WO2016021431A1 - Control device for vehicles - Google Patents

Control device for vehicles Download PDF

Info

Publication number
WO2016021431A1
WO2016021431A1 PCT/JP2015/071189 JP2015071189W WO2016021431A1 WO 2016021431 A1 WO2016021431 A1 WO 2016021431A1 JP 2015071189 W JP2015071189 W JP 2015071189W WO 2016021431 A1 WO2016021431 A1 WO 2016021431A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
engine
target
torque
vehicle
Prior art date
Application number
PCT/JP2015/071189
Other languages
French (fr)
Japanese (ja)
Inventor
義秋 長澤
堀 俊雄
大西 浩二
康平 鈴木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016540156A priority Critical patent/JP6245621B2/en
Publication of WO2016021431A1 publication Critical patent/WO2016021431A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a vehicle control device.
  • Patent Document 1 A vehicle control device that can ensure a long travel time and travel distance by coasting in a traveling vehicle is known (see, for example, Patent Document 1).
  • Patent Document 1 states that “when the vehicle speed V of the vehicle is within a vehicle speed range determined by the lower limit side vehicle speed V0 and the upper limit side vehicle speed V1, the engine is cut by fuel cut if the vehicle speed V is equal to or higher than the vehicle speed V0. Is stopped, the clutch is released and the vehicle is driven by coasting, and when the vehicle speed V falls below the vehicle speed V0, the engine is started by fuel supply and the clutch is engaged to accelerate (constant speed free run). Has been.
  • Patent Document 2 states that “a manager ECU receives engine and AT (automatic transmission) characteristic information transmitted from the engine ECU and the AT ECU, and sets a control command based on the characteristic information.
  • the ATECU has a plurality of control laws corresponding to different tuning patterns, and the manager ECU acquires the tuning patterns that can be realized by these ECUs and selects the optimum tuning pattern corresponding to the use of the vehicle. Are listed.
  • Patent Document 1 In the technology disclosed in Patent Document 1, generally, priority is given to immediately following the target vehicle speed rather than low fuel consumption in the acceleration phase of ACC (Adaptive Cruise Control). Therefore, the fuel efficiency of the engine cannot be improved in ACC.
  • ACC Adaptive Cruise Control
  • each C / U is configured as in Patent Document 2, for example, the upper C / U is ACC (AdaptiveaptCruise Control) C / U, the engine C / U, and the transmission C / U is the lower C / U. It is conceivable to configure. With this configuration, the ACC C / U 130 outputs a command value from the characteristic information of the engine C / U and the transmission C / U, aiming at the best fuel efficiency point for pursuing fuel efficiency, and the engine fuel efficiency rate. It is possible to operate with the transmission gear ratio as the best point.
  • ACC AdaptiveaptCruise Control
  • Patent Document 2 does not disclose how to calculate the engine torque based on the fuel consumption characteristics.
  • An object of the present invention is to provide a vehicle control device capable of improving the fuel efficiency of an engine in ACC.
  • a first torque calculation unit that calculates a first target engine torque having the smallest fuel consumption rate among target engine torques corresponding to the engine speed, and an actual vehicle speed are When the first lower limit vehicle speed lower than the target vehicle speed is reached, the clutch in the transmission is engaged, and the engine is operated with the first target engine torque calculated by the first torque calculation unit. And a first vehicle speed control unit that stops the engine and releases the clutch when the first upper limit vehicle speed is greater than the target vehicle speed.
  • the fuel efficiency of the engine can be improved in ACC.
  • FIG. 1 is a configuration diagram of a vehicle including a control device according to an embodiment of the present invention. It is a figure showing the fuel consumption rate at the time of cruise driving, and the fuel consumption rate at the time of sailing cruise. It is the figure which showed the change of the actual vehicle speed with respect to the target vehicle speed in driving
  • FIG. 1 is a configuration diagram of a vehicle 100 including a control device according to an embodiment of the present invention.
  • the vehicle 100 has an engine 101 as a driving force source.
  • a torque converter 111 is provided on the output side of the engine 101.
  • a transmission 113 is connected to the output side of the torque converter 111.
  • the engine main body 101 (also simply referred to as an internal combustion engine or an engine) is provided with a starter 103 that starts and a power generator 104 that supplies electric power to the vehicle 100.
  • the starting device 103 is, for example, a starter motor including a DC motor, a gear mechanism, and a gear pushing mechanism.
  • the power generation device 104 is an alternator including, for example, an induction generator, a rectifier, and a voltage adjustment mechanism.
  • the starter 103 is driven by the electric power supplied from the power source 105, and starts the engine 101 based on the start request.
  • the power source 105 is, for example, a battery, and a lead battery can be preferably used. In addition, a lithium ion secondary battery, various secondary batteries, and a capacitor such as a capacitor may be used.
  • the power source 105 stores the electric power generated by the power generation device 104 and supplies the electric power to the starting device 103, a vehicle lamp such as a headlamp (not shown), and various controllers.
  • the type of the engine 101 may be any driving force source that causes the vehicle 100 to travel, and examples thereof include a port injection type or in-cylinder injection type gasoline engine, a diesel engine, and the like. Further, the structure of the engine may be a Wankel rotary engine in addition to the reciprocating engine.
  • the engine 101 has a crankshaft 101a. At one end of the crankshaft 101a, a signal plate 101b having a predetermined pattern for detecting a crank angle signal is attached. A ring gear integral with a drive plate (not shown) that transmits driving force to the transmission is attached to the other end of the crankshaft 101a.
  • a crank angle sensor 101c for detecting the unevenness of the pattern and outputting a pulse signal is attached. Based on the pulse signal output from the crank angle sensor 101c, the engine C / U 110 calculates the rotational speed of the engine 101 (engine rotational speed).
  • an intake manifold 102 that distributes intake air to each cylinder, a throttle valve 102a, an airflow sensor 102b, and an air cleaner 102c are attached.
  • the throttle valve 102a is an electronically controlled throttle device as an example.
  • the engine C / U 110 calculates the optimum throttle opening based on the signal of the accelerator pedal sensor 107 that detects the amount of depression of the accelerator pedal 106 and signals sent from other sensors, and outputs it to the throttle valve 102a. To do. Thereby, the throttle valve 102a is controlled to an optimum throttle valve opening.
  • the airflow sensor 102b measures the air flow rate sucked from the air cleaner 102c and outputs it to the engine C / U110.
  • Engine C / U 110 calculates a fuel amount commensurate with the measured air amount, and outputs it as a valve opening time to a fuel injection valve (not shown).
  • the fuel injection valve starts injection at a timing when the crank angle indicated by the signal of the crank angle sensor 101c becomes a crank angle preset in the engine C / U 110.
  • This operation mixes the sucked air and the fuel injected from the fuel injection valve in the cylinder of the engine 101 to form an air-fuel mixture.
  • the spark plug is energized via an ignition coil (not shown) at a timing when the crank angle indicated by the signal of the crank angle sensor 101c becomes a crank angle preset in the engine C / U 110.
  • the air-fuel mixture in the cylinder is ignited and burns and explodes.
  • the engine 101 transmits the kinetic energy obtained by the combustion explosion described above to the crankshaft 101a to generate a rotational driving force.
  • a drive plate (not shown) is attached to the transmission side of the crankshaft 101a. The drive plate is directly connected to the input side of the torque converter 111. The output side of the torque converter 111 is input to the transmission 113.
  • the transmission 113 is a transmission body having a stepped transmission mechanism or a belt-type or disk-type continuously variable transmission mechanism, and is controlled by the transmission C / U 120.
  • Transmission C / U 120 determines an appropriate transmission gear or transmission ratio based on engine information (engine speed, vehicle speed, throttle opening) and gear range information 119 of gear shift lever 118 and causes transmission 113 to change gear. . Thereby, the transmission 113 is controlled so as to obtain an optimum gear ratio.
  • a clutch mechanism 113 a is provided between the speed change mechanism and the differential mechanism 115.
  • the clutch mechanism 113a When driving force is transmitted from the speed change mechanism to the differential mechanism 115 to drive the drive wheels 116, the clutch mechanism 113a is engaged. Conversely, when it is desired to block the reverse driving force from the driving wheel 116, the clutch mechanism 113a is released. Thereby, it is possible to perform control so that the reverse driving force is not transmitted to the transmission mechanism.
  • sailing the state in which the vehicle is driven in a state where the clutch mechanism is opened and the running resistance is reduced as much as possible is called sailing (S).
  • the state where the engine is stopped in the sailing state is called sailing stop (S & ST).
  • a state where the engine is idling in the sailing state is called a sailing idle.
  • the driver sets the target vehicle speed TVSP, and the ACC C / U controls the throttle opening and brake based on the target vehicle speed TVSP (set speed).
  • Cruise control (ACC) that adjusts the traveling speed is known.
  • the usual cruise control has a problem that on the downhill, the cruise control is impossible due to overspeed due to out of the torque control range.
  • sailing cruise traveling in combination with the aforementioned sailing stop and cruise control is referred to as sailing cruise (S & ST & C).
  • FIG. 2A shows the fuel consumption rate when cruise (C) is carried out in the R / L (Road / Load) state (with running resistance) and the case where the cruise is carried out while executing the sailing stop, that is, sailing cruise (S & ST & C). It is a figure showing the fuel consumption rate in the case of.
  • the vertical axis represents the fuel consumption rate SFC, and the horizontal axis represents time t.
  • FIG. 2A in order to simplify the explanation, when the vehicle is only traveling in the R / L (Road / Load) state, it is schematically shown as traveling constant at the target vehicle speed TVSP.
  • the difference ⁇ F between the integral value F1 of the sailing cruise (S & ST & C) and the integral value F2 when the R / L is constant traveling is represented by an area. That is, in sailing cruise (S & ST & C), fuel consumption is smaller by ⁇ F than in the case of only cruise control.
  • FIG. 2B is a diagram showing a change in the actual vehicle speed with respect to the target vehicle speed TVSP during traveling by the conventional cruise control and the sailing cruise control.
  • Conventional cruise control focuses on drivability by lowering the priority of fuel economy and prioritizing the achievement of the target vehicle speed.
  • sailing cruise control is based on the concept of giving priority to fuel efficiency even if the target vehicle speed achievement (driving performance) is somewhat sacrificed.
  • Fig. 3 is a diagram showing an operation image of sailing cruise control.
  • the vehicle travels between the upper limit vehicle speed TVSPH and the lower limit vehicle speed TVSPL while repeatedly accelerating by engine operation and decelerating by sailing stop, based on the target vehicle speed set by the driver's operation. That is, when the vehicle accelerates and reaches TVSPH, the clutch in the transmission is released to stop the engine, that is, sailing stop is performed.
  • the vehicle starts to slowly decelerate due to running resistance (road resistance, slope, air resistance, etc.) and when it reaches TVSPL, the engine is restarted, the clutch in the transmission is engaged, and the operation to accelerate to TVSPH is repeated. .
  • the upper limit vehicle speed TVSPH and the lower limit vehicle speed TVSPL are set to a maximum value and a minimum value, respectively, which do not require the transmission to increase or decrease the gear ratio.
  • the upper limit vehicle speed TVSPH is the maximum value of the actual vehicle speed that the transmission can reach within the predetermined time from the target vehicle speed TVSP without changing the gear ratio.
  • the lower limit vehicle speed TVSPL is the minimum value of the actual vehicle speed that can be reached from the target vehicle speed within a predetermined time without changing the gear ratio.
  • Sailing cruise control is expected to improve fuel efficiency, but during cruise driving, it may be possible to give the driver a sense of incongruity due to fluctuations in vehicle speed and impair the merchantability.
  • the basis of vehicle speed feedback is configured by switching between acceleration phase A and sailing phase B.
  • the subcomponent (difference) of the vehicle speed feedback is reflected in the target acceleration, and the engine is operated at the fuel efficiency rate point that is the best within the allowable range of the target acceleration to accelerate the vehicle.
  • ACCAC / U130 functions as a gradient determination unit that determines whether or not the road surface is a downhill. For example, ACC C / U130 determines whether or not the vehicle is downhill based on the target engine torque and the actual vehicle speed.
  • the ACCUC / U 130 stops the engine and releases the clutch, and determines that the road surface is downhill
  • the ACCAC / U 130 engages the clutch with a degree of engagement corresponding to the difference between the actual vehicle speed and the target vehicle speed. It functions as a vehicle speed control unit to be fastened. That is, ACC C / U130 increases the degree of clutch engagement as the difference between the actual vehicle speed and the target vehicle speed TVSP increases on the downhill. Thereby, the reverse driving force from the driving wheel is transmitted to the transmission, and the speed increase on the downhill can be suppressed.
  • FIG. 4 is a diagram showing the engine operating region in the acceleration phase.
  • the engine C / U 110 functions as a torque calculation unit that calculates a target engine torque having the smallest fuel consumption rate among the target engine torques corresponding to the engine speed based on the equal fuel consumption line.
  • the engine C / U 110 calculates a target engine torque having the smallest fuel consumption rate in the torque range corresponding to the allowable acceleration range.
  • the allowable acceleration range indicates a range of acceleration allowed according to the driving state of the vehicle.
  • FIG. 5 shows a flowchart of sailing cruise control.
  • step S101 it is determined whether or not a sailing cruise execution condition is satisfied while the vehicle is traveling.
  • sailing cruise execution conditions include the state of a cruise mode changeover switch by a driver operation, engine speed, vehicle speed, estimated gradient, accelerator operation state, brake operation state, master bag negative pressure, vehicle system diagnosis state, and the like.
  • step S102 the acceleration operation is executed.
  • the target engine torque is traced and accelerated so as to achieve an optimum fuel consumption rate as described in FIG.
  • the control shifts to the normal control, and when there is no change in the accelerator opening or the brake operation, the vehicle accelerates to the upper limit vehicle speed of the sailing cruise.
  • step S105 when the vehicle accelerates to the sailing cruise upper limit vehicle speed, the process proceeds to step S106, the clutch in the transmission is released, and the sailing stop for stopping the engine is executed. If a change is detected by monitoring the accelerator opening and the brake operation even during the execution of the sailing stop, the process proceeds to step S110, the sailing cruise is exited, the engine is restarted, and the clutch in the transmission is engaged.
  • FIG. 6 is a diagram illustrating a configuration example of the ACC C / U 130 for performing sailing cruise control. Note that the ACC / C / U 130 may have a front vehicle following function.
  • the engine C / U 110 supplies (inputs) the actual vehicle speed and the torque (fuel consumption rate best torque) with the best fuel efficiency calculated by the engine C / U 110 to the ACC C / U 130.
  • the transmission C / U 120 supplies the torque limit request and the actual gear ratio to the ACC / C 130.
  • Other C / Us supply torque limit requests by the system such as attitude control and fault detection to the ACC / C / U 130.
  • the torque value at which the fuel consumption rate calculated by the engine C / U110 is the best is the engine rotation speed, the advanced valve state of the variable valve timing mechanism and variable valve lift mechanism provided in the intake valve and exhaust valve, the EGR amount, It is calculated based on parameters that affect the characteristics of the fuel consumption rate map, such as the state of the turbocharger.
  • the engine C / U 110 may calculate a torque value (target engine torque) that provides the best fuel efficiency based on the engine speed. In this case, the engine C / U 110 may correct the target engine torque using at least one of these parameters.
  • the ACC C / U 130 calculates the target acceleration and driving force based on the road surface gradient information estimated from the signals input from the C / U groups and the actual vehicle speed, and sends the target speed ratio to the transmission C / U 120. And the target engine torque is output to the engine C / U 110.
  • FIG. 7 is a block diagram for explaining functions of a vehicle control apparatus according to a modification of the embodiment of the present invention.
  • the engine C / U 110 functions as a first torque calculation unit 110a and a second torque calculation unit 110b. Further, the ACCAC / U 130 functions as a first vehicle speed control unit 130a and a second vehicle speed control unit 130b.
  • the selection switch SW switches between a first mode for switching to driving that emphasizes low fuel consumption and a second mode for switching to driving that prioritizes acceleration. That is, the first torque calculation unit 110a and the first vehicle speed control unit 130a operate when a predetermined execution condition is satisfied and the first mode is selected. Further, the second torque calculation unit 110b and the second vehicle speed control unit 130b operate when a predetermined execution condition is satisfied and the second mode is selected.
  • the predetermined execution conditions are the same as the sailing cruise execution conditions exemplified in the above embodiment.
  • 1st torque calculation part 110a calculates target engine torque (tau) 1 * with the smallest fuel consumption rate among the target engine torques corresponding to an engine speed based on an equal fuel consumption line. Further, the second torque calculation unit 110b calculates a second target engine torque ⁇ 2 * larger than the first target engine torque among the target engine torques corresponding to the engine speed based on the equal fuel consumption line.
  • the first vehicle speed control unit 130a engages the clutch in the transmission and also calculates the first torque calculated by the first torque calculation unit 110a.
  • the engine is operated at the target engine torque ⁇ 1 *. Further, the first vehicle speed control unit 130a stops the engine and releases the clutch when the actual vehicle speed becomes the first upper limit vehicle speed TVSPH that is higher than the target vehicle speed TVSP.
  • the second vehicle speed control unit 130b engages the clutch and also uses the second torque calculation unit 110b.
  • the engine is operated at the calculated second target engine torque ⁇ 2 *.
  • the second vehicle speed control unit 130b stops the engine and releases the clutch.
  • a vehicle equipped with a sailing cruise system can calculate the target acceleration and driving force based on the fuel efficiency characteristics, and output the target gear ratio and target engine torque as command values. It becomes possible and can improve fuel consumption.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • each of the above-described configurations, functions (blocks), and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • the above configuration, function, and the like may be realized by software by interpreting and executing a program that realizes a function for realizing each function by the processor.
  • Information such as programs, tables, and files for realizing each function is stored in a storage device such as a memory or a hard disk.
  • engine C / U110, transmission C / U120, ACC C / U130, etc. are comprised separately, you may be comprised integrally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Provided is a control device for vehicles, capable of improving engine fuel consumption during ACC (Adaptive Cruise Control). A first torque calculation unit calculates a first target engine torque having the smallest fuel consumption rate among target engine torques corresponding to engine speed. A first vehicle speed control unit engages a clutch inside a transmission and operates the engine at the first target engine torque calculated by the first torque calculation unit, if actual vehicle speed has reached a first lower limit vehicle speed that is smaller than a target vehicle speed, and stops the engine and releases the clutch if the actual vehicle speed has reached a first upper limit vehicle speed greater than the target vehicle speed.

Description

車両の制御装置Vehicle control device
 本発明は、車両の制御装置に関する。 The present invention relates to a vehicle control device.
 走行中の車両において惰行による走行時間や走行距離を長く確保できる車両の制御装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art A vehicle control device that can ensure a long travel time and travel distance by coasting in a traveling vehicle is known (see, for example, Patent Document 1).
 特許文献1には、「車両の制御装置は、車両の車速Vが下限側車速V0および上限側車速V1で決定される車速域内にあるとき、車速Vが車速V0以上であればフューエルカットによりエンジンを停止させてクラッチを開放して惰行により車両を走行させ、車速Vが車速V0を下回ると燃料供給によりエンジンを始動させてクラッチを係合して加速させる(定速フリーラン)」ことが記載されている。 Patent Document 1 states that “when the vehicle speed V of the vehicle is within a vehicle speed range determined by the lower limit side vehicle speed V0 and the upper limit side vehicle speed V1, the engine is cut by fuel cut if the vehicle speed V is equal to or higher than the vehicle speed V0. Is stopped, the clutch is released and the vehicle is driven by coasting, and when the vehicle speed V falls below the vehicle speed V0, the engine is started by fuel supply and the clutch is engaged to accelerate (constant speed free run). Has been.
 また、車両を構成する構成要素毎に制御装置を設け、各制御装置の動作を上位の制御装置にて統合制御するシステムが知られている(例えば、特許文献2参照)。 Further, a system is known in which a control device is provided for each component constituting the vehicle, and the operation of each control device is integrated and controlled by a host control device (see, for example, Patent Document 2).
 特許文献2には、「マネージャECUが、エンジンECU及びATECUから送信されてくるエンジン及びAT(自動変速機)の特性情報を受信し、その特性情報に基づき制御指令を設定する。またエンジンECU、ATECUは、異なるチューニングパターンに対応した複数の制御則を備え、マネージャECUは、これらECUにて実現可能なチューニングパターンを取得し、車両の使用に対応して最適なチューニングパターンを選択する」ことが記載されている。 Patent Document 2 states that “a manager ECU receives engine and AT (automatic transmission) characteristic information transmitted from the engine ECU and the AT ECU, and sets a control command based on the characteristic information. The ATECU has a plurality of control laws corresponding to different tuning patterns, and the manager ECU acquires the tuning patterns that can be realized by these ECUs and selects the optimum tuning pattern corresponding to the use of the vehicle. Are listed.
特開2012-47148号公報JP 2012-47148 A 特開2002-81345号公報JP 2002-81345 A
 特許文献1に開示されるような技術では、一般的に、ACC(Adaptive Cruise Control)の加速フェーズにおいて低燃費よりも目標車速にすぐに追従することを優先している。そのため、ACCにおいてエンジンの燃費を向上することはできなかった。 In the technology disclosed in Patent Document 1, generally, priority is given to immediately following the target vehicle speed rather than low fuel consumption in the acceleration phase of ACC (Adaptive Cruise Control). Therefore, the fuel efficiency of the engine cannot be improved in ACC.
 一方、特許文献2のように各C/Uを構成する場合、例えば上位C/UをACC(Adaptive Cruise Control) C/Uとして、エンジンC/U、変速機C/Uを下位C/Uとして構成することが考えられる。前記構成とすることにより、ACC C/U130は、エンジンC/U、変速機C/Uの特性情報から、燃費を追及するためのベスト燃費点を目指して指令値を出力し、エンジンの燃費率や変速機の変速比を最良点として運転することが可能となる。 On the other hand, when each C / U is configured as in Patent Document 2, for example, the upper C / U is ACC (AdaptiveaptCruise Control) C / U, the engine C / U, and the transmission C / U is the lower C / U. It is conceivable to configure. With this configuration, the ACC C / U 130 outputs a command value from the characteristic information of the engine C / U and the transmission C / U, aiming at the best fuel efficiency point for pursuing fuel efficiency, and the engine fuel efficiency rate. It is possible to operate with the transmission gear ratio as the best point.
 しかし、特許文献2では燃費特性に基づき、どのようにエンジントルクを算出するかの開示は無い。 However, Patent Document 2 does not disclose how to calculate the engine torque based on the fuel consumption characteristics.
 本発明の目的は、ACCにおいてエンジンの燃費を向上することができる車両の制御装置を提供することにある。 An object of the present invention is to provide a vehicle control device capable of improving the fuel efficiency of an engine in ACC.
 上記目的を達成するために、本発明は、エンジン回転数に対応する目標エンジントルクのうち、燃料消費率が最も小さい第1の目標エンジントルクを算出する第1のトルク算出部と、実車速が目標車速より小さい第1の下限車速になった場合、変速機内のクラッチを締結させるとともに、前記第1のトルク算出部によって算出された前記第1の目標エンジントルクでエンジンを稼働させ、実車速が前記目標車速より大きい第1の上限車速になった場合、前記エンジンを停止させるともに、前記クラッチを解放させる第1の車速制御部と、を備えるようにしたものである。 In order to achieve the above object, according to the present invention, a first torque calculation unit that calculates a first target engine torque having the smallest fuel consumption rate among target engine torques corresponding to the engine speed, and an actual vehicle speed are When the first lower limit vehicle speed lower than the target vehicle speed is reached, the clutch in the transmission is engaged, and the engine is operated with the first target engine torque calculated by the first torque calculation unit. And a first vehicle speed control unit that stops the engine and releases the clutch when the first upper limit vehicle speed is greater than the target vehicle speed.
 本発明によれば、ACCにおいてエンジンの燃費を向上することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the fuel efficiency of the engine can be improved in ACC. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施形態による制御装置を含む車両の構成図である。1 is a configuration diagram of a vehicle including a control device according to an embodiment of the present invention. クルーズ走行した場合の燃料消費率と、セーリングクルーズした場合の燃料消費率を表した図である。It is a figure showing the fuel consumption rate at the time of cruise driving, and the fuel consumption rate at the time of sailing cruise. 従来クルーズ制御とセーリングクルーズ制御による走行中の目標車速に対する実車速の変化を示した図である。It is the figure which showed the change of the actual vehicle speed with respect to the target vehicle speed in driving | running | working by the conventional cruise control and sailing cruise control. セーリングクルーズ制御の動作イメージを示した図である。It is the figure which showed the operation | movement image of sailing cruise control. 加速フェーズにおけるエンジンの運転領域を表す図である。It is a figure showing the driving | operation area | region of the engine in an acceleration phase. セーリングクルーズ制御のフローチャートを表した図である。It is a figure showing the flowchart of sailing cruise control. セーリングクルーズ制御を行うためのACC C/Uの構成例を表した図である。It is the figure showing the structural example of ACC * C / U for performing sailing cruise control. 本発明の実施形態の変形例による車両の制御装置の機能を説明するためのブロック図である。It is a block diagram for demonstrating the function of the control apparatus of the vehicle by the modification of embodiment of this invention.
 以下、図1を用いて、車両100の構成を説明する。図1は、本発明の実施形態による制御装置を含む車両100の構成図である。 Hereinafter, the configuration of the vehicle 100 will be described with reference to FIG. FIG. 1 is a configuration diagram of a vehicle 100 including a control device according to an embodiment of the present invention.
 車両100は、駆動力源としてエンジン101を有している。エンジン101の出力側にはトルクコンバータ111が設けられる。トルクコンバータ111の出力側には変速機113が接続されている。 The vehicle 100 has an engine 101 as a driving force source. A torque converter 111 is provided on the output side of the engine 101. A transmission 113 is connected to the output side of the torque converter 111.
 エンジン本体101(単に内燃機関、エンジンとも呼ぶ)には、始動を行う始動装置103、及び車両100へ電力を供給する発電装置104が備えられる。始動装置103は、例えば直流電動機と、歯車機構と、歯車の押し出し機構からなるスタータモータである。発電装置104は、例えば誘導発電機と、整流器と、電圧調整機構からなるオルタネータである。 The engine main body 101 (also simply referred to as an internal combustion engine or an engine) is provided with a starter 103 that starts and a power generator 104 that supplies electric power to the vehicle 100. The starting device 103 is, for example, a starter motor including a DC motor, a gear mechanism, and a gear pushing mechanism. The power generation device 104 is an alternator including, for example, an induction generator, a rectifier, and a voltage adjustment mechanism.
 始動装置103は、電源105から供給される電力によって駆動され、始動要求に基づきエンジン101を始動する。電源105は、例えば電池であり、鉛バッテリを好適に用いることができる他、リチウムイオン二次電池を始め各種の二次電池、キャパシタなどの蓄電器を用いてもよい。電源105は、発電装置104によって発電された電力を蓄え、始動装置103や図示しない前照灯や各種コントローラなどの車両電装品へ電力を供給している。 The starter 103 is driven by the electric power supplied from the power source 105, and starts the engine 101 based on the start request. The power source 105 is, for example, a battery, and a lead battery can be preferably used. In addition, a lithium ion secondary battery, various secondary batteries, and a capacitor such as a capacitor may be used. The power source 105 stores the electric power generated by the power generation device 104 and supplies the electric power to the starting device 103, a vehicle lamp such as a headlamp (not shown), and various controllers.
 エンジン101の種類は、車両100を走行させる駆動力源であれば良く、ポート噴射式、または筒内噴射式のガソリンエンジン、ディーゼルエンジン等が挙げられる。また、エンジンの構造もレシプロエンジンの他、ヴァンケル式ロータリーエンジンであってもよい。 The type of the engine 101 may be any driving force source that causes the vehicle 100 to travel, and examples thereof include a port injection type or in-cylinder injection type gasoline engine, a diesel engine, and the like. Further, the structure of the engine may be a Wankel rotary engine in addition to the reciprocating engine.
 エンジン101は、クランク軸101aを有する。クランク軸101aの一端には、クランク角信号を検出するために既定のパターンを刻んだ信号プレート101bが取り付けられている。クランク軸101aの他端には、トランスミッションへ駆動力を伝達する図示しないドライブプレートと一体のリングギヤが取り付けられている。 The engine 101 has a crankshaft 101a. At one end of the crankshaft 101a, a signal plate 101b having a predetermined pattern for detecting a crank angle signal is attached. A ring gear integral with a drive plate (not shown) that transmits driving force to the transmission is attached to the other end of the crankshaft 101a.
 前記信号プレート101bの近傍には、そのパターンの凸凹を検出してパルス信号を出力するクランク角センサ101cが取り付けられている。前記クランク角センサ101cから出力されるパルス信号に基づいて、エンジンC/U110はエンジン101の回転数(エンジン回転数)を算出する。 In the vicinity of the signal plate 101b, a crank angle sensor 101c for detecting the unevenness of the pattern and outputting a pulse signal is attached. Based on the pulse signal output from the crank angle sensor 101c, the engine C / U 110 calculates the rotational speed of the engine 101 (engine rotational speed).
 また、エンジン101の吸気系部品として、吸入空気を各シリンダへ分配するインテークマニーホールド102、スロットルバルブ102a、エアフロセンサ102b、エアクリーナ102cが取り付けられている。 Further, as intake system components of the engine 101, an intake manifold 102 that distributes intake air to each cylinder, a throttle valve 102a, an airflow sensor 102b, and an air cleaner 102c are attached.
 スロットルバルブ102aは、一例として、電子制御式スロットル装置である。エンジンC/U110は、アクセルペダル106の踏み込み量を検知するアクセルペダルセンサ107の信号や、その他の各センサから送られてくる信号を基に最適なスロットル開度を算出し、スロットルバルブ102aへ出力する。これにより、スロットルバルブ102aは、最適なスロットルバルブ開度に制御される。 The throttle valve 102a is an electronically controlled throttle device as an example. The engine C / U 110 calculates the optimum throttle opening based on the signal of the accelerator pedal sensor 107 that detects the amount of depression of the accelerator pedal 106 and signals sent from other sensors, and outputs it to the throttle valve 102a. To do. Thereby, the throttle valve 102a is controlled to an optimum throttle valve opening.
 エアフロセンサ102bは、エアクリーナ102cから吸入される空気流量を計測してエンジンC/U110へ出力する。エンジンC/U110は、計測した空気量に見合った燃料量を算出して、図示していない燃料噴射弁へ開弁時間として出力する。燃料噴射弁は、前述のクランク角センサ101cの信号が示すクランク角が、エンジンC/U110で予め設定されたクランク角となるタイミングで噴射を開始する。 The airflow sensor 102b measures the air flow rate sucked from the air cleaner 102c and outputs it to the engine C / U110. Engine C / U 110 calculates a fuel amount commensurate with the measured air amount, and outputs it as a valve opening time to a fuel injection valve (not shown). The fuel injection valve starts injection at a timing when the crank angle indicated by the signal of the crank angle sensor 101c becomes a crank angle preset in the engine C / U 110.
 この動作によりエンジン101の気筒内には、吸入された空気と燃料噴射弁から噴射された燃料が混ぜ合わさり混合気が形成される。点火プラグは、クランク角センサ101cの信号が示すクランク角が、エンジンC/U110で予め設定されたクランク角となるタイミングで、図示していない点火コイルを介して、通電される。これにより、気筒内の混合気は、点火して燃焼爆発する。 This operation mixes the sucked air and the fuel injected from the fuel injection valve in the cylinder of the engine 101 to form an air-fuel mixture. The spark plug is energized via an ignition coil (not shown) at a timing when the crank angle indicated by the signal of the crank angle sensor 101c becomes a crank angle preset in the engine C / U 110. As a result, the air-fuel mixture in the cylinder is ignited and burns and explodes.
 エンジン101は、前述の燃焼爆発で得た運動エネルギーを、クランク軸101aへ伝えて回転駆動力を発生させる。クランク軸101aの変速機側には図示していないドライブプレートが付いている。ドライブプレートは、トルクコンバータ111の入力側と直結している。トルクコンバータ111の出力側は変速機113に入力される。 The engine 101 transmits the kinetic energy obtained by the combustion explosion described above to the crankshaft 101a to generate a rotational driving force. A drive plate (not shown) is attached to the transmission side of the crankshaft 101a. The drive plate is directly connected to the input side of the torque converter 111. The output side of the torque converter 111 is input to the transmission 113.
 変速機113は、有段変速機構、またはベルト式やディスク式の無段変速機構を持つ変速機本体で、変速機C/U120によって制御される。変速機C/U120は、エンジン情報(エンジン回転数、車速、スロットル開度)やギヤシフトレバー118のギヤレンジ情報119を基にして適切な変速ギヤ、または変速比を決定して変速機113に変速させる。これにより、変速機113は、最適な変速比になるように制御される。 The transmission 113 is a transmission body having a stepped transmission mechanism or a belt-type or disk-type continuously variable transmission mechanism, and is controlled by the transmission C / U 120. Transmission C / U 120 determines an appropriate transmission gear or transmission ratio based on engine information (engine speed, vehicle speed, throttle opening) and gear range information 119 of gear shift lever 118 and causes transmission 113 to change gear. . Thereby, the transmission 113 is controlled so as to obtain an optimum gear ratio.
 変速機構と差動機構115の間にはクラッチ機構113aを有している。変速機構から駆動力を差動機構115へ伝達して駆動輪116を駆動する時は、クラッチ機構113aは締結される。逆に駆動輪116からの逆駆動力を遮断したい時は、クラッチ機構113aは開放される。これにより、変速機構へ逆駆動力が伝達しないように制御することを可能としている。 A clutch mechanism 113 a is provided between the speed change mechanism and the differential mechanism 115. When driving force is transmitted from the speed change mechanism to the differential mechanism 115 to drive the drive wheels 116, the clutch mechanism 113a is engaged. Conversely, when it is desired to block the reverse driving force from the driving wheel 116, the clutch mechanism 113a is released. Thereby, it is possible to perform control so that the reverse driving force is not transmitted to the transmission mechanism.
 以上のような構成とすることにより、車両100が惰行状態で走行している場合にクラッチ機構113aを開放して逆駆動力を遮断しエンジンを停止させる。これにより、走行抵抗を極力低下させた状態で車両を走行させる状態を作り出すことができるため、燃費を向上させることが可能である。 With the above-described configuration, when the vehicle 100 is traveling in a coasting state, the clutch mechanism 113a is released to interrupt the reverse driving force and stop the engine. As a result, it is possible to create a state in which the vehicle travels in a state where the traveling resistance is reduced as much as possible, and it is possible to improve fuel efficiency.
 本明細書では、前記のクラッチ機構を開放して走行抵抗を極力低下させた状態で車両を走行させる状態をセーリング(S)と呼ぶ。セーリング状態でエンジンを停止させている状態をセーリングストップ(S&ST)と呼ぶ。セーリング状態でエンジンをアイドルで運転している状態をセーリングアイドルと呼ぶ。 In this specification, the state in which the vehicle is driven in a state where the clutch mechanism is opened and the running resistance is reduced as much as possible is called sailing (S). The state where the engine is stopped in the sailing state is called sailing stop (S & ST). A state where the engine is idling in the sailing state is called a sailing idle.
 従来技術として、一定速度で長距離を走行する場合など、ドライバーが目標車速TVSPを設定して、ACC C/Uがその目標車速TVSP(設定速度)を基準としてスロットル開度やブレーキを制御して走行速度を調整するクルーズ制御(ACC)が知られている。 As a conventional technology, when driving a long distance at a constant speed, the driver sets the target vehicle speed TVSP, and the ACC C / U controls the throttle opening and brake based on the target vehicle speed TVSP (set speed). Cruise control (ACC) that adjusts the traveling speed is known.
 ここで、単純にクルーズ中にエンジンを停止させる動作を行っても、変速機内で駆動力の伝達を制御するクラッチ機構を開放させないと、駆動輪からの逆駆動力が走行抵抗となるため、燃費を向上させることは出来ない。 Even if the engine is simply stopped during cruising, the reverse driving force from the driving wheels becomes the running resistance unless the clutch mechanism that controls the transmission of the driving force is released in the transmission. Cannot be improved.
 このため、従来のクルーズ制御システムにセーリングストップを組み合わせるには、駆動輪からの逆駆動力がエンジン側へ伝達されないように遮断するクラッチ機構のような手段を変速機内に有する必要がある。前記の手段を持たせることにより、クルーズ制御中にセーリングストップを動作させることにより燃費効果を引き出すことが可能となる。 Therefore, in order to combine a sailing stop with a conventional cruise control system, it is necessary to have means in the transmission such as a clutch mechanism that blocks the reverse drive force from the drive wheels from being transmitted to the engine side. By providing the above means, it becomes possible to bring out the fuel efficiency effect by operating the sailing stop during the cruise control.
 また、通常のクルーズ制御は下り坂においては、トルクの制御範囲を外れてしまうことにより、オーバースピードとなりクルーズ制御が不可能となる課題がある。 Also, the usual cruise control has a problem that on the downhill, the cruise control is impossible due to overspeed due to out of the torque control range.
 本明細書では、前述のセーリングストップとクルーズ制御を組み合わせて走行することをセーリングクルーズ(S&ST&C)と呼ぶことにする。 In this specification, traveling in combination with the aforementioned sailing stop and cruise control is referred to as sailing cruise (S & ST & C).
 セーリングクルーズ(S&ST&C)による燃費効果の原理について説明する。 The principle of fuel efficiency effect by sailing cruise (S & ST & C) will be explained.
 図2Aは、R/L(Road/Load)状態(走行抵抗がある状態)でクルーズ走行(C)した場合の燃料消費率と、セーリングストップを実行しながらクルーズ走行した場合、すなわちセーリングクルーズ(S&ST&C)した場合の燃料消費率を表した図である。なお、縦軸は燃料消費率SFCを示し、横軸は時間tを示す。図2Aでは、説明を簡単にするため、単にR/L(Road/Load)状態でクルーズ走行のみしている場合は、目標車速TVSPで一定に走行しているように模式的に表している。 FIG. 2A shows the fuel consumption rate when cruise (C) is carried out in the R / L (Road / Load) state (with running resistance) and the case where the cruise is carried out while executing the sailing stop, that is, sailing cruise (S & ST & C). It is a figure showing the fuel consumption rate in the case of. The vertical axis represents the fuel consumption rate SFC, and the horizontal axis represents time t. In FIG. 2A, in order to simplify the explanation, when the vehicle is only traveling in the R / L (Road / Load) state, it is schematically shown as traveling constant at the target vehicle speed TVSP.
 セーリングクルーズ(S&ST&C)では、セーリングストップを実行することにより、エンジン稼働時の燃料消費率はR/L一定走行時より大きくなる。しかし、エンジン停止時の燃料消費率は“0”となるため、燃料消費率を積分して比較するとR/L一定走行時より燃料消費を抑えることができる。 In sailing cruise (S & ST & C), by executing sailing stop, the fuel consumption rate at the time of engine operation becomes larger than that at the time of constant R / L driving. However, since the fuel consumption rate when the engine is stopped is “0”, when the fuel consumption rates are integrated and compared, the fuel consumption can be suppressed compared to when the R / L is constant.
 なお、図2Aでは、セーリングクルーズ(S&ST&C)の積分値F1とR/L一定走行時の積分値F2との差分ΔFは面積で表される。つまり、セーリングクルーズ(S&ST&C)では、クルーズ制御だけの場合に比較して、燃料消費がΔF少ない。 In FIG. 2A, the difference ΔF between the integral value F1 of the sailing cruise (S & ST & C) and the integral value F2 when the R / L is constant traveling is represented by an area. That is, in sailing cruise (S & ST & C), fuel consumption is smaller by ΔF than in the case of only cruise control.
 図2Bは、従来クルーズ制御とセーリングクルーズ制御による走行中の目標車速TVSPに対する実車速の変化を示した図である。 FIG. 2B is a diagram showing a change in the actual vehicle speed with respect to the target vehicle speed TVSP during traveling by the conventional cruise control and the sailing cruise control.
 従来のクルーズ制御は、燃費の優先度は低くして、目標車速達成度を優先することにより運転性に重点を置く。これに対して、セーリングクルーズ制御は、目標車速達成度(運転性)を多少犠牲にしても燃費を優先することを概念とする。 ∙ Conventional cruise control focuses on drivability by lowering the priority of fuel economy and prioritizing the achievement of the target vehicle speed. On the other hand, sailing cruise control is based on the concept of giving priority to fuel efficiency even if the target vehicle speed achievement (driving performance) is somewhat sacrificed.
 図3はセーリングクルーズ制御の動作イメージを示した図である。 Fig. 3 is a diagram showing an operation image of sailing cruise control.
 車両はドライバーの操作によって設定された目標車速を基準として、その上限車速TVSPHと下限車速TVSPLの間をエンジン稼働による加速とセーリングストップによる減速を繰り返しながら走行する。すなわち、車両が加速してTVSPHに達すると変速機内のクラッチを開放してエンジンを停止する処理、すなわちセーリングストップを行う。 The vehicle travels between the upper limit vehicle speed TVSPH and the lower limit vehicle speed TVSPL while repeatedly accelerating by engine operation and decelerating by sailing stop, based on the target vehicle speed set by the driver's operation. That is, when the vehicle accelerates and reaches TVSPH, the clutch in the transmission is released to stop the engine, that is, sailing stop is performed.
 その後、車両は走行抵抗(路面抵抗、勾配、空気抵抗他)によって緩やかに減速を開始してTVSPLに達するとエンジンを再始動し、変速機内のクラッチを締結して再びTVSPHまで加速する動作を繰り返す。 After that, the vehicle starts to slowly decelerate due to running resistance (road resistance, slope, air resistance, etc.) and when it reaches TVSPL, the engine is restarted, the clutch in the transmission is engaged, and the operation to accelerate to TVSPH is repeated. .
 セーリングストップから次のセーリングストップまでの周期は、再始動で費やされる燃料分を考慮すると長いほど燃費効果は向上する。平地におけるセーリング時の走行抵抗はほぼ一定であるため、セーリングストップの周期を長くするには、TVSPHとTVSPLの幅ΔTVSPを大きく設定する必要がある。 】 The longer the cycle from a sailing stop to the next sailing stop, the better the fuel efficiency will be as long as the fuel consumed in the restart is taken into account. Since the traveling resistance at the time of sailing on flat ground is substantially constant, the width ΔTVSP of TVSPH and TVSPL needs to be set large in order to increase the sailing stop period.
 しかし、ΔTVSPを大きく設定すれば、加速時のトルクが不足して運転性が悪化する。または、前記不具合を解消するため変速比を制御すると最適燃費領域を外れて燃費が悪化する恐れがある。そのため、上限車速TVSPH、下限車速TVSPLは、それぞれ変速機が変速比を増減させる必要がない最大の値、最小の値を設定する。 However, if ΔTVSP is set large, the torque at the time of acceleration is insufficient and the drivability deteriorates. Alternatively, if the gear ratio is controlled in order to eliminate the above problem, there is a risk that the fuel efficiency will be deteriorated outside the optimum fuel efficiency range. Therefore, the upper limit vehicle speed TVSPH and the lower limit vehicle speed TVSPL are set to a maximum value and a minimum value, respectively, which do not require the transmission to increase or decrease the gear ratio.
 すなわち、上限車速TVSPHは、変速機が変速比を変化させずに目標車速TVSPから所定時間内に到達しうる実車速の最大値である。また、下限車速TVSPLは、変速機が変速比を変化させずに前記目標車速から所定時間内に到達しうる実車速の最小値である。 That is, the upper limit vehicle speed TVSPH is the maximum value of the actual vehicle speed that the transmission can reach within the predetermined time from the target vehicle speed TVSP without changing the gear ratio. The lower limit vehicle speed TVSPL is the minimum value of the actual vehicle speed that can be reached from the target vehicle speed within a predetermined time without changing the gear ratio.
 セーリングクルーズ制御により燃費の向上は見込めるが、クルーズ走行中は車速の変動によりドライバーに違和感を与え、商品性を損なうことが考えられる。 Sailing cruise control is expected to improve fuel efficiency, but during cruise driving, it may be possible to give the driver a sense of incongruity due to fluctuations in vehicle speed and impair the merchantability.
 このため、セーリングクルーズ制御への切り替えはドライバーが任意に選択スイッチで切り替える構成とすれば、車速の変動を容認させることが可能である。なお、制御の詳細については、後述する。 For this reason, if the driver can arbitrarily switch to the sailing cruise control with a selection switch, it is possible to tolerate fluctuations in the vehicle speed. Details of the control will be described later.
 また、図3に示すように、加速フェーズAとセーリングフェーズBの両者を切り替えることにより車速フィードバックの基本を構成する。 Also, as shown in FIG. 3, the basis of vehicle speed feedback is configured by switching between acceleration phase A and sailing phase B.
 すなわち、加速フェーズAの場合は車速フィードバックのサブ成分(差分)を目標加速度に反映し、前記目標加速度の許容範囲内において最良となる燃費率点でエンジンを作動させて加速する。 That is, in the acceleration phase A, the subcomponent (difference) of the vehicle speed feedback is reflected in the target acceleration, and the engine is operated at the fuel efficiency rate point that is the best within the allowable range of the target acceleration to accelerate the vehicle.
 セーリングフェーズBの場合は車速フィードバックのサブ成分をクラッチ締結度合いに反映し、下り坂で上限速度を超えてしまうような場面でも車速を抑えられる手段を備える。 In the case of sailing phase B, a sub-component of vehicle speed feedback is reflected in the degree of clutch engagement, and means for suppressing the vehicle speed even in a situation where the upper limit speed is exceeded on a downhill is provided.
 ここで、ACC C/U130は、路面が下り坂であるか否かを判定する勾配判定部として機能する。例えば、ACC C/U130は、目標エンジントルク、実車速に基づいて、下り坂であるか否かを判定する。 Here, ACCAC / U130 functions as a gradient determination unit that determines whether or not the road surface is a downhill. For example, ACC C / U130 determines whether or not the vehicle is downhill based on the target engine torque and the actual vehicle speed.
 また、ACC C/U130は、エンジンを停止させるともに、クラッチを解放させた後、路面が下り坂であると判定された場合、実車速と前記目標車速との差分に応じた締結度でクラッチを締結させる車速制御部として機能する。すなわち、ACC C/U130は、下り坂において、実車速から目標車速TVSPを引いた差が大きくなるにつれてクラッチの締結度合いを大きくする。これにより、変速機に駆動輪からの逆駆動力が伝達され、下り坂での速度上昇を抑制することができる。 In addition, when the ACCUC / U 130 stops the engine and releases the clutch, and determines that the road surface is downhill, the ACCAC / U 130 engages the clutch with a degree of engagement corresponding to the difference between the actual vehicle speed and the target vehicle speed. It functions as a vehicle speed control unit to be fastened. That is, ACC C / U130 increases the degree of clutch engagement as the difference between the actual vehicle speed and the target vehicle speed TVSP increases on the downhill. Thereby, the reverse driving force from the driving wheel is transmitted to the transmission, and the speed increase on the downhill can be suppressed.
 図4は加速フェーズにおけるエンジンの運転領域を表す図である。 FIG. 4 is a diagram showing the engine operating region in the acceleration phase.
 目標エンジントルクを縦軸にエンジン回転数を横軸にして、等しい燃料消費率の領域を結ぶと等燃費線のグラフが描かれる。このデータから最適となる燃費線を求めて、その線上をトレースするような目標エンジントルクで運転すれば、R/L条件で運転するよりも低燃費で、かつ大きいトルクで走行することが可能である。なお、等燃費線は、メモリなどの記憶装置に記憶されている。 ∙ If the target engine torque is plotted on the vertical axis and the engine speed is plotted on the horizontal axis, and regions with equal fuel consumption rates are connected, an iso-fuel consumption graph is drawn. By obtaining the optimal fuel consumption line from this data and driving with the target engine torque that traces the line, it is possible to drive with lower fuel consumption and larger torque than driving under R / L conditions. is there. Note that the equal fuel consumption line is stored in a storage device such as a memory.
 ここで、エンジンC/U110は、等燃費線に基づいて、エンジン回転数に対応する目標エンジントルクのうち、燃料消費率が最も小さい目標エンジントルクを算出するトルク算出部として機能する。 Here, the engine C / U 110 functions as a torque calculation unit that calculates a target engine torque having the smallest fuel consumption rate among the target engine torques corresponding to the engine speed based on the equal fuel consumption line.
 詳細には、エンジンC/U110は、許容加速範囲に対応するトルク範囲のうち、燃料消費率が最も小さい目標エンジントルクを算出する。許容加速範囲は、車両の運転状態に応じて許容される加速度の範囲を示す。 Specifically, the engine C / U 110 calculates a target engine torque having the smallest fuel consumption rate in the torque range corresponding to the allowable acceleration range. The allowable acceleration range indicates a range of acceleration allowed according to the driving state of the vehicle.
 図5はセーリングクルーズ制御のフローチャートを表した図である。 FIG. 5 shows a flowchart of sailing cruise control.
 まず、車両走行中にセーリングクルーズ実行の条件が成立しているかをステップS101で判定する。セーリングクルーズの実行条件としては、ドライバー操作によるクルーズモード切替えスイッチの状態、エンジン回転数、車速、推定勾配、アクセル操作状態、ブレーキ操作状態、マスターバッグ負圧、車両システムの診断状態などが挙げられる。 First, in step S101, it is determined whether or not a sailing cruise execution condition is satisfied while the vehicle is traveling. Examples of sailing cruise execution conditions include the state of a cruise mode changeover switch by a driver operation, engine speed, vehicle speed, estimated gradient, accelerator operation state, brake operation state, master bag negative pressure, vehicle system diagnosis state, and the like.
 セーリングクルーズ実行条件が成立した場合、ステップS102へ進み加速動作を実行する。加速動作は、図4で述べた通り最適な燃費率となるように目標エンジントルクをトレースして加速する。 When the sailing cruise execution condition is satisfied, the process proceeds to step S102 and the acceleration operation is executed. In the acceleration operation, the target engine torque is traced and accelerated so as to achieve an optimum fuel consumption rate as described in FIG.
 加速実行中にアクセル開度の変化やブレーキ操作が行われた場合は、通常制御へ移行し、アクセル開度の変化やブレーキ操作がない場合はセーリングクルーズの上限車速まで加速する。 When the accelerator opening is changed or the brake operation is performed during acceleration execution, the control shifts to the normal control, and when there is no change in the accelerator opening or the brake operation, the vehicle accelerates to the upper limit vehicle speed of the sailing cruise.
 ステップS105において、車両がセーリングクルーズ上限車速まで加速したら、ステップS106へ移行し変速機内のクラッチを開放し、エンジンを停止するセーリングストップを実行する。セーリングストップ実行中もアクセル開度、ブレーキ操作を監視し変化を検知した場合はステップS110へ移行し、セーリングクルーズを抜けてエンジンを再始動し変速機内のクラッチを締結する。 In step S105, when the vehicle accelerates to the sailing cruise upper limit vehicle speed, the process proceeds to step S106, the clutch in the transmission is released, and the sailing stop for stopping the engine is executed. If a change is detected by monitoring the accelerator opening and the brake operation even during the execution of the sailing stop, the process proceeds to step S110, the sailing cruise is exited, the engine is restarted, and the clutch in the transmission is engaged.
 図6は、セーリングクルーズ制御を行うためのACC C/U130の構成例を表した図である。なお、ACC C/U130は、前車追従機能を有していてもよい。 FIG. 6 is a diagram illustrating a configuration example of the ACC C / U 130 for performing sailing cruise control. Note that the ACC / C / U 130 may have a front vehicle following function.
 エンジンC/U110は、実車速、エンジンC/U110で算出される燃費率が最良となるトルク(燃費率ベストトルク)を、ACC C/U130へ供給(入力)する。 The engine C / U 110 supplies (inputs) the actual vehicle speed and the torque (fuel consumption rate best torque) with the best fuel efficiency calculated by the engine C / U 110 to the ACC C / U 130.
 変速機C/U120は、トルク制限要求、実変速比を、ACC C/U130へ供給する。前記以外のC/Uは、姿勢制御、障害検知などのシステムによるトルク制限要求を、ACC C/U130へ供給する。 The transmission C / U 120 supplies the torque limit request and the actual gear ratio to the ACC / C 130. Other C / Us supply torque limit requests by the system such as attitude control and fault detection to the ACC / C / U 130.
 エンジンC/U110で算出される燃費率が最良となるトルク値は、エンジン回転数の他、吸気バルブ、排気バルブに設けられた可変バルブタイミング機構や可変バルブリフト機構の進角状態、EGR量、過給機の状態などの燃料消費率マップの特性に影響を与えるパラメータを基に算出される。 The torque value at which the fuel consumption rate calculated by the engine C / U110 is the best is the engine rotation speed, the advanced valve state of the variable valve timing mechanism and variable valve lift mechanism provided in the intake valve and exhaust valve, the EGR amount, It is calculated based on parameters that affect the characteristics of the fuel consumption rate map, such as the state of the turbocharger.
 なお、エンジンC/U110は、エンジン回転数に基づいて、燃費率が最良となるトルク値(目標エンジントルク)を算出してもよい。この場合、エンジンC/U110は、これらのパラメータのうち、少なくとも1つを用いて目標エンジントルクを補正してもよい。 The engine C / U 110 may calculate a torque value (target engine torque) that provides the best fuel efficiency based on the engine speed. In this case, the engine C / U 110 may correct the target engine torque using at least one of these parameters.
 ACC C/U130は、前記の各C/U群から入力された信号と実車速から推定した路面勾配の情報を基に目標加速度、駆動力を演算して、変速機C/U120へ目標変速比を出力し、エンジンC/U110へ目標エンジントルクを出力する。 The ACC C / U 130 calculates the target acceleration and driving force based on the road surface gradient information estimated from the signals input from the C / U groups and the actual vehicle speed, and sends the target speed ratio to the transmission C / U 120. And the target engine torque is output to the engine C / U 110.
 (変形例)
 次に、図7を用いて、上記の実施形態の変形例を説明する。図7は、本発明の実施形態の変形例による車両の制御装置の機能を説明するためのブロック図である。
(Modification)
Next, a modification of the above embodiment will be described with reference to FIG. FIG. 7 is a block diagram for explaining functions of a vehicle control apparatus according to a modification of the embodiment of the present invention.
 エンジンC/U110は、第1のトルク算出部110a、及び第2のトルク算出部110bとして機能する。また、ACC C/U130は、第1の車速制御部130a、及び第2の車速制御部130bとして機能する。 The engine C / U 110 functions as a first torque calculation unit 110a and a second torque calculation unit 110b. Further, the ACCAC / U 130 functions as a first vehicle speed control unit 130a and a second vehicle speed control unit 130b.
 選択スイッチSWは、低燃費を重視する運転に切り替えるための第1のモードと加速を重視する運転に切り替えるための第2モードを切り替える。すなわち、第1のトルク算出部110a及び第1の車速制御部130aは、所定の実行条件を満たし、第1のモードが選択された場合に作動する。また、第2のトルク算出部110b及び第2の車速制御部130bは、所定の実行条件を満たし第2のモードが選択された場合に作動する。なお、所定の実行条件は、上記実施形態で例示したセーリングクルーズの実行条件と同様である。 The selection switch SW switches between a first mode for switching to driving that emphasizes low fuel consumption and a second mode for switching to driving that prioritizes acceleration. That is, the first torque calculation unit 110a and the first vehicle speed control unit 130a operate when a predetermined execution condition is satisfied and the first mode is selected. Further, the second torque calculation unit 110b and the second vehicle speed control unit 130b operate when a predetermined execution condition is satisfied and the second mode is selected. The predetermined execution conditions are the same as the sailing cruise execution conditions exemplified in the above embodiment.
 第1のトルク算出部110aは、等燃費線に基づいて、エンジン回転数に対応する目標エンジントルクのうち、燃料消費率が最も小さい目標エンジントルクτ1*を算出する。また、第2のトルク算出部110bは、等燃費線に基づいて、エンジン回転数に対応する目標エンジントルクのうち、第1の目標エンジントルクより大きい第2の目標エンジントルクτ2*を算出する。 1st torque calculation part 110a calculates target engine torque (tau) 1 * with the smallest fuel consumption rate among the target engine torques corresponding to an engine speed based on an equal fuel consumption line. Further, the second torque calculation unit 110b calculates a second target engine torque τ2 * larger than the first target engine torque among the target engine torques corresponding to the engine speed based on the equal fuel consumption line.
 第1の車速制御部130aは、実車速が目標車速TVSPより小さい第1の下限車速TVSPLになった場合、変速機内のクラッチを締結させるとともに、第1のトルク算出部110aによって算出された第1の目標エンジントルクτ1*でエンジンを稼働させる。また、第1の車速制御部130aは、実車速が目標車速TVSPより大きい第1の上限車速TVSPHになった場合、エンジンを停止させるともに、クラッチを解放させる。 When the actual vehicle speed reaches the first lower limit vehicle speed TVSPL that is smaller than the target vehicle speed TVSP, the first vehicle speed control unit 130a engages the clutch in the transmission and also calculates the first torque calculated by the first torque calculation unit 110a. The engine is operated at the target engine torque τ1 *. Further, the first vehicle speed control unit 130a stops the engine and releases the clutch when the actual vehicle speed becomes the first upper limit vehicle speed TVSPH that is higher than the target vehicle speed TVSP.
 第2の車速制御部130bは、実車速が第1の下限車速TVSPLより大きく目標車速TVSPより小さい第2の下限車速TVSPL2になった場合、クラッチを締結させるとともに、第2のトルク算出部110bによって算出された第2の目標エンジントルクτ2*でエンジンを稼働させる。また、第2の車速制御部130bは、実車速が目標車速TVSPより大きく第1の上限加速TVSPHより小さい第2の上限車速TVSPH2になった場合、エンジンを停止させるともに、クラッチを解放させる。 When the actual vehicle speed becomes the second lower limit vehicle speed TVSPL2 that is larger than the first lower limit vehicle speed TVSPL and smaller than the target vehicle speed TVSP, the second vehicle speed control unit 130b engages the clutch and also uses the second torque calculation unit 110b. The engine is operated at the calculated second target engine torque τ2 *. In addition, when the actual vehicle speed becomes the second upper limit vehicle speed TVSPH2 that is larger than the target vehicle speed TVSP and smaller than the first upper limit acceleration TVSPH, the second vehicle speed control unit 130b stops the engine and releases the clutch.
 これにより、ACCにおいて、低燃費を重視する運転と、加速を重視する運転を切り替えることができる。 Thereby, in ACC, it is possible to switch between driving focusing on low fuel consumption and driving focusing on acceleration.
 以上、詳述した本実施形態によれば、以下の優れた効果が得られる。 As described above, according to the embodiment described in detail, the following excellent effects can be obtained.
 セーリングクルーズシステムを搭載した車両において、燃費特性に基づき目標加速度ならびに駆動力を演算して、目標変速比、目標エンジントルクを指令値として出力することにより、最良の燃費点を目指して運転することが可能となり、燃費を向上できる。 A vehicle equipped with a sailing cruise system can calculate the target acceleration and driving force based on the fuel efficiency characteristics, and output the target gear ratio and target engine torque as command values. It becomes possible and can improve fuel consumption.
 本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能(ブロック)等は、それらの一部又は全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の構成、機能等は、プロセッサがそれぞれの機能を実現する機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク等の記憶装置に記憶される。 In addition, each of the above-described configurations, functions (blocks), and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, the above configuration, function, and the like may be realized by software by interpreting and executing a program that realizes a function for realizing each function by the processor. Information such as programs, tables, and files for realizing each function is stored in a storage device such as a memory or a hard disk.
 なお、上記実施形態では、エンジンC/U110、変速機C/U120、ACC C/U130などは、別体で構成されているが、一体で構成されていてもよい。 In addition, in the said embodiment, although engine C / U110, transmission C / U120, ACC C / U130, etc. are comprised separately, you may be comprised integrally.
100…車両
101…エンジン本体
101a     …クランク軸
101b     …クランク角信号プレート
101c     …クランク角センサ
102…インテークマニーホールド
102a     …スロットルバルブ
102b     …エアフロセンサ
102c     …エアクリーナ
103…スタータ
104…オルタネータ
105…バッテリ
106…アクセルペダル
107…アクセルペダルセンサ
108…ブレーキペダル
109…ブレーキスイッチ
110…エンジンC/U
111…トルクコンバータ
112…機械式変速機オイルポンプ
113…変速機本体
113a     …クラッチ機構
114…電動式変速機オイルポンプ
115…差動機構
116…駆動輪、タイヤ
117…車速センサ
118…セレクトレバー 
119…レンジスイッチ
120…変速機C/U
121…ステアリング
122…ステアリング舵角センサ
123…外界認識カメラ
130…ACC C/U
DESCRIPTION OF SYMBOLS 100 ... Vehicle 101 ... Engine main body 101a ... Crankshaft 101b ... Crank angle signal plate 101c ... Crank angle sensor 102 ... Intake honey hold 102a ... Throttle valve 102b ... Air flow sensor 102c ... Air cleaner 103 ... Starter 104 ... Alternator 105 ... Battery 106 ... Accelerator Pedal 107 ... Accelerator pedal sensor 108 ... Brake pedal 109 ... Brake switch 110 ... Engine C / U
111 ... Torque converter 112 ... Mechanical transmission oil pump 113 ... Transmission body 113a ... Clutch mechanism 114 ... Electric transmission oil pump 115 ... Differential mechanism 116 ... Drive wheel, tire 117 ... Vehicle speed sensor 118 ... Select lever
119 ... Range switch 120 ... Transmission C / U
121 ... Steering 122 ... Steering angle sensor 123 ... External recognition camera 130 ... ACC C / U

Claims (7)

  1.  エンジン回転数に対応する目標エンジントルクのうち、燃料消費率が最も小さい第1の目標エンジントルクを算出する第1のトルク算出部と、
     実車速が目標車速より小さい第1の下限車速になった場合、変速機内のクラッチを締結させるとともに、前記第1のトルク算出部によって算出された前記第1の目標エンジントルクでエンジンを稼働させ、実車速が前記目標車速より大きい第1の上限車速になった場合、前記エンジンを停止させるともに、前記クラッチを解放させる第1の車速制御部と、
    を備えることを特徴とする車両の制御装置。
    A first torque calculation unit that calculates a first target engine torque having the smallest fuel consumption rate among the target engine torque corresponding to the engine speed;
    When the actual vehicle speed becomes the first lower limit vehicle speed smaller than the target vehicle speed, the clutch in the transmission is engaged, and the engine is operated with the first target engine torque calculated by the first torque calculation unit, A first vehicle speed control unit for stopping the engine and releasing the clutch when the actual vehicle speed becomes a first upper limit vehicle speed greater than the target vehicle speed;
    A vehicle control apparatus comprising:
  2.  請求項1に記載の車両の制御装置であって、
     前記第1のトルク算出部は、
     所定の加速度範囲に対応するトルク範囲のうち、前記燃料消費率が最も小さい前記第1の目標エンジントルクを算出する
     ことを特徴とする車両の制御装置。
    The vehicle control device according to claim 1,
    The first torque calculation unit includes:
    The vehicle control apparatus characterized by calculating the first target engine torque having the smallest fuel consumption rate in a torque range corresponding to a predetermined acceleration range.
  3.  請求項2に記載の車両の制御装置であって、
     前記所定の加速度範囲は、
     車両の運転状態に応じて許容される加速度の範囲を示す許容加速範囲である
     ことを特徴とする車両の制御装置。
    The vehicle control device according to claim 2,
    The predetermined acceleration range is:
    A vehicle control apparatus, characterized in that it is an allowable acceleration range indicating a range of acceleration allowed according to a driving state of the vehicle.
  4.  請求項1に記載の車両の制御装置であって、
     前記第1のトルク算出部は、
     等燃費線に基づいて、前記第1の目標エンジントルクを算出する
     ことを特徴とする車両の制御装置。
    The vehicle control device according to claim 1,
    The first torque calculation unit includes:
    The vehicle control device characterized in that the first target engine torque is calculated based on an iso-fuel consumption line.
  5.  請求項1に記載の車両の制御装置であって、
     路面が下り坂であるか否かを判定する勾配判定部をさらに備え、
     前記第1の車速制御部は、
     前記エンジンを停止させるともに、前記クラッチを解放させた後、路面が下り坂であると判定された場合、実車速と前記目標車速との差分に応じた締結度で前記クラッチを締結させる
     ことを特徴とする車両の制御装置。
    The vehicle control device according to claim 1,
    A slope determination unit for determining whether or not the road surface is a downhill;
    The first vehicle speed controller is
    After the engine is stopped and the clutch is released, when it is determined that the road surface is a downhill, the clutch is engaged at a degree of engagement corresponding to a difference between an actual vehicle speed and the target vehicle speed. A vehicle control device.
  6.  請求項1に記載の車両の制御装置であって、
     前記第1の上限車速は、
     前記変速機が変速比を変化させずに前記目標車速から到達しうる実車速の最大値であり

     前記第1の下限車速は、
     前記変速機が変速比を変化させずに前記目標車速から到達しうる実車速の最小値である
     ことを特徴とする車両の制御装置。
    The vehicle control device according to claim 1,
    The first upper limit vehicle speed is
    The maximum value of the actual vehicle speed that the transmission can reach from the target vehicle speed without changing the gear ratio;
    The first lower limit vehicle speed is:
    The vehicle control apparatus, wherein the transmission is a minimum value of an actual vehicle speed that can be reached from the target vehicle speed without changing a gear ratio.
  7.  請求項1に記載の車両の制御装置であって、
     エンジン回転数に対応する目標エンジントルクのうち、前記第1の目標エンジントルクより大きい第2の目標エンジントルクを算出する第2のトルク算出部と、
     実車速が前記第1の下限車速より大きく前記目標車速より小さい第2の下限車速になった場合、前記クラッチを締結させるとともに、前記第2のトルク算出部によって算出された前記第2の目標エンジントルクでエンジンを稼働させ、実車速が前記目標車速より大きく前記第1の上限加速より小さい第2の上限車速になった場合、前記エンジンを停止させるともに、前記クラッチを解放させる第2の車速制御部と、
     第1のモードと第2のモードを切り替えるスイッチをさらに備え、
     前記第1のトルク算出部及び前記第1の車速制御部は、
     前記第1のモードが選択された場合に作動し、
     前記第2のトルク算出部及び前記第2の車速制御部は、
     前記第2のモードが選択された場合に作動する
     ことを特徴とする車両の制御装置。
    The vehicle control device according to claim 1,
    A second torque calculation unit that calculates a second target engine torque that is larger than the first target engine torque among the target engine torque corresponding to the engine speed;
    When the actual vehicle speed becomes a second lower limit vehicle speed that is larger than the first lower limit vehicle speed and smaller than the target vehicle speed, the clutch is engaged and the second target engine calculated by the second torque calculation unit is used. The engine is operated with torque, and when the actual vehicle speed becomes a second upper limit vehicle speed that is larger than the target vehicle speed and smaller than the first upper limit acceleration, the engine is stopped and the clutch is released. And
    A switch for switching between the first mode and the second mode;
    The first torque calculation unit and the first vehicle speed control unit are:
    Activated when the first mode is selected;
    The second torque calculator and the second vehicle speed controller are
    The vehicle control device that operates when the second mode is selected.
PCT/JP2015/071189 2014-08-07 2015-07-27 Control device for vehicles WO2016021431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540156A JP6245621B2 (en) 2014-08-07 2015-07-27 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014161591 2014-08-07
JP2014-161591 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021431A1 true WO2016021431A1 (en) 2016-02-11

Family

ID=55263702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071189 WO2016021431A1 (en) 2014-08-07 2015-07-27 Control device for vehicles

Country Status (2)

Country Link
JP (1) JP6245621B2 (en)
WO (1) WO2016021431A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928579A (en) * 2016-04-19 2016-09-07 奇瑞汽车股份有限公司 Endurance mileage calculation control method
JPWO2016021431A1 (en) * 2014-08-07 2017-04-27 日立オートモティブシステムズ株式会社 Vehicle control device
CN107401602A (en) * 2016-05-19 2017-11-28 株式会社斯巴鲁 The control device of buncher
JP2018034597A (en) * 2016-08-30 2018-03-08 マツダ株式会社 Vehicle control device
JP2018034600A (en) * 2016-08-30 2018-03-08 マツダ株式会社 Vehicle control device
JP2018134925A (en) * 2017-02-21 2018-08-30 日立オートモティブシステムズ株式会社 Travel control device of automobile
KR20180122727A (en) * 2016-05-25 2018-11-13 쟈트코 가부시키가이샤 Control device and control method of vehicle equipped with continuously variable transmission
CN111852672A (en) * 2020-06-30 2020-10-30 威伯科汽车控制***(中国)有限公司 Engine torque predictive control method based on predictive cruise
CN112061106A (en) * 2020-09-15 2020-12-11 中国第一汽车股份有限公司 Automatic driving control method, device, vehicle and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287827A (en) * 1985-06-14 1986-12-18 Mazda Motor Corp Running control device for vehicle
JPH08295154A (en) * 1995-04-28 1996-11-12 Mitsubishi Motors Corp Autocruise control method
JP2000118264A (en) * 1998-10-16 2000-04-25 Honda Motor Co Ltd Automatic cruise controller
JP2010209902A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Controller for vehicle
JP2010280363A (en) * 2009-06-08 2010-12-16 Toyota Motor Corp Controller for vehicle
JP2011173475A (en) * 2010-02-23 2011-09-08 Toyota Motor Corp Vehicle control system
JP2012047148A (en) * 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
JP2014125026A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Vehicle transmission, and control unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215171A (en) * 2009-03-18 2010-09-30 Denso Corp Constant speed travel control device
JP2011183963A (en) * 2010-03-09 2011-09-22 Toyota Motor Corp Vehicle control system
JP2013014205A (en) * 2011-07-03 2013-01-24 Toyota Motor Corp Travel controller of vehicle
JP6245621B2 (en) * 2014-08-07 2017-12-13 日立オートモティブシステムズ株式会社 Vehicle control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287827A (en) * 1985-06-14 1986-12-18 Mazda Motor Corp Running control device for vehicle
JPH08295154A (en) * 1995-04-28 1996-11-12 Mitsubishi Motors Corp Autocruise control method
JP2000118264A (en) * 1998-10-16 2000-04-25 Honda Motor Co Ltd Automatic cruise controller
JP2010209902A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Controller for vehicle
JP2010280363A (en) * 2009-06-08 2010-12-16 Toyota Motor Corp Controller for vehicle
JP2011173475A (en) * 2010-02-23 2011-09-08 Toyota Motor Corp Vehicle control system
JP2012047148A (en) * 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
JP2014125026A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Vehicle transmission, and control unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016021431A1 (en) * 2014-08-07 2017-04-27 日立オートモティブシステムズ株式会社 Vehicle control device
CN105928579A (en) * 2016-04-19 2016-09-07 奇瑞汽车股份有限公司 Endurance mileage calculation control method
CN107401602A (en) * 2016-05-19 2017-11-28 株式会社斯巴鲁 The control device of buncher
CN109073072A (en) * 2016-05-25 2018-12-21 加特可株式会社 The control device and control method for having the vehicle of stepless transmission
US10962111B2 (en) 2016-05-25 2021-03-30 Jatco Ltd Control device and control method for vehicle including continuously variable transmission
KR102047617B1 (en) 2016-05-25 2019-11-21 쟈트코 가부시키가이샤 Control device and control method of vehicle with continuously variable transmission
KR20180122727A (en) * 2016-05-25 2018-11-13 쟈트코 가부시키가이샤 Control device and control method of vehicle equipped with continuously variable transmission
JP2018034597A (en) * 2016-08-30 2018-03-08 マツダ株式会社 Vehicle control device
JP2018034600A (en) * 2016-08-30 2018-03-08 マツダ株式会社 Vehicle control device
JP2018134925A (en) * 2017-02-21 2018-08-30 日立オートモティブシステムズ株式会社 Travel control device of automobile
CN111852672A (en) * 2020-06-30 2020-10-30 威伯科汽车控制***(中国)有限公司 Engine torque predictive control method based on predictive cruise
CN111852672B (en) * 2020-06-30 2022-05-24 采埃孚商用车***(青岛)有限公司 Predictive cruise-based engine torque predictive control method
CN112061106A (en) * 2020-09-15 2020-12-11 中国第一汽车股份有限公司 Automatic driving control method, device, vehicle and storage medium

Also Published As

Publication number Publication date
JP6245621B2 (en) 2017-12-13
JPWO2016021431A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6245621B2 (en) Vehicle control device
JP5907280B2 (en) Vehicle travel control device
US11207968B2 (en) Hybrid vehicle cruise control device
CN110366512B (en) Power control method and power control device for hybrid vehicle
JP4100443B2 (en) Control device for hybrid vehicle
WO2018155624A1 (en) Power control method and power control device for hybrid vehicle
JP6694835B2 (en) Vehicle running control device
CN110325420B (en) Power control method and power control device for hybrid vehicle
KR20160067745A (en) Automobile
WO2018155616A1 (en) Power control method and power control device for hybrid vehicle
GB2590959A (en) Hybrid vehicle engine idling control
JP4799654B2 (en) Power generation control device for internal combustion engine
JP6594796B2 (en) Vehicle control device
JP5615328B2 (en) Control device for vehicle drive device
JP6595091B2 (en) Vehicle control device
JP6310878B2 (en) Vehicle control device
JP6489509B2 (en) Power control method and power control apparatus for hybrid vehicle
WO2018155617A1 (en) Drive control method and drive control device for hybrid vehicle
JP2006194099A (en) Misfire determining device and misfire determining method for internal combustion engine and power output device
US11958469B2 (en) Control device for vehicle
JP2012052468A (en) Engine control device
JP6489510B2 (en) Power control method and power control apparatus for hybrid vehicle
JP2022090318A (en) Fuel injection control device for internal combustion engine
JP6530989B2 (en) In-vehicle controller
JP2016098735A (en) Vehicular control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829031

Country of ref document: EP

Kind code of ref document: A1