WO2016002699A1 - センサ素子とハウジングと素子カバーとを含むガスセンサ - Google Patents

センサ素子とハウジングと素子カバーとを含むガスセンサ Download PDF

Info

Publication number
WO2016002699A1
WO2016002699A1 PCT/JP2015/068638 JP2015068638W WO2016002699A1 WO 2016002699 A1 WO2016002699 A1 WO 2016002699A1 JP 2015068638 W JP2015068638 W JP 2015068638W WO 2016002699 A1 WO2016002699 A1 WO 2016002699A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
cover
total area
hole
wall portion
Prior art date
Application number
PCT/JP2015/068638
Other languages
English (en)
French (fr)
Inventor
圭祐 水谷
伸幸 辻
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015003067.0T priority Critical patent/DE112015003067B4/de
Priority to US15/323,221 priority patent/US10634640B2/en
Priority to CN201580035163.6A priority patent/CN106471362B/zh
Publication of WO2016002699A1 publication Critical patent/WO2016002699A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells

Definitions

  • the present disclosure relates to a gas sensor that detects a specific gas concentration in a gas to be measured.
  • An exhaust system such as an internal combustion engine for a vehicle is provided with a gas sensor that detects a specific gas concentration (for example, oxygen concentration) in a gas to be measured such as exhaust gas.
  • the gas sensor includes a sensor element having a solid electrolyte body, a measurement electrode and a reference electrode provided on one surface and the other surface of the solid electrolyte body, a housing through which the sensor element is inserted, and the housing And an element cover disposed on the front end side of the.
  • the element cover is provided for the purpose of suppressing droplets such as water droplets flying together with the gas to be measured such as exhaust gas from adhering to the sensor element (hereinafter referred to as “liquid” as appropriate). That is, when the liquid droplets adhere to the sensor element, there is a concern that stress is generated in the sensor element and causes a crack in the element. Therefore, liquid immersion of the sensor element is suppressed by the element cover.
  • the function of the element cover is referred to as a liquid covering ability.
  • a vent hole is formed in the element cover so that the gas to be measured can satisfactorily reach the detection part (measurement electrode) of the sensor element. That is, it is necessary to form a vent so that the gas to be measured is sufficiently introduced into the element cover and discharged from the element cover, thereby ensuring the responsiveness of the gas sensor.
  • the present disclosure has been made in view of the above circumstances, and provides a gas sensor capable of achieving both high responsiveness and liquid suppression ability.
  • One embodiment of the present disclosure includes an oxygen ion conductive solid electrolyte body, a sensor element having a measurement electrode and a reference electrode provided on one surface and the other surface of the solid electrolyte body, and the sensor element inside
  • a gas sensor comprising: a housing that is inserted into the housing; and an element cover disposed on a distal end side of the housing, the element cover disposed so as to cover the distal end portion of the sensor element from the outer peripheral side and the distal end side.
  • An inner cover, and an outer cover disposed so as to cover the inner cover from the outer peripheral side and the front end side.
  • the inner cover includes an inner side wall portion along the axial direction, and a front end of the inner side wall portion.
  • An outer bottom wall portion that intersects the axial direction, and the outer cover is provided on the outer side wall portion along the axial direction and on the distal end side of the outer side wall portion.
  • Cross An inner side hole formed in the inner side wall is located on the base end side of the measurement electrode, and an outer side hole formed in the outer side wall is formed on the inner side wall.
  • the inner bottom hole formed on the inner bottom wall portion is located on the tip side from the side hole, and the outer bottom hole formed on the outer bottom wall portion is located on the tip side from the measurement electrode.
  • the outer side hole is located outside the inner bottom hole, and the ratio of the total area of the outer side hole to the total area of the inner bottom hole is 8 to 47, and the total area of the inner side hole is 2 to 8 mm 2. It is in the gas sensor characterized by being.
  • the positional relationship between the measurement electrode, the inner side hole, the outer side hole, the inner bottom hole, and the outer bottom hole is defined as described above, and the outer side hole with respect to the total area of the inner bottom hole is determined.
  • the ratio of the total area (hereinafter, also simply referred to as “total area ratio”) and the total area of the inner side hole are defined in the above range.
  • the inventors of the present application have a large influence on the ease of replacement of the gas to be measured near the measurement electrode of the sensor element, and the total area ratio and the total area of the inner side surface hole. I thought it would have a major impact on both. Then, paying attention to this point, as a result of examination as described later, it has been found that the gas sensor having the above configuration can achieve both high responsiveness and liquid-suppressing ability.
  • FIG. 3 is a cross-sectional view of the gas sensor in the first embodiment.
  • FIG. 3 is a cross-sectional view of the inner cover corresponding to a cross-sectional view taken along line III-III in FIG.
  • FIG. 5 is a cross-sectional view of the outer cover corresponding to a cross-section taken along line VV in FIG.
  • FIG. The top view which shows the positional relationship of the outer bottom hole and inner bottom hole in Example 1.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG. 9. The top view of the inner cover seen from the front end side in Example 2.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. The top view of the outer cover seen from the front end side in Example 2.
  • the gas sensor is used by being disposed in an exhaust system such as an internal combustion engine for a vehicle, for example.
  • the side where the gas sensor is inserted into the exhaust system or the like is referred to as the distal end side, and the opposite side is referred to as the proximal end side.
  • the axial direction refers to the axial direction of the gas sensor unless otherwise specified.
  • the total area of the inner bottom hole means, for example, the total area of all the inner bottom holes when there are a plurality of inner bottom holes. It means the area of the bottom hole. The same applies to the total area of the outer side hole, the total area of the inner side hole, and the like.
  • the gas sensor 1 of the present example includes a sensor element 2, a housing 3 through which the sensor element 2 is inserted, and an element cover 4 disposed on the front end side of the housing 3.
  • the sensor element 2 includes an oxygen ion conductive solid electrolyte body 21, and a measurement electrode 22 and a reference electrode 23 provided on one surface and the other surface of the solid electrolyte body 21, respectively.
  • the element cover 4 includes an inner cover 41 disposed so as to cover the front end portion of the sensor element 2 from the outer peripheral side and the front end side, and so as to cover the inner cover 41 from the outer peripheral side and the front end side. And an outer cover 42 disposed.
  • the inner cover 41 has an inner side wall portion 411 along the axial direction Z, and an inner bottom wall portion 412 provided on the tip side of the inner side wall portion 411 and intersecting the axial direction Z.
  • the outer cover 42 includes an outer side wall portion 421 along the axial direction Z, and an outer bottom wall portion 422 that is provided on the distal end side of the outer side wall portion 421 and intersects the axial direction Z.
  • the inner side surface hole 51 formed in the inner side wall portion 411 is located closer to the base end side than the measurement electrode 22.
  • the outer side surface hole 61 formed in the outer side wall portion 421 is located on the tip side of the inner side surface hole 51.
  • the inner bottom hole 52 formed in the inner bottom wall portion 412 is located on the tip side of the measurement electrode 22.
  • the outer bottom surface hole 62 formed in the outer bottom wall portion 422 is located outside the inner bottom surface hole 52.
  • the ratio of the total area of the outer side surface hole 61 to the total area of the inner bottom surface hole 52 is 8 to 47.
  • the total area of the inner side surface holes 51 is 2 to 8 mm 2 .
  • the total area ratio is preferably 11 to 35, and more preferably 16 to 30.
  • the total area of the inner side surface holes 51 is preferably 3 to 7 mm 2 , more preferably 3.5 to 6 mm 2 .
  • the inner bottom hole 52 is formed in the inner bottom wall portion 412 orthogonal to the axial direction Z.
  • the term “perpendicular to the axial direction Z” includes not only the case where the angle with respect to the axial direction Z is exactly 90 ° but also the state of being substantially orthogonal.
  • the inner bottom hole 52 is formed in the inner bottom wall portion 412 whose angle with respect to the axial direction Z is 88 to 92 °, for example.
  • the sensor element 2 is formed in a bottomed cylindrical cup shape in which the distal end side is closed and the proximal end side is opened. That is, the solid electrolyte body 21 has a bottomed cylindrical cup shape as described above. And the measurement electrode 22 is formed in the outer surface, and the reference electrode 23 is formed in the inner surface.
  • the solid electrolyte body 21 is mainly composed of zirconia.
  • the measurement electrode 22 and the reference electrode 23 are preferably made of a platinum group element.
  • the measurement electrode 22 and the reference electrode 23 are made of platinum.
  • the reference electrode 23 is formed on substantially the entire inner surface of the solid electrolyte body 21.
  • the measurement electrode 22 is provided in a part of the solid electrolyte body 21 near the tip.
  • the distal end of the measurement electrode 22 is located on the proximal end side with respect to the distal end of the solid electrolyte body 21.
  • the measurement electrode 22 is formed in the whole circumferential direction.
  • the element cover 4 is caulked and fixed to the distal end portion of the housing 3 at the flange portions 413 and 423 at the proximal end.
  • the inner cover 41 and the outer cover 42 are caulked and fixed to the housing 3 in a state where the flange portions 413 and 423 are overlapped with each other.
  • the inner cover 41 has an inclined surface portion 414 between the flange portion 413 and the inner side wall portion 411.
  • the inner side surface hole 51 is formed in the inner side wall portion 411 on the tip side of the inclined surface portion 414. That is, the inner side surface hole 51 is formed at a position between the inclined surface portion 414 and the measurement electrode 22 in the axial direction Z. As shown in FIG. 3, six inner side holes 51 are formed at equal intervals in the circumferential direction.
  • the inner bottom wall portion 412 includes an orthogonal plane portion 415 orthogonal to the axial direction Z, and a recess portion 416 formed so as to be connected to the inner side wall portion 411 while recessing inward around the orthogonal plane portion 415.
  • the inner bottom hole 52 is formed in the orthogonal plane part 415 in the inner bottom wall part 412. Further, as shown in FIG. 4, three inner bottom holes 52 are formed.
  • the outer side wall portion 421 of the outer cover 42 is formed to extend from the flange portion 423 toward the distal end side.
  • the outer bottom wall part 422 is formed so as to be orthogonal to the axial direction Z so as to be connected to the tip of the outer side wall part 421.
  • the outer side surface hole 61 is located at the front end side of the inner side surface hole 51 and at the front end side of the front end portion of the sensor element 2. Is formed.
  • outer bottom holes 62 are formed in the outer bottom wall portion 422. As shown in FIGS. 1 and 7, these outer bottom holes 62 are all formed outside the inner bottom hole 52.
  • the inner bottom hole 52, the outer bottom hole 62, the inner side hole 51, and the outer side hole 61 are all circular holes.
  • a clearance is formed between the inner side wall portion 411 and the outer side wall portion 421, and a clearance is also formed between the inner bottom wall portion 412 and the outer bottom wall portion 422.
  • the inner side wall portion 411 and the outer side wall portion 421 are formed in a substantially cylindrical shape so as to share the central axis and the central axis of the sensor element 2 along the outer peripheral surface of the bottomed cylindrical sensor element 2. Yes.
  • a heater 11 for heating the sensor element 2 is disposed inside the sensor element 2.
  • a heating element and a lead part are formed on a heater base material mainly composed of alumina (Al 2 O 3 ) (not shown).
  • the heating element and the lead portion are made of a material containing tungsten as a main component and at least one of rhenium and molybdenum.
  • the heater 11 has a cylindrical shape.
  • the gas sensor 1 of this example is a rear gas sensor installed on the downstream side of the catalyst filter in the exhaust system of the internal combustion engine. Further, the gas sensor 1 of this example applies a predetermined voltage between the measurement electrode 22 and the reference electrode 23, thereby limiting the limit current value depending on the specific gas concentration (oxygen concentration) in the gas to be measured (exhaust gas). Is a limiting current type gas sensor.
  • the gas sensor 1 is disposed downstream of the catalytic filter that purifies the exhaust gas in the exhaust system of the automobile engine. And the limiting current value depending on the oxygen concentration in the exhaust gas after passing through the catalyst filter is output. Based on the obtained limit current value, the air-fuel ratio in the air-fuel mixture supplied to the internal combustion engine can be calculated and fed back to the engine control system.
  • the positional relationship among the measurement electrode 22, the inner side surface hole 51, the outer side surface hole 61, the inner bottom surface hole 52, and the outer bottom surface hole 62 is defined as described above.
  • the ratio of the total area of the outer side surface hole 61 to the total area (total area ratio) and the total area of the inner side surface hole 51 are defined in the above range. Thereby, as will be described later, it is possible to achieve both high responsiveness and liquid suppression ability.
  • the sensor element 2 is a bottomed cylindrical cup type. Thereby, the gas sensor 1 with high output accuracy can be obtained.
  • the gas sensor 1 is a rear gas sensor installed on the downstream side of the catalyst filter in the exhaust system of the internal combustion engine. Therefore, in particular, the level of responsiveness and liquid suppression ability required for the gas sensor 1 is increased. However, the above configuration can meet the demand.
  • gas sensor 1 is a limiting current type gas sensor, high output accuracy (stoichiometric accuracy) can be obtained.
  • Example 2 In this example, as shown in FIGS. 8 to 14, the shape of the element cover 4 is changed.
  • FIG. 8 shows only the portion of the element cover 4 closer to the tip than the tip of the housing 3, and the flange portions 413 and 423 are omitted.
  • the outer side surface hole 61 is formed at two positions in the axial direction Z on the outer side wall portion 421. That is, the outer side wall portion 421 is formed with eight outer side surface holes 61 at a position close to the outer bottom wall portion 422, and similarly, eight outer side surface holes 61 are disposed closer to the base end side than the outer side surface holes 61.
  • An outer side hole 61 is formed.
  • the eight outer side surface holes 61 on the distal end side are located on the distal end side with respect to the inner bottom surface hole 52, and the eight outer side surface holes 61 on the proximal end side are located on the proximal end side with respect to the inner bottom surface hole 52. Yes.
  • the inner cover 41 has substantially the same shape as that shown in the first embodiment.
  • the inner side surface hole 51 has a center at a position 12.9 mm from the distal end surface of the inner bottom wall portion 412.
  • Each inner side surface hole 51 is formed in a circular shape having a diameter of 1 mm.
  • the inner bottom hole 52 has a center at a position away from the central axis of the inner cover 41 by 1.75 mm.
  • Each inner bottom hole 52 is formed in a circular shape having a diameter of 1.2 mm.
  • the eight outer side holes 61 on the front end side are centered at a position 2 mm from the front end surface of the outer bottom wall portion 422, and the front side 8
  • Each outer side surface hole 61 has a center at a position 5 mm from the front end surface of the outer bottom wall portion 422.
  • Each outer side hole 61 is formed in a circular shape having a diameter of 2 mm.
  • the outer bottom hole 62 has a center at a position away from the central axis of the outer cover 42 by 3.6 mm.
  • Each outer bottom hole 62 is formed in a circular shape having a diameter of 1.2 mm.
  • the ratio of the total area of the outer side surface hole 61 to the total area of the inner bottom surface hole 52 (total area ratio) is 8 to 47, and the total area of the inner side surface hole 51 is 2 to 8 mm 2 . More specifically, the gas sensor 1 of this embodiment, 2.6 mm 2 total area of the inner bottom hole 52, the total area of the outer side opening 61 is a 56.5 mm 2, the total area ratio of 21.8 It is. The total area of the inner side surface holes 51 is 4.7 mm 2 .
  • the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
  • the gas sensor 1 of this example was tested in Experimental Examples 1 and 2 described later, the following values were obtained as specific data. That is, the average response time T was 692 ms, and the area of wet marks was 2.3 mm 2 . Thus, the gas sensor of this example can achieve both high responsiveness and liquid suppression capability.
  • Example 1 In this example, as shown in FIGS. 15 to 17, various gas sensors having substantially the same basic configuration as those of the gas sensors 1 of Examples 1 and 2 were installed in the exhaust pipe of an actual engine, and the responsiveness thereof was evaluated. It is an example. Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
  • each gas sensor was installed in the exhaust pipe of a 2.5 L inline 4-cylinder engine.
  • the engine was operated at a rotational speed of 1000 times / minute. Then, a state where the air-fuel ratio A / F of the air-fuel mixture supplied to the engine becomes 14 and a state where it becomes 15 are alternately formed a plurality of times.
  • the element temperature of the gas sensor was 750 ° C.
  • the A / F value actually measured by the gas sensor was examined. That is, as shown by a curve L1 in FIG. 17, when the air-fuel ratio of the engine is shifted from 14 to 15 at time t1, the A / F value measured by the gas sensor represented by the curve L2 is 14 from time t1. The time was measured until it increased by 63% from 15 to 15 (that is, until the A / F value reached 14.63). Then, the time difference between the measured time and the time t1 was calculated as the response time ⁇ t1.
  • the plurality of gas sensors are obtained by variously changing the shape of the inner cover 41, the shape of the outer cover 42, the position, size, number, and the like of the inner side hole 51, the inner bottom hole 52, the outer side hole 61, and the outer bottom hole 62. It is. Accordingly, in the plurality of gas sensors, the ratio of the total area of the outer side surface hole 61 to the total area of the inner bottom surface hole 52 (total area ratio) and the total area of the inner side surface hole 51 are variously changed.
  • FIG. 15 is a graph showing the measurement results as the relationship between the total area ratio and the average response time T.
  • FIG. 16 is a graph showing the measurement results as a relationship between the total area of the inner side surface holes 51 and the average response time T.
  • the average response time T can be reduced to 800 ms (milliseconds) or less. Further, by setting the total area ratio to 11 or more, the average response time T can be reduced to 750 ms or less. Furthermore, by setting the total area ratio to 16 or more, the average response time T can be reduced to 700 ms or less.
  • the average response time T can be reduced to 800 ms or less by setting the total area of the inner side holes 51 in the range of 2 to 8 mm 2 . Further, the average response time T can be reduced to 750 ms or less by setting the total area of the inner side surface holes 51 to 3 to 7 mm 2 . Furthermore, by setting the total area of the inner side surface holes 51 to 3.5 to 6 mm 2 , the average response time T can be reduced to 700 ms or less.
  • Example 2 In this embodiment, as shown in FIGS. 18 and 19, the liquid sensor's ability to suppress liquid is evaluated.
  • the shape of the inner cover 41, the shape of the outer cover 42, the position, size, number, and the like of the inner side hole 51, the inner bottom hole 52, the outer side hole 61, and the outer bottom hole 62 are variously changed.
  • a plurality of gas sensors were prepared. And about these gas sensors, the water-substance (liquid-substance) test was done.
  • the water test was performed according to the following procedure using the water confirmation test method described in detail in JP-A-2007-225592. That is, a gas sensor is attached to a pipe inclined with respect to a horizontal plane. And the air containing a water droplet is injected in multiple times from an injector from the upper-end opening part of piping. At this time, the area of water marks on the sensor element 2 built in the gas sensor was measured.
  • FIG. 18 is a graph showing the measurement results as the relationship between the total area ratio and the area of the water mark.
  • FIG. 19 is a graph showing the measurement results as a relationship between the total area of the inner side surface holes 51 and the area of the water trace.
  • the area of the water mark can be reduced to less than about 30 mm 2 . Further, by setting the total area ratio to 11 to 35, the area of the water mark can be reduced to less than about 25 mm 2 . Furthermore, by setting the total area ratio to 16 to 30, the area of the water mark can be reduced to less than about 20 mm 2 .
  • the area of the water mark can be reduced to less than about 30 mm 2 . Further, by setting the total area of the inner side surface holes 51 to 3 to 7 mm 2 , the area of the water trace can be reduced to less than about 25 mm 2 . Furthermore, by setting the total area of the inner side surface holes 51 to 3.5 to 6 mm 2 , the area of the water trace can be reduced to less than about 20 mm 2 .
  • the ratio of the total area of the outer side surface hole 61 to the total area of the inner bottom surface hole 52 (total area ratio) is 8 to 47, and the total area of the inner side surface hole 51 is 2 to 8 mm 2.
  • the gas sensor provided with a bottomed cylindrical cup-shaped sensor element has been described, but the gas sensor provided with a sensor element formed by laminating another layer on a plate-like solid electrolyte body, The present disclosure can also be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 測定電極(22)及び基準電極(23)と有するセンサ素子(2)と、該センサ素子(2)を内側に挿通するハウジング(3)と、該ハウジング(3)の先端側に配設された素子カバー(4)と、を備えるガスセンサ(1)である。素子カバーは、インナカバー(41)と、該インナカバー(41)を覆うように配設されたアウタカバー(42)とを有する。インナカバー(41)は、軸方向(Z)に沿ったインナ側壁部(411)と、軸方向(Z)に対して交差するインナ底壁部(412)とを有し、上記アウタカバー(42)は、軸方向(Z)に沿ったアウタ側壁部(421)と、軸方向(Z)に対して交差するアウタ底壁部(422)とを有する。該インナ側壁部(411)に形成されたインナ側面孔は測定電極よりも基端側に位置し、アウタ側壁部(421)に形成されたアウタ側面孔はインナ側面孔よりも先端側に位置し、インナ底面孔は測定電極よりも先端側に位置し、アウタ底面孔はインナ底面孔よりも外側に位置している。インナ底面孔の総面積に対するアウタ側面孔の総面積の比が、8~47であり、インナ側面孔の総面積が、2~8mm2である。

Description

センサ素子とハウジングと素子カバーとを含むガスセンサ
 本開示は、被測定ガス中の特定ガス濃度を検出するガスセンサに関する。
 車両用の内燃機関等の排気系には、排ガス等の被測定ガス中における特定ガス濃度(例えば、酸素濃度)を検出するガスセンサが配設されている。このガスセンサは、固体電解質体と該固体電解質体の一方の面と他方の面とにそれぞれ設けた測定電極及び基準電極とを有するセンサ素子と、該センサ素子を内側に挿通するハウジングと、該ハウジングの先端側に配設された素子カバーとを備えている。
 素子カバーは、排ガス等の被測定ガスと共に飛来する水滴等の液滴がセンサ素子に付着すること(以下において適宜「被液」という。)を抑制することを一つの目的として設けられている。すなわち、液滴がセンサ素子に付着すると、センサ素子に応力が発生して、素子割れの要因となることが懸念される。それゆえ、素子カバーによってセンサ素子の被液を抑制している。この素子カバーの機能を、以下において、被液抑制能という。
 その一方で、素子カバーには、センサ素子の検知部(測定電極)に被測定ガスが良好に到達するようにすべく、通気孔が形成されている。すなわち、充分に被測定ガスが素子カバー内に導入され、素子カバーから排出されるように、通気孔を形成して、これにより、ガスセンサの応答性を確保する必要がある。
 しかし、一般に、応答性と被液抑制能とは背反の関係にあり、従来、例えば特開2012-18188号公報では応答性と被液抑制能とを両立するために、素子カバーの構造に関して、種々の検討がなされている。
特開2012-18188号公報
 しかしながら、近年、ガスセンサに求められる応答性と被液抑制能とは何れも高くなっている。すなわち、例えば、車両の使用地域の多様化に伴い、各地域において用いられるオイルや燃料の多様化、排ガス規制の強化、燃料消費量低減の要請等が、一層進んでいる。したがって、ガスセンサにおいては、より高度な応答性と被液抑制能との両立が求められている。
 本開示は、上記の事情に鑑みてなされたものであり、高い応答性と被液抑制能とを両立することができるガスセンサを提供する。
 本開示の一態様は、酸素イオン伝導性の固体電解質体と該固体電解質体の一方の面と他方の面とにそれぞれ設けた測定電極及び基準電極とを有するセンサ素子と、該センサ素子を内側に挿通するハウジングと、該ハウジングの先端側に配設された素子カバーと、を備えるガスセンサであって、該素子カバーは、上記センサ素子の先端部を外周側及び先端側から覆うように配設されたインナカバーと、該インナカバーを外周側及び先端側から覆うように配設されたアウタカバーとを有し、上記インナカバーは、軸方向に沿ったインナ側壁部と、該インナ側壁部の先端側に設けられて軸方向に対して交差するインナ底壁部とを有し、上記アウタカバーは、軸方向に沿ったアウタ側壁部と、該アウタ側壁部の先端側に設けられて軸方向に対して交差するアウタ底壁部とを有し、上記インナ側壁部に形成されたインナ側面孔は、上記測定電極よりも基端側に位置し、上記アウタ側壁部に形成されたアウタ側面孔は、上記インナ側面孔よりも先端側に位置し、上記インナ底壁部に形成されたインナ底面孔は、上記測定電極よりも先端側に位置し、上記アウタ底壁部に形成されたアウタ底面孔は、上記インナ底面孔よりも外側に位置しており、上記インナ底面孔の総面積に対する上記アウタ側面孔の総面積の比が、8~47であり、上記インナ側面孔の総面積が、2~8mm2であることを特徴とするガスセンサにある。
 上記ガスセンサにおいては、測定電極、インナ側面孔、アウタ側面孔、インナ底面孔、アウタ底面孔の互いの位置関係を、上記のように規定したうえで、インナ底面孔の総面積に対するアウタ側面孔の総面積の比(以下において、単に「総面積比」ともいう。)と、インナ側面孔の総面積とを、上記のような範囲に規定している。本願発明者らは、上記総面積比及びインナ側面孔の総面積が、センサ素子の測定電極付近への被測定ガスの入れ替わりやすさに大きく影響し、その結果、応答性と被液抑制能との双方に大きく影響すると考えた。そこで、この点に着目して、後述するように検討した結果、上記構成のガスセンサは、高い応答性と被液抑制能とを両立できることが分かった。
 以上のごとく、本開示によれば、高い応答性と被液抑制能とを両立することができるガスセンサを提供することができる。
 添付図面において:
実施例1における、ガスセンサの素子カバー周辺の断面図。 実施例1における、ガスセンサの断面図。 実施例1における、図1のIII-III線での矢視断面に相当する、インナカバーの断面図。 実施例1における、先端側から見たインナカバーの平面図。 実施例1における、図1のV-V線での矢視断面に相当する、アウタカバーの断面図。 実施例1における、先端側から見たインナカバーの平面図。 実施例1における、アウタ底面孔とインナ底面孔との位置関係を示す平面図。 実施例2における、ガスセンサの素子カバー周辺の断面図。 実施例2における、中心軸を含む平面によるインナカバーの断面図。 図9のX-X線における矢視断面図。 実施例2における、先端側から見たインナカバーの平面図。 実験例2における、中心軸を含む平面によるアウタカバーの断面図。 図12のXIII-XIII線における矢視断面図。 実施例2における、先端側から見たアウタカバーの平面図。 実験例1における、総面積比と平均応答時間との関係の実験結果を示すグラフ。 実験例1における、インナ側面孔の総面積と平均応答時間との関係の実験結果を示すグラフ。 実験例1における、平均応答時間の定義の説明図。 実験例2における、総面積比と被水痕面積との関係の実験結果を示すグラフ。 実験例2における、インナ側面孔の総面積と被水痕面積との関係の実験結果を示すグラフ。
 上記ガスセンサは、例えば、車両用の内燃機関等の排気系に配設して用いられる。なお、本明細書において、ガスセンサを排気系等に挿入する側を先端側、その反対側を基端側という。また、軸方向とは、特に言及しない限り、ガスセンサの軸方向をいうものとする。また、インナ底面孔の総面積とは、例えば、インナ底面孔が複数存在する場合に、そのすべてのインナ底面孔の面積の合計を意味し、インナ底面孔が一つの場合にはその一つのインナ底面孔の面積を意味する。アウタ側面孔の総面積、インナ側面孔の総面積等についても、同様である。
(実施例1)
 上記ガスセンサの実施例につき、図1~図7を用いて説明する。
 本例のガスセンサ1は、図1、図2に示すごとく、センサ素子2と、センサ素子2を内側に挿通するハウジング3と、ハウジング3の先端側に配設された素子カバー4とを備える。センサ素子2は、酸素イオン伝導性の固体電解質体21と該固体電解質体21の一方の面と他方の面とにそれぞれ設けた測定電極22及び基準電極23とを有する。
 図1に示すごとく、素子カバー4は、センサ素子2の先端部を外周側及び先端側から覆うように配設されたインナカバー41と、該インナカバー41を外周側及び先端側から覆うように配設されたアウタカバー42とを有する。
 インナカバー41は、軸方向Zに沿ったインナ側壁部411と、インナ側壁部411の先端側に設けられて軸方向Zに対して交差するインナ底壁部412とを有する。アウタカバー42は、軸方向Zに沿ったアウタ側壁部421と、アウタ側壁部421の先端側に設けられて軸方向Zに対して交差するアウタ底壁部422とを有する。
 インナ側壁部411に形成されたインナ側面孔51は、測定電極22よりも基端側に位置している。アウタ側壁部421に形成されたアウタ側面孔61は、インナ側面孔51よりも先端側に位置している。インナ底壁部412に形成されたインナ底面孔52は、測定電極22よりも先端側に位置している。アウタ底壁部422に形成されたアウタ底面孔62は、インナ底面孔52よりも外側に位置している。
 そして、インナ底面孔52の総面積に対するアウタ側面孔61の総面積の比(総面積比)が、8~47である。また、インナ側面孔51の総面積が、2~8mm2である。
 また、上記総面積比は、好ましくは11~35であり、さらに好ましくは16~30である。また、インナ側面孔51の総面積は、好ましくは3~7mm2であり、さらに好ましくは3.5~6mm2である。
 インナ底面孔52は、軸方向Zに対して直交するインナ底壁部412に形成されている。ここで、軸方向Zに対して直交とは、軸方向Zに対する角度が正確に90°となる場合のみならず、概略直交する状態も含む。例えば、軸方向Zに対する角度が例えば88~92°となるインナ底壁部412にインナ底面孔52が形成されている。
 センサ素子2は、先端側が閉塞されると共に基端側が開放された有底筒状のコップ型に形成されている。すなわち、固体電解質体21が、上記のような有底筒状のコップ型の形状を有している。そして、その外側面に測定電極22が形成されており、内側面に基準電極23が形成されている。
 固体電解質体21は、ジルコニアを主成分としてなる。また、測定電極22及び基準電極23は、何れも白金族元素からなることが好ましく、特に本実施例においては、白金からなる。
 基準電極23は、固体電解質体21の内側面の略全面に形成されている。一方、測定電極22は、固体電解質体21における先端部付近の一部に設けられている。ただし、本例においては、測定電極22の先端は、固体電解質体21の先端よりも基端側に位置する。また、測定電極22は、周方向の全体に形成されている。
 素子カバー4は、その基端のフランジ部413、423において、ハウジング3の先端部にかしめ固定されている。インナカバー41とアウタカバー42とは、それらのフランジ部413、423を互いに重ね合わせるようにした状態で、ハウジング3にかしめ固定されている。
 インナカバー41は、フランジ部413とインナ側壁部411との間に傾斜面部414を有する。インナ側面孔51は、傾斜面部414よりも先端側において、インナ側壁部411に形成されている。すなわち、インナ側面孔51は、軸方向Zにおいて、傾斜面部414と測定電極22との間の位置に形成されている。図3に示すごとく、インナ側面孔51は、周方向に等間隔に、6個形成されている。
 また、インナ底壁部412は、軸方向Zに直交する直交平面部415と、該直交平面部415の周囲において、内側に窪みつつインナ側壁部411と繋がるように形成された窪み部416とを有する。そして、インナ底面孔52は、インナ底壁部412における直交平面部415に形成されている。また、図4に示すごとく、インナ底面孔52は、3個形成されている。
 また、図1に示すごとく、アウタカバー42のアウタ側壁部421は、フランジ部423から先端側へ向かって延びるように形成されている。そして、アウタ側壁部421の先端に繋がるように、軸方向Zに直交するようにアウタ底壁部422が形成されている。アウタ側面孔61は、図1、図5に示すごとく、インナ側面孔51よりも先端側であると共に、センサ素子2の先端部よりも先端側となる位置に、周方向に等間隔に8個形成されている。
 また、図6に示すごとく、アウタ底面孔62は、アウタ底壁部422に8個形成されている。図1、図7に示すごとく、これらのアウタ底面孔62は、いずれも、インナ底面孔52よりも外側に形成されている。なお、インナ底面孔52、アウタ底面孔62、インナ側面孔51、アウタ側面孔61は、いずれも円形の孔である。
 また、図1に示すごとく、インナ側壁部411とアウタ側壁部421との間には、クリアランスが形成されており、インナ底壁部412とアウタ底壁部422との間にも、クリアランスが形成されている。
 また、インナ側壁部411及びアウタ側壁部421は、有底円筒状のセンサ素子2の外周面に沿って、センサ素子2の中心軸と中心軸を共有するように、略円筒状に形成されている。
 また、図2に示すごとく、センサ素子2の内側には、センサ素子2を加熱するためのヒータ11が配設されている。ヒータ11には、アルミナ(Al23)を主成分とするヒータ基材に、発熱体及びリード部が形成されている(図示略)。発熱体及びリード部は、タングステンを主成分とし、少なくともレニウム、モリブデンのいずれかを含む材料からなる。また、ヒータ11は、円柱形状を有する。
 また、本例のガスセンサ1は、内燃機関の排気系における触媒フィルタよりも下流側に設置されるリア用ガスセンサである。また、本例のガスセンサ1は、測定電極22と基準電極23との間に所定の電圧を印加することにより、被測定ガス(排ガス)中の特定ガス濃度(酸素濃度)に依存した限界電流値を出力する限界電流式のガスセンサである。
 すなわち、ガスセンサ1は、自動車エンジンの排気系において、排ガスを浄化する触媒フィルタの下流側に配置される。そして、触媒フィルタを通過した後の排ガス中の酸素濃度に依存した限界電流値を出力する。得られた限界電流値に基づいて、内燃機関に供給された混合気における空燃比を算出して、エンジン制御システムにフィードバックするよう構成することができる。
 次に、本例の作用効果につき説明する。上記ガスセンサ1においては、測定電極22、インナ側面孔51、アウタ側面孔61、インナ底面孔52、アウタ底面孔62の互いの位置関係を、上記のように規定したうえで、インナ底面孔52の総面積に対するアウタ側面孔61の総面積の比(総面積比)と、インナ側面孔51の総面積とを、上記のような範囲に規定している。これにより、後述するように、高い応答性と被液抑制能とを両立することができる。
 また、センサ素子2は、有底筒状のコップ型である。これにより、出力精度の高いガスセンサ1を得ることができる。
 また、ガスセンサ1は、内燃機関の排気系における触媒フィルタよりも下流側に設置されるリア用ガスセンサである。それゆえ、特にガスセンサ1に要求される応答性及び被液抑制能のレベルが高くなるが、上記構成とすることで、その要求に応えることができる。
 また、ガスセンサ1は限界電流式のガスセンサであるため、高い出力精度(ストイキ精度)を得ることができる。
 以上のごとく、本例によれば、高い応答性と被液抑制能とを両立することができるガスセンサを提供することができる。
(実施例2)
 本例は、図8~図14に示すごとく、素子カバー4の形状を変更した例である。なお、図8は、素子カバー4のうち、ハウジング3の先端よりも先端側の部分のみを表したものであり、フランジ部413、423は省略してある。
 本例のガスセンサ1においては、アウタ側面孔61が、アウタ側壁部421における軸方向Zの2つの位置に形成されている。すなわち、アウタ側壁部421には、アウタ底壁部422に近い位置に、8個のアウタ側面孔61が形成されているとともに、これらのアウタ側面孔61よりも基端側に、同じく8個のアウタ側面孔61が形成されている。先端側の8個のアウタ側面孔61は、インナ底面孔52よりも先端側に位置し、基端側の8個のアウタ側面孔61は、インナ底面孔52よりも基端側に位置している。
 図9~図11に示すごとく、インナカバー41は、実施例1に示したものと略同様の形状を有する。そして、インナ側面孔51は、インナ底壁部412の先端面から12.9mmの位置に中心を有する。そして、各インナ側面孔51は、直径1mmの円形状に形成されている。また、インナ底面孔52は、インナカバー41の中心軸から1.75mm離れた位置に中心を有する。そして、各インナ底面孔52は、直径1.2mmの円形状に形成されている。
 また、図12~図14に示すごとく、アウタカバー42においては、先端側の8個のアウタ側面孔61が、アウタ底壁部422の先端面から2mmの位置に中心を有し、先端側の8個のアウタ側面孔61が、アウタ底壁部422の先端面から5mmの位置に中心を有する。そして、各アウタ側面孔61は、直径2mmの円形状に形成されている。また、アウタ底面孔62は、アウタカバー42の中心軸から3.6mm離れた位置に中心を有する。そして、各アウタ底面孔62は、直径1.2mmの円形状に形成されている。
 その他の基本構成については、実施例1の構成と同様である。そして、本例のガスセンサ1も、インナ底面孔52の総面積に対するアウタ側面孔61の総面積の比(総面積比)が、8~47であり、インナ側面孔51の総面積が、2~8mm2である。より具体的には、本例のガスセンサ1は、インナ底面孔52の総面積が2.6mm2、アウタ側面孔61の総面積が56.5mm2であって、上記総面積比が21.8である。また、インナ側面孔51の総面積が4.7mm2である。なお、本実施例又は本実施例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
 本例のガスセンサ1につき、後述の実験例1、2の試験を行ったところ、具体的なデータとして以下の値が得られた。すなわち、平均応答時間Tが692ms、被水痕面積が2.3mm2であった。
 このように、本例のガスセンサは、高い応答性と被液抑制能とを両立することができる。
(実験例1)
 本例は、図15~図17に示すごとく、実施例1、2のガスセンサ1と基本構成を略同じくした種々のガスセンサを、実際のエンジンの排気管に設置して、その応答性を評価した例である。なお、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
 試験にあたっては、2.5Lの直列4気筒のエンジンの排気管に、各ガスセンサを設置した。そして、回転数1000回/分にてエンジンを運転した。そして、エンジンに供給する混合気の空燃比A/Fが14となる状態と、15となる状態とを複数回にわたって交互に形成した。また、ガスセンサの素子温度は750℃とした。
 そしてこのとき、ガスセンサによって実際に測定されるA/Fの値を調べた。すなわち、図17の曲線L1に示すように、時刻t1においてエンジンの空燃比を14から15へと移行したとき、時刻t1から、曲線L2によって表したガスセンサによって測定されるA/Fの値が14から15に向かって63%上昇するまで(すなわち、A/Fの値が14.63となるまで)の時間を測定した。そして、この測定された時間と時刻t1との時間のずれを応答時間Δt1として算出した。
 また、時刻t2においてエンジンの空燃比(曲線L1)を15から14へと移行したとき、時刻t2から、ガスセンサによって測定されるA/Fの値(曲線L2)が15から14に向かって63%減少するまで(すなわち、A/Fの値が14.37となるまで)の時間を測定した。そして、この測定された時間と時刻t2との時間のずれを応答時間Δt2として算出した。
 そして、これを複数回繰り返し、複数の応答時間Δt1及び複数の応答時間Δt2の平均値を算出して各ガスセンサの平均応答時間Tとした。
 なお、複数のガスセンサは、インナカバー41の形状、アウタカバー42の形状、インナ側面孔51、インナ底面孔52、アウタ側面孔61、アウタ底面孔62の位置や大きさ、個数等を種々変更したものである。これにより、複数のガスセンサは、インナ底面孔52の総面積に対するアウタ側面孔61の総面積の比(総面積比)、及び、インナ側面孔51の総面積が、種々変更されている。
 本例の実験の測定結果を、図15、図16に示す。図15は、測定結果を、総面積比と平均応答時間Tとの関係として表したグラフである。また、図16は、測定結果を、インナ側面孔51の総面積と平均応答時間Tとの関係として表したグラフである。
 図15から分かるように、総面積比を8以上とすることにより、平均応答時間Tを800ms(ミリ秒)以下に低減することができている。また、総面積比を11以上とすることにより、平均応答時間Tを750ms以下に低減することができている。さらに、総面積比を16以上とすることにより、平均応答時間Tを700ms以下に低減することができている。
 また、図16から分かるように、インナ側面孔51の総面積を2~8mm2の範囲とすることにより、平均応答時間Tを800ms以下に低減することができている。また、インナ側面孔51の総面積を3~7mm2とすることにより、平均応答時間Tを750ms以下に低減することができている。さらに、インナ側面孔51の総面積を3.5~6mm2とすることにより、平均応答時間Tを700ms以下に低減することができている。
(実験例2)
 本実施例は、図18、図19に示すごとく、ガスセンサの被液抑制能を評価した例である。まず、実験例1と同様に、インナカバー41の形状、アウタカバー42の形状、インナ側面孔51、インナ底面孔52、アウタ側面孔61、アウタ底面孔62の位置や大きさ、個数等を種々変更した複数のガスセンサを用意した。そして、これらのガスセンサにつき、被水(被液)試験を行った。
 被水試験は、特開2007-225592号公報に詳細に記載された被水確認試験方法を用い、以下の手順にて行った。すなわち、水平面に対して傾斜させた配管に、ガスセンサを取付ける。そして、配管の上端開口部から水滴を含む空気を、噴射機から複数回噴射する。このときの、ガスセンサに内蔵されたセンサ素子2への被水痕面積を、測定した。
 実験結果を図18、図19に示す。図18は、測定結果を、総面積比と被水痕面積との関係として表したグラフである。また、図19は、測定結果を、インナ側面孔51の総面積と被水痕面積との関係として表したグラフである。
 図18から分かるように、総面積比を8~47とすることにより、被水痕面積を約30mm2未満に低減することができている。また、総面積比を11~35とすることにより、被水痕面積を約25mm2未満に低減することができている。さらに、総面積比を16~30とすることにより、被水痕面積を約20mm2未満に低減することができている。
 また、図19から分かるように、インナ側面孔51の総面積を2~8mm2とすることにより、被水痕面積を約30mm2未満に低減することができている。また、インナ側面孔51の総面積を3~7mm2とすることにより、被水痕面積を約25mm2未満に低減することができている。さらに、インナ側面孔51の総面積を3.5~6mm2とすることにより、被水痕面積を約20mm2未満に低減することができている。
 以上の結果から、インナ底面孔52の総面積に対するアウタ側面孔61の総面積の比(総面積比)を8~47とするとともに、インナ側面孔51の総面積を2~8mm2とすることにより、ガスセンサの高い応答性と被液抑制能の両方を実現できることが分かる。そして、上記総面積比及びインナ側面孔51の総面積をさらに上記の特定の範囲に絞ることにより、ガスセンサの応答性と被液抑制能とをより向上させることができることも分かる。
 なお、上記実施例においては、有底筒状のコップ型のセンサ素子を備えたガスセンサにつき説明したが、板棒状の固体電解質体に他の層を積層してなるセンサ素子を備えたガスセンサに、本開示を適用することもできる。
 1 ガスセンサ
 2 センサ素子
 21 固体電解質体
 22 測定電極
 23 基準電極
 3 ハウジング
 4 素子カバー
 41 インナカバー
 42 アウタカバー
 411 インナ側壁部
 412 インナ底壁部
 421 アウタ側壁部
 422 アウタ底壁部
 51 インナ側面孔
 52 インナ底面孔
 61 アウタ側面孔
 62 アウタ底面孔
 Z 軸方向

Claims (9)

  1.  酸素イオン伝導性の固体電解質体(21)と該固体電解質体(21)の一方の面と他方の面とにそれぞれ設けた測定電極(22)及び基準電極(23)とを有するセンサ素子(2)と該センサ素子(2)を内側に挿通するハウジング(3)と該ハウジング(3)の先端側に配設された素子カバー(4)と、を備えるガスセンサ(1)であって、該素子カバー(4)は、上記センサ素子(2)の先端部を外周側及び先端側から覆うように配設されたインナカバー(41)と、該インナカバー(41)を外周側及び先端側から覆うように配設されたアウタカバー(42)とを有し、上記インナカバー(41)は、軸方向(Z)に沿ったインナ側壁部(411)と、該インナ側壁部(411)の先端側に設けられて軸方向(Z)に対して交差するインナ底壁部(412)とを有し、上記アウタカバー(42)は、軸方向(Z)に沿ったアウタ側壁部(421)と、該アウタ側壁部(421)の先端側に設けられて軸方向(Z)に対して交差するアウタ底壁部(422)とを有し、上記インナ側壁部(411)に形成されたインナ側面孔(51)は、上記測定電極(22)よりも基端側に位置し、上記アウタ側壁部(421)に形成されたアウタ側面孔(61)は、上記インナ側面孔(51)よりも先端側に位置し、上記インナ底壁部(412)に形成されたインナ底面孔(52)は、上記測定電極(22)よりも先端側に位置し、上記アウタ底壁部(422)に形成されたアウタ底面孔(62)は、上記インナ底面孔(52)よりも外側に位置しており、上記インナ底面孔(52)の総面積に対する上記アウタ側面孔(61)の総面積の比が、8~47であり、上記インナ側面孔(51)の総面積が、2~8mm2であることを特徴とするガスセンサ(1)。
  2.  上記インナ底面孔(52)の総面積に対する上記アウタ側面孔(61)の総面積の比が、11~35であることを特徴とする請求項1に記載のガスセンサ(1)。
  3.  上記インナ底面孔(52)の総面積に対する上記アウタ側面孔(61)の総面積の比が、16~30であることを特徴とする請求項2に記載のガスセンサ(1)。
  4.  上記インナ側面孔(51)の総面積が、3~7mm2であることを特徴とする請求項1~3のいずれか一項に記載のガスセンサ(1)。
  5.  上記インナ側面孔(51)の総面積が、3.5~6mm2であることを特徴とする請求項4に記載のガスセンサ(1)。
  6.  上記インナ底面孔(52)は、軸方向(Z)に対して直交する上記インナ底壁部(412)に形成されていることを特徴とする請求項1~5のいずれか一項に記載のガスセンサ(1)。
  7.  上記センサ素子(2)は、先端側が閉塞されると共に基端側が開放された有底筒状のコップ型であることを特徴とする請求項1~6のいずれか一項に記載のガスセンサ(1)。
  8.  内燃機関の排気系における触媒フィルタよりも下流側に設置されるリア用ガスセンサであることを特徴とする請求項1~7のいずれか一項に記載のガスセンサ(1)。
  9.  上記測定電極(22)と上記基準電極(23)との間に所定の電圧を印加することにより、被測定ガス中の特定ガス濃度に依存した限界電流値を出力する限界電流式のガスセンサであることを特徴とする請求項1~8のいずれか一項に記載のガスセンサ(1)。
PCT/JP2015/068638 2014-06-30 2015-06-29 センサ素子とハウジングと素子カバーとを含むガスセンサ WO2016002699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015003067.0T DE112015003067B4 (de) 2014-06-30 2015-06-29 Gassensor mit einem Sensorelement, einem Gehäuse und einer Elementabdeckung
US15/323,221 US10634640B2 (en) 2014-06-30 2015-06-29 Gas sensor including sensor element, housing, and element cover
CN201580035163.6A CN106471362B (zh) 2014-06-30 2015-06-29 包括传感器元件、壳体及元件罩的气体传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-133485 2014-06-30
JP2014133485A JP6233207B2 (ja) 2014-06-30 2014-06-30 ガスセンサ

Publications (1)

Publication Number Publication Date
WO2016002699A1 true WO2016002699A1 (ja) 2016-01-07

Family

ID=55019235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068638 WO2016002699A1 (ja) 2014-06-30 2015-06-29 センサ素子とハウジングと素子カバーとを含むガスセンサ

Country Status (5)

Country Link
US (1) US10634640B2 (ja)
JP (1) JP6233207B2 (ja)
CN (1) CN106471362B (ja)
DE (1) DE112015003067B4 (ja)
WO (1) WO2016002699A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206308A1 (de) * 2017-04-12 2018-10-18 Robert Bosch Gmbh Abgassensor, insbesondere Partikelsensor
JP6984572B2 (ja) * 2017-11-29 2021-12-22 株式会社デンソー センサ装置
JP6984356B2 (ja) * 2017-11-29 2021-12-17 株式会社デンソー センサ装置
JP7151542B2 (ja) * 2019-02-21 2022-10-12 株式会社デンソー センサ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228112A (ja) * 2000-02-15 2001-08-24 Denso Corp ガスセンサの取付構造
JP2007017453A (ja) * 2001-02-28 2007-01-25 Denso Corp ガスセンサ
JP2007033425A (ja) * 2004-11-24 2007-02-08 Denso Corp ガスセンサ
JP2007101353A (ja) * 2005-10-04 2007-04-19 Denso Corp ガスセンサ
JP2009145268A (ja) * 2007-12-17 2009-07-02 Denso Corp ガスセンサ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016452B2 (ja) * 1996-07-30 2007-12-05 株式会社デンソー 酸素濃度検出器
JP3956435B2 (ja) * 1997-08-07 2007-08-08 株式会社デンソー 酸素センサ素子
JP2003107033A (ja) 2001-07-27 2003-04-09 Denso Corp ガスセンサ
JP3979240B2 (ja) * 2002-09-13 2007-09-19 株式会社デンソー ガス濃度検出装置
JP2004157111A (ja) 2002-10-17 2004-06-03 Denso Corp 空燃比センサ
JP4131242B2 (ja) 2003-01-20 2008-08-13 株式会社デンソー ガスセンサ
EP2940463B1 (en) * 2003-06-30 2019-11-20 NGK Spark Plug Co., Ltd. Gassensor comprising a cylindrical protector cap
JP2007121173A (ja) * 2005-10-31 2007-05-17 Denso Corp ガスセンサ素子及びその製造方法
JP4760678B2 (ja) 2006-01-26 2011-08-31 株式会社デンソー 被水確認試験方法及び被水確認用粉末
JP4950675B2 (ja) * 2006-03-17 2012-06-13 日立オートモティブシステムズ株式会社 排気ガスセンサ
JP4725494B2 (ja) * 2006-04-27 2011-07-13 株式会社デンソー ガスセンサ
JP5096607B2 (ja) 2006-08-04 2012-12-12 日本特殊陶業株式会社 ガスセンサ
JP2008058297A (ja) * 2006-08-04 2008-03-13 Ngk Spark Plug Co Ltd ガスセンサ
JP4894829B2 (ja) 2007-09-07 2012-03-14 株式会社デンソー ガスセンサ
JP4886006B2 (ja) * 2009-05-11 2012-02-29 日本特殊陶業株式会社 ガスセンサユニット
JP5276149B2 (ja) * 2010-11-10 2013-08-28 日本特殊陶業株式会社 ガスセンサ
JP5500148B2 (ja) * 2011-09-27 2014-05-21 株式会社デンソー ガスセンサ素子とその製造方法並びにガスセンサ
JP5367044B2 (ja) * 2011-10-13 2013-12-11 株式会社日本自動車部品総合研究所 ガスセンサ素子および内燃機関用ガスセンサ
JP2013238556A (ja) 2012-05-17 2013-11-28 Denso Corp ガスセンサ
JP6233206B2 (ja) 2014-06-30 2017-11-22 株式会社デンソー ガスセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228112A (ja) * 2000-02-15 2001-08-24 Denso Corp ガスセンサの取付構造
JP2007017453A (ja) * 2001-02-28 2007-01-25 Denso Corp ガスセンサ
JP2007033425A (ja) * 2004-11-24 2007-02-08 Denso Corp ガスセンサ
JP2007101353A (ja) * 2005-10-04 2007-04-19 Denso Corp ガスセンサ
JP2009145268A (ja) * 2007-12-17 2009-07-02 Denso Corp ガスセンサ

Also Published As

Publication number Publication date
DE112015003067T5 (de) 2017-03-23
US10634640B2 (en) 2020-04-28
CN106471362B (zh) 2019-02-22
CN106471362A (zh) 2017-03-01
US20170146482A1 (en) 2017-05-25
JP2016011886A (ja) 2016-01-21
DE112015003067B4 (de) 2022-08-25
JP6233207B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
WO2016002699A1 (ja) センサ素子とハウジングと素子カバーとを含むガスセンサ
US20080028831A1 (en) Gas sensor
WO2016002438A1 (ja) センサ素子とハウジングと素子カバーとを含むガスセンサ
JP2004245828A (ja) ガスセンサ
JP2008076211A (ja) ガスセンサ
JP2009025076A (ja) ガスセンサ
US9228987B2 (en) Gas sensor
JP2012118056A (ja) ガスセンサ
JP6233206B2 (ja) ガスセンサ
JP2014122877A (ja) ガスセンサ
US20180313781A1 (en) Gas sensor
JP2009145268A (ja) ガスセンサ
JP5770773B2 (ja) ガスセンサ
JP2009036754A (ja) アンモニアガスセンサ
JP2012018188A (ja) ガスセンサ
JP6321470B2 (ja) サーミスタ素子および温度センサ
US10429339B2 (en) Gas sensor
JP2016109668A (ja) ガスセンサ取付構造
WO2016002735A1 (ja) ガスセンサ素子
JP2011247620A (ja) ガスセンサ素子の製造方法、及び、ガスセンサの製造方法
JP2011145235A (ja) ガスセンサ
JP2009058364A (ja) ガスセンサ
JP2006343184A (ja) ガスセンサの評価方法及びガスセンサの評価装置
JP2018185234A5 (ja)
JPWO2013024579A1 (ja) ガスセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323221

Country of ref document: US

Ref document number: 112015003067

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814635

Country of ref document: EP

Kind code of ref document: A1