WO2015181870A1 - 複合材料成形体及びその製造方法 - Google Patents

複合材料成形体及びその製造方法 Download PDF

Info

Publication number
WO2015181870A1
WO2015181870A1 PCT/JP2014/063833 JP2014063833W WO2015181870A1 WO 2015181870 A1 WO2015181870 A1 WO 2015181870A1 JP 2014063833 W JP2014063833 W JP 2014063833W WO 2015181870 A1 WO2015181870 A1 WO 2015181870A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
core
reinforcing fiber
fiber
Prior art date
Application number
PCT/JP2014/063833
Other languages
English (en)
French (fr)
Inventor
吉田 武
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201480079050.1A priority Critical patent/CN106414056A/zh
Priority to JP2016522992A priority patent/JP6213673B2/ja
Priority to US15/313,305 priority patent/US10293558B2/en
Priority to EP14893290.8A priority patent/EP3150370B1/en
Priority to PCT/JP2014/063833 priority patent/WO2015181870A1/ja
Publication of WO2015181870A1 publication Critical patent/WO2015181870A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1276Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed parts being three dimensional structures which are wholly or partially penetrated by the foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/10Applying counter-pressure during expanding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/385Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using manifolds or channels directing the flow in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/066Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/047Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0084Foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/048Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/022Foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer

Definitions

  • the present invention relates to a composite material compact and a method of manufacturing the same.
  • Japanese Patent No. 4615398 discloses a carbon fiber composite material molded body in which a core layer made of non-woven fabric is sandwiched between two skin layers.
  • the core layer which is an intermediate layer in the composite material molded body is made of non-woven fabric
  • the non-woven fabric of the core layer is easily crushed and deformed, and the amount of deformation by pressing becomes large.
  • the whole nonwoven fabric of the core layer is impregnated with the matrix resin in order to suppress the deformation amount, the amount of the matrix resin increases and the product mass increases.
  • An object of the present invention is to reduce the amount of deformation due to pressing and to suppress an increase in mass in a composite material molded body provided with a non-woven fabric in an intermediate layer.
  • One embodiment of the present invention is a composite material molded body in which the intermediate layer is a composite molded body in which a non-woven fabric and a foamed resin are mixed.
  • the intermediate layer is composed of a composite molded body in which a non-woven fabric and a foamed resin are mixed, that is, a molded resin of a foamed resin reinforced with non-woven fibers
  • the intermediate layer is less likely to be crushed and deformed as compared to the case where it is configured.
  • the composite material molded body makes foamed resin a matrix, and contains several air bubbles inside. For this reason, according to this composite material molded body, it is possible to reduce the amount of matrix resin in the intermediate layer and to suppress an increase in mass.
  • FIG. 1 is a cross-sectional view of a composite material compact according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the method of manufacturing the composite material molded body of FIG.
  • FIG. 3 is a view for explaining another manufacturing method of the composite material molded body of FIG.
  • FIG. 4 is a view for explaining the method of producing the core material of the composite material compact of FIG.
  • FIG. 5 is a view for explaining another method of producing the core material of the composite material compact of FIG.
  • FIG. 6 is a view for explaining another manufacturing method of the composite material molded body of FIG.
  • FIG. 7 is a view for explaining another method of manufacturing the composite material molded body of FIG.
  • FIG. 8 is a view for explaining another manufacturing method of the composite material molded body of FIG.
  • FIG. 9 is a view for explaining another manufacturing method of the composite material molded body of FIG.
  • a molded body M A composite material molded body (hereinafter, referred to as a molded body M) according to an embodiment of the present invention will be described with reference to FIG.
  • the molded body M includes a first surface layer 1 and a second surface layer 2 and an intermediate layer 3 interposed therebetween.
  • the first surface layer 1 is composed of a sheet-like first skin material 10 made of fiber reinforced plastic
  • the second surface layer 2 is composed of a sheet-like second skin material 20 made of fiber reinforced plastic It is done.
  • the thickness of each of the surface layers 1 and 2, that is, the thickness of each of the skin materials 10 and 20 is not particularly limited, and can be appropriately set according to the strength, rigidity, and the like required of the molded body M. In the case of a molded body M used as a component of a vehicle such as a car, the thickness of the surface materials 10 and 20 is set to, for example, about 0.4 to 3.0 mm.
  • the surface materials 10 and 20 may be made of the same fiber reinforced plastic, or may be made of different fiber reinforced plastics depending on the required strength, rigidity, shapeability at the time of molding, etc. Good.
  • the material of the fiber reinforced plastic is not particularly limited.
  • the reinforcing fiber for example, carbon fiber, glass fiber, polyaramid fiber, alumina fiber, silicon carbide fiber, boron fiber, silicon carbide fiber and the like can be used.
  • the carbon fiber for example, polyacrylonitrile (PAN type), pitch type, cellulose type, vapor grown carbon fiber with hydrocarbon, graphite fiber, etc. can be used. Two or more of these fibers may be used in combination.
  • the matrix resin a known thermosetting resin or thermoplastic resin can be used as the matrix resin.
  • Typical examples are epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, polycarbonate resin, polyester resin, polyamide (PA) resin, liquid crystal polymer resin, polyether sulfone resin, polyether ether ketone resin, polyarylate Resin, polyphenylene ether resin, polyphenylene sulfide (PPS) resin, polyacetal resin, polysulfone resin, polyimide resin, polyetherimide resin, polyolefin resin, polystyrene resin, modified polystyrene resin, AS resin (copolymer of acrylonitrile and styrene), ABS resin (copolymer of acrylonitrile, butadiene and styrene), modified ABS resin, MBS resin (copolymer of methyl methacrylate, butadiene and styrene) ), Modified MBS resin, polymethyl methacrylate (PMMA) resin, modified polymethyl methacrylate resins.
  • PA polyamide
  • the intermediate layer 3 is configured of a sheet-like core material 30.
  • the core member 30 is a molded body of a foamed resin F (a composite molded body in which the nonwoven fabric U and the foamed resin F are mixed) in which the nonwoven fabric U is a fiber base.
  • the thickness of the intermediate layer 3, that is, the thickness of the core material 30 is not particularly limited, and can be appropriately set according to the strength, rigidity, and the like required for the molded body M. In the case of a molded body M used as a component of a vehicle such as an automobile, the thickness of the core member 30 is set to, for example, about 1.0 to 20.0 mm.
  • the molded body M has a so-called sandwich structure in which the skins 10 and 20 are disposed on both sides of the core 30 respectively.
  • the upper surface 31 of the core material 30 is surface-bonded to the lower surface (rear surface) 11 of the skin material 10, and the lower surface 32 of the core material 30 is the upper surface (rear surface) of the skin material 20 It is surface-bonded to 21.
  • the edge parts 13 and 23 comrades of the skin materials 10 and 20 are joined, and, thereby, the bending rigidity of the molded object M is improved.
  • the structure of the edge part of the molded object M is not restricted to this, Only a part of edge part 13 and 23 may be joined, and the whole edge parts 13 and 23 do not need to be joined. .
  • the core material 30 has a structure in which the fibers of the non-woven fabric U are taken in to the inside of the porous resin containing numerous cells C.
  • the fibers of the non-woven fabric U function as reinforcing fibers of the core material 30 by being embedded or fixed in the resin that constitutes the cell walls to reinforce the same.
  • a part of the fibers of the non-woven fabric U may enter the inside of the air bubble C.
  • the core material 30 may include a structure in which a resin mass in a state of being surrounded by the air bubbles C is supported by the fibers of the non-woven fabric U.
  • the structure of the air bubble C is not particularly limited, and an independent air bubble in which the air bubbles are separated from each other and an open air cell in which the air bubbles are connected may be mixed. May be
  • strength and hardness of the molded object M can be raised by making the closed cell rate of the core material 30 high, and making an open cell rate low.
  • the density of the core material 30 is set to be smaller than the density of the fiber reinforced plastic constituting the skin materials 10 and 20. If, for example, a carbon fiber reinforced plastic (specific gravity about 1.55) using an epoxy resin as a matrix resin is adopted as the material of the surface covering materials 10 and 20, the density of the core material 30 is, for example, 0.1 specific gravity It is set to be 1.5 or more.
  • the density of the core material 30 can be appropriately set to a desired density by adjusting the material of the foamed resin F, the porosity (or the foaming ratio), the volume content of the fibrous base material (nonwoven fabric U), and the like.
  • the material of the foamed resin F include polyurethane (PU), polystyrene (PS), polyethylene (PE), polypropylene (PP), ethylene propylene diene rubber (EPDM), acrylic, polyimide (PI), vinyl chloride (PVC) And phenol (PF), silicone (SI), polyethylene terephthalate (PET), ethylene vinyl acetate copolymer (EVA) and the like.
  • PU polyurethane
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • EPDM ethylene propylene diene rubber
  • acrylic polyimide
  • PVC vinyl chloride
  • PF phenol
  • SI silicone
  • PET polyethylene terephthalate
  • EVA ethylene vinyl acetate copolymer
  • the strength, rigidity, etc. of the core material 30 can be adjusted by adjusting the thickness of the core material 30, the fiber diameter of the fiber base (nonwoven fabric U), fiber length, material, etc. It can be set to a desired strength
  • the nonwoven fabric U is a fiber sheet, web or bat in which fibers are unidirectionally or randomly oriented. The fibers are bonded to one another by entanglement, fusion, adhesion or the like.
  • the fiber material of the non-woven fabric U is not particularly limited. Specific examples include carbon fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber, aramid fiber, felt and the like. One of these may be used alone, or two or more may be used in combination.
  • the intermediate layer 3 is composed of a composite molded body in which the non-woven fabric U and the foamed resin F are mixed, ie, a molded body of the foamed resin F reinforced by the fibers of the non-woven fabric U
  • the intermediate layer 3 is less likely to be crushed and deformed when the product surface is pressed, as compared to the case where the nonwoven fabric is made of non-woven fabric. For this reason, according to the molded body M, the amount of deformation due to pressing can be reduced.
  • middle layer 3 makes the foamed resin F the matrix, and contains the several bubble C inside. For this reason, according to the molded body M, the amount of matrix resin in the intermediate layer 3 can be reduced, and an increase in mass can be suppressed.
  • the first reinforcing fiber body 10 f to be a fiber base of the first skin material 10 and the second reinforcing fiber body 20 f to be a fiber base of the second skin material 20 are not impregnated with resin. It is produced from reinforcing fibers in a so-called dry state. Reinforcing fiber bodies 10f and 20f are obtained by laminating reinforcing fiber bundles in one direction or at different angles and binding them with stitch yarns, holding them by heat fusion without using stitch yarns, or reinforcing fibers Composed of textiles etc.
  • the reinforcing fibers constituting the reinforcing fiber body 10f, 20f may be continuous reinforcing fibers, discontinuous reinforcing fibers, or a combination thereof.
  • the core material 30 is manufactured by a manufacturing method C1 or C2 of the core material 30 described later.
  • the reinforcing fiber body 10f is disposed on the upper side of the core material 30, and the reinforcing fiber body 20f is disposed on the lower side of the core material 30, and the first laminate S1 is obtained. Form.
  • the mold 5 has an upper mold 5A and a lower mold 5B.
  • the upper mold 5A is formed with a recess 51 having a molding surface 5a
  • the lower mold 5B is formed with a recess 52 having a molding surface 5b.
  • the mold 5 is closed, it is disposed the recess 51 and the recess 52 face each other, forming a space closed by the forming surface 5a and the molding surface 5b (cavity) CV 1 is defined.
  • the mold 5 is closed, and the first laminate S1 is enclosed in the mold 5, and the matrix in the molten state from the matrix resin injection port 55 provided in the mold 5. injecting a resin MR into the cavity CV 1.
  • the injected matrix resin MR spreads in the gaps formed between the outer peripheral surface of the core material 30 and the molding surfaces 5a and 5b around the core material 30, and forms the reinforcing fibers 10f and 20f. While being impregnated between the fibers, it spreads over the entire area of both reinforcing fiber bodies 10f and 20f.
  • the fluid pressure at the time of injection, the liquid temperature, the injection rate and the like can be determined based on the recommended molding conditions of the matrix resin MR used, and can be appropriately adjusted according to the dimensions and the like of the surface materials 10 and 20. .
  • the fluid pressure can be set to 7 to 20 MPa, and the liquid temperature can be set to 40 to 80 ° C.
  • the first laminate S1 is pressurized and heated at a curing temperature (for example, 120 to 130 ° C.) of the matrix resin MR by the upper mold 5A and the lower mold 5B, thereby being injected into the reinforcing fiber bodies 10f and 20f.
  • the matrix resin MR is cured.
  • the reinforcing fiber bodies 10 f and 20 f become the surface materials 10 and 20 after the matrix resin MR curing, and are integrally molded with the core material 30.
  • the molded product M is obtained by opening the mold and taking out the integrally formed skins 10 and 20 and the core 30 from the mold 5.
  • the core material 30 is interposed between the reinforcing fiber bodies 10f and 20f and enclosed in the molding die 5, and the matrix resin MR in a molten state is injected into the reinforcing fiber bodies 10f and 20f. .
  • the molding surfaces 5a and 5b of the molding die 5 can accurately shape the target shape, it is possible to efficiently manufacture the molding M having a complicated surface shape.
  • the core material 30 is a composite molded body in which the non-woven fabric U and the foamed resin F are mixed, and the non-woven fabric U as the fiber base thereof is impregnated with the foamed resin F, It is difficult for the matrix resin MR injected into the reinforcing fiber bodies 10f and 20f to penetrate. For this reason, according to the manufacturing method P1, a clearer interface can be formed between the two surface layers 1 and 2 and the intermediate layer 3 in the molded body M. Thereby, since desired thickness can be stably obtained in each layer 1, 2, 3 of the molded object M, the reliability of the intensity
  • the first prepreg 10p in which the first reinforcing fiber body 10f is impregnated with the matrix resin to be in a semi-cured state, and the second reinforcing fiber body 20f is impregnated with the matrix resin to be in a semi-cured state A prepreg 20p is produced.
  • the core material 30 is manufactured by a manufacturing method C1 or C2 of the core material 30 described later.
  • the prepreg 10p is disposed on the upper side of the core material 30, and the prepreg 20p is disposed on the lower side of the core material 30, to form a second laminate S2.
  • the second stacked body S ⁇ b> 2 is set in the mold 5.
  • the mold 5 is closed, and the second laminated body S2 is pressurized and heated at the curing temperature of the matrix resin by the upper mold 5A and the lower mold 5B, so that a prepreg is obtained. Cure the 10p, 20p matrix resin. As a result, the prepregs 10 p and 20 p become the skins 10 and 20, and are integrally molded with the core 30. Thereafter, as shown in FIG. 3D, the molded product M is obtained by opening the mold and taking out the integrally formed skins 10 and 20 and the core 30 from the mold 5.
  • the one in which the core material 30 is interposed between the prepregs 10p and 20p is pressure-molded by the mold 5. Since the fiber base materials (reinforcing fiber bodies 10f and 20f) of the prepregs 10p and 20p are impregnated in advance with the matrix resin, it is not necessary to inject the matrix resin into this. Therefore, according to the manufacturing method P2, the injection of the matrix resin into the reinforcing fiber bodies 10f and 20f at the time of pressure molding can be omitted. Further, according to the manufacturing method P2, since the resin injection port can be omitted from the mold 5, the structure of the mold 5 can be further simplified.
  • the manufacturing method P2 since the molten resin is not injected into the mold 5, mixing of the matrix resin of the skins 10 and 20 and the foamed resin F of the core 30 hardly occurs. Specifically, the matrix resin of the surface material 10, 20 is mixed in the nonwoven fabric U of the core material 30, or the foamed resin F of the core material 30 is contained in the reinforcing fiber bodies 10f, 20f of the surface material 10, 20. It is prevented that it mixes. For this reason, according to the manufacturing method P2, a clearer interface can be formed between the two surface layers 1 and 2 and the intermediate layer 3 in the molded body M. Thereby, since desired thickness can be stably obtained in each layer 1, 2, 3 of the molded object M, the reliability of the intensity
  • the core fiber body 30f used as the fiber base material of the core material 30 is formed from the nonwoven fabric U. As shown in FIG. The thickness of the core fiber body 30f is adjusted according to the thickness of the core material 30 required. When a relatively large thickness is required for the core material 30, a plurality of non-woven fabrics U may be laminated to form the core fiber body 30f. The plurality of non-woven fabrics U can be bonded and integrated with each other using a known bonding method such as needle punching, thermal bonding, chemical bonding, stitch bonding, or spunlacing.
  • the mold 7 has an upper mold 7A and a lower mold 7B.
  • the upper mold 7A is formed with a recess 71 having a molding surface 7a
  • the lower mold 7B is formed with a recess 72 having a molding surface 7b.
  • the mold 7 is closed, it is disposed the recess 71 and the recess 72 are opposite to each other, forming a space closed by the molding surface 7a and the molding surface 7b (cavity) CV 2 is defined.
  • the mold 7 is closed and the core fiber body 30 f is enclosed in the mold 7.
  • the mold 7 is provided with a molten resin (hereinafter referred to as a foamable resin FR) in which a foaming agent such as an inert gas is dissolved in a synthetic resin such as polyurethane (PU), which is a material of the foam resin F
  • a foamable resin FR in which a foaming agent such as an inert gas is dissolved in a synthetic resin such as polyurethane (PU), which is a material of the foam resin F
  • PU polyurethane
  • Injected foamable resin FR is spread in the cavity CV 2 while foaming, while being impregnated between fibers of the nonwoven fabric U constituting the core fiber body 30f spread over the cavity CV 2 throughout.
  • the fluid pressure at the time of injection, the liquid temperature, the injection rate and the like can be determined based on the recommended molding conditions of the foamable resin FR to be used, and can be appropriately adjusted in accordance with the dimensions and the like of the core material 30.
  • the fluid pressure can be set to 7 to 20 MPa, and the liquid temperature can be set to 20 to 40 ° C.
  • Injected foamable resin FR is held between, the pressurized state by the upper mold 7A and the lower mold 7B to solidify while foaming in the cavity CV 2. Thereby, the core fiber body 30f and the foamed resin F obtained by foaming and solidifying the foamable resin FR are integrally molded. Thereafter, as shown in FIG. 4 (d), the core material 30 is obtained by opening the mold and taking out the core fiber body 30 f and the foamed resin F integrally molded from the mold 7.
  • the foamable resin FR in a molten state is injected into the core fiber body 30f enclosed in the mold 7.
  • the injected expandable resin FR spreads in the core fiber body 30f while expanding. That is, the foamable resin FR flows between the fibers of the core fiber body 30f while being promoted by its own foaming pressure, and moves to every corner of the core fiber body 30f.
  • the core material 30 in which the core fiber body 30f is uniformly impregnated with the resin can be efficiently produced from a small amount of resin.
  • a core fiber body-bead mixture (hereinafter referred to as a mixture 30c) in which the beads (foaming raw material) B are uniformly dispersed is formed in the core fiber body 30f.
  • the beads B are granular bodies in which a foaming agent, a foaming auxiliary agent, and the like are blended with a synthetic resin such as polystyrene (PS), polyethylene (PE), polypropylene (PP), which is a material of the foamed resin F.
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • the beads B may or may not be prefoamed.
  • the mixture 30c can be obtained by spreading the beads B on the non-woven fabric U to be the core fiber body 30f.
  • the thickness of the mixture 30c can be adjusted according to the thickness of the core 30 required. For example, a relatively thick mixture 30c in which the beads B are uniformly dispersed by laminating a plurality of non-woven fabrics U covered with beads B and repeatedly piercing them from above and below with a needle used in a needle punching method It can be formed.
  • the mold 7 is closed, the mixture 30c is enclosed in the mold 7, and from the gas inlet 76 provided in the mold 7, for example, hot air or steam of 100 to 130.degree. (hereinafter collectively referred to as the hot gas HG) is injected into the cavity CV 2.
  • the high temperature gas HG spreads throughout the cavity CV 2 while infiltrating the mixture 30c, and heats the beads B in the mixture 30c.
  • the heated beads B expand or expand in a molten or semi-molten state and fuse together.
  • the resin of the beads B spreads throughout the cavity CV 2 while penetrating between the fibers of the core fiber body 30 f constituting the mixture 30 c.
  • the temperature of the high temperature gas HG can be appropriately set according to the material of the beads B to be used.
  • the foam in the bead B is cavity CV 2, held between a state in which pressurized mixture 30c by the upper mold 7A and the lower mold 7B to solidify while expansion.
  • the core fiber body 30f constituting the mixed body 30c and the foamed resin F obtained by foaming the beads B are integrally molded.
  • the core material 30 is obtained by opening the mold and taking out the core fiber body 30 f and the foamed resin F integrally molded from the mold 7.
  • the mixture 30c of the core fiber body 30f and the beads B is enclosed in the mold 7, into which the high temperature gas HG is injected to foam the beads B.
  • impregnation of the resin into the core fiber body 30f can be performed using a foaming pressure of the resin, a small amount of the core material 30 in which the core fiber body 30f is uniformly impregnated with the resin is used. It can be efficiently produced from the resin of
  • the core material 30 can be more homogeneous by dispersing the beads B uniformly in the mixed body 30c. Furthermore, the production method C2 can reduce the amount of movement of the resin relative to the core fiber body 30f at the time of foam molding, and therefore, it is easy to maintain the arrangement or distribution of the fibers of the core fiber body 30f before and after foam molding.
  • the first reinforcing fiber body 10f is disposed on the upper side of the core fiber body 30f, and the second reinforcing fiber body 20f is disposed on the lower side of the core fiber body 30f.
  • a third laminate S3 is formed.
  • the third laminate S 3 is set in the mold 5.
  • the mold 5 is closed, and the third stacked body S3 is sealed in the mold 5. Then, the molten matrix resin MR is injected from the matrix resin injection port 55 provided in the mold 5, and a foam in the molten state in which an inert gas or the like is dissolved from the foamable resin injection port 56 provided in the mold 5. Injection resin FR.
  • Matrix resin MR the reinforcing fibrous body 10f in the cavity CV 1
  • the injected matrix resin MR spreads in the gaps formed between the outer peripheral surface of the core fiber body 30f and the molding surfaces 5a and 5b around the core fiber body 30f, and forms the reinforcing fiber bodies 10f and 20f.
  • the whole of the reinforcing fiber bodies 10f and 20f is spread while being impregnated between the reinforcing fibers.
  • Foamable resin FR is injected into the core fiber body 30f in the cavity CV 1.
  • the injected expandable resin FR spreads in the core fiber body 30f while foaming, and spreads throughout the core fiber body 30f while being impregnated between the fibers of the non-woven fabric U constituting the core fiber body 30f.
  • the injection start of the foamable resin FR into the core fiber body 30f is performed after the injection of the matrix resin MR into the reinforcing fiber bodies 10f and 20f is started. Therefore, when the expandable resin FR spreading in the core fiber body 30f reaches the interface between the core fiber body 30f and the reinforcing fiber bodies 10f and 20f, the reinforcing fiber body 10f located outside the interface surface , 20f are impregnated with a matrix resin MR. For this reason, infiltration of the foamable resin FR injected into the core fiber body 30 f into the reinforcing fiber bodies 10 f and 20 f is suppressed.
  • the liquid pressure, liquid temperature, injection speed, and the like at the time of injection of the matrix resin MR and the foamable resin FR can be determined based on the recommended molding conditions of the respective resin materials.
  • the time lag of the start of injection of both resins is the size of the skins 10, 20, the size of the core 30, the speed at which the foamable resin FR moves in the core fiber body 30f, and the matrix resin MR in the reinforcing fiber bodies 10f, 20f. It can be set appropriately in consideration of the moving speed and the like.
  • the third laminated body S3 is pressurized and heated at the curing temperature of the matrix resin MR by the upper mold 5A and the lower mold 5B to cure the matrix resin MR injected into the reinforcing fiber bodies 10f and 20f.
  • the foamable resin FR injected into the core fiber body 30f is foamed and solidified.
  • the reinforcing fiber bodies 10 f and 20 f become the surface materials 10 and 20 after the matrix resin MR curing.
  • the core fiber body 30 f in which the foaming and solidification of the foamable resin FR are completed becomes the core material 30 and is integrally molded with both the skin materials 10 and 20.
  • the molded product M is obtained by opening the mold and taking out the integrally formed skins 10 and 20 and the core 30 from the mold 5.
  • the matrix resin MR in a molten state is injected into the reinforcing fiber bodies 10f and 20f in the mold 5. Therefore, since it can be precisely shape
  • the core fiber body 30f is enclosed in the mold 5 in a state of being interposed between the reinforcing fiber bodies 10f and 20f. Then, the matrix resin MR in a molten state is injected into the reinforcing fiber bodies 10 f and 20 f in the mold 5, and the foamable resin FR in a molten state is injected into the core fiber body 30 f in the mold 5. Therefore, since the surface materials 10 and 20 and the core material 30 can be formed in one step using one forming die 5, the manufacturing cost of the formed body M can be suppressed.
  • the injection start of the foamable resin FR into the core fiber body 30f is performed after the injection start of the matrix resin MR into the reinforcing fiber bodies 10f and 20f. Therefore, before the expandable resin FR spreading in the core fiber body 30f reaches the interface between the core fiber body 30f and the reinforcing fiber bodies 10f and 20f, a reinforcing fiber body located outside the interface 10f and 20f can be impregnated with the matrix resin MR. The injected expandable resin FR hardly penetrates into the reinforcing fiber bodies 10f and 20f impregnated with the matrix resin MR.
  • the first prepreg 10p is disposed on the upper side of the core fiber body 30f
  • the second prepreg 20p is disposed on the lower side of the core fiber body 30f
  • the fourth lamination is performed. Form the body S4.
  • the fourth stacked body S 4 is set in the mold 5.
  • the mold 5 is closed and the fourth stacked body S4 is enclosed in the mold 5.
  • a foamable resin FR in a molten state in which an inert gas or the like is dissolved is injected from the foamable resin injection port 56 provided in the mold 5 into the core fiber body 30 f in the cavity CV 1 .
  • the injected expandable resin FR spreads in the core fiber body 30f while foaming, and spreads throughout the core fiber body 30f while being impregnated between the fibers of the non-woven fabric U constituting the core fiber body 30f.
  • the liquid pressure, liquid temperature, injection rate and the like at the time of injection of the foamable resin FR can be determined based on the recommended molding conditions of the foamable resin FR to be used, and appropriately adjusted according to the size etc. of the core material 30 can do.
  • the fourth laminate S4 is pressurized and heated at the curing temperature of the matrix resin by the upper mold 5A and the lower mold 5B to inject the core fiber body 30f while curing the matrix resin of the prepregs 10p and 20p.
  • the foamed resin FR is foamed and solidified.
  • the prepregs 10 p and 20 p become the surface materials 10 and 20 after curing of the matrix resin.
  • the core fiber body 30 f in which foaming and solidification of the foamable resin FR are completed is integrally molded with the skin materials 10 and 20 as the core material 30.
  • the molded product M is obtained by opening the mold and taking out the integrally formed skins 10 and 20 and the core 30 from the mold 5.
  • the core fiber body 30f is enclosed in the mold 5 in a state of being interposed between the prepregs 10p and 20p, and the foamability of the core fiber body 30f in the mold 5 is melted.
  • Inject resin FR Since the reinforcing fiber bodies 10f and 20f, which are the fiber bases of the prepregs 10p and 20p, are impregnated in advance with the matrix resin, the expandable resin FR injected into the core fiber body 30f is the reinforcing fiber bodies of the prepregs 10p and 20p. It is difficult to penetrate into 10f and 20f.
  • the manufacturing method P4 a more uniform pressure can be applied to the prepregs 10p and 20p to be the skins 10 and 20 by the foaming pressure of the foamable resin FR, so the surfaces of the skins 10 and 20 can be obtained.
  • the appearance quality of the molded body M can be improved by making it smoother.
  • the manufacturing method P4 since the surface materials 10 and 20 and the core material 30 can be formed in one step using one forming die 5, the manufacturing cost of the formed body M can be suppressed.
  • the manufacturing method P4 although it is necessary to inject the foamable resin FR into the core fiber body 30f, it is not necessary to inject the matrix resin into the mold 5. Therefore, the number of resin injection ports provided in the mold 5 can be smaller than that of the mold 5 used in the manufacturing method P3, and the structure of the mold 5 becomes simpler.
  • the expandable resin FR is injected into the core fiber body 30f to produce the core member 30, as in the production method C1 for the core material 30 described above. You can get the effect of
  • the first reinforcing fiber body 10f is disposed on the upper side of the mixture 30c, and the second reinforcing fiber body 20f is disposed on the lower side of the mixture 30c.
  • the fifth stacked body S ⁇ b> 5 is set in the mold 5.
  • the mold 5 is closed and the fifth stacked body S5 is sealed in the mold 5.
  • the matrix resin MR in a molten state is injected from the matrix resin injection port 55 provided in the molding die 5, and a high temperature gas HG of 100 to 130 ° C., for example, is injected from the gas injection port 57 provided in the molding die 5.
  • Matrix resin MR the reinforcing fibrous body 10f in the cavity CV 1
  • the injected matrix resin MR spreads in the gaps formed between the outer peripheral surface of the mixture 30c and the molding surfaces 5a and 5b around the mixture 30c, and forms the reinforcing fibers 10f and 20f. While being impregnated between the fibers, it spreads over the entire area of both reinforcing fiber bodies 10f and 20f.
  • Hot gas HG is injected into the mixture 30c in the cavity CV 1.
  • the injected high temperature gas HG penetrates the entire area of the mixture 30c while penetrating the mixture 30c, and heats the beads B in the mixture 30c.
  • the heated beads B expand or expand in a molten or semi-molten state and fuse together.
  • the resin of the beads B spreads throughout the core fiber body 30f while penetrating between the fibers of the core fiber body 30f constituting the mixed body 30c.
  • the temperature of the high temperature gas HG can be appropriately set according to the material of the beads B to be used.
  • the start of the injection of the high temperature gas HG into the mixture 30c is performed before the start of the injection of the matrix resin MR into the reinforcing fiber body 10f, 20f. Therefore, after the beads B in the mixture 30c are sufficiently foamed and expanded to make the core fiber body 30f of the mixture 30c impregnated with resin, the matrix resin MR is allowed to flow in the gaps around the mixture 30c. Can. This suppresses the matrix resin MR from infiltrating into the mixture 30c.
  • the liquid pressure, liquid temperature, injection speed, temperature of the high temperature gas HG, etc. at the time of injection of the matrix resin MR can be determined based on the recommended molding conditions of the matrix resin MR used, and the dimensions of the surface materials 10 and 20 It can be adjusted appropriately depending on the situation.
  • the fifth laminate S5 is pressurized and heated at the curing temperature of the matrix resin MR by the upper mold 5A and the lower mold 5B, thereby curing the matrix resin MR injected into the reinforcing fiber bodies 10f and 20f. , Foam B, solidify.
  • the reinforcing fiber bodies 10 f and 20 f become the surface materials 10 and 20 after the matrix resin MR curing.
  • the mixture 30c in which the foaming and solidification of the beads B are completed becomes the core 30 and is integrally molded with the skins 10 and 20.
  • the molded product M is obtained by opening the mold and taking out the integrally formed skins 10 and 20 and the core 30 from the mold 5.
  • the matrix resin MR in a molten state is injected into the reinforcing fiber bodies 10f and 20f in the mold 5 as in the manufacturing method P1. For this reason, since it can shape
  • the foaming pressure of the beads B can apply more uniform pressure to the matrix resin MR and the reinforcing fiber bodies 10f and 20f to be the surface materials 10 and 20. For this reason, the surface quality of the molded object M can be improved by making the surfaces of the skins 10 and 20 smoother.
  • the mixed body 30c is enclosed in the mold 5 in a state of being interposed between the reinforcing fiber body 10f and the reinforcing fiber body 20f. Then, the matrix resin MR in a molten state is injected into the reinforcing fiber bodies 10 f and 20 f in the mold 5, and the high temperature gas HG is injected into the mixture 30 c in the mold 5. Therefore, since the surface materials 10 and 20 and the core material 30 can be formed in one step using one forming die 5, the manufacturing cost of the formed body M can be suppressed.
  • the start of the injection of the high temperature gas HG into the mixture 30c is performed prior to the start of the injection of the matrix resin MR into the reinforcing fiber body 10f, 20f. Therefore, after the beads B in the mixed body 30c are sufficiently foamed and expanded to make the core fiber body 30f of the mixed body 30c impregnated with the resin, the reinforcing fiber bodies 10f in the gaps around the mixed body 30c, The matrix resin MR can be flowed to 20f. The injected matrix resin MR hardly penetrates into the core fiber body 30f after the resin of the beads B is impregnated.
  • the first prepreg 10p is disposed on the upper side of the mixed body 30c, and the second prepreg 20p is disposed on the lower side of the mixed body 30c.
  • the sixth stacked body S 6 is set in the mold 5.
  • the mold 5 is closed, and the sixth stacked body S6 is sealed in the mold 5. Then, a high temperature gas HG of, for example, 100 to 130 ° C. is injected from the gas injection port 57 provided in the forming die 5.
  • a high temperature gas HG of, for example, 100 to 130 ° C. is injected from the gas injection port 57 provided in the forming die 5.
  • Hot gas HG is injected into the mixture 30c in the cavity CV 1.
  • the injected high temperature gas HG penetrates the entire area of the mixture 30c while penetrating the mixture 30c, and heats the beads B in the mixture 30c.
  • the heated beads B expand or expand in a molten or semi-molten state and fuse together.
  • the resin of the beads B spreads throughout the core fiber body 30f while penetrating between the fibers of the core fiber body 30f constituting the mixed body 30c.
  • the temperature of the high temperature gas HG can be appropriately set according to the material of the beads B to be used.
  • the beads in the mixture 30c are cured while curing the matrix resin of the prepregs 10p and 20p. B is allowed to foam and solidify. Thereby, the prepregs 10 p and 20 p become the surface materials 10 and 20 after curing of the matrix resin. Moreover, the mixture 30c in which the foaming and solidification of the beads B are completed becomes the core 30 and is integrally molded with the skins 10 and 20. Thereafter, as shown in FIG. 9D, the molded body M is obtained by opening the mold and taking out the integrally formed skins 10 and 20 and the core 30 from the mold 5.
  • the mixture 30c is sealed in the mold 5 with the mixture 30c interposed between the prepregs 10p and 20p, and the high temperature gas HG is injected into the mixture 30c in the mold 5. Since the reinforcing fiber bodies 10f and 20f, which are the fiber bases of the prepregs 10p and 20p, are impregnated with the matrix resin in advance, the resin of beads B foaming in the mixed body 30c is a reinforcement of the prepregs 10p and 20p. It is hard to penetrate into the fiber bodies 10f and 20f. For this reason, in the manufacturing method P6, a clearer interface can be formed between the two surface layers 1 and 2 and the intermediate layer 3 in the molded body M. Thereby, since desired thickness can be stably obtained in each layer 1, 2, 3 of the molded object M, the reliability of the intensity
  • the manufacturing method P6 a more uniform pressure can be applied to the prepregs 10p and 20p to be the skins 10 and 20 by the foaming pressure of the beads B, so the surfaces of the skins 10 and 20 are smoother Thus, the appearance quality of the molded body M can be improved. Furthermore, in the manufacturing method P6, since the surface materials 10 and 20 and the core material 30 can be formed in one step using one forming die 5, the manufacturing cost of the formed body M can be suppressed. Moreover, in the manufacturing method P6, although it is necessary to inject the high temperature gas HG into the mixture 30c, it is not necessary to inject the matrix resin into the mold 5. Therefore, it is not necessary to provide the resin injection port in the mold 5, and the structure of the mold 5 is further simplified.
  • the intermediate layer 3 is formed only of the core member 30.
  • the intermediate layer 3 may be formed between the core member 30 and the first skin member 10 or between the core member 30 and the second skin member 20.
  • a layer material may be interposed.
  • an adhesive layer made of a hot melt adhesive or the like may be interposed.
  • other layers may be provided outside the surface layers 1 and 2.
  • a decorative surface material or the like may be provided on the outer surface of the surface materials 10 and 20.
  • the arrangement and number of the matrix resin injection port 55, the foamable resin injection ports 56 and 75, and the gas injection ports 57 and 76 are not limited to those illustrated, but the dimensions of the surface materials 10 and 20, the dimensions of the core material 30, Of course, it is possible to set a plurality of parts in an appropriate place according to the resin material to be used.
  • the present invention can be applied to a composite material molded body provided with a non-woven fabric in an intermediate layer.
  • M composite material compact 1 first surface layer (first layer) 2 Second surface layer (second layer) 3 middle layer 10 first skin material (first fiber reinforced resin) 10f 1st reinforcing fiber body (1st reinforcing fiber base) 10p 1st prepreg (1st fiber reinforced resin material) 20 Second surface material (second fiber reinforced resin) 20f Second reinforcing fiber (second reinforcing fiber base) 20p Second Prepreg (Second Fiber Reinforced Resin Material) 30 Core material (composite molded body in which non-woven fabric and foamed resin are mixed) 30f core fiber body (core fiber base material) 30c core fiber body-bead mixture (mixture) U Non-woven fabric F Foaming resin B beads (foaming material) MR matrix resin FR foamable resin HG hot air or steam (high temperature gas) 5 Mold 7

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

 中間層(3)が、不織布(U)と発泡樹脂(F)とが混合された複合成形体(30)からなる複合材料成形体(M)。

Description

複合材料成形体及びその製造方法
 本発明は、複合材料成形体及びその製造方法に関する。
 特許第4615398号公報は、2層の表皮層間に不織布からなるコア層を挟持した炭素繊維複合材料成形体を開示している。
 複合材料成形体において中間層であるコア層を不織布とした場合、製品表面を押圧した際に、コア層の不織布が潰れ変形しやすいため押圧による変形量が大きくなってしまう。一方、この変形量を抑えるためにコア層の不織布全体にマトリックス樹脂を含浸させると、マトリックス樹脂量が増大し、製品質量が増大してしまう。
 本発明は、中間層に不織布を備えた複合材料成形体において、押圧による変形量を小さくし、且つ、質量の増大を抑制することを目的とする。
 本発明の一態様は、中間層が、不織布と発泡樹脂とが混合された複合成形体からなる複合材料成形体である。
 この複合材料成形体は、中間層が、不織布と発泡樹脂とが混合された複合成形体、即ち、不織布の繊維によって補強された発泡樹脂の成形体から構成されているので、中間層を不織布から構成した場合と比較して、製品表面を押圧した際に中間層が潰れ変形し難い。このため、この複合材料成形体によれば、押圧による変形量を小さくすることができる。また、上記中間層を構成する複合成形体は、発泡樹脂をマトリックスとしており、複数の気泡を内部に含んでいる。このため、この複合材料成形体によれば、中間層におけるマトリックス樹脂量を減らして、質量の増大を抑制することができる。
図1は、本発明の実施形態にかかる複合材料成形体の断面図である。 図2は、図1の複合材料成形体の製造方法を説明する図である。 図3は、図1の複合材料成形体の他の製造方法を説明する図である。 図4は、図1の複合材料成形体のコア材の作製方法を説明する図である。 図5は、図1の複合材料成形体のコア材の他の作製方法を説明する図である。 図6は、図1の複合材料成形体の他の製造方法を説明する図である。 図7は、図1の複合材料成形体の他の製造方法を説明する図である。 図8は、図1の複合材料成形体の他の製造方法を説明する図である。 図9は、図1の複合材料成形体の他の製造方法を説明する図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、以下の説明における「上」「下」など方向を表す用語は、各部の位置関係を説明するために便宜上定めたものであり、実際の取り付け姿勢等を限定するものではない。
<複合材料成形体>
 本発明の実施形態にかかる複合材料成形体(以下、成形体Mと称する)について、図1を参照して説明する。
 図1に示すように、成形体Mは、第1の表面層1と第2の表面層2と、それらの間に介在する中間層3とを備えている。
 第1の表面層1は、繊維強化プラスチックからなるシート状の第1の表皮材10から構成され、第2の表面層2は、繊維強化プラスチックからなるシート状の第2の表皮材20から構成されている。各表面層1,2の厚さ、即ち、各表皮材10,20の厚さは、特に限定されず、成形体Mに要求される強度、剛性等に応じて適宜設定できる。自動車等車両の部品として用いられる成形体Mであれば、表皮材10,20の厚さは、例えば、0.4~3.0mm程度に設定される。なお、表皮材10,20は、同一の繊維強化プラスチックから構成してもよいし、要求される強度、剛性、成形時の賦形性等に応じて、互いに異なる繊維強化プラスチックから構成してもよい。
 上記繊維強化プラスチックの材料は、特に限定されない。強化繊維としては、例えば、炭素繊維、ガラス繊維、ポリアラミド繊維、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、炭化ケイ素繊維などを用いることができる。炭素繊維は、例えば、ポリアクリロニトリル(PAN系)、ピッチ系、セルロース系、炭化水素による気相成長系炭素繊維、黒鉛繊維などを用いることができる。これらの繊維を2種類以上組み合わせて用いてもよい。また、マトリックス樹脂としては、公知の熱硬化性樹脂や熱可塑性樹脂を用いることができる。典型例としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド(PA)樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド(PPS)樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、AS樹脂(アクリロニトリルとスチレンとのコポリマー)、ABS樹脂(アクリロニトリル、ブタジエン及びスチレンのコポリマー)、変性ABS樹脂、MBS樹脂(メチルメタクリレート、ブタジエン及びスチレンのコポリマー)、変性MBS樹脂、ポリメチルメタクリレート(PMMA)樹脂、変性ポリメチルメタクリレート樹脂等が挙げられる。
 中間層3は、シート状のコア材30から構成されている。コア材30は、不織布Uを繊維基材とする発泡樹脂Fの成形体(不織布Uと発泡樹脂Fとが混合された複合成形体)である。中間層3の厚さ、即ち、コア材30の厚さは、特に限定されず、成形体Mに要求される強度、剛性等に応じて適宜設定できる。自動車等車両の部品として用いられる成形体Mであれば、コア材30の厚さは、例えば、1.0~20.0mm程度に設定される。
 成形体Mは、コア材30の両面上に表皮材10,20がそれぞれ配置された、いわゆるサンドイッチ構造を有している。コア材30の上側の面31は、表皮材10の下側の面(裏面)11と面接合されており、コア材30の下側の面32は、表皮材20の上側の面(裏面)21と面接合されている。また、成形体Mの両端縁部では、表皮材10,20の端部13,23同士が接合されており、これにより、成形体Mの曲げ剛性が高められている。なお、成形体Mの端縁部の構造はこれに限らず、端部13,23の一部のみが接合されていてもよいし、端部13,23の全体が接合されていなくてもよい。
 コア材30は、無数の気泡Cを含む多孔質樹脂の内部に不織布Uの繊維が取り込まれた構造を有する。不織布Uの繊維は、気泡壁を構成する樹脂の中に埋没または固着してこれを補強することで、コア材30の強化繊維として機能する。不織布Uの繊維の一部は、気泡Cの内部に入り込んでいてもよい。また、コア材30は、周囲を気泡Cに囲まれた状態の樹脂塊が不織布Uの繊維によって支持された構造を含んでいてもよい。また、気泡Cの構造は、特に限定されず、気泡同士が互いに隔膜で区切られた独立気泡と、気泡同士がつながっている連続気泡とが混在してもよく、いずれか一方のみから構成されていてもよい。なお、コア材30の独立気泡率を高く、連続気泡率を低くすることで、成形体Mの強度及び硬度を高めることができる。
 コア材30の密度は、表皮材10,20を構成する繊維強化プラスチックの密度よりも小さくなるように設定されている。表皮材10,20の材料として、例えば、エポキシ樹脂をマトリックス樹脂とする炭素繊維強化プラスチック(比重1.55程度)を採用した場合であれば、コア材30の密度は、例えば、比重0.1以上1.5以下となるように設定される。コア材30の密度は、発泡樹脂Fの材料、気孔率(または発泡率)、繊維基材(不織布U)の体積含有率等を調節することで、適宜所望の密度に設定することができる。発泡樹脂Fの材料の具体例としては、ポリウレタン(PU)、ポリスチレン(PS)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンプロピレンジエンゴム(EPDM)、アクリル、ポリイミド(PI)、塩化ビニル(PVC)、フェノール(PF)、シリコーン(SI)、ポリエチレンテレフタレート(PET)、エチレン酢酸ビニル共重合体(EVA)などが挙げられる。また、コア材30の強度、剛性等は、上記コア材30の密度の他、コア材30の厚さ、繊維基材(不織布U)の繊維径、繊維長、材料等を調節することで、所望の強度、剛性等に設定することができる。
 不織布Uは、繊維が一方向またはランダムに配向した繊維シート、ウェブまたはバットである。繊維同士は、交絡、融着、接着等によって互いに結合されている。不織布Uの繊維材料は、特に限定されない。具体的な例としては、炭素繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維、アラミド繊維、フェルトなどが挙げられる。これらのうち一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 成形体Mは、中間層3が、不織布Uと発泡樹脂Fとが混合された複合成形体、即ち、不織布Uの繊維によって補強された発泡樹脂Fの成形体から構成されているので、中間層を不織布から構成した場合と比較して、製品表面を押圧した際に中間層3が潰れ変形し難い。このため、成形体Mによれば、押圧による変形量を小さくすることができる。また、中間層3を構成する複合成形体は、発泡樹脂Fをマトリックスとしており、複数の気泡Cを内部に含んでいる。このため、成形体Mによれば、中間層3におけるマトリックス樹脂量を減らして、質量の増大を抑制することができる。
 以下、成形体Mを効率よく製造する方法について、図2乃至図9を参照して説明する。
<成形体Mの製造方法P1>
 成形体Mの製造方法P1について、図2を参照して説明する。
 まず、第1の表皮材10の繊維基材となる第1の強化繊維体10fと、第2の表皮材20の繊維基材となる第2の強化繊維体20fとを樹脂を含浸させていない所謂ドライ状態の強化繊維から作製する。各強化繊維体10f,20fは、強化繊維束を一方向もしくは角度を変えて積層してステッチ糸で結束したもの若しくはステッチ糸を用いずに熱融着により保形したもの、或いは、強化繊維の織物等から構成される。強化繊維体10f,20fを構成する強化繊維は、連続した強化繊維、不連続の強化繊維、またはそれらの組み合わせであってもよい。
 また、後述するコア材30の作製方法C1またはC2により、コア材30を作製する。
 次に、図2(a)に示すように、コア材30の上側に強化繊維体10fを配置し、コア材30の下側に強化繊維体20fを配置して、第1の積層体S1を形成する。
 次に、図2(b)に示すように、第1の積層体S1を成形型5内にセットする。成形型5は、上型5Aと下型5Bとを有する。上型5Aには成形面5aを有する凹部51が形成され、下型5Bには成形面5bを有する凹部52が形成されている。成形型5が閉じられたとき、凹部51と凹部52とが互いに対向して配置され、成形面5aと成形面5bとによって閉じられた成形空間(キャビティ)CVが画成される。
 次に、図2(c)に示すように、成形型5を閉じて成形型5内に第1の積層体S1を封入し、成形型5に設けたマトリックス樹脂注入口55から溶融状態のマトリックス樹脂MRをキャビティCV内に注入する。注入されたマトリックス樹脂MRは、コア材30の周囲の、コア材30の外周面と各成形面5a,5bとの間に形成される隙間内を広がり、強化繊維体10f,20fを構成する強化繊維間に含浸されつつ両強化繊維体10f,20fの全域に行き渡る。なお、注入時の液圧、液温、注入速度などは、使用するマトリックス樹脂MRの推奨成形条件を基準として定めることができ、表皮材10,20の寸法等に応じて適宜調節することができる。例えば、エポキシ樹脂を採用した場合、液圧は7~20MPaに、液温は40~80℃に設定することができる。
 その後、上型5Aと下型5Bとによって第1の積層体S1をマトリックス樹脂MRの硬化温度(例えば、120~130℃)で加圧、加熱することで、強化繊維体10f,20fに注入されたマトリックス樹脂MRを硬化させる。強化繊維体10f,20fは、マトリックス樹脂MR硬化後、表皮材10,20となり、コア材30と一体成形される。その後、図2(d)に示すように、型開きし、一体成形された表皮材10,20及びコア材30を成形型5から取り出すことで、成形体Mが得られる。
 以上説明した通り、製造方法P1では、コア材30を強化繊維体10f,20fの間に介在させて成形型5内に封入し、強化繊維体10f,20fに溶融状態のマトリックス樹脂MRを注入する。これにより、成形型5の成形面5a,5bによって目標とする形状に精度よく賦形することができるので、複雑な表面形状を有する成形体Mを効率的に製造することができる。
 また、コア材30は、不織布Uと発泡樹脂Fとが混合された複合成形体であり、その繊維基材である不織布Uには発泡樹脂Fが含浸しているため、コア材30のなかには、強化繊維体10f,20fに注入されたマトリックス樹脂MRが浸み込んでいきにくい。このため、製造方法P1によれば、成形体Mにおける2つの表面層1,2と中間層3との間に、より明確な境界面を形成することができる。これにより、成形体Mの各層1,2,3において所望の厚さを安定して得ることができるので、成形体Mの強度・剛性の信頼性を高めることができる。
<成形体Mの他の製造方法P2>
 次に、成形体Mの他の製造方法P2について、図3を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、第1の強化繊維体10fにマトリックス樹脂を含浸させて半硬化状態にした第1のプリプレグ10pと、第2の強化繊維体20fにマトリックス樹脂を含浸させて半硬化状態にした第2のプリプレグ20pとを作製する。
 また、後述するコア材30の作製方法C1またはC2により、コア材30を作製する。
 次に、図3(a)に示すように、コア材30の上側にプリプレグ10pを配置し、コア材30の下側にプリプレグ20pを配置して、第2の積層体S2を形成する。
 次に、図3(b)に示すように、第2の積層体S2を成形型5内にセットする。
 次に、図3(c)に示すように、成形型5を閉じ、上型5Aと下型5Bとによって第2の積層体S2をマトリックス樹脂の硬化温度で加圧、加熱することで、プリプレグ10p,20pのマトリックス樹脂を硬化させる。これにより、プリプレグ10p,20pは、表皮材10,20となり、コア材30と一体成形される。その後、図3(d)に示すように、型開きし、一体成形された表皮材10,20及びコア材30を成形型5から取り出すことで、成形体Mが得られる。
 以上説明した通り、製造方法P2では、コア材30をプリプレグ10p,20pの間に介在させたものを成形型5で加圧成形する。プリプレグ10p,20pの繊維基材(強化繊維体10f,20f)には予めマトリックス樹脂が含浸されているため、これにマトリックス樹脂を注入する必要はない。従って、製造方法P2によれば、加圧成形時における強化繊維体10f,20fへのマトリックス樹脂の注入を省略することができる。また、製造方法P2によれば、成形型5から樹脂注入口を省略することができるので、成形型5の構造をよりシンプルにすることができる。
 また、製造方法P2では、成形型5内に溶融状態の樹脂を注入しないため、表皮材10,20のマトリックス樹脂とコア材30の発泡樹脂Fとの混合が起こりにくい。具体的には、表皮材10,20のマトリックス樹脂がコア材30の不織布Uのなかに混入したり、コア材30の発泡樹脂Fが表皮材10,20の強化繊維体10f,20fのなかに混入したりすることが防止される。このため、製造方法P2によれば、成形体Mにおける2つの表面層1,2と中間層3との間に、より明確な境界面を形成することができる。これにより、成形体Mの各層1,2,3において所望の厚さを安定して得ることができるので、成形体Mの強度・剛性の信頼性を高めることができる。
<コア材30の作製方法C1>
 次に、コア材30の作製方法C1について、図4を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、図4(a)に示すように、コア材30の繊維基材となるコア繊維体30fを不織布Uから形成する。コア繊維体30fの厚さは、要求されるコア材30の厚さに応じて調節する。コア材30に比較的大きな厚さが要求されている場合は、不織布Uを複数枚積層してコア繊維体30fを形成してもよい。複数枚の不織布Uは、ニードルパンチ法、サーマルボンド法、ケミカルボンド法、スティッチボンド法、スパンレース法など公知の結合方法を用いて互いに結合させ、一体化することができる。
 次に、図4(b)に示すように、コア繊維体30fを型7内にセットする。型7は、上型7Aと下型7Bとを有する。上型7Aには成形面7aを有する凹部71が形成され、下型7Bには成形面7bを有する凹部72が形成されている。型7が閉じられたとき、凹部71と凹部72とが互いに対向して配置され、成形面7aと成形面7bとによって閉じられた成形空間(キャビティ)CVが画成される。
 次に、図4(c)に示すように、型7を閉じて型7内にコア繊維体30fを封入する。そして、発泡樹脂Fの材料であるポリウレタン(PU)等の合成樹脂に不活性ガス等の発泡剤を溶解させた溶融状態の樹脂(以下、発泡性樹脂FRと称する)を、型7に設けた樹脂注入口75からキャビティCV内に注入する。注入された発泡性樹脂FRは、発泡しながらキャビティCV内を広がり、コア繊維体30fを構成する不織布Uの繊維間に含浸されつつキャビティCV全域に行き渡る。なお、注入時の液圧、液温、注入速度などは、使用する発泡性樹脂FRの推奨成形条件を基準として定めることができ、コア材30の寸法等に応じて適宜調節することができる。例えば、樹脂としてポリウレタンを採用した場合、液圧は7~20MPaに、液温は20~40℃に設定することができる。
 注入された発泡性樹脂FRがキャビティCV内で発泡しつつ固化する間、上型7Aと下型7Bとによって加圧した状態を保持する。これにより、コア繊維体30fと、発泡性樹脂FRを発泡、固化させて得た発泡樹脂Fとを一体成形する。その後、図4(d)に示すように、型開きし、一体成形されたコア繊維体30f及び発泡樹脂Fを型7から取り出すことで、コア材30が得られる。
 以上説明した通り、作製方法C1では、型7内に封入されたコア繊維体30fに溶融状態の発泡性樹脂FRを注入する。注入された発泡性樹脂FRは、発泡しながらコア繊維体30f内を広がる。即ち、発泡性樹脂FRは、自らの発泡圧によって推進されながらコア繊維体30fの繊維間を流れ、コア繊維体30fの隅々まで移動する。このため、作製方法C1によれば、コア繊維体30fに均一に樹脂が含浸されたコア材30を、少量の樹脂から効率的に作製することができる。
<コア材30の他の作製方法C2>
 次に、コア材30の他の作製方法C2について、図5を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、図5(a)に示すように、上記コア繊維体30fのなかにビーズ(発泡原料)Bを均一に分散させたコア繊維体-ビーズ混合体(以下、混合体30cと称する)を形成する。ビーズBは、発泡樹脂Fの材料であるポリスチレン(PS)、ポリエチレン(PE)、ポリプロピレン(PP)等の合成樹脂に発泡剤、発泡助剤等を配合した粒状体である。ビーズBは、予備発泡させてもよいし、させなくてもよい。混合体30cは、コア繊維体30fとなる不織布UにビーズBをまぶすことで得ることができる。混合体30cの厚さは、要求されるコア材30の厚さに応じて調節することができる。例えば、ビーズBをまぶした不織布Uを複数枚積層し、これをニードルパンチ法で使用されるニードルで上下から繰り返し突き刺すことで、内部にビーズBが均一に分散した、比較的厚い混合体30cを形成することができる。
 次に、図5(b)に示すように、混合体30cを型7内にセットする。
 次に、図5(c)に示すように、型7を閉じて型7内に混合体30cを封入し、型7に設けたガス注入口76から、例えば、100~130℃の熱風または水蒸気(以下、高温ガスHGと総称する)をキャビティCV内に注入する。高温ガスHGは、混合体30cに浸透しつつキャビティCV全域に行き渡り、混合体30c内のビーズBを加熱する。加熱されたビーズBは、溶融または半溶融状態となって発泡、膨張し、互いに融着する。ビーズBの樹脂は、混合体30cを構成するコア繊維体30fの繊維間に浸透しつつキャビティCV全域に広がる。なお、高温ガスHGの温度は、使用するビーズBの材料等に応じて適宜設定することができる。
 そして、ビーズBがキャビティCV内で発泡、膨張しつつ固化する間、上型7Aと下型7Bとによって混合体30cを加圧した状態を保持する。これにより、混合体30cを構成するコア繊維体30fとビーズBを発泡させて得た発泡樹脂Fとを一体成形する。その後、図5(d)に示すように、型開きし、一体成形されたコア繊維体30f及び発泡樹脂Fを型7から取り出すことで、コア材30が得られる。
 以上説明した通り、作製方法C2では、コア繊維体30fとビーズBとの混合体30cを型7内に封入し、これに高温ガスHGを注入してビーズBを発泡させる。作製方法C1と同様に、コア繊維体30fへの樹脂の含浸を、樹脂の発泡圧を利用して行うことができるので、コア繊維体30fに均一に樹脂が含浸されたコア材30を、少量の樹脂から効率的に作製することができる。
 また、作製方法C2では、混合体30cのなかにビーズBを均一に分散させておくことで、より均質なコア材30を得ることができる。さらに、作製方法C2は、発泡成形時のコア繊維体30fに対する樹脂の移動量を小さくすることができるので、発泡成形の前後にわたってコア繊維体30fの繊維の配置または分布を維持しやすい。
<成形体Mの他の製造方法P3>
 次に、成形体Mの他の製造方法P3について、図6を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、図6(a)に示すように、コア繊維体30fの上側に第1の強化繊維体10fを配置し、コア繊維体30fの下側に第2の強化繊維体20fを配置して、第3の積層体S3を形成する。
 次に、図6(b)に示すように、第3の積層体S3を成形型5内にセットする。
 次に、図6(c)に示すように、成形型5を閉じて成形型5内に第3の積層体S3を封入する。そして、成形型5に設けたマトリックス樹脂注入口55から溶融状態のマトリックス樹脂MRを注入するとともに、成形型5に設けた発泡性樹脂注入口56から不活性ガス等を溶解させた溶融状態の発泡性樹脂FRを注入する。
 マトリックス樹脂MRは、キャビティCV内の強化繊維体10f,20fに注入される。注入されたマトリックス樹脂MRは、コア繊維体30fの周囲の、コア繊維体30fの外周面と各成形面5a,5bとの間に形成される隙間内を広がり、強化繊維体10f,20fを構成する強化繊維間に含浸されつつ両強化繊維体10f,20fの全域に行き渡る。
 発泡性樹脂FRは、キャビティCV内のコア繊維体30fに注入される。注入された発泡性樹脂FRは、発泡しながらコア繊維体30f内を広がり、コア繊維体30fを構成する不織布Uの繊維間に含浸されつつコア繊維体30f全域に行き渡る。
 製造方法P3では、コア繊維体30fへの発泡性樹脂FRの注入開始は、強化繊維体10f,20fへのマトリックス樹脂MRの注入が開始された後に行われる。従って、コア繊維体30f内を広がっていく発泡性樹脂FRがコア繊維体30fと強化繊維体10f,20fとの間の境界面に到達する時には、当該境界面の外側に位置する強化繊維体10f,20fにはマトリックス樹脂MRが含浸されている。このため、コア繊維体30fへ注入された発泡性樹脂FRが強化繊維体10f,20fのなかに浸潤していくことが抑制される。なお、マトリックス樹脂MR及び発泡性樹脂FRの注入時の液圧、液温、注入速度などは、各樹脂材料の推奨成形条件を基準として定めることができる。両樹脂の注入開始のタイムラグは、表皮材10,20の寸法、コア材30の寸法、発泡性樹脂FRがコア繊維体30f内を移動する速度、マトリックス樹脂MRが強化繊維体10f,20f内を移動する速度等を考慮して適宜設定することができる。
 次に、上型5Aと下型5Bとによって第3の積層体S3をマトリックス樹脂MRの硬化温度で加圧、加熱することで、強化繊維体10f,20fに注入されたマトリックス樹脂MRを硬化させつつ、コア繊維体30fに注入された発泡性樹脂FRを発泡、固化させる。これにより、強化繊維体10f,20fは、マトリックス樹脂MR硬化後、表皮材10,20となる。また、発泡性樹脂FRの発泡、固化が完了したコア繊維体30fは、コア材30となって両表皮材10,20と一体成形される。その後、図6(d)に示すように、型開きし、一体成形された表皮材10,20及びコア材30を成形型5から取り出すことで、成形体Mが得られる。
 以上説明した通り、製造方法P3では、製造方法P1と同様に、成形型5内の強化繊維体10f,20fに溶融状態のマトリックス樹脂MRを注入する。そのため、成形型5の成形面5a,5bによって目標とする形状に精度よく賦形することができるので、複雑な表面形状を有する成形体Mを効率的に製造することができる。 また、製造方法P3では、発泡性樹脂FRの発泡圧により、表皮材10,20となる強化繊維体10f,20f及びマトリックス樹脂MRに対してより均一な圧力を付与することができる。このため、表皮材10,20の表面をより滑らかにして、成形体Mの外観品質を向上させることができる。
 さらに、製造方法P3では、コア繊維体30fを強化繊維体10f,20fの間に介在させた状態で成形型5内に封入する。そして、成形型5内の強化繊維体10f,20fに溶融状態のマトリックス樹脂MRを注入するとともに、成形型5内のコア繊維体30fに溶融状態の発泡性樹脂FRを注入する。従って、表皮材10,20とコア材30とを一つの成形型5を用いて一つの工程で成形することができるので、成形体Mの製造コストを抑えることができる。
 また、製造方法P3では、コア繊維体30fへの発泡性樹脂FRの注入開始を、強化繊維体10f,20fへのマトリックス樹脂MRの注入開始よりも後に行う。そのため、コア繊維体30f内を広がっていく発泡性樹脂FRがコア繊維体30fと強化繊維体10f,20fとの間の境界面に到達する前に、当該境界面の外側に位置する強化繊維体10f,20fにマトリックス樹脂MRを含浸させることができる。注入された発泡性樹脂FRは、マトリックス樹脂MRが含浸された強化繊維体10f,20fのなかには浸み込んでいきにくい。このため、製造方法P3では、成形体Mにおける2つの表面層1,2と中間層3との間に、より明確な境界面を形成することができる。これにより、成形体Mの各層1,2,3において所望の厚さを安定して得ることができるので、成形体Mの強度・剛性の信頼性を高めることができる。
<成形体Mの他の製造方法P4>
 次に、成形体Mの他の製造方法P4について、図7を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、図7(a)に示すように、コア繊維体30fの上側に第1のプリプレグ10pを配置し、コア繊維体30fの下側に第2のプリプレグ20pを配置して、第4の積層体S4を形成する。
 次に、図7(b)に示すように、第4の積層体S4を成形型5内にセットする。
 次に、図7(c)に示すように、成形型5を閉じて成形型5内に第4の積層体S4を封入する。そして、成形型5に設けた発泡性樹脂注入口56から、不活性ガス等を溶解させた溶融状態の発泡性樹脂FRを、キャビティCV内のコア繊維体30fに注入する。注入された発泡性樹脂FRは、発泡しながらコア繊維体30f内を広がり、コア繊維体30fを構成する不織布Uの繊維間に含浸されつつコア繊維体30f全域に行き渡る。なお、発泡性樹脂FRの注入時の液圧、液温、注入速度などは、使用する発泡性樹脂FRの推奨成形条件を基準として定めることができ、コア材30の寸法等に応じて適宜調節することができる。
 その後、上型5Aと下型5Bとによって第4の積層体S4をマトリックス樹脂の硬化温度で加圧、加熱することで、プリプレグ10p,20pのマトリックス樹脂を硬化させつつ、コア繊維体30fに注入された発泡性樹脂FRを発泡、固化させる。これにより、プリプレグ10p,20pは、マトリックス樹脂硬化後、表皮材10,20となる。また、発泡性樹脂FRの発泡、固化が完了したコア繊維体30fは、コア材30となって表皮材10,20と一体成形される。その後、図7(d)に示すように、型開きし、一体成形された表皮材10,20及びコア材30を成形型5から取り出すことで、成形体Mが得られる。
 以上説明した通り、製造方法P4では、コア繊維体30fをプリプレグ10p,20pの間に介在させた状態で成形型5内に封入し、成形型5内のコア繊維体30fに溶融状態の発泡性樹脂FRを注入する。プリプレグ10p,20pの繊維基材である強化繊維体10f,20fには、予めマトリックス樹脂が含浸されているため、コア繊維体30fに注入された発泡性樹脂FRはプリプレグ10p,20pの強化繊維体10f,20fのなかに浸み込んでいきにくい。このため、製造方法P4では、成形体Mにおける2つの表面層1,2と中間層3との間に、より明確な境界面を形成することができる。これにより、成形体Mの各層1,2,3において所望の厚さを安定して得ることができるので、成形体Mの強度・剛性の信頼性を高めることができる。
 また、製造方法P4では、発泡性樹脂FRの発泡圧により、表皮材10,20となるプリプレグ10p,20pに対してより均一な圧力を付与することができるので、表皮材10,20の表面をより滑らかにして、成形体Mの外観品質を向上させることができる。さらに、製造方法P4では、表皮材10,20とコア材30とを一つの成形型5を用いて一つの工程で成形することができるので、成形体Mの製造コストを抑えることができる。また、製造方法P4では、コア繊維体30fに発泡性樹脂FRを注入する必要があるものの、マトリックス樹脂を成形型5内に注入する必要がない。従って、成形型5に設ける樹脂注入口の数を製造方法P3に用いる成形型5よりも少なくでき、成形型5の構造がよりシンプルになる。
 上述の製造方法P3及びP4では、上述のコア材30の作製方法C1と同様に、コア繊維体30fに発泡性樹脂FRを注入してコア材30を作成するため、作製方法C1の効果と同様の効果を得ることができる。
<成形体Mの他の製造方法P5>
 次に、成形体Mの他の製造方法P5について、図8を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、図8(a)に示すように、混合体30cの上側に第1の強化繊維体10fを配置し、混合体30cの下側に第2の強化繊維体20fを配置して、第5の積層体S5を形成する。
 次に、図8(b)に示すように、第5の積層体S5を成形型5内にセットする。
 次に、図8(c)に示すように、成形型5を閉じて成形型5内に第5の積層体S5を封入する。そして、成形型5に設けたマトリックス樹脂注入口55から溶融状態のマトリックス樹脂MRを注入するとともに、成形型5に設けたガス注入口57から例えば、100~130℃の高温ガスHGを注入する。
 マトリックス樹脂MRは、キャビティCV内の強化繊維体10f,20fに注入される。注入されたマトリックス樹脂MRは、混合体30cの周囲の、混合体30cの外周面と各成形面5a,5bとの間に形成される隙間内を広がり、強化繊維体10f,20fを構成する強化繊維間に含浸されつつ両強化繊維体10f,20fの全域に行き渡る。
 高温ガスHGは、キャビティCV内の混合体30cに注入される。注入された高温ガスHGは、混合体30cに浸透しつつ混合体30c全域に行き渡り、混合体30c内のビーズBを加熱する。加熱されたビーズBは、溶融または半溶融状態となって発泡、膨張し、互いに融着する。ビーズBの樹脂は、混合体30cを構成するコア繊維体30fの繊維間に浸透しつつコア繊維体30f全域に広がる。なお、高温ガスHGの温度は、使用するビーズBの材料等に応じて適宜設定することができる。
 製造方法P5では、混合体30cへの高温ガスHGの注入開始は、強化繊維体10f,20fへのマトリックス樹脂MRの注入が開始するよりも先に行われる。従って、混合体30c内のビーズBを十分に発泡、膨張させ、混合体30cのコア繊維体30fを樹脂で含浸した状態にした後に、混合体30cの周囲の隙間内にマトリックス樹脂MRを流すことができる。これにより、マトリックス樹脂MRが混合体30cのなかに浸潤していくことが抑制される。なお、マトリックス樹脂MRの注入時の液圧、液温、注入速度、高温ガスHGの温度などは、使用するマトリックス樹脂MRの推奨成形条件を基準として定めることができ、表皮材10,20の寸法等に応じて適宜調節することができる。
 その後、上型5Aと下型5Bとによって第5の積層体S5をマトリックス樹脂MRの硬化温度で加圧、加熱することで、強化繊維体10f,20fに注入されたマトリックス樹脂MRを硬化させつつ、ビーズBを発泡、固化させる。これにより、強化繊維体10f,20fは、マトリックス樹脂MR硬化後、表皮材10,20となる。また、ビーズBの発泡、固化が完了した混合体30cは、コア材30となって表皮材10,20と一体成形される。その後、図8(d)に示すように、型開きし、一体成形された表皮材10,20及びコア材30を成形型5から取り出すことで、成形体Mが得られる。
 以上説明した通り、製造方法P5では、製造方法P1と同様に、成形型5内の強化繊維体10f,20fに溶融状態のマトリックス樹脂MRを注入する。このため、成形型5の成形面5a,5bによって目標とする形状に精度よく賦形することができるので、複雑な表面形状を有する成形体Mを効率的に製造することができる。
 また、製造方法P5では、ビーズBの発泡圧により、表皮材10,20となるマトリックス樹脂MR及び強化繊維体10f,20fに対してより均一な圧力を付与することができる。このため、表皮材10,20の表面をより滑らかにして、成形体Mの外観品質を向上させることができる。さらに、製造方法P5では、混合体30cを強化繊維体10fと強化繊維体20fとの間に介在させた状態で成形型5内に封入する。そして、成形型5内の強化繊維体10f,20fに溶融状態のマトリックス樹脂MRを注入するとともに、成形型5内の混合体30cに高温ガスHGを注入する。従って、表皮材10,20とコア材30とを一つの成形型5を用いて一つの工程で成形することができるので、成形体Mの製造コストを抑えることができる。
 また、製造方法P5では、混合体30cへの高温ガスHGの注入開始を、強化繊維体10f,20fへのマトリックス樹脂MRの注入開始よりも先に行う。そのため、混合体30c内のビーズBを十分に発泡、膨張させ、混合体30cのコア繊維体30fを樹脂で含浸した状態にした後に、混合体30cの周囲の隙間内にある強化繊維体10f,20fにマトリックス樹脂MRを流すことができる。注入されたマトリックス樹脂MRは、ビーズBの樹脂が含浸された後のコア繊維体30fのなかには浸み込んでいきにくい。このため、製造方法P5では、成形体Mにおける2つの表面層1,2と中間層3との間に、より明確な境界面を形成することができる。これにより、成形体Mの各層1,2,3において所望の厚さを安定して得ることができるので、成形体Mの強度・剛性の信頼性を高めることができる。
<成形体Mの他の製造方法P6>
 次に、成形体Mの他の製造方法P6について、図9を参照して説明する。なお、上記において既に説明した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 まず、図9(a)に示すように、混合体30cの上側に第1のプリプレグ10pを配置し、混合体30cの下側に第2のプリプレグ20pを配置して、第6の積層体S6を形成する。
 次に、図9(b)に示すように、第6の積層体S6を成形型5内にセットする。
 次に、図9(c)に示すように、成形型5を閉じて成形型5内に第6の積層体S6を封入する。そして、成形型5に設けたガス注入口57から、例えば、100~130℃の高温ガスHGを注入する。
 高温ガスHGは、キャビティCV内の混合体30cに注入される。注入された高温ガスHGは、混合体30cに浸透しつつ混合体30c全域に行き渡り、混合体30c内のビーズBを加熱する。加熱されたビーズBは、溶融または半溶融状態となって発泡、膨張し、互いに融着する。ビーズBの樹脂は、混合体30cを構成するコア繊維体30fの繊維間に浸透しつつコア繊維体30f全域に広がる。なお、高温ガスHGの温度は、使用するビーズBの材料等に応じて適宜設定することができる。
 その後、上型5Aと下型5Bとによって第6の積層体S6をマトリックス樹脂の硬化温度で加圧、加熱することで、プリプレグ10p,20pのマトリックス樹脂を硬化させつつ、混合体30c内のビーズBを発泡、固化させる。これにより、プリプレグ10p,20pは、マトリックス樹脂硬化後、表皮材10,20となる。また、ビーズBの発泡、固化が完了した混合体30cは、コア材30となって表皮材10,20と一体成形される。その後、図9(d)に示すように、型開きし、一体成形された表皮材10,20及びコア材30を成形型5から取り出すことで、成形体Mが得られる。
 以上説明した通り、製造方法P6では、混合体30cをプリプレグ10p,20pの間に介在させた状態で成形型5内に封入し、成形型5内の混合体30cに高温ガスHGを注入する。プリプレグ10p,20pの繊維基材である強化繊維体10f,20fには、予めマトリックス樹脂が含浸されているため、混合体30c内で発泡していくビーズBの樹脂は、プリプレグ10p,20pの強化繊維体10f,20fのなかには浸み込んでいきにくい。このため、製造方法P6では、成形体Mにおける2つの表面層1,2と中間層3との間に、より明確な境界面を形成することができる。これにより、成形体Mの各層1,2,3において所望の厚さを安定して得ることができるので、成形体Mの強度・剛性の信頼性を高めることができる。
 また、製造方法P6では、ビーズBの発泡圧により、表皮材10,20となるプリプレグ10p,20pに対してより均一な圧力を付与することができるので、表皮材10,20の表面をより滑らかにして、成形体Mの外観品質を向上させることができる。さらに、製造方法P6では、表皮材10,20とコア材30とを一つの成形型5を用いて一つの工程で成形することができるので、成形体Mの製造コストを抑えることができる。また、製造方法P6では、混合体30cに高温ガスHGを注入する必要があるものの、マトリックス樹脂を成形型5内に注入する必要がない。従って、樹脂注入口を成形型5に設ける必要がなく、成形型5の構造がよりシンプルになる。
 上述の製造方法P5及びP6では、上述のコア材30の作製方法C2と同様に、混合体30cにまぶしたビーズBを発泡、膨張させてコア材30を作成するため、作製方法C2の効果と同様の効果を得ることができる。
 以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。
 上記実施形態では、中間層3をコア材30のみから構成していたが、コア材30と第1の表皮材10との間またはコア材30と第2の表皮材20との間に他の層材を介在させてもよい。例えば、コア材30と表皮材10,20との密着性を高めるために、ホットメルト接着剤などからなる接着層を介在させてもよい。また、表面層1,2の外側に他の層を設けてもよい。例えば、表皮材10,20の外側表面に装飾用表面材等を設けてもよい。
 また、マトリックス樹脂注入口55、発泡性樹脂注入口56,75、ガス注入口57,76の配置、個数は、図示したものに限らず、表皮材10,20の寸法、コア材30の寸法、使用する樹脂材料に応じて適当な箇所に複数個設定できることは勿論である。
 本発明は、中間層に不織布を備えた複合材料成形体に適用できる。
 M 複合材料成形体
 1 第1の表面層(第1の層)
 2 第2の表面層(第2の層)
 3 中間層
 10 第1の表皮材(第1の繊維強化樹脂) 
  10f 第1の強化繊維体(第1の強化繊維基材)
  10p 第1のプリプレグ(第1の繊維強化樹脂材料)
 20 第2の表皮材(第2の繊維強化樹脂) 
  20f 第2の強化繊維体(第2の強化繊維基材)
  20p 第2のプリプレグ(第2の繊維強化樹脂材料)
 30 コア材(不織布と発泡樹脂とが混合された複合成形体)
  30f コア繊維体(コア繊維基材)
  30c コア繊維体-ビーズ混合体(混合体)
 U 不織布
 F 発泡樹脂
 B ビーズ(発泡原料)
 MR マトリックス樹脂
 FR 発泡性樹脂
 HG 熱風または水蒸気(高温ガス)
 5 成形型
 7 型

Claims (9)

  1.  第1の繊維強化樹脂からなる第1の層と、
     第2の繊維強化樹脂からなる第2の層と、
     前記第1の層と第2の層との間に介在する中間層とを備え、
     前記中間層が、不織布と発泡樹脂とが混合された複合成形体からなる、複合材料成形体。
  2.  不織布と発泡樹脂とが混合された複合成形体であるコア材を成形する工程と、
     前記コア材を第1の強化繊維基材と第2の強化繊維基材との間に介在させた状態で成形型内に封入する工程と、
     前記成形型内の第1及び第2の強化繊維基材にマトリックス樹脂を注入する工程と、
    を備えた複合材料成形体の製造方法。
  3.  不織布と発泡樹脂とが混合された複合成形体であるコア材を成形する工程と、
     第1の強化繊維基材にマトリックス樹脂を含浸させた第1の繊維強化樹脂材料と、第2の強化繊維基材にマトリックス樹脂を含浸させた第2の繊維強化樹脂材料との間に前記コア材を介在させ、これを成形型で加圧成形する工程と、
    を備えた複合材料成形体の製造方法。
  4.  前記コア材を成形する工程が、
     不織布からなるコア繊維基材を型内に封入する工程と、
     前記型内のコア繊維基材に発泡性樹脂を注入する工程と、
    を含む請求項2または3に記載の複合材料成形体の製造方法。
  5.  前記コア材を成形する工程が、
     不織布と発泡原料との混合体を型内に封入する工程と、
     前記型内の混合体に高温ガスを注入して前記発泡原料を発泡させる工程と、
    を含む請求項2または3に記載の複合材料成形体の製造方法。
  6.  不織布からなるコア繊維基材を第1の強化繊維基材と第2の強化繊維基材との間に介在させた状態で成形型内に封入する工程と、
     前記成形型内の第1及び第2の強化繊維基材にマトリックス樹脂を注入するとともに、前記成形型内のコア繊維基材に発泡性樹脂を注入する工程と、
    を備えた複合材料成形体の製造方法。
  7.  不織布からなるコア繊維基材を、第1の強化繊維基材にマトリックス樹脂を含浸させた第1の繊維強化樹脂材料と、第2の強化繊維基材にマトリックス樹脂を含浸させた第2の繊維強化樹脂材料との間に介在させた状態で成形型内に封入する工程と、
     前記成形型内のコア繊維基材に発泡性樹脂を注入する工程と、
    を備えた複合材料成形体の製造方法。
  8.  不織布と発泡原料との混合体を第1の強化繊維基材と第2の強化繊維基材との間に介在させた状態で成形型内に封入する工程と、
     前記成形型内の第1及び第2の強化繊維基材にマトリックス樹脂を注入するとともに、前記成形型内の混合体に高温ガスを注入して前記発泡原料を発泡させる工程と、
    を備えた複合材料成形体の製造方法。
  9.  不織布と発泡原料との混合体を、第1の強化繊維基材にマトリックス樹脂を含浸させた第1の繊維強化樹脂材料と、第2の強化繊維基材にマトリックス樹脂を含浸させた第2の繊維強化樹脂材料との間に介在させた状態で成形型内に封入する工程と、
     前記成形型内の混合体に高温ガスを注入して前記発泡原料を発泡させる工程と、
    を備えた複合材料成形体の製造方法。
     
     
PCT/JP2014/063833 2014-05-26 2014-05-26 複合材料成形体及びその製造方法 WO2015181870A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480079050.1A CN106414056A (zh) 2014-05-26 2014-05-26 复合材料成形体及其制造方法
JP2016522992A JP6213673B2 (ja) 2014-05-26 2014-05-26 複合材料成形体及びその製造方法
US15/313,305 US10293558B2 (en) 2014-05-26 2014-05-26 Composite material molded article and method of producing same
EP14893290.8A EP3150370B1 (en) 2014-05-26 2014-05-26 Methods for producing composite material molded article
PCT/JP2014/063833 WO2015181870A1 (ja) 2014-05-26 2014-05-26 複合材料成形体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063833 WO2015181870A1 (ja) 2014-05-26 2014-05-26 複合材料成形体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015181870A1 true WO2015181870A1 (ja) 2015-12-03

Family

ID=54698256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063833 WO2015181870A1 (ja) 2014-05-26 2014-05-26 複合材料成形体及びその製造方法

Country Status (5)

Country Link
US (1) US10293558B2 (ja)
EP (1) EP3150370B1 (ja)
JP (1) JP6213673B2 (ja)
CN (1) CN106414056A (ja)
WO (1) WO2015181870A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062805A (ja) * 2018-10-17 2020-04-23 日産自動車株式会社 複合成形品
JP2020157654A (ja) * 2019-03-27 2020-10-01 日産自動車株式会社 積層パネル材の製造方法及び積層パネル材
JP2021041634A (ja) * 2019-09-12 2021-03-18 株式会社 Monopost 繊維強化樹脂シートと樹脂発泡シートから成る積層複合シートの成形方法
WO2023047919A1 (ja) * 2021-09-24 2023-03-30 東芝キヤリア株式会社 空気調和機の室内ユニット
JP7395219B1 (ja) * 2023-05-23 2023-12-11 株式会社The MOT Company 繊維強化樹脂中空又は複合成形体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2819848T3 (es) * 2015-12-28 2021-04-19 Toray Industries Estructura interlaminar, objeto conformado y procesos de producción del mismo
US11390043B2 (en) * 2017-04-21 2022-07-19 Nissan Motor Co., Ltd. Fiber-reinforced resin component and method for producing fiber-reinforced resin component
DE112018002295T5 (de) 2017-05-02 2020-02-27 Furukawa Electric Co., Ltd. Verbundkörper enthaltend faserverstärktes Harz, faserverstärktes Verbundharzmaterial und Verfahren zu deren Herstellung
CN107696382A (zh) * 2017-10-24 2018-02-16 涂平华 一种碳纤维产品的成型工艺
DE102018215375A1 (de) * 2018-09-11 2020-03-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Außenhautbauteils sowie Außenhautbauteil
KR20210073790A (ko) * 2019-12-11 2021-06-21 한화솔루션 주식회사 발포용 프레스를 사용하는 물리발포 공정
CN113085220B (zh) * 2021-03-03 2023-04-21 江苏科技大学 一种连续纤维增强热塑性复合物微发泡制品及其成型方法和装置
CN113896561B (zh) * 2021-11-18 2022-09-16 杭州幄肯新材料科技有限公司 一种液相-气相沉积碳纤维/碳复合热场材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724245A (en) * 1980-07-21 1982-02-08 Kiyouritsu Resin Kurafuto Kk Light board material
JPS6354221A (ja) * 1986-08-25 1988-03-08 Yamaha Motor Co Ltd ボ−ドの製造方法
JPH04329122A (ja) * 1991-04-30 1992-11-17 Kubota Corp 繊維強化フェノール樹脂発泡体の製造方法
JPH10128792A (ja) * 1996-11-01 1998-05-19 Sekisui Chem Co Ltd 繊維強化樹脂複合体の製造方法
JP2006500253A (ja) * 2002-09-27 2006-01-05 ラントル ビー.ブイ. 改良コア材料
JP2009012359A (ja) * 2007-07-06 2009-01-22 Toho Tenax Co Ltd 発泡体コアを有するfrp成形品の成形方法
JP2009051209A (ja) * 2007-07-31 2009-03-12 Toray Ind Inc Rtm成形方法
JP2011051104A (ja) * 2009-08-31 2011-03-17 Inoac Corp 板状成形体の製造方法
WO2011118226A1 (ja) * 2010-03-26 2011-09-29 三菱重工プラスチックテクノロジー株式会社 繊維強化複合材の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028477A (en) * 1971-12-16 1977-06-07 Shell Oil Company Method of producing an article of thermosetting resin
US5173227A (en) * 1990-12-06 1992-12-22 United Technologies Corporation In-situ molding of fiber reinforced composites to net shape
JP2986564B2 (ja) * 1990-12-11 1999-12-06 帝人株式会社 複合成形物、その製法及びその中間素材並びにパネルの裏打ち材
US5800749A (en) * 1994-01-14 1998-09-01 Compsys, Inc. Method of making composite structures
JPH09150430A (ja) * 1995-11-30 1997-06-10 Sekisui Chem Co Ltd 繊維強化熱可塑性樹脂発泡体とその製造方法
US6048488A (en) * 1997-04-04 2000-04-11 The United States Of America As Represented By The Secretary Of The Army One-step resin transfer molding of multifunctional composites consisting of multiple resins
JP4615398B2 (ja) 2005-08-26 2011-01-19 本田技研工業株式会社 炭素繊維複合材料成形体
DE102010033627B4 (de) * 2010-08-06 2012-05-31 Daimler Ag Geformtes Kunststoff-Mehrschicht-Bauteil mit endlosverstärkten Faserlagen und Verfahren zu dessen Herstellung
WO2012029810A1 (ja) * 2010-08-30 2012-03-08 株式会社イノアックコーポレーション 繊維強化成形体及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724245A (en) * 1980-07-21 1982-02-08 Kiyouritsu Resin Kurafuto Kk Light board material
JPS6354221A (ja) * 1986-08-25 1988-03-08 Yamaha Motor Co Ltd ボ−ドの製造方法
JPH04329122A (ja) * 1991-04-30 1992-11-17 Kubota Corp 繊維強化フェノール樹脂発泡体の製造方法
JPH10128792A (ja) * 1996-11-01 1998-05-19 Sekisui Chem Co Ltd 繊維強化樹脂複合体の製造方法
JP2006500253A (ja) * 2002-09-27 2006-01-05 ラントル ビー.ブイ. 改良コア材料
JP2009012359A (ja) * 2007-07-06 2009-01-22 Toho Tenax Co Ltd 発泡体コアを有するfrp成形品の成形方法
JP2009051209A (ja) * 2007-07-31 2009-03-12 Toray Ind Inc Rtm成形方法
JP2011051104A (ja) * 2009-08-31 2011-03-17 Inoac Corp 板状成形体の製造方法
WO2011118226A1 (ja) * 2010-03-26 2011-09-29 三菱重工プラスチックテクノロジー株式会社 繊維強化複合材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150370A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062805A (ja) * 2018-10-17 2020-04-23 日産自動車株式会社 複合成形品
JP7236245B2 (ja) 2018-10-17 2023-03-09 日産自動車株式会社 複合成形品
JP2020157654A (ja) * 2019-03-27 2020-10-01 日産自動車株式会社 積層パネル材の製造方法及び積層パネル材
JP7203659B2 (ja) 2019-03-27 2023-01-13 日産自動車株式会社 積層パネル材の製造方法及び積層パネル材
JP2021041634A (ja) * 2019-09-12 2021-03-18 株式会社 Monopost 繊維強化樹脂シートと樹脂発泡シートから成る積層複合シートの成形方法
JP7374458B2 (ja) 2019-09-12 2023-11-07 株式会社 Monopost 繊維強化樹脂シートと樹脂発泡シートから成る積層複合シートの成形方法
WO2023047919A1 (ja) * 2021-09-24 2023-03-30 東芝キヤリア株式会社 空気調和機の室内ユニット
JP7395219B1 (ja) * 2023-05-23 2023-12-11 株式会社The MOT Company 繊維強化樹脂中空又は複合成形体

Also Published As

Publication number Publication date
EP3150370A1 (en) 2017-04-05
EP3150370B1 (en) 2018-12-26
US20170136717A1 (en) 2017-05-18
JPWO2015181870A1 (ja) 2017-04-20
EP3150370A4 (en) 2017-05-17
CN106414056A (zh) 2017-02-15
JP6213673B2 (ja) 2017-10-18
US10293558B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2015181870A1 (ja) 複合材料成形体及びその製造方法
US11241867B2 (en) Multicomponent polymer resin, methods for applying the same, and composite laminate structure including the same
US7419713B2 (en) Composite component
JP4803028B2 (ja) プリフォーム、frpおよびそれらの製造方法
US20100248573A1 (en) Flexible 3-d textile structure and method of producing thereof
JP5737870B2 (ja) 繊維強化複合材用の不織布素材
JP2011230341A (ja) 複合成形品の製造方法
US20210197519A1 (en) Method for producing a planar composite component and composite component produced thereby
JP2014100911A (ja) プリフォームおよびその製造方法
JP2008290441A (ja) 強化プラスチック製サンドイッチ材の製造方法
KR20190027521A (ko) 차량용 플로워 카페트 언더패드 및 그 제조방법
US20210370624A1 (en) Method for producing a thermoplastically deformable, fiber-reinforced flat semi-finished product
JP6786989B2 (ja) 複合材料の成形方法
JP6237889B2 (ja) 繊維強化材料の製造方法
EP3444105B1 (en) Hybrid non-woven composite part
JP6596895B2 (ja) 複合材料成形体
EP3946921A1 (en) Dual expanding foam for closed mold composite manufacturing
JP7322630B2 (ja) 乗物用内装材の製造方法
JPH08244150A (ja) 吸音部品
JP4447120B2 (ja) 積層構造体の製造方法及び積層構造体
JPH04241936A (ja) フォームコアを有する板状複合材の製造方法
JP2986559B2 (ja) 平板状の軽量構造体の製造方法
JPH04212838A (ja) 熱可塑性樹脂サンドイッチ状成形物及びその製法
JPH1142655A (ja) 繊維強化樹脂複合体の製造方法
JPS6230029B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522992

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014893290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15313305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE