WO2016056254A1 - 電気集じん装置 - Google Patents

電気集じん装置 Download PDF

Info

Publication number
WO2016056254A1
WO2016056254A1 PCT/JP2015/053230 JP2015053230W WO2016056254A1 WO 2016056254 A1 WO2016056254 A1 WO 2016056254A1 JP 2015053230 W JP2015053230 W JP 2015053230W WO 2016056254 A1 WO2016056254 A1 WO 2016056254A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
discharge
electrode
dust collection
dust
Prior art date
Application number
PCT/JP2015/053230
Other languages
English (en)
French (fr)
Inventor
上田 泰稔
真之 永田
哲史 陵本
理 吉住
西山 徹
士朗 鈴木
Original Assignee
三菱日立パワーシステムズ環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ環境ソリューション株式会社 filed Critical 三菱日立パワーシステムズ環境ソリューション株式会社
Publication of WO2016056254A1 publication Critical patent/WO2016056254A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/025Combinations of electrostatic separators, e.g. in parallel or in series, stacked separators, dry-wet separator combinations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/06Ionising electrode being a needle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically

Definitions

  • the present invention relates to an electrostatic precipitator including a discharge electrode that performs corona discharge and a dust collection electrode that is disposed to face the discharge electrode.
  • the electrostatic precipitator removes dust particles (also called dust, particulate matter, etc.) contained in the exhaust gas or air before releasing them from the chimney to the atmosphere.
  • the electric dust collector includes a discharge electrode, a dust collection electrode disposed opposite to the discharge electrode, etc., and generates a corona discharge between the two electrodes by applying a high voltage to the discharge electrode so that exhaust gas etc. The particles contained in are charged. The charged particles are attracted to the dust collecting electrode by the electric field formed between both electrodes, and are collected on the electrode plate.
  • the dust collection electrode of the electric dust collector is a plate-like member and is generally installed in parallel to the gas flow.
  • it is necessary to increase the area of the dust collection electrode.
  • it is necessary to increase the length in the depth direction, and the apparatus size in the gas flow direction becomes large. In that case, structural design difficulties arise, and equipment placement difficulties due to an increase in installation area occur.
  • a breathable plate (hereinafter referred to as a “breathable member”) with uniform gap distribution over the entire surface, such as a metal mesh or punching metal, is installed in a direction perpendicular to the gas flow to collect dust.
  • a breathable member sometimes used as a pole to collect dust.
  • the air-permeable member has a gap in the corona discharge range of the discharge electrode that can charge the particles most efficiently, the charged particles may slip through and the collection efficiency may be reduced.
  • a plate-like member (hereinafter referred to as “plate-like member”) of a dust collecting electrode without air permeability may be installed in a direction substantially orthogonal to the gas flow.
  • the apparatus size in the gas flow direction can be shortened.
  • the following discharge event occurs. That is, if the dust collection area is increased in order to improve the collection efficiency, the opening is narrowed and the gas flow rate is increased. As a result, the amount of dust passing through the gas increases and the pressure loss increases.
  • the present invention has been made in view of such circumstances, and it is possible to improve the collection efficiency when the plate-like member of the dust collection electrode is installed in a direction substantially orthogonal to the gas flow.
  • An object of the present invention is to provide a simple electric dust collector.
  • the electrostatic precipitator according to the first aspect of the present invention has a protruding discharge thorn, a discharge electrode for performing corona discharge, and a plate-like member having no air permeability, and is installed facing the discharge thorn. And the plate surface of the plate-like member of the dust collection electrode is disposed substantially orthogonal to the gas flow flowing toward the dust collection electrode, and the discharge electrode is the dust collection electrode.
  • the discharge electrode having the protruding discharge thorn performs corona discharge, and the particles included in the gas flow are collected by the dust collection electrode having the plate-like member.
  • the plate-like member does not have air permeability, it is difficult for particles to re-scatter, and the plate-like member is disposed almost orthogonal to the gas flow flowing toward the dust collecting electrode.
  • the size can be shortened.
  • the aperture ratio represented by a / (a + W) is in the range of 10% to 50%, the collection efficiency is high.
  • the width W of the plate-like member is 1.0 d which is equal to the distance d between the tip of the discharge spike and the plate-like member, a result is obtained that the optimum value covers the range affected by the corona discharge. Therefore, by setting the upper limit value of the width W of the plate-shaped member to 2.0d, it is possible to prevent the current density from being excessively lowered, and by setting the lower limit value of the width W of the plate-shaped member to 0.5d, The collection efficiency can be increased without increasing the number of members 7 installed.
  • the width W of the plate-like member is 1.0 d which is equal to the distance d between the tip of the discharge spike and the plate-like member, a result is obtained that the optimum value covers the range affected by the corona discharge. Therefore, by setting the upper limit value of the width W of the plate-like member to 2.0 d, it is possible to prevent the current density from being excessively lowered, and by setting the lower limit value of the width W of the plate-like member to 0.3 d, corona discharge The collection efficiency can be increased without causing too much interference in the generation area.
  • the 2nd discharge electrode installed in the downstream of a gas flow with respect to the said dust collection electrode is further provided,
  • the said 2nd discharge electrode is the plate-shaped member of the said dust collection electrode.
  • the gas discharge part may be provided at a position where discharge is performed on the downstream surface, or the second discharge electrode is formed between two adjacent plate-like members installed in the same plane. It may be provided on the extension of.
  • the 2nd dust collection electrode further installed in the downstream of a gas flow with respect to the said dust collection electrode,
  • the said 2nd dust collection electrode is installed in the same plane. You may provide on the extension of the gas passage part formed between the two said plate-shaped members adjacent to a dust collection electrode.
  • WHEREIN You may further provide the partition plate which plugs up the clearance gap between the said plate-shaped member of the said dust collection electrode, and the inner surface of a casing.
  • the said plate-shaped member of the said dust collection electrode may be arrange
  • the collection efficiency when the plate-like member of the dust collection electrode is installed in a direction substantially perpendicular to the gas flow, the collection efficiency can be improved.
  • the electric dust collector according to the present embodiment is installed in an exhaust gas treatment facility provided in a flue on the downstream side of an industrial combustion facility such as a coal-fired or heavy oil-fired power plant or an incinerator, for example.
  • an industrial combustion facility such as a coal-fired or heavy oil-fired power plant or an incinerator, for example.
  • the electrostatic precipitator can also be used for air purification equipment filters (for example, clean room air conditioning filters, virus removal filters, etc.).
  • air purification equipment filters for example, clean room air conditioning filters, virus removal filters, etc.
  • the electrostatic precipitator 1 includes a discharge electrode 2 that charges particles to remove particles such as dust and mist, and a dust collection electrode that is disposed to face the discharge electrode 2. 3 etc.
  • the discharge electrode 2 and the dust collection electrode 3 are installed in the casing 4. Note that the electric dust collector 1 shown in FIGS. 1 to 4 is schematically shown, and the sizes and the number of installed discharge electrodes 2 and dust collection electrodes 3 are not limited to the illustrated example.
  • the discharge electrode 2 has a mounting material 5 and a discharge thorn 6.
  • the discharge thorn 6 is installed on the attachment material 5 and protrudes in the direction from the attachment material 5 toward the dust collection electrode 3.
  • the tip direction represents the tip direction of the discharge thorn 6.
  • the discharge thorn 6 is installed on the upstream side of the gas flow with respect to the dust collection electrode 3.
  • the discharge thorns 6 may be provided on both surfaces of the dust collection electrode 3. It is done.
  • the axial direction of the mounting material 5 is perpendicular to the gas flow at the inlet of the electrostatic precipitator 1.
  • the gas flow of the electric dust collector 1 which concerns on this embodiment is a perpendicular
  • this invention is not limited to this example, It can apply also to the electrostatic precipitator in which the gas flow was parallel or inclined with respect to the gravity direction, and is not influenced by the gas flow direction.
  • the dust collection electrode 3 has a plate-like member 7 formed of a metal plate or the like, and is installed facing the discharge electrode 2.
  • the plate-like member 7 of the dust collection electrode 3 is a plate having no air permeability on the plate surface and having conductivity, for example, a metal plate.
  • the plate surface of the plate-like member 7 of the dust collection electrode 3 is arranged substantially orthogonal to the gas flow flowing toward the dust collection electrode 3. Further, the discharge barb 6 of the discharge electrode 2 is placed opposite to the plate member 7 so that the influence range of the corona discharge is appropriately distributed in the plate member 7 of the dust collection electrode 3. For example, when there is one discharge thorn 6 in the width direction of the plate-like member 7, the discharge thorn 6 is arranged at the center in the width direction of the plate-like member 7.
  • the discharge electrode 2 and the dust collection electrode 3 are separated from each other and electrically insulated.
  • the discharge electrode 2 is connected to a high voltage power source (not shown).
  • a high voltage is applied to the discharge electrode 2
  • corona discharge occurs at the discharge electrode 2.
  • the particles contained in the exhaust gas or the air are charged by the corona discharge, and the charged particles are attracted to the dust collection electrode 3 by the Coulomb force and collected on the plate-like member 7 which is an electrode plate.
  • the electric dust collector 1 is provided with a striking device (not shown) for peeling particles adhering to the dust collecting electrode 3.
  • the hammering device has a hammer. When the hammer strikes the dust collecting electrode 3, particles attached to the surface are peeled and removed by vibration.
  • the removal method from the plate-shaped member 7 of the dust collection electrode 3 of particles is not limited to the strike using a strike device.
  • the particles may be removed from the plate-like member 7 by a method of blowing a gas to the particles collected on the plate-like member 7 or a method of irradiating a sound wave using a sonic horn. Further, the particles may be removed from the plate-like member 7 by cleaning with a cleaning liquid as is performed in a wet electrostatic precipitator.
  • a hopper 8 is attached to the lower part of the casing 4.
  • the hopper 8 receives particles separated from the dust collection electrode 3 of the electric dust collector 1 by hitting.
  • the hopper 8 is provided with a particle discharging device (not shown) for discharging the accumulated particles.
  • the plate-like member 7 of the dust collecting electrode 3 is a long member having a rectangular shape in front view.
  • the plate member 7 is, for example, a flat plate having no bent portion in the cross-sectional shape as shown in FIG.
  • the plate-like member 7 is a plate without air permeability.
  • the plate-like member 7 has higher mechanical strength than a gas-permeable member such as a wire mesh or punching metal.
  • a gas-permeable member such as a wire mesh or punching metal.
  • durability can be improved even when hitting or vibrating the plate-like member 7.
  • the plate-like member 7 is not clogged under a condition where the particle concentration is high, so that the performance with time does not deteriorate.
  • the manufacturing cost of the plate-like member 7 can also be reduced as compared with a breathable member such as a wire mesh.
  • the plate-like member 7 of the dust collecting electrode 3 has a width and a height that are within the range affected by the corona discharge generated in front of the discharge thorn 6. That is, as shown in FIG. 3, since there is no gas passage 9 between the two plate-like members 7 within the range of corona discharge, there is little slipping of charged particles and less re-scattering.
  • the dotted line in FIG. 3 schematically shows the range of influence of corona discharge.
  • a plurality of plate-like members 7 of the dust collecting electrode 3 are arranged in parallel so as to be within the same plane, and an opening portion through which gas passes between the two plate-like members 7, that is, a gas circulation portion 9. Is formed.
  • the shape of the gas passage portion 9 is a rectangle when the shape of the plate-like member 7 when viewed from the front is a rectangle.
  • the plate-like member 7 is arranged in a plurality of stages from the upstream side to the downstream side of the gas flow. As shown in FIG. 2, the plate member 7 on the upstream side, that is, the plate member 7 on the upstream side is arranged so that the entire surface overlaps in front view. Thereby, since the gas passage part 9 becomes the same position over several steps, it can suppress the raise of a pressure loss.
  • the discharge electrode 2 is installed on the dust collection electrode 3.
  • the discharge electrode 2 is installed on the upstream side of the gas flow, and the upstream side of the plate-like member 7 provided on the downstream side. It is essential to discharge the discharge thorn 6 toward the surface. This is because the discharge thorn 6 is not discharged toward the upstream side surface of the plate-like member 7 provided on the downstream side, and the discharge thorn 6 is applied only to the downstream side surface of the plate-like member 7 provided on the upstream side. This is because the particle collection efficiency is extremely low in the case of discharging toward the surface.
  • the single-sided discharge that discharges toward the upstream surface of the plate member 7 is performed in two stages in the gas flow direction, and the upstream of the plate member 7 as shown in FIG.
  • the collection efficiency was the same. That is, if the particles are already charged on the upstream side of the plate-like member 7, it is possible to effectively collect the particles by performing discharge toward the downstream surface of the plate-like member 7. .
  • the number of stages of the dust collection electrode 3 is reduced when the double-sided discharge is installed in a plurality of stages rather than the case where the single-sided discharge is installed in a plurality of stages. Particles can be collected without taking up much space and without reducing the collection efficiency. For example, the collection efficiency when the single-sided discharge is performed in four stages and the double-sided discharge is performed in two stages is substantially the same.
  • the discharge electrode 2 can also be installed facing both the upstream and downstream sides of the discharge electrode 2. That is, the discharge directed to both the downstream surface of the first-stage plate member 7 and the upstream surface of the second-stage plate member 7 can be executed from one discharge electrode 2.
  • the present invention is not limited to this example, and a plurality of plate-like members 7 may be arranged in a staggered manner as shown in FIGS. 6 and 7. That is, the plate member 7 on the upstream side, that is, the plate member 7 on the upstream side with respect to the plate member 7 on the upstream side may be arranged at a position corresponding to the substantially central portion of the gas passage portion 9 on the front stage side in a front view.
  • the pressure loss increases, the particles that have passed through the gas passage 9 can be easily guided to the influence range of the corona discharge by the discharge electrode 2 in the next stage.
  • the discharge electrode 2 is disposed so as to face the discharge thorn 6 so as to be substantially at the center in the width direction of the plate-like member 7 of the dust collection electrode 3.
  • the present invention is not limited to this example.
  • the discharge electrode 2 when performing discharge toward the downstream surface of the plate-like member 7, the discharge electrode 2 may be provided also in the central portion of the gas passage portion 9. This makes it possible to collect dust that has passed through the dust collection electrode 3 and improve the collection efficiency.
  • the distance a between the two plate-like members 7 of the dust collecting electrode 3 and the distance d between the discharge thorn 6 and the plate-like member 7 will be described later.
  • FIG. 8 is a graph showing the relationship between the collection coefficient ratio and the operation time
  • FIG. 9 is a graph showing the relationship between the pressure loss ratio and the operation time.
  • the pressure loss increases with an increase in the operation time, and slipping due to particles passing through the wire mesh occurs, and the distance between the wire mesh and the dust is short, so re-scattering increases. As a result, the collection efficiency decreases.
  • the present Example using the plate-shaped member of a metal plate it can drive
  • the distance d between the tip of the discharge barb 6 of the discharge electrode 2 and the plate-like member 7 of the dust collection electrode 3 is 130 mm
  • the distance L between two adjacent discharge barbs 6 is as follows.
  • the current is relatively strong, and the region where the particles adhere densely is a substantially circular region having a diameter of about 130 mm. From this, the influence of the adjacent discharge thorns 6 cannot be ignored.
  • the diameter is approximately equal to the distance d between the tip of the discharge thorns 6 and the plate member 7. It can be said that this indicates that the circular region as described above may be considered as a range affected by corona discharge.
  • the test results show that the maximum value of the collection efficiency is in the range where the aperture ratio is 20% or more and 35% or less.
  • the aperture ratio was about 10%, it was predicted that the collection efficiency would be maximized, but actually, the maximum value was obtained with an aperture ratio larger than expected.
  • the desirable aperture ratio is assumed to be in the range of 10% to 50%. Thereby, it can collect in the state where collection efficiency is high. This is expressed as follows. 0.1 ⁇ a / (a + W) ⁇ 0.5 (Formula 1)
  • FIG. 13 shows the current density on the dust collecting electrode 3 and the position (the width (W) of the plate-like member 7 and the discharge thorn 6 and the plate-like member 7) from the position directly below (0 point) on the discharge piece 6 on the plate-like member 7. It is a graph which shows a relationship with ratio (W / d) between distance (d) between.
  • the width W is 1.0 d
  • the width W is an optimal value that covers the range affected by the corona discharge.
  • the upper limit value of the width W is set to 2.0d so that the current density does not decrease too much
  • the lower limit value of the width W is set to 0.5d in consideration of the number of the plate-like members 7 installed. This is expressed as follows. 0.5d ⁇ W ⁇ 2.0d (Formula 2)
  • Equation 1 above can be expressed as 10 / 9W ⁇ L ⁇ 2.0W (Formula 6) And considering equation 2, 5 / 9d ⁇ L ⁇ 4.0d (Formula 7) The relationship holds.
  • FIG. 14 shows an average current density ratio or a collection coefficient ratio on the dust collecting electrode 3, a distance (H) in the height direction of the discharge thorn 6, and a distance (d) between the discharge thorn 6 and the plate-like member 7. It is a graph which shows the relationship with ratio (H / d). Regarding the interval H, a circular region having a diameter that is approximately equal to the distance d between the tip of the discharge thorn 6 and the plate-like member 7 may be considered as a corona discharge generation area. The optimum value is 1.0 d, similar to the optimum value of the width W described above.
  • the upper limit value of the interval H is set to 2.0 d so that the collection efficiency does not decrease too much and the current density on the plate-like member 7 does not decrease too much so that the corona discharge generation area does not interfere too much.
  • the lower limit value of the interval H is 0.3d. This is expressed as follows. 0.3d ⁇ H ⁇ 2.0d (Formula 8)
  • FIG. 12 is a graph showing the relationship between the collection coefficient ratio and the aperture ratio. According to the experimental results, the collection efficiency is almost the maximum when the aperture ratio is in the range of 25% or more and 30% or less, and the collection efficiency is lowered even if the aperture ratio is larger or smaller than this range. In particular, when the aperture ratio is less than 10% or exceeds 50%, the collection efficiency is less than 85%, and the collection cannot be performed efficiently.
  • the plate surface of the plate-like member 7 of the dust collection electrode 3 is disposed substantially orthogonal to the gas flow flowing toward the dust collection electrode 3.
  • the collection efficiency is almost the maximum when the aperture ratio is in the range of 25% to 30%, and the aperture ratio is larger or smaller than this range. It is estimated that the result that the collection efficiency decreases was obtained.
  • the experiment was to confirm how the dust collection area per unit gas amount and the aperture ratio, that is, the passing gas flow velocity at the opening, affect the collection efficiency.
  • As parameters (1) aperture ratio, (2) number of electrode stages, (3) gas amount, and (4) electrode shape (rectangular, circular, etc.) were set. In order to determine an appropriate aperture ratio range, the contribution of each parameter to the collection efficiency was evaluated.
  • FIG. 13 shows the current density distribution ratio on the dust collecting electrode 3 and the position from the position directly below (0 point) the discharge barb 6 on the plate member 7 (the width (W) of the bar plate member 7 and the discharge barb 6 and the plate bar). It is a graph which shows the relationship with the ratio (W / d) with the distance (d) between the members 7). According to this graph, it can be seen that the current density becomes maximum at a position directly below the discharge thorn 6 and decreases as it goes to the end side of the plate-like member 7.
  • the current density is about 1/5 of the maximum value at the position of + d or -d immediately below the discharge thorn 6 (0 point).
  • the current density is almost zero at a position + 2d or ⁇ 2d immediately below the discharge thorn 6 (0 point). Therefore, since it is necessary to secure a current for suppressing re-scattering of particles, the upper limit of the width W of the plate-like member 7 is 2d.
  • the width W of the plate-like member 7 is reduced with respect to the distance d between the discharge thorn 6 and the plate-like member 7, the number of the plate-like members 7 installed increases.
  • the number of installations is large, it becomes difficult to maintain the installation accuracy of the discharge electrode 2 and the dust collection electrode 3 at a predetermined level or more. Therefore, it is reasonable to set the lower limit of the width W of the plate-like member 7 to 0.5d.
  • FIG. 14 shows an average current density ratio or a collection coefficient ratio on the dust collecting electrode 3, a distance (H) in the height direction of the discharge thorn 6, and a distance (d) between the discharge thorn 6 and the plate-like member 7. It is a graph which shows the relationship with ratio (H / d).
  • the change in the collection coefficient ratio was small even when the average current density was changed.
  • the distance (H) in the height direction of the discharge thorn 6 and the ratio (H / d) of the distance (d) between the discharge thorn 6 and the plate-like member 7 are set in the range of 0.3 to 2.0.
  • the front view shape of the plate member 7 is rectangular, but as shown in FIG. 15, the front view shape of the plate member 7 may be circular.
  • the discharge electrodes 2 are installed at equal intervals in the vertical direction and the horizontal direction on the plane.
  • the arrangement relationship between the discharge barb 6 of the discharge electrode 2 and the plate-like member 7 of the dust collection electrode 3 is the same as when the plate-like member 7 has a rectangular shape when viewed from the front.
  • the width W of the plate-like member 7 in the above description is read as the diameter W of the circular portion of the plate-like member 7 when the shape of the plate-like member 7 when viewed from the front is circular.
  • the plate-like member 7 may have a shape like a grooved steel having a bent portion near the end in the cross-sectional shape. Further, as shown in FIG. 17, the plate-like member 7 may have a shape curved in the width direction (for example, a letter shape of a cross section U). By having such a shape, the plate-like member 7 can improve the strength as compared with the case where it is a flat plate having no bent portion. In particular, in the case of the large-sized electrostatic precipitator 1, the length of the plate-like member 7 is increased, which is advantageous. Moreover, the re-scattering of the collected particle
  • the arrangement relationship between the discharge electrode 2 and the dust collection electrode 3 described above is also the case where the plurality of plate-like members 7 and the shielding plate 10 are arranged in a U-shaped cross section in the casing 4 of the electric dust collector 1. Applicable.
  • the plate surface of the plate-like member 7 is parallel to the gas inflow direction and the outflow direction of the inlet portion and the outlet portion of the casing 4 of the apparatus.
  • the gas passage portion 9 is formed between two adjacent plate-like members 7, the gas flow flowing toward the dust collection electrode 3 is substantially orthogonal to the plate surface of the plate-like member 7. It will be.
  • the plate surface of the plate-like member 7 is not dust-collected. It is arranged substantially orthogonal to the gas flow flowing toward the electrode 3.
  • the discharge electrode 2 When the plurality of plate-like members 7 and the blocking plates 10 are arranged in the casing 4 of the electric dust collector 1 so as to have a U-shaped cross-section, the discharge electrode 2 has two plate-like members facing each other. 7, the discharge thorn 6 is provided toward both plate-like members 7. Although only the discharge from the upstream side is shown in the figure, it is possible to improve the performance by installing the discharge electrode 2 toward the plate member 7 on the downstream side of the gas flow and discharging from the downstream side. It is.
  • the plate member 7 of the dust collecting electrode 3 has a longitudinal direction parallel to the vertical direction.
  • the plate-like member 7 is desirably arranged as follows.
  • the partition plate 12 is installed in By installing the partition plate 12 on the upstream side of the gas flow, it becomes possible to suppress slipping of a gas containing uncharged particles, and to reduce particles that are not collected.
  • the electric dust collector 1 according to the present embodiment is not only installed alone, but can be combined with other types of dust collectors or integrated with other types of dust collectors.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

ガス流れに対しほぼ直交する方向に、集じん電極の板状部材を設置するとき、捕集効率の向上を図ることが可能な電気集じん装置を提供することを目的とする。電気集じん装置は、突起状の放電トゲ(6)を有し、コロナ放電を行う放電電極(2)と、通気性の無い板状部材(7)を有し、放電トゲ(6)に対向して設置される集じん電極(3)とを備え、集じん電極(3)の板状部材(7)の板面は、集じん電極(3)に向かって流れるガス流に対し略直交して配置され、放電電極(2)は、集じん電極(3)に対しガス流れの上流側に設置されて、集じん電極(3)の板状部材(7)の上流側の面に放電し、同一平面内に設置される隣り合う2枚の板状部材(7)間の端部間の距離をaとし、板状部材の幅をWとしたとき、0.1≦a/(a+W)≦0.5の関係が成立する。

Description

電気集じん装置
 本発明は、コロナ放電を行う放電電極と、放電電極に対向して設置される集塵電極を備える電気集じん装置に関するものである。
 電気集じん装置は、排ガスや空気に含まれる煤じん粒子(ダスト、粒子状物質などとも呼ばれる。)を煙突等から大気に放出する前に除去する。電気集じん装置は、放電電極と、放電電極に対向して配置される集じん電極などを備え、放電電極に高電圧を印加することにより両電極間にコロナ放電を発生させることによって、排ガス等に含まれる粒子を帯電する。帯電された粒子は、両電極間に形成された電界によって集じん電極に引き寄せられ、電極板上に捕集される。
特開2002-361117号公報
 電気集じん装置の集じん電極は、板状部材であり、ガス流れに対し平行に設置される場合が一般的である。しかし、捕集効率を向上させるためには、集じん電極の面積を大きくする必要がある。その際、板状部材を高さ方向に広げることは限界があるため、奥行き方向長さを長くする必要があり、ガス流れ方向の装置サイズが大きくなる。その場合、構造設計的な困難さが生じたり、設置面積の増大による機器配置の困難性が発生する。
 これに対し、金網やパンチングメタルのように全面にわたり一様に間隙が分布する通気性のある板(以下「通気性部材」という。)を、ガス流れに対し直交する方向に設置し、集じん極として用いて集じんする場合もある。しかし、通気性部材は、粒子の帯電を最も効率的に行うことのできる放電電極のコロナ放電範囲内に間隙があるため、帯電した粒子がすり抜けてしまい捕集効率が低下する可能性がある。
 また、特許文献1に示すように、ガス流れに対しほぼ直交する方向に、通気性の無い集じん電極の板状部材(以下「板状部材」という。)を設置する場合もある。この場合、ガス流れ方向の装置サイズを短くすることができる。しかし、ガス流れに対しほぼ直交する方向に、集じん電極の板状部材を設置する電気集じん装置について、捕集効率を向上させようとすると、以下に示す排反事象が発生する。すなわち、捕集効率を向上させるため集じん面積を大きくすると、開口部が狭くなりガス流速が速くなる。そうするとガスに同伴してすり抜けるダスト量が増加したり、圧力損失が上昇してしまう。これまで、ガス流れに対しほぼ直交する方向に集じん電極の板状部材を設置する電気集じん装置に関し、集じん電極と放電電極について、捕集効率を向上させるための適切な配置に関する知見は得られていない。
 本発明は、このような事情に鑑みてなされたものであって、ガス流れに対しほぼ直交する方向に、集じん電極の板状部材を設置するとき、捕集効率の向上を図ることが可能な電気集じん装置を提供することを目的とする。
 本発明の第1態様に係る電気集じん装置は、突起状の放電トゲを有し、コロナ放電を行う放電電極と、通気性の無い板状部材を有し、前記放電トゲに対向して設置される集じん電極とを備え、前記集じん電極の前記板状部材の板面は、前記集じん電極に向かって流れるガス流に対し略直交して配置され、前記放電電極は、前記集じん電極に対しガス流れの上流側に設置されて、前記集じん電極の前記板状部材の上流側の面に放電し、同一平面内に設置される隣り合う2枚の前記板状部材間の端部間の距離をaとし、前記板状部材の幅をWとしたとき、
  0.1≦a/(a+W)≦0.5
の関係が成立する。
 この構成によれば、突起状の放電トゲを有する放電電極がコロナ放電を行い、板状部材を有する集じん電極にて、ガス流に含まれる粒子が捕集される。このとき、板状部材は、通気性が無いことから、粒子の再飛散が生じにくく、集塵電極に向かって流れるガス流に対しほぼ直交して配置されていることから、ガス流れ方向の装置サイズを短くできる。また、a/(a+W)で表される開口率が、10%以上50%以下の範囲であることから、捕集効率が高い。
 本発明の第1態様において、前記放電電極の前記放電トゲの先端と、前記集じん電極の前記板状部材との間の距離をdとしたとき、
  0.5d≦W≦2.0d
の関係が更に成立するとよい。
 板状部材の幅Wは、放電トゲの先端と板状部材との間の距離dと等しい1.0dであるとき、コロナ放電の影響する範囲をカバーする最適な値となるとの結果が得られていることから、板状部材の幅Wの上限値を2.0dとすることで、電流密度の低下しすぎを防止でき、板状部材の幅Wの下限値を0.5dとすることで、板状部材7の設置数を多くさせすぎずに捕集効率を高められる。
 本発明の第1態様において、前記放電電極の前記放電トゲの先端と、前記集じん電極の前記板状部材との間の距離をdとし、隣り合う二つの前記放電トゲの高さ方向の間隔をHとしたとき、
  0.3d≦H≦2.0d
の関係が更に成立するとよい。
 板状部材の幅Wは、放電トゲの先端と板状部材との間の距離dと等しい1.0dであるとき、コロナ放電の影響する範囲をカバーする最適な値となるとの結果が得られていることから、板状部材の幅Wの上限値を2.0dとすることで、電流密度の低下しすぎを防止でき、板状部材の幅Wの下限値を0.3dとすることで、コロナ放電の発生エリアを干渉させすぎずに捕集効率を高められる。
 本発明の第1態様において、前記集じん電極に対しガス流れの下流側に設置される第2の放電電極を更に備え、前記第2の放電電極は、前記集じん電極の前記板状部材の下流側の面に放電する位置に設けられてもよいし、又は、前記第2の放電電極は、同一平面内に設置される隣り合う2枚の前記板状部材間に形成されるガス通過部の延長上に設けられてもよい。
 この構成によれば、粒子が板状部材の上流側で既に帯電されていることから、第2の放電電極によって、板状部材の下流側の面に向けた放電を合わせて行うことで有効に粒子を捕集できる。
 本発明の第1態様において、前記集じん電極に対しガス流れの下流側に設置される第2の集じん電極を更に備え、前記第2の集じん電極は、同一平面内に設置される前記集じん電極の隣り合う2枚の前記板状部材間に形成されるガス通過部の延長上に設けられてもよい。
 この構成によれば、上流側の集じん電極間をすり抜けた粒子が第2の集じん電極に向かって流れることから、次の段の放電電極によるコロナ放電の影響範囲に容易に導くことができる。
 本発明の第1態様において、前記集じん電極の前記板状部材と、ケーシングの内面との間の隙間を塞ぐ仕切板を更に備えてもよい。
 この構成によれば、仕切板によって、板状部材とケーシングの内面との間の隙間が塞がれることから、帯電していない粒子が隙間を通過することを抑制でき、集じん電極で捕集されない粒子を低減できる。
 本発明の第1態様において、前記集じん電極の前記板状部材が、ホッパーの上端部に合わせ配置され、前記板状部材と前記ホッパーの上端部の隙間を塞ぐ構造を備えてもよい。
 この構成によれば、板状部材とホッパーの上端部の隙間が塞がれていることから、ホッパーの上方を通過していくガスを低減でき、捕集効率を高めることができる。
 本発明によれば、ガス流れに対しほぼ直交する方向に、集じん電極の板状部材を設置するとき、捕集効率の向上を図ることができる。
本発明の一実施形態に係る電気集じん装置を示す縦断面図である。 本発明の一実施形態に係る電気集じん装置を示す横断面図である。 本発明の一実施形態に係る電気集じん装置の放電電極及び集じん電極を示す斜視図である。 本発明の一実施形態に係る電気集じん装置の集じん電極を示す正面図であり、放電トゲの位置も示す。 本発明の一実施形態に係る電気集じん装置の第1変形例を示す横断面図である。 本発明の一実施形態に係る電気集じん装置の第2変形例を示す横断面図である。 本発明の一実施形態に係る電気集じん装置の第3変形例を示す横断面図である。 捕集係数比と運転時間の関係を示すグラフである。 圧力損失比と運転時間の関係を示すグラフである。 本発明の一実施形態に係る電気集じん装置の放電トゲと板状部材を示す横断面図である。 本発明の一実施形態に係る電気集じん装置の放電電極及び集じん電極の斜視図である。 捕集係数と開口率の関係を示すグラフである。 集じん電極上の電流密度と、板状部材の幅及び放電トゲ及び板状部材間の距離との比との関係を示すグラフである。 集じん電極上の電流密度又は捕集係数と、放電トゲの高さ方向の間隔及び放電トゲと板状部材間の距離との比との関係を示すグラフである。 本発明の一実施形態に係る電気集じん装置の第4変形例の集じん電極を示す正面図であり、放電トゲの位置も示す。 本発明の一実施形態に係る電気集じん装置の第5変形例を示す横断面図である。 本発明の一実施形態に係る電気集じん装置の第6変形例を示す横断面図である。 本発明の一実施形態に係る電気集じん装置の第7変形例を示す横断面図である。 本発明の一実施形態に係る電気集じん装置を示す横断面図である。 本発明の一実施形態に係る電気集じん装置を示す斜視図である。
 以下に、本発明の一実施形態に係る電気集じん装置について、図面を参照して説明する。
 本実施形態に係る電気集じん装置は、例えば、石炭焚きや重油焚きの発電プラントや焼却炉等の産業用燃焼設備の下流側の煙道内に設けられる排ガス処理設備に設置される。また、電気集じん装置は、産業用燃焼設備以外に、空気浄化設備用フィルタ(例えば、クリーンルーム用空調フィルタ、ウィルス除去用フィルタ等)等にも使用できる。なお、以下では説明のため、排ガス処理設備に設置される電気集じん装置1について説明する。
 電気集じん装置1は、図1から図4に示すように、ダストやミスト等の粒子を除去するため、粒子を帯電させる放電電極2と、放電電極2に対向して配置される集じん電極3などを備える。放電電極2及び集じん電極3は、ケーシング4内に設置される。なお、図1から図4に示した電気集じん装置1は、概略的に示したものであり、放電電極2及び集じん電極3のサイズや設置数は、図示の例に限定されない。
 放電電極2は、取付材5と放電トゲ6を有する。放電トゲ6は、取付材5に設置され、取付材5から集じん電極3に向かう方向に突起して設置される。なお、図2に示す放電電極2は、先端方向が放電トゲ6の先端方向を表している。放電トゲ6は、集じん電極3に対し、たとえば、図2に示すように、ガス流れの上流側に設置される。なお、後述するとおり、図1等に示すように、放電トゲ6は、集じん電極3の両面に設置されてもよく、この場合、一つの集じん電極3に対し上流側と下流側に設けられる。
 取付材5の軸線方向が電気集じん装置1の入口部のガス流れに対して垂直である。ここで、本実施形態に係る電気集じん装置1のガス流れは、例えば重力方向に対し垂直方向である。なお、本発明は、この例に限定されず、ガス流れが重力方向に対し平行や傾斜した電気集じん装置にも適用でき、ガス流れ方向には影響されない。
 集じん電極3は、金属板等によって形成された板状部材7を有し、放電電極2に対向して設置される。集じん電極3の板状部材7は、板面において通気性を有さず、かつ、導電性を有する板、例えば金属板である。
 集じん電極3の板状部材7の板面は、集じん電極3に向かって流れるガス流に対し、ほぼ直交して配置される。また、放電電極2の放電トゲ6は、集じん電極3の板状部材7においてコロナ放電の影響範囲が適切に分布するように、板状部材7に対向して設置される。たとえば、放電トゲ6が板状部材7の幅方向に対し1本の場合、放電トゲ6を板状部材7の幅方向中央部に配置する等である。
 放電電極2と集じん電極3は互いに離隔され、電気的に絶縁されている。放電電極2は、高圧電源(図示せず。)と接続される。放電電極2に高電圧が印加されることによって、放電電極2でコロナ放電が生じる。コロナ放電によって、排ガス又は空気中に含まれる粒子が帯電され、帯電された粒子は、集じん電極3にクーロン力で引き寄せられ電極板である板状部材7上に捕集される。
 電気集じん装置1には、集じん電極3に付着した粒子を剥離する槌打装置(図示せず。)が設けられている。槌打装置はハンマを有しており、ハンマが集じん電極3を槌打することで、表面に付着した粒子を振動によって剥離除去する。
 なお、粒子の集じん電極3の板状部材7からの除去方法は、槌打装置を用いた槌打に限定されない。たとえば、板状部材7に捕集された粒子に対しガスを吹き付ける方法、又は、ソニック・ホーンを用いて音波を照射する方法によって、粒子を板状部材7から除去してもよい。また、湿式電気集じん装置で行われているような洗浄液による洗浄によって、板状部材7から粒子を除去してもよい。
 ケーシング4の下部にはホッパー8が取付けられる。ホッパー8は、槌打によって電気集じん装置1の集じん電極3から剥離した粒子を受け止める。ホッパー8には溜まった粒子を排出する粒子排出装置(図示せず。)が設けられる。
 次に、本実施形態に係る集じん電極3について説明する。
 集じん電極3の板状部材7は、例えば、図3及び図4に示すように、正面視形状が長方形の長尺部材である。
 板状部材7は、例えば、図2に示すように、横断面形状において屈曲部分がない平板である。板状部材7は通気性の無い板である。これにより、板状部材7は、金網、パンチングメタル等の通気性部材と比較し機械的強度が高くなる。たとえば、集じん電極3の板状部材7の表面に捕集された粒子を除去する際に、板状部材7に槌打や振動等を与える場合でも耐久性を高められる。さらに、板状部材7は、金網等の通気性部材と異なり、粒子濃度が高い条件下で目詰まりしないため、経時的性能低下が生じない。板状部材7の製造コストも金網等の通気性部材に比べ低減できる。
 集じん電極3の板状部材7は、放電トゲ6の正面に生じるコロナ放電の影響範囲内に収まるような幅や高さを有することが望ましい。すなわち、図3に示すように、コロナ放電の範囲内に、2枚の板状部材7間のガス通過部9がないため、帯電した粒子のすり抜けが少なく、再飛散が少ない。図3の点線部は、コロナ放電の影響範囲を模式的に示したものである。
 集じん電極3の板状部材7は、同一平面内に収まるように複数枚が平行方向に配置され、2枚の板状部材7間には、ガスが通過する開口部分、すなわちガス流通部9が形成される。ガス通過部9の形状は、板状部材7の正面視形状が長方形である場合、長方形となる。
 また、板状部材7は、ガス流れの上流側から下流側に向かって、複数段に配置される。上流側、すなわち前段側の板状部材7に対し後段側の板状部材7は、図2に示すように、正面視で全面が重なるように配置される。これにより、ガス通過部9は、複数段にわたって、同じ位置となるため、圧力損失の上昇を抑制できる。
 集じん電極3に対する放電電極2の設置は、図2等を用いて上述したとおり、ガス流れの上流側に放電電極2を設置して、下流側に設けられた板状部材7の上流側の面に向けて放電トゲ6を放電させることが必須である。これは、放電トゲ6を下流側に設けられた板状部材7の上流側の面に向けて放電させず、放電トゲ6を上流側に設けられた板状部材7の下流側の面のみに向けて放電させる場合、粒子の捕集効率は極端に低いという結果が得られているためである。
 但し、図2に示すように、板状部材7の上流側の面に向けて放電する片面放電を、ガス流れ方向2段で行う場合と、図5に示すように、板状部材7の上流側と下流側の両面に向けて放電する両面放電を、ガス流れ方向1段で行う場合を比較すると、捕集効率は同等であった。すなわち、粒子が板状部材7の上流側で既に帯電されていれば、板状部材7の下流側の面に向けた放電を合わせて行うことによって有効に捕集可能となることを示している。
 したがって、電気集じん装置1の省スペース化の観点から、片面放電を複数段で設置する場合よりも、両面放電を複数段で設置する場合の方が、集じん電極3の段数を低減してスペースを多くとらず、かつ、捕集効率を低減させることなく粒子を捕集できる。たとえば、片面放電を4段で行う場合と、両面放電を2段で行う場合の捕集効率は、ほぼ同等である。
 また、図5に示すように、放電電極2についても、放電トゲ6を上流側と下流側の両方に向けて設置できる。すなわち、1段目の板状部材7の下流側の面と、2段目の板状部材7の上流側の面の両方に向けた放電を、一つの放電電極2から実行できる。
 なお、本発明は、この例に限定されず、図6及び図7に示すように、複数の板状部材7が千鳥配置されてもよい。すなわち、上流側、すなわち前段側の板状部材7に対し後段側の板状部材7は、正面視で、前段側のガス通過部9のほぼ中央部に相当する位置に配置されてもよい。これにより、圧力損失は上がるが、ガス通過部9をすり抜けた粒子を次の段の放電電極2によるコロナ放電の影響範囲に容易に導くことができる。
 また、上述した実施形態では、図2等に示したとおり、放電電極2は、放電トゲ6が集じん電極3の板状部材7の幅方向の略中央位置となるように対向して設置される場合について説明したが、本発明はこの例に限定されない。たとえば、図7に示すとおり、板状部材7の下流側の面に向けた放電を行う場合、ガス通過部9の中央部分にも放電電極2が設けられてもよい。これにより、集じん電極3をすりぬけたダストを捕集することが可能となり、捕集効率を向上させることが可能となる。
 集じん電極3の2枚の板状部材7間の間隔aや、放電トゲ6と板状部材7との距離dは、後述する。
 図8は、捕集係数比と運転時間の関係を示すグラフであり、図9は、圧力損失比と運転時間の関係を示すグラフである。電気集じん装置の集じん電極に金網を用いた場合(比較例:破線)と、本実施形態のように集じん電極に金属板の板状部材を用いた場合(本実施例:実線)とを比較している。
 金網を用いた比較例では、運転時間の増加と共に圧力損失が上昇し、かつ、金網を通過する粒子によるすり抜けが生じたり、金網の間隙とダストの距離が短いことから、再飛散が増大するため、捕集効率の低下が発生する。これに対し、金属板の板状部材を用いた本実施例では、圧力損失と捕集効率の両方において、性能が低下することなく、安定的に運転できる。
 次に、本実施形態に係る放電電極2の放電トゲ6と集じん電極3の板状部材7の配置について説明する。以下では、図10及び図11に示すように、同一平面内に設置される隣り合う2枚の板状部材7間の端部間の距離をaとし、放電電極2の放電トゲ6の先端と、集じん電極3の板状部材7との間の距離をdとし、隣り合う二つの放電トゲ6間の距離をLとし、板状部材7の幅をWとし、放電トゲ6の高さ方向の間隔をHとした。
 実験条件の一例として、放電電極2の放電トゲ6の先端と、集じん電極3の板状部材7との間の距離dが、130mmであり、隣り合う二つの放電トゲ6間の距離Lが、150mmである場合、電流が比較的強く、粒子が密に付着する領域は、直径約130mmの略円形状の領域であった。このことから、隣りの放電トゲ6の影響も無視はできないが、図3に模式的に示したとおり、おおむね放電トゲ6の先端と板状部材7との間の距離dと等しい長さを直径とする円形状の領域を、コロナ放電の影響する範囲として考えてよいことを示しているといえる。
 一方、図12に示すように、試験結果から、開口率が20%以上35%以下の範囲に捕集効率の最大値があるとの結果が得られている。実験前は、開口率が10%ぐらいであるとき、捕集効率が最大となると予想されたが、実際は、予想よりも大きい開口率で最大値が得られた。捕集効率の最大値が存在する範囲を考慮して、望ましい開口率は、10%以上50%以下の範囲であるとする。これにより、捕集効率が高い状態で、捕集を行うことができる。
 これを式で表すと以下のとおりとなる。
  0.1≦a/(a+W)≦0.5 ……(式1)
 図13は、集じん電極3上の電流密度と、板状部材7上の放電トゲ6直下(0点)からの位置(板状部材7の幅(W)及び放電トゲ6と板状部材7間の距離(d)との比(W/d)で表記)との関係を示すグラフである。上述したとおり、幅Wは、1.0dであるときコロナ放電の影響する範囲をカバーする最適な値となる。これに対し、幅Wの上限値は、電流密度が低下しすぎないように2.0dとし、幅Wの下限値は、板状部材7の設置数を考慮して0.5dとする。
 これを式で表すと以下のとおりとなる。
  0.5d≦W≦2.0d ……(式2)
 隣り合う放電トゲ6の間隔Lと、隣り合う板状部材7の間隔aと、板状部材7の幅Wの関係から、
  L=a+W ……(式3)
の関係が成り立つ。
 したがって、上述の式1は、
  1/9W≦a≦1.0W ……(式4)
となり、式2を考慮すると、
  1/18d≦a≦2.0d ……(式5)
の関係が成立する。
 さらに、上述の式1は、
  10/9W≦L≦2.0W ……(式6)
となり、式2を考慮すると、
  5/9d≦L≦4.0d ……(式7)
の関係が成り立つ。
 図14は、集じん電極3上の平均電流密度比又は捕集係数比と、放電トゲ6の高さ方向の間隔(H)及び放電トゲ6と板状部材7間の距離(d)との比(H/d)との関係を示すグラフである。間隔Hについて、おおむね放電トゲ6の先端と板状部材7との間の距離dと等しい長さを直径とする円形状の領域を、コロナ放電の発生エリアとして考えてよいことから、間隔Hの最適値は、上述した幅Wの最適値と同様に、1.0dである。これに対し、間隔Hの上限値は、捕集効率が低下しすぎたり板状部材7上での電流密度が低下しすぎないように2.0dとし、コロナ放電の発生エリアが干渉しすぎないように間隔Hの下限値は、0.3dとする。
 これを式で表すと以下のとおりとなる。
  0.3d≦H≦2.0d ……(式8)
 次に、図12から図14を参照して、開口率と捕集係数の関係性について、さらに詳しく説明する。図12は、捕集係数比と開口率の関係を示すグラフである。
 実験結果によると、開口率が25%以上30%以内の範囲で、捕集効率がほぼ最大となり、この範囲よりも開口率が大きくても小さくても捕集効率は低下する。特に、開口率が10%未満又は50%を超えると、捕集効率が85%未満となって効率良く捕集できない。
 本実施形態では、集じん電極3の板状部材7の板面は、集じん電極3に向かって流れるガス流に対し略直交して配置される。単位ガス量当たりの板状部材7の面積が狭い条件から、板状部材7の面積を増加させる条件へ移行すると、粒子を捕集可能な領域が広がるため、捕集効率が上昇していく。
 一方、板状部材7の面積が増加すると、ガス通過部9の開口面積が減少していくため、ガス流れの流速が上昇する。その結果、ガス流れに同伴し板状部材7で捕集されないで、下流側に流出する粒子が増加し、捕集効率が下降していく。
 これらの排反事象が存在するため、図12のように、開口率が25%以上30%以内の範囲で、捕集効率がほぼ最大となり、この範囲よりも開口率が大きくても小さくても捕集効率は低下するという結果が得られたものと推測される。
 実験は、単位ガス量当たりの集じん面積と、開口率、すなわち開口部の通過ガス流速とが、捕集効率にどのように影響しているかを確認したものである。パラメータは、(1)開口率、(2)電極段数、(3)ガス量、(4)電極形状(長方形、円形など)を設定した。適正な開口率の範囲を決定するため、パラメータそれぞれの捕集効率への寄与度を評価した。
 実験の結果、ガス量一定の条件における電極1段当たりの開口率と、捕集効率の間には、電極形状に関係なく、図12の関係が成立していることを確認した。
 図13は、集じん電極3上の電流密度分布比と、板状部材7上の放電トゲ6直下(0点)からの位置(板状部材7の幅(W)及び放電トゲ6と板状部材7間の距離(d)との比(W/d)で表記)との関係を示すグラフである。このグラフによると、電流密度は、放電トゲ6直下の位置で最大となり、板状部材7の端部側へ行くにつれ低下することが分かる。
 放電トゲ6直下(0点)から+d又は-dの位置で、電流密度は最大値の約1/5となる。そして、放電トゲ6直下(0点)から+2d又は-2dの位置で、電流密度はほぼ0となる。したがって、粒子の再飛散を抑えるための電流を確保する必要があることから、板状部材7の幅Wの上限は、2dとする。
 一方、放電トゲ6と板状部材7間の距離dに対し、板状部材7の幅Wを小さくすると、板状部材7の設置数が増加することになる。大型の電気集じん装置1では、設置数が多いと、放電電極2と集じん電極3の設置精度を所定以上に保つことが困難になる。したがって、板状部材7の幅Wの下限は、0.5dとするのが妥当である。
 図14は、集じん電極3上の平均電流密度比又は捕集係数比と、放電トゲ6の高さ方向の間隔(H)及び放電トゲ6と板状部材7間の距離(d)との比(H/d)との関係を示すグラフである。
 この実験結果によると、放電トゲ6の高さ方向の間隔Hが狭すぎると、隣接する放電エリアが互いに干渉し、放電電流が低下する。一方、放電トゲ6の高さ方向の間隔Hが広すぎると、板状部材7上において放電電流が流れない領域が増大する。いずれの場合も、印加する電圧を同一に設定したとき、平均電流密度が低下し、捕集効率が減少する。一般には、電流密度が高いほど、粒子の捕集効率が高くなる。したがって、平均電流密度が高くなる放電トゲ6の高さ方向の間隔Hを選定することが望ましい。
 最適値は、電流密度係数比と、捕集効率比の両方が最も高くなるH/d=1.0である。上述した推測があるものの、発明者が得た実験結果によると、平均電流密度が変化しても捕集係数比の変化は小さかった。たとえば、放電トゲ6の高さ方向の間隔Hを狭くして電流密度比が0.6程度まで低下しても、捕集係数比は0.9程度までしか低下しない。したがって、放電トゲ6の高さ方向の間隔(H)及び放電トゲ6と板状部材7間の距離(d)との比(H/d)は、0.3以上2.0以下の範囲に設定する。
 次に、本実施形態に係る電気集じん装置1の変形例について説明する。
 上述した実施形態では、板状部材7の正面視形状は、長方形であるとしたが、図15に示すように、板状部材7の正面視形状は、円形状でもよい。
 この場合、放電電極2は、平面上において、上下方向、左右方向共に等間隔に設置される。なお、放電電極2の放電トゲ6と集じん電極3の板状部材7の配置関係は、板状部材7の正面視形状が長方形である場合と同じである。なお、上述した説明における板状部材7の幅Wは、板状部材7の正面視形状が円形の場合、板状部材7の円形部分の直径Wと読み替える。
 また、板状部材7は、図16に示すように、横断面形状において端部付近に屈曲部分を有する溝形鋼のような形状でもよい。また、板状部材7は、図17に示すように、幅方向に湾曲した形状(例えば断面Uの字形状)でもよい。こうした形状を有することによって、板状部材7は、屈曲部分を有さない平板である場合に比べ、強度を向上させることができる。特に、大型の電気集じん装置1の場合、板状部材7の長さが長くなるため有利である。また、板状部材7の中央部分を下流側に凹ませるように配置することで、捕集した粒子の再飛散を防止できる。さらに、単に平板とする場合に比べ、槌打などによって捕集した粒子を落下させる場合に、粒子を重力方向下側へ導きやすいため、再飛散しにくい。
 次に、図18を参照して、ケーシング4内部の放電電極2と集じん電極3の配置関係の変形例について説明する。
 上述した放電電極2と集じん電極3の配置関係は、電気集じん装置1のケーシング4内に複数の板状部材7と遮断板10を断面コの字形状となるように配置する場合にも適用できる。この場合、装置のケーシング4の入口部分及び出口部分のガスの流入方向及び流出方向に対し、板状部材7の板面は、平行となる。しかし、隣り合う2枚の板状部材7の間にガス通過部9が形成されていることから、集じん電極3に向かって流れるガス流れは、板状部材7の板面に対し略直交することになる。すなわち、電気集じん装置1のケーシング4内に複数の板状部材7と遮断板10が、断面コの字形状となるように配置される場合も、板状部材7の板面は、集じん電極3に向かって流れるガス流に対し略直交して配置される。
 電気集じん装置1のケーシング4内に複数の板状部材7と遮断板10が、断面コの字形状となるように配置される場合、放電電極2は、互いに対向する2枚の板状部材7の間に設置され、放電トゲ6が両方の板状部材7に向けて設けられる。
 なお、図では上流側からの放電のみとしているが、ガス流れの下流側に放電電極2を板状部材7に向けて設置して下流側からも放電することで性能の向上を図ることも可能である。
 次に、図19及び図20を参照して、粒子の下流側への捕集漏れを防止する構造について説明する。
 電気集じん装置1内において、集じん電極3の板状部材7は、長手方向が上下方向に対し平行である。粒子の捕集効率を向上させるため、板状部材7は、以下のような構成で配置することが望ましい。
 すなわち、図19に示すように、電気集じん装置1のケーシング4の内面と放電極2の間は、電気的に絶縁されるように、所定間隔を空ける必要があり、ガスが流通可能なスペース11が生じる。そこで、電気集じん装置1の側壁の内壁面4aと板状部材7の側端部7aとの間や、電気集じん装置1の内部上面と板状部材7の上端部との間(図示せず。)に仕切板12を設置する。仕切板12は、ガス流れの上流側に設置されることで、帯電していない粒子を含むガスのすり抜けを抑制することが可能となり、捕集されない粒子を低減できる。
 また、図20に示すように、板状部材7の下端部3aをホッパー8の上端部8aに合わせて配置することで、両者間に形成される隙間を無くすことができる。その結果、板状部材7の下端部近傍では、ガスはガス通過部9のみを通過する。また、集じん電極3を通過せずに、ホッパー8の上方を通過していくガスを低減でき、捕集効率を高めることができる。
 なお、本実施形態に係る電気集じん装置1は、単独で設置するのみでなく、他の種類の集じん装置と組み合わせたり、他の種類の集じん装置と一体化することも可能である。
1 電気集じん装置
2 放電電極
3 集じん電極
4 ケーシング
5 取付材
6 放電トゲ
7 板状部材
8 ホッパー
9 ガス通過部
 

Claims (7)

  1.  突起状の放電トゲを有し、コロナ放電を行う放電電極と、
     通気性の無い板状部材を有し、前記放電トゲに対向して設置される集じん電極と、
    を備え、
     前記集じん電極の前記板状部材の板面は、前記集じん電極に向かって流れるガス流に対し略直交して配置され、
     前記放電電極は、前記集じん電極に対しガス流れの上流側に設置されて、前記集じん電極の前記板状部材の上流側の面に放電し、
     同一平面内に設置される隣り合う2枚の前記板状部材間の端部間の距離をaとし、前記板状部材の幅をWとしたとき、
      0.1≦a/(a+W)≦0.5
    の関係が成立する電気集じん装置。
  2.  前記放電電極の前記放電トゲの先端と、前記集じん電極の前記板状部材との間の距離をdとしたとき、
      0.5d≦W≦2.0d
    の関係が更に成立する請求項1に記載の電気集じん装置。
  3.  前記放電電極の前記放電トゲの先端と、前記集じん電極の前記板状部材との間の距離をdとし、隣り合う二つの前記放電トゲの高さ方向の間隔をHとしたとき、
      0.3d≦H≦2.0d
    の関係が更に成立する請求項1又は2に記載の電気集じん装置。
  4.  前記集じん電極に対しガス流れの下流側に設置される第2の放電電極を更に備え、
     前記第2の放電電極は、前記集じん電極の前記板状部材の下流側の面に放電する位置に設けられる、
     又は、前記第2の放電電極は、同一平面内に設置される隣り合う2枚の前記板状部材間に形成されるガス通過部の延長上に設けられる請求項1から3のいずれか1項に記載の電気集じん装置。
  5.  前記集じん電極に対しガス流れの下流側に設置される第2の集じん電極を更に備え、
     前記第2の集じん電極は、同一平面内に設置される前記集じん電極の隣り合う2枚の前記板状部材間に形成されるガス通過部の延長上に設けられる請求項1から4のいずれか1項に記載の電気集じん装置。
  6.  前記集じん電極の前記板状部材と、ケーシングの内面との間の隙間を塞ぐ仕切板を更に備える請求項1から5のいずれか1項に記載の電気集じん装置。
  7.  前記集じん電極の前記板状部材が、ホッパーの上端部に合わせ配置され、前記板状部材と前記ホッパーの上端部の隙間を塞ぐ構造を備える請求項1から6のいずれか1項に記載の電気集じん装置。
     
PCT/JP2015/053230 2014-10-08 2015-02-05 電気集じん装置 WO2016056254A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207400 2014-10-08
JP2014207400A JP6333697B2 (ja) 2014-10-08 2014-10-08 電気集じん装置

Publications (1)

Publication Number Publication Date
WO2016056254A1 true WO2016056254A1 (ja) 2016-04-14

Family

ID=55652886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053230 WO2016056254A1 (ja) 2014-10-08 2015-02-05 電気集じん装置

Country Status (2)

Country Link
JP (1) JP6333697B2 (ja)
WO (1) WO2016056254A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3815791A4 (en) * 2018-08-01 2021-07-07 Mitsubishi Power Environmental Solutions, Ltd. ELECTROFILTER

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6827864B2 (ja) * 2017-03-24 2021-02-10 三菱重工業株式会社 凝集装置及びこれを備えた排ガス処理装置
JP7109194B2 (ja) * 2018-01-15 2022-07-29 三菱重工パワー環境ソリューション株式会社 電気集塵装置
JP7139120B2 (ja) * 2018-01-18 2022-09-20 三菱重工パワー環境ソリューション株式会社 電気集塵装置
JP7225019B2 (ja) * 2019-04-24 2023-02-20 三菱重工パワー環境ソリューション株式会社 電気集塵装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265731A (ja) * 1994-03-31 1995-10-17 Ishikawajima Harima Heavy Ind Co Ltd 電気集塵装置
JP2002361117A (ja) * 2001-06-09 2002-12-17 Ayumi Iijima 電気集塵装置
JP2003251221A (ja) * 2002-03-01 2003-09-09 Hitachi Plant Eng & Constr Co Ltd 電気集塵装置用バッフルプレート
JP2003269133A (ja) * 2002-03-15 2003-09-25 Toyota Motor Corp 排気ガス浄化装置
WO2006088174A1 (ja) * 2005-02-21 2006-08-24 Matsushita Electric Industrial Co., Ltd. 電気集塵ユニット
JP2012115798A (ja) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp 空気清浄装置
EP2520315A1 (en) * 2009-12-31 2012-11-07 Shanghai Tianyun Environmental Protection Technology Co., Ltd. Metal belt-plate structure reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841361A (ja) * 1971-09-28 1973-06-16

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265731A (ja) * 1994-03-31 1995-10-17 Ishikawajima Harima Heavy Ind Co Ltd 電気集塵装置
JP2002361117A (ja) * 2001-06-09 2002-12-17 Ayumi Iijima 電気集塵装置
JP2003251221A (ja) * 2002-03-01 2003-09-09 Hitachi Plant Eng & Constr Co Ltd 電気集塵装置用バッフルプレート
JP2003269133A (ja) * 2002-03-15 2003-09-25 Toyota Motor Corp 排気ガス浄化装置
WO2006088174A1 (ja) * 2005-02-21 2006-08-24 Matsushita Electric Industrial Co., Ltd. 電気集塵ユニット
EP2520315A1 (en) * 2009-12-31 2012-11-07 Shanghai Tianyun Environmental Protection Technology Co., Ltd. Metal belt-plate structure reactor
JP2012115798A (ja) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp 空気清浄装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3815791A4 (en) * 2018-08-01 2021-07-07 Mitsubishi Power Environmental Solutions, Ltd. ELECTROFILTER
US20210283621A1 (en) * 2018-08-01 2021-09-16 Mitsubishi Power Environmental Solutions, Ltd. Electrostatic precipitator

Also Published As

Publication number Publication date
JP6333697B2 (ja) 2018-05-30
JP2016073954A (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6333697B2 (ja) 電気集じん装置
JP6367123B2 (ja) 集塵装置、集塵システム及び集塵方法
JP5886874B2 (ja) 静電集塵器の高電圧部品近くの構造物のための電気的遮蔽装置
JP4244022B2 (ja) ガス処理装置
JP6104950B2 (ja) 集塵装置、集塵装置の電極選定方法及び集塵方法
JPH07213946A (ja) 電気集塵装置
JP2010069360A (ja) 電気集塵装置
JP2009178626A (ja) 電気集塵装置
JP2011161329A (ja) 焼結機排ガスの処理装置
JP6752736B2 (ja) 電気集塵装置
JP2016203138A (ja) ガス浄化装置及びこれを備えるガスタービン発電システム、並びに、ガス浄化方法
JP2012192361A (ja) 電気集塵装置
EP1965133B1 (en) Assembly for ash removal from a particle separator
CN112512695B (zh) 电集尘装置
CN108160332A (zh) 具有过滤式多孔阳极板的电除尘器
JP6390004B2 (ja) 電気集塵装置
TWI693970B (zh) 電氣集塵裝置
JP2015136683A (ja) 電気集塵装置及び集塵方法
JP7358216B2 (ja) 電気集塵装置
JP2017064604A (ja) 電気集じんフィルタユニット
CN111905929B (zh) 宽比电阻及微细粉尘静电除尘器及其除尘电极的分布方法
RU2243822C1 (ru) Электрофильтр
WO2020036185A1 (ja) 電気集塵装置
TW202007448A (zh) 電氣集塵裝置
TW202039086A (zh) 電集塵裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848496

Country of ref document: EP

Kind code of ref document: A1