WO2016013612A1 - 高屈折率ガラス - Google Patents

高屈折率ガラス Download PDF

Info

Publication number
WO2016013612A1
WO2016013612A1 PCT/JP2015/070963 JP2015070963W WO2016013612A1 WO 2016013612 A1 WO2016013612 A1 WO 2016013612A1 JP 2015070963 W JP2015070963 W JP 2015070963W WO 2016013612 A1 WO2016013612 A1 WO 2016013612A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
refractive index
content
glass
high refractive
Prior art date
Application number
PCT/JP2015/070963
Other languages
English (en)
French (fr)
Inventor
篤 虫明
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014180920A external-priority patent/JP2016056029A/ja
Priority claimed from JP2015024980A external-priority patent/JP2016028996A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2016013612A1 publication Critical patent/WO2016013612A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a high refractive index glass, for example, an organic EL device, particularly a high refractive index glass suitable for organic EL lighting.
  • organic EL devices have a structure in which an organic light emitting element is sandwiched between glass plates on which a transparent conductive film such as ITO is formed.
  • a transparent conductive film such as ITO
  • the refractive index n d of the organic light emitting element is 1.8-1.9
  • the refractive index n d of the ITO is 1.9 to 2.0
  • the refractive index n d of the glass plate is usually about 1.5.
  • high refractive index glass may be used (for example, see Patent Document 1).
  • these glasses contain a large amount of expensive rare earth oxides and have a low liquid phase viscosity, so that they are difficult to form into a flat plate shape and are not suitable for mass production.
  • the glass plate In order to increase the refractive index of the glass plate, it is effective to decrease the contents of SiO 2 and Al 2 O 3 and increase the contents of SrO, BaO and the like.
  • the glass plate tends to be structurally fragile, and the glass plate tends to be damaged.
  • the present invention has been made in view of the above circumstances, and the first technical problem is that the refractive index is high and the liquid phase viscosity is high even if a large amount of expensive rare earth oxides are not included.
  • the idea is to create glass.
  • the second technical problem is to create a high refractive index glass having high mechanical strength.
  • the present inventors have found that the first technical problem can be solved by restricting the glass composition range and the glass characteristics to a predetermined range, and propose as the first invention.
  • the high refractive index glass of the first invention is, as a glass composition, by mass%, SiO 2 + Al 2 O 3 + B 2 O 3 30.5 to 80%, MgO + CaO + SrO + BaO + ZnO 10 to 60%, BaO 4 to 40%, TiO 2 + ZrO 2 0 ⁇ 20 %, contains P 2 O 5 0.01 ⁇ 15% , and a refractive index n d is equal to or is from 1.55 to 2.00.
  • SiO 2 + Al 2 O 3 + B 2 O 3 refers to the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 .
  • MgO + CaO + SrO + BaO + ZnO refers to the total amount of MgO, CaO, SrO, BaO and ZnO.
  • TiO 2 + ZrO 2 refers to the total amount of TiO 2 and ZrO 2 .
  • Refractive index n d is a measured value at the d-line (wavelength 587.6 nm) of the hydrogen lamp, and can be measured with a refractive index measuring device.
  • the temperature range from (annealing point + 30 ° C.) to (strain point ⁇ 50 ° C.) is gradually increased at a cooling rate such that it becomes 0.1 ° C./min. It can be measured by using a refractive index measuring device KPR-2000 manufactured by Shimadzu Corporation while allowing the immersion liquid to have a refractive index matching to penetrate between the glasses after cooling.
  • the high refractive index glass of the first invention contains a large amount of BaO in order to increase the refractive index.
  • the high refractive index glass of the first invention contains P 2 O 5 as an essential component. Thereby, it becomes easy to suppress precipitation of Ba-based crystals. As a result, a high refractive index glass having a high liquid phase viscosity can be produced without containing a large amount of expensive rare earth oxides.
  • the high refractive index glass of the first invention preferably has a mass ratio SiO 2 / B 2 O 3 of 1.2 to 20. If it does in this way, devitrification resistance will improve and a liquid phase viscosity can be raised.
  • SiO 2 / B 2 O 3 indicates a value obtained by dividing the content of SiO 2 by the content of B 2 O 3 .
  • the high refractive index glass of the first invention preferably has a BaO content of 15 to 30% by mass.
  • the high refractive index glass of the first invention does not substantially contain PbO.
  • substantially free of means that the inclusion of an explicit component is avoided as much as possible, but the inclusion of an impurity level is allowed.
  • the content of an explicit component Is less than 0.5% (preferably less than 0.1%, especially less than 0.05%).
  • the content of Bi 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 + WO 3 is preferably 12% by mass or less.
  • Bi 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 + WO 3 means Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 , Ta It refers to the total amount of 2 O 5 and WO 3 .
  • the high refractive index glass of the first invention preferably contains substantially no alkali metal oxide (Li 2 O, Na 2 O, K 2 O). In this way, it is not necessary to form a passivation film such as a SiO 2 film, and the manufacturing cost can be reduced.
  • the high refractive index glass of the first invention preferably has a liquidus viscosity of 10 3.0 dPa ⁇ s or more.
  • liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • Liquid phase temperature refers to the temperature at which crystals precipitate by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. It is a measured value.
  • the high refractive index glass of the first invention preferably has a flat plate shape.
  • the high refractive index glass of the first invention is preferably formed by any one of the float method, roll-out method, up-draw method, and overflow down-draw method.
  • the present inventor has found that the second technical problem can be solved by subjecting a predetermined glass to ion exchange treatment, and proposes it as a second invention. That is, the high refractive index glass of the second invention is a high refractive index glass having a compressive stress layer on the surface, the compressive stress layer is formed by ion exchange treatment, the refractive index n d of 1.55 ⁇ It is 2.00.
  • the high refractive index glass of the second invention contains, as a glass composition, SiO 2 20 to 70%, Li 2 O + Na 2 O + K 2 O 0.1 to 30%, BaO 4 to 40% by mass. preferable. If the glass composition range is regulated as described above, the devitrification resistance is improved, it becomes easy to form a flat plate shape, and the refractive index and the ion exchange performance are easily improved.
  • “Li 2 O + Na 2 O + K 2 O” is the total amount of Li 2 O, Na 2 O and K 2 O.
  • the high refractive index glass of the second invention preferably contains 1 to 10% by mass of TiO 2 in the glass composition. If it does in this way, it will become easy to obtain high refractive index glass.
  • the lighting devices of the first and second inventions are characterized by comprising the high refractive index glass described above.
  • the organic EL illumination of the present invention is characterized by comprising the above-described high refractive index glass.
  • the high refractive index glass of the first invention has a glass composition of mass%, SiO 2 + Al 2 O 3 + B 2 O 3 30.5 to 80%, MgO + CaO + SrO + BaO + ZnO 10 to 60%, BaO 4 to 40%, TiO 2 + ZrO 2 0-20%, P 2 O 5 0.01-15%.
  • mass% SiO 2 + Al 2 O 3 + B 2 O 3 30.5 to 80%
  • MgO + CaO + SrO + BaO + ZnO 10 to 60% BaO 4 to 40%
  • TiO 2 + ZrO 2 0-20% P 2 O 5 0.01-15%.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 30.5 to 80%.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 decreases, it becomes difficult to form a glass network structure and vitrification becomes difficult. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, the content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 30.5% or more, 35% or more, 40% or more, 42% or more, 46% or more, 48% or more, particularly 50% or more. is there.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 increases, the refractive index, meltability, and moldability tend to decrease. Therefore, the content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 57% or less, particularly 55% or less.
  • the content of SiO 2 is preferably 20 to 70%.
  • the content of SiO 2 decreases, it becomes difficult to form a glass network structure, and vitrification becomes difficult. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Furthermore, acid resistance tends to decrease. Therefore, the content of SiO 2 is preferably 20% or more, 25% or more, 30% or more, 32% or more, 34% or more, particularly 36% or more.
  • the content of SiO 2 is preferably 70% or less, 65% or less, 60% or less, 55% or less, 53% or less, 51% or less, 49% or less, 47% or less, 45% or less, particularly 43% or less. It is.
  • the content of Al 2 O 3 is preferably 0 to 20%.
  • the content of Al 2 O 3 is preferably 20% or less, 15% or less, 10% or less, 8% or less, particularly 6% or less.
  • the content of Al 2 O 3 is reduced, lacks the balance of the glass composition, the glass is liable to devitrify reversed. Therefore, the content of Al 2 O 3 is preferably 0.1% or more, 0.5% or more, 1% or more, 3% or more, 4% or more, particularly 5% or more.
  • the content of B 2 O 3 is preferably 0 to 35%.
  • the content of B 2 O 3 is preferably 35% or less, 30% or less, 25% or less, 20% or less, 18% or less, 16% or less, 14% or less, 12% or less, 10% or less, particularly 8% or less.
  • the content of B 2 O 3 is reduced, the liquid phase temperature tends to decrease. Therefore, the content of B 2 O 3 is preferably 0.1% or more, 1% or more, 2% or more, 4% or more, particularly 5% or more.
  • the mass ratio SiO 2 / B 2 O 3 is preferably 1.2 to 20.
  • the lower limit of the mass ratio SiO 2 / B 2 O 3 is preferably 1.2 or more, 1.6 or more, 2.0 or more, 2.4 or more, 2.8 or more, 3.2 or more, 3. 5 or more, 3.8 or more, particularly 4.0 or more.
  • the upper limit value of the mass ratio SiO 2 / B 2 O 3 is preferably 20 or less, 15 or less, 10 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, particularly 5. 5 or less.
  • the content of MgO + CaO + SrO + BaO + ZnO is preferably 10 to 60%, 20 to 55%, 25 to 52%, 30 to 50%, 32 to 48%, 34 to 46%, particularly 36 to 44%. In this way, it is possible to achieve both high refractive index, devitrification resistance, meltability, low density, and low thermal expansion coefficient at a high level.
  • the lower limit value of the mass ratio (MgO + CaO + SrO + BaO + ZnO) / B 2 O 3 is preferably 1.0 or more, 1.5 or more, 1.8 or more, 2.1 or more, 2.4 or more, 2.7 or more, particularly
  • the upper limit is preferably 10 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.5 or less, particularly 5.0 or less.
  • (MgO + CaO + SrO + BaO + ZnO) / B 2 O 3 refers to a value obtained by dividing the content of MgO + CaO + SrO + BaO + ZnO by the content of B 2 O 3 .
  • MgO is a component that increases the Young's modulus and decreases the high-temperature viscosity.
  • the content of MgO is preferably 10% or less, 5% or less, 3% or less, 2% or less, 1% or less, particularly 0.5% or less.
  • the content of CaO is preferably 12% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, particularly 3.5% or less. Note that when the content of CaO decreases, the refractive index, meltability, and Young's modulus tend to decrease. Therefore, the content of CaO is preferably 0.1% or more, 0.5% or more, 1% or more, 2% or more, particularly 2.5% or more.
  • the lower limit value of the mass ratio CaO / B 2 O 3 is preferably 0.10 or more, 0.15 or more, 0.20 or more, 0.25 or more, particularly 0.30 or more, and the mass ratio CaO /
  • the upper limit of B 2 O 3 is preferably 10 or less, 5 or less, 3 or less, 2 or less, 1 or less, particularly 0.7 or less.
  • “CaO / B 2 O 3 ” refers to a value obtained by dividing the content of CaO by the content of B 2 O 3 .
  • the content of SrO is preferably 20% or less, 15% or less, 13% or less, and particularly 12% or less.
  • the content of SrO decreases, the refractive index and meltability tend to decrease.
  • the viscosity in the vicinity of the liquidus temperature is lowered, making it difficult to ensure a high liquidus viscosity. Therefore, the content of SrO is preferably 0.1% or more, 1% or more, 3% or more, 5% or more, 7% or more, 8% or more, and particularly 10% or more.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass.
  • the content of BaO increases, the density and thermal expansion coefficient tend to increase, and the liquid phase viscosity tends to decrease.
  • the content of BaO is preferably 40% or less, 36% or less, 32% or less, 30% or less, 28% or less, particularly 26% or less.
  • the content of BaO is preferably 4% or more, 10% or more, 12% or more, 15% or more, 18% or more, particularly 20% or more.
  • the lower limit value of the mass ratio BaO / B 2 O 3 is preferably 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 1.0 or more, 1.1 Above, 1.2 or more, 1.3 or more, 1.4 or more, especially 1.5 or more, and the upper limit is preferably 8.0 or less, 7.5 or less, 7.0 or less, 6.5. Hereinafter, it is 6.0 or less, especially 5.5 or less.
  • “BaO / B 2 O 3 ” indicates a value obtained by dividing the content of BaO by the content of B 2 O 3 .
  • the content of ZnO is preferably 15% or less, 12% or less, 10% lower, 8% or less, 6% or less, particularly 4% or less.
  • the content of ZnO is preferably 0.1% or more, 0.5% or more, 1% or more, more than 1%, 1.5% or more, 2% or more, 2.5% or more, particularly 3% or more. It is.
  • TiO 2 + ZrO 2 is preferably 0 to 20%.
  • TiO 2 + ZrO 2 is a component that effectively increases the refractive index without increasing the batch cost.
  • the content of TiO 2 + ZrO 2 is preferably 0 to 20%, 0.01 to 15%, 0.1 to 15%, 1 to 12%, 2 to 10%, 3 to 8%, particularly 4 to 6%.
  • TiO 2 is a component that effectively increases the refractive index and acid resistance without increasing the batch cost.
  • the content of TiO 2 is preferably 0 to 15%, 0.01 to 15%, 0.1 to 15%, 1 to 11%, 2 to 9%, 3 to 8%, particularly 3 to 7%. It is.
  • the content of TiO 2 increases, easily increases generation of Zr-containing devitrifying stones. Therefore, when it is desired to suppress the generation of Zr-containing devitrification beads, the content of TiO 2 is preferably 6% or less, 5.5% or less, 5% or less, 4.5% or less, and particularly 4% or less.
  • ZrO 2 is a component that effectively increases the refractive index without increasing the batch cost.
  • the content of ZrO 2 is preferably 0 to 10%, 0.01 to 10%, 0.1 to 8%, 0.5 to 7%, 1 to 6.5%, particularly 1.5 to 5%. %.
  • the content of ZrO 2 is preferably 4% or less, 3.5% or less, 3% or less, particularly 2.5% or less.
  • P 2 O 5 is preferably 0.01 to 15%.
  • P 2 O 5 is a component that forms a network and maintains the component balance of the glass composition.
  • the content of P 2 O 5 is preferably 0.01% or more, 0.1% or more, 0.4% or more, 0.6% or more, 0.8% or more, particularly 1% or more.
  • the content of P 2 O 5 is preferably 15% or less, 10% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2.5% or less, particularly 2% or less.
  • the mass ratio (MgO + CaO + SrO + BaO + ZnO) / P 2 O 5 is regulated within a predetermined range, it is possible to achieve both a high refractive index and a high liquid phase viscosity at a high level.
  • the mass ratio (MgO + CaO + SrO + BaO + ZnO) / P 2 O 5 is preferably 0.001 to 0.2, 0.008 to 0.1, 0.01 to 0.08, particularly 0.02 to 0.06.
  • (MgO + CaO + SrO + BaO + ZnO) / P 2 O 5 refers to a value obtained by dividing the content of MgO + CaO + SrO + BaO + ZnO by the content of P 2 O 5 .
  • the mass ratio BaO / P 2 O 5 is preferably 0.001 to 0.2, 0.01 to 0.15, 0.02 to 0.13, especially 0.02 to 0.1.
  • “BaO / P 2 O 5 ” indicates a value obtained by dividing the content of BaO by the content of P 2 O 5 .
  • Li 2 O + Na 2 O + K 2 O is a component that lowers the viscosity of the glass and adjusts the coefficient of thermal expansion. However, when introduced in a large amount, the viscosity of the glass decreases too much, resulting in a high liquidus viscosity. It becomes difficult to secure.
  • an alkali metal oxide Li 2 O, Na 2 O, K 2 O
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 1% or less, 0.5% or less, 0.29% or less, 0.20% or less, 0.10% or less, particularly 0.05% or less.
  • Li 2 O, Na 2 O, and K 2 O are 0.5% or less, 0.29% or less, 0.20% or less, 0.10% or less, particularly 0.05% or less, respectively.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable that it is not substantially contained from an environmental point of view.
  • Bi 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 + WO 3 is a component that increases the refractive index, but is a component that increases the batch cost, that is, an expensive component. Therefore, the content of Bi 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 + WO 3 is preferably 12% or less, 9% or less, 6% or less, 3% or less, 2% or less. 1.5%, 1% or less, less than 1%, especially 0.5% or less is preferable, and it is desirable that it is not substantially contained.
  • Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 are 12% or less, 9% or less, 6% or less, 3% or less, respectively. It is preferably 2% or less, 1.5%, 1% or less, less than 1%, particularly 0.5% or less, and substantially not contained.
  • As a fining agent 0 to 3% of one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 can be added.
  • As 2 O 3 and F, in particular As 2 O 3 are preferably not substantially contained from an environmental viewpoint.
  • Sb 2 O 3 , SnO 2 , SO 3 and Cl are preferable as the fining agent.
  • the content of Sb 2 O 3 is preferably 0 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.4%.
  • the SnO 2 content is preferably 0 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.4%.
  • SnO 2 + SO 3 + Cl The content of SnO 2 + SO 3 + Cl is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, especially 0.01 to 0.3%.
  • SnO 2 + SO 3 + Cl refers to the total amount of SnO 2 , SO 3 and Cl.
  • the amount added is preferably 10% or less, 5% or less, particularly 3% or less.
  • the high refractive index glass of the second invention contains, as a glass composition, SiO 2 20 to 70%, Li 2 O + Na 2 O + K 2 O 0.1 to 30%, BaO 4 to 40% by mass. preferable.
  • SiO 2 20 to 70% Li 2 O + Na 2 O + K 2 O 0.1 to 30%
  • BaO 4 to 40% by mass preferable.
  • the reason for limiting the content range of each component as described above will be described below.
  • % display represents the mass% except the case where there is particular notice.
  • the content of SiO 2 is preferably 20 to 70%.
  • the content of SiO 2 decreases, it becomes difficult to form a glass network structure, and vitrification becomes difficult. In addition, the high temperature viscosity is excessively lowered, making it difficult to ensure a high liquid phase viscosity. Therefore, the content of SiO 2 is preferably 20% or more, 25% or more, 30% or more, 32% or more, 34% or more, particularly 36% or more.
  • the content of SiO 2 is preferably 70% or less, 65% or less, 60% or less, 55% or less, 52% or less, less than 50%, 48% or less, 45% or less, particularly 43% or less.
  • Li 2 O, Na 2 O, and K 2 O are ion exchange components, and are components that lower the high-temperature viscosity and increase the meltability and moldability.
  • Li 2 O + Na 2 O + K 2 O content is too small, the lowered melting property and formability, or excessively decreased thermal expansion coefficient, the ion exchange performance tends to decrease.
  • the content of Li 2 O + Na 2 O + K 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials.
  • the strain point may be excessively decreased, or the component balance of the glass composition may be lost, and the devitrification resistance may be decreased. Therefore, the content of Li 2 O + Na 2 O + K 2 O is preferably 0.1-30%, 0.5-25%, 0.8-18%, 1-15%, 1.2-10%, especially 1.5-7%.
  • Li 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity to increase the meltability and moldability, and also increases the Young's modulus.
  • the content of Li 2 O is preferably 0 to 4%, 0 to 2.5%, 0 to 2%, 0 to 1.5%, 0 to 1%, 0 to 0.5%, particularly 0. ⁇ 0.3%.
  • Na 2 O is an ion exchange component, and is a component that lowers the high temperature viscosity and improves the meltability and moldability.
  • a preferable lower limit range of Na 2 O is 0.1% or more, 0.5% or more, 1% or more, 1.5% or more, 2% or more, particularly 3% or more.
  • the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials.
  • the strain point may be excessively decreased, or the component balance of the glass composition may be lost, and the devitrification resistance may be decreased. Further, the ion exchange performance becomes too high, and the high refractive index glass may be self-destructed after the ion exchange treatment of the thin glass plate. Therefore, the preferable upper limit range of Na 2 O is 20% or less, 15% or less, 10% or less, 8% or less, and particularly 5% or less.
  • K 2 O is a component that promotes ion exchange, and is a component that tends to increase the stress depth particularly in alkali metal oxides. Moreover, it is a component which reduces high temperature viscosity and improves a meltability and a moldability. It is also a component that improves devitrification resistance. However, if the content of K 2 O is too large, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials. In addition, the strain point may be excessively lowered or the component balance of the glass composition may be lost, and the devitrification resistance may be deteriorated. Therefore, the content of K 2 O is preferably 0 to 4%, 0 to 2.5%, 0 to 2%, 0 to 1.5%, 0 to 1%, 0 to 0.5%, particularly 0. ⁇ 0.3%.
  • BaO is preferably 4 to 40%.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without significantly reducing the viscosity.
  • the content of BaO increases, the density and thermal expansion coefficient tend to increase, and the liquid phase viscosity tends to decrease.
  • the content of BaO is preferably 40% or less, 36% or less, 32% or less, 30% or less, 28% or less, particularly 26% or less.
  • the BaO content is preferably 4% or more, 10% or more, 12% or more, 16% or more, and particularly 18% or more.
  • the content of Al 2 O 3 is preferably 0 to 20%.
  • the content of Al 2 O 3 is preferably 20% or less, 15% or less, 10% or less, 8% or less, particularly 6% or less.
  • the content of Al 2 O 3 is preferably 0.1% or more, 0.5% or more, 1% or more, 3% or more, 4% or more, particularly 5% or more.
  • the content of B 2 O 3 is preferably 0 to 35%.
  • the content of B 2 O 3 is preferably 35% or less, 25% or less, 20% or less, 18% or less, 16% or less, 14% or less, 12% or less, particularly 10% or less.
  • the content of B 2 O 3 is reduced, the liquid phase temperature tends to decrease. Therefore, the content of B 2 O 3 is preferably 0.1% or more, 1% or more, 2% or more, 4% or more, particularly 5% or more.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 is 30.5 to 80%.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 decreases, it becomes difficult to form a glass network structure and vitrification becomes difficult. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, the content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 30.5% or more, 35% or more, 40% or more, 42% or more, 46% or more, 48% or more, particularly 50% or more. is there.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 increases, the meltability and moldability tend to be lowered.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 57% or less, particularly 55% or less.
  • the mass ratio SiO 2 / B 2 O 3 is preferably 1-20.
  • the lower limit range of the mass ratio SiO 2 / B 2 O 3 is preferably 1 or more, 2 or more, 2.5 or more, 3 or more, 3.5 or more, particularly 4 or more.
  • the upper limit range of the mass ratio SiO 2 / B 2 O 3 is preferably 20 or less, 15 or less, 10 or less, 8 or less, particularly 6 or less.
  • the lower limit range of the mass ratio BaO / B 2 O 3 is preferably 0.5 or more, 1.5 or more, 1.8 or more, 2 or more, 2.1 or more, particularly 2.3 or more, and the mass.
  • the upper limit range of the ratio BaO / B 2 O 3 is preferably 5 or less, 4.5 or less, 4 or less, 3.5 or less, 3.2 or less, particularly 3 or less.
  • TiO 2 is a component that effectively increases the refractive index and ion exchange performance without increasing the batch cost.
  • the content of TiO 2 is preferably 1 to 10%, 2 to 8%, particularly 3 to 7%.
  • the content of TiO 2 increases, easily increases generation of Zr-containing devitrifying stones. Therefore, when it is desired to suppress the generation of Zr-containing devitrification beads, the content of TiO 2 is preferably 6% or less, 5.5% or less, 5% or less, 4.5% or less, and particularly 4% or less.
  • MgO is a component that increases the Young's modulus and decreases the high-temperature viscosity.
  • the content of MgO is preferably 10% or less, 5% or less, 3% or less, 2% or less, particularly 1% or less.
  • the content of CaO is preferably 12% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, particularly 3% or less. Note that when the content of CaO decreases, the refractive index, meltability, and Young's modulus tend to decrease. Therefore, the content of CaO is preferably 0.1% or more, 0.5% or more, 1% or more, particularly 2% or more.
  • the lower limit value of the mass ratio CaO / B 2 O 3 is preferably 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, particularly 0.3 or more, and the mass ratio CaO /
  • the upper limit value of B 2 O 3 is preferably 1 or less, 0.8 or less, 0.7 or less, 0.6 or less, particularly 0.5 or less.
  • the content of SrO is preferably 20% or less, 15% or less, 13% or less, and particularly 12% or less.
  • the content of SrO is preferably 0.1% or more, 1% or more, 3% or more, 5% or more, 7% or more, 9% or more, and particularly 10% or more.
  • the content of ZnO is preferably 15% or less, 12% or less, 10% lower, 8% or less, 6% or less, particularly 4% or less.
  • the content of ZnO is preferably 0.1% or more, 0.5% or more, 1% or more, more than 1%, 1.5% or more, 2% or more, 2.5% or more, particularly 3% or more. It is.
  • the content of MgO + CaO + SrO + BaO + ZnO is preferably 10 to 50%, 20 to 47%, 25 to 45%, 30 to 43%, 35 to 41%, particularly 37 to 40%. In this way, high refractive index, devitrification resistance, meltability, low density, and low thermal expansion coefficient can be achieved at a high level.
  • the lower limit value of the mass ratio (MgO + CaO + SrO + BaO + ZnO) / B 2 O 3 is preferably 1 or more, 2.5 or more, 3.5 or more, particularly 4 or more, and the mass ratio (MgO + CaO + SrO + BaO + ZnO) / B 2 O 3
  • the upper limit value is preferably 7 or less, 6.5 or less, 6 or less, particularly 5.5 or less.
  • ZrO 2 is a component that effectively increases the refractive index and ion exchange performance without increasing the batch cost. However, if the content of ZrO 2 increases, Zr-containing devitrification will easily occur, and the liquidus temperature will tend to decrease. Therefore, the content of ZrO 2 is preferably 0 to 10%, 0.01 to 10%, 0.1 to 5%, 0.5 to 4%, 1 to 3.5%, particularly 1.5 to 2%. .5%.
  • TiO 2 and ZrO 2 are components that effectively increase the refractive index and ion exchange performance without increasing the batch cost.
  • the content of TiO 2 + ZrO 2 is preferably 0 to 20%, 1 to 15%, 2 to 12%, 3 to 10%, 4 to 9%, particularly 5 to 6%.
  • the content of P 2 O 5 is preferably 0 to 15%.
  • P 2 O 5 is a component that forms a network and maintains the component balance of the glass composition. Therefore, the content of P 2 O 5 is preferably 0.01% or more, 0.1% or more, 0.4% or more, 0.6% or more, 0.8% or more, particularly 1% or more.
  • the content of P 2 O 5 is preferably 15% or less, 10% or less, 6% or less, 4% or less, and particularly 2% or less.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable that it is not substantially contained from an environmental point of view.
  • Bi 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 + WO 3 is a component that increases the refractive index, but is a component that increases the batch cost. Therefore, the content of Bi 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 + WO 3 is preferably 9% or less, 6% or less, 3% or less, 2% or less, 1.5 %, 1% or less, less than 1%, especially 0.5% or less is preferable, and it is desirable that it is not substantially contained.
  • the contents of Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 are 9% or less, 6% or less, 3% or less, 2% or less, respectively. , 1.5%, 1% or less, less than 1%, particularly 0.5% or less, and it is desirable not to contain substantially.
  • As a fining agent 0 to 3% of one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 can be added.
  • As 2 O 3 and F, in particular As 2 O 3 are preferably not substantially contained from an environmental viewpoint.
  • Sb 2 O 3 , SnO 2 , SO 3 and Cl are preferable as the fining agent.
  • the content of Sb 2 O 3 is preferably 0 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.4%.
  • the SnO 2 content is preferably 0 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.4%.
  • the content of SnO 2 + SO 3 + Cl is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, especially 0.01 to 0.3%.
  • the amount added is preferably 10% or less, 5% or less, particularly 3% or less.
  • the high refractive index glass of the present invention preferably has the following characteristics.
  • Refractive index n d is preferably 1.55 or more, 1.58 or more, 1.60 or more, 1.61 or more, particularly 1.62 or more.
  • the refractive index n d is less than 1.55, it might become caught efficiently light by reflection ITO- glass interface.
  • the refractive index nd increases, the balance of the glass composition is lost, and the devitrification resistance is likely to decrease.
  • the refractive index nd is extremely high, the reflectance at the air-glass interface becomes high, and it becomes difficult to increase the light extraction efficiency even if the glass surface is roughened.
  • the refractive index nd is preferably 2.00 or less, 1.68 or less, 1.67 or less, 1.66 or less, particularly 1.65 or less.
  • the density is preferably 5.0 g / cm 3 or less, 4.8 g / cm 3 or less, 4.5 g / cm 3 or less, 4.3 g / cm 3 or less, 3.0 to 3.7 g / cm 3 , especially 3 .2 to 3.5 g / cm 3 . In this way, the device can be reduced in weight.
  • the “density” can be measured by a known Archimedes method.
  • the thermal expansion coefficient at 30 to 380 ° C. is preferably 30 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C., 40 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ 7 / ° C., 50 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C., in particular 60 ⁇ 10 ⁇ 7 to 75 ⁇ 10 ⁇ 7 / ° C.
  • the glass plate may be required to be flexible from the viewpoint of enhancing design elements. In order to increase flexibility, it is necessary to reduce the thickness of the glass plate.
  • the thermal expansion coefficients of the glass plate and the transparent conductive film such as ITO or FTO are mismatched, the glass plate warps. It becomes easy. Therefore, if the thermal expansion coefficient at 30 to 380 ° C. is set in the above range, such a situation can be easily prevented.
  • the “coefficient of thermal expansion at 30 to 380 ° C.” can be measured with a dilatometer or the like.
  • the strain point is preferably 500 ° C. or higher, 540 ° C. or higher, 580 ° C. or higher, 590 ° C. or higher, 600 ° C. or higher, particularly 610 ° C. or higher. If it does in this way, it will become difficult to heat-shrink a glass plate by the high temperature heat processing in the manufacturing process of a device.
  • Stress point refers to a value measured based on the method described in ASTM C336-71.
  • the temperature at 10 2.0 dPa ⁇ s is preferably 1000 ° C. or higher, 1100 ° C. or higher, 1130 ° C. or higher, 1160 ° C. or higher, particularly 1190 ° C. or higher. In this way, since the molding temperature can be increased, devitrification during molding can be easily prevented.
  • the liquidus temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1100 ° C. or lower, 1050 ° C. or lower, 1030 ° C. or lower, particularly 1000 ° C. or lower.
  • the liquid phase viscosity is preferably 10 3.0 dPa ⁇ s or more, 10 3.5 dPa ⁇ s or more, 10 4.0 dPa ⁇ s or more, 10 4.2 dPa ⁇ s or more, 10 4.6 dPa or more. S or more, 10 5.0 dPa ⁇ s or more, particularly 10 5.2 dPa ⁇ s or more. If it does in this way, it will become difficult to devitrify glass at the time of shaping
  • the high refractive index glass of the present invention preferably has a flat plate shape, and the plate thickness is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.6 mm or less, 0.00 mm or less. 5 mm or less, 0.3 mm or less, 0.2 mm or less, particularly 0.1 mm or less.
  • the plate thickness is preferably 10 ⁇ m or more, particularly 30 ⁇ m or more.
  • the high refractive index glass of the present invention has a flat plate shape
  • at least one surface is preferably unpolished.
  • the theoretical strength of glass is inherently very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the surface in a post-molding process such as a polishing process. Therefore, if the surface is not polished, the original mechanical strength of the glass is hardly lost, and the glass plate is difficult to break. Further, if the surface is not polished, the polishing step can be omitted, and the manufacturing cost of the glass plate can be reduced.
  • the surface roughness Ra of at least one surface is preferably 10 mm or less, 5 mm or less, 3 mm or less, particularly 2 mm or less.
  • surface roughness Ra refers to a value measured by a method based on JIS B0601: 2001.
  • the high refractive index glass of the present invention is preferably subjected to a surface roughening treatment on one surface by HF etching, sand blasting or the like.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more. If the roughened surface is on the side in contact with the air such as organic EL lighting, the roughened surface has a non-reflective structure, so that the light generated in the organic light emitting layer is difficult to return to the organic light emitting layer. As a result, the light extraction efficiency can be increased.
  • a roughened surface may be formed on one surface by thermal processing such as repress. In this way, an accurate non-reflective structure can be formed on one surface. What is necessary is just to adjust the space
  • a uniform roughened surface can be formed on one surface, and the surface state of the other surface can be maintained in a smooth state.
  • a gas containing F for example, SF 6 , CF 4
  • plasma containing HF gas is generated, the efficiency of the roughening treatment is improved.
  • glass raw materials are prepared so as to obtain a desired glass composition, and a glass batch is prepared.
  • the glass batch is melted and refined, and then formed into a desired shape. Thereafter, it is processed into a desired shape.
  • the high refractive index glass of the present invention is preferably formed by a float process. In this way, a glass plate having a good surface quality can be manufactured at low cost and in large quantities. Further, it becomes easy to increase the size of the glass plate.
  • the high refractive index glass of the present invention is preferably formed by a rollout method or an updraw method. If it does in this way, it will become easy to control devitrification at the time of fabrication.
  • the high refractive index glass of the present invention is preferably formed by an overflow down draw method. In this way, it is possible to manufacture a glass plate that is unpolished and has good surface quality at a low cost and in large quantities. Further, it becomes easy to increase the size and thickness of the glass plate.
  • a compression stress layer can be formed on the surface by subjecting the obtained high refractive index glass to ion exchange treatment.
  • the time when the high refractive index glass is cut to a predetermined size may be before the ion exchange treatment or after the ion exchange treatment.
  • the conditions for the ion exchange treatment are not particularly limited, and the optimum conditions may be selected in consideration of the viscosity characteristics, application, thickness, internal tensile stress, dimensional change, and the like of the high refractive index glass.
  • the ion exchange treatment can be performed by immersing in KNO 3 molten salt at 390 to 550 ° C. for 1 to 24 hours.
  • K ions in the KNO 3 molten salt are ion exchanged with Na components in the high refractive index glass, a compressive stress layer can be efficiently formed on the glass surface.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • the thermal expansion coefficient ⁇ is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.
  • a cylindrical sample having a diameter of 5 mm ⁇ 20 mm (the end surface is R-processed) was used.
  • the strain point Ps is a value measured based on the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
  • the annealing point Ta and the softening point Ts are values measured based on the method described in ASTM C338-93.
  • the temperatures at high temperature viscosities of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s, and 10 2.0 dPa ⁇ s are values measured by the platinum ball pulling method. In addition, it is excellent in meltability and moldability, so that these temperatures are low.
  • the liquid phase temperature TL passes through a standard sieve 30 mesh (500 ⁇ m), and the glass powder remaining in 50 mesh (300 ⁇ m) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours to measure the temperature at which crystals precipitate. It is the value. Further, the liquid phase viscosity log ⁇ TL indicates a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method. The higher the liquidus viscosity and the lower the liquidus temperature, the better the devitrification resistance and moldability.
  • Refractive index n d is a value measured using a refractive index measuring apparatus KPR-2000 of Shimadzu Corporation, which is a measure of hydrogen lamp d-line (wavelength 587.6 nm).
  • KPR-2000 of Shimadzu Corporation
  • a cuboid sample of 25 mm ⁇ 25 mm ⁇ about 3 mm was prepared and then slowly cooled at a cooling rate such that the temperature range from (Ta + 30 ° C.) to (Ps ⁇ 50 ° C.) was 0.1 ° C./min. Treatment was followed by infiltration of the immersion liquid with matching refractive index between the glasses.
  • Sample No. Nos. 1 to 36 had high refractive index n d and good devitrification resistance even though they did not contain expensive rare earth oxides.
  • sample No After performing optical polishing on both surfaces of the high refractive index glasses according to 37 to 40, ion exchange treatment was performed by immersing them in KNO 3 molten salt at 430 ° C. for 24 hours. After the ion exchange treatment, the surface of each sample was washed to obtain a high refractive index glass having a compressive stress layer on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

 高価な希土類酸化物等を多量に含まなくても、屈折率が高く、しかも液相粘度が高いガラスを創案する。本発明の高屈折率ガラスは、ガラス組成として、質量%で、SiO+Al+B 30.5~80%、MgO+CaO+SrO+BaO+ZnO 10~60%、BaO 4~40%、TiO+ZrO 0~20%、P 0.01~15%を含有し、且つ屈折率nが1.55~2.00であることを特徴とする。

Description

高屈折率ガラス
 本発明は、高屈折率ガラスに関し、例えば有機ELデバイス、特に有機EL照明に好適な高屈折率ガラスに関する。
 近年、有機EL発光素子を用いたディスプレイ、照明が益々注目されている。これらの有機ELデバイスは、ITO等の透明導電膜が形成されたガラス板により、有機発光素子が挟み込まれた構造を有する。この構造において、有機発光素子に電流が流れると、有機発光素子中の正孔と電子が会合して発光する。発光した光は、ITO等の透明導電膜を介してガラス板中に進入し、ガラス板内で反射を繰り返しながら外部に放出される。
特開2007-186407号公報
 ところで、有機発光素子の屈折率nは1.8~1.9であり、ITOの屈折率nは1.9~2.0である。これに対して、ガラス板の屈折率nは、通常、1.5程度である。このため、従来の有機ELデバイスは、ガラス板-ITO界面の屈折率差に起因して反射率が高くなるため、有機発光素子から発生した光を効率良く取り出せないという問題があった。
 そこで、ガラス板の屈折率を高めることにより、上記問題を解決することが検討されている。
 光学ガラスの分野では、高屈折率ガラスが使用される場合がある(例えば、特許文献1参照)。しかし、これらのガラスは、高価な希土類酸化物等を多量に含み、且つ液相粘度が低いため、平板形状に成形し難く、大量生産に不向きである。
 また、ガラス板の屈折率を高めるためには、SiO、Alの含有量を低下させると共に、SrO、BaO等の含有量を増加させることが有効となる。しかし、この場合、ガラス板が構造的に脆弱になり易く、ガラス板が破損し易くなる。
 そこで、本発明は、上記事情に鑑み成されたものであり、第一の技術的課題は、高価な希土類酸化物等を多量に含まなくても、屈折率が高く、しかも液相粘度が高いガラスを創案することである。また、第二の技術的課題は、機械的強度が高い高屈折率ガラスを創案することである。
 本発明者は、鋭意検討を行った結果、ガラス組成範囲とガラス特性を所定範囲に規制することにより、上記第一の技術的課題を解決し得ることを見出し、第一の発明として、提案するものである。すなわち、第一の発明の高屈折率ガラスは、ガラス組成として、質量%で、SiO+Al+B 30.5~80%、MgO+CaO+SrO+BaO+ZnO 10~60%、BaO 4~40%、TiO+ZrO 0~20%、P 0.01~15%を含有し、且つ屈折率nが1.55~2.00であることを特徴とする。ここで、「SiO+Al+B」は、SiO、Al及びBの合量を指す。「MgO+CaO+SrO+BaO+ZnO」は、MgO、CaO、SrO、BaO及びZnOの合量を指す。「TiO+ZrO」は、TiOとZrOの合量を指す。「屈折率n」は、水素ランプのd線(波長587.6nm)での測定値であり、屈折率測定器で測定可能である。例えば、25mm×25mm×約3mmの直方体試料を作製した後、(徐冷点+30℃)から(歪点-50℃)までの温度域を0.1℃/分になるような冷却速度で徐冷処理し、続いて屈折率が整合する浸液をガラス間に浸透させながら、島津製作所社製の屈折率測定器KPR-2000を用いることにより測定することができる。
 第一の発明の高屈折率ガラスは、屈折率を高めるために、BaOを多く含んでいる。一方、BaOの含有量が多いと、成形時にBa系結晶が析出し易くなる。そこで、第一の発明の高屈折率ガラスは、Pを必須成分として含んでいる。これにより、Ba系結晶の析出を抑制し易くなる。結果として、高価な希土類酸化物等を多量に含まなくても、液相粘度が高い高屈折率ガラスを作製することが可能になる。
 第一の発明の高屈折率ガラスは、質量比SiO/Bが1.2~20であることが好ましい。このようにすれば、耐失透性が向上し、液相粘度を高めることができる。ここで、「SiO/B」は、SiOの含有量をBの含有量で除した値を指す。
 第一の発明の高屈折率ガラスは、BaOの含有量が15~30質量%であることが好ましい。
 第一の発明の高屈折率ガラスは、実質的にPbOを含まないことが好ましい。ここで、「実質的に~を含まない」とは、明示の成分の含有を可及的に避けるものの、不純物レベルの混入は許容する趣旨であり、具体的には、明示の成分の含有量が0.5%未満(好ましくは0.1%未満、特に0.05%未満)の場合を指す。
 第一の発明の高屈折率ガラスは、Bi+La+Gd+Nb+Ta+WOの含有量が12質量%以下であることが好ましい。ここで、「Bi+La+Gd+Nb+Ta+WO」は、Bi、La、Gd、Nb、Ta及びWOの合量を指す。
 第一の発明の高屈折率ガラスは、実質的にアルカリ金属酸化物(LiO、NaO、KO)を含まないことが好ましい。このようにすれば、SiO膜等のパシベーション膜の形成が不要になり、製造コストを低廉化することができる。
 第一の発明の高屈折率ガラスは、液相粘度が103.0dPa・s以上であることが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。
 第一の発明の高屈折率ガラスは、平板形状であることが好ましい。
 第一の発明の高屈折率ガラスは、フロート法、ロールアウト法、アップドロー法、オーバーフローダウンドロー法の何れかで成形されてなることが好ましい。
 本発明者は、鋭意検討を行った結果、所定のガラスをイオン交換処理することにより、上記第二の技術的課題を解決し得ることを見出し、第二の発明として、提案するものである。すなわち、第二の発明の高屈折率ガラスは、表面に圧縮応力層を有する高屈折率ガラスであって、圧縮応力層がイオン交換処理により形成されており、屈折率nが1.55~2.00であることを特徴とする。
 第二の発明の高屈折率ガラスは、ガラス組成として、質量%で、SiO 20~70%、LiO+NaO+KO 0.1~30%、BaO 4~40%を含有することが好ましい。上記の通りにガラス組成範囲を規制すれば、耐失透性が向上し、平板形状に成形し易くなると共に、屈折率とイオン交換性能を高め易くなる。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量である。
 第二の発明の高屈折率ガラスは、ガラス組成中にTiOを1~10質量%含むことが好ましい。このようにすれば、高屈折率なガラスを得易くなる。
 第一及び第二の発明(以下、本発明)の照明デバイスは、上記の高屈折率ガラスを備えることを特徴とする。
 本発明の有機EL照明は、上記の高屈折率ガラスを備えることを特徴とする。
 第一の発明の高屈折率ガラスは、ガラス組成として、質量%で、SiO+Al+B 30.5~80%、MgO+CaO+SrO+BaO+ZnO 10~60%、BaO 4~40%、TiO+ZrO 0~20%、P 0.01~15%を含有する。上記のように各成分の含有範囲を限定した理由を以下に説明する。なお、以下の含有範囲の説明において、%表示は、特に断りがある場合を除き、質量%を表す。
 SiO+Al+Bの含有量は30.5~80%が好ましい。SiO+Al+Bの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiO+Al+Bの含有量は、好ましくは30.5%以上、35%以上、40%以上、42%以上、46%以上、48%以上、特に50%以上である。一方、SiO+Al+Bの含有量が多くなると、屈折率、溶融性、成形性が低下し易くなる。よって、SiO+Al+Bの含有量は、好ましくは80%以下、75%以下、70%以下、65%以下、60%以下、57%以下、特に55%以下である。
 SiOの含有量は20~70%が好ましい。SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。更に耐酸性が低下し易くなる。よって、SiOの含有量は、好ましくは20%以上、25%以上、30%以上、32%以上、34%以上、特に36%以上である。一方、SiOの含有が多くなると、屈折率、溶融性、成形性が低下し易くなる。よって、SiOの含有量は好ましくは70%以下、65%以下、60%以下、55%以下、53%以下、51%以下、49%以下、47%以下、45%以下、特に43%以下である。
 Alの含有量は0~20%が好ましい。Alの含有量が多くなると、ガラスに失透結晶が析出し易くなって、液相粘度が低下し易くなり、また屈折率が低下し易くなる。よって、Alの含有量は、好ましくは20%以下、15%以下、10%以下、8%以下、特に6%以下である。なお、Alの含有量が少なくなると、ガラス組成のバランスを欠いて、逆にガラスが失透し易くなる。よって、Alの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、3%以上、4%以上、特に5%以上である。
 Bの含有量は0~35%が好ましい。Bの含有量が多くなると、屈折率、ヤング率が低下し易くなる。よって、Bの含有量は、好ましくは35%以下、30%以下、25%以下、20%以下、18%以下、16%以下、14%以下、12%以下、10%以下、特に8%以下である。なお、Bの含有量が少なくなると、液相温度が低下し易くなる。よって、Bの含有量は、好ましくは0.1%以上、1%以上、2%以上、4%以上、特に5%以上である。
 質量比SiO/Bは1.2~20が好ましい。質量比SiO/Bが小さくなると、粘度が低下して、液相粘度が低下し易くなる。よって、質量比SiO/Bの下限値は、好ましくは1.2以上、1.6以上、2.0以上、2.4以上、2.8以上、3.2以上、3.5以上、3.8以上、特に4.0以上である。一方、質量比SiO/Bが大きくなると、耐失透性が低下して、液相粘度が低下し易くなる。よって、質量比SiO/Bの上限値は、好ましくは20以下、15以下、10以下、9.0以下、8.0以下、7.0以下、6.0以下、特に5.5以下である。
 MgO+CaO+SrO+BaO+ZnOの含有量は、好ましくは10~60%、20~55%、25~52%、30~50%、32~48%、34~46%、特に36~44%である。このようにすれば、高屈折率、耐失透性、溶融性、低密度、低熱膨張係数を高いレベルで両立させることが可能になる。
 質量比(MgO+CaO+SrO+BaO+ZnO)/Bを所定範囲に規制すると、高屈折率、耐失透性、溶融性、低密度、低熱膨張係数を高いレベルで両立させることが可能になる。よって、質量比(MgO+CaO+SrO+BaO+ZnO)/Bの下限値は、好ましくは1.0以上、1.5以上、1.8以上、2.1以上、2.4以上、2.7以上、特に3.0以上であり、また上限値は、好ましくは10以下、9.0以下、8.0以下、7.0以下、6.0以下、5.5以下、特に5.0以下である。「(MgO+CaO+SrO+BaO+ZnO)/B」は、MgO+CaO+SrO+BaO+ZnOの含有量をBの含有量で除した値を指す。
 MgOは、ヤング率を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、屈折率が低下し易くなったり、液相温度が上昇して、耐失透性が低下し易くなったり、密度、熱膨張係数が高くなり易い。よって、MgOの含有量は、好ましくは10%以下、5%以下、3%以下、2%以下、1%以下、特に0.5%以下である。
 CaOの含有量が多くなると、密度、熱膨張係数が高くなり易く、その含有量が過剰になると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、CaOの含有量は、好ましくは12%以下、10%以下、8%以下、7%以下、6%以下、5%以下、4%以下、特に3.5%以下である。なお、CaOの含有量が少なくなると、屈折率、溶融性、ヤング率が低下し易くなる。よって、CaOの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、2%以上、特に2.5%以上である。
 質量比CaO/Bを所定範囲に規制すると、耐失透性を高め易くなる。よって、質量比CaO/Bの下限値は、好ましくは0.10以上、0.15以上、0.20以上、0.25以上、特に0.30以上であり、また質量比CaO/Bの上限値は、好ましくは10以下、5以下、3以下、2以下、1以下、特に0.7以下である。ここで、「CaO/B」は、CaOの含有量をBの含有量で除した値を指す。
 SrOの含有量が多くなると、密度、熱膨張係数が高くなり易い。また、SrOの含有量が過剰になると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、SrOの含有量は、好ましくは20%以下、15%以下、13%以下、特に12%以下である。一方、SrOの含有量が少なくなると、屈折率、溶融性が低下し易くなる。更に本発明に係るガラス組成系においては、液相温度付近の粘度が低下して、高い液相粘度を確保し難くなる。よって、SrOの含有量は、好ましくは0.1%以上、1%以上、3%以上、5%以上、7%以上、8%以上、特10%以上である。
 BaOは、アルカリ土類金属酸化物の中ではガラスの粘性を極端に低下させずに、屈折率を高める成分である。しかし、BaOの含有量が多くなると、密度、熱膨張係数が高くなり易く、液相粘度が低くなり易い。また、BaOの含有量が多過ぎると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、BaOの含有量は、好ましくは40%以下、36%以下、32%以下、30%以下、28%以下、特に26%以下である。一方、BaOの含有量が少なくなると、所望の屈折率を得難くなる上、高い液相粘度を確保し難くなる。よって、BaOの含有量は、好ましくは4%以上、10%以上、12%以上、15%以上、18%以上、特に20%以上である。
 質量比BaO/Bを所定範囲に規制すると、高屈折率と高液相粘度を高いレベルで両立させることが可能になる。よって、質量比BaO/Bの下限値は、好ましくは0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1.0以上、1.1以上、1.2以上、1.3以上、1.4以上、特に1.5以上であり、また上限値は、好ましくは8.0以下、7.5以下、7.0以下、6.5以下、6.0以下、特に5.5以下である。ここで、「BaO/B」は、BaOの含有量をBの含有量で除した値を指す。
 ZnOの含有量が多くなると、密度、熱膨張係数が高くなったり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、ZnOの含有量は、好ましくは15%以下、12%以下、10%下、8%以下、6%以下、特に4%以下である。但し、ZnOの含有量が少なくなると、高い液相粘度を確保し難くなる。よって、ZnOの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、1%超、1.5%以上、2%以上、2.5%以上、特に3%以上である。
 TiO+ZrOは0~20%が好ましい。TiO+ZrOはバッチコストを高騰させずに、屈折率を効果的に高める成分である。しかし、TiO+ZrOの含有量が多くなると、ガラスが着色したり、耐失透性が低下し易くなる。よって、TiO+ZrOの含有量は、好ましくは0~20%、0.01~15%、0.1~15%、1~12%、2~10%、3~8%、特に4~6%である。
 TiOは、バッチコストを高騰させずに、屈折率、耐酸性を効果的に高める成分である。しかし、TiOの含有量が多くなると、ガラスが着色したり、耐失透性が低下し易くなる。よって、TiOの含有量は、好ましくは0~15%、0.01~15%、0.1~15%、1~11%、2~9%、3~8%、特に3~7%である。なお、TiOの含有量が多くなると、Zr含有失透ブツの発生を助長し易くなる。よって、Zr含有失透ブツの発生を抑制したい場合、TiOの含有量は、好ましくは6%以下、5.5%以下、5%以下、4.5%以下、特に4%以下である。
 ZrOは、バッチコストを高騰させずに、屈折率を効果的に高める成分である。但し、ZrOの含有量が多くなると、液相温度が低下し易くなる。よって、ZrOの含有量は、好ましくは0~10%、0.01~10%、0.1~8%、0.5~7%、1~6.5%、特に1.5~5%である。なお、Zr含有失透ブツの発生を抑制したい場合、ZrOの含有量は、好ましくは4%以下、3.5%以下、3%以下、特に2.5%以下である。
 Pは0.01~15%が好ましい。Pは、ネットワークを形成し、ガラス組成の成分バランスを維持する成分である。Pの含有量が少なくなると、成形時にBa系結晶が析出し易くなる。よって、Pの含有量は、好ましくは0.01%以上、0.1%以上、0.4%以上、0.6%以上、0.8%以上、特に1%以上である。一方、Pの含有量が多くなると、リン酸カルシウム系結晶が析出し易くなる。よって、Pの含有量は、好ましくは15%以下、10%以下、6%以下、5%以下、4%以下、3%以下、2.5%以下、特に2%以下である。
 質量比(MgO+CaO+SrO+BaO+ZnO)/Pを所定範囲に規制すると、高屈折率と高液相粘度を高いレベルで両立させることが可能になる。質量比(MgO+CaO+SrO+BaO+ZnO)/Pは、好ましくは0.001~0.2、0.008~0.1、0.01~0.08、特に0.02~0.06である。ここで、「(MgO+CaO+SrO+BaO+ZnO)/P」は、MgO+CaO+SrO+BaO+ZnOの含有量をPの含有量で除した値を指す。
 質量比BaO/Pを所定範囲に規制すると、高屈折率と高液相粘度を高いレベルで両立させることが可能になる。質量比BaO/Pは、好ましくは0.001~0.2、0.01~0.15、0.02~0.13、特に0.02~0.1である。ここで、「BaO/P」は、BaOの含有量をPの含有量で除した値を指す。
 上記成分以外にも、例えば以下の成分を導入してもよい。
 LiO+NaO+KOは、ガラスの粘性を低下させる成分であり、また熱膨張係数を調整する成分であるが、多量に導入すると、ガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。また、用途によっては、アルカリ金属酸化物(LiO、NaO、KO)を導入すると、ガラスの表面にSiO膜等のパシベーション膜の形成が必要になる。よって、LiO+NaO+KOの含有量は、好ましくは1%以下、0.5%以下、0.29%以下、0.20%以下、0.10%以下、特に0.05%以下であり、実質的に含有しないことが望ましい。なお、LiO、NaO、KOの含有量は、それぞれ0.5%以下、0.29%以下、0.20%以下、0.10%以下、特に0.05%以下が好ましく、実質的に含有しないことが望ましい。
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、実質的に含有しないことが好ましい。
 Bi+La+Gd+Nb+Ta+WOは、屈折率を高める成分であるが、バッチコストを高める成分、つまり高価な成分である。よって、Bi+La+Gd+Nb+Ta+WOの含有量は、好ましくは12%以下、9%以下、6%以下、3%以下、2%以下、1.5%、1%以下、1%未満、特に0.5%以下が好ましく、実質的に含有しないことが望ましい。なお、Bi、La、Gd、Nb、Ta、WOの含有量は、それぞれ12%以下、9%以下、6%以下、3%以下、2%以下、1.5%、1%以下、1%未満、特に0.5%以下であり、実質的に含有しないことが望ましい。
 清澄剤として、As、Sb、CeO、SnO、F、Cl、SOの群から選択された一種又は二種以上を0~3%添加することができる。但し、As及びF、特にAsは、環境的観点から、実質的に含有しないことが好ましい。特に、清澄剤として、Sb、SnO、SO及びClが好ましい。Sbの含有量は、好ましくは0~1%、0.01~0.5%、特に0.05~0.4%である。SnOの含有量は、好ましくは0~1%、0.01~0.5%、特に0.05~0.4%である。SnO+SO+Clの含有量は、好ましくは0~1%、0.001~1%、0.01~0.5%、特に0.01~0.3%である。ここで、「SnO+SO+Cl」は、SnO、SO及びClの合量を指す。
 上記成分以外にも、他の成分を添加することができる。その添加量は、好ましくは10%以下、5%以下、特に3%以下である。
 第二の発明の高屈折率ガラスは、ガラス組成として、質量%で、SiO 20~70%、LiO+NaO+KO 0.1~30%、BaO 4~40%を含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、以下の含有範囲の説明において、%表示は、特に断りがある場合を除き、質量%を表す。
 SiOの含有量は20~70%が好ましい。SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。また高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの含有量は、好ましくは20%以上、25%以上、30%以上、32%以上、34%以上、特に36%以上である。一方、SiOの含有が多くなると、屈折率、溶融性、成形性が低下し易くなる。よって、SiOの含有量は好ましくは70%以下、65%以下、60%以下、55%以下、52%以下、50%未満、48%以下、45%以下、特に43%以下である。
 LiO、NaO及びKOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。LiO+NaO+KOの含有量が少な過ぎると、溶融性や成形性が低下したり、熱膨張係数が低下し過ぎたり、イオン交換性能が低下し易くなる。しかし、LiO+NaO+KOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、耐失透性が低下する場合がある。よって、LiO+NaO+KOの含有量は、好ましくは0.1~30%、0.5~25%、0.8~18%、1~15%、1.2~10%、特に1.5~7%である。
 LiOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分であると共に、ヤング率を高める成分である。しかし、LiOの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。更に低温粘性が低下し過ぎて、応力緩和が起こり易くなり、かえって圧縮応力値が低下する場合がある。よって、LiOの含有量は、好ましくは0~4%、0~2.5%、0~2%、0~1.5%、0~1%、0~0.5%、特に0~0.3%である。
 NaOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。NaOの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下し過ぎたり、イオン交換性能が低下し易くなる。よって、NaOの好適な下限範囲は0.1%以上、0.5%以上、1%以上、1.5%以上、2%以上、特に3%以上である。一方、NaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、耐失透性が低下する場合がある。更にイオン交換性能が高くなり過ぎて、薄いガラス板をイオン交換処理した後に、高屈折率ガラスが自己破壊する虞がある。よって、NaOの好適な上限範囲は20%以下、15%以下、10%以下、8%以下、特に5%以下である。
 KOは、イオン交換を促進する成分であり、特にアルカリ金属酸化物の中では応力深さを増加させ易い成分である。また高温粘度を低下させて、溶融性や成形性を高める成分である。更に耐失透性を改善する成分でもある。しかし、KOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。よって、KOの含有量は、好ましくは0~4%、0~2.5%、0~2%、0~1.5%、0~1%、0~0.5%、特に0~0.3%である。
 BaOは4~40%が好ましい。BaOは、アルカリ土類金属酸化物の中では粘性を極端に低下させずに、屈折率を高める成分である。しかし、BaOの含有量が多くなると、密度、熱膨張係数が高くなり易く、液相粘度が低くなり易い。またBaOの含有量が多過ぎると、イオン交換処理によりガラス表面に高い圧縮応力を付与し難くなる。よって、BaOの含有量は、好ましくは40%以下、36%以下、32%以下、30%以下、28%以下、特に26%以下である。一方、BaOの含有量が少なくなると、所望の屈折率を得難くなる上、高い液相粘度を確保し難くなる。よって、BaOの含有量は、好ましくは4%以上、10%以上、12%以上、16%以上、特18%以上である。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 Alの含有量は0~20%が好ましい。Alの含有量が多くなると、ガラスに失透結晶が析出し易くなって、液相粘度が低下し易くなり、また屈折率が低下し易くなる。よって、Alの含有量は、好ましくは20%以下、15%以下、10%以下、8%以下、特に6%以下である。一方、Alの含有量が少なくなると、イオン交換性能が低下し易くなる。よって、Alの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、3%以上、4%以上、特に5%以上である。
 Bの含有量は0~35%が好ましい。Bの含有量が多くなると、屈折率、ヤング率が低下し易くなる。よって、Bの含有量は、好ましくは35%以下、25%以下、20%以下、18%以下、16%以下、14%以下、12%以下、特に10%以下である。なお、Bの含有量が少なくなると、液相温度が低下し易くなる。よって、Bの含有量は、好ましくは0.1%以上、1%以上、2%以上、4%以上、特に5%以上である。
 SiO+Al+Bの含有量は30.5~80%である。SiO+Al+Bの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiO+Al+Bの含有量は、好ましくは30.5%以上、35%以上、40%以上、42%以上、46%以上、48%以上、特に50%以上である。一方、SiO+Al+Bの含有量が多くなると、溶融性、成形性が低下し易くなる。更に本発明に規定するような高い屈折率を示すガラスを得難くなる。よって、SiO+Al+Bの含有量は、好ましくは80%以下、75%以下、70%以下、65%以下、60%以下、57%以下、特に55%以下である。
 質量比SiO/Bは1~20が好ましい。質量比SiO/Bが小さくなると、粘度が低下して、液相粘度が低下し易くなる。よって、質量比SiO/Bの下限範囲は、好ましくは1以上、2以上、2.5以上、3以上、3.5以上、特に4以上である。一方、質量比SiO/Bが大きくなると、耐失透性が低下して、液相粘度が低下し易くなる。よって、質量比SiO/Bの上限範囲は、好ましくは20以下、15以下、10以下、8以下、特に6以下である。
 質量比BaO/Bを所定範囲に規制すると、高屈折率と高液相粘度を高いレベルで両立することができる。よって、質量比BaO/Bの下限範囲は、好ましくは0.5以上、1.5以上、1.8以上、2以上、2.1以上、特に2.3以上であり、また質量比BaO/Bの上限範囲は、好ましくは5以下、4.5以下、4以下、3.5以下、3.2以下、特に3以下である。
 TiOは、バッチコストを高騰させずに、屈折率とイオン交換性能を効果的に高める成分である。しかし、TiOの含有量が多くなると、ガラスが着色したり、耐失透性が低下し易くなる。よって、TiOの含有量は、好ましくは1~10%、2~8%、特に3~7%である。なお、TiOの含有量が多くなると、Zr含有失透ブツの発生を助長し易くなる。よって、Zr含有失透ブツの発生を抑制したい場合、TiOの含有量は、好ましくは6%以下、5.5%以下、5%以下、4.5%以下、特に4%以下である。
 MgOは、ヤング率を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、屈折率が低下し易くなったり、液相温度が上昇して、耐失透性が低下し易くなったり、密度、熱膨張係数が高くなり易い。よって、MgOの含有量は、好ましくは10%以下、5%以下、3%以下、2%以下、特に1%以下である。
 CaOの含有量が多くなると、密度、熱膨張係数が高くなり易く、その含有量が過剰になると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、CaOの含有量は、好ましくは12%以下、10%以下、8%以下、7%以下、6%以下、5%以下、4%以下、特に3%以下である。なお、CaOの含有量が少なくなると、屈折率、溶融性、ヤング率が低下し易くなる。よって、CaOの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、特に2%以上である。
 質量比CaO/Bを所定範囲に規制すると、耐失透性を高め易くなる。よって、質量比CaO/Bの下限値は、好ましくは0.1以上、0.15以上、0.2以上、0.25以上、特に0.3以上であり、また質量比CaO/Bの上限値は、好ましくは1以下、0.8以下、0.7以下、0.6以下、特に0.5以下である。
 SrOの含有量が多くなると、屈折率が高くなるが、密度、熱膨張係数も高くなり易い。また、SrOの含有量が過剰になると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。またイオン交換処理によりガラス表面に高い圧縮応力を付与し難くなる。よって、SrOの含有量は、好ましくは20%以下、15%以下、13%以下、特に12%以下である。なお、SrOの含有量が少なくなると、屈折率、溶融性が低下し易くなり、更に本発明の組成系においては、液相温度付近の粘度が低下し、高い液相粘度を得難くなる。よって、SrOの含有量は、好ましくは0.1%以上、1%以上、3%以上、5%以上、7%以上、9%以上、特10%以上である。
 ZnOの含有量が多くなると、密度、熱膨張係数が高くなったり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、ZnOの含有量は、好ましくは15%以下、12%以下、10%下、8%以下、6%以下、特に4%以下である。一方、ZnOの含有量が少なくなると、高い液相粘度を確保し難くなる。よって、ZnOの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、1%超、1.5%以上、2%以上、2.5%以上、特に3%以上である。
 MgO+CaO+SrO+BaO+ZnOの含有量は、好ましくは10~50%、20~47%、25~45%、30~43%、35~41%、特に37~40%である。このようにすれば、高屈折率、耐失透性、溶融性、低密度、低熱膨張係数を高いレベルで両立することができる。
 質量比(MgO+CaO+SrO+BaO+ZnO)/Bを所定範囲に規制すると、高屈折率、耐失透性、溶融性、低密度、低熱膨張係数を高いレベルで両立することができる。よって、質量比(MgO+CaO+SrO+BaO+ZnO)/Bの下限値は、好ましくは1以上、2.5以上、3.5以上、特に4以上であり、また質量比(MgO+CaO+SrO+BaO+ZnO)/Bの上限値は、好ましくは7以下、6.5以下、6以下、特に5.5以下である。
 ZrOは、バッチコストを高騰させずに、屈折率とイオン交換性能を効果的に高める成分である。但し、ZrOの含有量が多くなると、Zr含有失透ブツが発生し易くなり、液相温度が低下し易くなる。よって、ZrOの含有量は、好ましくは0~10%、0.01~10%、0.1~5%、0.5~4%、1~3.5%、特に1.5~2.5%である。
 TiOとZrOは、バッチコストを高騰させずに、屈折率とイオン交換性能を効果的に高める成分である。しかし、TiO+ZrOの含有量が多くなると、ガラスが着色したり、耐失透性が低下し易くなる。よって、TiO+ZrOの含有量は、好ましくは0~20%、1~15%、2~12%、3~10%、4~9%、特に5~6%である。
 Pの含有量は0~15%が好ましい。Pはネットワークを形成し、ガラス組成の成分バランスを維持する成分である。よって、Pの含有量は、好ましくは0.01%以上、0.1%以上、0.4%以上、0.6%以上、0.8%以上、特に1%以上である。しかし、Pの含有量が多くなると、ガラス組成の成分バランスを欠いて、耐失透性が低下する。よって、Pの含有量は、好ましくは15%以下、10%以下、6%以下、4%以下、特に2%以下である。
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、実質的に含有しないことが好ましい。
 Bi+La+Gd+Nb+Ta+WOは、屈折率を高める成分であるが、バッチコストを高める成分である。よって、Bi+La+Gd+Nb+Ta+WOの含有量は、好ましくは9%以下、6%以下、3%以下、2%以下、1.5%、1%以下、1%未満、特に0.5%以下が好ましく、実質的に含有しないことが望ましい。また、Bi、La、Gd、Nb、Ta、WOの含有量は、それぞれ9%以下、6%以下、3%以下、2%以下、1.5%、1%以下、1%未満、特に0.5%以下であり、実質的に含有しないことが望ましい。
 清澄剤として、As、Sb、CeO、SnO、F、Cl、SOの群から選択された一種又は二種以上を0~3%添加することができる。但し、As及びF、特にAsは、環境的観点から、実質的に含有しないことが好ましい。特に、清澄剤として、Sb、SnO、SO及びClが好ましい。Sbの含有量は、好ましくは0~1%、0.01~0.5%、特に0.05~0.4%である。SnOの含有量は、好ましくは0~1%、0.01~0.5%、特に0.05~0.4%である。SnO+SO+Clの含有量は、好ましくは0~1%、0.001~1%、0.01~0.5%、特に0.01~0.3%である。
 上記成分以外にも、他の成分を添加することができる。その添加量は、好ましくは10%以下、5%以下、特に3%以下である。
 本発明の高屈折率ガラスは、以下の特性を有することが好ましい。
 屈折率nは、好ましくは1.55以上、1.58以上、1.60以上、1.61以上、特に1.62以上である。屈折率nが1.55未満になると、ITO-ガラス界面の反射によって光を効率良く取り出せなくなる。一方、屈折率nが高くなると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。また、屈折率nが極端に高くなると、空気-ガラス界面での反射率が高くなり、ガラス表面に粗面化処理を施しても、光の取り出し効率を高めることが困難になる。なお、ガラス組成中に希土類酸化物等を多量に導入すると、屈折率nが高めることができるが、この場合、バッチコストが高騰してしまう。よって、屈折率nは、好ましくは2.00以下、1.68以下、1.67以下、1.66以下、特に1.65以下である。
 密度は、好ましくは5.0g/cm以下、4.8g/cm以下、4.5g/cm以下、4.3g/cm以下、3.0~3.7g/cm、特3.2~3.5g/cmである。このようにすれば、デバイスを軽量化することができる。なお、「密度」は、周知のアルキメデス法で測定可能である。
 30~380℃における熱膨張係数は、好ましくは30×10-7~100×10-7/℃、40×10-7~90×10-7/℃、50×10-7~85×10-7/℃、特に60×10-7~75×10-7/℃である。近年、有機EL照明、有機ELディスプレイ等の有機ELデバイス、色素増感太陽電池において、デザイン的要素を高める観点から、ガラス板に可撓性が要求される場合がある。可撓性を高めるためには、ガラス板の板厚を小さくする必要があるが、この場合、ガラス板とITO、FTO等の透明導電膜の熱膨張係数が不整合になると、ガラス板が反り易くなる。そこで、30~380℃における熱膨張係数を上記範囲とすれば、このような事態を防止し易くなる。なお、「30~380℃における熱膨張係数」は、ディラトメーター等で測定可能である。
 歪点は、好ましくは500℃以上、540℃以上、580℃以上、590℃以上、600℃以上、特に610℃以上である。このようにすれば、デバイスの製造工程における高温の熱処理によりガラス板が熱収縮し難くなる。なお、「歪点」は、ASTM C336-71に記載の方法に基づいて測定した値を指す。
 102.0dPa・sにおける温度は、好ましくは1000℃以上、1100℃以上、1130℃以上、1160℃以上、特に1190℃以上である。このようにすれば、成形温度を高温化し得るため、成形時の失透を防止し易くなる。
 液相温度は、好ましくは1200℃以下、1150℃以下、1100℃以下、1050℃以下、1030℃以下、特に1000℃以下である。また、液相粘度は、好ましくは103.0dPa・s以上、103.5dPa・s以上、104.0dPa・s以上、104.2dPa・s以上、104.6dPa・s以上、105.0dPa・s以上、特に105.2dPa・s以上である。このようにすれば、成形時にガラスが失透し難くなり、フロート法等でガラス板を成形し易くなる。
 本発明の高屈折率ガラスは、平板形状であることが好ましく、板厚は、好ましくは1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.6mm以下、0.5mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下である。板厚が小さい程、可撓性が高まり、デザイン性に優れた照明デバイスを作製し易くなるが、板厚が極端に小さくなると、ガラスが破損し易くなる。よって、板厚は、好ましくは10μm以上、特に30μm以上である。
 本発明の高屈折率ガラスは、平板形状の場合、少なくとも一方の表面が未研磨であることが好ましい。ガラスの理論強度は、本来非常に高いのであるが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、表面を未研磨とすれば、ガラス本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、表面を未研磨とすれば、研磨工程を省略できるため、ガラス板の製造コストを低廉化することができる。
 本発明の高屈折率ガラスにおいて、少なくとも一方の表面(但し、有効面)の表面粗さRaは、好ましくは10Å以下、5Å以下、3Å以下、特に2Å以下である。表面粗さRaが10Åより大きいと、その表面に形成されるITOの品位が低下して、均一な発光を得難くなる。ここで、「表面粗さRa」は、JIS B0601:2001に準拠した方法で測定した値を指す。
 本発明の高屈折率ガラスは、HFエッチング、サンドブラスト等によって、一方の表面に粗面化処理を行うことが好ましい。粗面化処理面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。粗面化処理面を有機EL照明等の空気に接する側にすれば、粗面化処理面が無反射構造になるため、有機発光層で発生した光が有機発光層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。
 リプレス等の熱加工によって、一方の表面に粗面化処理面を形成してもよい。このようにすれば、一方の表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率を考慮しながら、その間隔と深さを調整すればよい。
 大気圧プラズマプロセスにより粗面化処理すれば、一方の表面に対して、均一な粗面化処理面を形成し得ると共に、他方の表面の表面状態を平滑な状態に維持することができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含有したプラズマが発生するため、粗面化処理の効率が向上する。
 成形時に表面に無反射構造を形成する場合、粗面化処理しなくても同様の効果を享受することができる。なお、凹凸形状を有する光散乱フィルムを一方の表面に貼り付けてもよい。
 次に、本発明の高屈折率ガラスを製造する方法を例示する。まず所望のガラス組成になるように、ガラス原料を調合して、ガラスバッチを作製する。次いでこのガラスバッチを溶融、清澄した後、所望の形状に成形する。その後、所望の形状に加工する。
 本発明の高屈折率ガラスは、フロート法で成形されてなることが好ましい。このようにすれば、表面品位が良好なガラス板を安価、且つ大量に製造することができる。また、ガラス板の大型化を図り易くなる。
 また、本発明の高屈折率ガラスは、ロールアウト法又はアップドロー法で成形されてなることも好ましい。このようにすれば、成形時の失透を抑制し易くなる。
 更に、本発明の高屈折率ガラスは、オーバーフローダウンドロー法で成形されてなることも好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を安価、且つ大量に製造することができる。また、ガラス板の大型化、薄板化を図り易くなる。
 更に、得られた高屈折率ガラスをイオン交換処理することにより、表面に圧縮応力層を形成することもできる。この場合、高屈折率ガラスを所定寸法に切断する時期は、イオン交換処理の前でもよいが、イオン交換処理の後でもよい。
 イオン交換処理の条件は、特に限定されず、高屈折率ガラスの粘度特性、用途、厚み、内部の引っ張り応力、寸法変化等を考慮して最適な条件を選択すればよい。例えば、イオン交換処理は、390~550℃のKNO溶融塩中に1~24時間浸漬することで行うことができる。特に、KNO溶融塩中のKイオンを高屈折率ガラス中のNa成分とイオン交換すると、ガラス表面に圧縮応力層を効率良く形成することができる。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
<実験1>
 まず、表中に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチを電気炉に投入して1300~1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出して平板形状に成形した後、所定の徐冷処理を行った。最後に、得られたガラス板について、種々の特性を評価した。
Figure JPOXMLDOC01-appb-T000002
 密度ρは、周知のアルキメデス法によって測定した値である。
 熱膨張係数αは、ディラトメーターを用いて、30~380℃における平均熱膨張係数を測定した値である。測定試料として、φ5mm×20mmの円柱状試料(端面はR加工されている)を用いた。
 歪点Psは、ASTM C336-71に記載の方法に基づいて測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。
 徐冷点Ta、軟化点Tsは ASTM C338-93に記載の方法に基づいて測定した値である。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、これらの温度が低い程、溶融性、成形性に優れる。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。また、液相粘度logηTLは、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。なお、液相粘度が高く、液相温度が低い程、耐失透性、成形性に優れる。
 屈折率nは、島津製作所社製の屈折率測定器KPR-2000を用いて測定した値であり、水素ランプのd線(波長587.6nm)での測定値である。なお、測定に際し、25mm×25mm×約3mmの直方体試料を作製した後、(Ta+30℃)から(Ps-50℃)までの温度域を0.1℃/分になるような冷却速度で徐冷処理し、続いて屈折率が整合する浸液をガラス間に浸透させた。
 表1、2から明らかなように、試料No.1~36は、高価な希土類酸化物等を含んでいないにもかかわらず、屈折率nが高く、耐失透性が良好であった。
<実験2>
 まず、表3に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1300~1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出して平板形状に成形した後、所定の徐冷処理を行った。最後に、得られた高屈折率ガラスについて、上記と同様の方法にて、種々の特性を評価した。
Figure JPOXMLDOC01-appb-T000003
 続いて、試料No.37~40に係る高屈折率ガラスの両表面に光学研磨を施した後、430℃のKNO溶融塩中に24時間浸漬することにより、イオン交換処理を行った。イオン交換処理後に各試料の表面を洗浄し、表面に圧縮応力層を有する高屈折率ガラスを得た。
 続いて、試料No.38に係る高屈折率ガラスについて、クラック発生率を評価した。すなわち、ビッカース硬度計のステージに高屈折率ガラスを置き、高屈折率ガラスの表面に菱形状のダイヤモンド圧子を30gの荷重で15秒間押し付けた。そして、除荷後15秒までに圧痕の四隅から発生するクラック数をカウントし、最大発生し得るクラック数(4ヶ)に対する割合を求め、クラック発生率とした。なお、クラック発生率の測定は、同一荷重で10回測定し、その平均値を求めた。その結果、未強化の高屈折率ガラスのクラック発生率は67.5%であったが、強化済みの高屈折率ガラス板のクラック発生率は35%であった。
 なお、試料No.37、39、40に係る高屈折率ガラス板についても、クラック発生率がイオン交換処理により低下するものと推定される。

Claims (14)

  1.  ガラス組成として、質量%で、SiO+Al+B 30.5~80%、MgO+CaO+SrO+BaO+ZnO 10~60%、BaO 4~40%、TiO+ZrO 0~20%、P 0.01~15%を含有し、且つ屈折率nが1.55~2.00であることを特徴とする高屈折率ガラス。
  2.  質量比SiO/Bが1.2~20であることを特徴とする請求項1に記載の高屈折率ガラス。
  3.  BaOの含有量が15~30質量%であることを特徴とする請求項1又は2に記載の高屈折率ガラス。
  4.  実質的にPbOを含まないことを特徴とする請求項1~3の何れかに記載の高屈折率ガラス。
  5.  Bi+La+Gd+Nb+Ta+WOの含有量が12質量%以下であることを特徴とする請求項1~4の何れかに記載の高屈折率ガラス。
  6.  実質的にアルカリ金属酸化物を含まないことを特徴とする請求項1~5の何れかに記載の高屈折率ガラス。
  7.  液相粘度が103.0dPa・s以上であることを特徴とする請求項1~6の何れかに記載の高屈折率ガラス。
  8.  平板形状であることを特徴とする請求項1~7の何れかに記載の高屈折率ガラス。
  9.  フロート法、ロールアウト法、アップドロー法、オーバーフローダウンドロー法の何れかで成形されてなることを特徴とする請求項1~8の何れかに記載の高屈折率ガラス。
  10.  表面に圧縮応力層を有する高屈折率ガラスであって、
     圧縮応力層がイオン交換処理により形成されており、屈折率nが1.55~2.00であることを特徴とする高屈折率ガラス。
  11.  ガラス組成として、質量%で、SiO 20~70%、LiO+NaO+KO 0.1~30%、BaO 4~40%を含有することを特徴とする請求項10に記載の高屈折率ガラス。
  12.  ガラス組成中にTiOを1~10質量%含むことを特徴とする請求項10又は11に記載の高屈折率ガラス。
  13.  請求項1~12の何れかに記載の高屈折率ガラスを備えることを特徴とする照明デバイス。
  14.  請求項1~12の何れかに記載の高屈折率ガラスを備えることを特徴とする有機EL照明。
PCT/JP2015/070963 2014-07-24 2015-07-23 高屈折率ガラス WO2016013612A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014150476 2014-07-24
JP2014-150476 2014-07-24
JP2014180920A JP2016056029A (ja) 2014-09-05 2014-09-05 強化ガラス及び強化用ガラス
JP2014-180920 2014-09-05
JP2015024980A JP2016028996A (ja) 2014-07-24 2015-02-12 高屈折率ガラス
JP2015-024980 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016013612A1 true WO2016013612A1 (ja) 2016-01-28

Family

ID=55163136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070963 WO2016013612A1 (ja) 2014-07-24 2015-07-23 高屈折率ガラス

Country Status (1)

Country Link
WO (1) WO2016013612A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106746617A (zh) * 2016-12-19 2017-05-31 成都光明光电股份有限公司 重冕光学玻璃
CN110655322A (zh) * 2018-06-29 2020-01-07 Hoya株式会社 再加热压制用玻璃材料、再加热压制完成的玻璃材料、抛光完成的玻璃、及其制造方法
CN112142320A (zh) * 2019-06-28 2020-12-29 Hoya株式会社 再热压制用玻璃材料、经过了再热压制的玻璃材料、经过了抛光的玻璃及它们的制造方法
CN112250300A (zh) * 2020-11-02 2021-01-22 晶石科技(中国)股份有限公司 一种手表外罩用高折射率型手表玻璃及其生产工艺
CN112608026A (zh) * 2020-12-17 2021-04-06 澧县澧水明珠钢化玻璃有限公司 一种高强度钢化玻璃及其加工方法
CN113248140A (zh) * 2021-06-11 2021-08-13 南通腾峰光学仪器有限公司 一种高折射率红外光学玻璃及其制备方法
CN113365956A (zh) * 2018-11-30 2021-09-07 康宁股份有限公司 高折射率玻璃

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126239A (ja) * 1987-11-11 1989-05-18 Nippon Sheet Glass Co Ltd 電子機器用ガラス基板
JPH0812368A (ja) * 1994-06-30 1996-01-16 Hoya Corp 光学ガラス
JP2003073145A (ja) * 2001-09-04 2003-03-12 Nippon Sheet Glass Co Ltd ガラス基材の微細加工方法、微細加工用ガラス基材及び微細加工ガラス製品
JP2004277281A (ja) * 2003-03-12 2004-10-07 Carl-Zeiss-Stiftung ホウ素アルミノシリケートガラス
JP2013234104A (ja) * 2011-07-29 2013-11-21 Ohara Inc 光学ガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126239A (ja) * 1987-11-11 1989-05-18 Nippon Sheet Glass Co Ltd 電子機器用ガラス基板
JPH0812368A (ja) * 1994-06-30 1996-01-16 Hoya Corp 光学ガラス
JP2003073145A (ja) * 2001-09-04 2003-03-12 Nippon Sheet Glass Co Ltd ガラス基材の微細加工方法、微細加工用ガラス基材及び微細加工ガラス製品
JP2004277281A (ja) * 2003-03-12 2004-10-07 Carl-Zeiss-Stiftung ホウ素アルミノシリケートガラス
JP2013234104A (ja) * 2011-07-29 2013-11-21 Ohara Inc 光学ガラス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106746617A (zh) * 2016-12-19 2017-05-31 成都光明光电股份有限公司 重冕光学玻璃
CN110655322A (zh) * 2018-06-29 2020-01-07 Hoya株式会社 再加热压制用玻璃材料、再加热压制完成的玻璃材料、抛光完成的玻璃、及其制造方法
CN113365956A (zh) * 2018-11-30 2021-09-07 康宁股份有限公司 高折射率玻璃
CN112142320A (zh) * 2019-06-28 2020-12-29 Hoya株式会社 再热压制用玻璃材料、经过了再热压制的玻璃材料、经过了抛光的玻璃及它们的制造方法
CN112250300A (zh) * 2020-11-02 2021-01-22 晶石科技(中国)股份有限公司 一种手表外罩用高折射率型手表玻璃及其生产工艺
CN112608026A (zh) * 2020-12-17 2021-04-06 澧县澧水明珠钢化玻璃有限公司 一种高强度钢化玻璃及其加工方法
CN113248140A (zh) * 2021-06-11 2021-08-13 南通腾峰光学仪器有限公司 一种高折射率红外光学玻璃及其制备方法

Similar Documents

Publication Publication Date Title
JP5920554B1 (ja) 強化ガラス基板の製造方法
JP5652698B2 (ja) ガラス板
JP6016064B2 (ja) 高屈折率ガラス
KR101638488B1 (ko) 고굴절률 유리
WO2016013612A1 (ja) 高屈折率ガラス
TWI538891B (zh) 高折射率玻璃
JP6175742B2 (ja) 高屈折率ガラス
US8999871B2 (en) High refractive index glass
JP6547995B2 (ja) 高屈折率ガラス基板
JP2016028996A (ja) 高屈折率ガラス
TWI603933B (zh) 高折射率玻璃、照明裝置、有機電致發光照明以及 有機電致發光顯示器
JP2016098118A (ja) 分相ガラス
JP6249218B2 (ja) ガラスの製造方法及びガラス
JP6435610B2 (ja) 高屈折率ガラス
JP2016056029A (ja) 強化ガラス及び強化用ガラス
JP5812241B2 (ja) 高屈折率ガラス
JP5812242B2 (ja) 高屈折率ガラス
JP2015127291A (ja) ガラス
JP2012121757A (ja) 高屈折率ガラス
JP2015027928A (ja) 高屈折率ガラス
JP2014224037A (ja) 高屈折率ガラス
JP2015227272A (ja) 分相ガラス及びこれを用いた複合基板
JP2015227274A (ja) 分相ガラス及びこれを用いた複合基板
JP2015227273A (ja) 分相ガラスの製造方法
JP2015227271A (ja) 分相ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824352

Country of ref document: EP

Kind code of ref document: A1