WO2016035511A1 - 車両用熱管理システム - Google Patents

車両用熱管理システム Download PDF

Info

Publication number
WO2016035511A1
WO2016035511A1 PCT/JP2015/072544 JP2015072544W WO2016035511A1 WO 2016035511 A1 WO2016035511 A1 WO 2016035511A1 JP 2015072544 W JP2015072544 W JP 2015072544W WO 2016035511 A1 WO2016035511 A1 WO 2016035511A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation circuit
refrigerant
temperature
refrigerant temperature
control
Prior art date
Application number
PCT/JP2015/072544
Other languages
English (en)
French (fr)
Inventor
貴士 天野
藍川 嗣史
浩二朗 早川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201580044706.0A priority Critical patent/CN106574542A/zh
Priority to US15/504,785 priority patent/US20170253104A1/en
Publication of WO2016035511A1 publication Critical patent/WO2016035511A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00314Arrangements permitting a rapid heating of the heating liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/025Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from both the cooling liquid and the exhaust gases of the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation

Definitions

  • the present invention relates to a vehicle thermal management system applied to a vehicle equipped with an internal combustion engine.
  • Patent Document 1 As a heat management system for vehicles, there are a plurality of circulation circuits that circulate refrigerant, a circulation circuit that cools the main body of the internal combustion engine, a communication with a circulation circuit provided with a heat storage container and a heater core, and prohibition thereof. What switches with a switching valve according to the driving
  • Patent Documents 2 to 4 exist as prior art documents related to the present invention.
  • Patent Document 1 The vehicle thermal management system disclosed in Patent Document 1 is not considered until the refrigerant temperature is adjusted in accordance with a change in the cooling request of the internal combustion engine so as to cope with, for example, knocking of the internal combustion engine or local boiling of the refrigerant. There is room for improvement in the method.
  • an object of the present invention is to provide a vehicle thermal management system capable of adjusting the refrigerant temperature in accordance with changes in the cooling demand of the internal combustion engine.
  • the vehicle thermal management system of the present invention is a vehicle thermal management system applied to a vehicle equipped with an internal combustion engine, and is provided with a first pump that cools the engine body of the internal combustion engine and pumps the refrigerant.
  • a communication portion that communicates the first circulation circuit and the second circulation circuit, and a control valve that is provided in the communication portion and can switch communication between the first circulation circuit and the second circulation circuit and prohibition thereof.
  • a refrigerant temperature control means for controlling the control valve so that the refrigerant temperature of the refrigerant flowing through the first circulation circuit is higher than the refrigerant temperature of the refrigerant flowing through the second circulation circuit.
  • the refrigerant temperature of the first circulation circuit for cooling the engine body of the internal combustion engine is higher than the refrigerant temperature of the second circulation circuit provided with the exhaust heat recovery device and the heater core. It is controlled to become. Therefore, a temperature difference in which the refrigerant temperature in the first circulation circuit is higher than the refrigerant temperature in the second circulation circuit is obtained. Accordingly, when the cooling request of the internal combustion engine changes in a direction of increasing, the high-temperature refrigerant and the second circulation in the first circulation circuit are controlled by controlling the control valve so that the first circulation circuit and the second circulation circuit communicate with each other. The refrigerant temperature of the first circulation circuit can be reduced by mixing with the low-temperature refrigerant of the circuit.
  • the second circulation circuit may further include an EGR cooler.
  • the warm-up of the EGR cooler can be promoted by allowing the high-temperature refrigerant in the first circulation circuit to flow into the second circulation circuit before the warm-up of the EGR cooler is completed. After the warm-up is completed, the cooling performance of the EGR cooler is ensured by the low-temperature refrigerant in the second circulation circuit. As a result, temperature control suitable for the characteristics of the EGR cooler is possible.
  • the refrigerant temperature control means may be configured such that the demand load on the internal combustion engine reaches or is likely to reach a load region where knocking is likely to occur.
  • the control valve may be controlled so that the first circulation circuit and the second circulation circuit communicate with each other.
  • the refrigerant temperature of the first circulation circuit can be reduced by the communication between the first circulation circuit and the second circulation circuit in a situation where knocking is likely to occur. Thereby, generation
  • the refrigerant temperature control means may control the control valve so that the first circulation circuit and the second circulation circuit communicate with each other during a dead soak.
  • the refrigerant temperature of the first circulation circuit can be reduced by the communication between the first circulation circuit and the second circulation circuit during dead soaking. Thereby, generation
  • FIG. 1 is a diagram showing an overall configuration of a vehicle thermal management system according to a first embodiment.
  • FIG. 2 is an explanatory diagram showing the temperature rise characteristics of each circulation circuit.
  • FIG. 3 is an explanatory diagram showing the characteristics of each pump.
  • FIG. 4 is a flowchart showing an example of a control routine for knocking prevention control.
  • FIG. 5 is a flowchart showing an example of a control routine for dead soak control.
  • FIG. 6 is a flowchart showing an example of a control routine for heater request control.
  • FIG. 7 is a flowchart showing an example of a control routine for warm-up promotion control.
  • FIG. 8 is a flowchart showing an example of a control routine for start-up warm-up promotion control.
  • FIG. 1 is a diagram showing an overall configuration of a vehicle thermal management system according to a first embodiment.
  • FIG. 2 is an explanatory diagram showing the temperature rise characteristics of each circulation circuit.
  • FIG. 3 is an explanatory diagram showing the characteristics
  • FIG. 9 is a flowchart showing an example of a control routine for control at the completion of warm-up.
  • FIG. 10 is a diagram showing an overall configuration of the vehicle thermal management system according to the second embodiment.
  • FIG. 11 is a flowchart showing an example of a control routine according to the second embodiment.
  • FIG. 12 is a diagram showing an overall configuration of a vehicle thermal management system according to the third embodiment.
  • FIG. 13 is a flowchart showing an example of a control routine according to the third embodiment.
  • FIG. 14 is a diagram showing an overall configuration of a vehicle thermal management system according to the fourth embodiment.
  • a vehicle thermal management system (hereinafter referred to as a thermal management system) 1A is applied to a vehicle (not shown) on which an internal combustion engine 2 is mounted.
  • the thermal management system 1A includes two circulation circuits 3 and 4 for circulating the refrigerant.
  • the first circulation circuit 3 is provided with a first pump 5 for pumping refrigerant, and the refrigerant pumped by the first pump 5 circulates through the first circulation circuit 3 to thereby include an engine including a cylinder block and a cylinder head.
  • the main body 2a is cooled.
  • the first circulation circuit 3 communicates with the throttle valve 6, and the throttle valve 6 is also cooled in the first circulation circuit 3.
  • the first pump 5 is configured as a conventional electric pump having a capacity that satisfies the maximum cooling requirement of the internal combustion engine 2.
  • a branch circuit 8 provided with a radiator 7 branches from the first circulation circuit 3, and the branch position of the branch circuit 8 is set downstream of the engine body 2a.
  • the branch circuit 8 joins the first circulation circuit 3 via the thermostat 9. Accordingly, when the refrigerant temperature in the first circulation circuit 3 reaches the valve opening temperature of the thermostat 9, the branch circuit 8 is opened by the thermostat 9, whereby the refrigerant in the first circulation circuit 3 is guided to the branch circuit 8 and the radiator 7. It is cooled by.
  • the second circulation circuit 4 is provided with an exhaust heat recovery unit 10 that recovers exhaust heat of the internal combustion engine 2, a heater core 11 that is used for air conditioning of the vehicle, and a second pump 12 that pumps the refrigerant.
  • the second pump 12 is an electric pump having a smaller capacity than the first pump 5.
  • the second pump 12 has a capacity that allows the refrigerant to flow through the heater core 11 and satisfies the cooling requirement at the lower limit level of the internal combustion engine 2.
  • the first circulation circuit 3 is provided with a first temperature sensor 13, and the second circulation circuit 4 is provided with a second temperature sensor 14.
  • the refrigerant temperature of the refrigerant flowing through the first circulation circuit 3 can be detected by the first temperature sensor 13, and the refrigerant temperature of the refrigerant flowing through the second circulation circuit 4 can be detected by the second temperature sensor 14.
  • the first circulation circuit 3 and the second circulation circuit 4 are communicated with each other through two communication passages 15 and 16 as communication portions.
  • the first communication path 15 is provided with an on-off valve 18 that operates between a closed position for closing the first communication path 15 and an open position for opening the first communication path 15.
  • an on-off valve 18 When the on-off valve 18 is opened and the first communication passage 15 is opened, a part of the refrigerant flowing through the first circulation circuit 3 as indicated by the broken-line arrows is maintained while the circulation of the refrigerant in each of the circulation circuits 3 and 4 is maintained. Is led to the second circulation circuit 4 via the first communication path 15, while the same amount of refrigerant is led from the second circulation circuit 4 to the first circulation circuit 3 via the second communication path 16. As a result, communication between the first circulation circuit 3 and the second circulation circuit 4 is realized.
  • the on-off valve 18 when the on-off valve 18 is closed and the first communication passage 15 is closed, the refrigerant flow in the first communication passage 15 stops and at the same time the refrigerant flow in the second communication passage 16 stops, and the first circulation circuit. 3 is not allowed to communicate with the second circulation circuit 4.
  • the valve 18 corresponds to a control valve according to the present invention.
  • the heat management system 1A can switch the temperature rise characteristic of the refrigerant between communication and non-communication by switching communication between the first circulation circuit 3 and the second circulation circuit 4 and prohibition thereof.
  • the on-off valve 18 when the on-off valve 18 is opened (communication), the first circulation circuit 3 and the second circulation circuit 4 communicate with each other so that the heat capacity is larger than when the valve is closed (not communication). Therefore, the rate of temperature rise of the refrigerant during communication is slower than during non-communication. Therefore, when the temperature of the refrigerant needs to be raised quickly, such as before the internal combustion engine 2 is warmed up, the on-off valve 18 is closed to prohibit the communication between the first circulation circuit 3 and the second circulation circuit 4, thereby reducing the refrigerant in a short time. Can be achieved.
  • FIG. 3 is a comparison of the integrated power amounts of the pumps 5 and 12, and it can be seen that the use of the second pump 12 saves power than the use of the first pump 5.
  • the heat management system 1A is provided with a control device 20 for controlling the on-off valve 18 and the pumps 5 and 12.
  • the control device 20 is configured as a computer.
  • the control device 20 may also be used as an engine control unit for controlling the internal combustion engine 2.
  • Each output signal of the first temperature sensor 13 and the second temperature sensor 14 is input to the control device 20.
  • the control device 20 can acquire the refrigerant temperatures of the first circulation circuit 3 and the second circulation circuit 4.
  • the control device 20 receives a signal from an accelerator opening sensor 21 that outputs a signal corresponding to a depression amount of an unillustrated accelerator pedal.
  • the control device 20 functions as the refrigerant temperature control means according to the present invention, and the refrigerant temperature of the first circulation circuit 3 is set to the refrigerant temperature of the second circulation circuit 4 in consideration of the temperature rise characteristics of the circulation circuits 3 and 4 described above.
  • the on-off valve 18 is controlled to be higher than that. Thereby, a temperature difference in which the refrigerant temperature in the first circulation circuit 3 is higher than the refrigerant temperature in the second circulation circuit 4 is obtained.
  • the refrigerant temperature of each circulation circuit 3 and 4 is adjusted using the said temperature difference by controlling the on-off valve 18 according to a condition.
  • various controls performed by the control device 20 will be described.
  • the knocking prevention control is performed in a state where the thermostat 9 is opened after the warm-up of the internal combustion engine 2 is completed and the first pump 5 is being driven and cooling is performed by the radiator 7.
  • the cooling requirement at the time of high load at which knocking is likely to occur depends on the heat radiation performance by the radiator.
  • the control routine program shown in FIG. 4 is stored in the control device 20 and is read out in a timely manner and repeatedly executed at predetermined intervals.
  • step S101 the control device 20 determines the refrigerant temperature T1 of the first circulation circuit 3 based on the signal of the first temperature sensor 13 and the refrigerant temperature T2 of the second circulation circuit 4 based on the signal of the second temperature sensor 14, respectively. It is acquired and it is determined whether the refrigerant temperature T1 is higher than the refrigerant temperature T2. When refrigerant temperature T1 is higher than refrigerant temperature T2, it progresses to Step S102, and when that is not right, it progresses to Step S105.
  • step S102 the control device 20 determines whether or not the required load Ped of the internal combustion engine 2 is larger than a threshold Pe1 for determining a load region where knocking is likely to occur.
  • a threshold Pe1 for determining a load region where knocking is likely to occur.
  • the process proceeds to step S104, and the control device 20 opens the on-off valve 18.
  • step S103 the control device 20 refers to the signal of the accelerator opening sensor 21, acquires the accelerator change amount ⁇ A, and determines whether or not the accelerator change amount ⁇ A is larger than the threshold value ⁇ acc. This determination process is for predicting whether the required load of the internal combustion engine 2 does not reach the load region where knocking is likely to occur at the present time, but will reach that load region in the future.
  • the control device 20 proceeds to step S105 and closes the on-off valve 18 to close the first state.
  • the refrigerant temperature in the circulation circuit 3 is maintained higher than the refrigerant temperature in the second circulation circuit 4.
  • the knocking prevention control shown in FIG. 4 when knocking is likely to occur, the low-temperature refrigerant in the second circulation circuit 4 is caused to flow into the first circulation circuit 3 to lower the refrigerant temperature in the first circulation circuit 3. Therefore, the occurrence of knocking can be suppressed.
  • the dead-soak control is intended to prevent local boiling inside the internal combustion engine 2 when the vehicle is stopped and the internal combustion engine 2 is stopped while the amount of heat of the internal combustion engine 2 is large. Conventionally, during dead soak, the pump output is maximized or the radiator fan output is maximized to continue cooling while the vehicle is stopped to prevent local boiling. There was a problem.
  • the dead soak control of this embodiment suppresses the occurrence of local boiling during dead soak using the temperature difference between the refrigerant temperature of the first circulation circuit 3 and the refrigerant temperature of the second circulation circuit 4.
  • FIG. 5 is a flowchart showing an example of a control routine for dead soak control.
  • the control routine program shown in FIG. 5 is stored in the control device 20 and is read out in a timely manner and repeatedly executed at predetermined intervals.
  • step S111 the control device 20 determines whether or not the refrigerant temperature T1 is higher than the refrigerant temperature T2 with reference to the signals of the temperature sensors 13 and 14. When refrigerant temperature T1 is higher than refrigerant temperature T2, it progresses to Step S112, and when that is not right, it progresses to Step S116.
  • step S112 the control device 20 determines whether or not the high load traveling has continued before the vehicle stops. By this determination, the magnitude of the integrated heat quantity of the internal combustion engine 2 can be estimated. If the high-load running is not continued before the vehicle stops, the possibility of local boiling during the dead soak is low. Therefore, the process proceeds to step S116, where the control device 20 closes the on-off valve 18 and the refrigerant in the first circulation circuit 3 The temperature is maintained higher than the refrigerant temperature of the second circulation circuit 4. On the other hand, when the high load traveling is continued before the vehicle stops, the process proceeds to step S113.
  • step S113 the control device 20 determines whether or not the refrigerant temperature T1 is higher than the threshold value Th.
  • This threshold Th is set to about 95 ° C. to 100 ° C. If the refrigerant temperature T1 is lower than the threshold value Th, the possibility of local boiling during dead soak is low, so the routine proceeds to step 116, where the control device 20 closes the on-off valve 18 and the refrigerant temperature in the first circulation circuit 3 becomes the first temperature. The temperature is maintained higher than the refrigerant temperature of the 2-circulation circuit 4. On the other hand, when the refrigerant temperature T1 is higher than the threshold value Th, the process proceeds to step S114, and the control device 20 opens the on-off valve 18 to lower the refrigerant temperature of the first circulation circuit 3.
  • step S115 the control device 20 drives only the second pump 12. That is, the driving of the first pump 5 is stopped and the second pump 12 is driven. In this case, only the first pump 5 may be driven instead of driving only the second pump 12. That is, the circulation of the refrigerant is ensured by driving one of the pumps.
  • the dead soak control of the present embodiment when there is a high possibility that local boiling of the internal combustion engine 2 occurs during the dead soak, the low-temperature refrigerant in the second circulation circuit 4 is caused to flow into the first circulation circuit 3 to cause the first circulation circuit.
  • production of local boiling can be suppressed by lowering
  • only one of the two pumps 5 and 12 is driven without using a radiator fan to satisfy the cooling requirement at the time of the dead soak, so that power consumption can be reduced and noise can be reduced.
  • FIG. 6 is a flowchart showing an example of a control routine for heater request control.
  • the control routine program shown in FIG. 6 is stored in the control device 20, and is read out in a timely manner and repeatedly executed at predetermined intervals.
  • step S121 the control device 20 determines the presence or absence of the heater request described above. The presence / absence of the heater request is determined based on, for example, the operating state of a heating switch (not shown) mounted in the air conditioning of the vehicle. If there is a heater request, the process proceeds to step S122. If there is no heater request, the process proceeds to step S123.
  • step S122 the control device 20 drives the second pump 12. In step S123, the controller 20 stops driving the second pump 12, and in step S124, the on-off valve 18 is closed so that the refrigerant temperature in the first circulation circuit 3 is higher than the refrigerant temperature in the second circulation circuit 4. maintain.
  • step S125 the control device 20 refers to the signal of the second temperature sensor 14 to acquire the refrigerant temperature T2, and determines whether or not the refrigerant temperature T2 is higher than the threshold value t2 set as the heating possible temperature.
  • the heater request can be satisfied by using the exhaust heat recovered by the exhaust heat recovery device 10 as a heat source, so the process proceeds to step S124 and the on-off valve 18 is closed.
  • the process proceeds to step S126, and the control device 20 acquires the refrigerant temperature T1 with reference to the signal of the first temperature sensor 13, and whether or not the refrigerant temperature T1 is higher than the threshold t1. Determine whether.
  • the threshold value t1 is set to a value higher than the threshold value t2, and the threshold value t1 is set based on whether or not the heater request can be satisfied by flowing the refrigerant of the first circulation circuit 3 into the second circulation circuit 4. Has been. Therefore, when the refrigerant temperature T1 is equal to or lower than the threshold value t1, the heater request cannot be met by the inflow of the refrigerant in the first circulation circuit 3, so the process proceeds to step S124 and the on-off valve 18 is closed.
  • step S127 the control device 20 opens the on-off valve 18 and causes the high-temperature refrigerant in the first circulation circuit 3 to flow into the second circulation circuit 4.
  • the refrigerant temperature in the second circulation circuit 4 is raised to satisfy the heater requirement.
  • the shortage to the heater demand can be covered by flowing the refrigerant in the first circulation circuit 3 into the second circulation circuit 4 by controlling the on-off valve 18. Further, when the heater is requested, the refrigerant is circulated by driving the small second pump 12, which can contribute to power saving.
  • FIG. 7 is a flowchart showing an example of a control routine for warm-up promotion control.
  • the program of the control routine in FIG. 7 is stored in the control device 20 and is read out in a timely manner and repeatedly executed at predetermined intervals.
  • step S131 the control device 20 determines whether or not the refrigerant temperature T1 of the first circulation circuit 3 is lower than the refrigerant temperature T2 of the second circulation circuit 4 with reference to the signals of the temperature sensors 13 and 14.
  • the process proceeds to step S132.
  • the control device 20 closes the on-off valve 18 so that the refrigerant temperature in the first circulation circuit 3 is higher than the refrigerant temperature in the second circulation circuit 4.
  • step S134 the second pump 12 is stopped.
  • step S132 the control device 20 determines whether or not the internal combustion engine 2 is stopped due to idling stop, EV traveling, or the like. When the internal combustion engine 2 is not stopped, the processes of step S133 and step S134 are performed to promote warm-up so as not to let the heat of the internal combustion engine 2 escape. On the other hand, when the internal combustion engine 2 is stopped, the process proceeds to step S135, where the control device 20 opens the on-off valve 18 and causes the high-temperature refrigerant in the second circulation circuit 4 to flow into the first circulation circuit 3 to perform the first circulation. The refrigerant temperature in the circuit 3 is increased to promote warm-up. In step S136, the second pump 12 is driven.
  • the warm-up promotion control of this embodiment when the refrigerant temperature in the first circulation circuit 3 becomes lower than the refrigerant temperature in the second circulation circuit 4, the high-temperature refrigerant in the second circulation circuit 4 is changed to the first circulation circuit 3.
  • the refrigerant temperature in the first circulation circuit 3 rises and warm-up can be promoted. Further, since the refrigerant is circulated by driving the small second pump 12, it can contribute to power saving.
  • FIG. 8 is a flowchart showing an example of a control routine for start-up warm-up promotion control.
  • the control routine program shown in FIG. 8 is stored in the control device 20, read out in a timely manner, and repeatedly executed at predetermined intervals.
  • step S141 the control device 20 starts the vehicle in response to a start request for the vehicle.
  • step S ⁇ b> 142 the control device 20 determines whether or not the refrigerant temperature T ⁇ b> 1 of the first circulation circuit 3 is lower than the refrigerant temperature T ⁇ b> 2 of the second circulation circuit 4 with reference to the signals of the temperature sensors 13 and 14.
  • the process proceeds to step S145.
  • step S143 the control device 20 closes the on-off valve 18 so that the refrigerant temperature in the first circulation circuit 3 is higher than the refrigerant temperature in the second circulation circuit 4.
  • step S144 the driving of the second pump 12 is stopped.
  • step S145 the control device 20 opens the on-off valve 18 and causes the high-temperature refrigerant in the second circulation circuit 4 to flow into the first circulation circuit 3 to increase the refrigerant temperature in the first circulation circuit 3 to warm up. Promote.
  • step S146 the second pump 12 is driven.
  • the start-up warm-up promotion control of this embodiment when the refrigerant temperature in the first circulation circuit 3 becomes lower than the refrigerant temperature in the second circulation circuit 4 at the start of operation of the vehicle, the high temperature of the second circulation circuit 4 is increased. Since the refrigerant flows into the first circulation circuit 3 and the refrigerant temperature in the first circulation circuit 3 rises, warm-up can be promoted. Further, since the refrigerant is circulated by driving the small second pump 12, it can contribute to power saving.
  • FIG. 9 is a flowchart showing an example of a control routine for control at the completion of warm-up.
  • the program of the control routine of FIG. 9 is stored in the control device 20 and is read out in a timely manner and repeatedly executed at predetermined intervals.
  • step S151 the control device 20 determines whether or not the internal combustion engine 2 has been warmed up. The completion of warm-up is determined by whether or not the refrigerant temperature in the first circulation circuit 3 has reached the valve opening temperature of the thermostat 9. When the warm-up is completed, the process proceeds to step S152. When the warm-up is not completed, the process proceeds to step S153, and the control device 20 closes the on-off valve 18 to maintain the refrigerant temperature in the first circulation circuit 3 higher than the refrigerant temperature in the second circulation circuit 4.
  • step S152 the control device 20 determines the necessity of providing a temperature difference between the refrigerant temperatures of the circulation circuits 3 and 4. Examples of the case where it is necessary to provide such a temperature difference include the case where there is no heater requirement described above, the case where it is necessary to suppress knocking, the case where it is necessary to suppress the occurrence of local boiling during dead soaking, and the like. If it is necessary to provide a temperature difference, the process proceeds to step S153 to maintain the refrigerant temperature in the first circulation circuit 3 higher than the refrigerant temperature in the second circulation circuit 4.
  • step S154 the control device 20 opens the on-off valve 18 and causes the high-temperature refrigerant in the first circulation circuit 3 to flow into the second circulation circuit 4 to perform the second circulation.
  • the refrigerant temperature of the circuit 4 is increased.
  • step S155 the control device 20 drives one or both of the first pump 5 and the second pump 12 to circulate the refrigerant.
  • the opening / closing valve 18 is opened when there is no need to provide a temperature difference between the refrigerant temperature of the first circulation circuit 3 and the refrigerant temperature of the second circulation circuit 4,
  • the high-temperature refrigerant in the first circulation circuit 3 flows into the second circulation circuit 4.
  • the refrigerant temperature in the first circulation circuit 3 is lowered and the thermostat 9 is closed, so that heat radiation by the radiator 7 is avoided.
  • the thermal management system 1 ⁇ / b> B is characterized in that a CVT warmer 30 is disposed in the second communication path 16.
  • the CVT warmer 30 is a well-known one used for warming up a continuously variable transmission (not shown) mounted on a vehicle, and is arranged at the bottom of the casing of the continuously variable transmission.
  • the CVT warmer 30 is less likely to hinder warming up and heating of the internal combustion engine 2.
  • FIG. 11 is a flowchart showing an example of a control routine according to the second embodiment.
  • the program of the control routine of FIG. 11 is stored in the control device 20, is read out in a timely manner, and is repeatedly executed at a predetermined interval.
  • the control device 20 determines whether or not the internal combustion engine 2 has been warmed up. The determination of the completion of warming-up is performed depending on whether or not the refrigerant temperature T1 of the first circulation circuit 3 exceeds a threshold value. This threshold value may be set to the same temperature as the valve opening temperature of the thermostat 9.
  • the process proceeds to step S202.
  • step S204 the control device 20 closes the on-off valve 18 and maintains the refrigerant temperature in the first circulation circuit 3 higher than the refrigerant temperature in the second circulation circuit 4.
  • step S202 the control device 20 determines the presence or absence of the heater request described above. If there is a heater request, the process proceeds to step S203, and if there is no heater request, the process proceeds to step S205.
  • step S203 the control device 20 determines whether or not exhaust heat recovery by the exhaust heat recovery device 10 has been completed. Completion of exhaust heat recovery is determined based on whether or not the refrigerant temperature T2 of the second circulation circuit 4 exceeds a threshold value. This threshold value is set to the lower limit value of the refrigerant temperature that can satisfy the heater requirement, for example. If the exhaust heat recovery is completed, the process proceeds to step S205, and if not, the process proceeds to step S204.
  • step S205 the control device 20 opens the on-off valve 18.
  • step S206 the control device 20 drives either the second pump 12 or the first pump. Thereby, since a refrigerant
  • the CVT is warmed up only when the internal combustion engine 2 has been warmed up and the refrigerant temperature in the second circulation circuit 4 has increased to a level that satisfies the heater requirement. Therefore, since the warm-up of the internal combustion engine 2 and the heater request are prioritized over the warm-up of the CVT, it is avoided that the warm-up of the CVT hinders these.
  • an ATF warmer can be arranged instead of the CVT warmer 30.
  • various controls performed in the first mode knocking prevention control, dead soak control, heater request control, warm-up promotion control, start-up warm-up promotion control, and warm-up completion control
  • At least one of the above can be implemented in place of the control of FIG. 11 or in conjunction with the control of FIG.
  • the thermal management system 1 ⁇ / b> C of the third embodiment is characterized in that an EGR cooler 35 is provided in the second circulation circuit 4.
  • the EGR cooler 35 is a component of an EGR device that recirculates exhaust gas to the internal combustion engine 2 and is a device that cools the recirculated exhaust gas (EGR gas).
  • the required refrigerant temperature of the EGR cooler 35 changes before and after the EGR is performed. That is, the required refrigerant water temperature before the implementation of EGR is higher than the requested refrigerant temperature after the implementation of EGR. For this reason, warming up of the EGR cooler 35 should be promoted so that EGR can be performed at an early stage before EGR is implemented, and after EGR is implemented, the temperature rise of the refrigerant temperature should be suppressed in order to ensure the cooling performance of EGR gas. is there. In the present embodiment, such characteristics of the EGR cooler 35 are taken into consideration, and by performing the control of FIG. 13, temperature control suitable for the characteristics of the EGR cooler 35 becomes possible.
  • FIG. 13 is a flowchart showing an example of a control routine according to the third embodiment.
  • the control routine program shown in FIG. 13 is stored in the control device 20, read out in a timely manner, and repeatedly executed at predetermined intervals.
  • the control device 20 determines whether or not the refrigerant temperature T1 of the first circulation circuit 3 is higher than the EGR introduction permission determination temperature te1.
  • the EGR introduction permission determination temperature te1 is appropriately set according to the configuration of the internal combustion engine 2, the EGR introduction permission determination temperature te1 of the present embodiment is set to 70 ° C.
  • the refrigerant temperature T1 is higher than the EGR introduction permission determination temperature te1
  • the process proceeds to step S302.
  • the state does not reach the state where EGR can be performed, so the process proceeds to step S303, the on-off valve 18 is closed, and the refrigerant temperature of the first circulation circuit 3 becomes the second circulation circuit 4 It is maintained at a temperature higher than the refrigerant temperature. Thereby, warming-up of the EGR cooler 35 is promoted.
  • step S302 the control device 20 determines whether or not the refrigerant temperature T2 of the second circulation circuit 4 is higher than the EGR cooler warm-up completion determination temperature te2.
  • the EGR cooler warm-up completion determination temperature te2 is a threshold value for determining the completion of warm-up of the EGR cooler 35, and is set to an appropriate value lower than the EGR introduction permission determination temperature te1.
  • the refrigerant temperature T2 is higher than the EGR cooler warm-up completion determination temperature te2
  • the warm-up of the EGR cooler 35 is completed, so the process proceeds to step S303 and the open / close valve 18 is maintained closed.
  • the cooling performance of the EGR cooler 35 is ensured by the refrigerant of the second circulation circuit 4 whose refrigerant temperature is lower than that of the first circulation circuit 3.
  • the refrigerant temperature T2 is equal to or lower than the EGR cooler warm-up completion determination temperature te2
  • the EGR cooler 35 has not been warmed up, and thus the process proceeds to step S304 and the on-off valve 18 is opened.
  • the warm-up of the EGR cooler 35 is promoted by the high-temperature refrigerant in the first circulation circuit 3 flowing into the second circulation circuit 4.
  • the high-temperature refrigerant flows into the second circulation circuit 4 from the first circulation circuit 3, thereby warming up the EGR cooler 35.
  • the on-off valve 18 is kept closed and the cooling performance of the EGR cooler 35 is ensured by the low-temperature refrigerant in the second circulation circuit 4. Therefore, the temperature control suitable for the characteristics of the EGR cooler 35 can be performed by performing the control of FIG.
  • the various controls implemented in the first embodiment knock prevention control, dead soak control, heater request control, warm-up promotion control, start-up warm-up promotion control, and warm-up completion control
  • At least one of the above can be implemented in place of the control of FIG. 13 or in conjunction with the control of FIG.
  • the fourth embodiment corresponds to an improvement of the third embodiment, and a configuration for improving the cooling performance of the EGR cooler 35 is provided.
  • the thermal management system 1D of the fourth embodiment branches from between the heater core 11 and the EGR cooler 35 of the second circulation circuit 4 and merges upstream of the EGR cooler 35.
  • a branch circuit 41, an auxiliary radiator 42 provided in the branch circuit 41, and a thermostat 43 provided at a junction position of the branch circuit 41 are provided.
  • the valve opening temperature of the thermostat 43 is set to a temperature lower than the valve opening temperature of the thermostat 9 provided in the first circulation circuit 3.
  • the control device 20 performs the control shown in FIG. Thereby, the warm-up of the EGR cooler 35 is promoted similarly to the third embodiment. Further, when the temperature of the refrigerant in the second circulation circuit 4 rises and the thermostat 43 is opened after the warm-up of the EGR cooler 35 is completed, the refrigerant in the second circulation circuit 4 is guided to the auxiliary radiator 42 and cooled. For this reason, since a cooler refrigerant
  • various controls implemented in the first embodiment knock prevention control, dead soak control, heater request control, warm-up promotion control, start-up warm-up promotion control, and warm-up completion control
  • At least one of the above can be implemented in place of the control of FIG. 13 or in conjunction with the control of FIG.
  • the present invention is not limited to the above embodiments, and can be implemented in various forms within the scope of the gist of the present invention.
  • the communication portion has two communication passages, and one of them is provided with an opening / closing valve as a control valve.
  • the first circulation circuit and the second circulation circuit and its prohibition are prohibited. As long as it can be switched, there are no restrictions on the number of communicating parts and the location of the control valve.
  • an on-off valve that opens and closes the first communication passage 15 is provided as a control valve.
  • a valve that can continuously change the opening degree may be provided as a control valve. it can.
  • the flow rate of the refrigerant flowing between the first circulation circuit and the second circulation circuit can be continuously adjusted, more detailed refrigerant temperature can be obtained when each of the above-described controls is performed. Adjustment is possible. Furthermore, the temperature of the refrigerant can be adjusted more accurately by cooperatively controlling the opening of the valve and the drive duty of the first pump or the second pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 車両用熱管理システム(1A)は、内燃機関(2)の機関本体(2a)を冷却するとともに冷媒を圧送する第1ポンプ(5)が設けられた第1循環回路(3)と、内燃機関(2)の排気熱を回収する排気熱回収器(10)、車両の空調に利用されるヒータコア(11)及び冷媒を圧送する第2ポンプ(12)がそれぞれ設けられた第2循環回路(4)と、第1循環回路(3)と第2循環回路(4)とを連通する連通路(15、16)と、第1連通路(15)に設けられて、第1循環回路(3)と第2循環回路(4)との連通とその禁止とを切り替え可能な開閉弁(18)と、を備え、第1循環回路(3)の冷媒温度が第2循環回路(4)の冷媒温度よりも高い状態となるように開閉弁(18)を制御する。

Description

車両用熱管理システム
 本発明は、内燃機関が搭載された車両に適用される車両用熱管理システムに関する。
 車両用熱管理システムとして、冷媒を循環させる複数の循環回路を有し、内燃機関の本体を冷却する循環回路と、蓄熱容器とヒータコアとが設けられた循環回路との連通と、その禁止とを運転状態(各部位の温度)に応じて切替弁にて切り替えるものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として、特許文献2~4が存在する。
特開2004-285958号公報 特開2004-76603号公報 特開2005-509777号公報 特開平9-158724号公報
 特許文献1の車両用熱管理システムは、例えば内燃機関のノッキングや冷媒の局所沸騰に対応できるように内燃機関の冷却要求の変化に合わせて冷媒温度を調整することまでは考慮されておらず制御方法に改善の余地がある。
 そこで、本発明は、内燃機関の冷却要求の変化に合わせて冷媒温度を調整できる車両用熱管理システムを提供することを目的とする。
 本発明の車両用熱管理システムは、内燃機関が搭載された車両に適用される車両用熱管理システムであって、前記内燃機関の機関本体を冷却するとともに冷媒を圧送する第1ポンプが設けられた第1循環回路と、前記内燃機関の排気熱を回収する排気熱回収器、前記車両の空調に利用されるヒータコア及び冷媒を圧送する第2ポンプがそれぞれ設けられた第2循環回路と、前記第1循環回路と前記第2循環回路とを連通する連通部と、前記連通部に設けられて、前記第1循環回路と前記第2循環回路との連通とその禁止とを切り替え可能な制御弁と、前記第1循環回路を流れる冷媒の冷媒温度が前記第2循環回路を流れる冷媒の冷媒温度よりも高い状態となるように前記制御弁を制御する冷媒温度制御手段と、を備えるものである。
 この車両用熱管理システムによれば、内燃機関の機関本体を冷却するための第1循環回路の冷媒温度が排熱回収器及びヒータコアが設けられた第2循環回路の冷媒温度よりも高い状態となるように制御される。そのため、第1循環回路の冷媒温度が第2循環回路の冷媒温度よりも高い温度差が得られる。これにより、内燃機関の冷却要求が高まる方向に変化した場合に第1循環回路と第2循環回路とが連通するように制御弁を制御することによって第1循環回路の高温の冷媒と第2循環回路の低温の冷媒とを混合させて第1循環回路の冷媒温度を低減できる。
 本発明の車両用熱管理システムの一態様において、前記第2循環回路にはEGRクーラが更に設けられてもよい。この態様によれば、EGRクーラの暖機完了前には第1循環回路の高温の冷媒を第2循環回路に流入させることによってEGRクーラの暖機を促進することができる一方で、EGRクーラの暖機完了後には第2循環回路の低温の冷媒によってEGRクーラの冷却性能が確保される。これによりEGRクーラの特性に適した温度制御が可能となる。
 本発明の車両用熱管理システムの一態様において、前記冷媒温度制御手段は、前記内燃機関に対する要求負荷がノッキングを発生し易い負荷領域に至る又は前記負荷領域に至る可能性がある場合に前記第1循環回路と前記第2循環回路とが連通するように前記制御弁を制御してもよい。この態様によれば、ノッキングが発生し易い状況で第1循環回路と第2循環回路とが連通することによって第1循環回路の冷媒温度を低減できる。これにより、内燃機関のノッキングの発生を抑制することができる。
 本発明の車両用熱管理システムの一態様において、前記冷媒温度制御手段は、デッドソーク時に前記第1循環回路と前記第2循環回路とが連通するように前記制御弁を制御してもよい。この態様によれば、デッドソーク時に第1循環回路と第2循環回路とが連通することによって第1循環回路の冷媒温度を低減できる。これにより、デッドソーク時の局所沸騰の発生を抑制することができる。
図1は第1の形態に係る車両用熱管理システムの全体構成を示した図である。 図2は各循環回路の昇温特性を示した説明図である。 図3は各ポンプの特性を示した説明図である。 図4はノッキング防止制御の制御ルーチンの一例を示すフローチャートである。 図5はデッドソーク時制御の制御ルーチンの一例を示すフローチャートである。 図6はヒータ要求時制御の制御ルーチンの一例を示すフローチャートである。 図7は暖機促進制御の制御ルーチンの一例を示すフローチャートである。 図8は始動時暖機促進制御の制御ルーチンの一例を示すフローチャートである。 図9は暖機完了時制御の制御ルーチンの一例を示すフローチャートである。 図10は第2の形態に係る車両用熱管理システムの全体構成を示した図である。 図11は第2の形態に係る制御ルーチンの一例を示すフローチャートである。 図12は第3の形態に係る車両用熱管理システムの全体構成を示した図である。 図13は第3の形態に係る制御ルーチンの一例を示すフローチャートである。 図14は第4の形態に係る車両用熱管理システムの全体構成を示した図である。
(第1の形態)
 図1に示すように、車両用熱管理システム(以下、熱管理システムという。)1Aは、内燃機関2が搭載された車両(不図示)に適用される。熱管理システム1Aは冷媒を循環させる2つの循環回路3、4を備えている。第1循環回路3には冷媒を圧送する第1ポンプ5が設けられており、第1ポンプ5にて圧送された冷媒は第1循環回路3を循環することによってシリンダブロック及びシリンダヘッドを含む機関本体2aを冷却する。さらに第1循環回路3はスロットルバルブ6に通じており、第1循環回路3にてスロットルバルブ6も冷却される。第1ポンプ5は内燃機関2の最大冷却要求を満足させる容量を持つ従来相当の電動式ポンプとして構成されている。第1循環回路3からはラジエータ7が設けられた分岐回路8が分岐しており、分岐回路8の分岐位置は機関本体2aの下流に設定されている。分岐回路8はサーモスタット9を介して第1循環回路3に合流している。したがって、第1循環回路3の冷媒温度がサーモスタット9の開弁温度に到達すると、サーモスタット9にて分岐回路8が開通することによって第1循環回路3の冷媒が分岐回路8に導かれてラジエータ7にて冷却される。
 第2循環回路4には内燃機関2の排気熱を回収する排気熱回収器10、車両の空調に利用されるヒータコア11及び冷媒を圧送する第2ポンプ12が設けられている。第2ポンプ12は第1ポンプ5よりも小容量の電動式ポンプである。第2ポンプ12はヒータコア11に冷媒を流すことができ、かつ内燃機関2の下限レベルの冷却要求を満足させる容量を有している。
 第1循環回路3には第1温度センサ13が、第2循環回路4には第2温度センサ14がそれぞれ設けられている。第1温度センサ13によって第1循環回路3を流れる冷媒の冷媒温度を、第2温度センサ14によって第2循環回路4を流れる冷媒の冷媒温度をそれぞれ検出できる。
 第1循環回路3と第2循環回路4とは連通部としての2つの連通路15、16にて連通している。第1連通路15には、第1連通路15を閉鎖する閉位置と第1連通路15を開通する開位置との間で動作する開閉弁18が設けられている。開閉弁18が開弁して第1連通路15が開通すると、各循環回路3、4の冷媒の循環が維持されつつ、破線の矢印で示すように第1循環回路3を流れる一部の冷媒が第1連通路15を介して第2循環回路4に導かれる一方で、同量の冷媒が第2循環回路4から第2連通路16を介して第1循環回路3に導かれる。これによって、第1循環回路3と第2循環回路4との連通が実現する。
 一方、開閉弁18が閉弁して第1連通路15が閉鎖されると、第1連通路15の冷媒の流れが止まると同時に第2連通路16の冷媒の流れが止まり、第1循環回路3と第2循環回路4との連通が禁止される。このように、2つの連通路15、16の一方に設けられた開閉弁18を操作することによって、第1循環回路3と第2循環回路4との連通とその禁止とが切り替えられるため、開閉弁18は本発明に係る制御弁に相当する。
 熱管理システム1Aは、第1循環回路3と第2循環回路4との連通及びその禁止とを切り替えることによって、冷媒の昇温特性を連通時と非連通時とで切り替えることができる。図2に示すように、開閉弁18の開弁時(連通時)は、第1循環回路3と第2循環回路4とが連通することによって熱容量が閉弁時(非連通時)よりも大きくなるので、連通時の冷媒の昇温速度は非連通時よりも遅くなる。したがって、内燃機関2の暖機前等の速やかな冷媒の昇温が必要な時には開閉弁18を閉じて第1循環回路3と第2循環回路4との連通を禁止することにより短時間の冷媒の昇温を実現できる。また、熱管理システム1Aは互いに容量の異なる2つのポンプ5、12を用いているため、必要に応じて小容量の第2ポンプ12のみを使用することにより図3に示した省電力効果を得ることができる。図3は各ポンプ5、12の積算電力量を比較したものであり、第2ポンプ12を用いた方が第1ポンプ5を用いるよりも省電力であることが分かる。
 熱管理システム1Aには、開閉弁18の制御及び各ポンプ5、12の制御を行うための制御装置20が設けられている。制御装置20はコンピュータとして構成されている。制御装置20は内燃機関2の制御を行うためのエンジンコントロールユニットと兼用されていてもよい。制御装置20には第1温度センサ13及び第2温度センサ14の各出力信号が入力されている。これにより制御装置20は第1循環回路3及び第2循環回路4の各冷媒温度を取得できる。また、制御装置20には不図示のアクセルペダルの踏み込み量に応じた信号を出力するアクセル開度センサ21の信号が入力される。
 制御装置20は、本発明に係る冷媒温度制御手段として機能し、上述した各循環回路3、4の昇温特性を考慮して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高くなるように開閉弁18を制御することを基本とする。これにより、第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い温度差が得られる。そして、状況に応じて開閉弁18を制御することにより上記温度差を利用して各循環回路3、4の冷媒温度を調整する。以下、制御装置20が実施する種々の制御について説明する。
<ノッキング防止制御>
 ノッキング防止制御は、内燃機関2の暖機完了後にサーモスタット9が開弁し第1ポンプ5を駆動しながらラジエータ7による冷却が実施されている状況で行われる。従来、ノッキングが発生し易い高負荷時の冷却要求はラジエータによる放熱性能に頼っていたが、本形態のノッキング防止制御は、第1循環回路3の冷媒温度と第2循環回路4の冷媒温度との温度差を利用してノッキングを抑制する。図4はノッキング防止制御の制御ルーチンの一例を示すフローチャートである。図4の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。
 ステップS101において、制御装置20は第1循環回路3の冷媒温度T1を第1温度センサ13の信号に基づいて、第2循環回路4の冷媒温度T2を第2温度センサ14の信号に基づいてそれぞれ取得し、冷媒温度T1が冷媒温度T2よりも高いか否かを判定する。冷媒温度T1が冷媒温度T2よりも高い場合はステップS102に進み、そうでない場合はステップS105に進む。
 ステップS102において、制御装置20は内燃機関2の要求負荷Pedがノッキングの発生し易い負荷領域を判定する閾値Pe1よりも大きいか否かを判定する。要求負荷Pedが閾値Pe1よりも大きい場合はステップS104に進み、制御装置20は開閉弁18を開弁する。これにより、第1循環回路3に第2循環回路4の低温の冷媒が流入して第1循環回路3の冷媒温度が低下するのでノッキングの発生を抑制できる。
 一方、要求負荷Pedが閾値Pe1以下の場合はステップS103に進む。ステップS103において、制御装置20はアクセル開度センサ21の信号を参照してアクセル変化量ΔAを取得し、アクセル変化量ΔAが閾値Δaccよりも大きいか否かを判定する。この判定処理は、内燃機関2の要求負荷がノッキングの発生し易い負荷領域に現時点で至らないが将来的にその負荷領域に達するか否かを予測するためのものである。
 アクセル変化量ΔAが閾値Δaccよりも大きい条件が一定時間tA以上継続する場合は将来的にノッキングが発生し易い負荷領域に達する可能性があるため、制御装置20はステップS104に進んで開閉弁18を開弁して第1循環回路3の冷媒温度を低下させる。一方、アクセル変化量ΔAが閾値Δacc以下の条件が一定時間tA以上継続する場合はノッキングが発生する可能性が低いので、制御装置20はステップS105に進んで開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。
 図4に示したノッキング防止制御によれば、ノッキングが発生し易い場合に第2循環回路4の低温の冷媒を第1循環回路3に流入させて第1循環回路3の冷媒温度を低下させることによりノッキングの発生を抑制することができる。
<デッドソーク時制御>
 デッドソーク時制御は、内燃機関2の熱量が大きい状態で車両停止及び内燃機関2が停止した場合に内燃機関2の内部での局所沸騰を防止するものである。従来、デッドソーク時にはポンプの出力を最大化したり、ラジエータファンの出力を最大化することにより車両停車中の冷却を続行して局所沸騰を防止していたが、停車後の消費電力が大きかったり騒音の問題があった。本形態のデットソーク時制御は第1循環回路3の冷媒温度と第2循環回路4の冷媒温度との温度差を利用してデッドソーク時の局所沸騰の発生を抑制する。図5はデッドソーク時制御の制御ルーチンの一例を示すフローチャートである。図5の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。
 ステップS111において、制御装置20は各温度センサ13、14の信号を参照して冷媒温度T1が冷媒温度T2よりも高いか否かを判定する。冷媒温度T1が冷媒温度T2よりも高い場合はステップS112に進み、そうでない場合はステップS116に進む。
 ステップS112において、制御装置20は車両停止前に高負荷走行が継続していたか否かを判定する。この判定により内燃機関2の積算熱量の大きさを見積ることができる。車両停止前に高負荷走行が継続していない場合はデッドソーク時に局所沸騰が発生する可能性が低いのでステップS116に進み、制御装置20は開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。一方、車両停止前に高負荷走行が継続している場合はステップS113に進む。
 ステップS113において、制御装置20は冷媒温度T1が閾値Thよりも高いか否かを判定する。この閾値Thは95°C~100°C程度に設定されている。冷媒温度T1が閾値Thよりも低い場合はデッドソーク時に局所沸騰が発生する可能性が低いのでステップ116に進み、制御装置20は開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。一方、冷媒温度T1が閾値Thよりも高い場合はステップS114に進み、制御装置20は開閉弁18を開弁して第1循環回路3の冷媒温度を低下させる。そして、続くステップS115において、制御装置20は第2ポンプ12のみを駆動する。つまり、第1ポンプ5の駆動を停止して第2ポンプ12を駆動する。この場合、第2ポンプ12のみを駆動する代わりに第1ポンプ5のみを駆動してもよい。すなわち、いずれか一方のポンプの駆動により冷媒の循環を確保する。
 本形態のデッドソーク時制御によれば、デッドソーク時に内燃機関2の局所沸騰が発生する可能性が高い場合に第2循環回路4の低温の冷媒を第1循環回路3に流入させて第1循環回路3の冷媒温度を低下させることにより局所沸騰の発生を抑制できる。また、ラジエータファンを使用することなく2つのポンプ5、12のいずれか一方のポンプのみを駆動してデッドソーク時の冷却要求を満足させるので、消費電力を低減できるとともに騒音を低減できる。
<ヒータ要求時制御>
 ヒータ要求時制御は、車両の空調で暖房が必要となり冷媒からヒータコア11への熱移動が必要となったヒータ要求時に実施される。ヒータ要求に対しては排気熱回収器10が回収した排気熱で賄うことを基本とするが、ヒータ要求に対する不足分については開閉弁18を制御して第1循環回路3の高温の冷媒を第2循環回路4へ流入させることにより賄う。図6はヒータ要求時制御の制御ルーチンの一例を示すフローチャートである。図6の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。
 ステップS121において、制御装置20は上述したヒータ要求の有無を判定する。ヒータ要求の有無は例えば車両の空調に搭載された不図示の暖房スイッチの操作状態に基づいて判定される。ヒータ要求がある場合はステップS122に進み、ヒータ要求がない場合はステップS123に進む。ステップS122において、制御装置20は第2ポンプ12を駆動する。ステップS123において、制御装置20は第2ポンプ12を駆動停止し、ステップS124において開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。
 ステップS125において、制御装置20は第2温度センサ14の信号を参照して冷媒温度T2を取得し、冷媒温度T2が暖房可能温度として設定された閾値t2よりも高いか否かを判定する。冷媒温度T2が閾値t2よりも高い場合は排気熱回収器10が回収した排気熱を熱源としてヒータ要求を賄うことができるので、処理をステップS124に進めて開閉弁18を閉弁する。一方、冷媒温度T2が閾値t2以下の場合はステップS126に進み、制御装置20は第1温度センサ13の信号を参照して冷媒温度T1を取得し、冷媒温度T1が閾値t1よりも高いか否かを判定する。
 閾値t1は閾値t2よりも高い値に設定されており、閾値t1は第1循環回路3の冷媒を第2循環回路4に流入させることによりヒータ要求を賄うことができるか否かを基準として設定されている。したがって、冷媒温度T1が閾値t1以下の場合は第1循環回路3の冷媒の流入によりヒータ要求を賄うことができないので、処理をステップS124に進めて開閉弁18を閉弁する。一方、冷媒温度T1が閾値t1よりも高い場合は処理をステップS127に進めて、制御装置20は開閉弁18を開弁して第1循環回路3の高温の冷媒を第2循環回路4に流入させて第2循環回路4の冷媒温度を上昇させてヒータ要求を満足させる。
 本形態のヒータ要求時制御によれば、ヒータ要求に対する不足分を開閉弁18の制御によって第1循環回路3の冷媒を第2循環回路4へ流入させて賄うことができる。また、ヒータ要求時には小型の第2ポンプ12の駆動により冷媒を循環させるので省電力化に寄与できる。
<暖機促進制御>
 車両がアイドリングストップ搭載車やハイブリッド車の場合、アイドリングストップの実施やEV走行によって走行風や外気放熱の影響によって第1循環回路3の冷媒温度が低下して内燃機関2の暖機完了前の状態(半暖機状態)が比較的長く継続する場合がある。このような状況では、第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも低くなることが想定される。暖機促進制御はこうした車両の走行環境や走行状態の影響により第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも低くなった場合に第2循環回路4の高温の冷媒を第1循環回路3へ流入させることによって暖機を促進するものである。図7は暖機促進制御の制御ルーチンの一例を示すフローチャートである。図7の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。
 ステップS131において、制御装置20は各温度センサ13、14の信号を参照し第1循環回路3の冷媒温度T1が第2循環回路4の冷媒温度T2よりも低いか否かを判定する。冷媒温度T1が冷媒温度T2よりも低い場合はステップS132に進む。冷媒温度T1が冷媒温度T2以上の場合はステップS133に進み、制御装置20は開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態となるようにし、続くステップS134で第2ポンプ12を駆動停止する。
 ステップS132において、制御装置20はアイドリングストップやEV走行等を原因として内燃機関2が停止中か否かを判定する。内燃機関2が停止中でない場合は、内燃機関2の熱を逃がさないようにして暖機を促進するためにステップS133及びステップS134の処理を実施する。一方、内燃機関2が停止中の場合はステップS135に進み、制御装置20は開閉弁18を開弁して第2循環回路4の高温の冷媒を第1循環回路3に流入させて第1循環回路3の冷媒温度を上昇させて暖機を促進させる。そして、ステップS136において第2ポンプ12を駆動する。
 本形態の暖機促進制御によれば、第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも低くなった場合に第2循環回路4の高温の冷媒が第1循環回路3へ流入して第1循環回路3の冷媒温度が上昇するので暖機を促進できる。また、小型の第2ポンプ12の駆動により冷媒を循環させるので省電力化に寄与できる。
<始動時暖機促進制御>
 始動時暖機促進制御は、車両の始動時すなわち車両の運転開始時に第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも低い状態の場合に第2循環回路4の高温の冷媒を第1循環回路3へ流入させることによって内燃機関2の暖機を促進するものである。図8は始動時暖機促進制御の制御ルーチンの一例を示すフローチャートである。図8の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。
 ステップS141において、制御装置20は車両に対する始動要求に応じて車両を始動させる。ステップS142において、制御装置20は各温度センサ13、14の信号を参照し第1循環回路3の冷媒温度T1が第2循環回路4の冷媒温度T2よりも低いか否かを判定する。冷媒温度T1が冷媒温度T2よりも低い場合はステップS145に進む。冷媒温度T1が冷媒温度T2以上の場合はステップS143に進み、制御装置20は開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態となるようにし、ステップS144で第2ポンプ12を駆動停止する。ステップS145において、制御装置20は開閉弁18を開弁して第2循環回路4の高温の冷媒を第1循環回路3に流入させて第1循環回路3の冷媒温度を上昇させて暖機を促進させる。そして、ステップS146において第2ポンプ12を駆動する。
 本形態の始動時暖機促進制御によれば、車両の運転開始時に第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも低くなった場合に第2循環回路4の高温の冷媒が第1循環回路3へ流入して第1循環回路3の冷媒温度が上昇するので暖機を促進できる。また、小型の第2ポンプ12の駆動により冷媒を循環させるので省電力化に寄与できる。
<暖機完了時制御>
 暖機完了時制御は、内燃機関2の暖機が完了した後に各循環回路3、4の冷媒温度に温度差を設ける必要性に応じて開閉弁18を制御するものである。こうした温度差を設ける必要がない場合にはラジエータ7による放熱が無駄になるので、第1循環回路3の高温の冷媒を第2循環回路4に流入させて第2循環回路4の冷媒温度を上昇させる。図9は暖機完了時制御の制御ルーチンの一例を示すフローチャートである。図9の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。
 ステップS151において、制御装置20は内燃機関2の暖機が完了したか否かを判定する。暖機完了の判定は第1循環回路3の冷媒温度がサーモスタット9の開弁温度に到達したか否かにより実施される。暖機完了した場合はステップS152に進む。暖機完了していない場合はステップS153に進み、制御装置20は開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。
 ステップS152において、制御装置20は各循環回路3、4の冷媒温度に温度差を設ける必要性を判断する。こうした温度差を設けることが必要な場合としては、上述したヒータ要求がない場合、ノッキングの抑制が必要な場合、デッドソーク時の局所沸騰の発生の抑制が必要な場合等が該当する。温度差を設ける必要がある場合は処理をステップS153に進めて第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。一方、温度差を設ける必要がない場合はステップS154に進み、制御装置20は開閉弁18を開弁して第1循環回路3の高温の冷媒を第2循環回路4に流入させて第2循環回路4の冷媒温度を上昇させる。そして、ステップS155において、制御装置20は、第1ポンプ5及び第2ポンプ12のいずれか一方又は両方を駆動して冷媒を循環させる。
 本形態の暖機完了時制御によれば、第1循環回路3の冷媒温度と第2循環回路4の冷媒温度との間に温度差を設ける必要がない場合に開閉弁18が開弁され、第1循環回路3の高温の冷媒が第2循環回路4に流入する。その結果、第1循環回路3の冷媒温度が低下してサーモスタット9が閉弁することによってラジエータ7による放熱が回避される。
(第2の形態)
 次に本発明の第2の形態を図10及び図11を参照しながら説明する。第1の形態と共通する構成には同一の参照符号を図10に付して説明を省略する。図10に示したように、第2の形態の熱管理システム1Bは、第2連通路16にCVTウォーマ30が配置された点に特徴がある。CVTウォーマ30は車両に搭載された不図示の無段変速機の暖機に利用される周知のものであり無段変速機のケーシングの底部に配置される。上述したように、開閉弁18が閉弁されると2つの連通路15、16はいずれも冷媒の流通が止まるので、開閉弁18が閉弁されている限りCVTウォーマ30に冷媒の熱は移動しない。したがって常時冷媒が循環する第1循環回路3や第2循環回路4にCVTウォーマ30を設ける場合と比べてCVTウォーマ30が内燃機関2の暖機や暖房の妨げとなりにくい。
 図11は第2の形態に係る制御ルーチンの一例を示したフローチャートである。図11の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。ステップS201において、制御装置20は内燃機関2の暖機が完了したか否かを判定する。暖機完了の判定は第1循環回路3の冷媒温度T1が閾値を超えたか否かによって実施される。この閾値としては、サーモスタット9の開弁温度と同じ温度に設定してよい。暖機完了した場合はステップS202に進む。暖機完了していない場合はステップS204に進み、制御装置20は開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。
 ステップS202において、制御装置20は上述したヒータ要求の有無を判定する。ヒータ要求がある場合はステップS203に進み、ヒータ要求がない場合はステップS205に進む。ステップS203において、制御装置20は排気熱回収器10による排気熱の回収が完了したか否かを判定する。排気熱の回収完了は第2循環回路4の冷媒温度T2が閾値を超えたか否かに基づいて判定される。この閾値は、例えばヒータ要求を満足し得る冷媒温度の下限値に設定される。排気熱の回収が完了した場合はステップS205に進み、そうでない場合はステップS204に進む。
 ステップS205において、制御装置20は開閉弁18を開弁する。そして、ステップS206において、制御装置20は第2ポンプ12又は第1ポンプのいずれか一方を駆動する。これにより、第2連通路16を介してCVTウォーマ30に冷媒が流通するのでCVTを暖機できる。
 図11の制御によれば、内燃機関2の暖機が完了し、かつ第2循環回路4の冷媒温度がヒータ要求を満足させる程度に高まった場合に限りCVTが暖機される。そのため、内燃機関2の暖機及びヒータ要求がCVTの暖機に優先されるので、CVTの暖機がこれらの妨げとなることが回避される。なお、車両に搭載される変速機が自動変速機(AT)の場合には、CVTウォーマ30の代わりにATFウォーマを配置することもできる。
 また、第2の形態では、第1の形態で実施した各種制御(ノッキング防止制御、デッドソーク時制御、ヒータ要求時制御、暖機促進制御、始動時暖機促進制御、及び暖機完了時制御)の少なくとも一つを図11の制御に代えて又は図11の制御とともに実施することができる。
(第3の形態)
 次に、本発明の第3の形態を図12及び図13を参照しながら説明する。第1の形態と共通する構成には同一の参照符号を図12に付して説明を省略する。図12に示したように第3の形態の熱管理システム1Cは、第2循環回路4にEGRクーラ35が設けられている点に特徴がある。周知のように、EGRクーラ35は内燃機関2に排気を再循環させるEGR装置の一要素であり、再循環させる排気(EGRガス)を冷却する装置である。
 EGRクーラ35の要求冷媒温度はEGRの実施前後で変化する。すなわちEGR実施前の要求冷媒水温はEGR実施後の要求冷媒温度よりも高い。そのため、EGR実施前は早期にEGR実施可能となるようにEGRクーラ35の暖機を促進すべきであり、EGR実施後はEGRガスの冷却性能を確保するため冷媒温度の昇温を抑えるべきである。本形態はこうしたEGRクーラ35の特性を考慮したものであり、図13の制御を実施することによりEGRクーラ35の特性に適した温度制御が可能となる。
 図13は第3の形態に係る制御ルーチンの一例を示したフローチャートである。図13の制御ルーチンのプログラムは制御装置20に記憶されており適時に読み出されて所定間隔で繰り返し実行される。ステップS301において、制御装置20は第1循環回路3の冷媒温度T1がEGR導入許可判定温度te1よりも高いか否かを判定する。EGR導入許可判定温度te1は内燃機関2の構成に応じて適宜設定されるが、本形態のEGR導入許可判定温度te1は70°Cに設定されている。冷媒温度T1がEGR導入許可判定温度te1よりも高い場合はステップS302に進む。冷媒温度T1がEGR導入許可判定温度te1以下の場合はEGRを実施できる状態に至っていないためステップS303に進み、開閉弁18を閉弁して第1循環回路3の冷媒温度が第2循環回路4の冷媒温度よりも高い状態に維持する。これにより、EGRクーラ35の暖機を促進する。
 ステップS302において、制御装置20は第2循環回路4の冷媒温度T2がEGRクーラ暖機完了判定温度te2よりも高いか否かを判定する。このEGRクーラ暖機完了判定温度te2は、EGRクーラ35の暖機完了を判定するための閾値でありEGR導入許可判定温度te1よりも低い適切な値に設定されている。冷媒温度T2がEGRクーラ暖機完了判定温度te2よりも高い場合はEGRクーラ35の暖機が完了したのでステップS303に進んで開閉弁18の閉弁を維持する。これにより、EGRクーラ35は第1循環回路3よりも冷媒温度が低い第2循環回路4の冷媒にて冷却性能が確保される。一方、冷媒温度T2がEGRクーラ暖機完了判定温度te2以下の場合はEGRクーラ35の暖機が未了であるので、ステップS304に進んで開閉弁18を開弁する。これにより、第1循環回路3の高温の冷媒が第2循環回路4に流入することによってEGRクーラ35の暖機が促進される。
 図13の制御によれば、内燃機関2の暖機過渡時に熱量が不足する場合には第1循環回路3から高温の冷媒が第2循環回路4に流入することによってEGRクーラ35の暖機が促進される一方で、EGRクーラ35の暖機が完了した後には開閉弁18の閉弁が維持されて第2循環回路4の低温の冷媒にてEGRクーラ35の冷却性能が確保される。したがって、図13の制御を実施することによりEGRクーラ35の特性に適した温度制御が可能となる。
 なお、第3の形態では、第1の形態で実施した各種制御(ノッキング防止制御、デッドソーク時制御、ヒータ要求時制御、暖機促進制御、始動時暖機促進制御、及び暖機完了時制御)の少なくとも一つを図13の制御に代えて又は図13の制御とともに実施することができる。
(第4の形態)
 次に、本発明の第4の形態を図14を参照しながら説明する。第4の形態は第3の形態の改良に相当しEGRクーラ35の冷却性能を向上させるための構成が設けられている。なお、第3の形態と共通する構成には図14に同一の参照符号を付して説明を省略する。第4の形態の熱管理システム1Dは、EGRクーラ35の冷却性能を向上させる構成として、第2循環回路4のヒータコア11とEGRクーラ35との間から分岐してEGRクーラ35の上流に合流する分岐回路41と、分岐回路41に設けられた補助ラジエータ42と、分岐回路41の合流位置に設けられたサーモスタット43とを備えている。サーモスタット43の開弁温度は第1循環回路3に設けられたサーモスタット9の開弁温度よりも低い温度に設定されている。
 第4の形態において制御装置20は図13の制御を実施する。これにより、第3の形態と同様にEGRクーラ35の暖機が促進される。さらに、EGRクーラ35の暖機完了後に第2循環回路4の冷媒温度が上昇してサーモスタット43が開弁すると、第2循環回路4の冷媒が補助ラジエータ42に導かれて冷却される。このため、第3の形態と比較してより低温の冷媒がEGRクーラ35に導かれるので、EGRクーラ35の暖機完了後における冷却性能が向上する。
 なお、第4の形態では、第1の形態で実施した各種制御(ノッキング防止制御、デッドソーク時制御、ヒータ要求時制御、暖機促進制御、始動時暖機促進制御、及び暖機完了時制御)の少なくとも一つを図13の制御に代えて又は図13の制御とともに実施することができる。
 本発明は上記各形態に限定されず、本発明の要旨の範囲内において種々の形態にて実施できる。上記各形態では連通部の構成を2つの連通路とし、それらのいずれか一方に制御弁としての開閉弁を設けているが、第1循環回路と第2循環回路との連通とその禁止とを切り替えることができる限り、連通部の個数や制御弁の設置箇所に制限はない。
 上記各形態では、第1連通路15の開閉を行う開閉弁が制御弁として設けられているが、このような開閉弁の代わりに開度を連続的に変更できる弁を制御弁として設けることもできる。このような弁を設けた場合には、第1循環回路と第2循環回路との間を流れる冷媒の流量を連続的に調整できるので、上述した各制御を実施する際により詳細な冷媒の温度調整が可能となる。さらに、当該弁の開度と第1ポンプ又は第2ポンプの駆動デューティーとを協調制御することにより、冷媒のより正確な温度調整が可能となる。

Claims (4)

  1.  内燃機関が搭載された車両に適用される車両用熱管理システムであって、
     前記内燃機関の機関本体を冷却するとともに冷媒を圧送する第1ポンプが設けられた第1循環回路と、
     前記内燃機関の排気熱を回収する排気熱回収器、前記車両の空調に利用されるヒータコア及び冷媒を圧送する第2ポンプがそれぞれ設けられた第2循環回路と、
     前記第1循環回路と前記第2循環回路とを連通する連通部と、
     前記連通部に設けられて、前記第1循環回路と前記第2循環回路との連通とその禁止とを切り替え可能な制御弁と、
     前記第1循環回路を流れる冷媒の冷媒温度が前記第2循環回路を流れる冷媒の冷媒温度よりも高い状態となるように前記制御弁を制御する冷媒温度制御手段と、
    を備える車両用熱管理システム。
  2.  前記第2循環回路にはEGRクーラが更に設けられている請求項1の車両用熱管理システム。
  3.  前記冷媒温度制御手段は、前記内燃機関に対する要求負荷がノッキングを発生し易い負荷領域に至る又は前記負荷領域に至る可能性がある場合に前記第1循環回路と前記第2循環回路とが連通するように前記制御弁を制御する請求項1又は2の車両用熱管理システム。
  4.  前記冷媒温度制御手段は、デッドソーク時に前記第1循環回路と前記第2循環回路とが連通するように前記制御弁を制御する請求項1~3のいずれか一項の車両用熱管理システム。
PCT/JP2015/072544 2014-09-04 2015-08-07 車両用熱管理システム WO2016035511A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580044706.0A CN106574542A (zh) 2014-09-04 2015-08-07 车辆用热管理***
US15/504,785 US20170253104A1 (en) 2014-09-04 2015-08-07 Vehicle heat management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180170 2014-09-04
JP2014180170A JP5945306B2 (ja) 2014-09-04 2014-09-04 車両用熱管理システム

Publications (1)

Publication Number Publication Date
WO2016035511A1 true WO2016035511A1 (ja) 2016-03-10

Family

ID=55439579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072544 WO2016035511A1 (ja) 2014-09-04 2015-08-07 車両用熱管理システム

Country Status (4)

Country Link
US (1) US20170253104A1 (ja)
JP (1) JP5945306B2 (ja)
CN (1) CN106574542A (ja)
WO (1) WO2016035511A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870061A (zh) * 2017-02-22 2017-06-20 重庆长安汽车股份有限公司 一种快速预热变速器机油的冷却***
WO2017130846A1 (ja) * 2016-01-29 2017-08-03 株式会社デンソー 車両用熱管理装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137206B2 (ja) * 2015-01-26 2017-05-31 マツダ株式会社 エンジンの冷却装置
JP6417315B2 (ja) * 2015-12-17 2018-11-07 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置
JP6505613B2 (ja) * 2016-01-06 2019-04-24 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置、冷却装置の制御装置、冷却装置用流量制御弁、及び、車両用内燃機関の冷却装置の制御方法
US11046148B2 (en) * 2017-04-26 2021-06-29 Hanon Systems Air conditioner for vehicles
JP6627827B2 (ja) * 2017-07-10 2020-01-08 トヨタ自動車株式会社 熱交換システムの制御装置
JP6610622B2 (ja) * 2017-07-10 2019-11-27 トヨタ自動車株式会社 熱交換システムの制御装置
JP6627826B2 (ja) * 2017-07-10 2020-01-08 トヨタ自動車株式会社 熱交換システムの制御装置
JP6642526B2 (ja) * 2017-07-10 2020-02-05 トヨタ自動車株式会社 熱交換システムの制御装置
JP6610621B2 (ja) 2017-07-10 2019-11-27 トヨタ自動車株式会社 熱交換システムの制御装置
JP2019031923A (ja) * 2017-08-07 2019-02-28 株式会社デンソー エンジン温度調節装置
JP2019124132A (ja) * 2018-01-12 2019-07-25 いすゞ自動車株式会社 Egrクーラの昇温促進システム及びegrクーラの昇温促進方法
DE102019213860A1 (de) * 2019-09-11 2021-03-11 Mahle International Gmbh Klimatisierungssystem für ein Kraftfahrzeug
KR20210049491A (ko) * 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049490A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
US11659696B2 (en) 2019-11-21 2023-05-23 Zoox, Inc. Vehicle computer cooling architecture
US11125174B1 (en) * 2020-06-23 2021-09-21 Fca Us Llc Systems and methods for providing simultaneous coolant stagnation and cooled exhaust gas recirculation
JP2022190760A (ja) * 2021-06-15 2022-12-27 トヨタ自動車株式会社 熱管理システム
CN113928085A (zh) * 2021-10-21 2022-01-14 浙江吉利控股集团有限公司 一种车辆热管理***、控制方法及车辆
JP2023097991A (ja) * 2021-12-28 2023-07-10 トヨタ自動車株式会社 内燃機関の冷却装置
CN115247596A (zh) * 2022-06-24 2022-10-28 东风汽车集团股份有限公司 一种发动机热管理***的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537956A (en) * 1993-08-13 1996-07-23 Daimler-Benz Ag Coolant circuit
US20040093882A1 (en) * 2002-11-19 2004-05-20 Sangwan Karma Vir Heating, venting, and air conditioning system for providing supplemental heat in a vehicle
JP2008208716A (ja) * 2007-02-23 2008-09-11 Toyota Motor Corp 冷却系システム
JP2012193673A (ja) * 2011-03-16 2012-10-11 Aisin Seiki Co Ltd エンジン冷却回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2058280A1 (de) * 1970-11-26 1972-06-08 Sueddeutsche Kuehler Behr Kreislauf zum Heizen und/oder Kuehlen von Raeumen,insbesondere Fahrzeugen
US4517929A (en) * 1983-09-23 1985-05-21 International Harvester Company Self-adjusting cooling system for diesel engines
US5255733A (en) * 1992-08-10 1993-10-26 Ford Motor Company Hybird vehicle cooling system
JPH11117777A (ja) * 1997-10-17 1999-04-27 Hitachi Ltd 内燃機関の制御方法
DE10134678A1 (de) * 2001-07-20 2003-02-06 Bosch Gmbh Robert Vorrichtung zum Kühlen und Heizen eines Kraftfahrzeuges
JP2008068745A (ja) * 2006-09-14 2008-03-27 Toyota Motor Corp 内燃機関制御装置
US20090004348A1 (en) * 2007-06-26 2009-01-01 Corey Silva Smoker for grill
US8740104B2 (en) * 2008-06-30 2014-06-03 Chrysler Group Llc Variable electric auxiliary heater circuit pump
EP2441935A4 (en) * 2009-09-08 2012-09-19 Toyota Motor Co Ltd COOLING SYSTEM FOR VEHICLE
CN102575569B (zh) * 2009-10-05 2014-12-31 丰田自动车株式会社 车辆的冷却装置
DE102010034484B4 (de) * 2010-08-17 2014-03-20 Schaeffler Technologies AG & Co. KG Kühlsystem mit einem Thermomanagementmodul
JP2013536119A (ja) * 2010-08-24 2013-09-19 イグゼティック バド ホンブルグ ゲーエムベーハー 冷暖房装置及び冷暖房装置の運転方法
JP2012246781A (ja) * 2011-05-25 2012-12-13 Toyota Motor Corp 内燃機関の点火時期制御装置
JP5699821B2 (ja) * 2011-06-14 2015-04-15 トヨタ自動車株式会社 内燃機関の冷却装置
JP5234143B2 (ja) * 2011-06-28 2013-07-10 トヨタ自動車株式会社 内燃機関の診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537956A (en) * 1993-08-13 1996-07-23 Daimler-Benz Ag Coolant circuit
US20040093882A1 (en) * 2002-11-19 2004-05-20 Sangwan Karma Vir Heating, venting, and air conditioning system for providing supplemental heat in a vehicle
JP2008208716A (ja) * 2007-02-23 2008-09-11 Toyota Motor Corp 冷却系システム
JP2012193673A (ja) * 2011-03-16 2012-10-11 Aisin Seiki Co Ltd エンジン冷却回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130846A1 (ja) * 2016-01-29 2017-08-03 株式会社デンソー 車両用熱管理装置
CN106870061A (zh) * 2017-02-22 2017-06-20 重庆长安汽车股份有限公司 一种快速预热变速器机油的冷却***

Also Published As

Publication number Publication date
CN106574542A (zh) 2017-04-19
US20170253104A1 (en) 2017-09-07
JP2016053342A (ja) 2016-04-14
JP5945306B2 (ja) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5945306B2 (ja) 車両用熱管理システム
US10054033B2 (en) Cooling apparatus for internal combustion engine
US10330055B2 (en) Engine cooling system having EGR cooler
US6758172B2 (en) Method of engine cooling
US10371041B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
EP1903193A1 (en) Engine cooler
US10995875B2 (en) Thermal management system for vehicle
JP6473105B2 (ja) 車両用内燃機関の冷却装置及び冷却装置の制御方法
US20160363038A1 (en) Heat exchange apparatus of vehicle
KR101592428B1 (ko) 통합 유량 제어 밸브 장치
JP5381815B2 (ja) 車両の制御装置
CN106150824A (zh) 发动机的暖机控制方法和装置
US10730383B2 (en) Vehicle grille shutter system and method of operation
CN104583555A (zh) 冷却剂控制装置
JP2013217344A (ja) エンジン冷却装置
JP2013113118A (ja) エンジン冷却装置
JP6246633B2 (ja) 車両用内燃機関の冷却装置
US11319855B2 (en) Heat accumulation and dissipation device for internal combustion engine
WO2011089705A1 (ja) 車両の冷却装置
JP2016210298A (ja) 内燃機関の冷却装置
JP2019027313A (ja) 内燃機関の制御装置
JP2010209818A (ja) 内燃機関の冷却装置
JP2014005759A (ja) 車両用暖房装置
EP3636893A1 (en) Engine cooling system
JP2011085024A (ja) ハイブリッド車両の冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15504785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837312

Country of ref document: EP

Kind code of ref document: A1