WO2015178364A1 - 電解液、及び、電気化学デバイス - Google Patents

電解液、及び、電気化学デバイス Download PDF

Info

Publication number
WO2015178364A1
WO2015178364A1 PCT/JP2015/064283 JP2015064283W WO2015178364A1 WO 2015178364 A1 WO2015178364 A1 WO 2015178364A1 JP 2015064283 W JP2015064283 W JP 2015064283W WO 2015178364 A1 WO2015178364 A1 WO 2015178364A1
Authority
WO
WIPO (PCT)
Prior art keywords
quaternary ammonium
ammonium salt
group
fluorine
electrolytic solution
Prior art date
Application number
PCT/JP2015/064283
Other languages
English (en)
French (fr)
Inventor
謙三 高橋
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54554033&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015178364(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580024285.5A priority Critical patent/CN106463277A/zh
Priority to US15/128,842 priority patent/US20170110261A1/en
Priority to JP2016521101A priority patent/JP6187688B2/ja
Publication of WO2015178364A1 publication Critical patent/WO2015178364A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution and an electrochemical device including the electrolytic solution.
  • an electrolytic solution used for an electrochemical device such as an electric double layer capacitor, a quaternary ammonium salt or the like is dissolved in an organic solvent such as a cyclic carbonate such as propylene carbonate or a nitrile compound (for example, see Patent Document 1). Things are often used.
  • Patent Document 6 discloses that as an electrolytic solution used for an electric double layer capacitor that can operate even at an extremely low temperature, a solvent containing acetonitrile and a quaternary ammonium salt include triethylmethylammonium tetrafluoroborate or tetrafluoroborate. An electrolyte containing acid spirobipyrrolidinium is described.
  • the present invention has been made in view of such a current situation, and provides an electrolytic solution and an electrochemical device that can maintain an initial capacitance even when used for a long period of time and hardly increase internal resistance. It is intended to do.
  • the present inventors have found that the above-mentioned problems can be solved by selecting two types of specific quaternary ammonium salts and using them in a specific quantitative ratio, and have completed the present invention. .
  • the present invention includes a tetraalkyl quaternary ammonium salt (A), a quaternary ammonium salt (B) containing a heterocyclic ring, and a solvent, and a fourth containing a tetraalkyl quaternary ammonium salt (A) and a heterocyclic ring.
  • concentration of the quaternary ammonium salt (B) is 0.6 to 2.1 mol / liter in total, and the concentration ratio of the tetraalkyl quaternary ammonium salt (A) to the quaternary ammonium salt (B) containing a heterocyclic ring
  • An electrolytic solution characterized in that (A / B) is 0.015 to 1.000.
  • the quaternary ammonium salt (B) containing the heterocycle is selected from the group consisting of spirobipyrrolidinium salt, imidazolium salt, N-alkylpyridinium salt, and N, N-dialkylpyrrolidinium salt. It is preferable that there is at least one.
  • the concentration of the quaternary ammonium salt (B) containing the heterocyclic ring is preferably 0.5 mol / liter or more.
  • the solvent preferably contains at least one selected from the group consisting of a nitrile compound, a sulfolane compound, a fluorine-containing ether, a cyclic carbonate, and a chain carbonate.
  • the solvent preferably contains a nitrile compound.
  • the electrolytic solution of the present invention is preferably for an electrochemical device.
  • the electrolytic solution of the present invention is preferably for an electric double layer capacitor.
  • the present invention is also an electrochemical device including the above-described electrolytic solution, and a positive electrode and a negative electrode.
  • the electrochemical device of the present invention is preferably an electric double layer capacitor.
  • the present invention includes a tetraalkyl quaternary ammonium salt (A), a quaternary ammonium salt (B) containing a heterocyclic ring, and a solvent, and a quaternary containing a tetraalkyl quaternary ammonium salt (A) and a heterocyclic ring.
  • the concentration of the ammonium salt (B) is 0.6 to 2.1 mol / liter in total, and the concentration ratio of the tetraalkyl quaternary ammonium salt (A) to the quaternary ammonium salt (B) containing a heterocyclic ring ( A / B) is 0.015 to 1.000. Therefore, the electrolytic solution of the present invention can maintain the initial capacitance even when used for a long time, and the internal resistance is unlikely to increase.
  • the electrolytic solution of the present invention contains a tetraalkyl quaternary ammonium salt (A) and a quaternary ammonium salt (B) containing a heterocyclic ring.
  • A tetraalkyl quaternary ammonium salt
  • B quaternary ammonium salt
  • the cause of deterioration seems to be a slight amount of water contained in the electrolyte, particularly hydroxide ions.
  • the electrolytic solution contains a quaternary ammonium salt composed of a chain cation such as a tetraalkyl quaternary ammonium salt
  • hydroxide ions react with the chain cation.
  • the quaternary ammonium salt containing a heterocyclic ring since the cation is composed of a heterocyclic ring, the electrostatic charge is shielded, and hydroxide ions are difficult to approach. Accordingly, hydroxide ions react preferentially with quaternary ammonium salts composed of chain cations.
  • the quaternary ammonium salt containing a heterocyclic ring is hardly affected by the hydroxide ion, and the excellent initial characteristics realized by the quaternary ammonium salt containing a heterocyclic ring are maintained over a long period of time. It seems.
  • the above estimation is merely for facilitating the understanding of the present invention, and the present invention is not limited to the one using the above mechanism.
  • R 1a , R 2a , R 3a and R 4a are the same or different and are alkyl groups which may contain an ether bond having 1 to 6 carbon atoms; X ⁇ is an anion.
  • the tetraalkyl quaternary ammonium salt shown by these is preferable. Further, from the viewpoint of improving oxidation resistance, it is also preferable that some or all of the hydrogen atoms of the ammonium salt are substituted with fluorine atoms and / or fluorine-containing alkyl groups having 1 to 4 carbon atoms.
  • R 1a , R 2a , R 3a and R 4a are the same or different and are alkyl groups which may contain an ether bond having 1 to 6 carbon atoms.
  • R 1a , R 2a , R 3a and R 4a preferably have 1 to 4 carbon atoms.
  • the alkyl group which may contain an ether bond having 1 to 4 carbon atoms for example, methoxymethyl, methoxyethyl, ethoxymethyl and ethoxyethyl are preferable.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • the inorganic anion include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ and SbF 6 ⁇ .
  • the organic anion include CF 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ and the like.
  • the anion X ⁇ is preferably an inorganic anion from the viewpoint of good oxidation resistance and ion dissociation, and more preferably BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , or SbF 6 ⁇ .
  • tetraalkyl quaternary ammonium salt (A) examples include compounds of the formula (A-1):
  • R 5a is an alkyl group having 1 to 6 carbon atoms;
  • R 6a is a divalent hydrocarbon group having 1 to 5 carbon atoms;
  • R 7a is an alkyl group having 1 to 2 carbon atoms;
  • z is 1 or 2;.
  • X - is an anion
  • Preferred examples of the tetraalkyl quaternary ammonium salt (A) include Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N (CF 3 SO 2 ) 2 N, Et 4 N (C 2 F 5 SO 2 ) 2 N, Et 3 MeNBF 4 , Et 3 MeNClO 4 , Et 3 MeNPF 6 , Et 3 MeNAsF 6 M, Et 3 MeNAsF 6 M , Et 3 MeNCF 3 SO 3, Et 3 MeN (CF 3 SO 2) 2 N, Et 3 MeN (C 2 F 5 SO 2) 2 N and the like, in particular, Et 4 NBF 4, Et 4 NPF 6, Et 4 NSbF 6, Et 4 NAsF 6, Et 3 MeNBF 4, N, N- diethyl--N- methyl -N- (2-Metokishie Le) ammonium salts are preferred.
  • the quaternary ammonium salt (B) containing a heterocyclic ring is selected from the group consisting of spirobipyrrolidinium salts, imidazolium salts, N-alkylpyridinium salts, and N, N-dialkylpyrrolidinium salts. It is preferable that it is at least one kind.
  • the above spirobipyrrolidinium salt has the formula (B-1): from the viewpoint of excellent solubility, oxidation resistance and ion conductivity of the salt.
  • M and n in the formula are integers of 3 to 7 which may be the same or different, and more preferably an integer of 4 to 5 from the viewpoint of salt solubility.
  • the anion X ⁇ in the formula is an anion.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • the inorganic anion include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ and SbF 6 ⁇ .
  • the organic anion include CF 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ and the like.
  • anion X ⁇ an inorganic anion is preferable from the viewpoint of good oxidation resistance and ion dissociation, and BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , or SbF 6 ⁇ is more preferable. From the viewpoint of solubility, BF 4 ⁇ and PF 6 ⁇ are more preferable.
  • the spirobipyrrolidinium salt specifically, the following is preferable from the viewpoint of the solubility of the salt.
  • the imidazolium salt has the formula (B-2): from the viewpoint of low viscosity and good solubility.
  • R 10a and R 11a are the same or different and both are alkyl groups of 1 to 6 carbon atoms; X ⁇ is an anion.
  • the imidazolium salt shown by can be illustrated preferably.
  • the imidazolium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Anion X - of the preferred embodiment are the same as in the formula (B-1).
  • imidazolium salt for example,
  • X ⁇ represents BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , or SbF 6 ⁇ ).
  • the N-alkylpyridinium salt has the formula (B-3): from the viewpoint of low viscosity and good solubility.
  • N-alkylpyridinium salts represented by the formula are preferred.
  • the N-alkylpyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Anion X - of the preferred embodiment are the same as in the formula (B-1).
  • N-alkylpyridinium salt examples include, for example,
  • N, N-dialkylpyrrolidinium salt is of the formula (B-4):
  • R 14a and R 15a are the same or different and both are alkyl groups having 1 to 6 carbon atoms; X 2 ⁇ is an anion.
  • An N, N-dialkylpyrrolidinium salt represented by the formula is preferably exemplified. Further, the oxidation resistance of the N, N-dialkylpyrrolidinium salt in which part or all of the hydrogen atoms are substituted with fluorine atoms and / or fluorine-containing alkyl groups having 1 to 4 carbon atoms is improved. It is preferable from the point.
  • R 14a and R 15a are preferably the same or different and both are alkyl groups which may contain an ether bond having 1 to 4 carbon atoms. As the alkyl group which may contain an ether bond having 1 to 4 carbon atoms, for example, methoxymethyl, methoxyethyl, ethoxymethyl and ethoxyethyl are preferable.
  • Anion X - of the preferred embodiment are the same as in the formula (B-1).
  • N, N-dialkylpyrrolidinium salt examples include, for example,
  • the quaternary ammonium salt (B) containing the heterocyclic ring is selected from the group consisting of spirobipyrrolidinium salt, imidazolium salt, and N-alkylpyridinium salt from the viewpoint of solubility of the salt. At least one selected from the group consisting of spirobipyrrolidinium salt and imidazolium salt is more preferable.
  • the concentration of the tetraalkyl quaternary ammonium salt (A) and the quaternary ammonium salt (B) containing a heterocyclic ring is 0.6 to 2.1 mol / liter in total.
  • the total concentration is preferably 0.7 mol / liter or more, more preferably 0.8 mol / liter or more, and preferably 1.9 mol / liter or less, in that excellent initial characteristics can be realized. More preferable is less than mol / liter.
  • the concentration ratio (A / B) between the tetraalkyl quaternary ammonium salt (A) and the quaternary ammonium salt (B) containing a heterocyclic ring is 0.015 to 1.000.
  • concentration ratio is within the above-described range, the initial capacitance can be maintained even when used for a long period of time, and an electrolyte solution in which internal resistance is hardly increased can be obtained.
  • concentration ratio is preferably 0.020 or more, more preferably 0.025 or more, preferably 0.995 or less, and more preferably 0.990 or less.
  • the concentration of the quaternary ammonium salt (B) containing a heterocyclic ring is preferably 0.5 mol / liter or more, because excellent initial characteristics can be realized. More preferably, it is preferably not less than 2.0 mol / liter, more preferably not more than 1.9 mol / liter.
  • the electrolytic solution of the present invention contains a solvent.
  • the solvent preferably contains at least one selected from the group consisting of nitrile compounds, sulfolane compounds, fluorine-containing ethers, cyclic carbonates and chain carbonates, and more preferably contains nitrile compounds.
  • R 1- (CN) n (1) (Wherein R 1 is an alkyl group having 1 to 10 carbon atoms, or an alkylene group having 1 to 10 carbon atoms, and n is an integer of 1 or 2). it can.
  • R 1 is an alkyl group having 1 to 10 carbon atoms
  • R 1 is an alkylene group having 1 to 10 carbon atoms
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group.
  • alkyl groups having 1 to 10 carbon atoms such as a group, and among these, a methyl group and an ethyl group are preferable.
  • alkylene group examples include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, an octylene group, a nonylene group, and a decylene group.
  • a propylene group and an ethylene group are preferable.
  • nitrile compound examples include, for example, acetonitrile (CH 3 —CN), propionitrile (CH 3 —CH 2 —CN), glutaronitrile (NC— (CH 2 ) 3 —CN) and the like.
  • acetonitrile and propionitrile are preferable from the viewpoint of low resistance.
  • the content of the nitrile compound is preferably 50 to 100% by volume in the solvent constituting the electrolytic solution. When the content is in the above range, an electric double layer capacitor having excellent withstand voltage can be obtained.
  • the content of the nitrile compound is more preferably 60% by volume or more, and still more preferably 80% by volume or more in the solvent constituting the electrolytic solution.
  • the sulfolane compound may be a non-fluorine sulfolane compound or a fluorine-containing sulfolane compound.
  • non-fluorine sulfolane compound in addition to sulfolane, for example, formula (2):
  • R 2 is an alkyl group having 1 to 4 carbon atoms, and m is an integer of 1 or 2), and the like.
  • sulfolane and sulfolane derivatives are preferable.
  • fluorine-containing sulfolane compound examples include fluorine-containing sulfolane compounds described in JP-A-2003-132944, and among these,
  • sulfolane compound sulfolane, 3-methylsulfolane, and 2,4-dimethylsulfolane are preferable, and sulfolane and 3-methylsulfolane are particularly preferable.
  • fluorine-containing ether examples include fluorine-containing chain ethers and fluorine-containing cyclic ethers.
  • fluorine-containing chain ether examples include, for example, JP-A-8-37024, JP-A-9-97627, JP-A-11-26015, JP-A-2000-294281, and JP-A-2001-52737. And compounds described in JP-A-11-307123.
  • Rf 1 -O-Rf 2 (3) (Wherein Rf 1 is a fluoroalkyl group having 1 to 10 carbon atoms, and Rf 2 is an alkyl group that may contain a fluorine atom having 1 to 4 carbon atoms). Is preferred.
  • Rf 1 examples include HCF 2 CF 2 CH 2 —, HCF 2 CF 2 CF 2 CH 2 —, HCF 2 CF 2 CF 2 CH 2 —, C 2 F 5 CH 2 —, CF 3 CFHCF 2 CH
  • fluoroalkyl groups having 1 to 10 carbon atoms such as 2- , HCF 2 CF (CF 3 ) CH 2 —, C 2 F 5 CH 2 CH 2 —, CF 3 CH 2 CH 2 — and the like.
  • a fluoroalkyl group having 3 to 6 carbon atoms is preferable.
  • Rf 2 examples include non-fluorine alkyl groups having 1 to 4 carbon atoms, —CF 2 CF 2 H, —CF 2 CFHCF 3 , —CF 2 CF 2 CF 2 H, —CH 2 CH 2 CF 3 , —CH. 2 CFHCF 3 , —CH 2 CH 2 C 2 F 5 and the like can be mentioned, and among these, a fluorine-containing alkyl group having 2 to 4 carbon atoms is preferable.
  • Rf 1 is a fluorine-containing alkyl group having 3 to 4 carbon atoms and Rf 2 is a fluorine-containing alkyl group having 2 to 3 carbon atoms from the viewpoint of good ion conductivity.
  • the fluorine-containing chain ether is not particularly limited as long as it is a known one applicable to an electrolytic solution.
  • CFHCF 3 , HCF 2 CF 2 CH 2 OCH 2 CFHCF 3 , CF 3 CF 2 CH 2 OCH 2 CFHCF 3 and the like can be mentioned, and among these, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3, CF 3 CF 2 CH 2 OCF 2 CF 2 H are from the standpoint of maintaining a high decomposition voltage and low temperature characteristics. Particularly preferred.
  • fluorine-containing cyclic ether examples include:
  • the cyclic carbonate may be a non-fluorine cyclic carbonate or a fluorine-containing cyclic carbonate.
  • non-fluorine cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate, and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • vinylene carbonate vinylene carbonate
  • PC propylene carbonate
  • fluorine-containing cyclic carbonate examples include mono-, di-, tri- or tetra-fluoroethylene carbonate, trifluoromethyl ethylene carbonate, and the like. Among these, fluoroethylene carbonate and trifluoromethylethylene carbonate are preferable from the viewpoint of improving the withstand voltage of the electrochemical device.
  • the chain carbonate may be a non-fluorine chain carbonate or a fluorine-containing chain carbonate.
  • non-fluorine chain carbonate examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl isopropyl carbonate (MIPC), ethyl isopropyl carbonate (EIPC), 2,2,2-trifluoro Examples thereof include ethyl methyl carbonate (TFEMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • MIPC methyl isopropyl carbonate
  • EIPC ethyl isopropyl carbonate
  • TFEMC 2,2,2-trifluoro Examples thereof include ethyl methyl carbonate (TFEMC).
  • dimethyl carbonate (DMC) is preferred from the viewpoint of reducing internal resistance and maintaining low temperature characteristics.
  • fluorine-containing chain carbonate examples include the following formula (4-1):
  • Rf 1a represents the formula:
  • X 1a and X 2a are the same or different, a hydrogen atom or a fluorine atom
  • a fluoroalkyl group having a fluorine content of 10 to 76% by mass preferably at the terminal.
  • Rf 2a is a fluoroalkyl group having a moiety represented by the above formula or a CF 3 terminal and preferably a fluorine content of 10 to 76% by mass
  • Rf 1b has —CF 3 at the terminal and a fluorine content of 10 to 76% by mass, a fluorine-containing alkyl group having an ether bond
  • Rf 2b has a fluorine content of 10 to 76% by mass
  • Rf 1c is the formula: HCFX 1c - (Wherein X 1c is a hydrogen atom or a fluorine atom) and a fluorine-containing alkyl group having an ether bond having a fluorine content of 10 to 76% by mass at the terminal; R 2c is a hydrogen atom And a fluorine-containing chain carbonate represented by an alkyl group which may be substituted with a halogen atom and may contain a hetero atom in the chain.
  • the fluorine content of the fluorine-containing alkyl group (Rf 1a , Rf 1b , Rf 2b , Rf 1c ) is determined based on the structural formula of each group ⁇ (number of fluorine atoms ⁇ 19) / formula weight of each group ⁇ ⁇ 100 It is a value calculated by (%).
  • Rf 1d and Rf 2d are H (CF 2 ) 2 CH 2 —, FCH 2 CF 2 CH 2 —, H (CF 2 ) 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CH 2 CH 2 —, CF 3 CF (CF 3 ) CH 2 CH 2 —, C 3 F 7 OCF (CF 3 ) CH 2 —, CF 3 OCF (CF 3 ) CH 2 —, CF 3 OCF 2 — and the like.
  • a chain carbonate combined with a fluorine-containing group is preferred.
  • fluorine-containing chain carbonates the following are preferable from the viewpoint of reducing internal resistance and maintaining low temperature characteristics.
  • the compounding amount of at least one solvent selected from the group consisting of the nitrile compound, the sulfolane compound, the fluorine-containing ether, the cyclic carbonate, and the chain carbonate described above is in the solvent. It is preferably 50% by volume or more, more preferably 60% by volume or more, and still more preferably 70% by volume or more.
  • the blending amount of the other solvent is preferably less than 50% by volume in the electrolyte, more preferably less than 40% by volume, and still more preferably less than 30% by volume.
  • the electrolyte solution may also contain other electrolyte salt.
  • a lithium salt may be used as the other electrolyte salt. Examples of the lithium salt LiPF 6, LiBF 4, LiAsF 6 , LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred. Further, a magnesium salt may be used to improve the capacity. As the magnesium salt, for example, Mg (ClO 4 ) 2 , Mg (OOC 2 H 5 ) 2 and the like are preferable.
  • the electrolytic solution is prepared by mixing and dissolving the above-described tetraalkyl quaternary ammonium salt (A) and the quaternary ammonium salt (B) containing a heterocyclic ring with the above-mentioned solvent and other components as necessary. can do.
  • a conventionally known method may be employed for mixing and dissolution.
  • the electrolytic solution of the present invention may be a gel (plasticized) gel electrolytic solution in combination with a polymer material that dissolves or swells in the nitrile compound.
  • Examples of such a polymer material include conventionally known polyethylene oxide and polypropylene oxide, modified products thereof (JP-A-8-222270 and JP-A-2002-1000040); polyacrylate polymers, polyacrylonitrile, and polyvinylidene fluoride.
  • Fluorine resins such as vinylidene fluoride-hexafluoropropylene copolymer (JP-A-4-506726, JP-A-8-507407, JP-A-10-294131); Examples include composites with resins (Japanese Patent Laid-Open Nos. 11-35765 and 11-86630).
  • ion conductive compounds described in JP-A-2006-114401 can also be used.
  • This ion conductive compound has the formula (5): P- (D) -Q (5) [Wherein D represents the formula (6-1): -(D1) n- (FAE) m- (AE) p- (Y) q- (6-1) (In the formula, D1 represents the formula (6a):
  • Rf is a fluorine-containing organic group having an ether bond which may have a crosslinkable functional group; R15a is a group or bond which binds Rf to the main chain), and an ether bond to the side chain
  • An ether unit having a fluorine-containing organic group having: FAE has the formula (6b):
  • Rfa is hydrogen atom, a crosslinkable functional group which may have a fluorine-containing alkyl group; R 16a is a group or a bond that binds the Rfa main chain) represented by the fluorine-containing alkyl side chains
  • An ether unit having a group; AE is the formula (6c):
  • R 18a represents a hydrogen atom, an alkyl group which may have a crosslinkable functional group, an aliphatic cyclic hydrocarbon group which may have a crosslinkable functional group, or a crosslinkable functional group.
  • An aromatic hydrocarbon group which may be present R 17a is an ether unit represented by R 18a and a group or a bond which bonds the main chain;
  • Y represents the formulas (6d-1) to (6d-3):
  • a unit comprising at least one of n is an integer from 0 to 200; m is an integer from 0 to 200; p is an integer from 0 to 10000; q is an integer from 1 to 100; provided that n + m is not 0, and the bonding order of D1, FAE, AE, and Y is Not specified.
  • P and Q are the same or different and are a hydrogen atom, a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group, a phenyl group which may contain a fluorine atom and / or a crosslinkable functional group, -COOH A group, —OR 19a (R 19a is a hydrogen atom or a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group), an ester group or a carbonate group (provided that the terminal of D is an oxygen atom) It is an amorphous fluorine-containing polyether compound having a fluorine-containing group in the side chain represented by —COOH group, —OR 19a , ester group and carbonate group.
  • the electrolytic solution of the present invention does not freeze at low temperatures (for example, 0 ° C. or ⁇ 20 ° C.) and does not deposit electrolyte salts.
  • the viscosity at 0 ° C. is preferably 100 mPa ⁇ sec or less, more preferably 30 mPa ⁇ sec or less, and particularly preferably 15 mPa ⁇ sec or less.
  • the viscosity at ⁇ 20 ° C. is preferably 100 mPa ⁇ sec or less, more preferably 40 mPa ⁇ sec or less, and particularly preferably 15 mPa ⁇ sec or less.
  • the electrolytic solution of the present invention is preferably a non-aqueous electrolytic solution.
  • the electrolytic solution of the present invention is useful as an electrolytic solution for electrochemical devices including various electrolytic solutions.
  • Electrochemical devices include electric double layer capacitors, lithium secondary batteries, radical batteries, solar cells (especially dye-sensitized solar cells), fuel cells, various electrochemical sensors, electrochromic elements, electrochemical switching elements, aluminum electrolysis Examples thereof include a capacitor, a tantalum electrolytic capacitor, etc.
  • an electric double layer capacitor and a lithium secondary battery are preferable, and an electric double layer capacitor is particularly preferable.
  • it can also be used as an ion conductor of an antistatic coating material.
  • the electrolytic solution of the present invention is preferably for an electrochemical device, and particularly preferably for an electric double layer capacitor.
  • the electrolytic solution of the present invention and an electrochemical device including a positive electrode and a negative electrode are also one aspect of the present invention.
  • Examples of the electrochemical device include those described above. Among them, an electric double layer capacitor is preferable.
  • At least one of the positive electrode and the negative electrode is preferably a polarizable electrode.
  • the polarizable electrode and the nonpolarizable electrode are described in detail in JP-A-9-7896 as follows. Electrodes can be used.
  • a polarizable electrode mainly composed of activated carbon can be used as the polarizable electrode.
  • the polarizable electrode includes non-activated carbon having a large specific surface area and a conductive agent such as carbon black imparting electron conductivity.
  • the polarizable electrode can be formed by various methods.
  • a polarizable electrode composed of activated carbon and carbon black can be formed by mixing activated carbon powder, carbon black, and a phenolic resin, and firing and activating in an inert gas atmosphere and a water vapor atmosphere after press molding.
  • the polarizable electrode is joined to the current collector with a conductive adhesive or the like.
  • activated carbon powder, carbon black, and a binder can be kneaded in the presence of alcohol, formed into a sheet, and dried to form a polarizable electrode.
  • a polarizable electrode for example, polytetrafluoroethylene is used as the binder.
  • a polarizable electrode in which a conductive agent such as activated carbon powder and carbon black, a binder and a solvent are mixed to form a slurry, and this slurry is coated on a metal foil of a current collector and dried to be integrated with the current collector It can also be.
  • An electric double layer capacitor may be formed by using a polarizable electrode mainly composed of activated carbon for both electrodes, but a configuration using a non-polarizable electrode on one side, for example, a positive electrode mainly composed of a battery active material such as a metal oxide, and activated carbon
  • a positive electrode mainly composed of a battery active material such as a metal oxide mainly composed of a battery active material such as a metal oxide
  • activated carbon A configuration in which a negative electrode of a polarizable electrode mainly composed of a negative electrode of lithium metal or a lithium alloy and a polarizable electrode mainly composed of activated carbon are also possible.
  • carbonaceous materials such as carbon black, graphite, expanded graphite, porous carbon, carbon nanotube, carbon nanohorn, and ketjen black may be used instead of or in combination with activated carbon.
  • Solvents used to prepare the slurry for electrode preparation are preferably those that dissolve the binder.
  • Dimethyl acid, ethanol, methanol, butanol or water is appropriately selected.
  • activated carbon used for the polarizable electrode examples include phenol resin activated carbon, coconut shell activated carbon, petroleum coke activated carbon and the like. Of these, it is preferable to use palm activated carbon in that a large capacity can be obtained.
  • activated carbon activation treatment methods include a steam activation treatment method, a molten KOH activation treatment method, and the like, and it is preferable to use activated carbon by a steam activation treatment method in that a larger capacity can be obtained.
  • Preferred conductive agents used for the polarizable electrode include carbon black, ketjen black, acetylene black, natural graphite, artificial graphite, metal fiber, conductive titanium oxide, and ruthenium oxide.
  • the mixing amount of the conductive agent such as carbon black used for the polarizable electrode is so as to obtain good conductivity (low internal resistance), and if it is too large, the product capacity is reduced. It is preferable to set it as 50 mass%.
  • activated carbon As the activated carbon used for the polarizable electrode, it is preferable to use activated carbon having an average particle size of 20 ⁇ m or less and a specific surface area of 1500 to 3000 m 2 / g so as to obtain a large capacity and low internal resistance electric double layer capacitor. .
  • the current collector is only required to be chemically and electrochemically corrosion resistant.
  • the electric double layer capacitor As the electric double layer capacitor, a wound type electric double layer capacitor, a laminate type electric double layer capacitor, a coin type electric double layer capacitor, etc. are generally known, and the electric double layer capacitor of the present invention is also of these types. Can do.
  • a positive electrode and a negative electrode made of a laminate (electrode) of a current collector and an electrode layer are wound through a separator to produce a wound element, and the wound element is made of aluminum. And the like, and filled with an electrolyte solution, and then sealed and sealed with a rubber sealing body.
  • separator conventionally known materials and structures can be used in the present invention.
  • a polyethylene porous membrane, polypropylene fiber, glass fiber, cellulose fiber non-woven fabric and the like can be mentioned.
  • a laminate type electric double layer capacitor in which a sheet-like positive electrode and a negative electrode are laminated via an electrolytic solution and a separator, and a positive electrode and a negative electrode are formed into a coin shape by fixing with a gasket and the electrolytic solution and the separator
  • a configured coin type electric double layer capacitor can also be used.
  • the electrochemical device of the present invention is other than an electric double layer capacitor
  • other configurations are not particularly limited as long as the electrolytic solution of the present invention is used as the electrolytic solution.
  • a conventionally known configuration may be adopted. .
  • Example 1 Spirobipyrrolidinium tetrafluoroborate (SBP-BF 4 ) was added to acetonitrile so that the concentration became 0.9 mol / liter, and tetraethylammonium tetrafluoroborate (TEABF 4 ) was added at a concentration of 0.1 mol / liter.
  • the electrolyte was prepared by adding 1 liter.
  • an electric double layer capacitor was prepared by the following method, and the obtained electric double layer capacitor was evaluated for the capacitance retention rate and the internal resistance increase rate. The results are shown in Table 1.
  • Electrodes Preparation of electrode slurry 100 parts by weight of steam activated charcoal activated carbon (YP50F manufactured by Kuraray Chemical Co., Ltd.), 3 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, Ketjen Black (Lion 2 parts by weight of carbon ECP600JD manufactured by Co., Ltd., 4 parts by weight of elastomer binder, 2 parts by weight of PTFE (polyflon PTFE D-210C manufactured by Daikin Industries, Ltd.) and a surfactant (trade name DN-800H, A slurry for electrodes was prepared by mixing Daicel Chemical Industries, Ltd.
  • Edged aluminum (20CB manufactured by Nihon Densetsu Kogyo Co., Ltd.) is prepared as a current collector, and the electrode slurry is coated on one side of the current collector using a coating apparatus to form an electrode layer (thickness: 100 ⁇ m). The electrode was produced.
  • the electrode is cut to a predetermined size (20 ⁇ 72 mm), and an electrode lead is bonded to the aluminum surface of the current collector by welding, and a separator (TF45-30 manufactured by Nippon Kogyo Paper Industries Co., Ltd.) is attached to the electrode.
  • a separator TF45-30 manufactured by Nippon Kogyo Paper Industries Co., Ltd.
  • Laminated cell electric double layer capacitor sandwiched in between and housed in a laminate exterior Part No .: D-EL40H, manufacturer: Dai Nippon Printing Co., Ltd.
  • Examples 2-8, Comparative Examples 1-13 An electrolyte solution was prepared in the same manner as in Example 1 except that an electrolyte was prepared by adding an electrolyte salt to acetonitrile so that the concentrations shown in Tables 1 and 2 were obtained. The capacitance retention rate and the internal resistance increase rate were measured. The results are shown in Tables 1 and 2. The abbreviations in the table are as follows.
  • SBP-BF 4 spirobipyrrolidinium tetrafluoroborate
  • EMI-BF 4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • TEABF 4 tetraethylammonium tetrafluoroborate
  • TEMABF 4 triethylmethylammonium tetrafluoroborate
  • DEMEB 4 N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate
  • the electrolytic solution of the present invention can be used as an electrolytic solution for electrochemical devices such as electric double layer capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、長期間使用しても、初期の静電容量を維持することができ、内部抵抗が上昇しにくい電解液及び電気化学デバイスを提供することを目的とする。 本発明は、テトラアルキル4級アンモニウム塩(A)、複素環を含む第4級アンモニウム塩(B)、及び、溶媒を含み、テトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)の濃度が合計で0.6~2.1モル/リットルであり、テトラアルキル4級アンモニウム塩(A)と複素環を含む第4級アンモニウム塩(B)との濃度比(A/B)が0.015~1.000であることを特徴とする電解液である。

Description

電解液、及び、電気化学デバイス
本発明は、電解液及び当該電解液を備える電気化学デバイスに関する。
電気二重層キャパシタ等の電気化学デバイスに用いられる電解液としては、プロピレンカーボネート等の環状カーボネートやニトリル化合物(例えば、特許文献1参照。)等の有機溶媒に、第4級アンモニウム塩等を溶解したものがしばしば用いられる。
このような電解液において、電気化学デバイスの特性を向上させるために、種々の方法が検討されている。
例えば、電気化学デバイスの耐電圧や容量の低下の抑制を目的として、電解液中の特定の不純物を低減させたり(例えば、特許文献2~3参照)、耐電圧の向上を目的として、スルホランまたはその誘導体と特定鎖状炭酸エステルを含む非水系溶媒を用いたり(例えば、特許文献4参照)、安全性の改良を目的として、特定の電解質と含フッ素有機溶媒を組み合わせた電解液等が提案されている(例えば、特許文献5参照)。
また、特許文献6には、極低温でも動作可能な電気二重層キャパシタに使用する電解液として、アセトニトリルを含む溶媒、及び、第4級アンモニウム塩として、テトラフルオロホウ酸トリエチルメチルアンモニウム又はテトラフルオロホウ酸スピロビピロリジウムを含む電解液が記載されている。
特開2000-124077号公報 特開2004-186246号公報 特開2000-311839号公報 特開平08-306591号公報 特開2001-143750号公報 米国特許出願公開第2011/0170237号明細書
しかしながら、従来の電解液では、初期の静電容量が充分に大きく、初期の内部抵抗が充分に小さい電気化学デバイスを実現できたとしても、長期間の使用を継続すると、静電容量が低下し、内部抵抗が上昇する傾向が高いため、改善が求められている。
本発明は、このような現状に鑑みてなされたものであり、長期間使用しても、初期の静電容量を維持することができ、内部抵抗が上昇しにくい電解液及び電気化学デバイスを提供することを目的とするものである。
本発明者らは、特定の第4級アンモニウム塩を2種類選択し、かつ、それらを特定の量比で使用することによって、上述の課題を解決できることを見出し、本発明を完成するに至った。
すなわち本発明は、テトラアルキル4級アンモニウム塩(A)、複素環を含む第4級アンモニウム塩(B)、及び、溶媒を含み、テトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)の濃度が合計で0.6~2.1モル/リットルであり、テトラアルキル4級アンモニウム塩(A)と複素環を含む第4級アンモニウム塩(B)との濃度比(A/B)が0.015~1.000であることを特徴とする電解液である。
上記複素環を含む第4級アンモニウム塩(B)は、スピロビピロリジニウム塩、イミダゾリウム塩、N-アルキルピリジニウム塩、及び、N,N-ジアルキルピロリジニウム塩からなる群より選択される少なくとも1種であることが好ましい。
上記複素環を含む第4級アンモニウム塩(B)の濃度が0.5モル/リットル以上であることが好ましい。
上記溶媒は、ニトリル化合物、スルホラン化合物、含フッ素エーテル、環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種を含むことが好ましい。
上記溶媒は、ニトリル化合物を含むことが好ましい。
本発明の電解液は、電気化学デバイス用であることが好ましい。
本発明の電解液は、電気二重層キャパシタ用であることが好ましい。
本発明はまた、上述の電解液、並びに、正極及び負極を備える電気化学デバイスでもある。
本発明の電気化学デバイスは、電気二重層キャパシタであることが好ましい。
本発明によれば、長期間使用しても、初期の静電容量を維持することができ、内部抵抗が上昇しにくい電解液及び電気化学デバイスを提供することができる。
本発明は、テトラアルキル4級アンモニウム塩(A)、複素環を含む第4級アンモニウム塩(B)、及び、溶媒を含み、テトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)の濃度が合計で0.6~2.1モル/リットルであり、テトラアルキル4級アンモニウム塩(A)と複素環を含む第4級アンモニウム塩(B)との濃度比(A/B)が0.015~1.000であることを特徴とする電解液である。
このため本発明の電解液は、長期間使用しても、初期の静電容量を維持することができ、内部抵抗が上昇しにくい。
本発明の電解液は、テトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)を含む。
本発明の電解液が電気化学デバイスに上述のような耐久性を付与できる理由は必ずしも明確ではないが、本発明者らの研究結果に基づけば、以下のように推測される。
従来使用されてきた第4級アンモニウム塩のうち、複素環を含む第4級アンモニウム塩を使用すると、初期の静電容量が大きく、内部抵抗が小さい電気化学デバイスを作製することができるが、使用を継続すると劣化が避けられない。劣化の原因は、電解液中に僅かながら含まれる水分、特に水酸化物イオンであると思われる。電解液がテトラアルキル4級アンモニウム塩のような鎖状のカチオンからなる第4級アンモニウム塩を含有すると、水酸化物イオンが鎖状のカチオンと反応する。他方、複素環を含む第4級アンモニウム塩は、カチオンが複素環により構成されているため、静電荷が遮蔽されており、水酸化物イオンが近接しにくい。従って、水酸化物イオンは、鎖状のカチオンからなる第4級アンモニウム塩と優先して反応する。そうすると、複素環を含む第4級アンモニウム塩は水酸化物イオンによる悪影響を受けにくく、複素環を含む第4級アンモニウム塩により実現される初期の優れた特性が、長期間に渡って維持されるようである。
以上の推測は本発明の理解を容易にするためのものにすぎず、本発明は上記の機構を利用するものに限定されるものではない。
上記テトラアルキル4級アンモニウム塩(A)としては、式(A):
Figure JPOXMLDOC01-appb-C000001
(式中、R1a、R2a、R3a及びR4aは、同じか又は異なり、炭素数1~6のエーテル結合を含んでいてもよいアルキル基であり;Xはアニオンである。)
で示されるテトラアルキル4級アンモニウム塩が好ましく挙げられる。
また、耐酸化性が向上する点で、上記アンモニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも好ましい。
式(A)において、R1a、R2a、R3a及びR4aは、同じか又は異なり、炭素数1~6のエーテル結合を含んでいてもよいアルキル基である。
1a、R2a、R3a及びR4aは、炭素数が1~4であることが好ましい。
炭素数1~4のエーテル結合を含んでいてもよいアルキル基としては、例えば、メトキシメチル、メトキシエチル、エトキシメチル、エトキシエチルが好ましい。
アニオンXは、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、例えば、AlCl 、BF 、PF 、AsF 、TaF 、I、SbF が挙げられる。有機アニオンとしては、例えば、CFCOO、CFSO 、(CFSO、(CSO等が挙げられる。
なかでも、アニオンXとしては、耐酸化性やイオン解離性が良好な点から、無機アニオンが好ましく、BF 、PF 、AsF 、又は、SbF がより好ましい。
上記テトラアルキル4級アンモニウム塩(A)の具体例としては、式(A-1):
Figure JPOXMLDOC01-appb-C000002
(式中、R1a、R2a及びXは、式(A)と同じであり;x及びyは同じか又は異なり0~4の整数で、かつx+y=4である。)で示されるテトラアルキル4級アンモニウム塩、並びに、式(A-2):
Figure JPOXMLDOC01-appb-C000003
(式中、R5aは炭素数1~6のアルキル基であり;R6aは炭素数1~5の2価の炭化水素基であり;R7aは炭素数1~2のアルキル基であり;zは1又は2であり;Xはアニオンである。)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩、等が挙げられる。アルキルエーテル基を導入することにより、粘性の低下を図ることができる。
上記テトラアルキル4級アンモニウム塩(A)の好適な具体例としては、EtNBF、EtNClO、EtNPF、EtNAsF、EtNSbF、EtNCFSO、EtN(CFSON、EtN(CSON、EtMeNBF、EtMeNClO、EtMeNPF、EtMeNAsF、EtMeNSbF、EtMeNCFSO、EtMeN(CFSON、EtMeN(CSON等が挙げられ、特に、EtNBF、EtNPF、EtNSbF、EtNAsF、EtMeNBF、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩等が好ましい。
上記複素環を含む第4級アンモニウム塩(B)としては、スピロビピロリジニウム塩、イミダゾリウム塩、N-アルキルピリジニウム塩、及び、N,N-ジアルキルピロリジニウム塩からなる群より選択される少なくとも1種であることが好ましい。
上記スピロビピロリジニウム塩としては、塩の溶解性、耐酸化性、イオン伝導性に優れる点で、式(B-1):
Figure JPOXMLDOC01-appb-C000004
(式中、m及びnは、同一又は異なっていてもよい3~7の整数を示し、Xはアニオンを示す。)で示される化合物が好ましい。
式中のm及びnは、同一又は異なっていてもよい3~7の整数であり、塩の溶解性の観点から、4~5の整数であることがより好ましい。
式中のXは、アニオンである。アニオンXは、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、例えば、AlCl 、BF 、PF 、AsF 、TaF 、I、SbF が挙げられる。有機アニオンとしては、例えば、CFCOO、CFSO 、(CFSO、(CSO等が挙げられる。
なかでも、アニオンXとしては、耐酸化性やイオン解離性が良好な点から、無機アニオンが好ましく、BF 、PF 、AsF 、又は、SbF がより好ましく、塩の溶解性の観点で、BF 、PF が更に好ましい。
上記スピロビピロリジニウム塩としては、塩の溶解性の観点で、具体的には、以下が好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Xは、BF 、又は、PF である。)
上記イミダゾリウム塩としては、粘性が低く、溶解性が良好な点で、式(B-2):
Figure JPOXMLDOC01-appb-C000006
(式中、R10a及びR11aは同じか又は異なり、いずれも炭素数1~6のアルキル基であり;Xはアニオンである。)
で示されるイミダゾリウム塩が好ましく例示できる。また、このイミダゾリウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、式(B-1)と同じである。
上記イミダゾリウム塩の好ましい具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000007
(式中、Xは、BF 、PF 、AsF 、又は、SbF である。)
等が挙げられる。
上記N-アルキルピリジニウム塩としては、粘性が低く、また溶解性が良好である点で、式(B-3):
Figure JPOXMLDOC01-appb-C000008
(式中、R12aは炭素数1~6のアルキル基であり;R13aは水素原子又はメチル基であり;Xはアニオンである。)
で示されるN-アルキルピリジニウム塩が好ましく例示できる。また、このN-アルキルピリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、式(B-1)と同じである。
上記N-アルキルピリジニウム塩の好ましい具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000009
等が挙げられる。
上記N,N-ジアルキルピロリジニウム塩としては、粘性が低く、また溶解性に優れる点で、式(B-4):
Figure JPOXMLDOC01-appb-C000010
(式中、R14a及びR15aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオンである。)
で示されるN,N-ジアルキルピロリジニウム塩が好ましく例示できる。また、このN,N-ジアルキルピロリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
さらに、式(B-4)において、R14a、R15aは、同じか又は異なり、いずれも炭素数1~4のエーテル結合を含んでいてもよいアルキル基であることが好ましい。
炭素数1~4のエーテル結合を含んでいてもよいアルキル基としては、例えば、メトキシメチル、メトキシエチル、エトキシメチル、エトキシエチルが好ましい。
アニオンXの好ましい具体例は、式(B-1)と同じである。
上記N,N-ジアルキルピロリジニウム塩の好ましい具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
等が挙げられる。
なかでも、上記複素環を含む第4級アンモニウム塩(B)としては、塩の溶解性の観点で、スピロビピロリジニウム塩、イミダゾリウム塩、及び、N-アルキルピリジニウム塩からなる群より選択される少なくとも1種がより好ましく、スピロビピロリジニウム塩、及び、イミダゾリウム塩が更に好ましい。
本発明の電解液において、テトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)の濃度は、合計で0.6~2.1モル/リットルである。
上記濃度の合計が、上述の範囲内であると、長期間使用しても、初期の静電容量を維持することができ、内部抵抗が上昇しにくい電解液とすることができる。
上記濃度の合計は、優れた初期特性を実現できる点で、0.7モル/リットル以上が好ましく、0.8モル/リットル以上がより好ましく、1.9モル/リットル以下が好ましく、1.8モル/リットル以下がより好ましい。
テトラアルキル4級アンモニウム塩(A)と複素環を含む第4級アンモニウム塩(B)との濃度比(A/B)は、0.015~1.000である。
上記濃度比が上述の範囲内であると、長期間使用しても、初期の静電容量を維持することができ、内部抵抗が上昇しにくい電解液とすることができる。
上記濃度比は、0.020以上が好ましく、0.025以上がより好ましく、0.995以下が好ましく、0.990以下がより好ましい。
本発明の電解液において、複素環を含む第4級アンモニウム塩(B)の濃度は、優れた初期特性が実現できることから、0.5モル/リットル以上であることが好ましく、0.6モル/リットル以上がより好ましく、2.0モル/リットル以下が好ましく、1.9モル/リットル以下がより好ましい。
本発明の電解液は溶媒を含む。
上記溶媒は、ニトリル化合物、スルホラン化合物、含フッ素エーテル、環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種を含むことが好ましく、ニトリル化合物を含むことがより好ましい。
上記ニトリル化合物としては、下記式(1):
-(CN)      (1)
(式中、Rは炭素数が1~10のアルキル基、又は、炭素数1~10のアルキレン基であり、nは1又は2の整数である。)で示されるニトリル化合物を挙げることができる。
上記式(1)において、nが1の場合、Rは炭素数が1~10のアルキル基であり、nが2の場合、Rは炭素数1~10のアルキレン基である。
上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数が1~10のアルキル基が挙げられ、これらの中でも、メチル基、エチル基が好ましい。
また、アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基、ノニレン基、デシレン基等の炭素原子数1~10のアルキレン基が挙げられ、これらの中でも、プロピレン基、エチレン基が好ましい。
上記ニトリル化合物の具体例としては、例えば、アセトニトリル(CH-CN)、プロピオニトリル(CH-CH-CN)、グルタロニトリル(NC-(CH-CN)等を挙げることができ、これらの中でも、アセトニトリル、及び、プロピオニトリルが低抵抗の点から好ましい。
上記ニトリル化合物の含有量は、電解液を構成する溶媒中50~100体積%であることが好ましい。含有量が上述の範囲であると、耐電圧に優れた電気二重層キャパシタとすることができる。
上記ニトリル化合物の含有量は、電解液を構成する溶媒中60体積%以上がより好ましく、80体積%以上が更に好ましい。
上記スルホラン化合物としては、非フッ素スルホラン化合物でも含フッ素スルホラン化合物であってもよい。
非フッ素スルホラン化合物としては、スルホランのほか、例えば、式(2):
Figure JPOXMLDOC01-appb-C000013
(式中、Rは炭素数1~4のアルキル基であり、mは1又は2の整数である。)で示される非フッ素系スルホラン誘導体等が挙げられる。
これらの中でも、以下のスルホラン及びスルホラン誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000014
上記含フッ素スルホラン化合物としては、特開2003-132944号公報に記載された含フッ素スルホラン化合物が例示でき、これらの中でも、
Figure JPOXMLDOC01-appb-C000015
が好ましく挙げられる。
これらの中でも、上記スルホラン化合物としては、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホランが好ましく、特にスルホラン、3-メチルスルホランが好ましい。
上記含フッ素エーテルとしては、含フッ素鎖状エーテル、及び、含フッ素環状エーテルを挙げることができる。
上記含フッ素鎖状エーテルとしては、例えば、特開平8-37024号公報、特開平9-97627号公報、特開平11-26015号公報、特開2000-294281号公報、特開2001-52737号公報、特開平11-307123号公報等に記載された化合物を挙げることができる。
これらの中でも含フッ素鎖状エーテルとしては、下記式(3):
Rf-O-Rf      (3)
(式中、Rfは、炭素数が1~10のフルオロアルキル基、Rfは炭素数1~4のフッ素原子を含んでいてもよいアルキル基である。)で示される含フッ素鎖状エーテルが好ましい。
上記式(3)において、Rfが非フッ素系のアルキル基である場合に比して、Rfが含フッ素アルキル基である場合、耐酸化性、及び、電解質塩との相溶性に特に優れているほか、高い分解電圧をもつ点、凝固点が低いことから低温特性の維持ができる点で好ましい。
Rfとしては、例えば、HCFCFCH-、HCFCFCFCH-、HCFCFCFCFCH-、CCH-、CFCFHCFCH-、HCFCF(CF)CH-、CCHCH-、CFCHCH-等の炭素数1~10のフルオロアルキル基を挙げることができる。これらの中でも、炭素数3~6のフルオロアルキル基が好ましい。
Rfとしては、例えば、炭素数1~4の非フッ素アルキル基、-CFCFH、-CFCFHCF、-CFCFCFH、-CHCHCF、-CHCFHCF、-CHCH等を挙げることができ、これらの中でも、炭素数2~4の含フッ素アルキル基が好ましい。
これらの中でも、Rfが炭素数3~4の含フッ素アルキル基であり、Rfが炭素数2~3の含フッ素アルキル基であることが、イオン伝導性が良好な点から特に好ましい。
上記含フッ素鎖状エーテルとしては、電解液に適用可能な公知のものであれば特に限定されない。具体的には、例えば、HCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、HCFCFCHOCHCFHCF、CFCFCHOCHCFHCF等の1種又は2種以上を挙げることができ、これらの中でも、HCFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF3、CFCFCHOCFCFHが、高い分解電圧と低温特性の維持の点から特に好ましい。
上記含フッ素環状エーテルとしては、例えば、
Figure JPOXMLDOC01-appb-C000016
等を挙げることができる。
上記環状カーボネートとしては、非フッ素環状カーボネートでも含フッ素環状カーボネートでもよい。
上記非フッ素環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート等が例示できる。なかでも、内部抵抗の低減効果及び低温特性の維持の点からプロピレンカーボネート(PC)が好ましい。
上記含フッ素環状カーボネートとしては、例えばモノ-、ジ-、トリ-又はテトラ-フルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート等が例示できる。これらの中でも、電気化学デバイスの耐電圧向上の点から、フルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネートが好ましい。
上記鎖状カーボネートとしては、非フッ素鎖状カーボネートでも含フッ素鎖状カーボネートでもよい。
上記非フッ素鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルイソプロピルカーボネート(MIPC)、エチルイソプロピルカーボネート(EIPC)、2,2,2-トリフルオロエチルメチルカーボネート(TFEMC)等が例示できる。なかでも内部抵抗の低減効果、低温特性の維持の点からジメチルカーボネート(DMC)が好ましい。
上記含フッ素鎖状カーボネートとしては、例えば、下記式(4-1):
Figure JPOXMLDOC01-appb-C000017
(式中、Rf1aは、式:
Figure JPOXMLDOC01-appb-C000018
(式中、X1a及びX2aは、同じか又は異なり水素原子又はフッ素原子である。)で示される部位を末端に有しかつ好ましくはフッ素含有率が10~76質量%であるフルオロアルキル基又はアルキル基、好ましくは炭素数1~3のアルキル基;Rf2aは前記式で示される部位又はCFを末端に有しかつ好ましくはフッ素含有率が10~76質量%であるフルオロアルキル基)で示される含フッ素鎖状カーボネート;
下記式(4-2):
Figure JPOXMLDOC01-appb-C000019
(式中、Rf1bは-CFを末端に有しかつフッ素含有率が10~76質量%である、エーテル結合を有する含フッ素アルキル基;Rf2bはフッ素含有率が10~76質量%である、エーテル結合を有する含フッ素アルキル基又は含フッ素アルキル基)で示される含フッ素鎖状カーボネート;
下記式(4-3):
Figure JPOXMLDOC01-appb-C000020
(式中、Rf1cは式:
HCFX1c
(式中、X1cは水素原子又はフッ素原子)で示される部位を末端に有しかつフッ素含有率が10~76質量%である、エーテル結合を有する含フッ素アルキル基;R2cは水素原子がハロゲン原子で置換されていてもよく、ヘテロ原子を鎖中に含んでいてもよいアルキル基)で示される含フッ素鎖状カーボネート等が挙げられる。
含フッ素アルキル基(Rf1a、Rf1b、Rf2b、Rf1c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
使用可能な含フッ素鎖状カーボネートの具体例としては、例えば下記式(4-4):
Figure JPOXMLDOC01-appb-C000021
において、Rf1d及びRf2dが、H(CFCH-、FCHCFCH-、H(CFCHCH-、CFCFCH-、CFCHCH-、CFCF(CF)CHCH-、COCF(CF)CH-、CFOCF(CF)CH-、CFOCF-等である、含フッ素基を組み合わせた鎖状カーボネートが好適である。
含フッ素鎖状カーボネートのなかでも、内部抵抗の低減効果、低温特性の維持の点から、次のものが好ましい。
Figure JPOXMLDOC01-appb-C000022
その他、含フッ素鎖状カーボネートとしては、次のものも使用できる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
その他、上記電解液に配合可能な他の溶媒としては、例えば、
Figure JPOXMLDOC01-appb-C000025
等の非フッ素ラクトンや含フッ素ラクトン;フラン類、オキソラン類等が挙げられる。
上記電解液が上記他の溶媒を含む場合、上述した、ニトリル化合物、スルホラン化合物、含フッ素エーテル、環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種の溶媒の配合量は、溶媒中50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることが更に好ましい。
また、上記他の溶媒の配合量は、上記電解液中50体積%未満であることが好ましく、40体積%未満であることがより好ましく、30体積%未満であることが更に好ましい。
上記電解液はまた、他の電解質塩を含んでいてもよい。
上記他の電解質塩として、リチウム塩を用いてもよい。リチウム塩としては、例えばLiPF、LiBF、LiAsF、LiSbF、LiN(SOが好ましい。
更に容量を向上させるためにマグネシウム塩を用いてもよい。マグネシウム塩としては、例えばMg(ClO、Mg(OOC等が好ましい。
上記電解液は、上述のテトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)を、上記溶媒及び必要に応じて他の成分と混合して溶解させることで調製することができる。混合、及び、溶解は、従来公知の方法を採用するとよい。
また、本発明の電解液は、上記ニトリル化合物に溶解又は膨潤する高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解液用高分子材料として用いることが望ましい。
そのほか、特開2006-114401号公報に記載されているイオン伝導性化合物も使用できる。
このイオン伝導性化合物は、式(5):
P-(D)-Q      (5)
[式中、Dは式(6-1):
-(D1)-(FAE)-(AE)-(Y)-      (6-1)
(式中、D1は、式(6a):
Figure JPOXMLDOC01-appb-C000026
(式中、Rfは架橋性官能基を有していてもよいエーテル結合を有する含フッ素有機基;R15aはRfと主鎖を結合する基又は結合手)で示される、側鎖にエーテル結合を有する含フッ素有機基をもつエーテル単位;
FAEは、式(6b):
Figure JPOXMLDOC01-appb-C000027
(式中、Rfaは水素原子、架橋性官能基を有していてもよい含フッ素アルキル基;R16aはRfaと主鎖を結合する基又は結合手)で示される、側鎖に含フッ素アルキル基を有するエーテル単位;
AEは、式(6c):
Figure JPOXMLDOC01-appb-C000028
(式中、R18aは水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基、又は、架橋性官能基を有していてもよい芳香族炭化水素基;R17aはR18aと主鎖を結合する基又は結合手)で示されるエーテル単位;
Yは、式(6d-1)~(6d-3):
Figure JPOXMLDOC01-appb-C000029
の少なくとも1種を含む単位;
nは0~200の整数;mは0~200の整数;pは0~10000の整数;qは1~100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない。);
P及びQは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、-COOH基、-OR19a(R19aは水素原子、又は、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は-COOH基、-OR19a、エステル基及びカーボネート基ではない。)]で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
本発明の電解液には必要に応じて、他の添加剤を配合してもよい。他の添加剤としては、例えば金属酸化物、ガラス等が挙げられ、これらを本発明の効果を損なわない範囲で添加することができる。
本発明の電解液は、低温(例えば0℃や-20℃)で凍ったり、電解質塩が析出したりしないことが好ましい。具体的には、0℃での粘度が100mPa・秒以下であることが好ましく、30mPa・秒以下であることがより好ましく、15mPa・秒以下であることが特に好ましい。更にまた、具体的には、-20℃での粘度が100mPa・秒以下であることが好ましく、40mPa・秒以下であることがより好ましく、15mPa・秒以下であることが特に好ましい。
本発明の電解液は、非水系電解液であることが好ましい。
本発明の電解液は、各種の電解液を備えた電気化学デバイスの電解液に有用である。電気化学デバイスとしては、電気二重層キャパシタ、リチウム二次電池、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ、等が挙げられ、中でも電気二重層キャパシタ、リチウム二次電池が好適であり、電気二重層キャパシタが特に好適である。そのほか、帯電防止用コーティング材のイオン伝導体等としても使用できる。
このように、本発明の電解液は、電気化学デバイス用であることが好ましく、電気二重層キャパシタ用であることが特に好ましい。
本発明の電解液、並びに、正極及び負極を備える電気化学デバイスもまた、本発明の1つである。電気化学デバイスとしては、上述したものを挙げることができるが、中でも、電気二重層キャパシタが好ましい。
以下に、本発明の電気化学デバイスが電気二重層キャパシタである場合の構成について詳述する。
本発明の電気二重層キャパシタでは、正極及び負極の少なくとも一方は分極性電極であることが好ましく、分極性電極及び非分極性電極としては特開平9-7896号公報に詳しく記載されている以下の電極が使用できる。
上記分極性電極としては、活性炭を主体とする分極性電極を用いることができるが、好ましくは比表面積の大きい不活性炭と電子伝導性を付与するカーボンブラック等の導電剤とを含むものである。分極性電極は種々の方法で形成することができる。例えば、活性炭粉末とカーボンブラックとフェノール系樹脂を混合し、プレス成形後不活性ガス雰囲気中及び水蒸気雰囲気中で焼成、賦活することにより、活性炭とカーボンブラックとからなる分極性電極を形成できる。好ましくは、この分極性電極は集電体と導電性接着剤等で接合する。
また、活性炭粉末、カーボンブラック及び結合剤をアルコールの存在下で混練してシート状に成形し、乾燥して分極性電極とすることもできる。この結合剤には、例えばポリテトラフルオロエチレンが用いられる。また、活性炭粉末、カーボンブラック等の導電剤、結合剤及び溶媒を混合してスラリーとし、このスラリーを集電体の金属箔にコートし、乾燥して集電体と一体化された分極性電極とすることもできる。
活性炭を主体とする分極性電極を両極に用いて電気二重層キャパシタとしてもよいが、片側に非分極性電極を用いる構成、例えば、金属酸化物等の電池活物質を主体とする正極と、活性炭を主体とする分極性電極の負極とを組合せた構成、リチウム金属やリチウム合金の負極と、活性炭を主体とする分極性電極とを組合せた構成も可能である。
また、活性炭に代えて又は併用して、カーボンブラック、グラファイト、膨張黒鉛、ポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラック等の炭素質材料を用いてもよい。
電極の作製におけるスラリーの調製に用いる溶媒は結合剤を溶解するものが好ましく、結合剤の種類に合わせ、N-メチルピロリドン、ジメチルホルムアミド、トルエン、キシレン、イソホロン、メチルエチルケトン、酢酸エチル、酢酸メチル、フタル酸ジメチル、エタノール、メタノール、ブタノール又は水が適宜選択される。
分極性電極に用いる活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭等がある。これらのうち大きい容量を得られる点でやしがら系活性炭を使用するのが好ましい。また、活性炭の賦活処理法には、水蒸気賦活処理法、溶融KOH賦活処理法等があり、より大きな容量が得られる点で水蒸気賦活処理法による活性炭を使用するのが好ましい。
分極性電極に用いる好ましい導電剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、金属ファイバ、導電性酸化チタン、酸化ルテニウムが挙げられる。分極性電極に使用するカーボンブラック等の導電剤の混合量は、良好な導電性(低い内部抵抗)を得るように、また多すぎると製品の容量が減るため、活性炭との合計量中1~50質量%とするのが好ましい。
分極性電極に用いる活性炭としては、大容量で低内部抵抗の電気二重層キャパシタが得られるように、平均粒径が20μm以下で比表面積が1500~3000m/gの活性炭を使用するのが好ましい。
集電体は化学的、電気化学的に耐食性のあるものであればよい。活性炭を主体とする分極性電極の集電体としては、ステンレス、アルミニウム、チタン又はタンタルが好ましく使用できる。これらのうち、ステンレス又はアルミニウムが、得られる電気二重層キャパシタの特性と価格の両面において特に好ましい材料である。
電気二重層キャパシタとしては、捲回型電気二重層キャパシタ、ラミネート型電気二重層キャパシタ、コイン型電気二重層キャパシタ等が一般に知られており、本発明の電気二重層キャパシタもこれらの形式とすることができる。
例えば捲回型電気二重層キャパシタは、集電体と電極層の積層体(電極)からなる正極及び負極を、セパレータを介して捲回して捲回素子を作製し、この捲回素子をアルミニウム製等のケースに入れ、電解液を満たしたのち、ゴム製の封口体で封止して密封することにより組み立てられる。
セパレータとしては、従来公知の材料と構成のものが本発明においても使用できる。例えば、ポリエチレン多孔質膜、ポリプロピレン繊維やガラス繊維、セルロース繊維の不織布等が挙げられる。
また、公知の方法により、電解液とセパレータを介してシート状の正極及び負極を積層したラミネート型電気二重層キャパシタや、ガスケットで固定して電解液とセパレータを介して正極及び負極をコイン型に構成したコイン型電気二重層キャパシタとすることもできる。
本発明の電気化学デバイスが電気二重層キャパシタ以外である場合、電解液に本発明の電解液を用いる限り、それ以外の構成は特に限定されず、例えば、従来公知の構成を採用してもよい。
次に本発明を実施例及び比較例に基づいて説明するが、本発明はかかる例のみに限定されるものではない。
実施例1
アセトニトリルに、スピロビピロリジニウムテトラフルオロボレート(SBP-BF)を濃度が0.9モル/リットルとなるように添加し、テトラエチルアンモニウムテトラフルオロボレート(TEABF)を濃度が0.1モル/リットルとなるように添加して、電解液を調製した。
得られた電解液を用いて、下記の方法で、電気二重層キャパシタを作製し、得られた電気二重層キャパシタについて、静電容量保持率、内部抵抗上昇率について評価した。結果を表1に示す。
(電極の作製)
(電極用スラリーの調製)
水蒸気賦活されたやしがら活性炭(クラレケミカル(株)製のYP50F)を100重量部、導電剤としてアセチレンブラック(電気化学工業(株)製のデンカブラック)を3重量部、ケッチェンブラック(ライオン(株)製のカーボンECP600JD)を2重量部、エラストマーバインダーを4重量部、PTFE(ダイキン工業(株)製のポリフロン PTFE D-210C)を2重量部と界面活性剤(商品名DN-800H、ダイセル化学工業社製)を混合して電極用スラリーを調製した。
集電体としてエッジドアルミニウム(日本蓄電器工業(株)製の20CB)を用意し、この集電体の片面に、塗装装置を用いて上記電極スラリーを塗装し電極層(厚さ:100μm)を形成し、電極を作製した。
(ラミネートセル電気二重層キャパシタの作製)
上記電極を所定の大きさ(20×72mm)に切断して、集電体のアルミ面に電極引出しリードを溶接で接着し、セパレータ(ニッポン高度紙工業(株)製のTF45-30)を電極間に挟み、ラミネート外装(品番:D-EL40H、製造元:大日本印刷(株))に収納した後に、ドライチャンバー中で電解液を注入・含浸させ、その後封止してラミネートセル電気二重層キャパシタを作製した。
<静電容量保持率、内部抵抗上昇率>
ラミネートセル電気二重層キャパシタを温度65℃の恒温槽中に入れ、電圧3.0V、1000時間印加して静電容量と内部抵抗を測定した。測定時期は、初期(0時間)、500時間、1000時間とした。得られた測定値から、つぎの計算式に従って静電容量保持率(%)及び内部抵抗上昇率を算出した。
静電容量保持率(%)
=(各時間での静電容量/評価開始前(初期)の静電容量)×100
内部抵抗上昇率
=(各時間での内部抵抗/評価開始前(初期)の内部抵抗
実施例2~8、比較例1~13
アセトニトリルに、表1及び表2に示す濃度となるように電解質塩を添加して電解液を調製したこと以外は、実施例1と同様にして電解液を調製し、ラミネートセル電気二重層キャパシタを作製して、静電容量保持率及び内部抵抗上昇率を測定した。結果を表1~表2に示す。
なお、表中の略号は以下のとおりである。
SBP-BF:スピロビピロリジニウムテトラフルオロボレート
EMI-BF:1-エチル-3-メチルイミダゾリウムテトラフルオロボレート
TEABF:テトラエチルアンモニウムテトラフルオロボレート
TEMABF:トリエチルメチルアンモニウムテトラフルオロボレート
DEMEBF:N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボレート
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
本発明の電解液は、電気二重層キャパシタ等の電気化学デバイス用電解液として用いることができる。

Claims (9)

  1. テトラアルキル4級アンモニウム塩(A)、複素環を含む第4級アンモニウム塩(B)、及び、溶媒を含み、
    テトラアルキル4級アンモニウム塩(A)及び複素環を含む第4級アンモニウム塩(B)の濃度が合計で0.6~2.1モル/リットルであり、
    テトラアルキル4級アンモニウム塩(A)と複素環を含む第4級アンモニウム塩(B)との濃度比(A/B)が0.015~1.000である
    ことを特徴とする電解液。
  2. 複素環を含む第4級アンモニウム塩(B)は、スピロビピロリジニウム塩、イミダゾリウム塩、N-アルキルピリジニウム塩、及び、N,N-ジアルキルピロリジニウム塩からなる群より選択される少なくとも1種である請求項1記載の電解液。
  3. 複素環を含む第4級アンモニウム塩(B)の濃度が0.5モル/リットル以上である請求項1又は2記載の電解液。
  4. 溶媒は、ニトリル化合物、スルホラン化合物、含フッ素エーテル、環状カーボネート及び鎖状カーボネートからなる群より選択される少なくとも1種を含む請求項1、2又は3記載の電解液。
  5. 溶媒は、ニトリル化合物を含む請求項1、2、3又は4記載の電解液。
  6. 電気化学デバイス用である請求項1、2、3、4又は5記載の電解液。
  7. 電気二重層キャパシタ用である請求項1、2、3、4、5又は6記載の電解液。
  8. 請求項1、2、3、4、5、6又は7記載の電解液、並びに、正極及び負極を備える電気化学デバイス。
  9. 電気二重層キャパシタである請求項8記載の電気化学デバイス。
PCT/JP2015/064283 2014-05-21 2015-05-19 電解液、及び、電気化学デバイス WO2015178364A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580024285.5A CN106463277A (zh) 2014-05-21 2015-05-19 电解液和电化学设备
US15/128,842 US20170110261A1 (en) 2014-05-21 2015-05-19 Electrolyte and electrochemical device
JP2016521101A JP6187688B2 (ja) 2014-05-21 2015-05-19 電解液、及び、電気化学デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105472 2014-05-21
JP2014105472 2014-05-21

Publications (1)

Publication Number Publication Date
WO2015178364A1 true WO2015178364A1 (ja) 2015-11-26

Family

ID=54554033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064283 WO2015178364A1 (ja) 2014-05-21 2015-05-19 電解液、及び、電気化学デバイス

Country Status (4)

Country Link
US (1) US20170110261A1 (ja)
JP (1) JP6187688B2 (ja)
CN (1) CN106463277A (ja)
WO (1) WO2015178364A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191677A (ja) * 2016-04-12 2017-10-19 旭化成株式会社 非水系電解液及び非水系二次電池
JP2020502813A (ja) * 2016-12-22 2020-01-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア マクロ多孔性電極を用いた活性炭スーパーキャパシタのための方法、装置及びシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270653A (ja) * 2007-04-24 2008-11-06 Power System:Kk 副元素含有原料から製造された非多孔性炭素及び電気二重層キャパシタ
JP2009021060A (ja) * 2007-07-11 2009-01-29 Central Res Inst Of Electric Power Ind イオン液体を用いたリチウムイオン二次電池
JP2012074528A (ja) * 2010-09-29 2012-04-12 Sanyo Chem Ind Ltd 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4194296B2 (ja) * 2002-05-14 2008-12-10 ステラケミファ株式会社 四級アルキルアンモニウム塩の精製方法及び四級アルキルアンモニウム塩の製造方法
US7675737B1 (en) * 2008-07-02 2010-03-09 Lithdyne Llc Low temperature non-aqueous electrolyte
US9463283B2 (en) * 2009-06-01 2016-10-11 Sanofi-Aventis Deutschland Gmbh Dosing mechanism for a drug deliver device
CN102070651B (zh) * 2010-12-18 2012-11-07 渤海大学 一种超级电容器有机电解质氧杂螺环季铵盐的制备方法
CN104584164B (zh) * 2012-09-04 2017-09-05 大金工业株式会社 电解液以及电化学器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270653A (ja) * 2007-04-24 2008-11-06 Power System:Kk 副元素含有原料から製造された非多孔性炭素及び電気二重層キャパシタ
JP2009021060A (ja) * 2007-07-11 2009-01-29 Central Res Inst Of Electric Power Ind イオン液体を用いたリチウムイオン二次電池
JP2012074528A (ja) * 2010-09-29 2012-04-12 Sanyo Chem Ind Ltd 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191677A (ja) * 2016-04-12 2017-10-19 旭化成株式会社 非水系電解液及び非水系二次電池
JP2020502813A (ja) * 2016-12-22 2020-01-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア マクロ多孔性電極を用いた活性炭スーパーキャパシタのための方法、装置及びシステム
JP2022177167A (ja) * 2016-12-22 2022-11-30 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア マクロ多孔性電極を用いた活性炭スーパーキャパシタのための方法、装置及びシステム

Also Published As

Publication number Publication date
JP6187688B2 (ja) 2017-08-30
US20170110261A1 (en) 2017-04-20
JPWO2015178364A1 (ja) 2017-04-20
CN106463277A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP4802243B2 (ja) 電解液用添加剤及び電解液
JP5392355B2 (ja) 電気二重層キャパシタ
JP5318175B2 (ja) 電気二重層キャパシタ用電解液
JP5983751B2 (ja) 電解液及び電気化学デバイス
JP5637858B2 (ja) 電気二重層キャパシタ
JP5328952B2 (ja) 電気二重層キャパシタ及び電気二重層キャパシタ用非水電解液
JP6308217B2 (ja) 電解液、及び、電気化学デバイス
CN107077976B (zh) 电解液和电化学器件
JP6187688B2 (ja) 電解液、及び、電気化学デバイス
WO2015087963A1 (ja) 電解液及び電気化学デバイス
JP6314409B2 (ja) 電解液、及び、電気化学デバイス
JP2013197535A (ja) 電解液及び電気二重層キャパシタ
JP2008091823A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP4707425B2 (ja) 電気二重層キャパシタ用電解質及び電気二重層キャパシタ
KR101583525B1 (ko) 슈퍼캐패시터용 전해액 및 이를 함유한 슈퍼캐패시터
JP2013026519A (ja) 電気二重層キャパシタ用電解液、電気二重層キャパシタ、及び、モジュール
WO2011070924A1 (ja) 電気二重層キャパシタ
JPWO2010067771A1 (ja) 電気二重層キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521101

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796510

Country of ref document: EP

Kind code of ref document: A1