WO2016063728A1 - 受信装置、および、受信装置の受信方法、並びにプログラム - Google Patents

受信装置、および、受信装置の受信方法、並びにプログラム Download PDF

Info

Publication number
WO2016063728A1
WO2016063728A1 PCT/JP2015/078496 JP2015078496W WO2016063728A1 WO 2016063728 A1 WO2016063728 A1 WO 2016063728A1 JP 2015078496 W JP2015078496 W JP 2015078496W WO 2016063728 A1 WO2016063728 A1 WO 2016063728A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
decoded
correction
decoded signal
Prior art date
Application number
PCT/JP2015/078496
Other languages
English (en)
French (fr)
Inventor
豊 中田
諭志 岡田
水谷 祐一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP15852196.3A priority Critical patent/EP3211799B1/en
Publication of WO2016063728A1 publication Critical patent/WO2016063728A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Definitions

  • the present technology relates to a receiving device, a receiving method of the receiving device, and a program, and more particularly, to a receiving device, a receiving method of the receiving device, and a program capable of improving the accuracy of error correction processing of an iterative decoding method. .
  • DVB-S Digital Video Broadcasting-Satellite satellite digital broadcast receiver demodulates the signal received by the antenna, corrects the error of the demodulation processing result, and reproduces and outputs the image and sound using the corrected signal To do.
  • an error correction unit that corrects an error in a signal
  • a signal expressed in a complex plane that is a demodulation processing result is converted into likelihood
  • the likelihood is Viterbi-decoded
  • a known signal is obtained from the Viterbi-decoded signal.
  • the corrected signal is deinterleaved, and the deinterleaved signal is RS (Read-Solomon) What to decode is proposed (refer nonpatent literature 1).
  • Non-Patent Document 2 and Patent Document 1 a technique for improving the performance of an error correction unit by performing iterative processing.
  • the error correction unit using this iterative processing interleaves the RS-decoded signal that is the error correction result, and uses it as a feedback signal in the Viterbi decoding processing in subsequent signal processing. By such processing, the performance of the error correction unit is improved.
  • the demodulated signal which is the target of Viterbi decoding processing and is the main signal is used as the likelihood. Consistency between the converted likelihood signal and the feedback signal obtained by interleaving the error correction result cannot be obtained.
  • the feedback signal is supplied in units of codewords as a result of successful decoding, but the main signal cannot recognize where the signal sequence in units of codewords exists. For this reason, in order to improve the accuracy of error correction of the main signal by iterative processing using the feedback signal, it is necessary to perform processing by matching the main signal and the feedback signal in units of codewords.
  • the present technology has been made in view of such a situation, and by improving the accuracy of error correction processing using repetitive processing by matching the main signal and the feedback signal in units of codewords. It is to make.
  • a receiving device includes a demodulating unit that demodulates a signal received by an antenna and outputs a demodulated signal, a first decoding unit that decodes the demodulated signal into a first decoded signal, and the first A first observation unit that observes a known signal included in one decoded signal and outputs corresponding correction information; and corrects the first decoded signal based on the known signal included in the first decoded signal Or a first signal correcting unit that outputs the signal as it is and a first decoded signal that is corrected by the first signal correcting unit or that is output as it is is decoded into a second decoded signal.
  • a second signal correction unit that corrects the demodulated signal before the first decoding unit based on correction information from the first observation unit, Is decoded by the second signal correction unit.
  • the demodulated signal is decoded into the first decoded signal using the second decoded signal, and the first signal correction unit is based on the known signal included in the first decoded signal,
  • the phase shift and spectrum inversion of the signal are estimated, the phase shift and spectrum inversion of the first decoded signal are corrected, and the first observation unit detects a known signal included in the first decoded signal.
  • the second signal correction unit Observing, estimating the phase shift and spectrum inversion of the signal, and outputting corresponding correction information, the second signal correction unit based on the correction information from the first observation unit Before the decoding unit, the phase shift of the first decoded signal and the spectrum inversion of the demodulated signal are corrected.
  • a likelihood conversion unit that converts the demodulated signal into likelihood can be further included, and the second signal correction unit includes, before the likelihood conversion unit and the first decoding unit, Based on the correction information from the first observation unit, the phase shift of the first decoded signal and the spectrum inversion of the demodulated signal can be corrected.
  • a likelihood conversion unit that converts the demodulated signal into likelihood may be further included, and the second signal correction unit is a stage subsequent to the likelihood conversion unit, and includes the first decoding. In the preceding stage, the phase shift of the first decoded signal having the likelihood that the demodulated signal is converted and the spectrum inversion are corrected based on the correction information from the first observation unit. it can.
  • a third signal correction unit that estimates a frame configuration of the signal based on a known signal included in the first decoded signal and corrects the first decoded signal; and included in the first decoded signal
  • a second observation unit that observes a known signal, estimates a frame configuration of the signal, and outputs corresponding correction information; and based on the correction information that is an observation result of the second observation unit, It is possible to further include a fourth signal correction unit that corrects the demodulated signal before the first decoding unit.
  • the third signal correction unit corrects the first decoded signal before the first signal correction unit, and the fourth signal correction unit receives the second signal correction unit from the second signal correction unit. In the preceding stage, the demodulated signal can be corrected.
  • the third signal correction unit causes the first decoded signal to be corrected later than the first signal correction unit, and the fourth signal correction unit includes the second signal correction unit. In the latter stage, the demodulated signal can be corrected.
  • the first decoding unit can decode the demodulated signal into a first decoded signal by viterbi decoding.
  • the second decoding unit may cause the first decoded signal corrected by the first signal correcting unit to be decoded into a second decoded signal by RS (Read-Solomon) decoding. it can.
  • a receiving method of a receiving device is a method of demodulating a signal received by an antenna, outputting a demodulated signal, decoding the demodulated signal into a first decoded signal, and including the demodulated signal in the first decoded signal
  • a known signal is output, corresponding correction information is output, the first decoded signal is corrected based on the known signal included in the first decoded signal, or output as it is, and the first The first decoded signal corrected by the signal correcting unit or output as it is is decoded into a second decoded signal, and the first decoding is performed based on correction information from the first observing unit.
  • a step of correcting the demodulated signal in a stage prior to the first step wherein the processing of the step of decoding the first decoded signal is performed by converting the demodulated signal corrected by the second signal correcting unit into the second Using the decoded signal, the first
  • the process of the step of decoding into a decoded signal and correcting the phase shift and spectrum inversion of the first decoded signal is performed based on the known signal included in the first decoded signal and the phase shift and spectrum of the signal.
  • the process of estimating the inversion, correcting the phase shift and spectrum inversion of the first decoded signal, and outputting the correction information is estimated to correct the phase shift and spectrum inversion of the first decoded signal.
  • the corresponding correction information is output, and the processing of correcting the phase shift and spectrum inversion of the first decoded signal is performed based on the correction information from the first observation unit. Before the unit, the phase shift of the first decoded signal and the spectrum inversion of the demodulated signal are corrected.
  • a program includes a demodulation unit that demodulates a signal received by an antenna and outputs a demodulated signal, a first decoding unit that decodes the demodulated signal into a first decoded signal, and the first A first observation unit that observes a known signal included in the decoded signal and outputs corresponding correction information, and corrects the first decoded signal based on the known signal included in the first decoded signal. Or a first signal correction unit that outputs the signal as it is, and a second signal that is corrected by the first signal correction unit or that is output as it is is decoded into a second decoded signal.
  • a second signal correction unit that corrects the demodulated signal at a stage prior to the first decoding unit based on correction information from the first observation unit.
  • the first decoding unit The demodulated signal corrected by a second signal correcting unit is decoded into the first decoded signal using the second decoded signal, and the first signal correcting unit is configured to decode the first decoded signal. Based on a known signal included in the signal, the phase shift and spectrum inversion of the signal are estimated, the phase shift and spectrum inversion of the first decoded signal are corrected, and the first observation unit is configured to A known signal included in one decoded signal is observed, a phase shift and spectrum inversion of the signal are estimated, and corresponding correction information is output.
  • the second signal correction unit is connected to the first observation unit. Based on the correction information, the phase shift of the first decoded signal and the spectrum inversion of the demodulated signal are corrected before the first decoding unit.
  • a signal received by an antenna is demodulated, a demodulated signal is output, the demodulated signal is decoded into a first decoded signal, and a known signal included in the first decoded signal is observed.
  • Corresponding correction information is output, and the first decoded signal is corrected or output as it is based on a known signal included in the first decoded signal, and is corrected or output as it is.
  • the demodulated signal is corrected and corrected before the first decoded signal is decoded into the second decoded signal and decoded into the first decoded signal based on correction information.
  • the demodulated signal is decoded into the first decoded signal using the second decoded signal, and the phase shift of the signal and the spectrum inversion are performed based on the known signal included in the first decoded signal.
  • the phase shift and spectrum inversion of the first decoded signal are corrected, the known signal included in the first decoded signal is observed, the phase shift and spectrum inversion of the signal are estimated, and the corresponding Correction information is output, and based on the correction information, the phase shift of the first decoded signal and the spectrum inversion of the demodulated signal are corrected before the decoding into the first decoded signal.
  • the receiving device may be an independent device, or may be a block that functions as each of the receiving devices.
  • FIG. 11 is a diagram illustrating a configuration example of a general-purpose personal computer.
  • FIG. 1 illustrates a configuration example of a receiving device to which the present technology is applied.
  • DVB-S Digital Broadcasting-Satellite
  • the receiving device 11 includes an antenna 31, a demodulation processing unit 32, an error correction unit 33, a decoder 34, and an output unit 35.
  • the demodulation processing unit 32 When receiving a signal from the satellite received via the antenna 31, the demodulation processing unit 32 performs demodulation processing and supplies it to the error correction unit 33.
  • the error correction unit 33 decodes the signal from the demodulated satellite, which has been convolutionally encoded as an inner code and RS (Read-Solomon) encoded as an outer code, and performs error correction processing. And output to the decoder 34.
  • the decoder 34 performs decoding processing based on the error-corrected signal, and causes the output unit 35 to output the decoding result as an image and sound.
  • RS decoding unit 55 includes a likelihood converting unit 51, a Viterbi decoding unit 52, a signal correcting unit 53, a deinterleave processing unit 54, and an RS decoding unit 55.
  • the likelihood conversion unit 51 converts the signal expressed on the complex plane, which is the demodulation processing result, that is, the signal composed of the I signal and the Q signal into likelihood, and outputs the likelihood to the Viterbi decoding unit 52.
  • the likelihood is, for example, a binary signal sequence represented by likelihood 1 and likelihood 2.
  • the Viterbi decoding unit 52 Viterbi-decodes the likelihood that is the convolution-encoded signal that is the inner code supplied from the likelihood conversion unit 51, and outputs it to the signal correction unit 53.
  • the signal correction unit 53 detects a known signal known as a synchronization signal, for example, 0x47 or 0xB8, from the Viterbi-decoded signal, and estimates the length and position of the codeword unit constituting the frame, In addition to correction, the phase shift and spectrum inversion are detected and corrected, and output to the deinterleave processing unit 54.
  • a known signal known as a synchronization signal for example, 0x47 or 0xB8
  • the deinterleave processing unit 54 deinterleaves the corrected signal and outputs it to the RS decoding unit 55.
  • the RS (Read-Solomon) decoding unit 55 decodes the RS-encoded signal that is the outer code, which has been deinterleaved by the deinterleave processing unit 54, and outputs the result as an error correction result.
  • the signal obtained as the likelihood is Viterbi-decoded and a known signal is detected, so that the length and position of the frame, which is a codeword unit, is estimated and corrected, and phase shift and spectrum inversion are performed. After being corrected and further deinterleaved, error correction is performed by RS decoding.
  • FIG. 3 shows a configuration example of another general error correction unit 33 using this iterative process.
  • the error correction unit 33 of FIG. 3 is different from the error correction unit 33 of FIG. 2 in that an interleave processing unit 56 that newly interleaves the output of the RS decoding unit 55 is provided.
  • the interleave processing unit 56 interleaves the output of the RS decoding unit 55 and supplies the processing result to the Viterbi decoding unit 52.
  • the Viterbi decoding unit 52 performs decoding processing using the feedback signal supplied from the interleave processing unit 56 and succeeded in RS decoding in the second and subsequent processes.
  • the Viterbi decoding unit 52 performs decoding processing using the feedback signal supplied from the interleave processing unit 56 and succeeded in RS decoding in the second and subsequent processes.
  • the feedback signal that has been successfully RS-decoded is corrected by the signal correction unit 53 based on the estimation of the length and position of a frame unit (codeword unit) based on a known signal, and correction for phase shift and spectrum inversion.
  • This is a codeword unit signal.
  • the position of the frame unit (codeword unit) has not been confirmed in the signal supplied from the likelihood converting unit 51 to the Viterbi decoding unit 52, and correction of phase shift and spectrum inversion is added. This is a signal in an unknown state in which the codeword units are not arranged.
  • the Viterbi decoding unit 52 decodes the signals from the likelihood conversion unit 51 in the order in which they are supplied based on the feedback signals as they are, there is a possibility that consistency may not be achieved, and the accuracy is not necessarily improved. There is a possibility that it cannot be improved.
  • the error correction unit 33 in FIG. 4 includes a likelihood conversion unit 101, a signal correction unit 102, a Viterbi decoding unit 103, a signal correction unit 104, an observation unit 105, a deinterleave processing unit 106, an RS decoding unit 107, and an interleaving process. Part 108 is provided.
  • the likelihood conversion unit 101, the Viterbi decoding unit 103, the signal correction unit 104, the deinterleave processing unit 106, the RS decoding unit 107, and the interleave processing unit 108 are a likelihood conversion unit 51, a Viterbi decoding unit 52, and a signal correction, respectively. Since the basic functions are the same as those of the unit 53, the deinterleave processing unit 54, the RS decoding unit 55, and the interleave processing unit 56, description thereof will be omitted as appropriate.
  • the signal correction unit 104 detects a known signal, estimates the frame configuration, corrects the position of the signal to be processed according to the estimated configuration, and performs deinterleaving processing in units of codewords. To the unit 106.
  • the observation unit 105 estimates the configuration such as the position and length of the frame unit (codeword unit) by observing information on the position of the known signal, and the position formed in the signal correction unit 104 based on the estimation result Is obtained and supplied to the signal correction unit 102 as position correction information as an observation result.
  • the signal correction unit 102 corrects the position of the signal output from the likelihood conversion unit 51 based on the position correction information supplied from the observation unit 105, thereby allowing the Viterbi decoding unit 103 to perform codeword unit. Output.
  • the signal correction unit 104 is configured to display ISDB-T (Digital Video Broadcasting as shown by the output signal Out1 in the lower part of FIG. -Terrestrial) Detects a known value 0x47 or 0xB8, which is the value of the synchronization byte provided at the final position of the packet as defined in the standard.
  • ISDB-T Digital Video Broadcasting as shown by the output signal Out1 in the lower part of FIG. -Terrestrial
  • the signal correction unit 104 corrects the position so that, for example, a specified value of 204 bytes becomes a signal for one frame on the basis of the position of the known value 0x47 or 0xB8 in units of bytes, A signal is output to RS decoding section 107 in an appropriate codeword unit such as one frame unit.
  • the RS decoding unit 107 can appropriately perform RS decoding by decoding 204-byte information from the head position of the signal for one frame.
  • the signal correction unit 102 is supplied from the observation unit 105 with correction information necessary for position correction performed by the signal correction unit 104 described above. As a result, the signal correction unit 102 can correct the same positional deviation as the signal correction unit 104.
  • the Viterbi decoding unit 103 receives the signal, which is likelihood-converted by the signal correction unit 102 so that the signal is appropriately matched with the RS decoding result by the subsequent RS decoding unit 107 in codeword units. Will be supplied.
  • the Viterbi decoding unit 103 is supplied from the signal correction unit 102 based on the feedback signal in which the RS decoding by the RS decoding unit 107 has succeeded and the output result is interleaved by the interleave processing unit 108. It becomes possible to appropriately Viterbi-decode the signal.
  • step S ⁇ b> 11 the likelihood conversion unit 101 converts the signal expressed on the complex plane, which is the demodulation processing result from the demodulation processing unit 32, into likelihood, and outputs the likelihood to the signal correction unit 102.
  • the signal correction unit 102 determines the position of the likelihood signal based on the correction amount that is the observation result from the observation unit 105 based on the information of the previous input signal sequence, and the codeword of the appropriate frame.
  • the data is corrected so that it can be processed in units and output to the Viterbi decoding unit 103.
  • the first frame is processed with a provisional frame length because the exact frame position is not specified and cannot be appropriately processed in units of codewords.
  • the observation unit 105 since the observation unit 105 does not transmit correction amount information as an observation result until a known signal is detected by processing described later, the observation unit 105 outputs the signal as it is without correcting the signal. To do.
  • step S13 the Viterbi decoding unit 103 performs Viterbi decoding of the corrected likelihood signal and outputs the signal to the signal correction unit 104 and the observation unit 105.
  • the process is performed by general Viterbi conversion in the first process.
  • step S14 the signal correction unit 104 detects a known signal from the Viterbi-decoded signals, detects a known signal such as 0x47 or 0xB8 such as the detected synchronization signal, and immediately before the detected known signal. After inputting an empty signal for a predetermined number of bytes, it is sequentially output to the deinterleave processing unit 106 for each codeword unit of one frame from the top.
  • step S ⁇ b> 15 the observation unit 105 performs position observation processing to observe information on a position that is corrected by the signal correction unit 104 described above and is corrected as the head position of a codeword unit for one frame. Then, information on the amount of deviation that is the difference in position is supplied to the signal correction unit 102 as correction information.
  • step S31 the observation unit 105 resets the NG counter CNG that counts the number of signals when the signal is not a known signal, and the input counter CINDY that counts the number of input signals.
  • step S32 the observation unit 105 receives an input signal for 1 bit (1 bit).
  • step S33 the observation unit 105 increments the input counter CIN by one.
  • step S ⁇ b> 34 the observation unit 105 determines whether or not the total of 8 bits of the current input signal and the past 7 bits of values is a known signal 0x47 or 0xB8. .
  • step S34 for example, when the total 8 bits of the current input signal and the past 7 bits is not a known signal 0x47 or 0xB8, the process proceeds to step S35.
  • step S35 the observation unit 105 increments the NG counter CNG by 1, and the process returns to step S32. For example, a signal for a total of 8 bits including the current input signal and the past 7 bits is known. The processes of steps S32 to S35 are repeated until the signal becomes 0x47 or 0xB8.
  • step S34 for example, when the total 8 bits of the current input signal and the past 7 bits are 0x47 or 0xB8, which are known signals, the process proceeds to step S36. move on.
  • step S36 the observation unit 105 transmits the value of the NG counter CNG to the signal correction unit 102 as a shift amount.
  • step S16 the deinterleave processing unit 106 deinterleaves the signal whose position has been corrected by the signal correction unit 104 and supplies the signal to the RS processing unit 107.
  • step S17 the RS processing unit 107 performs an RS decoding process on the deinterleaved signal, decodes it, outputs it as an error correction result, and supplies it to the interleave processing unit 108.
  • step S18 the interleave processing unit 108 interleaves the output that is the error correction result and supplies the output to the Viterbi decoding unit 103.
  • step S19 the likelihood conversion unit 101 determines whether or not the input signal has ended. If the input signal has not ended, the process returns to step S11, and the subsequent processing is repeated. If it is determined in step S19 that the input signal has ended, the process ends.
  • the signal correction unit 104 and the observation unit 105 are assumed to receive the input signal string In10 as shown in FIG.
  • the signal correction unit 102 also inputs, for example, as the input signal string In11 in FIG. 9 at a timing before being input to the signal correction unit 104 and the observation unit 105.
  • the data is assumed to be in units of 26 bytes.
  • 0x31, 0x5B, 0xD0, 0x47, 0xAC, 0x84,... are input sequentially from the left in FIG.
  • the signal correction unit 102 does not read byte unit data, the input signal In11 in FIG.
  • step S15 known data is sequentially searched from the top data in units of 1 bit. Then, when the known data 0x47 shown as the fourth from the left in FIG. 8 is detected, the number of bits from the leading position P0 to the leading position P1 of the data 0x47 is counted as the NG count CNG, and the difference amount as the difference amount is counted. Desired. Therefore, the observation unit 105 transmits the original frame start position, which is the difference from the start position P0 in the current temporary frame in FIG. 8 to the start position P1 of the known data 0x47, and the current start position. The amount of deviation from the received data is transmitted to the signal correction unit 102 as correction information. That is, at the timing when the head position P1 is received, for example, effective correction information that is a shift amount of 26 bytes in this example is transmitted to the signal correction unit 102.
  • the signal correction unit 102 indicates the amount of deviation from the currently transmitted data at the timing when the data at the positions P1 to P4 is received. Effective correction information (effective correction information) is received.
  • the signal correction unit 102 stops outputting the signal by the number of bits corresponding to the shift amount, as indicated by the positions P2 to P3 in the output signal sequence Out11 in FIG. 9 based on the effective correction information, Thereafter, a signal for one frame whose position is corrected is output at positions P3 to P4. That is, since the signal correction unit 102 does not identify the signal and cannot recognize the position of the codeword unit, the signal correction unit 102 outputs the signal output by the number of bits corresponding to the shift amount based on the correction information from the observation unit 105. By stopping, the shift amount at the head position in codeword units is corrected.
  • the signal correction unit 102 After the position P4, as indicated by the output signal sequence Out11 in FIG. 9, the signal correction unit 102 continuously outputs the output signal sequence Out11 in a state where the position correction in units of codewords is completed. become. As a result, as shown by the input signal sequence In11 in FIG. 9, since the known 0x47 or 0xB8 is always received at the head position of the codeword unit, the deviation amount becomes 0 thereafter. Since the position is corrected after the position P4, the shift amount of the effective correction information supplied from the observation unit 105 to the signal correction unit 102 is zero as indicated by the input signal series In11 in FIG. As a result, at positions P4 to P5, as shown by the input signal sequence In10 in FIG. 8, the position shift in codeword units so that a signal for one frame is appropriately output from the head position to the observation unit 105. Is corrected.
  • both the input signal to be processed by the Viterbi decoding unit 103 and the feedback signal supplied from the interleave processing unit 108 to be referred to in the processing are appropriately determined in units of frames, that is, in units of codewords. It is possible to input in a matched state.
  • the input signal sequence may cause a phase shift of 90 degrees, 180 degrees, and 270 degrees with respect to the transmission signal on the complex plane in the demodulation processing unit 32. That is, as shown in the left part of FIG. 10, when a signal indicated by an asterisk is a transmission signal, a phase shift of 90 degrees occurs in reception due to demodulation processing, and a reception signal indicated by a black circle May be received as In FIG. 10, the horizontal axis is the real component that is the I signal, and the vertical axis is the imaginary component that is the Q signal.
  • the accuracy of error correction processing by iterative processing may be improved by observing and correcting such phase shift and spectrum inversion.
  • FIG. 11 shows a configuration example of the error correction unit 33 that improves the accuracy of error correction processing by repetitive processing by observing and correcting phase shift and spectrum inversion.
  • the error correction unit 33 in FIG. 11 configurations having the same functions as those in the error correction unit 33 in FIG. 4 are given the same names and the same reference numerals, and descriptions thereof are omitted as appropriate. It shall be.
  • the error correction unit 33 in FIG. 11 differs from the error correction unit 33 in FIG. 4 in that a signal correction unit 121 and a signal correction unit 122 are used instead of the signal correction unit 102, the signal correction unit 104, and the observation unit 105. , And an observation unit 123, and a signal correction unit 121 is arranged in front of the likelihood conversion unit 101.
  • the signal correction unit 121 performs phase shift and spectrum inversion of the I signal and the Q signal input from the demodulation processing unit 32 based on correction information according to the observation result of the phase shift and spectrum inversion from the observation unit 123. It correct
  • the signal correction unit 122 detects a phase shift or spectrum inversion based on the Viterbi-decoded signal output from the Viterbi decoding unit 103, corrects it based on the detection result, and outputs it to the deinterleave processing unit 106.
  • the observation unit 123 observes the phase shift and the spectrum inversion based on the Viterbi decoded signal output from the Viterbi decoding unit 103, and the signal correction unit 121 uses the presence or absence of the phase shift or the spectrum inversion as correction information as the observation result. To supply.
  • the signal correction unit 121 uses the correction information indicating the presence / absence of the phase shift and the presence / absence of the spectrum inversion as the observation result based on the information of the input signal sequence immediately before supplied from the observation unit 123. Based on this, the I signal and the Q signal supplied from the demodulation processing unit 32 are corrected and output to the likelihood conversion unit 101.
  • the correction information supplied from the observation unit 123 only indicates the presence or absence of phase shift and spectrum inversion, and does not include information on which angle phase shift or spectrum inversion. Absent. For this reason, the signal correction unit 121 corrects each of the phase shifts of 90 degrees, 180 degrees, and 270 degrees each time correction information indicating that a phase shift and spectrum inversion has occurred is transmitted.
  • correction of spectrum inversion for each phase shift is cyclically switched for correction.
  • the correction is performed in at least one of all the patterns by repeating the correction while switching the correction contents until the information indicating that the phase shift and the spectrum inversion have occurred is not transmitted as the correction information. Will be.
  • steps S52 to S54 it is converted into likelihood by the likelihood converting unit 101, Viterbi decoded by the Viterbi decoding unit 103, and further, the presence or absence of phase or spectrum inversion is detected by the signal correcting unit 122, If detected, a corresponding correction is made.
  • step S55 the observation unit 123 executes a phase observation process, determines whether a phase shift or spectrum inversion has occurred, and notifies the signal correction unit 121 of corresponding correction information. Details of the phase observation process will be described later with reference to the flowchart of FIG.
  • steps S56 to S59 the interleaving process is performed by the deinterleave processing unit 106, the RS decoding process is performed by the RS decoding unit 107, the output is performed, the interleaving process is performed by the interleave processing unit 108, and the signal is supplied from the demodulation processing unit 32. The same process is repeated until it is not performed.
  • step S71 the observation unit 123 resets the NG counter CNG that counts the number of signals when the signal is not a known signal, and the input counter CIN that counts the number of input signals.
  • step S72 the observation unit 123 receives an input signal for 1 bit (1 bit).
  • step S73 the observation unit 123 increments the input counter CIN by one.
  • step S74 the observation unit 123 determines whether or not the total of 8 bits of the current input signal and the past 7 bits of values is a known signal 0x47 or 0xB8. .
  • step S74 for example, when it is determined that a signal corresponding to a total of 8 bits including the current input signal and a past 7-bit value is a known signal 0x47 or 0xB8, the process proceeds to step S74. Proceed to S75.
  • step S75 the observation unit 123 notifies the signal correction unit 121 of an observation result indicating that no phase shift or spectrum inversion has occurred as correction information.
  • step S74 if it is determined in step S74 that, for example, the total 8 bits of the current input signal and the past 7 bits are not 0x47 or 0xB8, which are known signals, the processing is performed. The process proceeds to step S76.
  • step S76 the observation unit 123 determines whether or not the input counter CIN is the maximum value. If the input counter CIN is not the maximum value, the process returns to step S72, and the subsequent processes are repeated.
  • step S76 when it is determined that the input counter CIN is the maximum value, that is, a total of 8 bits of the current input signal and the past 7 bits are 0x47 which is a known signal. Alternatively, if the input counter CIN is not 0xB8 but is repeated until, for example, the maximum value corresponding to the code length defined as the frame length is reached, the process proceeds to step S77.
  • step S77 the observation unit 123 increments the NG counter CNG by 1, and the process proceeds to step S78.
  • step S78 the observation unit 123 determines whether or not the NG counter CNG is the maximum value. If the value is not the maximum value, the process proceeds to step S79.
  • step S79 the observation unit 123 resets the NG counter CNG to 0, and the process returns to step S72.
  • step S78 when the state that is not 0x47 or 0xB8, which is a known signal, reaches a maximum value that is set as a predetermined number of times indicating, for example, that it is repeated for a plurality of frames, Proceed to S80.
  • step S80 the observation unit 123 notifies the signal correction unit 121 of an observation result indicating that either phase shift or spectrum inversion occurs.
  • the signal correction unit 121 corrects the I signal and Q signal supplied from the demodulation processing unit 32 in step S51. To do.
  • the signal correction unit 121 has 90 degrees and 180 degrees.
  • And correction for phase shift of 270 degrees and correction by spectrum inversion are sequentially switched.
  • phase shifts of 90 degrees, 180 degrees, and 270 degrees and corrections including the presence or absence of spectrum inversion are sequentially switched.
  • correction information indicating that phase shift and spectrum inversion has occurred continues to be supplied from the observation unit 123. The correction is repeated while being switched. Then, when the correction information indicating that the phase shift and the spectrum inversion have occurred is not transmitted, the correction of the phase shift and the spectrum inversion is stopped.
  • the Viterbi decoding unit 103 performs correction by at least one of phase shift and spectrum inversion between the input signal input from the likelihood conversion unit 101 and the feedback signal supplied from the interleave processing unit 108. Can be matched, and error correction can be realized with higher accuracy.
  • FIG. 15 shows a configuration example of the error correction unit 33 that corrects the two types of likelihoods converted by the likelihood conversion unit 101.
  • the configuration having the same function as the configuration of the error correction unit 33 in FIG. 11 is given the same name and the same reference numeral, and the description thereof is as follows. This shall be omitted as appropriate.
  • the configuration of the error correction unit 33 in FIG. 15 is different from the configuration of the error correction unit 33 in FIG. 11 in that a signal correction unit 141 is provided instead of the signal correction unit 121, and the likelihood conversion unit. This is a point subsequent to the 101 and before the Viterbi decoding unit 103.
  • the signal correction unit 141 Based on the correction information that is the observation result supplied from the observation unit 123, the signal correction unit 141 converts the two kinds of likelihood 1 and likelihood 2 supplied from the demodulation processing unit 32 by the likelihood conversion unit 101. Make corrections.
  • the signal correction unit 141 in step S102 Corrects at least one of phase shift and spectrum inversion based on correction information that is an observation result from the observation unit 123 with respect to likelihood 1 and likelihood 2.
  • the likelihood conversion processing of the likelihood conversion unit 101 in the DVB-S standard is divided into demodulation and depuncturing of QPSK modulation.
  • the signal correction unit 141 corrects, for example, as shown in FIG. 17 as a correction for a phase shift of 90 degrees.
  • FIG. 17 illustrates an example of the coding rate, the transmission signal sequence including the I signal and the Q signal of the likelihood conversion unit 101, the pre-correction likelihood signal sequence, and the post-correction likelihood signal sequence from the left. .
  • the signal correction unit 141 corrects the likelihood 1 to L ( ⁇ Y1) and corrects the likelihood 2 to L (X1).
  • the signal correction unit 141 corrects the likelihood 1 to L ( ⁇ Y1), 0, L (Y2), 0, and the likelihood 2 to L (X1), L ( ⁇ X1), L ( ⁇ Y2). ), L (Y1).
  • the signal correction unit 141 corrects the likelihood 1 to L ( ⁇ Y1), 0, L (Y2), and corrects the likelihood 2 to L (X1), L ( ⁇ X3), 0.
  • the signal correction unit 141 corrects the likelihood 1 to L ( ⁇ Y1), 0, L (Y2), 0, L (Y4), and the likelihood 2 to L (X1), L ( ⁇ X3). , 0, L (X5), 0.
  • the signal correction unit 141 corrects the likelihood 1 to L ( ⁇ Y1), 0, L (Y2), 0, L (Y4), 0, L (Y6), and the likelihood 2 to L (X1 ), L ( ⁇ X3), 0, L (X5), 0, L ( ⁇ X7), 0.
  • the signal correction unit 141 performs correction as shown in FIG. 18 as correction for spectrum inversion, for example.
  • FIG. 18 illustrates an example of the coding rate, the transmission signal sequence including the I signal and the Q signal of the likelihood conversion unit 101, the pre-correction likelihood signal sequence, and the post-correction likelihood signal sequence from the left. .
  • the signal correction unit 141 corrects the likelihood 1 to L (Y1) and corrects the likelihood 2 to L (X1).
  • the signal correction unit 141 corrects the likelihood 1 to L (Y1), 0, L (Y2), 0, and the likelihood 2 to L (X1), L (X1), L (Y2), L Correct to (Y1).
  • the signal correction unit 141 corrects the likelihood 1 to L (Y1), 0, L (Y2), and corrects the likelihood 2 to L (X1), L (X3), 0.
  • the signal correction unit 141 corrects the likelihood 1 to L (Y1), 0, L (Y2), 0, L (Y4), and the likelihood 2 to L (X1), L (X3), 0 , L (X5), 0.
  • the signal correction unit 141 corrects the likelihood 1 to L (Y1), 0, L (Y2), 0, L (Y4), 0, L (Y6), and the likelihood 2 to L (X1). , L (X3), 0, L (X5), 0, L (X7), 0.
  • the Viterbi decoding unit 103 the phase shift between the input signal input from the likelihood conversion unit 101 and the feedback signal supplied from the interleave processing unit 108, and / or spectrum inversion correction is performed. It is possible to make them coincide, and it is possible to realize error correction with higher accuracy.
  • FIG. 19 shows a configuration example of the error correction unit 33 that corrects a frame position shift and a phase shift and spectrum inversion in an input signal.
  • symbol are attached
  • the configuration of the error correction unit 33 in FIG. 19 is different from the configuration of the error correction unit 33 in FIG. 15 in that the signal correction unit 102 is provided in the preceding stage of the signal correction unit 141 and the observation unit 123 is arranged in parallel. 105 is provided, and the signal correction unit 104 is further provided before the signal correction unit 122.
  • a frame position shift is observed by the observation unit 105, and correction information corresponding to the observation result is supplied to the signal correction unit 102. Further, the observation unit 123 observes the presence or absence of at least one of phase shift and spectrum inversion, and the correction information corresponding to the observation result is supplied to the signal correction unit 141.
  • the signal corrected by the Viterbi decoding unit 103 is corrected for frame misalignment by the signal correcting unit 104, and then the signal correcting unit 122 corrects the phase shift and spectrum inversion.
  • the Viterbi decoding unit 103 can realize Viterbi decoding using a feedback signal in which the frame position shift, the phase shift, and the spectrum inversion match with respect to the input signal. .
  • the Viterbi decoding unit 103 is input with a feedback signal that has been corrected for positional deviation in frame units (codeword units), phase deviation, and spectrum inversion, and correction that matches this feedback signal has been made. An input signal is input. Therefore, the Viterbi decoding unit 103 can perform Viterbi decoding of the input signal by using the feedback signal in which the positional deviation of the frame matching the input signal, the phase deviation, and the spectrum inversion are corrected.
  • ⁇ Example executed by software> By the way, the series of processes described above can be executed by hardware, but can also be executed by software.
  • a program constituting the software may execute various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a recording medium in a general-purpose personal computer or the like.
  • FIG. 21 shows a configuration example of a general-purpose personal computer.
  • This personal computer incorporates a CPU (Central Processing Unit) 1001.
  • An input / output interface 1005 is connected to the CPU 1001 via a bus 1004.
  • a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
  • the input / output interface 1005 includes an input unit 1006 including an input device such as a keyboard and a mouse for a user to input an operation command, an output unit 1007 for outputting a processing operation screen and an image of the processing result to a display device, programs, and various types.
  • a storage unit 1008 including a hard disk drive for storing data, a LAN (Local Area Network) adapter, and the like are connected to a communication unit 1009 that executes communication processing via a network represented by the Internet.
  • magnetic disks including flexible disks
  • optical disks including CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc)), magneto-optical disks (including MD (Mini Disc)), or semiconductors
  • a drive 1010 for reading / writing data from / to a removable medium 1011 such as a memory is connected.
  • the CPU 1001 is read from a program stored in the ROM 1002 or a removable medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, installed in the storage unit 1008, and loaded from the storage unit 1008 to the RAM 1003. Various processes are executed according to the program.
  • the RAM 1003 also appropriately stores data necessary for the CPU 1001 to execute various processes.
  • the CPU 1001 loads the program stored in the storage unit 1008 to the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 1001) can be provided by being recorded on the removable medium 1011 as a package medium, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 1008 via the input / output interface 1005 by attaching the removable medium 1011 to the drive 1010. Further, the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008. In addition, the program can be installed in advance in the ROM 1002 or the storage unit 1008.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • this technique can also take the following structures. (1) a demodulator that demodulates a signal received by an antenna and outputs a demodulated signal; A first decoding unit for decoding the demodulated signal into a first decoded signal; A first observation unit for observing a known signal included in the first decoded signal and outputting corresponding correction information; A first signal correction unit that corrects the first decoded signal based on a known signal included in the first decoded signal or outputs the first decoded signal as it is; A second decoding unit that decodes the first decoded signal corrected by the first signal correcting unit or outputted as it is into a second decoded signal; A second signal correction unit that corrects the demodulated signal in a stage prior to the first decoding unit based on correction information from the first observation unit; The first decoding unit decodes the demodulated signal corrected by the second signal correction unit into the first decoded signal using the second decoded signal, The first signal correction unit estimates a phase shift and spectrum inversion of the signal
  • the first observation unit observes a known signal included in the first decoded signal, estimates a phase shift and spectrum inversion of the signal, and outputs corresponding correction information; Based on the correction information from the first observing unit, the second signal correcting unit includes a phase shift of the first decoded signal of the demodulated signal and a spectrum before the first decoding unit. Receiver that corrects inversion. (2) further including a likelihood conversion unit that converts the demodulated signal into likelihood; The second signal correction unit is configured to detect the first decoded signal of the demodulated signal based on correction information from the first observation unit, before the likelihood conversion unit and the first decoding unit.
  • the receiving device according to (1), wherein phase shift and spectrum inversion are corrected.
  • the receiving apparatus further including a likelihood conversion unit that converts the demodulated signal into likelihood;
  • the second signal correction unit is a subsequent stage of the likelihood conversion unit, and in the previous stage of the first decoding unit, the demodulated signal is converted based on the correction information from the first observation unit.
  • a third signal correction unit that estimates a frame configuration of the signal based on a known signal included in the first decoded signal and corrects the first decoded signal;
  • a second observation unit that observes a known signal included in the first decoded signal, estimates a frame configuration of the signal, and outputs corresponding correction information;
  • the third signal correction unit corrects the first decoded signal in a stage preceding the first signal correction unit,
  • the receiver according to (4), wherein the fourth signal correction unit corrects the demodulated signal in a stage preceding the second signal correction unit.
  • the third signal correction unit corrects the first decoded signal at a later stage than the first signal correction unit
  • the receiving apparatus according to (4), wherein the fourth signal correction unit corrects the demodulated signal at a stage subsequent to the second signal correction unit.
  • the receiving device according to any one of (1) to (6), wherein the first decoding unit decodes the demodulated signal into a first decoded signal by viterbi decoding.
  • the second decoding unit decodes the first decoded signal corrected by the first signal correction unit into a second decoded signal by RS (Read-Solomon) decoding. (1) Thru
  • (9) Demodulate the signal received by the antenna and output the demodulated signal.
  • the process of the step of correcting the phase shift and spectrum inversion of the first decoded signal is based on the known signal included in the first decoded signal, estimating the phase shift and spectrum inversion of the signal, Correct the phase shift and spectrum inversion of the first decoded signal, The process of outputting the correction information estimates the phase shift and spectrum inversion of the first decoded signal, outputs the corresponding correction information, The process of correcting the phase shift and spectrum inversion of the first decoded signal is performed based on the correction information from the first observation unit, before the first decoding unit.
  • a receiving method of a receiving apparatus for correcting a phase shift and spectrum inversion of the first decoded signal is based on the known signal included in the first decoded signal, estimating the phase shift and spectrum inversion of the signal, Correct the phase shift and spectrum inversion of the first decoded signal, The process of outputting the correction information estimates the phase shift and spectrum inversion of the first decoded signal, outputs the corresponding correction information, The process of correcting the phase shift and spectrum
  • a demodulator that demodulates a signal received by the antenna and outputs a demodulated signal;
  • a first decoding unit for decoding the demodulated signal into a first decoded signal;
  • a first observation unit for observing a known signal included in the first decoded signal and outputting corresponding correction information;
  • a first signal correction unit that corrects the first decoded signal based on a known signal included in the first decoded signal or outputs the first decoded signal as it is;
  • a second decoding unit that decodes the first decoded signal corrected by the first signal correcting unit or outputted as it is into a second decoded signal;
  • Based on the correction information from the first observation unit a configuration including a second signal correction unit that corrects the demodulated signal in a stage before the first decoding unit is realized by a computer,
  • the first decoding unit decodes the demodulated signal corrected by the second signal correction unit into the first decoded signal using the second decoded signal,
  • the first signal correction unit
  • the first observation unit observes a known signal included in the first decoded signal, estimates a phase shift and spectrum inversion of the signal, and outputs corresponding correction information; Based on the correction information from the first observing unit, the second signal correcting unit includes a phase shift of the first decoded signal of the demodulated signal and a spectrum before the first decoding unit. Program that corrects inversion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Error Detection And Correction (AREA)

Abstract

 本技術は、主信号と帰還信号とを符号語単位で一致させるようにすることで、繰り返し処理を用いた誤り訂正処理の精度を向上させることができるようにする受信装置、および、受信装置の受信方法、並びにプログラムに関する。 ビタビ復号部は、復調信号を復号する。観測部は、ビタビ復号された信号に含まれる既知信号を観測し、位相ずれおよびスペクトラム反転を補正する補正情報を出力する。第1の信号補正部は、ビタビ復号された信号に含まれる既知信号に基づいて、位相ずれおよびスペクトラム反転を補正し、RS復号部が、RS復号する。第2の信号補正部は、観測部からの補正情報に基づいて、ビタビ復号される前段で、復調信号の位相ずれおよびスペクトラム反転を補正する。そして、ビタビ復号部は、RS復号が成功した信号を用いて、復調信号をビタビ復号する。本技術は、衛星放送の受信装置に適用することができる。

Description

受信装置、および、受信装置の受信方法、並びにプログラム
 本技術は、受信装置、および、受信装置の受信方法、並びにプログラムに関し、特に、繰り返し復号方式の誤り訂正処理の精度を向上できるようにした受信装置、および、受信装置の受信方法、並びにプログラムに関する。
 DVB-S(Digital Video Broadcasting-Satellite)衛星デジタル放送受信装置は、アンテナで受信した信号を復調処理し、復調処理結果の誤りを訂正し、訂正した信号を用いて画像および音声を再生して出力する。
 従来において、信号の誤りを訂正する誤り訂正部として、例えば、復調処理結果である複素平面で表現される信号を尤度へ変換し、尤度をビタビ復号し、ビタビ復号された信号より既知信号を検出して符号語単位で信号位置を補正すると共に、位相ずれやスペクトラム反転を検出して補正し、補正された信号をデインターリーブ処理し、デインターリーブ処理された信号をRS(Read-Solomon)復号するものが提案されている(非特許文献1参照)。
 近年においては、繰り返し処理を行うことにより、誤り訂正部の性能を向上させる技術が提案されている(非特許文献2および特許文献1参照)。この繰り返し処理を用いた誤り訂正部は、上述した処理に加えて、誤り訂正結果であるRS復号された信号をインターリーブ処理し、以降の信号処理において、帰還信号として、ビタビ復号処理において利用する。このような処理により、誤り訂正部の性能を向上させる。
ETSI EN 300 421 V1.1.2 Y. Narikiyo and M. Takada, "Improvement of HDTV Mobile Reception Performance for ISDB-T Using Iterative Decoding 8-branch Space Diversity Technology," in IEEE International Symposium on Broadband Multimedia Systems and Broadcasting(BMSB 2011), Nurnberg, Germany, June 2011.
特開2013-251691号公報
 しかしながら、非特許文献2および特許文献1において開示されている、繰り返し処理により性能を向上させるようにした誤り訂正部においては、ビタビ復号処理の対象であって、主信号である復調信号を尤度変換した尤度の信号と、誤り訂正結果をインターリーブ処理した帰還信号との整合性がとれない。
 すなわち、帰還信号は、復号が成功することにより符号語単位で信号が供給されてくるが、主信号は、どの位置に符号語単位の信号系列が存在するのかを認識することができない。このため、帰還信号を用いて、繰り返し処理により、主信号の誤り訂正の精度を向上させるには、主信号と帰還信号とを符号語単位で一致させて処理する必要がある。
 本技術は、このような状況に鑑みてなされたものであり、主信号と帰還信号とを符号語単位で一致させるようにすることで、繰り返し処理を用いた誤り訂正処理の精度を向上させるようにするものである。
 本技術の一側面の受信装置は、アンテナ受信した信号を、復調処理し、復調信号を出力する復調部と、前記復調信号を第1の復号信号に復号する第1の復号部と、前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力する第1の観測部と、前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正する、または、そのまま出力する第1の信号補正部と、前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号する第2の復号部と、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第2の信号補正部とを含み、前記第1の復号部は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、前記第1の信号補正部は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、前記第1の観測部は、前記第1の復号信号に含まれる既知信号を観測し、前記信号の位相ずれ、およびスペクトラム反転を推定し、対応する補正情報を出力し、前記第2の信号補正部は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する。
 前記復調信号を尤度に変換する尤度変換部をさらに含ませるようにすることができ、前記第2の信号補正部には、前記尤度変換部および前記第1の復号部の前段において、前記第1の観測部からの補正情報に基づいて、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正させるようにすることができる。
 前記復調信号を尤度に変換する尤度変換部をさらに含ませるようにすることができ、前記第2の信号補正部には、前記尤度変換部の後段であって、前記第1の復号部の前段において、前記第1の観測部からの補正情報に基づいて、前記復調信号が変換された尤度の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正させるようにすることができる。
 前記第1の復号信号に含まれる既知信号に基づいて、前記信号のフレーム構成を推定し、前記第1の復号信号を補正する第3の信号補正部と、前記第1の復号信号に含まれる既知信号を観測し、前記信号のフレーム構成を推定し、対応する補正情報を出力する第2の観測部と、前記第2の観測部の観測結果である、前記補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第4の信号補正部とをさらに含ませるようにすることができる。
 前記第3の信号補正部には、前記第1の信号補正部よりも前段において、前記第1の復号信号を補正させ、前記第4の信号補正部には、前記第2の信号補正部よりも前段において、前記復調信号を補正させるようにすることができる。
 前記第3の信号補正部には、前記第1の信号補正部よりも後段において、前記第1の復号信号を補正させ、前記第4の信号補正部には、前記第2の信号補正部よりも後段において、前記復調信号を補正させるようにすることができる。
 前記第1の復号部には、ビタビ復号により前記復調信号を第1の復号信号に復号させるようにすることができる。
 前記第2の復号部には、RS(Read-Solomon)復号により、前記第1の信号補正部により補正された前記第1の復号信号を、第2の復号信号に復号させるようにすることができる。
 本技術の一側面の受信装置の受信方法は、アンテナ受信した信号を、復調処理し、復調信号を出力し、前記復調信号を第1の復号信号に復号し、前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力し、前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正し、または、そのまま出力し、前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号し、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正するステップを含み、前記第1の復号信号を復号するステップの処理は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正するステップの処理は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、前記補正情報を出力するステップの処理は、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正を推定し、対応する補正情報を出力し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正するステップの処理は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する。
 本技術の一側面のプログラムは、アンテナ受信した信号を、復調処理し、復調信号を出力する復調部と、前記復調信号を第1の復号信号に復号する第1の復号部と、前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力する第1の観測部と、前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正する、または、そのまま出力する第1の信号補正部と、前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号する第2の復号部と、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第2の信号補正部とを含む構成をコンピュータにより実現させ、前記第1の復号部は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、前記第1の信号補正部は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、前記第1の観測部は、前記第1の復号信号に含まれる既知信号を観測し、前記信号の位相ずれ、およびスペクトラム反転を推定し、対応する補正情報を出力し、前記第2の信号補正部は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する。
 本技術の一側面においては、アンテナ受信した信号が、復調処理され、復調信号が出力され、前記復調信号が第1の復号信号に復号され、前記第1の復号信号に含まれる既知信号が観測され、対応する補正情報が出力され、前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号が補正され、または、そのまま出力され、補正された、または、そのまま出力された前記第1の復号信号が、第2の復号信号に復号され、補正情報に基づいて、前記第1の復号信号に復号されるよりも前段において、前記復調信号が補正され、補正された前記復調信号が、前記第2の復号信号が利用されて、前記第1の復号信号に復号され、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転が推定され、前記第1の復号信号の位相ずれ、およびスペクトラム反転が補正され、前記第1の復号信号に含まれる既知信号が観測され、前記信号の位相ずれ、およびスペクトラム反転が推定され、対応する補正情報が出力され、補正情報に基づいて、前記第1の復号信号に復号されるよりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転が補正される。
 本技術の一側面の受信装置は、それぞれ独立した装置であっても良いし、受信装置のそれぞれとして機能するブロックであっても良い。
 本技術の一側面によれば、繰り返し方式の誤り訂正処理において、より高い精度で誤り訂正を実現することが可能となる。
本技術を適用した受信装置の構成例を説明する図である。 一般的な誤り訂正部の構成例を説明する図である。 その他の一般的な誤り訂正部の構成例を説明する図である。 本技術を適用した誤り訂正部の第1の実施の形態の構成例を説明する図である。 既知の信号からフレームの構成を推定する例を説明する図である。 図4の誤り訂正部による誤り訂正処理を説明するフローチャートである。 図6の位置観測処理を説明するフローチャートである。 観測部による動作を説明する図である。 信号補正部の動作を説明する図である。 位相ずれ、およびスペクトラム反転を説明する図である。 本技術を適用した誤り訂正部の第2の実施の形態の構成例を説明する図である。 図11の誤り訂正部による誤り訂正処理を説明するフローチャートである。 図12の位相観測処理を説明するフローチャートである。 位相観測処理を説明する図である。 本技術を適用した誤り訂正部の第3の実施の形態の構成例を説明する図である。 図15の誤り訂正部による誤り訂正処理を説明するフローチャートである。 図15の誤り訂正部による誤り訂正処理を説明する図である。 図15の誤り訂正部による誤り訂正処理を説明する図である。 本技術を適用した誤り訂正部の第4の実施の形態の構成例を説明する図である。 図19の誤り訂正部による誤り訂正処理を説明するフローチャートである。 汎用のパーソナルコンピュータの構成例を説明する図である。
 <受信装置の構成例>
 図1は、本技術を適用した受信装置の構成例を示している。
 図1の受信装置11は、従来のDVB-S(Digital Video Broadcasting-Satellite)衛星デジタル放送受信装置である。
 受信装置11は、アンテナ31、復調処理部32、誤り訂正部33、デコーダ34、および出力部35を備えている。
 復調処理部32は、アンテナ31を介して受信される衛星からの信号を受信すると、復調処理を施して、誤り訂正部33に供給する。誤り訂正部33は、復調処理された衛星からの信号であって、内符号として畳み込み符号化処理され、外符号としてRS(Read-Solomon)符号化処理された信号を復号し、誤り訂正処理を施してデコーダ34に出力する。
 デコーダ34は、誤り訂正された信号に基づいて、デコード処理を行い、デコード結果を、画像および音声として出力部35より出力させる。
 <一般的な誤り訂正部の構成例>
 ここで、本技術を適用した誤り訂正部の構成例を説明するにあたって、まず、一般的な誤り訂正部の構成例について、図2を参照して説明する。
 図2の一般的な誤り訂正部33は、尤度変換部51、ビタビ復号部52、信号補正部53、デインターリーブ処理部54、およびRS復号部55を備えている。
 尤度変換部51は、復調処理結果である複素平面上で表現される、すなわち、I信号、およびQ信号からなる信号を尤度へと変換し、ビタビ復号部52に出力する。このとき、尤度は、例えば、尤度1、および尤度2で表されるような、例えば、2値の信号系列とされる。
 ビタビ復号部52は、尤度変換部51より供給されてくる、内符号である畳み込み符号化された信号である尤度をビタビ復号し、信号補正部53に出力する。
 信号補正部53は、ビタビ復号された信号より、同期信号として知られる、例えば、0x47、または0xB8といった既知の信号を検出して、フレームを構成する符号語単位の長さおよび位置を推定し、補正すると共に、位相ずれやスペクトラム反転を検出して補正し、デインターリーブ処理部54に出力する。
 デインターリーブ処理部54は、補正された信号をデインターリーブ処理し、RS復号部55に出力する。
 RS(Read-Solomon)復号部55は、デインターリーブ処理部54によりデインターリーブ処理された、外符号であるRS符号化された信号を復号し、誤り訂正結果として出力する。
 すなわち、尤度として求められた信号が、ビタビ復号され、既知の信号が検出されることで符号語単位であるフレームの長さおよび位置が推定されて補正されると共に、位相ずれおよびスペクトラム反転が補正され、さらに、デインターリーブされた後、RS復号されることで、誤り訂正がなされる。
 <繰り返し処理を利用した誤り訂正部の構成例>
 近年においては、繰り返し処理により誤り訂正の性能を向上させる技術が提案されている。図3は、この繰り返し処理を用いた、その他の一般的な誤り訂正部33の構成例が示されている。
 図3の誤り訂正部33の構成例において、図2の誤り訂正部の構成と同一の機能を備えた構成については、同一の名称および同一の符号を付しており、その説明は適宜省略するものとする。
 すなわち、図3の誤り訂正部33において、図2の誤り訂正部33と異なる点は、新たにRS復号部55の出力をインターリーブ処理するインターリーブ処理部56を設けた点である。
 インターリーブ処理部56は、RS復号部55の出力をインターリーブ処理し、処理結果をビタビ復号部52に供給する。
 このとき、ビタビ復号部52は、2回目以降の処理において、インターリーブ処理部56より供給されてくる、RS復号が成功した帰還信号を利用して復号処理を行う。尚、RS復号が成功した帰還信号を利用して、主信号をビタビ復号する処理の詳細については、非特許文献2または特許文献1等を参照されたい。
 ところで、RS復号が成功した帰還信号は、信号補正部53において、既知の信号に基づいたフレーム単位(符号語単位)の長さおよび位置の推定に基づいた補正や、位相ずれやスペクトラム反転に対する補正がなされた、符号語単位の信号である。これに対して、尤度変換部51よりビタビ復号部52に供給されてくる信号には、フレーム単位(符号語単位)の位置が確認できておらず、また位相ずれやスペクトラム反転の補正が加えられておらず、符号語単位がどのように配置されているのか未知の状態の信号である。このため、ビタビ復号部52が、尤度変換部51からの信号を、供給されてくる順序で、そのまま帰還信号に基づいて、復号処理すると、整合性がとれない可能性があり、必ずしも精度を向上させることができない可能性がある。
 <本技術を適用した誤り訂正部の第1の実施の形態の構成例>
 次に、図4を参照して、本技術を適用した誤り訂正部33の第1の実施の形態の構成例について説明する。
 すなわち、図4の誤り訂正部33は、尤度変換部101、信号補正部102、ビタビ復号部103、信号補正部104、観測部105、デインターリーブ処理部106、RS復号部107、およびインターリーブ処理部108を備えている。
 尚、尤度変換部101、ビタビ復号部103、信号補正部104、デインターリーブ処理部106、RS復号部107、およびインターリーブ処理部108は、それぞれ尤度変換部51、ビタビ復号部52、信号補正部53、デインターリーブ処理部54、RS復号部55、およびインターリーブ処理部56と基本的な機能が同様であるので、適宜説明は省略するものとする。また、信号補正部104は、ここでは、既知の信号を検出して、フレームの構成を推定し、推定した構成に応じて、処理すべき信号の位置を補正し、符号語単位でデインターリーブ処理部106に供給する。
 観測部105は、既知の信号の位置の情報を観測することにより、フレーム単位(符号語単位)の位置および長さといった構成を推定し、推定結果に基づいて、信号補正部104においてなされる位置の補正量を求め、観測結果である位置の補正情報として信号補正部102に供給する。
 信号補正部102は、観測部105より供給されてくる位置の補正情報に基づいて、尤度変換部51より出力されてくる信号の位置を補正することにより、符号語単位でビタビ復号部103に出力する。
 すなわち、信号補正部104は、例えば、図5の上部で示されるような入力信号In1が供給されてくるとき、図5の下部の出力信号Out1で示されるように、ISDB-T(Digital Video Broadcasting-Terrestrial)規格で規定される、パケットの最終位置に設けられる同期バイトの値である、既知の値0x47または0xB8を検出する。そして、信号補正部104は、この既知の値0x47または0xB8のバイト単位の位置を基準として、例えば、204バイトの規定値を1フレーム分の信号となるように位置を補正して、順次、この1フレーム単位といった、適切な符号語単位で信号をRS復号部107に出力する。
 この結果、RS復号部107は、1フレーム分の信号の先頭位置から204バイトの情報を復号することで、適切にRS復号することができる。
 また、信号補正部102には、観測部105より、上述した信号補正部104によりなされる位置の補正に必要な補正情報が供給される。結果として、信号補正部102は、信号補正部104と同様の位置ずれを補正することができる。そして、この処理により、ビタビ復号部103には、信号補正部102により、後段のRS復号部107によるRS復号結果と適切に一致するように、尤度変換された信号が、符号語単位で適切に供給されることになる。結果として、ビタビ復号部103は、RS復号部107によるRS復号が成功している、出力結果がインターリーブ処理部108によりインターリーブ処理された帰還信号に基づいて、信号補正部102より供給されてくる主信号を適切にビタビ復号することが可能となる。
 すなわち、繰り返し処理により、効果的に誤り訂正の精度を向上させることが可能となる。
 <図4の誤り訂正部による誤り訂正処理>
 次に、図6のフローチャートを参照して、図4の誤り訂正部33による誤り訂正処理について説明する。
 ステップS11において、尤度変換部101は、復調処理部32からの復調処理結果である複素平面上で表現される信号を尤度へ変換し、信号補正部102に出力する。
 ステップS12において、信号補正部102は、直前の入力信号列の情報に基づいた、観測部105からの観測結果である補正量に基づいて、尤度の信号の位置を、適切なフレームの符号語単位で処理できるように補正してビタビ復号部103に出力する。ただし、先頭のフレームについては、正確なフレーム位置が特定されておらず、適切に符号語単位で処理ができないため、仮のフレーム長で処理するものとする。さらに、観測部105では、後述する処理により既知の信号が検出されるまで、観測結果である補正量の情報が送信されてこないので、信号に対しての補正などを行わない状態で、そのまま出力する。
 ステップS13において、ビタビ復号部103は、補正された尤度の信号をビタビ復号して信号補正部104および観測部105に出力する。このとき、最初の処理においては、RS復号部107により復号が成功した帰還信号が供給されてこない状態であるので、最初の処理においては、一般的なビタビ変換により処理がなされる。
 ステップS14において、信号補正部104は、ビタビ復号された信号のうち、既知の信号を検出し、検出した同期信号などの0x47または0xB8といった既知の信号を検出し、検出した既知の信号の直前において所定バイト数分の空信号を入力した後、順次、先頭から1フレーム分の符号語単位毎にデインターリーブ処理部106に出力する。
 ステップS15において、観測部105は、位置観測処理を実行することにより、上述した信号補正部104により補正される、1フレーム分の符号語単位の先頭位置として補正される位置の情報を観測して、その位置の差分となるずれ量の情報を補正情報として信号補正部102に供給する。
 <位置観測処理>
 ここで、図7のフローチャートを参照して、観測部105による位置観測処理について説明する。
 ステップS31において、観測部105は、既知の信号ではない場合における信号数をカウントするNGカウンタCNG、および入力されてきた信号数をカウントするインプットカウンタCINDYをリセットする。
 ステップS32において、観測部105は、1ビット(1bit)分の入力信号を受け取る。
 ステップS33において、観測部105は、インプットカウンタCINを1インクリメントする。
 ステップS34において、観測部105は、現在の入力信号と、過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8であるか否かを判定する。ステップS34において、例えば、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8ではない場合、処理は、ステップS35に進む。
 ステップS35において、観測部105は、NGカウンタCNGを1インクリメントし、処理は、ステップS32に戻り、例えば、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が既知の信号である0x47、または、0xB8となるまで、ステップS32乃至S35の処理が繰り返される。
 そして、ステップS34において、例えば、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8である場合、処理は、ステップS36に進む。
 ステップS36において、観測部105は、NGカウンタCNGの値をずれ量として信号補正部102に送信する。
 以上の処理により、既知の信号である0x47、または、0xB8が検出された位置が検出されることにより、フレームの先頭位置と、仮フレームの先頭位置とのずれ量が補正量として求められることになる。
 ここで、図6のフローチャートの説明に戻る。
 ステップS16において、デインターリーブ処理部106は、信号補正部104により位置が補正された信号を、デインターリーブ処理し、RS処理部107に供給する。
 ステップS17において、RS処理部107は、デインターリーブされた信号に対してRS復号処理を施して復号し、誤り訂正結果として出力するとともに、インターリーブ処理部108に供給する。
 ステップS18において、インターリーブ処理部108は、誤り訂正結果となる出力をインターリーブしてビタビ復号部103に供給する。
 ステップS19において、尤度変換部101は、入力信号が終了したか否かを判定し、終了していない場合、処理は、ステップS11に戻り、それ以降の処理が繰り返される。そして、ステップS19において、入力信号が終了したと判定された場合、処理は、終了する。
 以上の処理により、例えば、信号補正部104、および観測部105では、図8で示されるような入力信号列In10が入力されるものとする。このとき、信号補正部102でも、信号補正部104および観測部105に入力される前のタイミングで、例えば、図9の入力信号列In11として入力されている。尚、図8,図9においては、データは26バイト単位であるものとする。また、図8中左から順次、0x31、0x5B、0xD0、0x47、0xAC、0x84・・・と入力されているものとする。ただし、図9における入力信号In11は、信号補正部102においてバイト単位のデータが読み取らないので、0x31、0x5B、0xD0、0x47、0xAC、0x84などといった区別されたデータではなく、単にデータとだけ記載されている。すなわち、信号補正部102は、入力信号系列の情報によって位置を読み取らない。ただし、図8,図9の入力信号系列In10,In11は、実質的に同一のものである。
 このとき、ステップS15の位置観測処理により、先頭のデータから順次1ビット単位で既知のデータが検索される。そして、図8の左から4番目で示される既知のデータ0x47が検出されると、先頭位置P0からデータ0x47の先頭位置P1までのビット数がNGカウントCNGとしてカウントされ、差分であるずれ量として求められる。そこで、観測部105は、図8における、今現在の仮のフレームにおける先頭位置P0から、既知のデータ0x47の先頭位置P1までの差分である、本来のフレームの先頭位置と、現状において先頭に送信されたデータとのずれ量を補正情報として信号補正部102に送信する。すなわち、この先頭位置P1が受信されるタイミングにおいて、例えば、この例では26バイト分のずれ量となる、有効補正情報が信号補正部102に送信される。
 従って、図9の補正情報の信号系列In12で示されるように、信号補正部102は、位置P1乃至P4のデータが受信されるタイミングにおいて、現状において先頭に送信されたデータとのずれ量を示す有効な補正情報(有効補正情報)を受信することになる。
 そこで、信号補正部102は、この有効補正情報に基づいて、図9の出力信号系列Out11における位置P2乃至P3で示されるように、ずれ量に相当するビット数分信号の出力を停止して、その後、位置P3乃至P4において、位置補正がなされた1フレーム分の信号を出力する。すなわち、信号補正部102は、信号を識別しないので、符号語単位の位置を認識することはできないが、観測部105からの補正情報に基づいて、ずれ量に対応するビット数分だけ信号出力を停止することで、符号語単位の先頭位置におけるずれ量を補正する。
 これに対応して、図8の入力信号系列In10における位置P2乃至P3で示されるように、信号補正部104、および観測部105においてもデータが入力されない状態となり、その後、位置P3乃至P4のデータが順次入力される。
 そして、位置P4以降においては、図9の出力信号系列Out11で示されるように、信号補正部102は、符号語単位の位置補正が完了した状態で連続的に出力信号系列Out11を出力し続けることになる。この結果、図9の入力信号系列In11で示されるように、符号語単位の先頭位置において、既知の0x47、または0xB8が常に受信されることになるので、以降においては、ずれ量は0となり、位置P4以降において、位置が補正されているので、図9の入力信号系列In11で示されるように、観測部105より信号補正部102に供給される有効補正情報のずれ量は0となる。結果として、位置P4乃至P5において、観測部105へは、図8の入力信号系列In10で示されるように、先頭位置から適切に1フレーム分の信号が出力されるように符号語単位の位置ずれが補正される。
 これにより、以降においては、ビタビ復号部103が処理しようとする入力信号と、処理にあたって参照する、インターリーブ処理部108より供給される帰還信号とを、いずれもフレーム単位、すなわち符号語単位で適切に一致した状態で入力させることが可能になる。
 結果として、これまで、繰り返し処理においては、別途誤り訂正部を並列に設ける必要があったが、誤り訂正部を並列に実装する必要がないので、誤り訂正部を並列に実装する分の実装面積を省スペース化すると共に、実装コストを低減することが可能となる。
 <本技術を適用した誤り訂正部の第2の実施の形態の構成例>
 以上においては、入力信号列のフレーム位置を補正することにより、ビタビ復号部103における入力信号列と帰還信号とを、フレーム単位(符号語単位)で適切に一致させて繰り返し処理による誤り訂正処理の精度を向上させる例について説明してきた。
 ところで、入力信号列は、復調処理部32において複素平面上において送信信号に対して位相が90度、180度、および270度の位相ずれが発生することがある。すなわち、図10の左部で示されるように、星印で示される信号が送信信号であるような場合、復調処理により、受信において90度の位相ずれが発生し、黒丸印で示される受信信号として受信されることがある。尚、図10においては、横軸がI信号である実成分であり、縦軸がQ信号である虚成分である。
 また、アンテナ31において受信波のスペクトラムが反転することにより、受信信号のI信号およびQ信号が入れ替わって反転することがある。すなわち、図10の右部で示されるように、星印で示される信号が送信信号であるような場合、復調処理により、受信においてスペクトラム反転が生じることで、直線L(実成分=虚成分となる直線)を軸として反転し、黒丸印の受信信号として受信されることがある。
 そこで、このような位相ずれやスペクトラム反転を観測し、補正することで、繰り返し処理による誤り訂正処理の精度を向上させるようにしてもよい。
 図11は、位相ずれやスペクトラム反転を観測し、補正することで、繰り返し処理による誤り訂正処理の精度を向上させるようにした誤り訂正部33の構成例を示している。尚、図11の誤り訂正部33において、図4の誤り訂正部33における構成と同一の機能を備えた構成については、同一の名称、および同一の符号を付しており、その説明は適宜省略するものとする。
 すなわち、図11の誤り訂正部33において、図4の誤り訂正部33と異なる点は、信号補正部102、信号補正部104、および観測部105に代えて、信号補正部121、信号補正部122、および観測部123を設け、さらに、信号補正部121を尤度変換部101の前段に配設した点である。
 信号補正部121は、観測部123からの、位相ずれやスペクトラム反転の観測結果に応じた補正情報に基づいて、復調処理部32より入力されるI信号およびQ信号の、位相ずれやスペクトラム反転を補正し、尤度変換部101に供給する。
 信号補正部122は、ビタビ復号部103より出力されるビタビ復号された信号に基づいて、位相ずれやスペクトラム反転を検出し、検出結果に基づいて補正し、デインターリーブ処理部106に出力する。
 観測部123は、ビタビ復号部103より出力されるビタビ復号された信号に基づいて、位相ずれやスペクトラム反転を観測し、観測結果として、位相ずれやスペクトラム反転の有無を補正情報として信号補正部121に供給する。
 <図11の誤り訂正部による誤り訂正処理>
 次に、図12のフローチャートを参照して、図11の誤り訂正部33による誤り訂正処理について説明する。尚、図12のステップS52乃至S54、およびS56乃至S59の処理については、図6のステップS11,S13乃至S14、およびS16乃至S19の処理と同様であるので、その説明は省略するものとする。
 すなわち、ステップS51において、信号補正部121は、観測部123より供給されてくる直前の入力信号列の情報に基づいた、観測結果である位相ずれの有無、およびスペクトラム反転の有無を示す補正情報に基づいて、復調処理部32より供給されてくるI信号およびQ信号を補正して、尤度変換部101に出力する。ただし、観測部123より供給される補正情報は、位相ずれおよびスペクトラム反転の有無を示すのみであり、いずれの角度の位相ずれであるか、または、スペクトラム反転であるのかについての情報は含まれていない。このため、信号補正部121は、位相ずれ、およびスペクトラム反転が生じていることを示す補正情報が送信されてくる度に、90度、180度、および270度のそれぞれの位相ずれに対する補正、並びに、各位相ずれに対するスペクトラム反転の補正を巡回的に切り替えて補正する。これにより、位相ずれ、およびスペクトラム反転が発生していることを示す情報が補正情報として送信されない状態まで、補正内容を切り替えながら補正を繰り返すことで、少なくとも全てのパターンのいずれかで、補正がなされることになる。
 そして、ステップS52乃至S54の処理により、尤度変換部101により尤度に変換され、ビタビ復号部103によりビタビ復号され、さらに、信号補正部122により位相、またはスペクトラム反転の有無が検出されて、検出された場合、対応する補正がなされる。
 ステップS55において、観測部123は、位相観測処理を実行して、位相ずれ、またはスペクトラム反転が発生しているか否かを判定し、対応する補正情報を信号補正部121に通知する。尚、位相観測処理については、図13のフローチャートを参照して、詳細を後述する。
 ステップS56乃至S59において、デインターリーブ処理部106によりインターリーブ処理され、RS復号部107によりRS復号処理がなされて出力されるとともに、インターリーブ処理部108によりインターリーブ処理がなされ、復調処理部32より信号が供給されない状態になるまで、同様の処理が繰り返される。
 <位相観測処理>
 ここで、図13のフローチャートを参照して、図11の観測部123による位相観測処理について説明する。
 ステップS71において、観測部123は、既知の信号ではない場合における信号数をカウントするNGカウンタCNG、および入力されてきた信号数をカウントするインプットカウンタCINをリセットする。
 ステップS72において、観測部123は、1ビット(1bit)分の入力信号を受け取る。
 ステップS73において、観測部123は、インプットカウンタCINを1インクリメントする。
 ステップS74において、観測部123は、現在の入力信号と、過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8であるか否かを判定する。ステップS74において、例えば、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8であると判定された場合、処理は、ステップS75に進む。
 ステップS75において、観測部123は、位相ずれやスペクトラム反転が生じていないことを示す観測結果を補正情報として信号補正部121に通知する。
 一方、ステップS74において、例えば、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8ではないと判定された場合、処理は、ステップS76に進む。
 ステップS76において、観測部123は、インプットカウンタCINが最大値であるか否かを判定し、最大値ではない場合、処理は、ステップS72に戻り、それ以降の処理が繰り返される。
 そして、ステップS76において、インプットカウンタCINが最大値であると判定された場合、すなわち、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8ではなく、インプットカウンタCINが、例えば、フレームの長さとして定義される符号長に対応する最大値になるまで繰り返された場合、処理は、ステップS77に進む。
 ステップS77において、観測部123は、NGカウンタCNGを1インクリメントし、処理は、ステップS78に進む。
 ステップS78において、観測部123は、NGカウンタCNGが最大値であるか否かを判定し、最大値ではない場合、処理は、ステップS79に進む。
 ステップS79において、観測部123は、NGカウンタCNGを0にリセットして、処理は、ステップS72に戻る。
 そして、ステップS78において、既知の信号である0x47、または、0xB8ではない状態が、例えば、複数フレーム分繰り返されることを示す所定の回数として設定される、最大値になった場合、処理は、ステップS80に進む。
 ステップS80において、観測部123は、位相ずれ、および、スペクトラム反転のいずれかが生じていることを示す観測結果を補正情報として信号補正部121に通知する。
 すなわち、現在の入力信号と過去の7ビット分の値との合計8ビット分の信号が、既知の信号である0x47、または、0xB8ではない状態が複数フレーム間で継続して繰り返されて、NGカウンタCNGが最大値を超えたとき、位相ずれ、およびスペクトラム反転の、少なくともいずれかが発生していることを示す観測結果を補正情報として信号補正部121に通知する。つまり、複数のフレームに対応する符号語数の信号から既知の信号が検出されない時、位相ずれ、およびスペクトラム反転の、少なくともいずれかが発生しているものと見なされる。
 そして、位相ずれ、およびスペクトラム反転の少なくともいずれかが生じていることが通知されることにより、ステップS51において、信号補正部121は、復調処理部32より供給されてくるI信号およびQ信号を補正する。
 例えば、図14の上段左部で示される複素平面上の星印で示される入力信号(I,Q)=(I1,Q1)に対して、90度の位相ずれを補正する場合、信号補正部121は、図14の上段右部の黒丸印で示される出力信号(I,Q)=(-Q1,I1)に変換して出力する。
 また、例えば、図14の下段左部で示される複素平面上の星印で示される入力信号(I,Q)=(I1,Q1)に対して、スペクトラム反転を補正する場合、信号補正部121は、図14の下段右部の黒丸印で示される出力信号(I,Q)=(Q1,I1)に変換して出力する。ここで、図14の下段における直線Lは、I=Qとなる直線である。
 さらに、観測部123より供給されてくる補正情報が、位相ずれ、およびスペクトラム反転の、少なくともいずれかが発生していることを示す観測結果である場合、信号補正部121は、90度、180度、および270度の位相ずれに対する補正、並びに、スペクトラム反転による補正を順次切り替える。これにより、位相ずれのない0度に加えて、90度、180度、および270度の位相ずれ、および、これらにスペクトラム反転の有無を含めた補正が順次切り替えられる。そして、位相ずれ、およびスペクトラム反転の少なくともいずれかが生じている場合、位相ずれ、およびスペクトラム反転が発生していることを示す補正情報が観測部123より供給され続けることになるので、順次内容が切り替えられながら補正が繰り返される。そして、位相ずれ、およびスペクトラム反転が生じていることを示す補正情報が送信されて来ない状態になると、位相ずれ、およびスペクトラム反転の補正が停止する。
 結果として、ビタビ復号部103においては、尤度変換部101より入力される入力信号と、インターリーブ処理部108より供給される帰還信号との位相ずれ、およびスペクトラム反転の少なくとも、そのいずれかによる補正なされても一致させることが可能となり、より高い精度で誤り補正を実現することが可能となる。
 また、これまで、位相ずれやスペクトラム反転が生じている受信状態を正しく補正するためには、誤り訂正処理結果から、復号失敗であることを検出し、補正をしなくてはならず、このため同期に必要とされる時間が、誤り訂正処理時間を長くする大きな要因となっていた。これに対して、本技術の受信装置においては、ビタビ復号処理を施す前の段階で補正することができるので、同期に必要とされる時間を短縮することが可能となる。
 また、位相ずれやスペクトラム反転を補正するにあたって必要とされる同期時間を短くするために、別途、並列に誤り訂正部を設けるといった構成が必要であったが、本技術においては不要であるため、実装面積を低減することなく、位相ずれやスペクトラム反転を補正することが可能となる。
 <本技術を適用した誤り訂正部の第3の実施の形態の構成例>
 以上においては、位相ずれ、およびスペクトラム反転に対する補正をするにあたって、尤度変換部101に入力される前の、復調処理部32より供給されてくる実成分および虚成分を補正する例について説明してきたが、例えば、尤度変換部101により変換された2種類の尤度に対して補正を施すようにしてもよい。
 図15は、尤度変換部101により変換された2種類の尤度に対して補正を施すようにした誤り訂正部33の構成例を示している。尚、図15の誤り訂正部33の構成において、図11の誤り訂正部33の構成と同一の機能を備えた構成については、同一の名称、および同一の符号を付しており、その説明はついては適宜省略するものとする。
 すなわち、図15の誤り訂正部33の構成において、図11の誤り訂正部33の構成と異なる点は、信号補正部121に代えて、信号補正部141を設けるようにし、さらに、尤度変換部101の後段であって、ビタビ復号部103の前段に設けるようにした点である。
 信号補正部141は、観測部123より供給されてくる観測結果である補正情報に基づいて、尤度変換部101により復調処理部32より供給されてきた2種類の尤度1、尤度2に対して補正を施す。
 <図15の誤り訂正部による誤り訂正処理>
 次に、図16のフローチャートを参照して、図15の誤り訂正部33により誤り訂正処理について説明する。尚、図16のフローチャートにおけるステップS101,S103乃至S109の処理については、図12のフローチャートにおけるステップS52乃至S59の処理と同様であるので、その説明は省略するものとする。
 すなわち、図16のフローチャートにおいては、ステップS101において、尤度変換部101によりI信号およびQ信号が、2種類の尤度1、尤度2に変換されると、ステップS102において、信号補正部141は、尤度1、尤度2に対して観測部123からの観測結果である補正情報に基づいて、位相ずれ、およびスペクトラム反転の少なくともいずれかを補正する。
 例えば、DVB-S規格における尤度変換部101の尤度変換処理は、QPSK変調の復調とデパンクチュアリングに分けられる。このため、信号補正部141は、例えば、90度の位相ずれに対する補正として、図17で示されるように補正する。
 ここで、図17は、左から符号化率、尤度変換部101のI信号およびQ信号からなる送信信号系列、補正前尤度信号系列、および補正後尤度信号系列の例を示している。
 すなわち、符号化率1/2の場合、尤度変換部101は、送信信号系列がX1,Y1を、尤度1=L(X1)、尤度2=L(Y1)に変換するものとする。この場合、信号補正部141は、尤度1をL(-Y1)に補正し、尤度2をL(X1)に補正する。
 また、符号化率2/3の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2を、尤度1=L(X1),0、尤度2=L(Y1),L(Y2)に変換するものとする。この場合、信号補正部141は、尤度1をL(-Y1),0,L(Y2),0に補正し、尤度2をL(X1),L(-X1),L(-Y2),L(Y1)に補正する。
 さらに、符号化率3/4の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2,X3を、尤度1=L(X1),0,L(X3)、尤度2=L(Y1),L(Y2),0に変換するものとする。この場合、信号補正部141は、尤度1をL(-Y1),0,L(Y2)に補正し、尤度2をL(X1),L(-X3),0に補正する。
 また、符号化率5/6の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2,X3,Y4,X5を、尤度1=L(X1),0,L(X3),0,L(X5)、尤度2=L(Y1),L(Y2),0,L(Y4),0に変換するものとする。この場合、信号補正部141は、尤度1をL(-Y1),0,L(Y2),0,L(Y4)に補正し、尤度2をL(X1),L(-X3),0,L(X5),0に補正する。
 さらに、符号化率7/8の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2,X3,Y4,X5,Y6,X7を、尤度1=L(X1),0,L(X3),0,L(X5),0,L(X7)、尤度2=L(Y1),L(Y2),0,L(Y4),0,L(Y6),0に変換するものとする。この場合、信号補正部141は、尤度1をL(-Y1),0,L(Y2),0,L(Y4),0,L(Y6)に補正し、尤度2をL(X1),L(-X3),0,L(X5),0,L(-X7),0に補正する。
 また、信号補正部141は、例えば、スペクトラム反転に対する補正として、図18で示されるように補正する。
 ここで、図18は、左から符号化率、尤度変換部101のI信号およびQ信号からなる送信信号系列、補正前尤度信号系列、および補正後尤度信号系列の例を示している。
 すなわち、符号化率1/2の場合、尤度変換部101は、送信信号系列がX1,Y1を、尤度1=L(X1)、尤度2=L(Y1)に変換するものとする。この場合、信号補正部141は、尤度1をL(Y1)に補正し、尤度2をL(X1)に補正する。
 また、符号化率2/3の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2を、尤度1=L(X1),0、尤度2=L(Y1),L(Y2)に変換するものとする。この場合、信号補正部141は、尤度1をL(Y1),0,L(Y2),0に補正し、尤度2をL(X1),L(X1),L(Y2),L(Y1)に補正する。
 さらに、符号化率3/4の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2,X3を、尤度1=L(X1),0,L(X3)、尤度2=L(Y1),L(Y2),0に変換するものとする。この場合、信号補正部141は、尤度1をL(Y1),0,L(Y2)に補正し、尤度2をL(X1),L(X3),0に補正する。
 また、符号化率5/6の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2,X3,Y4,X5を、尤度1=L(X1),0,L(X3),0,L(X5)、尤度2=L(Y1),L(Y2),0,L(Y4),0に変換するものとする。この場合、信号補正部141は、尤度1をL(Y1),0,L(Y2),0,L(Y4)に補正し、尤度2をL(X1),L(X3),0,L(X5),0に補正する。
 さらに、符号化率7/8の場合、尤度変換部101は、送信信号系列がX1,Y1,Y2,X3,Y4,X5,Y6,X7を、尤度1=L(X1),0,L(X3),0,L(X5),0,L(X7)、尤度2=L(Y1),L(Y2),0,L(Y4),0,L(Y6),0に変換するものとする。この場合、信号補正部141は、尤度1をL(Y1),0,L(Y2),0,L(Y4),0,L(Y6)に補正し、尤度2をL(X1),L(X3),0,L(X5),0,L(X7),0に補正する。
 結果として、ビタビ復号部103においては、尤度変換部101より入力される入力信号と、インターリーブ処理部108より供給される帰還信号との位相ずれ、およびスペクトラム反転の少なくとも、そのいずれかによる補正により一致させることが可能となり、より高い精度で誤り補正を実現することが可能となる。
 <本技術を適用した誤り訂正部の第4の実施の形態の構成例>
 以上においては、誤り訂正部33の第1の実施の形態の構成によるフレームの位置ずれを補正する例、並びに、第3の実施の形態の構成例による位相ずれ、およびスペクトラム反転を補正する例について個別に説明してきたが、それらを組み合わせるようにしてもよい。
 図19は、入力信号における、フレームの位置ずれを補正するとともに、位相ずれ、およびスペクトラム反転を補正するようにした誤り訂正部33の構成例を示している。尚、図19の誤り訂正部33における構成について、図4、図11、図15の誤り訂正部33における構成と同一の構成については、同一の名称および同一の符号を付しており、その説明は適宜省略するものとする。
 すなわち、図19の誤り訂正部33の構成において、図15の誤り訂正部33の構成と異なる点は、信号補正部141の前段に信号補正部102が設けられ、観測部123と並列に観測部105が設けられ、さらに、信号補正部122の前段に信号補正部104が設けられた点である。
 このような構成により、観測部105によりフレームの位置ずれが観測され、観測結果に対応する補正情報が信号補正部102に供給される。また、観測部123により位相ずれ、およびスペクトラム反転の少なくともいずれかの有無が観測され、観測結果に対応する補正情報が信号補正部141に供給される。そして、ビタビ復号部103によりビタビ復号された信号が、信号補正部104によりフレームの位置ずれが補正された後、信号補正部122により位相ずれ、およびスペクトラム反転が補正される。
 このような構成により、ビタビ復号部103は、入力信号に対して、フレームの位置ずれ、並びに、位相ずれ、およびスペクトラム反転が一致した帰還信号を利用してビタビ復号を実現することが可能となる。
 結果として、より高精度の誤り訂正を実現することが可能となる。
 <図19の誤り訂正部による誤り訂正処理>
 次に、図20のフローチャートを参照して、図19の誤り訂正部33により誤り訂正処理について説明する。尚、図20のフローチャートにおけるステップS131,S132,S134乃至S136,S138乃至S141は、図6のステップS11乃至S19の処理と同様である。また、ステップS133,S137の処理は、図16のフローチャートにおけるステップS102,S105の処理と同様である。
 すなわち、図19の誤り訂正部33による誤り訂正処理により、観測部105の観測結果である補正情報により、入力信号のフレームの位置ずれが補正された後、観測部123の観測結果である補正情報により、位相ずれ、およびスペクトラム反転のいずれかが補正される。これにより、ビタビ復号部103には、フレーム単位(符号語単位)の位置ずれ、並びに、位相ずれ、およびスペクトラム反転の補正がなされた帰還信号が入力され、この帰還信号と一致する補正がなされた入力信号が入力されることになる。したがって、ビタビ復号部103は、入力信号と一致するフレームの位置ずれ、並びに、位相ずれ、およびスペクトラム反転の補正がなされた帰還信号を利用して、入力信号をビタビ復号することが可能となる。
 尚、以上においては、位置ずれの補正処理が、位相ずれ、およびスペクトラム反転の補正処理よりも前段に設けられる構成について説明してきたが、位相ずれ、およびスペクトラム反転の補正処理と、位置ずれの補正処理との前後関係は入れ替えて設けられるようにしてもよい。
 以上の如く、結果として、誤り訂正処理において、繰り返し処理を利用するような場合でも、より精度の高い誤り訂正を実現することが可能となる。
 <ソフトウェアにより実行させる例>
 ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
 図21は、汎用のパーソナルコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタ-フェイス1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
 入出力インタ-フェイス1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
 CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 尚、本技術は、以下のような構成も取ることができる。
(1) アンテナ受信した信号を、復調処理し、復調信号を出力する復調部と、
 前記復調信号を第1の復号信号に復号する第1の復号部と、
 前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力する第1の観測部と、
 前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正する、または、そのまま出力する第1の信号補正部と、
 前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号する第2の復号部と、
 前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第2の信号補正部とを含み、
 前記第1の復号部は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、
 前記第1の信号補正部は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、
 前記第1の観測部は、前記第1の復号信号に含まれる既知信号を観測し、前記信号の位相ずれ、およびスペクトラム反転を推定し、対応する補正情報を出力し、
 前記第2の信号補正部は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
 受信装置。
(2) 前記復調信号を尤度に変換する尤度変換部をさらに含み、
 前記第2の信号補正部は、前記尤度変換部および前記第1の復号部の前段において、前記第1の観測部からの補正情報に基づいて、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
 (1)に記載の受信装置。
(3) 前記復調信号を尤度に変換する尤度変換部をさらに含み、
 前記第2の信号補正部は、前記尤度変換部の後段であって、前記第1の復号部の前段において、前記第1の観測部からの補正情報に基づいて、前記復調信号が変換された尤度の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
 (1)に記載の受信装置。
(4) 前記第1の復号信号に含まれる既知信号に基づいて、前記信号のフレーム構成を推定し、前記第1の復号信号を補正する第3の信号補正部と、
 前記第1の復号信号に含まれる既知信号を観測し、前記信号のフレーム構成を推定し、対応する補正情報を出力する第2の観測部と、
 前記第2の観測部の観測結果である、前記補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第4の信号補正部とをさらに含む
 (3)に記載の受信装置。
(5) 前記第3の信号補正部は、前記第1の信号補正部よりも前段において、前記第1の復号信号を補正し、
 前記第4の信号補正部は、前記第2の信号補正部よりも前段において、前記復調信号を補正する
 (4)に記載の受信装置。
(6) 前記第3の信号補正部は、前記第1の信号補正部よりも後段において、前記第1の復号信号を補正し、
 前記第4の信号補正部は、前記第2の信号補正部よりも後段において、前記復調信号を補正する
 (4)に記載の受信装置。
(7) 前記第1の復号部は、ビタビ復号により前記復調信号を第1の復号信号に復号する
 (1)乃至(6)のいずれかに記載の受信装置。
(8) 前記第2の復号部は、RS(Read-Solomon)復号により、前記第1の信号補正部により補正された前記第1の復号信号を、第2の復号信号に復号する
 (1)乃至(6)のいずれかに記載の受信装置。
(9) アンテナ受信した信号を、復調処理し、復調信号を出力し、
 前記復調信号を第1の復号信号に復号し、
 前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力し、
 前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正し、または、そのまま出力し、
 前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号し、
 前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正するステップを含み、
 前記第1の復号信号を復号するステップの処理は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、
 前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正するステップの処理は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、
 前記補正情報を出力するステップの処理は、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正を推定し、対応する補正情報を出力し、
 前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正するステップの処理は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
 受信装置の受信方法。
(10) アンテナ受信した信号を、復調処理し、復調信号を出力する復調部と、
 前記復調信号を第1の復号信号に復号する第1の復号部と、
 前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力する第1の観測部と、
 前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正する、または、そのまま出力する第1の信号補正部と、
 前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号する第2の復号部と、
 前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第2の信号補正部とを含む構成をコンピュータにより実現させ、
 前記第1の復号部は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、
 前記第1の信号補正部は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、
 前記第1の観測部は、前記第1の復号信号に含まれる既知信号を観測し、前記信号の位相ずれ、およびスペクトラム反転を推定し、対応する補正情報を出力し、
 前記第2の信号補正部は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
 プログラム。
 11 受信部, 31 アンテナ, 32 復調処理部, 33 誤り訂正部, 34 デコーダ, 35 出力部, 51 尤度変換部, 52 ビタビ復号部, 53 信号補正部, 54 デインターリーブ処理部, 55 RS(Read-Solomon)復号部, 57 インターリーブ処理部, 101 尤度変換部, 102 信号補正部, 103 ビタビ復号部, 104 信号補正部, 105 観測部, 106 デインターリーブ処理部, 107 RS復号部, 109 インターリーブ処理部, 121 信号補正部, 122 信号補正部, 123 観測部, 141 信号補正部

Claims (10)

  1.  アンテナ受信した信号を、復調処理し、復調信号を出力する復調部と、
     前記復調信号を第1の復号信号に復号する第1の復号部と、
     前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力する第1の観測部と、
     前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正する、または、そのまま出力する第1の信号補正部と、
     前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号する第2の復号部と、
     前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第2の信号補正部とを含み、
     前記第1の復号部は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、
     前記第1の信号補正部は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、
     前記第1の観測部は、前記第1の復号信号に含まれる既知信号を観測し、前記信号の位相ずれ、およびスペクトラム反転を推定し、対応する補正情報を出力し、
     前記第2の信号補正部は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
     受信装置。
  2.  前記復調信号を尤度に変換する尤度変換部をさらに含み、
     前記第2の信号補正部は、前記尤度変換部および前記第1の復号部の前段において、前記第1の観測部からの補正情報に基づいて、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
     請求項1に記載の受信装置。
  3.  前記復調信号を尤度に変換する尤度変換部をさらに含み、
     前記第2の信号補正部は、前記尤度変換部の後段であって、前記第1の復号部の前段において、前記第1の観測部からの補正情報に基づいて、前記復調信号が変換された尤度の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
     請求項1に記載の受信装置。
  4.  前記第1の復号信号に含まれる既知信号に基づいて、前記信号のフレーム構成を推定し、前記第1の復号信号を補正する第3の信号補正部と、
     前記第1の復号信号に含まれる既知信号を観測し、前記信号のフレーム構成を推定し、対応する補正情報を出力する第2の観測部と、
     前記第2の観測部の観測結果である、前記補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第4の信号補正部とをさらに含む
     請求項3に記載の受信装置。
  5.  前記第3の信号補正部は、前記第1の信号補正部よりも前段において、前記第1の復号信号を補正し、
     前記第4の信号補正部は、前記第2の信号補正部よりも前段において、前記復調信号を補正する
     請求項4に記載の受信装置。
  6.  前記第3の信号補正部は、前記第1の信号補正部よりも後段において、前記第1の復号信号を補正し、
     前記第4の信号補正部は、前記第2の信号補正部よりも後段において、前記復調信号を補正する
     請求項4に記載の受信装置。
  7.  前記第1の復号部は、ビタビ復号により前記復調信号を第1の復号信号に復号する
     請求項1に記載の受信装置。
  8.  前記第2の復号部は、RS(Read-Solomon)復号により、前記第1の信号補正部により補正された前記第1の復号信号を、第2の復号信号に復号する
     請求項1に記載の受信装置。
  9.  アンテナ受信した信号を、復調処理し、復調信号を出力し、
     前記復調信号を第1の復号信号に復号し、
     前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力し、
     前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正し、または、そのまま出力し、
     前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号し、
     前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正するステップを含み、
     前記第1の復号信号を復号するステップの処理は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、
     前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正するステップの処理は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、
     前記補正情報を出力するステップの処理は、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正を推定し、対応する補正情報を出力し、
     前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正するステップの処理は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
     受信装置の受信方法。
  10.  アンテナ受信した信号を、復調処理し、復調信号を出力する復調部と、
     前記復調信号を第1の復号信号に復号する第1の復号部と、
     前記第1の復号信号に含まれる既知信号を観測し、対応する補正情報を出力する第1の観測部と、
     前記第1の復号信号に含まれる既知信号に基づいて、前記第1の復号信号を補正する、または、そのまま出力する第1の信号補正部と、
     前記第1の信号補正部により補正された、または、そのまま出力された前記第1の復号信号を、第2の復号信号に復号する第2の復号部と、
     前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号を補正する第2の信号補正部とを含む構成をコンピュータにより実現させ、
     前記第1の復号部は、前記第2の信号補正部により補正された前記復調信号を、前記第2の復号信号を利用して、前記第1の復号信号に復号し、
     前記第1の信号補正部は、前記第1の復号信号に含まれる既知信号に基づいて、前記信号の位相ずれ、およびスペクトラム反転を推定し、前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正し、
     前記第1の観測部は、前記第1の復号信号に含まれる既知信号を観測し、前記信号の位相ずれ、およびスペクトラム反転を推定し、対応する補正情報を出力し、
     前記第2の信号補正部は、前記第1の観測部からの補正情報に基づいて、前記第1の復号部よりも前段において、前記復調信号の前記第1の復号信号の位相ずれ、およびスペクトラム反転を補正する
     プログラム。
PCT/JP2015/078496 2014-10-21 2015-10-07 受信装置、および、受信装置の受信方法、並びにプログラム WO2016063728A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15852196.3A EP3211799B1 (en) 2014-10-21 2015-10-07 Receiving device, receiving method for receiving device, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214212 2014-10-21
JP2014-214212 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016063728A1 true WO2016063728A1 (ja) 2016-04-28

Family

ID=55760772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078496 WO2016063728A1 (ja) 2014-10-21 2015-10-07 受信装置、および、受信装置の受信方法、並びにプログラム

Country Status (2)

Country Link
EP (1) EP3211799B1 (ja)
WO (1) WO2016063728A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494528A (zh) * 2018-03-26 2018-09-04 南阳师范学院 一种基于bm译码的卫星通信接收端数据处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531550A (ja) * 2000-04-14 2003-10-21 シーメンス アクチエンゲゼルシヤフト 有効データおよび冗長データを有するデータストリームのチャネル復号化方法およびチャネル復号化装置、コンピュータで読み取り可能な記憶媒体、コンピュータプログラムエレメント
JP2004304741A (ja) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置
JP2010051022A (ja) * 2005-10-21 2010-03-04 Samsung Electronics Co Ltd デジタル放送システム及びその方法
JP2012095110A (ja) * 2010-10-27 2012-05-17 Sony Corp 信号処理装置および方法、並びに、プログラム
JP2013251691A (ja) * 2012-05-31 2013-12-12 Sony Corp 受信装置および受信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437874B2 (ja) * 2010-03-26 2014-03-12 富士通株式会社 受信装置および受信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531550A (ja) * 2000-04-14 2003-10-21 シーメンス アクチエンゲゼルシヤフト 有効データおよび冗長データを有するデータストリームのチャネル復号化方法およびチャネル復号化装置、コンピュータで読み取り可能な記憶媒体、コンピュータプログラムエレメント
JP2004304741A (ja) * 2003-04-01 2004-10-28 Matsushita Electric Ind Co Ltd バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置
JP2010051022A (ja) * 2005-10-21 2010-03-04 Samsung Electronics Co Ltd デジタル放送システム及びその方法
JP2012095110A (ja) * 2010-10-27 2012-05-17 Sony Corp 信号処理装置および方法、並びに、プログラム
JP2013251691A (ja) * 2012-05-31 2013-12-12 Sony Corp 受信装置および受信方法

Also Published As

Publication number Publication date
EP3211799B1 (en) 2019-12-04
EP3211799A1 (en) 2017-08-30
EP3211799A4 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP4284125B2 (ja) パリティビットを再循環させる連続コードデコーダ及びその方法
US8824543B2 (en) Multilayer decoding using persistent bits
US7337386B2 (en) Digital transmitter/receiver system having a robust error correction coding/decoding device and error correction coding/decoding method thereof
JP5232865B2 (ja) デジタルテレビジョンシステムのプリアンブル
US8707121B2 (en) Forward error correction encoding/decoding method and apparatus, digital broadcasting reception apparatus, and decoding method thereof
JP2006325007A (ja) 通信装置、当該装置における受信方法、コーデック、デコーダ、通信モジュール、通信部及びデコード方法
JP2012147197A (ja) 通信装置、通信方法、及び通信プログラム
WO2013179974A1 (ja) 受信装置および受信方法
WO2016063728A1 (ja) 受信装置、および、受信装置の受信方法、並びにプログラム
JP2011505723A (ja) 符号エンハンスド・スタガキャスティング
WO2016002572A1 (ja) 受信装置および受信方法、並びにプログラム
WO2016063729A1 (ja) 受信装置、および、受信装置の受信方法、並びにプログラム
JP2005012452A (ja) デジタル信号受信装置、デジタル信号受信方法、及びデジタル信号受信プログラム
JP2022116176A (ja) インターリービング深度を調整するための装置及び方法
US11005502B2 (en) Iterative decoding circuit and decoding method
US8001451B2 (en) Trellis encoder and trellis encoding device having the same
JP5895238B2 (ja) 通信装置、通信方法、及び通信プログラム
JP4558617B2 (ja) 誤り訂正処理方法及び伝送装置
KR100916702B1 (ko) 전송 스트림 패킷의 채널 디코딩 장치 및 그 방법
US20230046212A1 (en) Information processing device, information processing method, and program
JP2008177858A (ja) 転送データ処理装置、プログラム、及び転送データ受信装置
JP2000165260A (ja) 復号装置
WO2016194623A1 (ja) データ処理装置、およびデータ処理方法
JP4601564B2 (ja) 誤り訂正処理方法及び伝送装置
JP4280005B2 (ja) 誤り訂正装置、及び誤り訂正装置を用いた受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852196

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015852196

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP