are mainly used as motor drive power supplies, and research on increasing the energy density of batteries is being actively conducted to further expand the market for EVs and HEVs.
  • lithium cobaltate (LiCoO 2 ) is used as a positive electrode active material
  • a carbon material is used as a negative electrode active material
  • a nonaqueous electrolytic solution in which lithium ions are dissolved in an organic solvent such as propylene carbonate is used as an electrolyte.
  • These materials function as electrode active materials that reversibly occlude and release lithium ions by charging and discharging, and constitute so-called rocking chair type secondary batteries that are electrochemically connected by a non-aqueous electrolyte or a solid electrolyte. .
  • the capacity of LiCoO 2 as the positive electrode active material depends on the reversible insertion / extraction amount of lithium ions. That is, when the amount of Li desorption from the positive electrode active material is increased, the capacity increases. However, when the amount of Li desorption from the positive electrode active material is increased, the positive crystal structure is destroyed and the cycle characteristics are deteriorated. Therefore, research on lithium-cobalt-nickel-manganese oxides in which a part of Co is substituted with Li, Ni, or Mn has been actively promoted.
  • the carbonaceous material used as the negative electrode active material is excellent in the initial charge / discharge efficiency (ratio of the discharge capacity to the initial charge capacity), only 0.17 lithium can be occluded and released per carbon atom. There is a problem that high energy density is difficult. Specifically, even if a stoichiometric amount of lithium storage capacity can be realized, the battery capacity of hard carbon is limited to about 372 mAh / g.
  • a negative electrode active material containing Si or Sn has been proposed as a material having a higher capacity density than a negative electrode active material made of a carbonaceous material.
  • the negative electrode active material containing Si or SiO has an advantage that the battery capacity is larger than that of the carbonaceous material.
  • the first negative electrode active material has the same initial charge / discharge efficiency as the carbonaceous material, it is possible to increase the energy density of the battery.
  • the SiO negative electrode active material has a problem that the discharge capacity (initial charge / discharge efficiency) relative to the initial charge capacity is low. That is, in a lithium ion secondary battery using a material containing SiO as a negative electrode active material, when lithium dedoped from the positive electrode is doped into the negative electrode in the first charge, a part of it accumulates in the negative electrode and continues to discharge. In such a case, it becomes impossible to return to the positive electrode.
  • the lithium capacity (irreversible capacity) that remains in the negative electrode after such discharge and cannot subsequently participate in the charge / discharge reaction lowers the discharge capacity (battery capacity) that the battery originally had, and thus the positive electrode filled
  • the capacity utilization rate decreases and the energy density of the battery decreases.
  • Patent Document 1 As a technique for supplementing lithium corresponding to such an irreversible capacity, a method of pasting a predetermined amount of lithium powder or lithium foil on the surface of a silicon negative electrode has been proposed (see Patent Document 1). According to this disclosure, by preliminarily storing (pre-doping) an amount of lithium corresponding to the initial charge / discharge capacity difference in the negative electrode, the battery capacity is increased, and the deterioration of cycle characteristics is further improved.
  • Patent Document 1 can improve cycle characteristics while maintaining high energy density because the negative electrode is pre-doped with lithium corresponding to irreversible capacity.
  • the lithium pre-doped negative electrode reacts excessively with a small amount of moisture, and thus sufficient safety considerations are necessary.
  • Such an electrode must be handled in a low humidity environment, and the electrode manufacturing process is complicated. There was a problem of becoming.
  • Patent Document 2 describes a lithium ion secondary battery using a lithium transition metal composite oxide having an irreversible capacity as a positive electrode active material and a silicon-based material as a negative electrode active material.
  • the battery described in Patent Document 2 does not include that the negative electrode actual capacity with respect to the positive electrode actual capacity is 95% or more, and the negative electrode active material is initially charged and discharged by combining Si, SiO, and HC. No consideration is given to adjusting efficiency.
  • lithium ion secondary batteries are likely to grow lithium dendriide on the negative electrode when charged in an environment of ⁇ 10 ° C., and polyvinylidene fluoride (PVdF) in an environment of 45 ° C. or higher. Since the binder swelled, the electrode deteriorated and sufficient cycle life characteristics could not be obtained.
  • PVdF polyvinylidene fluoride
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 is very unstable to heat and moisture
  • EMC was known to have low thermal stability. For this reason, when the electrolytic solution is heated, a reaction between LiPF 6 and the solvent occurs. LiPF 6 easily undergoes a hydrolysis reaction with moisture to generate hydrofluoric acid (HF). It has been pointed out that this HF is corrosive to all substances in the battery and causes deterioration of the battery.
  • Batteries do not exhibit good battery characteristics by simply replacing one material, for example, an active material. Depending on the combination of existing materials, unpredictable performance may be achieved. For this reason, it is necessary to evaluate a battery even if it is an existing substance, as a battery, and prove its usefulness from the results. In other words, even if the substance itself is existing, if it has not been evaluated as a battery, it can be said that it is an unknown substance in the battery material system. Furthermore, since a battery is meaningless unless it operates as a system, it is not only necessary to fully consider compatibility with an active material, a binder, an electrolytic solution, and the like, but also an electrode and a battery structure are important.
  • the present invention has been made in view of the current state of the prior art described above, and its main object is to provide a lithium ion battery that has a simple manufacturing process and has high energy density and heat resistance. Is.
  • the present inventors have determined that the initial charge and discharge efficiency when charging and discharging with a negative electrode material in which Si, SiO, and HC are combined in order to adjust the initial irreversible capacity and metallic Li as a counter electrode
  • a negative electrode material in which Si, SiO, and HC are combined in order to adjust the initial irreversible capacity and metallic Li as a counter electrode
  • electrolyte solvent for ethylene carbonate It has been found that an electricity storage device containing EC) and ⁇ -butyrolactone (GBL) can solve the above-mentioned problems, and is proposed as the present invention.
  • the present invention has a structure in which a separator is provided between a positive electrode and a negative electrode that can occlude and release lithium ions and has irreversible capacity during initial charge and discharge, and a nonaqueous electrolytic solution containing lithium ions is filled in a gap portion of the separator.
  • the positive electrode active material contained in the positive electrode has an initial charge / discharge efficiency of 80% to 90% when charged and discharged using metal Li as a counter electrode, and the negative electrode active material contained in the negative electrode
  • the material is selected from silicon compounds, the negative electrode is not doped with lithium for irreversible capacity in initial charge / discharge, and the negative electrode with respect to the positive electrode in the initial charge capacitance of the positive electrode and the negative electrode
  • the lithium ion battery has a capacity ratio of 0.95 or more and 1 or less.
  • the lithium ion battery of the present invention by using the negative electrode active material having the above-mentioned high capacity and the positive electrode active material having an initial charge / discharge efficiency of 80% to 90% when charged and discharged using metal Li as a counter electrode.
  • the irreversible capacity of the negative electrode active material can be compensated by the irreversible capacity of the positive electrode active material, which makes it possible to use a negative electrode material that has conventionally been difficult to use even if the capacity is large.
  • the heat resistance of the battery was improved by using a binder having high thermal stability and an electrolytic solution. Therefore, it can be set as the electrical storage device which has high energy density and heat resistance, and was excellent in cycling characteristics.
  • the initial irreversible capacity can be adjusted by combining the negative electrode active material with Si, SiO and HC. Thereby, the initial charge / discharge efficiency of the negative electrode material can be improved, and a lithium ion battery having a high energy density can be obtained.
  • the negative electrode active material preferably has an initial charge / discharge efficiency of 70% or more when charged and discharged using metal Li as a counter electrode.
  • the positive electrode active material is preferably formed from a material represented by the following chemical formula 1.
  • [Chemical formula 1] aLi [Li 1/3 Mn 2/3 ] O 2 ⁇ (1-a) Li [Ni x Co y Mn z ] O 2 (0 ⁇ a ⁇ 0.3, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, x + y + z 1)
  • the initial charge / discharge efficiency of the positive electrode is preferably 80% or more and 90% or less.
  • the lithium ion battery of the present invention preferably contains CMC, sodium polyacrylate, and sodium alginate binder in the positive electrode. Thereby, it becomes a positive electrode which can suppress the swelling of the binder under high temperature, and the electrical storage device excellent in heat resistance can be obtained.
  • the negative electrode active material when the total mass ratio of Si, SiO, and HC is 100% by mass, the negative electrode active material is 10% to 80% Si, 0% to 45% SiO, hard carbon Is preferably contained in an amount of 0% to 80%. Thereby, the initial charge / discharge efficiency of the negative electrode material is improved, and an electricity storage device having a high energy density is obtained.
  • the lithium ion battery of the present invention preferably contains a polyimide resin in the negative electrode. Thereby, it becomes a negative electrode which can suppress the swelling of the binder under high temperature, and the electrical storage device excellent in heat resistance can be obtained.
  • the electrolyte supporting salt preferably contains at least lithium bis (oxalate) borate (LiBOB), and the electrolyte solvent contains at least ⁇ -butyrolactone (GBL). preferable.
  • LiBOB lithium bis (oxalate) borate
  • GBL ⁇ -butyrolactone
  • the present invention it is possible to provide a lithium ion battery that has a simple manufacturing process and has high energy density and heat resistance.
  • the lithium ion battery according to the present invention includes a separator between a positive electrode and a negative electrode that can occlude and release lithium ions and has irreversible capacity during initial charge and discharge, and a nonaqueous electrolytic solution containing lithium ions in a gap portion of the separator
  • the positive electrode active material contained in the positive electrode has an initial charge / discharge efficiency of 80% to 90% when charged and discharged using metal Li as a counter electrode.
  • the negative electrode active material contained in the negative electrode is a mixed material of a silicon compound and HC, and the negative electrode is not doped with lithium for an irreversible capacity in initial charge / discharge.
  • the capacity ratio of the negative electrode to the positive electrode is 0.95 or more and 1 or less.
  • the negative electrode active material used in the present invention is a material in which Si, SiO, and HC are combined. Since this composite material has a high initial charge / discharge efficiency and a very high capacity, the lithium ion battery of the present invention can have a high capacity.
  • Si and SiO negative electrode active materials have a remarkably large volume change due to the insertion and release reaction of lithium ions during charge / discharge, so that the structure of the negative electrode material deteriorates easily during repeated charge / discharge, and cracks are likely to occur in the electrode. .
  • a decrease in discharge capacity (cycle characteristics) after repeated charge and discharge has been a problem.
  • volume expansion during charge and discharge of Si or SiO negative electrode active material can be relaxed. Thereby, it is possible to prevent the negative electrode material from being structurally deteriorated and cracks in the electrode, and it is possible to suppress a decrease in discharge capacity (cycle characteristics) after repeated charge and discharge.
  • the negative electrode active material contains 10% to 80% Si, 0% to 45% SiO, and 0% to 80% HC, assuming that the total mass ratio of Si, SiO, and HC is 100% by mass. However, it is more preferable to contain 40% to 80% Si, 0% to 10% SiO, and 10% to 60% HC.
  • PVdF which is a conventional negative electrode binder
  • swelling of a binder can be suppressed by containing a polyimide resin in a negative electrode.
  • the positive electrode active material used in the present invention has an initial charge / discharge efficiency of 80% to 90%, preferably 85% to 90% when charged and discharged using metallic Li as a counter electrode.
  • the positive electrode active material used in the present invention has an irreversible capacity of 10% to 20%, preferably 10% to 15%, based on the total capacity of the active material.
  • the negative electrode active material used in the present invention has a high capacity as described above, it has a drawback that the initial charge / discharge capacity is low and the cycle life is short.
  • the present inventors mixed a silicon compound and HC, and charged and discharged with a metal Li as a counter electrode.
  • the positive electrode and the negative electrode had an initial charge / discharge efficiency of 80% to 90%.
  • the initial charge electric capacity of the positive electrode and the negative electrode when the counter electrode is metallic lithium, and the capacity ratio of the negative electrode to the positive electrode is 0.95 or more and 1 or less, the irreversible of the positive electrode active material It has been found that the capacity compensates the irreversible capacity of the negative electrode active material.
  • the positive electrode active material used in the present invention is not particularly limited as long as the initial charge / discharge efficiency is 80% to 90%, preferably 85% to 90% when charging and discharging is performed using metallic Li as a counter electrode. .
  • the charge / discharge efficiency is less than 80%, the positive electrode is not preferable because sufficient reversible capacity cannot be obtained.
  • the charge / discharge efficiency exceeds 90%, Li in the positive electrode is trapped by the irreversible component of the negative electrode, and the reversible capacity of the positive electrode decreases, which is not preferable.
  • a layered oxide represented by the following chemical formula 1 is preferably used as the positive electrode active material in the present invention.
  • PVdF is applied as a conventional positive electrode binder, but it swells by reacting with the electrolyte in an environment of 45 ° C or higher, so that the electrode deteriorates and sufficient cycle life characteristics cannot be obtained. It was.
  • the positive electrode binder used in the present invention is CMC, sodium polyacrylate, sodium alginate binder, and more preferably sodium polyacrylate binder. Thereby, swelling of the positive electrode can be suppressed at high temperatures, the electrode structure can be prevented from deteriorating and cracking can be prevented, and a decrease in discharge capacity (cycle characteristics) after repeated charge and discharge can be suppressed.
  • the negative electrode active material has a total mass ratio of Si, SiO and HC of 100% by mass
  • Si is 10% to 80%
  • SiO is 0% to 45%
  • HC is The content is preferably 0% to 80%, but more preferably 40% to 80% Si, 0% to 10% SiO, and 10% to 60% HC. Therefore, the ratio of the irreversible capacity of the negative electrode to the reversible capacity of the positive electrode can be reduced by incorporating the Si negative electrode active material with Si or HC having a small irreversible capacity to form a composite (composite).
  • composite means a state including SiO particles, Si particles, and HC particles in general, and may be a state where each particle is simply mixed, and the particles are bonded to each other. You may be in a state.
  • the negative electrode active material has a total mass ratio of Si, SiO and HC of 100% by mass
  • Si is 10% to 80%
  • SiO is 0% to 45%
  • HC is The content is preferably 0% to 80%, but more preferably 40% to 80% Si, 0% to 10% SiO, and 10% to 60% HC.
  • the content of SiO is larger than 45%, the ratio of the irreversible capacity of the negative electrode to the irreversible capacity of the positive electrode cannot be made sufficiently small, which is not preferable.
  • the HC content is greater than 80%, the Si content decreases, and the capacity of the negative electrode cannot be increased.
  • the electrolyte supporting salt preferably contains at least lithium bis (oxalate) borate (LiBOB), and the electrolyte solvent contains at least ⁇ -butyrolactone (GBL). preferable.
  • the electrolytic solution becomes stable even at high temperatures, and an electricity storage device having excellent heat resistance can be obtained.
  • the lithium ion battery of the present invention is more preferably configured such that the electrolyte supporting salt contains lithium hexafluorophosphate (LiPF 6 ) and lithium bis (oxalate) borate (LiBOB).
  • the electrolyte solution solvent is configured to contain ethylene carbonate (EC) and ⁇ -butyrolactone (GBL). With such a configuration, the stability of the electrolytic solution at a high temperature can be further increased, and an electricity storage device with more excellent heat resistance can be obtained.
  • the lithium ion battery of the present invention preferably contains lithium bis (oxalate) borate in the electrolyte supporting salt.
  • LiBOB is preferably used in combination with LiPF 6 because of its low solubility in solvents. Since LiBOB is stable up to about 250 ° C., it is used as an additive to increase the heat resistance of the electrolyte. However, when the electrolytic solution is used at a high temperature, the solubility is improved, so that it can be used as a supporting salt for the high-temperature electrolytic solution. LiBOB is not corrosive to Al current collectors. Furthermore, since LiBOB is a halogen-free supporting salt that does not contain fluorine, there is no concern of HF formation.
  • the lithium ion battery of the present invention is preferably used in combination with ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) as a solvent for the electrolytic solution.
  • Ethylene carbonate (EC) has a boiling point: 244 ° C
  • ⁇ -butyrolactone (GBL) has a boiling point: 204 ° C. What mixed and mixed these materials can be used as a heat resistant electrolyte solution.
  • EC and GBL can be used at the normal 0 to 4.5 V vs. Li potential.
  • GBL has an excellent balance of dielectric constant, viscosity, melting point, and boiling point, and is preferable as an electrolyte solvent, but reduces reduction resistance and oxidation resistance.
  • GBL itself does not have high oxidation resistance, GBL reacts during overcharge to form a film on the surface of the positive electrode, and it can be used in the 4V class voltage range because it functions to prevent deterioration of the electrolyte.
  • GBL does not have high resistance to reduction, so it reacts with metallic lithium, but this can be overcome by combining with EC.
  • the solvent since the solvent has a high boiling point and the supporting salt has heat resistance, it can be used as a heat resistant electrolytic solution.
  • Example 1 Production of positive electrode 90% by mass of Li excess oxide (0.2Li 2 MnO 3 -0.8LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LNCMO) as the positive electrode active material, 5% by mass of sodium polyacrylate as the binder, A slurry mixture was prepared by mixing 5% by mass of acetylene black (AB) as a conductive material. The slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, which was a current collector, dried with a dryer at 80 ° C., passed through a pair of rotating rollers, and an electrode sheet was obtained with a roll press.
  • Li excess oxide 0.2Li 2 MnO 3 -0.8LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LNCMO
  • AB acetylene black
  • This electrode was punched into a disk shape having a diameter of 11 mm with an electrode punching machine, and heat-treated (under reduced pressure at 150 ° C. for 24 hours) to obtain a positive electrode plate.
  • the thickness of the slurry applied on the aluminum foil is 55 ⁇ m.
  • the positive electrode test battery thus prepared that is, when the counter electrode was made of metallic lithium, the initial charge capacity (initial charge electric capacity) of the positive electrode was 1.00 mAh, and the initial discharge capacity was 0.85 mAh.
  • the initial discharge capacity is the reversible capacity of the positive electrode.
  • the initial charge / discharge efficiency of this positive electrode is 85%.
  • Negative electrode active material powder composed of Si, SiO and HC at 40:30:30, polyimide (PI) as binder, AB as conductive material, negative electrode active material powder: binder: conductive
  • the substance was weighed to a ratio of 80: 2: 18 (weight ratio), dispersed in N-methylpyrrolidone (NMP), and then sufficiently stirred with a rotation / revolution mixer to form a slurry.
  • the obtained slurry was applied onto a high-strength copper foil as a negative electrode current collector, and a negative electrode was produced in the same manner as the positive electrode.
  • This electrode sheet was punched into a disk shape having a diameter of 11 mm with an electrode punching machine and dried under reduced pressure at 350 ° C. for 1 hour to obtain a negative electrode plate.
  • the thickness of the slurry applied on the high-strength copper foil is 30 ⁇ m.
  • the initial charge capacity (initial charge electric capacity) of the negative electrode test battery thus prepared that is, when the counter electrode was metallic lithium, was 1.00 mAh, and the initial discharge capacity was 0.71 mAh. Therefore, the initial charge / discharge efficiency of this negative electrode was 71%, 70% or more.
  • FIG. 1 is a graph of the initial charge / discharge capacity (initial charge electric capacity: mAh) of the positive electrode and the negative electrode when the counter electrode is made of metallic lithium.
  • the horizontal axis represents capacity (mAh), and the vertical axis represents potential (V (vs. Li / Li +). Since the initial charge capacity (initial charge capacity) of the positive electrode is 1.00 mAh and the initial charge capacity (initial charge capacity) of the negative electrode is also 1.00 mAh, the initial charge capacity of the positive and negative electrodes is The capacity ratio is 1.
  • the battery structure is a 2032 type coin cell structure in which a separator is interposed between a positive electrode and a negative electrode.
  • a non-aqueous electrolyte non-aqueous electrolyte contained in the voids in the separator
  • 1M LiPF 6 + 0.05MLiBOB EC ethylene carbonate
  • GBL ⁇ -butyrolactone
  • FIG. 4 shows the relationship between the discharge capacity retention rate (%) in the charge / discharge test according to Example 1 and the number of cycles.
  • the vertical axis represents the discharge capacity retention rate (%), and the horizontal axis represents the number of charge / discharge cycles.
  • the discharge capacity maintenance ratio is obtained as a ratio of the discharge capacity in each cycle to the discharge capacity in the second cycle.
  • the irreversible capacity was canceled in the first cycle, and the discharge capacity in the first cycle was 0.71 mAh.
  • the discharge capacity of the positive electrode in the second cycle was 172 mAh / g.
  • the discharge capacity retention rate after 50 cycles was 80%.
  • Example 2 A coin cell was manufactured in the same manner as in Example 1 except that the negative electrode active material was 40: 5: 55 of Si, SiO, and HC. This 2032 type coin cell was subjected to a charge / discharge test at a 0.1 C rate, the first charge / discharge cutoff voltage was 1.7-4.6V, the charge / discharge cutoff voltage after the second cycle was 1.7-4.3V, and 60 ° C. When the counter electrode was metallic lithium, the initial charge capacity of the negative electrode was 1.00 mAh and the initial discharge capacity was 0.81 mAh (thus, the initial charge / discharge efficiency of this negative electrode was 70% or more, 81%).
  • Example 2 is a graph of the initial charge / discharge capacity (initial charge electric capacity: mAh) of the positive electrode and the negative electrode when the counter electrode is metallic lithium.
  • Example 2 the result of conducting the same charge / discharge test as Example 1 is shown in FIG. In the charge / discharge test according to Example 2, the discharge capacity at the second cycle of the positive electrode was 190 mAh / g. In the charge / discharge cycle test at 60 ° C., the discharge capacity retention after 50 cycles was 83%.
  • Example 1 A coin cell was produced in the same manner as in Example 1. This 2032 type coin cell was subjected to a charge / discharge test at a 0.1 C rate, the first charge / discharge cutoff voltage was 2.2-4.5 V, the charge / discharge cutoff voltage after the second cycle was 2.3-4.3 V, and 60 ° C. When the counter electrode was metallic lithium, the initial charge capacity (initial charge electric capacity) of the positive electrode was 0.85 mAh, and the initial discharge capacity was 0.58 mAh.
  • FIG. 3 is a graph of the initial charge / discharge capacity (initial charge electric capacity: mAh) of the positive electrode and the negative electrode when the counter electrode is metallic lithium.
  • Example 1 the result of having performed the same charging / discharging test as Example 1 regarding the comparative example 1 is shown in FIG.
  • the discharge capacity at the second cycle of the positive electrode was 138 mAh / g.
  • the discharge capacity retention after 50 cycles was 70%.
  • Example 2 A coin cell was produced in the same manner as in Example 1 except that the binder between the positive electrode and the negative electrode was a PVdF binder. This 2032 type coin cell was subjected to a charge / discharge test at a 0.1 C rate, the first charge / discharge cutoff voltage was 2.2-4.6 V, the charge / discharge cutoff voltage after the second cycle was 2.2-4.3 V, and 60 ° C. When the counter electrode was made of metallic lithium, the initial charge capacity (initial charge electric capacity) of the positive electrode was 1.00 mAh, and the initial discharge capacity was 0.70 mAh. In addition, with respect to Comparative Example 2, the results of the same charge / discharge test as in Example 1 are shown in FIG. In the charge / discharge test according to Comparative Example 2, the discharge capacity at the second cycle of the positive electrode was 165 mAh / g. In the charge / discharge cycle test at 60 ° C., the discharge capacity retention after 50 cycles was 16%.
  • This 2032 type coin cell was subjected to a charge / discharge test at a 0.1 C rate, the first charge / discharge cutoff voltage was 2.2-4.6 V, the charge / discharge cutoff voltage after the second cycle was 2.2-4.3 V, and 60 ° C.
  • the counter electrode was metallic lithium
  • the initial charge capacity (initial charge electric capacity) of the positive electrode was 1.00 mAh
  • the initial discharge capacity was 0.71 mAh.
  • Example 3 the result of having performed the same charging / discharging test as Example 1 regarding the comparative example 3 is shown in FIG.
  • the discharge capacity at the second cycle of the positive electrode was 168 mAh / g.
  • the discharge capacity retention rate after 50 cycles was 55%.
  • the battery of Comparative Example 2 in which the binder of the positive electrode and the negative electrode is conventional PVdF as can be seen from the graph of FIG. 4, the capacity after 50 cycles is reduced by about 80% or more with respect to the initial capacity, The characteristics deteriorate at high temperatures. This is considered that the electrode structure deteriorated due to the swelling of the binder at the positive electrode and the negative electrode at high temperature.
  • the battery of Comparative Example 3 in which the electrolytic solution is LiPF 6 EC (ethylene carbonate): GBL ( ⁇ -butyrolactone) 1: 1 (vol%), as can be seen from the graph of FIG.
  • the capacity is reduced by about 45% with respect to the initial capacity, and the characteristics deteriorate at high temperatures. This is presumably because the internal resistance of the electrode increased due to the oxidative decomposition of the electrolyte solution on the positive electrode surface at high temperature.
  • the lithium ion battery of this example can improve the heat resistance of the battery and increase the energy density without performing Li pre-doping.
  • the lithium ion battery obtained by the present invention can be used for applications such as main power sources of mobile communication devices, portable electronic devices, electric bicycles, electric motorcycles, electric vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 製造プロセスが簡便で、耐熱性を有し、かつ高エネルギー密度を有するリチウムイオン電池を提供する。 リチウムイオンを吸蔵放出でき、かつ初期充放電で不可逆容量をもつ正極と負極との間にセパレータを備え、前記セパレータにおける空隙部分にリチウムイオンを含む非水電解液を満たした構造のリチウムイオン電池であって、前記正極に含有される正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%であり、前記負極に含有される負極活物質は、シリコン化合物と炭素材料との混合材料からなり、該負極は初期充放電における不可逆容量分のリチウムがドープされていない状態であり,前記正極と前記負極の初期充電電気容量において、前記正極に対する前記負極の容量比が0.95以上1以下であり、前記正極に含有される正極バインダーは水系バインダーであり、前記負極に含有される負極バインダーはポリイミドであり、前記非水電解液にリチウムビス(オキサレート)ボレート含有することを特徴とするリチウムイオン電池。

Description

リチウムイオン電池
 本発明は、プレドープフリーの高耐熱性リチウムイオン電池に関する。
 近年,石油代替や環境低負荷から自動車業界では電気自動車(EV)やハイブリッド自動車(HEV)の開発が精力的に進められている.モータ駆動用電源には主にリチウムイオン二次電池が導入されており,EVとHEVとのさらなる市場の拡大のために,電池の高エネルギー密度化に関する研究が盛んに行われている。
 リチウムイオン二次電池では、正極活物質としてコバルト酸リチウム(LiCoO2)、負極活物質としてカーボン材料、電解質としてプロピレンカーボネート等の有機溶媒にリチウムイオンを溶解させた非水電解液が使用されている。これらの材料は充放電によってリチウムイオンを可逆的に吸蔵および放出する電極活物質として機能し、非水電解液あるいは固体電解質によって電気化学的に連結されたいわゆるロッキングチェア型の二次電池を構成する。
 正極活物質であるLiCoO2の容量は、リチウムイオンの可逆的な挿入/脱離量に依存する。 すなわち正極活物質からLi脱離量を増やすと、容量が増加する。しかしながら、正極活物質からのLi脱離量が増加すると、正極結晶構造が破壊し、サイクル特性が低下する。そのため、Coの一部をLiやNiやMnで置換した、リチウム-コバルト-ニッケル-マンガン酸化物の研究が活発に進められている。
 一方、負極活物質として用いられる炭素質材料は、初回充放電効率(初回の充電容量に対する放電容量の比率)に優れるものの、炭素1原子当たり0.17個しかリチウムを吸蔵および放出することができないため、高エネルギー密度化が困難であるという問題がある。具体的には、化学量論量のリチウム吸蔵容量を実現できたとしても、ハードカーボンの電池容量は約372mAh/gが限界である。
 最近では、炭素質材料からなる負極活物質を上回る高容量密度を有する材料として、SiやSnを含有する負極活物質が提案されている。SiやSiOを含有する負極活物質は、電池容量が炭素質材料に比べて大きいという利点がある。
 Si負極活物質は、初回充放電効率が炭素質材料と同等であるため、電池の高エネルギー密度化が可能であった。一方、SiO負極活物質は、初回の充電容量に対する放電容量(初回充放電効率)が低いという問題があった。即ち、SiOを含有する材料を負極活物質として用いたリチウムイオン二次電池においては、初めの充電において正極から脱ドープしたリチウムが負極にドープされた際、その一部が負極に溜り、続く放電において正極に戻らなくなってしまうといったことが起こる。
 このような放電後も負極中に残留しその後充放電反応に関与できないリチウム容量(不可逆容量)は、電池が最初に持っていた放電容量(電池容量)を低下させ、これにより充填された正極の容量利用率が低下し、電池のエネルギー密度が低下してしまう。このような大きな不可逆容量は、高容量が要求される車両用途への実用化において大きな開発課題となっており、不可逆容量を抑制する試みが盛んに行われている。
 このような不可逆容量に相当するリチウムを補填する技術として、予め所定量のリチウム粉末やリチウム箔をシリコン負極の表面に貼り付ける方法が提案されている(特許文献1を参照)。この開示によれば、負極に初回充放電容量差に相当する量のリチウムを予備吸蔵(プレドープ)させることにより、電池容量が増加し、さらにサイクル特性の低下が改善されるとしている。
 また、SiやSiO負極活物質は、Li吸蔵放出量が多いため、充放電に伴う結晶格子の体積変化が激しく、電極が劣化してサイクル性能が悪いという課題があった。このような大きな体積変化は、長寿命が要求される車両用途への実用化において大きな開発課題となっており、体積変化を緩和する試みが盛んに行われている。
 特許文献1に記載の電池は,負極へ不可逆容量に相当するリチウムをプレドープしているために,高エネルギー密度を維持しつつサイクル特性を向上させることができる.しかしながら,リチウムプレドープした負極は、わずかな水分と過剰に反応するために安全性に対する十分な配慮が必要であり、このような電極は低湿度環境下で取り扱わねばならず、電極製造プロセスが複雑になるという問題があった。
 特許文献2には、正極活物質として不可逆容量を有するリチウム遷移金属複合酸化物を、負極活物質として珪素系材料を用いたリチウムイオン二次電池が記載されている。しかしながら、特許文献2記載の電池は、正極実容量に対する負極実容量は95%以上であることは含まれておらず、また、負極活物質はSiとSiOとHCとの複合化により初回充放電効率を調整することに関しては考慮されていない。
 また、従来のリチウムイオン二次電池は、-10℃の環境下で充電を行うと負極上にリチウムデンドライドが成長する可能性が高く、45℃以上の環境下においてはポリフッ化ビニリデン(PVdF)バインダーが膨潤するため、電極が劣化し十分なサイクル寿命特性が得られなかった。
 また、従来のリチウムイオン二次電池用電解液には支持塩として六フッ化リン酸リチウム(LiPF6)、溶媒にはエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)が主に用いられてきた。これは、Liイオン導電率が高く、低粘度であるために、ポリプロピレン(PP)やポリエチレン(PE)等のポリオレフィン系材料の微多孔質セパレータへの濡れ性が比較的高いこと、等の理由による。しかし、LiPF6は熱と水分に対して非常に不安定であり、EMCは熱的安定性が低いことが知られていた。このため、電解液が加熱された時には、LiPF6と溶媒の反応が起こる。また、LiPF6は、水分と容易に加水分解反応を起こし、フッ化水素酸(HF)を生成する。このHFは、電池中のあらゆる物質に対して腐食性を示し、電池の劣化の原因となることが指摘されている。
 電池は単に一つの材料、例えば活物質だけを代えただけでは、良好な電池特性を発揮しない。既存材料の組み合わせによって、予想し得ない性能を発揮することがある。このため電池の評価は、例え既存物質であっても、電池として評価し、その有用性を結果から証明することが必要とされる。言い換えれば、物質自身が既存であっても、これまでに電池として評価が成されていなければ、電池材料系においては未知物質であるといえる。さらに電池とは、システムとして動作しなければ無意味であるため、活物質、バインダー、電解液等との相性も十分に考慮する必要があるだけでなく、電極や電池構造も重要である。
特開2011-54324号公報 特開2011-228052号公報
 本発明は、上記従来技術の現状に鑑みてなされたものであり、その主な目的は、製造プロセスが簡便で,かつ高エネルギー密度および耐熱性を有するリチウムイオン電池を提供することを目的とするものである。
 本発明者等は種々の検討を行った結果、初期不可逆容量を調整するためにSiとSiOとHCとを複合化した負極材料と、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%である正極活物質と、電解液支持塩には、六フッ化リン酸リチウム(LiPF6)とリチウムビス(オキサレート)ボレート(LiBOB)と、電解液溶媒にはエチレンカーボネート(EC)とγ-ブチロラクトン(GBL)とを含む蓄電デバイスであれば、前記課題を解決できることを見出し、本発明として提案するものである。
 本発明は、リチウムイオンを吸蔵放出でき,かつ初期充放電で不可逆容量をもつ正極と負極との間にセパレータを備え、前記セパレータにおける空隙部分にリチウムイオンを含む非水電解液を満たした構造のリチウムイオン電池であって、前記正極に含有される正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%であり、前記負極に含有される負極活物質は、シリコン化合物から選ばれるものであり,該負極は初期充放電における不可逆容量分のリチウムがドープされていない状態であり,前記正極と前記負極の初期充電電気容量において、前記正極に対する前記負極の容量比が0.95以上1以下であることを特徴とするリチウムイオン電池である。
 本発明のリチウムイオン電池によれば、上記高容量を有する負極活物質と、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%である正極活物質を用いることにより、負極活物質の不可逆容量を正極活物質の不可逆容量で補償することができ、これにより従来、容量が大きくても不可逆容量が大きく使用し難かった負極材料を用いることが可能となった。また、熱的安定性の高いバインダーと電解液とを用いることにより電池の耐熱性が向上した。よって、高エネルギー密度および耐熱性を有し且つサイクル特性に優れた蓄電デバイスとすることができる。
 また、負極活物質がSiとSiOとHCとを複合化することにより、初期不可逆容量を調整することができる。これにより、負極材料の初期充放電効率を改善し、高エネルギー密度を有するリチウムイオン電池を得ることができる。また、前記負極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が70%以上であることが好ましい。
 本発明のリチウムイオン電池は、前記正極活物質が、下記化学式1で表される物質から形成されることが好ましい。
  [化学式1]
   aLi[Li1/3Mn2/3]O2・(1-a)Li[NixCoyMnz]O2 
     (0≦a≦0.3、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)
 また、前記正極の初回充放電効率が、80%以上90%以下であることが好ましい。
 本発明のリチウムイオン電池は、正極にCMC、ポリアクリル酸ナトリウム、アルギン酸ナトリウムバインダーを含有することが好ましい。これにより、高温下におけるバインダーの膨潤を抑制できる正極となり、耐熱性に優れた蓄電デバイスを得ることができる。
 本発明のリチウムイオン電池は、負極活物質が、SiとSiOとHCとの質量比の合計を100質量%とした場合、Siを10%~80%、SiOを0%~45%、ハードカーボンを0%~80%を含有することが好ましい。これにより、負極材料の初期充放電効率を改善し、高エネルギー密度を有する蓄電デバイスとなる。
 本発明のリチウムイオン電池は、負極にポリイミド樹脂を含有することが好ましい。これにより、高温下におけるバインダーの膨潤を抑制できる負極となり、耐熱性に優れた蓄電デバイスを得ることができる。
 本発明のリチウムイオン電池は、電解液支持塩が、少なくともリチウムビス(オキサレート)ボレート(LiBOB)を含有することが好ましく、また、電解液溶媒が、少なくともγ-ブチロラクトン(GBL)を含有することが好ましい。これにより、高温下においても電解液が安定となり、耐熱性に優れた蓄電デバイスを得ることができる。
 本発明によれば、製造プロセスが簡便で,かつ高エネルギー密度および耐熱性を有するリチウムイオン電池を提供することができる。
本発明に係るリチウムイオン電池の実施例1に関する正極と負極の可逆容量及び不可逆容量を示す図である。 本発明に係るリチウムイオン電池の実施例2に関する正極と負極の可逆容量及び不可逆容量を示す図である。 本発明に係るリチウムイオン電池の比較例1に関する正極と負極の可逆容量及び不可逆容量を示す図である。 実施例1、実施例2、比較例1、比較例2及び比較例3の各コインセルのサイクル特性を示すグラフである。
 以下、本発明の実施形態にかかるリチウムイオン電池について説明する。本発明に係るリチウムイオン電池は、リチウムイオンを吸蔵放出でき,かつ初期充放電で不可逆容量をもつ正極と負極との間にセパレータを備え、該セパレータにおける空隙部分にリチウムイオンを含む非水電解液を満たした構造の蓄電デバイスであって、該正極に含有される正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%である。また、負極に含有される負極活物質は、シリコン化合物とHCとの混合材料であり,該負極は初期充放電における不可逆容量分のリチウムがドープされていない状態である。正極と負極の初期充電電気容量の関係は、正極に対する負極の容量比が0.95以上1以下である。
 本発明において用いられる負極活物質は、SiとSiOとHCとを複合化した材料である。この複合化材料は、初回充放電効率が高く、非常に高容量であるので、本発明のリチウムイオン電池を高容量とすることができる。
 SiやSiO負極活物質は、充放電時におけるリチウムイオンの吸蔵および放出反応に起因する体積変化が著しく大きいため、繰り返し充放電した際に負極材料が構造劣化して電極中に亀裂が生じやすくなる。結果的に、繰り返し充放電した後の放電容量(サイクル特性)の低下が問題となっていた。本発明においては、負極にHCを含有することにより、SiやSiO負極活物質の充放電時における体積膨張を緩和することができる。これにより、負極材料が構造劣化して電極中に亀裂が生じることを防ぐことができ、繰り返し充放電した後の放電容量(サイクル特性)の低下を抑制することができる。
 負極活物質は、SiとSiOとHCとの質量比の合計を100質量%とした場合、Siを10%~80%、SiOを0%~45%、HCを0%~80%含有することが好ましいが、Siを40%~80%、SiOを0%~10%、HCを10%~60%含有することがより好ましい。
 また、従来の負極バインダーであるPVdFは、45℃以上の環境下において電解液と反応して膨潤するために、電極が劣化し十分なサイクル寿命特性が得られないことが問題となっていた。本発明においては、負極にポリイミド樹脂を含有することにより、バインダーの膨潤を抑えることができる。これにより、高温下において負極材料が構造劣化して亀裂が生じることを防ぐことができ、繰り返し充放電した後の放電容量(サイクル特性)の低下を抑制することができる。
 本発明において用いられる正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%であり、好ましくは85%~90%である。換言すれば、本発明において用いられる正極活物質は、活物質全体の容量に対し10%~20%、好ましくは10%~15%の不可逆容量を有する。
 本発明において用いられる負極活物質は、上記したように高容量ではあるが、初回充放電容量が低くサイクル寿命が短いという欠点を有する。この課題を解決するために、本発明者らは、シリコン化合物とHCとを混合し、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%である正極と前記負極とを併用することにより、かつ、対極を金属リチウムとしたときの正極と負極の初期充電電気容量において、該正極に対する該負極の容量比が0.95以上1以下とすることにより、正極活物質の不可逆容量により負極活物質の不可逆容量が補償されることを見出した。従来、寿命が短く電池容量が大きくても不可逆容量が大きく使用し難かった負極材料を用いることが可能となった。なお、対極を金属リチウムとしたときの正極と負極の初期充電電気容量において、該正極に対する該負極の容量比が0.95以上1以下の範囲に設定するためには、例えば、正極及び負極において形成される正極活物質の膜厚や負極活物質の膜厚を制御することにより可能である。
 本発明において用いられる正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率は80%~90%、好ましくは85%~90%であれば、特に限定されるものではない。充放電効率が80%未満の場合、正極が十分な可逆容量を得られず好ましくない。充放電効率が90%を超える場合、正極のLiが負極の不可逆成分に捕捉され、正極の可逆容量が減少するために好ましくない。本発明における正極活物質としては、下記化学式1で表される層状酸化物が好適に用いられる。
[化学式1]
 aLi[Li1/3Mn2/3]O2・(1-a)Li[NixCoyMnz]O2 
   (0≦a≦0.3、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)
また、従来の正極バインダーとしてもPVdFが適用されているが、45℃以上の環境下において電解液と反応して膨潤するために、電極が劣化し十分なサイクル寿命特性が得られないことが問題となっていた。本発明において用いられる正極バインダーはCMC、ポリアクリル酸ナトリウム、アルギン酸ナトリウムバインダーであり、より好ましくはポリアクリル酸ナトリウムバインダーである。これにより、高温下において正極の膨潤を抑え、電極構造が劣化して亀裂が生じることを防ぐことができ、繰り返し充放電した後の放電容量(サイクル特性)の低下を抑制することができる。
 本発明のリチウムイオン電池は、負極活物質が、SiとSiOとHCとの質量比の合計を100質量%とした場合、Siを10%~80%、SiOを0%~45%、HCを0%~80%含有することが好ましいが、Siを40%~80%、SiOを0%~10%、HCを10%~60%含有することがより好ましい。よって、SiO負極活物質に、これら不可逆容量が小さいSiやHCとを含有させてコンポジット化(複合体化)することにより、正極の可逆容量に対する負極の不可逆容量の比を小さくすることができる。これにより、負極材料の可逆容量を大きくすることができ、高エネルギー密度を有し且つサイクル特性に優れた蓄電デバイスを得ることができる。尚、「コンポジット化する」とは、SiO粒子とSi粒子とHC粒子とを含む状態全般を含む意味であり、単にそれぞれの粒子が混合されているだけの状態でもよく、粒子同士が結合している状態でもよい。
 本発明のリチウムイオン電池は、負極活物質が、SiとSiOとHCとの質量比の合計を100質量%とした場合、Siを10%~80%、SiOを0%~45%、HCを0%~80%含有することが好ましいが、Siを40%~80%、SiOを0%~10%、HCを10%~60%含有することがより好ましい。SiOの含有量が45%よりも大きい場合は、正極の不可逆容量に対する負極の不可逆容量の比を十分に小さくすることができないため好ましくない。HCの含有量が80%よりも大きい場合は、Siの含有量が少なくなり、負極を高容量化ができないため好ましくない。上記のような質量比を採用することにより、リチウムイオンの吸蔵及び放出に伴う体積変化を緩和できる負極材料となり、高容量で、充放電サイクル特性に優れたリチウムイオン電池を得ることができる。
 本発明のリチウムイオン電池は、電解液支持塩が、少なくともリチウムビス(オキサレート)ボレート(LiBOB)を含有することが好ましく、また、電解液溶媒が、少なくともγ-ブチロラクトン(GBL)を含有することが好ましい。これにより、高温下においても電解液が安定となり、耐熱性に優れた蓄電デバイスを得ることができる。また、本発明のリチウムイオン電池は、電解液支持塩が、六フッ化リン酸リチウム(LiPF6)とリチウムビス(オキサレート)ボレート(LiBOB)とを含有するように構成することがより好ましく、また、電解液溶媒が、エチレンカーボネート(EC)とγ-ブチロラクトン(GBL)とを含有するように構成することがより好ましい。このような構成により、高温下における電解液の安定性をより一層高めることができ、より耐熱性に優れた蓄電デバイスを得ることができる。
 本発明のリチウムイオン電池は、電解液支持塩にリチウムビス(オキサレート)ボレートを含有していることが好ましい。但し、LiBOBは溶媒に対する溶解度が低いために、LiPF6と併用して用いられることが好ましい。LiBOBは、250℃程度まで安定であるため、電解液の耐熱性を上げるための添加剤的な役割として用いる。しかし、電解液を高温で使用する場合には、溶解性も向上するため、高温用電解液の支持塩として用いることが可能となる。LiBOBには、Al集電体に対する腐食性もない。さらに、LiBOBはフッ素を含まないハロゲンフリーな支持塩であるため、HF生成の懸念もない。
 本発明のリチウムイオン電池は、電解液の溶媒に、エチレンカーボネート(EC)とγ‐ブチロラクトン(GBL)とを併用して用いられることが好ましい。エチレンカーボネート(EC)は沸点:244℃、γ‐ブチロラクトン(GBL)は沸点:204℃である。これら材料を組み合わせて混合したものを、耐熱性電解液として用いることができる。
 溶媒使用の電位範囲として、EC、GBLは、通常の0~4.5V vs. Li電位程度での使用は可能である。GBLは、誘電率、粘度、融点、沸点ともに優れたバランスであり、電解液溶媒として好ましいが、耐還元性と耐酸化性低下する。GBLは、そのものの耐酸化性は高くないが、過充電時には反応して正極表面で被膜を生じ、電解液の劣化を防止する機能をするために、4V級の電圧領域でも使用できる。GBLは耐還元性も高くないため、金属リチウムと反応するが、ECと組み合わせることでこれは克服することができる。
 本発明のリチウムイオン二次電池用電解液によれば、溶媒が高沸点であって、支持塩が耐熱性を有するので、耐熱性電解液として用いることができる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 (実施例1)
(1)正極の作製
 正極活物質としてLi過剰系酸化物(0.2Li2MnO3-0.8LiNi0.33Co0.33Mn0.33O2, LNCMO)を90質量%、バインダーとしてポリアクリル酸ナトリウムを5質量%、導電材としてアセチレンブラック(AB)を5質量%とを混合してスラリー状の合剤を調製した。集電体である厚さ20μmのアルミニウム箔上にスラリーを塗布し、80℃の乾燥機で乾燥後、一対の回転ローラー間に通してロールプレス機によりより電極シートを得た。この電極を電極打ち抜き機で直径11mmの円板状に打ち抜き、加熱処理(減圧中、150℃、24時間)して正極板を得た。ここで、アルミニウム箔上に塗布したスラリーの厚みは55μmである。
 (2)正極試験電池の作製
 コインセルの下蓋に、上記正極のアルミニウム箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および対極である金属リチウムを積層し、正極試験電池を作製した。電解液としては、1M LiPF6 EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1(vol%)を用いた。なお正極試験電池の組み立ては露点温度-60℃以下の環境で行った。
 このようにして作製した正極試験電池、つまり、対極を金属リチウムとしたときの正極の初回充電容量(初期充電電気容量)は1.00mAh、初回放電容量は0.85mAhであった。初回放電容量は正極の可逆容量である。なお、この正極の初回充放電効率は85%である。
 (3)負極の作製
 SiとSiOとHCを40:30:30で複合化した負極活物質粉末に対し、バインダーとしてポリイミド(PI)、導電性物質としてABを、負極活物質粉末:バインダー:導電性物質=80:2:18(重量比)の割合となるように秤量し、N-メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。得られたスラリーを負極集電体である高強度銅箔上に塗布し、正極と同様の方法で負極を作製した。この電極シートを電極打ち抜き機で直径11 mmの円板状に打ち抜き、350℃で1時間減圧乾燥を行い、負極板を得た。ここで、高強度銅箔上に塗布したスラリーの厚みは30μmである。
 (4)負極試験電池の作製
 正極と同様に、コインセルの下蓋に、上記負極の高強度銅箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および対極である金属リチウムを積層し、負極試験電池を作製した。電解液としては、1M LiPF6 EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1(vol%)を用いた。なお負極試験電池の組み立ては露点温度-60℃以下の環境で行った。
 このようにして作製した負極試験電池、つまり、対極を金属リチウムとしたときの負極の初回充電容量(初期充電電気容量)は1.00mAh、初回放電容量は0.71mAhであった。したがって、この負極の初回充放電効率は、70%以上の71%となった。
 図1は、対極を金属リチウムとしたときの上記正極及び負極の初回充放電容量(初期充電電気容量:mAh)をグラフ化したものである。横軸は容量(mAh)、縦軸は電位(V vs.Li/Li+)である。正極の初回充電容量(初期充電電気容量)は1.00mAhであり、負極の初回充電容量(初期充電電気容量)も1.00mAhであることから、正極と負極の初期充電電気容量において、正極に対する負極の容量比は、1となる。
 (5)充放電試験
 上記した正極、負極及びセパレータを用い、充放電試験電池を作製した。電池構造は、正極と負極との間にセパレータを介在させた2032型コインセル構造である。セパレータにおける空隙部分に含まれる非水電解質(非水電解液)としては、1M LiPF6+0.05MLiBOB EC(エチレンカーボネート):GBL(γ-ブチロラクトン)=1:1(vol%)を用いた。この2032型コインセルを、0.1Cレート、初回充放電のカットオフ電圧は2.2-4.6V、2サイクル目以降の充放電のカットオフ電圧は2.2-4.3V、60℃で充放電試験を行った。図4に、実施例1に係る充放電試験における放電容量維持率(%)と、サイクル数との関係を示す。なお、縦軸が放電容量維持率(%)、横軸が充放電サイクル数である。放電容量維持率とは、2サイクル目の放電容量に対する各サイクルにおける放電容量の比として求めたものである。実施例1に係る充放電試験では、1サイクル目で不可逆容量がキャンセルされ、1サイクル目の放電容量は0.71 mAhであった。なお、この正極の2サイクル目の放電容量は172mAh/gとなった。60℃における充放電サイクル試験において、50サイクル後の放電容量維持率は80%であった。
(実施例2)
 負極活物質がSiとSiOとHCを40:5:55であること以外は、実施例1と同様の方法でコインセルを作製した。この2032型コインセルを、0.1Cレート、初回充放電のカットオフ電圧は1.7-4.6V、2サイクル目以降の充放電のカットオフ電圧は1.7-4.3V、60℃で充放電試験を行った。なお、対極を金属リチウムとしたときの負極の初回充電容量は1.00 mAh、初回放電容量は0.81 mAhであった(したがって、この負極の初回充放電効率は70%以上の81%となる。)。なお、図2は、対極を金属リチウムとしたときの上記正極及び負極の初回充放電容量(初期充電電気容量:mAh)をグラフ化したものであり、正極の初回充電容量(初期充電電気容量)は1.00mAhであり、負極の初回充電容量(初期充電電気容量)も1.00mAhであることから、正極と負極の初期充電電気容量において、正極に対する負極の容量比は、1となる。また、実施例2に関し、実施例1と同様の充放電試験を行った結果を図4に示す。実施例2に係る充放電試験では、正極の2サイクル目の放電容量は190mAh/gとなった。60℃における充放電サイクル試験において、50サイクル後の放電容量維持率は83%であった。
(比較例1)
 実施例1と同様の方法でコインセルを作製した。この2032型コインセルを、0.1Cレート、初回充放電のカットオフ電圧は2.2-4.5V、2サイクル目以降の充放電のカットオフ電圧は2.3-4.3V、60℃で充放電試験を行った。なお、対極を金属リチウムとしたときの正極の初回充電容量(初期充電電気容量)は0.85mAh、初回放電容量は0.58 mAhであった。図3は、対極を金属リチウムとしたときの上記正極及び負極の初回充放電容量(初期充電電気容量:mAh)をグラフ化したものである。また、比較例1に関し、実施例1と同様の充放電試験を行った結果を図4に示す。比較例1に係る充放電試験では、正極の2サイクル目の放電容量は138mAh/gとなった。60℃における充放電サイクル試験において、50サイクル後の放電容量維持率は70%であった。
(比較例2)
 正極と負極とのバインダーがPVdFバインダーであること以外は、実施例1と同様の方法でコインセルを作製した。この2032型コインセルを、0.1Cレート、初回充放電のカットオフ電圧は2.2-4.6V、2サイクル目以降の充放電のカットオフ電圧は2.2-4.3V、60℃で充放電試験を行った。なお、対極を金属リチウムとしたときの正極の初回充電容量(初期充電電気容量)は1.00mAh、初回放電容量は0.70 mAhであった。また、比較例2に関し、実施例1と同様の充放電試験を行った結果を図4に示す。比較例2に係る充放電試験では、正極の2サイクル目の放電容量は165mAh/gとなった。60℃における充放電サイクル試験において、50サイクル後の放電容量維持率は16%であった。
(比較例3)
 電解液が1M LiPF6 EC(エチレンカーボネート):GBL(γ-ブチロラクトン)=1:1(vol%)であること以外は、実施例1と同様の方法でコインセルを作製した。この2032型コインセルを、0.1Cレート、初回充放電のカットオフ電圧は2.2-4.6V、2サイクル目以降の充放電のカットオフ電圧は2.2-4.3V、60℃で充放電試験を行った。なお、対極を金属リチウムとしたときの正極の初回充電容量(初期充電電気容量)は1.00mAh、初回放電容量は0.71 mAhであった。また、比較例3に関し、実施例1と同様の充放電試験を行った結果を図4に示す。比較例3に係る充放電試験では、正極の2サイクル目の放電容量は168mAh/gとなった。60℃における充放電サイクル試験において、50サイクル後の放電容量維持率は55%であった。
 図4に示す実施例1、2及び比較例1~3に関する充放電試験結果から、対極を金属リチウムとしたときの正極と負極の初回充電容量(初期充電電気容量)において、正極に対する負極の容量比が0.85である比較例1は、充放電サイクル数が増加すると共に、容量密度(mAh/g)が大きく低下しているのに対し、対極を金属リチウムとしたときの正極と負極の初回充電容量(初期充電電気容量)において、正極に対する負極の容量比が1である実施例1及び実施例2は、充放電サイクル数が増加しても、高い容量密度(mAh/g)を維持しており、サイクル特性が極めて良好であることが分かる。なお、充放電サイクル数の増加に伴う、容量密度(mAh/g)の低下率がそれほど大きくないと考えられる正極に対する負極の容量比の境界は、0.95から1の間に存在すると考えられる。
 また、正極と負極とのバインダーが従来のPVdFである比較例2の電池は、図4のグラフからも分かるように、50サイクル後の容量が初期容量に対して約80%以上も減少し、高温下において特性が劣化している。これは、高温下、正極および負極でバインダーの膨潤により電極構造が劣化したと考えられる。
 また、電解液がLiPF6 EC(エチレンカーボネート):GBL(γ-ブチロラクトン)=1:1(vol%)である比較例3の電池は、図4のグラフからも分かるように、50サイクル後の容量が初期容量に対して約45%も減少し、高温下において特性が劣化している。これは、高温下、正極表面で電解液が酸化分解したことにより電極の内部抵抗が増加したことによると考えられる。
 このように、本実施例のリチウムイオン電池は、Liプリドープを行うことなく電池の耐熱性を向上させ、高エネルギー密度化することができる。
 本発明により得られるリチウムイオン電池は、例えば、移動体通信機器、携帯用電子機器、電動自転車、電動二輪車、電気自動車等の主電源等の用途に利用することが可能である。
 
 

Claims (8)

  1.  正極、負極、非水電解液、セパレータを備えるリチウムイオン電池であって、前記正極に含有される正極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が80%~90%であり、前記負極に含有される負極活物質は、シリコン化合物と炭素材料との混合材料からなり、該負極は初期充放電における不可逆容量分のリチウムがドープされていない状態であり,前記正極と前記負極の初期充電電気容量において、前記正極に対する前記負極の容量比が0.95以上1以下であることを特徴とするリチウムイオン電池。
  2.  前記負極活物質は、純シリコン(Si)と一酸化シリコン(SiO)とハードカーボン(HC)との複合体であることを特徴とする請求項1に記載のリチウムイオン電池。
  3.  前記負極活物質は、金属Liを対極として充放電させた場合の初回充放電効率が70%以上であることを特徴とする請求項1に記載のリチウムイオン電池。
  4.  前記負極活物質は、SiとSiOとHCとの質量比の合計を100質量%とした場合、前記Siを10%~80%、前記SiOを0%~45%、前記HCを0%~80%含有することを特徴とする請求項1に記載のリチウムイオン電池。
  5.  前記負極は、ポリイミド樹脂を含有することを特徴とする請求項1に記載のリチウムイオン電池。
  6.  前記正極活物質が、下記化学式1で表されることを特徴とする請求項1に記載のリチウムイオン電池。
    [化学式1]
       aLi[Li1/3Mn2/3]O2・(1-a)Li[NixCoyMnz]O2 
         (0≦a≦0.3、0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)
  7.  前記正極は、カルボキシメチルセルロース(CMC)、ポリアクリル酸ナトリウム、アルギン酸ナトリウムバインダーからなる群から選択される少なくとも一種以上を含有することを特徴とする請求項1に記載のリチウムイオン電池。
  8.  前記非水電解液は、溶媒と支持塩とを備えており、前記溶媒は、少なくともγ-ブチロラクトン(GBL)を含有しており、前記支持塩は、少なくともリチウムビス(オキサレート)ボレート(LiBOB)を含有していることを特徴とする請求項1に記載のリチウムイオン電池。
PCT/JP2015/079426 2014-11-18 2015-10-19 リチウムイオン電池 WO2016080128A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580062095.2A CN107112581A (zh) 2014-11-18 2015-10-19 锂离子电池
CN202210725516.7A CN115799601A (zh) 2014-11-18 2015-10-19 锂离子电池
US15/527,169 US11088391B2 (en) 2014-11-18 2015-10-19 Lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-233341 2014-11-18
JP2014233341A JP6355163B2 (ja) 2014-11-18 2014-11-18 リチウムイオン電池

Publications (1)

Publication Number Publication Date
WO2016080128A1 true WO2016080128A1 (ja) 2016-05-26

Family

ID=56013685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079426 WO2016080128A1 (ja) 2014-11-18 2015-10-19 リチウムイオン電池

Country Status (4)

Country Link
US (1) US11088391B2 (ja)
JP (1) JP6355163B2 (ja)
CN (2) CN115799601A (ja)
WO (1) WO2016080128A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564699B1 (ko) 2017-01-17 2023-08-08 주식회사 다이셀 전극용 슬러리, 전극 및 그의 제조 방법 그리고 이차 전지
JP6854135B2 (ja) 2017-01-17 2021-04-07 株式会社ダイセル 電極用スラリー、電極及びその製造方法並びに二次電池
JP2019114390A (ja) * 2017-12-22 2019-07-11 日本ゼオン株式会社 電気化学デバイス用電解質組成物および電気化学デバイス用電極の製造方法
JP7187156B2 (ja) * 2018-03-07 2022-12-12 マクセル株式会社 電気化学素子用負極およびリチウムイオン二次電池
EP3544099A1 (en) 2018-03-21 2019-09-25 Borregaard AS Dispersant and binder for lithium ion batteries based on modified lignin and carboxymethyl cellulose
WO2019244955A1 (ja) 2018-06-21 2019-12-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
CN110676514B (zh) * 2018-07-03 2022-02-18 国家能源投资集团有限责任公司 锂离子电池单体及其化成方法
US20230290939A1 (en) * 2020-10-30 2023-09-14 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN112420982A (zh) * 2020-11-02 2021-02-26 四川大学 一种钙钛矿钒酸盐共混活性材料的电极极片
CN113093031B (zh) * 2021-03-19 2024-01-19 北京工业大学 一种基于电压逆推检测锂离子电池正极材料过放电程度的方法
CN113193166B (zh) * 2021-04-28 2022-09-16 珠海冠宇电池股份有限公司 正极片、电芯及电池
WO2023106214A1 (ja) * 2021-12-09 2023-06-15 京セラ株式会社 電解液、二次電池および半固体電池
CN114242945B (zh) * 2022-02-24 2022-07-12 中创新航科技股份有限公司 一种确定负极容量与正极容量之比的方法及相关的锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063394A (ja) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd 非水電解質電池
JP2009266706A (ja) * 2008-04-28 2009-11-12 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
JP2012169300A (ja) * 2012-06-06 2012-09-06 Hitachi Maxell Energy Ltd 非水二次電池
JP2012216401A (ja) * 2011-03-31 2012-11-08 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイス
JP2013242997A (ja) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd リチウムイオン二次電池
JP2014096300A (ja) * 2012-11-09 2014-05-22 National Institute Of Advanced Industrial & Technology 蓄電デバイス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379541B2 (ja) * 1992-07-06 2003-02-24 宇部興産株式会社 二次電池
EP0580164B1 (en) * 1992-07-24 1999-01-07 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and its manufacturing method
US7468223B2 (en) * 2000-06-22 2008-12-23 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium cells and batteries
JP4175792B2 (ja) * 2001-08-27 2008-11-05 セントラル硝子株式会社 電気化学ディバイス用電解液またはゲル電解質並びに電池
JP3982230B2 (ja) * 2001-10-18 2007-09-26 日本電気株式会社 二次電池用負極およびそれを用いた二次電池
JP5402411B2 (ja) 2009-08-31 2014-01-29 日産自動車株式会社 リチウムイオン二次電池およびその製造方法
JP5099168B2 (ja) 2010-04-16 2012-12-12 株式会社豊田自動織機 リチウムイオン二次電池
US9601228B2 (en) * 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
CN103915609B (zh) * 2012-12-31 2017-10-13 宁波杉杉新材料科技有限公司 硅‑氧化硅‑碳复合材料、锂离子二次电池负极材料、其制备方法和应用
JP6184273B2 (ja) * 2013-09-25 2017-08-23 株式会社東芝 非水電解質二次電池及び電池パック
CN103887515A (zh) * 2014-04-20 2014-06-25 天津市捷威动力工业有限公司 一种锂离子电池负极及使用该种负极的锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063394A (ja) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd 非水電解質電池
JP2009266706A (ja) * 2008-04-28 2009-11-12 Hitachi Vehicle Energy Ltd リチウムイオン二次電池
JP2012216401A (ja) * 2011-03-31 2012-11-08 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイス
JP2013242997A (ja) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd リチウムイオン二次電池
JP2012169300A (ja) * 2012-06-06 2012-09-06 Hitachi Maxell Energy Ltd 非水二次電池
JP2014096300A (ja) * 2012-11-09 2014-05-22 National Institute Of Advanced Industrial & Technology 蓄電デバイス

Also Published As

Publication number Publication date
JP6355163B2 (ja) 2018-07-11
JP2016100054A (ja) 2016-05-30
CN115799601A (zh) 2023-03-14
CN107112581A (zh) 2017-08-29
US20170338511A1 (en) 2017-11-23
US11088391B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6355163B2 (ja) リチウムイオン電池
US11349119B2 (en) Method for making silicon-containing composite electrodes for lithium-based batteries
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US11183714B2 (en) Hybrid metal-organic framework separators for electrochemical cells
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
JP5049820B2 (ja) リチウムイオン二次電池
US20150303482A1 (en) Reduction of Gassing in Lithium Titanate Cells
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
JP6466161B2 (ja) リチウムイオン電池用負極材料
US11522221B2 (en) Gelation reagent for forming gel electrolyte and methods relating thereto
WO2017120887A1 (en) Additive for non-aqueous electrolyte
EP4220759A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
US11626591B2 (en) Silicon-containing electrochemical cells and methods of making the same
JP2013065453A (ja) リチウム二次電池
US10637048B2 (en) Silicon anode materials
JP2011192561A (ja) 非水電解液二次電池の製造方法
JP6183843B2 (ja) リチウムイオン電池
JP2010186689A (ja) 非水電解液二次電池
JP5205863B2 (ja) 非水電解液二次電池
WO2017159073A1 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2001126760A (ja) 非水電解液型二次電池
JP2013197051A (ja) リチウムイオン蓄電デバイス
JP7267823B2 (ja) 不揮発性電解質、二次電池
JP2010171019A (ja) 非水電解質二次電池
JP2005019762A (ja) 非水系リチウム型蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861525

Country of ref document: EP

Kind code of ref document: A1