WO2015146053A1 - Imide sulfonate compound, photoacid generator, and resin composition for photolithography - Google Patents

Imide sulfonate compound, photoacid generator, and resin composition for photolithography Download PDF

Info

Publication number
WO2015146053A1
WO2015146053A1 PCT/JP2015/001406 JP2015001406W WO2015146053A1 WO 2015146053 A1 WO2015146053 A1 WO 2015146053A1 JP 2015001406 W JP2015001406 W JP 2015001406W WO 2015146053 A1 WO2015146053 A1 WO 2015146053A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
photoacid generator
nmr
Prior art date
Application number
PCT/JP2015/001406
Other languages
French (fr)
Japanese (ja)
Inventor
昌明 岡
秀基 木村
卓也 池田
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to JP2016509984A priority Critical patent/JPWO2015146053A1/en
Publication of WO2015146053A1 publication Critical patent/WO2015146053A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/18Dibenzazepines; Hydrogenated dibenzazepines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition

Definitions

  • the present invention relates to an imide sulfonate compound, a photoacid generator, and a resin composition for photolithography. More specifically, the present invention relates to a nonionic photoacid generator suitable for generating a strong acid by the action of ultraviolet rays (i rays), and a photolithographic resin composition containing the nonionic photoacid generator.
  • a nonionic photoacid generator suitable for generating a strong acid by the action of ultraviolet rays (i rays)
  • a photolithographic resin composition containing the nonionic photoacid generator containing the nonionic photoacid generator.
  • a photolithography process using i-line having a wavelength of 365 nm as exposure light has been widely used.
  • a resist material used in the photolithography process for example, a resin composition containing a polymer having a tert-butyl ester group of carboxylic acid or a tert-butyl carbonate group of phenol and a photoacid generator is used. Yes.
  • Nonionic photoacid generators such as triarylsulfonium salts (Patent Document 1), phenacylsulfonium salts having a naphthalene skeleton (Patent Document 2), and acid generators having an oxime sulfonate structure (Patent Documents) 3)
  • Nonionic acid generators such as acid generators having a sulfonyldiazomethane structure (Patent Document 4) are known.
  • the photoacid generator is decomposed to generate a strong acid.
  • the tert-butyl ester group or tert-butyl carbonate group in the polymer is dissociated by the strong acid to form a carboxylic acid or a phenolic hydroxyl group. It becomes readily soluble in an alkaline developer. Pattern formation is performed using this phenomenon.
  • ionic photoacid generators lack compatibility with hydrophobic materials containing alicyclic skeletons, fluorine-containing skeletons, etc., they can exhibit sufficient resist performance due to phase separation in resist materials. Therefore, there is a problem that the pattern cannot be formed.
  • nonionic photoacid generators have good compatibility with hydrophobic materials, but the problem of insufficient sensitivity to i-line and the lack of heat resistance stability cause decomposition by post-exposure heating (PEB), and allowance. There is a narrow problem.
  • nonionic photoacid generator having high photosensitivity to i-line, excellent heat resistance stability, and excellent solubility in hydrophobic materials.
  • this invention is an imidosulfonate compound represented by General formula (1).
  • R1 to R8 are independently of each other a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms or a fluoroalkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, carbon An alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, a hydroxyl group, a carboxyl group, a silyl group, a nitro group, a cyano group, an amino group, an alkoxy group or an aryloxy group represented by R 11 O—, R 12 An alkylthio group or an arylthio group represented by S—, a sulfinyl group represented by R 13 SO—, a sulfonyl group represented by R 14 SO 2 —, an alkylcarbonyl group or an arylcarbonyl group represented by R 15 CO—, R 16 COO - carbony
  • the imide sulfonate compound of the present invention and the nonionic photoacid generator (A) containing the imidesulfonate compound are nonionic and are more compatible with hydrophobic materials than ionic acid generators. Moreover, since it has a biphenyl structure in which benzene rings are twisted and is difficult to crystallize, it has excellent solubility in a solvent. Moreover, since it has an imide skeleton which is an absorption site for i-line, the non-ionic photoacid generator (A) can be easily decomposed by irradiating i-line, and sulfonic acid which is a strong acid can be generated. Furthermore, since the nonionic photoacid generator (A) has an imide skeleton, it has excellent heat stability.
  • the resin composition for photolithography (Q) containing the nonionic photoacid generator (A) of the present invention is highly sensitive to i-line and has an allowance in post-exposure heating (PEB). Excellent workability because it is wide.
  • the imide sulfonate compound of the present invention is represented by the general formula (1).
  • examples of the halogen atom represented by R1 to R8 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 18 carbon atoms of R1 to R8 examples include linear alkyl groups having 1 to 18 carbon atoms (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl).
  • branched chain alkyl groups having 1 to 18 carbon atoms isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl) , Isohexyl and isooctadecyl
  • cycloalkyl groups having 3 to 18 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 4-decylcyclohexyl).
  • C1-C18 linear or branched fluoroalkyl group (trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoro Propyl, 2,2,3,3,3-pentafluoropropyl, 1,1,1,3,3,3-hexafluoro-2-propyl, heptafluoropropyl, 2,2,3,3,4,4 , 4-heptafluorobutyl, perfluorobutyl, nonafluoro-tert-butyl, 1H, 1H-nonafluoropentyl, perfluoropentyl, 1H, 1H-tridecafluorohexyl, perfluorohexyl, 1H, 1H-pentadecafluorooctyl , Perfluorooctyl, groups, etc.).
  • alkenyl group having 2 to 18 carbon atoms of R1 to R8 examples include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, and 1-methyl.
  • alkynyl group having 2 to 18 carbon atoms represented by R1 to R8 examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, -Methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1,2-dimethyl-2-propynyl, 1-decynyl, 2-decynyl, Examples thereof include linear or branched ones such as 8-decynyl, 1-dodecynyl, 2-dodecynyl and 10-dodecynyl.
  • Examples of the aryl group having 6 to 18 carbon atoms of R1 to R8 include phenyl, tolyl, dimethylphenyl, naphthyl, anthracenyl, biphenyl, pentafluorophenyl, and the like.
  • Examples of the silyl group of R1 to R8 include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl.
  • tricarbylsilyl groups such as a tert-butyldimethylsilyl group, a methyldi-tert-butylsilyl group, a tri-tert-butylsilyl group, a phenyldimethylsilyl group, a methyldiphenylsilyl group, and a triphenylsilyl group.
  • the amino group of R1 to R8 includes an amino group (—NH2) and a substituted amino group having 1 to 15 carbon atoms (methylamino, dimethylamino, ethylamino, methylethylamino, diethylamino, n-propylamino, methyl-n -Propylamino, ethyl-n-propylamino, n-propylamino, isopropylamino, isopropylmethylamino, isopropylethylamino, diisopropylamino, phenylamino, diphenylamino, methylphenylamino, ethylphenylamino, n-propylphenylamino and Isopropylphenylamino and the like).
  • a substituted amino group having 1 to 15 carbon atoms methylamino, dimethylamino, ethylamino, methylethylamin
  • Examples of the alkoxy group represented by R 11 O— of R1 to R8 include linear or branched alkoxy groups having 1 to 18 carbon atoms (methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert -Linear or branched fluoroalkyl groups having 1 to 18 carbon atoms (trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trimethyl, etc.) such as butoxy, hexyloxy, decyloxy, dodecyloxy and octadecyloxy Fluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 1,1,1,3,3,3-hexafluoro-2- Propyl, heptafluoropropyl, 2,2,3,3,4,4,4-heptafluorobutyl
  • alkylthio group represented by R 12 S— of R1 to R8 examples include a linear or branched alkylthio group having 1 to 18 carbon atoms (methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio, neopentylthio, tert-pentylthio, octylthio, decylthio, dodecylthio, isooctadecylthio and the like.
  • an arylthio group having 6 to 20 carbon atoms (phenylthio, 2-methylphenylthio, 3-methylphenylthio, 4-methylphenylthio, 2-chlorophenylthio, 3-chlorophenylthio, 4-chlorophenylthio, 2 -Bromophenylthio, 3-bromophenylthio, 4-bromophenylthio, 2-fluorophenylthio, 3-fluorophenylthio, 4-fluorophenylthio, 2-hydroxyphenylthio, 4-hydroxyphenylthio, 2-methoxy Phenylthio, 4-methoxyphenylthio, 1-naphthylthio, 2-naphthylthio, 4- [4- (phenylthio) benzoyl] phenylthio, 4- [4- (phenylthio) phenoxy] phenylthio, 4- [4-
  • Examples of the sulfinyl group represented by R 13 SO— in R1 to R8 include a linear or branched sulfinyl group having 1 to 18 carbon atoms (methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl, pentylsulfinyl, isopentylsulfinyl, neopentylsulfinyl, tert-pentylsulfinyl, octylsulfinyl, isooctadecylsulfinyl, etc.), arylsulfinyl groups having 6 to 10 carbon atoms (phenylsulfinyl, toly
  • Examples of the sulfonyl group represented by R 14 SO 2 — in R1 to R8 include linear or branched alkylsulfonyl groups having 1 to 18 carbon atoms (methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutyl) Sulfonyl, sec-butylsulfonyl, tert-butylsulfonyl, pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, tert-pentylsulfonyl, octylsulfonyl and octadecylsulfonyl), arylsulfonyl groups having 6 to 10 carbon atoms ⁇ phenylsulfonyl, toly
  • the alkylcarbonyl group represented by R 15 CO— in R1 to R8 is a linear or branched alkylcarbonyl group having 2 to 18 carbon atoms (including carbonyl carbon) (acetyl, propionyl, butanoyl, 2-methylpropionyl). , Heptanoyl, 2-methylbutanoyl, 3-methylbutanoyl, octanoyl, decanoyl, dodecanoyl and octadecanoyl).
  • Examples of the arylcarbonyl group include arylcarbonyl groups having 7 to 11 carbon atoms (including carbonyl carbon) (such as benzoyl and naphthoyl).
  • Examples of the carbonyloxy group represented by R 16 COO— of R1 to R8 include a linear or branched acyloxy group having 2 to 19 carbon atoms (acetoxy, ethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, butylcarbonyloxy Aryl having 6 to 18 carbon atoms, such as isobutylcarbonyloxy, sec-butylcarbonyloxy, tert-butylcarbonyloxy, hexylcarbonyloxy, 2-ethylhexylcarbonyloxy, octylcarbonyloxy, tetradecylcarbonyloxy and octadecylcarbonyloxy) C1-C8 linear or branched fluoroalkyl groups (trifluoromethyl) such as carbonyloxy groups (benzoyloxy, naphthoyloxy, pentafluorobenzoyloxy, etc.) 2,2-difluor
  • Examples of the oxycarbonyl group represented by R 17 OCO— of R1 to R8 include straight or branched alkoxycarbonyl groups having 2 to 19 carbon atoms (including carbonyl carbon) (methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, iso Propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, octyloxycarbonyl, tetradecyloxycarbonyl, octadecyloxycarbonyl, etc.), aryloxy having 7 to 11 carbon atoms (including carbonyl carbon) Examples include carbonyl groups (phenoxycarbonyl, naphthoxycarbonyl, etc.) and the like.
  • R 18 carbonate group represented by -OCOO- R 18 of ⁇ R8, straight-chain alkyl groups (methyl of 1 to 18 carbon atoms, ethyl, n- propyl, n- butyl, n- pentyl, n- octyl , N-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, etc.), a branched alkyl group having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, etc.) , Tert-pentyl, isohexyl and isooctadecyl), and a cycloalkyl group having 3 to 18 carbon atoms (such as cyclopropyl, cyclobut
  • the urethane group represented by has a substituent (T) Good.
  • substituent (T) examples include an alkyl group, a hydroxy group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an arylthiocarbonyl group, an acyloxy group, an arylthio group, an alkylthio group, Examples thereof include an aryl group, a heterocyclic hydrocarbon group, an aryloxy group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a halogen atom.
  • the substituent (T) may be one type or two or more types.
  • At least two of R1 to R8 may be bonded to each other to form a ring structure.
  • a ring structure it is preferable that two adjacent ones form an aromatic ring.
  • the ring may contain a hetero atom or an oxo group.
  • you may have a substituent (T).
  • all of R1 to R8 are hydrogen atoms, or at least one of R1 to R8 is independently of each other a halogen atom, an alkyl group having 1 to 18 carbon atoms, or a carbon number.
  • One in which two are bonded to each other and two adjacent to each other form an aromatic ring is preferable.
  • R1 to R8 are a hydrogen atom or at least any two of R1 to R8 are the same functional group, and the functional group includes a halogen atom, a carbon number An alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, a hydroxyl group, a carboxyl group, R An alkoxy group or aryloxy group represented by 11 O—, an alkylcarbonyl group or arylcarbonyl group represented by R 15 CO—, a carbonyloxy group represented by R 16 COO—, or an oxycarbonyl group represented by R 17 OCO— A certain one, or at least two of R1 to R8 are bonded to each other and two adjacent to each other
  • R9 which is an essential functional group for decomposing the sulfonic acid ester moiety by ultraviolet irradiation, is an optionally substituted hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is substituted with fluorine). It may be).
  • substituent those exemplified as the substituent (T) can be used.
  • the hydrocarbon group having 1 to 18 carbon atoms include an alkyl group, an aryl group, and a heterocyclic hydrocarbon group.
  • alkyl group examples include linear alkyl groups having 1 to 18 carbon atoms (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n- Hexadecyl, n-octadecyl, etc.), branched alkyl groups having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl and isooctadecyl), and 3 carbon atoms -18 cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 4-decylcyclohexyl, 10-
  • aryl group examples include aryl groups having 6 to 10 carbon atoms (such as phenyl, tolyl, dimethylphenyl, naphthyl, and pentafluorophenyl).
  • the heterocyclic hydrocarbon group includes a heterocyclic hydrocarbon group having 4 to 18 carbon atoms (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, quinolyl, isoquinolyl.
  • Examples of the group in which part or all of the hydrogen atoms of the hydrocarbon group having 1 to 18 carbon atoms which may have a substituent are substituted with fluorine include CxFy having a high electron-withdrawing property.
  • CxFy in the nonionic acid generator (A) may be used singly or in combination of two or more.
  • CxFy examples include a linear alkyl group (RF1), a branched alkyl group (RF2), a cycloalkyl group (RF3), and an aryl group (RF4) in which hydrogen atoms are substituted with fluorine atoms.
  • RF1 linear alkyl group
  • RF2 branched alkyl group
  • RF3 cycloalkyl group
  • RF4 aryl group
  • linear alkyl group (RF1) in which a hydrogen atom is substituted with a fluorine atom
  • CxFy having a high electron-withdrawing property is preferable.
  • a linear alkyl group (RF1), a branched chain is preferable.
  • Preferred examples of the imide sulfonate compound represented by the general formula (1) include, but are not limited to, the following from the viewpoints of ease of synthesis, adjustment of the absorption wavelength region, and heat stability.
  • the method for synthesizing the imide sulfonate compound of the present invention is not particularly limited as long as the target product can be synthesized.
  • sulfonic acid anhydrides represented by N-hydroxyimide compound (P1) and (R9-SO 2 ) 2 O as precursors
  • a reaction of a salt of the N-hydroxyimide compound (P1) with a sulfonic acid chloride represented by R9-SO 2 Cl represented by R9-SO 2 Cl.
  • the nonionic photoacid generator (A) of the present invention contains the imide sulfonate compound.
  • the nonionic photoacid generator (A) of the present invention may be dissolved in advance in a solvent that does not inhibit the reaction in order to facilitate dissolution in the resist material.
  • Solvents include carbonates (propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, etc.); esters (ethyl acetate, ethyl lactate, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -Valerolactone and ⁇ -caprolactone, etc.); ethers (ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol dibutyl ether, etc.); and ether esters ( Ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate And diethylene glycol monobutyl ether acetate, etc.) and the like.
  • the proportion of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 500 parts by weight, with respect to 100 parts by weight of the nonionic photoacid generator of the present invention.
  • the resin composition for photolithography (Q) of the present invention contains the nonionic photoacid generator (A) as an essential component, the exposed portion and the unexposed portion are exposed by performing ultraviolet irradiation and post-exposure heating (PEB). Difference in solubility in the developer of the part.
  • a nonionic photoacid generator (A) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the resin composition (Q) for photolithography include a mixture of a negative chemical amplification resin (QN) and a nonionic photoacid generator (A); and a positive chemical amplification resin (QP) and a nonionic photoacid.
  • QN negative chemical amplification resin
  • QP positive chemical amplification resin
  • a mixture with a generator (A) is mentioned.
  • the negative chemical amplification resin (QN) is composed of a phenolic hydroxyl group-containing resin (QN1) and a crosslinking agent (QN2).
  • the phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it contains a phenolic hydroxyl group.
  • a novolak resin a polyhydroxystyrene, a copolymer of hydroxystyrene, a copolymer of hydroxystyrene and styrene Copolymer, copolymer of hydroxystyrene, styrene and (meth) acrylic acid derivative, phenol-xylylene glycol condensation resin, cresol-xylylene glycol condensation resin, polyimide containing phenolic hydroxyl group, polyamic acid containing phenolic hydroxyl group Phenol-dicyclopentadiene condensation resin is used.
  • novolak resins polyhydroxystyrene, copolymers of polyhydroxystyrene, copolymers of hydroxystyrene and styrene, copolymers of hydroxystyrene, styrene and (meth) acrylic acid derivatives, phenol-xylylene glycol Condensed resins are preferred.
  • these phenolic hydroxyl group containing resin (QN1) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
  • phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples include trimethylphenol, catechol, resorcinol, pyrogallol, ⁇ -naphthol, ⁇ -naphthol and the like.
  • aldehydes include formaldehyde, paraformaldehyde, ace
  • novolak resin examples include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, and the like.
  • the phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular weight compound as a part of the component.
  • the phenolic low molecular weight compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- Phenylethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4 -[1- (4-hydroxyphenyl) -1- [4
  • the content ratio of the phenolic low molecular weight compound in the phenolic hydroxyl group-containing resin (QN1) is preferably 40% by weight or less, more preferably, based on 100% by weight of the phenolic hydroxyl group-containing resin (QN1). 1 to 30% by weight.
  • the weight average molecular weight of the phenolic hydroxyl group-containing resin (QN1) is preferably 2000 or more, more preferably 2000 from the viewpoint of the resolution, thermal shock resistance, heat resistance, residual film ratio, etc. of the obtained insulating film. About 20,000.
  • the content of the phenolic hydroxyl group-containing resin (QN1) in the negative chemically amplified resin (QN) is 30 to 90% by weight when the total composition excluding the solvent is 100% by weight. Is more preferable, and 40 to 80% by weight is more preferable.
  • the content of the phenolic hydroxyl group-containing resin (QN1) is 30 to 90% by weight, the film formed using the photosensitive insulating resin composition has sufficient developability with an alkaline aqueous solution. Therefore, it is preferable.
  • the crosslinking agent (QN2) is not particularly limited as long as it is a compound that can crosslink the phenolic hydroxyl group-containing resin (QN1) with a strong acid generated from the nonionic photoacid generator (A).
  • crosslinking agent (QN2) examples include bisphenol A epoxy compounds, bisphenol F epoxy compounds, bisphenol S epoxy compounds, novolac resin epoxy compounds, resole resin epoxy compounds, poly (hydroxystyrene) epoxy compounds, and oxetanes.
  • methylol group-containing phenol compounds methoxymethyl group-containing melamine compounds, methoxymethyl group-containing phenol compounds, methoxymethyl group-containing glycoluril compounds, methoxymethyl group-containing urea compounds and acetoxymethyl group-containing phenol compounds
  • methoxymethyl group-containing melamine compounds for example, hexamethoxymethyl melamine
  • methoxymethyl group-containing glycoluril compounds methoxymethyl group-containing urea compounds
  • the methoxymethyl group-containing melamine compound is a trade name such as CYMEL300, CYMEL301, CYMEL303, CYMEL305 (manufactured by Mitsui Cyanamid Co., Ltd.), and the methoxymethyl group-containing glycoluril compound is a trade name such as CYMEL1174 (manufactured by Mitsui Cyanamid Co., Ltd.). Further, the methoxymethyl group-containing urea compound is commercially available under a trade name such as MX290 (manufactured by Sanwa Chemical Co., Ltd.).
  • the content of the crosslinking agent (QN2) is usually 5 to 5 with respect to all acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoints of reduction of the remaining film ratio, pattern meandering and swelling, and developability.
  • the amount is 60 mol%, preferably 10 to 50 mol%, more preferably 15 to 40 mol%.
  • a positive chemical amplification resin As a positive chemical amplification resin (QP), a part of hydrogen atoms of acidic functional groups in an alkali-soluble resin (QP1) containing one or more acidic functional groups such as phenolic hydroxyl group, carboxyl group, or sulfonyl group Or the protecting group introduction
  • transduction resin which substituted all by the acid dissociable group is mentioned.
  • the acid dissociable group is a group that can be dissociated in the presence of a strong acid generated from the nonionic photoacid generator (A).
  • the protecting group-introduced resin (QP2) is itself insoluble in alkali or hardly soluble in alkali.
  • alkali-soluble resin examples include a phenolic hydroxyl group-containing resin (QP11), a carboxyl group-containing resin (QP12), and a sulfonic acid group-containing resin (QP13).
  • the phenolic hydroxyl group-containing resin (QP11) the same phenolic hydroxyl group-containing resin (QN1) can be used.
  • the carboxyl group-containing resin (QP12) is not particularly limited as long as it is a polymer having a carboxyl group.
  • vinyl polymerization of a carboxyl group-containing vinyl monomer (Ba) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) is vinyl-polymerized. It is obtained by doing.
  • carboxyl group-containing vinyl monomer (Ba) examples include unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, cinnamic acid, etc.], unsaturated polyvalent (2- to 4-valent) carboxylic acids [(anhydrous) maleic acid, and the like. Acid, itaconic acid, fumaric acid, citraconic acid and the like], unsaturated polyvalent carboxylic acid alkyl (alkyl group having 1 to 10 carbon atoms) ester [maleic acid monoalkyl ester, fumaric acid monoalkyl ester, citraconic acid monoalkyl ester, etc.
  • salts thereof [alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt, etc.), amine salts, ammonium salts, etc.].
  • unsaturated monocarboxylic acids are preferred from the viewpoint of polymerizability and availability, and (meth) acrylic acid is more preferred.
  • hydrophobic group-containing vinyl monomer (Bb) examples include (meth) acrylic acid ester (Bb1) and aromatic hydrocarbon monomer (Bb2).
  • Examples of the (meth) acrylic acid ester (Bb1) include alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, Isopropyl (meth) acrylate, n-butyl (meth) acrylate, n-hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate, etc.] and alicyclic group-containing (meth) acrylate [dicyclopentanyl (meth) acrylate, Sidiclopentenyl (meth) acrylate, isobornyl (meth) acrylate, etc.].
  • alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group for example, methyl (meth) acrylate, ethyl (meth)
  • aromatic hydrocarbon monomer (Bb2) examples include hydrocarbon monomers having a styrene skeleton [for example, styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene. Cyclohexyl styrene and benzyl styrene] and vinyl naphthalene.
  • hydrocarbon monomers having a styrene skeleton for example, styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene. Cyclohexyl styrene and benz
  • the charged monomer molar ratio of (Ba) / (Bb) in the carboxyl group-containing resin (QP12) is usually from 10 to 100/0 to 90, preferably from 10 to 80/20 to 90, more preferably from the viewpoint of developability. 25-85 / 15-75.
  • the sulfonic acid group-containing resin (QP13) is not particularly limited as long as it is a polymer having a sulfonic acid group.
  • a sulfonic acid group-containing vinyl monomer (Bc) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) are used. Obtained by vinyl polymerization.
  • the hydrophobic group-containing vinyl monomer (Bb) the same ones as described above can be used.
  • Examples of the sulfonic acid group-containing vinyl monomer (Bc) include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ⁇ -methyl styrene sulfonic acid, 2- (meth) acryloylamide-2-methylpropane sulfonic acid. And salts thereof.
  • Examples of the salt include alkali metal (such as sodium and potassium) salts, alkaline earth metal (such as calcium and magnesium) salts, primary to tertiary amine salts, ammonium salts and quaternary ammonium salts.
  • the charged monomer molar ratio of (Bc) / (Bb) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90, more preferably from the viewpoint of developability. Is 25 to 85/15 to 75.
  • the preferred range of the HLB value of the alkali-soluble resin (QP1) varies depending on the resin skeleton of the alkali-soluble resin (QP1), but is preferably 4 to 19, more preferably 5 to 18, and particularly preferably 6 to 17.
  • the HLB value is 4 or more, developability is further improved when developing, and when it is 19 or less, the water resistance of the cured product is further improved.
  • the HLB in the present invention is an HLB value according to the Oda method, which is a hydrophilic-hydrophobic balance value, and can be calculated from the ratio between the organic value and the inorganic value of the organic compound.
  • HLB ⁇ 10 ⁇ Inorganic / Organic
  • the inorganic value and the organic value are described in the document “Surfactant Synthesis and Applications” (published by Tsuji Shoten, Oda, Teramura), page 501; It is described in detail on page 198 of “Introduction to New Surfactants” (Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd.).
  • Examples of the acid dissociable group in the protecting group-introduced resin (QP2) include a substituted methyl group, a 1-substituted ethyl group, a 1-branched alkyl group, a silyl group, a germyl group, an alkoxycarbonyl group, an acyl group, and a cyclic acid.
  • Examples include a dissociable group. These may be used alone or in combination of two or more.
  • Examples of the 1-substituted methyl group include methoxymethyl group, methylthiomethyl group, ethoxymethyl group, ethylthiomethyl group, methoxyethoxymethyl group, benzyloxymethyl group, benzylthiomethyl group, phenacyl group, bromophenacyl group, methoxyphena Sil group, methylthiophenacyl group, ⁇ -methylphenacyl group, cyclopropylmethyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, bromobenzyl group, nitrobenzyl group, methoxybenzyl group, methylthiobenzyl group, ethoxybenzyl Group, ethylthiobenzyl group, piperonyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, n-propoxycarbonylmethyl group, i-propoxycarbonylmethyl group, n-butoxycarbonylmethyl group, tert-
  • Examples of the 1-substituted ethyl group include 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group, 1,1-diethoxyethyl.
  • Examples of the 1-branched alkyl group include i-propyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group and the like. it can.
  • silyl group examples include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl group, tert-butyl.
  • examples thereof include tricarbylsilyl groups such as dimethylsilyl group, methyldi-tert-butylsilyl group, tri-tert-butylsilyl group, phenyldimethylsilyl group, methyldiphenylsilyl group, and triphenylsilyl group.
  • germyl group examples include trimethylgermyl group, ethyldimethylgermyl group, methyldiethylgermyl group, triethylgermyl group, isopropyldimethylgermyl group, methyldi-i-propylgermyl group, and tri-i-propylgel.
  • Tricarbylgermyl groups such as mil group, tert-butyldimethylgermyl group, methyldi-tert-butylgermyl group, tri-tert-butylgermyl group, phenyldimethylgermyl group, methyldiphenylgermyl group, triphenylgermyl group, etc. Can be mentioned.
  • alkoxycarbonyl group examples include methoxycarbonyl group, ethoxycarbonyl group, i-propoxycarbonyl group, tert-butoxycarbonyl group and the like.
  • Acyl groups include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauroyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, canphoroyl group, benzoyl group , Phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group
  • cyclic acid dissociable group examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexenyl group, a 4-methoxycyclohexyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl group.
  • tert-butyl group benzyl group, 1-methoxyethyl group, 1-ethoxyethyl group, trimethylsilyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tetrahydropyranyl group, A tetrahydrofuranyl group, a tetrahydrothiopyranyl group, a tetrahydrofuranyl group, and the like are preferable.
  • Introduction rate of acid-dissociable groups in protecting group-introducing resin (QP2) ⁇ Ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in protecting group-introducing resin (QP2) ⁇ Cannot be generally defined by the type of acid-dissociable group or the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, more preferably 15 to 100%.
  • the polystyrene-converted weight average molecular weight (hereinafter referred to as “Mw”) of the protecting group-introduced resin (QP2) measured by gel permeation chromatography (GPC) is preferably 1,000 to 150,000, more preferably 3, 000 to 100,000.
  • the ratio (Mw / Mn) of the Mw of the protecting group-introduced resin (QP2) and the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by gel permeation chromatography (GPC) is usually 1 To 10, preferably 1 to 5.
  • the content of the nonionic photoacid generator (A) based on the weight of the solid content of the resin composition for photolithography (Q) is preferably 0.001 to 20% by weight, more preferably 0.01 to 15% by weight. %, Particularly preferably 0.05 to 7% by weight. If it is 0.001% by weight or more, the sensitivity to ultraviolet rays can be exhibited more satisfactorily, and if it is 20% by weight or less, the physical properties of the insoluble part in the alkali developer can be exhibited more satisfactorily.
  • the resist using the resin composition for photolithography (Q) of the present invention is prepared by, for example, applying a resin solution dissolved in a predetermined organic solvent (dissolved and dispersed when inorganic fine particles are included) to a spin coat, curtain coat, roll It can be formed by drying the solvent by heating or hot air blowing after applying to the substrate using a known method such as coating, spray coating or screen printing.
  • the organic solvent for dissolving the resin composition for photolithography (Q) is particularly limited as long as the resin composition can be dissolved and the resin solution can be adjusted to physical properties (viscosity, etc.) applicable to spin coating or the like.
  • known solvents such as N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene Can be used.
  • solvents those having a boiling point of 200 ° C. or less (toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene) from the viewpoint of drying temperature and the like are preferable, and can be used alone or in combination of two or more.
  • the amount of the solvent is not particularly limited, but is usually preferably 30 to 1,000% by weight, more preferably based on the weight of the solid content of the resin composition for photolithography (Q). It is 40 to 900% by weight, particularly preferably 50 to 800% by weight.
  • the drying condition of the resin solution after coating varies depending on the solvent used, but is preferably carried out at 50 to 200 ° C. for 2 to 30 minutes, and the residual solvent amount of the resin composition for photolithography (Q) after drying ( Weight%) and the like.
  • the wiring pattern shape is irradiated with light. Then, after performing post-exposure heating (PEB), alkali development is performed to form a wiring pattern.
  • PEB post-exposure heating
  • Examples of the light irradiation method include a method of exposing the resist with actinic rays through a photomask having a wiring pattern.
  • the actinic ray used for the light irradiation is not particularly limited as long as the nonionic photoacid generator (A) in the resin composition for photolithography (Q) of the present invention can be decomposed.
  • Actinic rays include low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, metal halogen lamp, electron beam irradiation device, X-ray irradiation device, laser (argon laser, dye laser, nitrogen laser, LED, helium Cadmium laser). Of these, high pressure mercury lamps and ultrahigh pressure mercury lamps are preferred.
  • the post-exposure heating (PEB) temperature is usually 40 to 200 ° C., preferably 500 to 190 ° C., more preferably 60 to 180 ° C. If the temperature is lower than 40 ° C., the deprotection reaction or the crosslinking reaction cannot be sufficiently performed. Therefore, there is not enough difference in solubility between the ultraviolet irradiated portion and the ultraviolet unirradiated portion, and a pattern cannot be formed. There is.
  • the heating time is usually 0.5 to 120 minutes, preferably 1 to 90 minutes, and more preferably 2 to 90 minutes. If it is less than 0.5 minutes, it is difficult to control the time and temperature, and if it is more than 120 minutes, there is a problem that productivity is lowered.
  • Examples of the alkali developing method include a method of dissolving and removing the wiring pattern shape using an alkali developer.
  • the alkali developer is not particularly limited as long as the solubility of the ultraviolet-irradiated part and the ultraviolet-irradiated part of the resin composition for photolithography (Q) can be varied.
  • Examples of the alkali developer include a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, sodium hydrogen carbonate, and a tetramethylammonium salt aqueous solution.
  • These alkaline developers may contain a water-soluble organic solvent. Examples of the water-soluble organic solvent include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone and the like.
  • a developing method there are a dip method, a shower method, and a spray method using an alkali developer.
  • the temperature of the developer is preferably 25 to 40 ° C.
  • the development time is appropriately determined according to the resist thickness.
  • the reaction solution was added while stirring 1N hydrochloric acid (100 mL) placed in a beaker, and the precipitated solid was collected by filtration.
  • the obtained solid was dissolved in acetic anhydride (30 g) and reacted under reflux conditions for 2 hours, and then the pressure was reduced to distill off acetic anhydride.
  • Pyridine (10 g) was added to the residue for dissolution, and hydroxylamine hydrochloride (4.9 g) was further added, followed by stirring at 100 ° C. for 10 hours. After cooling to room temperature, the reaction mixture was poured into 1N hydrochloric acid (300 mL), and the precipitate was collected by filtration to give the title compound [Intermediate (3)].
  • Example 1 Synthesis of N-trifluoromethanesulfonyloxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-1)] [Intermediate (1)] (3.0 g) obtained in Production Example 1 was dissolved in pyridine (20 ml), and trifluoromethanesulfonic anhydride (12.3 g) was added dropwise with stirring at 0 ° C. . After stirring at 25 ° C. for 8 hours, the reaction mixture was extracted with dichloromethane-water, and the organic layer was removed under reduced pressure to give an orange oil. Further, the title compound [nonionic photoacid generator (A-1)] was obtained by recrystallization from methanol.
  • Example 2 Synthesis of N-trifluoromethanesulfonyloxy-4-methoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-1)] obtained in Production Example 1 [Intermediate (1)] (3.0 g) was changed to [Intermediate (2)] (3.4 g) obtained in Production Example 2, and the title compound [nonionic photoacid generator] was obtained in the same manner as in Example 1. (A-2)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 3 Synthesis of N-trifluoromethanesulfonyloxy-5,5′-difluorobiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-3)] [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1 except that [Intermediate (3)] (3.5 g) obtained in Preparation Example 3 was used. Acid generator (A-3)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 4 Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-4)] [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1 except that [Intermediate (4)] (3.4 g) obtained in Preparation Example 4 was used. Acid generator (A-4)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 5 Synthesis of N-trifluoromethanesulfonyloxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-5)] obtained in Production Example 1 [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1, except that [Intermediate (5)] (3.4 g) obtained in Preparation Example 5 was used. Acid generator (A-5)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 6 Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dimethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-6)] [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1 except that [Intermediate (6)] (3.8 g) obtained in Preparation Example 6 was used. Acid generator (A-6)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 7 Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dicarboxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-7)] obtained in Production Example 1 [Intermediate] (1)] (3.0 g) was changed to [Intermediate (7)] (4.1 g) obtained in Production Example 7 in the same manner as in Example 1 except that the title compound [Nonionic System] Photoacid generator (A-7)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 8 Synthesis of N-trifluoromethanesulfonyloxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-8)]
  • the obtained [Intermediate (1)] (3.0 g) was changed to [Intermediate (8)] (3.8 g) obtained in Production Example 8 in the same manner as in Example 1, except that Compound [Nonionic photoacid generator (A-8)] was obtained.
  • the product was identified by 1 H-NMR and 19 F-NMR.
  • Example 9 Synthesis of N-trifluoromethanesulfonyloxy-1,1′-binaphthalene-2,2′-dicarboximide [nonionic photoacid generator (A-9)] [Intermediate (1 )] (3.0 g) in the same manner as in Example 1 except that [Intermediate (9)] (4.3 g) obtained in Preparation Example 9 was used. Generator (A-9)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 10 Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dicarbonyloxymethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-10)] obtained in Example 7 [ Nonionic photoacid generator (A-7)] (4.6 g) was dissolved in thionyl chloride (30 g), reacted at 60 ° C. for 1 hour, and reduced in pressure at 60 ° C. to generate thionyl chloride. Hydrogen chloride was distilled off.
  • Example 11 Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dihydroxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-11)] obtained in Example 6 [nonionic Photoacid generator (A-6)] (4.3 g) was dissolved in dichloromethane (20 mL) under a nitrogen atmosphere, cooled to ⁇ 78 ° C., and boron tribromide (12.5 g) was added dropwise with stirring. And allowed to react for 6 hours. The reaction mixture was poured into a saturated aqueous ammonium chloride solution (100 mL) and extracted with methylene chloride (50 mL).
  • Example 12 Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dibutyroyloxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-12)] obtained in Example 11 [non- Ionic photoacid generator (A-11)] (4.0 g) was dissolved in acetonitrile (15 mL), butyroyl chloride (2.7 g) was added, and pyridine (2.5 g) was cooled in an ice bath. ) was added dropwise over 30 minutes and reacted at room temperature (25 ° C.) for 3 hours.
  • the reaction solution was added while stirring water (150 mL) in a beaker, and the precipitated white solid was collected by filtration and washed to obtain the title compound [nonionic photoacid generator (A-12)]. .
  • the product was identified by 1 H-NMR and 19 F-NMR.
  • Example 13 Synthesis of N-pentafluorobenzenesulfonyloxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-13)] Trifluoromethanesulfonic anhydride (12.3 g) was converted to pentafluorobenzenesulfonyl chloride. The title compound [Nonionic Photoacid Generator (A-13)] was obtained in the same manner as in Example 1, except that the amount was changed to (11.4 g). The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 14 Synthesis of N-pentafluorobenzenesulfonyloxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-14)] Trifluoromethanesulfonic anhydride (12.3 g) ) was changed to pentafluorobenzenesulfonyl chloride (11.4 g) in the same manner as in Example 5 to obtain the title compound [nonionic photoacid generator (A-14)]. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 15 Synthesis of N-pentafluorobenzenesulfonyloxy-4,4′-dimethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-15)] Trifluoromethanesulfonic anhydride (12.3 g) ) was changed to pentafluorobenzenesulfonyl chloride (11.4 g) in the same manner as in Example 6 to obtain the title compound [nonionic photoacid generator (A-15)]. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 16 Synthesis of N-pentafluorobenzenesulfonyloxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-16)] Trifluoromethanesulfonic acid
  • the title compound [nonionic photoacid generator (A-16)] was prepared in the same manner as in Example 8 except that the anhydride (12.3 g) was changed to pentafluorobenzenesulfonyl chloride (11.4 g). Obtained. The product was identified by 1 H-NMR and 19 F-NMR.
  • Example 17 Synthesis of N-(+)-10-camphorsulfonyloxy-biphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-17)] Trifluoromethanesulfonic anhydride (12.3 g) The title compound [Nonionic Photoacid Generator (A-17)] was obtained in the same manner as in Example 1 except for changing to (+)-10-camphorsulfonyl chloride (11.0 g). The product was identified by 1 H-NMR.
  • Example 18 Synthesis of N-(+)-10-camphorsulfonyloxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-18)] Trifluoromethanesulfonic anhydride
  • the title compound [nonionic photoacid generator (A-18)] was obtained in the same manner as in Example 5 except that (12.3 g) was changed to (+)-10-camphorsulfonyl chloride (11.0 g).
  • the product was identified by 1 H-NMR.
  • Example 20 Synthesis of N-(+)-10-camphorsulfonyloxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-20)]
  • the title compound [nonionic photoacid generation] was carried out in the same manner as in Example 8, except that trifluoromethanesulfonic anhydride (12.3 g) was changed to (+)-10-camphorsulfonyl chloride (11.0 g). Agent (A-20)] was obtained.
  • the product was identified by 1 H-NMR.
  • Comparative Example 4 ⁇ Synthesis of Ionic Photoacid Generator (A'-4)> An ionic photoacid generator (A′-4) was obtained in the same manner as in Comparative Example 2 except that the potassium trifluoromethanesulfonate solution was changed to a potassium pentafluorobenzenesulfonate solution.
  • Comparative Example 6 Synthesis of Ionic Photoacid Generator (A'-6)> An ionic photoacid generator (A′-6) was obtained in the same manner as in Comparative Example 2, except that the aqueous potassium trifluoromethanesulfonate solution was changed to a (+)-10-camphorsulfonic acid potassium aqueous solution.
  • ⁇ Performance evaluation> As performance evaluation of the photoacid generator, the obtained nonionic photoacid generators (A-1) to (A20), nonionic photoacid generators (A′-1), (A′-3), Molar absorption coefficient, resist curability, thermal decomposition temperature, and solvent solubility of (A′-5), ionic acid generators (A′-2), (A′-4) and (A′-6), The amine resistance was evaluated by the following method.
  • PGMEA resin solution of acetate
  • This resist was irradiated with ultraviolet rays (HMW-661F-01, manufactured by Oak Manufacturing Co., Ltd.), and ultraviolet light whose wavelength was limited by a filter L-34 (manufactured by Kenko Optical Co., Ltd., which cuts light of less than 340 nm). A predetermined amount of light was exposed on the entire surface. The integrated exposure was measured at a wavelength of 365 nm. Subsequently, after performing post-exposure heating (PEB) for 10 minutes with a 120 ° C. normal air dryer, development was performed by immersing in a 0.5% potassium hydroxide solution for 30 seconds, followed by immediately washing with water and drying.
  • PEB post-exposure heating
  • the film thickness of this resist was measured using a shape measuring microscope (ultra-deep shape measuring microscope VK-8550, manufactured by Keyence Corporation).
  • the resist curability was evaluated according to the following criteria from the minimum exposure amount at which the change in resist film thickness before and after development was within 10%. ⁇ : minimum exposure amount 250 mJ / cm 2 or less ⁇ : Minimum exposure amount greater than 250mJ / cm 2, 500mJ / cm 2 or less ⁇ : Minimum exposure amount is greater than 500 mJ / cm 2
  • Thermal decomposition temperature Using the differential thermal / thermogravimetric simultaneous measurement device (TG / DTA6200, manufactured by SII), the synthesized photoacid generator was subjected to a change in weight under a nitrogen atmosphere from 30 ° C. to 500 ° C. under a temperature rising condition of 10 ° C./min. The point at which the weight decreased by 2% was defined as the thermal decomposition temperature.
  • ⁇ Amine resistance> The synthesized photoacid generator is diluted to 0.25 mmol / L with acetonitrile in which amine (pyridine, triethylamine) is dissolved at a concentration of 0.25 mmol / L, and the purity is calculated by HPLC analysis. This solution was stored at 25 ° C. under light-shielding conditions for 24 hours, and then the purity was calculated again by HPLC analysis, and the amine resistance was evaluated according to the following criteria from the rate of decrease in purity before and after storage.
  • Purity reduction rate is 0.1% to less than 1.0%
  • Purity reduction rate is 1.0% to less than 10%
  • Nonionic photoacid generators (A-1) to (A20) of the present invention prepared in Examples, and nonionic photoacid generators (A′-1) for comparison prepared in Comparative Examples, (A '-3), (A'-5), molar extinction coefficient, thermal decomposition temperature, solvent solubility of ionic acid generators (A'-2), (A'-4) and (A'-6), Table 2 shows the results of measuring amine resistance by the method described above.
  • the nonionic photoacid generators (A) of Examples 1 to 20 of the present invention have a sufficient molar extinction coefficient at i-line (365 nm) and have good resist curability. I know that there is. Moreover, it is excellent in the solubility with respect to a solvent, and it turns out that handling property is favorable when producing a resist. Moreover, the thermal decomposition temperature is 220 ° C. or higher, and it has sufficient stability. Moreover, since amine tolerance is high, it turns out that the choice of the amine which can be used as a quencher is wide when producing a resist.
  • Comparative Examples 2, 4, and 6 using conventionally known ionic acid generation have low sensitivity to i-line and the resist curability is not sufficient. Further, the nonionic photoacid generators of Comparative Examples 1, 3, and 5 are insufficient in solubility in a solvent. Further, the nonionic photoacid generators of Comparative Examples 1, 3, and 5 have insufficient amine resistance. When a resist having a relatively high pKa such as triethylamine is used, The acid generator may decompose and change over time.
  • the imide sulfonate compound of the present invention is suitable as a photoacid generator for use in positive resists, resist films, liquid resists, negative resists, MEMS resists, photosensitive materials, nanoimprint materials, micro stereolithography materials, and the like. Moreover, the resin composition (Q) for photolithography of this invention is suitable for said use.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided are: a non-ionic photoacid generator including an imide sulfonate compound and having high light sensitivity to an i-line, excellent thermal stability, and excellent solubility in a hydrophobic material; and a resin composition for photolithography including the same. The present invention is an imide sulfonate compound represented by general formula (1). [In formula (1), R1 to R8 is each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, etc. At least two of R1 to R8 may be joined to form a ring structure. R9 is a hydrocarbon group having 1 to 18 carbon atoms which may have a substituent (a part or all of the hydrogen may be substituted with fluorine).]

Description

イミドスルホネート化合物、光酸発生剤及びフォトリソグラフィー用樹脂組成物Imidosulfonate compound, photoacid generator, and resin composition for photolithography
 本発明は、イミドスルホネート化合物、光酸発生剤及びフォトリソグラフィー用樹脂組成物に関する。さらに詳しくは、紫外線(i線)を作用させて強酸を発生させるのに適する非イオン系の光酸発生剤、及びそれを含有するフォトリソグラフィー用樹脂組成物に関する。 The present invention relates to an imide sulfonate compound, a photoacid generator, and a resin composition for photolithography. More specifically, the present invention relates to a nonionic photoacid generator suitable for generating a strong acid by the action of ultraviolet rays (i rays), and a photolithographic resin composition containing the nonionic photoacid generator.
 従来より、半導体の製造に代表される微細加工の分野では、露光光として波長365nmのi線を用いたフォトリソグラフィー工程が広く用いられている。
 フォトリソグラフィー工程に用いられるレジスト材料としては、例えば、カルボン酸のtert-ブチルエステル基、又はフェノールのtert-ブチルカーボネート基を有する重合体と光酸発生剤とを含有する樹脂組成物が用いられている。光酸発生剤として、トリアリールスルホニウム塩(特許文献1)、ナフタレン骨格を有するフェナシルスルホニウム塩(特許文献2)等のイオン系光酸発生剤、及びオキシムスルホネート構造を有する酸発生剤(特許文献3)、スルホニルジアゾメタン構造を有する酸発生剤(特許文献4)等の非イオン系酸発生剤が知られている。このレジスト材料に紫外線を照射することで、光酸発生剤が分解して強酸を発生する。さらに露光後加熱(PEB)を行うことで、この強酸により重合体中のtert-ブチルエステル基、又はtert-ブチルカーボネート基が解離し、カルボン酸、又はフェノール性水酸基が形成され、紫外線照射部がアルカリ現像液に易溶性となる。この現象を利用してパターン形成が行われている。
Conventionally, in the field of microfabrication represented by semiconductor manufacturing, a photolithography process using i-line having a wavelength of 365 nm as exposure light has been widely used.
As a resist material used in the photolithography process, for example, a resin composition containing a polymer having a tert-butyl ester group of carboxylic acid or a tert-butyl carbonate group of phenol and a photoacid generator is used. Yes. As photoacid generators, ionic photoacid generators such as triarylsulfonium salts (Patent Document 1), phenacylsulfonium salts having a naphthalene skeleton (Patent Document 2), and acid generators having an oxime sulfonate structure (Patent Documents) 3) Nonionic acid generators such as acid generators having a sulfonyldiazomethane structure (Patent Document 4) are known. By irradiating the resist material with ultraviolet rays, the photoacid generator is decomposed to generate a strong acid. Further, by performing post-exposure heating (PEB), the tert-butyl ester group or tert-butyl carbonate group in the polymer is dissociated by the strong acid to form a carboxylic acid or a phenolic hydroxyl group. It becomes readily soluble in an alkaline developer. Pattern formation is performed using this phenomenon.
しかしフォトリソグラフィー工程がより微細加工になるに従い、アルカリ現像液により光未露光部のパターンが膨潤する膨れの影響が大きくなり、レジスト材料の膨潤を抑制する必要がある。
これらを解決するためにレジスト材料中の重合体に脂環式骨格、又はフッ素含有骨格等を含有させ疎水性にすることで、レジスト材料の膨潤を抑制する方法が提案されている。
However, as the photolithography process becomes finer, the influence of the swelling that the pattern of the light unexposed area is swollen by the alkali developer increases, and it is necessary to suppress the swelling of the resist material.
In order to solve these problems, a method of suppressing swelling of the resist material by making the polymer in the resist material hydrophobic by adding an alicyclic skeleton or a fluorine-containing skeleton has been proposed.
しかしながら、イオン系光酸発生剤は脂環式骨格、及びフッ素含有骨格等を含有する疎水性材料に対する相溶性が不足しているため、レジスト材料中で相分離するため十分なレジスト性能を発揮できず、パターン形成できない問題がある。一方、非イオン系光酸発生剤では疎水性材料に対する相溶性は良好であるが、i線に対する感度が不足する問題、及び耐熱安定性が不足するため露光後加熱(PEB)で分解するためアローアンスが狭い問題がある。 However, since ionic photoacid generators lack compatibility with hydrophobic materials containing alicyclic skeletons, fluorine-containing skeletons, etc., they can exhibit sufficient resist performance due to phase separation in resist materials. Therefore, there is a problem that the pattern cannot be formed. On the other hand, nonionic photoacid generators have good compatibility with hydrophobic materials, but the problem of insufficient sensitivity to i-line and the lack of heat resistance stability cause decomposition by post-exposure heating (PEB), and allowance. There is a narrow problem.
特開昭50-151997号公報Japanese Patent Laid-Open No. 50-151997 特開平9-118663号公報JP-A-9-118663 特開平06-77433号公報Japanese Patent Laid-Open No. 06-77433 特開平10-213899号公報Japanese Patent Laid-Open No. 10-213899
 そこでi線に高い光感度を有し、耐熱安定性に優れ、疎水性材料への溶解性に優れる非イオン系光酸発生剤を提供することを目的とする。 Accordingly, it is an object to provide a nonionic photoacid generator having high photosensitivity to i-line, excellent heat resistance stability, and excellent solubility in hydrophobic materials.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、一般式(1)で表されることを特徴とするイミドスルホネート化合物である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, this invention is an imidosulfonate compound represented by General formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式(1)中、R1~R8は互いに独立に、水素原子、ハロゲン原子、炭素数1~18のアルキル基もしくは炭素数1~18のフルオロアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~18のアリール基、水酸基、カルボキシル基、シリル基、ニトロ基、シアノ基、アミノ基、R11O-で表わされるアルコキシ基もしくはアリールオキシ基、R12S-で表わされるアルキルチオ基もしくはアリールチオ基、R13SO-で表わされるスルフィニル基、R14SO-で表わされるスルホニル基、R15CO-で表わされるアルキルカルボニル基もしくはアリールカルボニル基、R16COO-で表わされるカルボニルオキシ基、R17OCO-で表わされるオキシカルボニル基、R18OCOO-で表わされるカーボネート基、R19NHCOO-で表わされるウレタン基を表す。R1~R8の少なくとも2つが互いに結合し環構造を形成しても良い。R9は置換基を有しても良い炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)を表す。] [In the formula (1), R1 to R8 are independently of each other a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms or a fluoroalkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, carbon An alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, a hydroxyl group, a carboxyl group, a silyl group, a nitro group, a cyano group, an amino group, an alkoxy group or an aryloxy group represented by R 11 O—, R 12 An alkylthio group or an arylthio group represented by S—, a sulfinyl group represented by R 13 SO—, a sulfonyl group represented by R 14 SO 2 —, an alkylcarbonyl group or an arylcarbonyl group represented by R 15 CO—, R 16 COO - carbonyloxy group represented by, oxycarbonyl group represented by R 17 OCO-, R 8 carbonate group represented by -OCOO-, represents a urethane group represented by R 19 NHCOO-. At least two of R1 to R8 may be bonded to each other to form a ring structure. R9 represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms (part or all of hydrogen may be substituted with fluorine). ]
本発明のイミドスルホネート化合物及びこれを含有する非イオン系光酸発生剤(A)は、非イオン系であり、イオン系酸発生剤に比べ疎水性材料との相溶性に優れる。また、ベンゼン環同士がねじれたビフェニル構造を有し、結晶化しにくい構造であるため、溶剤への溶解性に優れる。また、i線を吸収部位であるイミド骨格を有するため、i線を照射することで非イオン系光酸発生剤(A)は容易に分解し、強酸であるスルホン酸を発生することができる。さらに非イオン系光酸発生剤(A)は、イミド骨格を有するために、耐熱安定性に優れる。 The imide sulfonate compound of the present invention and the nonionic photoacid generator (A) containing the imidesulfonate compound are nonionic and are more compatible with hydrophobic materials than ionic acid generators. Moreover, since it has a biphenyl structure in which benzene rings are twisted and is difficult to crystallize, it has excellent solubility in a solvent. Moreover, since it has an imide skeleton which is an absorption site for i-line, the non-ionic photoacid generator (A) can be easily decomposed by irradiating i-line, and sulfonic acid which is a strong acid can be generated. Furthermore, since the nonionic photoacid generator (A) has an imide skeleton, it has excellent heat stability.
 このため本発明の非イオン系光酸発生剤(A)を含有するフォトリソグラフィー用樹脂組成物(Q)は、i線に対して高感度であり、また露光後加熱(PEB)でのアローアンスが広いため作業性に優れる。 For this reason, the resin composition for photolithography (Q) containing the nonionic photoacid generator (A) of the present invention is highly sensitive to i-line and has an allowance in post-exposure heating (PEB). Excellent workability because it is wide.
本発明のイミドスルホネート化合物は上記一般式(1)で表される。 The imide sulfonate compound of the present invention is represented by the general formula (1).
式(1)中、R1~R8のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 In the formula (1), examples of the halogen atom represented by R1 to R8 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
前記R1~R8の炭素数1~18のアルキル基としては、炭素数1~18の直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、炭素数1~18の分枝鎖アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル及びイソオクタデシル)、及び炭素数3~18のシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及び4-デシルシクロヘキシル等)が挙げられる。
炭素数1~18の直鎖または分岐のフルオロアルキル基(トリフルオロメチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、ヘプタフルオロプロピル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、ノナフルオロ-tert-ブチル、1H,1H-ノナフルオロペンチル、パーフルオロペンチル、1H,1H-トリデカフルオロヘキシル、パーフルオロヘキシル、1H,1H-ペンタデカフルオロオクチル、パーフルオロオクチル、基等)等が挙げられる。
Examples of the alkyl group having 1 to 18 carbon atoms of R1 to R8 include linear alkyl groups having 1 to 18 carbon atoms (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl). , N-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, etc.), branched chain alkyl groups having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl) , Isohexyl and isooctadecyl), and cycloalkyl groups having 3 to 18 carbon atoms (such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 4-decylcyclohexyl).
C1-C18 linear or branched fluoroalkyl group (trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoro Propyl, 2,2,3,3,3-pentafluoropropyl, 1,1,1,3,3,3-hexafluoro-2-propyl, heptafluoropropyl, 2,2,3,3,4,4 , 4-heptafluorobutyl, perfluorobutyl, nonafluoro-tert-butyl, 1H, 1H-nonafluoropentyl, perfluoropentyl, 1H, 1H-tridecafluorohexyl, perfluorohexyl, 1H, 1H-pentadecafluorooctyl , Perfluorooctyl, groups, etc.).
前記R1~R8の炭素数2~18のアルケニル基としては、ビニル、アリル、1-プロペニル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-メチル-1-ブテニル、2-メチル-2-ブテニル、3-メチル-2-ブテニル、1,2-ジメチル-1-プロペニル、1-デセニル、2-デセニル、8-デセニル、1-ドデセニル、2-ドデセニル、10-ドデセニルなどの直鎖または分岐状のものが挙げられる。 Examples of the alkenyl group having 2 to 18 carbon atoms of R1 to R8 include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, and 1-methyl. -2-propenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-2 Linear or branched such as -butenyl, 3-methyl-2-butenyl, 1,2-dimethyl-1-propenyl, 1-decenyl, 2-decenyl, 8-decenyl, 1-dodecenyl, 2-dodecenyl, 10-dodecenyl The thing of the shape is mentioned.
前記R1~R8の炭素数2~18のアルキニル基としては、炭素数2~18のアルキニル基としては、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-メチル-2-プロピニル、1-ぺンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-メチル-2-ブチニル、1,2-ジメチル-2-プロピニル、1-デシニル、2-デシニル、8-デシニル、1-ドデシニル、2-ドデシニル、10-ドデシニルなどの直鎖または分岐状のものが挙げられる。 Examples of the alkynyl group having 2 to 18 carbon atoms represented by R1 to R8 include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, -Methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1,2-dimethyl-2-propynyl, 1-decynyl, 2-decynyl, Examples thereof include linear or branched ones such as 8-decynyl, 1-dodecynyl, 2-dodecynyl and 10-dodecynyl.
 前記R1~R8の炭素数6~18のアリール基としては、フェニル、トリル、ジメチルフェニル、ナフチル、アントラセニル、ビフェニル及びペンタフルオロフェニル等が挙げられる。 Examples of the aryl group having 6 to 18 carbon atoms of R1 to R8 include phenyl, tolyl, dimethylphenyl, naphthyl, anthracenyl, biphenyl, pentafluorophenyl, and the like.
前記R1~R8のシリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、i-プロピルジメチルシリル基、メチルジ-i-プロピルシリル基、トリ-i-プロピルシリル基、tert-ブチルジメチルシリル基、メチルジ-tert-ブチルシリル基、トリ-tert-ブチルシリル基、フェニルジメチルシリル基、メチルジフェニルシリル基、トリフェニルシリル基等のトリカルビルシリル基を挙げることができる。 Examples of the silyl group of R1 to R8 include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl. And tricarbylsilyl groups such as a tert-butyldimethylsilyl group, a methyldi-tert-butylsilyl group, a tri-tert-butylsilyl group, a phenyldimethylsilyl group, a methyldiphenylsilyl group, and a triphenylsilyl group.
前記R1~R8のアミノ基としては,アミノ基(-NH2)及び炭素数1~15の置換アミノ基(メチルアミノ、ジメチルアミノ、エチルアミノ、メチルエチルアミノ、ジエチルアミノ、n-プロピルアミノ、メチル-n-プロピルアミノ、エチル-n-プロピルアミノ、n-プロピルアミノ、イソプロピルアミノ、イソプロピルメチルアミノ、イソプロピルエチルアミノ、ジイソプロピルアミノ、フェニルアミノ、ジフェニルアミノ、メチルフェニルアミノ、エチルフェニルアミノ、n-プロピルフェニルアミノ及びイソプロピルフェニルアミノ等)等が挙げられる。 The amino group of R1 to R8 includes an amino group (—NH2) and a substituted amino group having 1 to 15 carbon atoms (methylamino, dimethylamino, ethylamino, methylethylamino, diethylamino, n-propylamino, methyl-n -Propylamino, ethyl-n-propylamino, n-propylamino, isopropylamino, isopropylmethylamino, isopropylethylamino, diisopropylamino, phenylamino, diphenylamino, methylphenylamino, ethylphenylamino, n-propylphenylamino and Isopropylphenylamino and the like).
前記R1~R8のR11O-で表わされるアルコキシ基としては、炭素数1~18の直鎖又は分枝鎖アルコキシ基(メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ヘキシルオキシ、デシルオキシ、ドデシルオキシ及びオクタデシルオキシ等)等、炭素数1~18の直鎖または分岐のフルオロアルキル基(トリフルオロメチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、ヘプタフルオロプロピル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、ノナフルオロ-tert-ブチル、1H,1H-ノナフルオロペンチル、パーフルオロペンチル、1H,1H-トリデカフルオロヘキシル、パーフルオロヘキシル、1H,1H-ペンタデカフルオロオクチル、パーフルオロオクチル、基等)等のアルコキシ基が挙げられる。アリールオキシ基としては、フェノキシ、ナフトキシ、アントロキシ、ペンタフルオロフェニルオキシ、3-トリフルオロメチルフェニルオキシ、3,5-ビストリフルオロメチルフェニルオキシ、等が挙げられる。 Examples of the alkoxy group represented by R 11 O— of R1 to R8 include linear or branched alkoxy groups having 1 to 18 carbon atoms (methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert -Linear or branched fluoroalkyl groups having 1 to 18 carbon atoms (trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trimethyl, etc.) such as butoxy, hexyloxy, decyloxy, dodecyloxy and octadecyloxy Fluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 1,1,1,3,3,3-hexafluoro-2- Propyl, heptafluoropropyl, 2,2,3,3,4,4,4-heptafluorobutyl, perfluoro Til, nonafluoro-tert-butyl, 1H, 1H-nonafluoropentyl, perfluoropentyl, 1H, 1H-tridecafluorohexyl, perfluorohexyl, 1H, 1H-pentadecafluorooctyl, perfluorooctyl, etc.) Of the alkoxy group. Examples of the aryloxy group include phenoxy, naphthoxy, anthoxy, pentafluorophenyloxy, 3-trifluoromethylphenyloxy, 3,5-bistrifluoromethylphenyloxy, and the like.
前記R1~R8のR12S-で表わされるアルキルチオ基としては、炭素数1~18の直鎖又は分枝鎖アルキルチオ基(メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、sec-ブチルチオ、tert-ブチルチオ、ペンチルチオ、イソペンチルチオ、ネオペンチルチオ、tert-ペンチルチオ、オクチルチオ、デシルチオ、ドデシルチオ及びイソオクタデシルチオ等)等が挙げられる。アリールチオ基としては、炭素数6~20のアリールチオ基(フェニルチオ、2-メチルフェニルチオ、3-メチルフェニルチオ、4-メチルフェニルチオ、2-クロロフェニルチオ、3-クロロフェニルチオ、4-クロロフェニルチオ、2-ブロモフェニルチオ、3-ブロモフェニルチオ、4-ブロモフェニルチオ、2-フルオロフェニルチオ、3-フルオロフェニルチオ、4-フルオロフェニルチオ、2-ヒドロキシフェニルチオ、4-ヒドロキシフェニルチオ、2-メトキシフェニルチオ、4-メトキシフェニルチオ、1-ナフチルチオ、2-ナフチルチオ、4-[4-(フェニルチオ)ベンゾイル]フェニルチオ、4-[4-(フェニルチオ)フェノキシ]フェニルチオ、4-[4-(フェニルチオ)フェニル]フェニルチオ、4-(フェニルチオ)フェニルチオ、4-ベンゾイルフェニルチオ、4-ベンゾイル-2-クロロフェニルチオ、4-ベンゾイル-3-クロロフェニルチオ、4-ベンゾイル-3-メチルチオフェニルチオ、4-ベンゾイル-2-メチルチオフェニルチオ、4-(4-メチルチオベンゾイル)フェニルチオ、4-(2-メチルチオベンゾイル)フェニルチオ、4-(p-メチルベンゾイル)フェニルチオ、4-(p-エチルベンゾイル)フェニルチオ4-(p-イソプロピルベンゾイル)フェニルチオ及び4-(p-tert-ブチルベンゾイル)フェニルチオ等)等が挙げられる。 Examples of the alkylthio group represented by R 12 S— of R1 to R8 include a linear or branched alkylthio group having 1 to 18 carbon atoms (methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio, neopentylthio, tert-pentylthio, octylthio, decylthio, dodecylthio, isooctadecylthio and the like. As the arylthio group, an arylthio group having 6 to 20 carbon atoms (phenylthio, 2-methylphenylthio, 3-methylphenylthio, 4-methylphenylthio, 2-chlorophenylthio, 3-chlorophenylthio, 4-chlorophenylthio, 2 -Bromophenylthio, 3-bromophenylthio, 4-bromophenylthio, 2-fluorophenylthio, 3-fluorophenylthio, 4-fluorophenylthio, 2-hydroxyphenylthio, 4-hydroxyphenylthio, 2-methoxy Phenylthio, 4-methoxyphenylthio, 1-naphthylthio, 2-naphthylthio, 4- [4- (phenylthio) benzoyl] phenylthio, 4- [4- (phenylthio) phenoxy] phenylthio, 4- [4- (phenylthio) phenyl ] Phenylthio, 4- Phenylthio) phenylthio, 4-benzoylphenylthio, 4-benzoyl-2-chlorophenylthio, 4-benzoyl-3-chlorophenylthio, 4-benzoyl-3-methylthiophenylthio, 4-benzoyl-2-methylthiophenylthio, 4- (4-methylthiobenzoyl) phenylthio, 4- (2-methylthiobenzoyl) phenylthio, 4- (p-methylbenzoyl) phenylthio, 4- (p-ethylbenzoyl) phenylthio 4- (p-isopropylbenzoyl) phenylthio and 4- ( p-tert-butylbenzoyl) phenylthio and the like.
 前記R1~R8のR13SO-で表わされるスルフィニル基としては、炭素数1~18の直鎖又は分枝鎖スルフィニル基(メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、イソプロピルスルフィニル、ブチルスルフィニル、イソブチルスルフィニル、sec-ブチルスルフィニル、tert-ブチルスルフィニル、ペンチルスルフィニル、イソペンチルスルフィニル、ネオペンチルスルフィニル、tert-ペンチルスルフィニル、オクチルスルフィニル及びイソオクタデシルスルフィニル等)、炭素数6~10のアリールスルフィニル基(フェニルスルフィニル、トリルスルフィニル及びナフチルスルフィニル等)等が挙げられる。 Examples of the sulfinyl group represented by R 13 SO— in R1 to R8 include a linear or branched sulfinyl group having 1 to 18 carbon atoms (methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl, pentylsulfinyl, isopentylsulfinyl, neopentylsulfinyl, tert-pentylsulfinyl, octylsulfinyl, isooctadecylsulfinyl, etc.), arylsulfinyl groups having 6 to 10 carbon atoms (phenylsulfinyl, tolylsulfinyl) And naphthylsulfinyl etc.).
前記R1~R8のR14SO-で表わされるスルホニル基としては、炭素数1~18の直鎖又は分枝鎖アルキルスルホニル基(メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、イソブチルスルホニル、sec-ブチルスルホニル、tert-ブチルスルホニル、ペンチルスルホニル、イソペンチルスルホニル、ネオペンチルスルホニル、tert-ペンチルスルホニル、オクチルスルホニル及びオクタデシルスルホニル等)、炭素数6~10のアリールスルホニル基{フェニルスルホニル、トリルスルホニル(トシル基)及びナフチルスルホニル等}等が挙げられる。 Examples of the sulfonyl group represented by R 14 SO 2 — in R1 to R8 include linear or branched alkylsulfonyl groups having 1 to 18 carbon atoms (methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutyl) Sulfonyl, sec-butylsulfonyl, tert-butylsulfonyl, pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, tert-pentylsulfonyl, octylsulfonyl and octadecylsulfonyl), arylsulfonyl groups having 6 to 10 carbon atoms {phenylsulfonyl, tolyl Sulfonyl (tosyl group), naphthylsulfonyl and the like} and the like.
前記R1~R8のR15CO-で表わされるアルキルカルボニル基としては、炭素数(カルボニル炭素を含む)2~18の直鎖又は分枝鎖アルキルカルボニル基(アセチル、プロピオニル、ブタノイル、2-メチルプロピオニル、ヘプタノイル、2-メチルブタノイル、3-メチルブタノイル、オクタノイル、デカノイル、ドデカノイル及びオクタデカノイル等)等が挙げられる。アリールカルボニル基としては、炭素数(カルボニル炭素を含む)7~11のアリールカルボニル基(ベンゾイル及びナフトイル等)等が挙げられる。 The alkylcarbonyl group represented by R 15 CO— in R1 to R8 is a linear or branched alkylcarbonyl group having 2 to 18 carbon atoms (including carbonyl carbon) (acetyl, propionyl, butanoyl, 2-methylpropionyl). , Heptanoyl, 2-methylbutanoyl, 3-methylbutanoyl, octanoyl, decanoyl, dodecanoyl and octadecanoyl). Examples of the arylcarbonyl group include arylcarbonyl groups having 7 to 11 carbon atoms (including carbonyl carbon) (such as benzoyl and naphthoyl).
 前記R1~R8のR16COO-で表わされるカルボニルオキシ基としては、炭素数2~19の直鎖又は分枝鎖アシロキシ基(アセトキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、ブチルカルボニルオキシ、イソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ、tert-ブチルカルボニルオキシ、ヘキシルカルボニルオキシ、2-エチルヘキシルカルボニルオキシ、オクチルカルボニルオキシ、テトラデシルカルボニルオキシ及びオクタデシルカルボニルオキシ等)等、炭素数6~18のアリールカルボニルオキシ基(ベンゾイルオキシ、ナフトイルオキシ、ペンタフルオロベンゾイルオキシ等)等、炭素数1~8の直鎖または分岐のフルオロアルキル基(トリフルオロメチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、ヘプタフルオロプロピル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、ノナフルオロ-tert-ブチル、1H,1H-ノナフルオロペンチル、パーフルオロペンチル、1H,1H-トリデカフルオロヘキシル、パーフルオロヘキシル、1H,1H-ペンタデカフルオロオクチル、パーフルオロオクチル、基等)等のカルボニルオキシ基等が挙げられる。 Examples of the carbonyloxy group represented by R 16 COO— of R1 to R8 include a linear or branched acyloxy group having 2 to 19 carbon atoms (acetoxy, ethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, butylcarbonyloxy Aryl having 6 to 18 carbon atoms, such as isobutylcarbonyloxy, sec-butylcarbonyloxy, tert-butylcarbonyloxy, hexylcarbonyloxy, 2-ethylhexylcarbonyloxy, octylcarbonyloxy, tetradecylcarbonyloxy and octadecylcarbonyloxy) C1-C8 linear or branched fluoroalkyl groups (trifluoromethyl) such as carbonyloxy groups (benzoyloxy, naphthoyloxy, pentafluorobenzoyloxy, etc.) 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 1, 1,1,3,3,3-hexafluoro-2-propyl, heptafluoropropyl, 2,2,3,3,4,4,4-heptafluorobutyl, perfluorobutyl, nonafluoro-tert-butyl, 1H , 1H-nonafluoropentyl, perfluoropentyl, 1H, 1H-tridecafluorohexyl, perfluorohexyl, 1H, 1H-pentadecafluorooctyl, perfluorooctyl, groups, etc.).
前記R1~R8のR17OCO-で表わされるオキシカルボニル基としては、炭素数(カルボニル炭素を含む)2~19の直鎖又は分枝鎖アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、オクチロキシカルボニル、テトラデシルオキシカルボニル及びオクタデシロキシカルボニル等)、炭素数(カルボニル炭素を含む)7~11のアリールオキシカルボニル基(フェノキシカルボニル及びナフトキシカルボニル等)等が挙げられる。 Examples of the oxycarbonyl group represented by R 17 OCO— of R1 to R8 include straight or branched alkoxycarbonyl groups having 2 to 19 carbon atoms (including carbonyl carbon) (methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, iso Propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, octyloxycarbonyl, tetradecyloxycarbonyl, octadecyloxycarbonyl, etc.), aryloxy having 7 to 11 carbon atoms (including carbonyl carbon) Examples include carbonyl groups (phenoxycarbonyl, naphthoxycarbonyl, etc.) and the like.
前記R1~R8のR18OCOO-で表わされるカーボネート基のR18としては、炭素数1~18の直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、炭素数1~18の分枝鎖アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル及びイソオクタデシル)、及び炭素数3~18のシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及び4-デシルシクロヘキシル等)、炭素数1~8の直鎖または分岐のフルオロアルキル基(トリフルオロメチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、ヘプタフルオロプロピル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、ノナフルオロ-tert-ブチル、1H,1H-ノナフルオロペンチル、パーフルオロペンチル、1H,1H-トリデカフルオロヘキシル、パーフルオロヘキシル、1H,1H-ペンタデカフルオロオクチル、パーフルオロオクチル、基等)等が挙げられる。 Wherein R1 The R 18 carbonate group represented by -OCOO- R 18 of ~ R8, straight-chain alkyl groups (methyl of 1 to 18 carbon atoms, ethyl, n- propyl, n- butyl, n- pentyl, n- octyl , N-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, etc.), a branched alkyl group having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, etc.) , Tert-pentyl, isohexyl and isooctadecyl), and a cycloalkyl group having 3 to 18 carbon atoms (such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 4-decylcyclohexyl), linear or branched fluoro having 1 to 8 carbon atoms Alkyl group (trifluoromethyl, 2,2-difluoroe 2,2,2-trifluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 1,1,1,3 3,3-hexafluoro-2-propyl, heptafluoropropyl, 2,2,3,3,4,4,4-heptafluorobutyl, perfluorobutyl, nonafluoro-tert-butyl, 1H, 1H-nonafluoropentyl Perfluoropentyl, 1H, 1H-tridecafluorohexyl, perfluorohexyl, 1H, 1H-pentadecafluorooctyl, perfluorooctyl, groups, etc.).
前記R1~R8のR19NHCOO-で表わされるウレタン基のR19としては、炭素数1~18の直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、炭素数1~18の分枝鎖アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル及びイソオクタデシル)、及び炭素数3~18のシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及び4-デシルシクロヘキシル等)、炭素数1~8の直鎖または分岐のフルオロアルキル基(トリフルオロメチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、ヘプタフルオロプロピル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、ノナフルオロ-tert-ブチル、1H,1H-ノナフルオロペンチル、パーフルオロペンチル、1H,1H-トリデカフルオロヘキシル、パーフルオロヘキシル、1H,1H-ペンタデカフルオロオクチル、パーフルオロオクチル、基等)等が挙げられる。 Wherein R1 The R 19 of the urethane group represented by R 19 NHCOO- of ~ R8, straight-chain alkyl groups (methyl of 1 to 18 carbon atoms, ethyl, n- propyl, n- butyl, n- pentyl, n- octyl , N-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, etc.), a branched alkyl group having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, etc.) , Tert-pentyl, isohexyl and isooctadecyl), and a cycloalkyl group having 3 to 18 carbon atoms (such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 4-decylcyclohexyl), linear or branched fluoro having 1 to 8 carbon atoms Alkyl group (trifluoromethyl, 2,2-difluoroethyl) 2,2,2-trifluoroethyl, pentafluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 1,1,1,3,3 , 3-hexafluoro-2-propyl, heptafluoropropyl, 2,2,3,3,4,4,4-heptafluorobutyl, perfluorobutyl, nonafluoro-tert-butyl, 1H, 1H-nonafluoropentyl, Perfluoropentyl, 1H, 1H-tridecafluorohexyl, perfluorohexyl, 1H, 1H-pentadecafluorooctyl, perfluorooctyl, groups, etc.).
上記の炭素数1~18のアルキル基もしくは炭素数1~18のフルオロアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~18のアリール基、シリル基、R11O-で表わされるアルコキシ基もしくはアリールオキシ基、R12S-で表わされるアルキルチオ基もしくはアリールチオ基、R13SO-で表わされるスルフィニル基、R14SO-で表わされるスルホニル基、R15CO-で表わされるアルキルカルボニル基もしくはアリールカルボニル基、R16COO-で表わされるカルボニルオキシ基、R17OCO―で表わされるオキシカルボニル基、R18OCOO-で表わされるカーボネート基、R19NHCOO-で表わされるウレタン基は、置換基(T)を有していても良い。 The above alkyl group having 1 to 18 carbon atoms or fluoroalkyl group having 1 to 18 carbon atoms, alkenyl group having 2 to 18 carbon atoms, alkynyl group having 2 to 18 carbon atoms, aryl group having 6 to 18 carbon atoms, silyl group , An alkoxy group or aryloxy group represented by R 11 O—, an alkylthio group or arylthio group represented by R 12 S—, a sulfinyl group represented by R 13 SO—, a sulfonyl group represented by R 14 SO 2 —, R Alkylcarbonyl group or arylcarbonyl group represented by 15 CO—, carbonyloxy group represented by R 16 COO—, oxycarbonyl group represented by R 17 OCO—, carbonate group represented by R 18 OCOO—, R 19 NHCOO— The urethane group represented by has a substituent (T) Good.
置換基(T)としては、例えば、アルキル基、ヒドロキシ基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アリールチオカルボニル基、アシロキシ基、アリールチオ基、アルキルチオ基、アリール基、複素環式炭化水素基、アリールオキシ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基及びハロゲン原子が挙げられる。置換基(T)は1種でもよいし、2種以上でもよい。 Examples of the substituent (T) include an alkyl group, a hydroxy group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an arylthiocarbonyl group, an acyloxy group, an arylthio group, an alkylthio group, Examples thereof include an aryl group, a heterocyclic hydrocarbon group, an aryloxy group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a halogen atom. The substituent (T) may be one type or two or more types.
前記R1~R8の少なくとも2つが互いに結合し、環構造を形成しても良い。環構造を形成する場合、隣あう2つが芳香環を形成することが好ましい。その環はヘテロ原子、オキソ基を含有していてもよい。また、更に置換基(T)を有していてもよい。 At least two of R1 to R8 may be bonded to each other to form a ring structure. When forming a ring structure, it is preferable that two adjacent ones form an aromatic ring. The ring may contain a hetero atom or an oxo group. Furthermore, you may have a substituent (T).
 式(1)で表されるイミドスルホネートとしては、R1~R8の全てが水素原子または、R1~R8の少なくともいずれか一つが互いに独立に、ハロゲン原子、炭素数1~18のアルキル基もしくは炭素数1~18のフルオロアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~18のアリール基、水酸基、カルボキシル基、R11O-で表わされるアルコキシ基もしくはアリールオキシ基、R15CO-で表わされるアルキルカルボニル基もしくはアリールカルボニル基、R16COO-で表わされるカルボニルオキシ基、R17OCO-で表わされるオキシカルボニル基、または、前記R1~R8の少なくとも2つが互いに結合し、隣あう2つが芳香環を形成しているものが好ましい。 In the imide sulfonate represented by the formula (1), all of R1 to R8 are hydrogen atoms, or at least one of R1 to R8 is independently of each other a halogen atom, an alkyl group having 1 to 18 carbon atoms, or a carbon number. A 1-18 fluoroalkyl group, an alkenyl group having 2-18 carbon atoms, an alkynyl group having 2-18 carbon atoms, an aryl group having 6-18 carbon atoms, a hydroxyl group, a carboxyl group, an alkoxy group represented by R 11 O- An aryloxy group, an alkylcarbonyl group or arylcarbonyl group represented by R 15 CO—, a carbonyloxy group represented by R 16 COO—, an oxycarbonyl group represented by R 17 OCO—, or at least two of the aforementioned R1 to R8 One in which two are bonded to each other and two adjacent to each other form an aromatic ring is preferable.
式(1)で表されるイミドスルホネートとして更に好ましくは、R1~R8の全てが水素原子または、R1~R8の少なくともいずれか2つが同じ官能基であり、その官能基が、ハロゲン原子、炭素数1~18のアルキル基もしくは炭素数1~18のフルオロアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~18のアリール基、水酸基、カルボキシル基、R11O-で表わされるアルコキシ基もしくはアリールオキシ基、R15CO-で表わされるアルキルカルボニル基もしくはアリールカルボニル基、R16COO-で表わされるカルボニルオキシ基、R17OCO-で表わされるオキシカルボニル基であるもの、または、前記R1~R8の少なくとも2つが互いに結合し、隣あう2つが芳香環を形成しているものである。 More preferably, as the imide sulfonate represented by the formula (1), all of R1 to R8 are a hydrogen atom or at least any two of R1 to R8 are the same functional group, and the functional group includes a halogen atom, a carbon number An alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, a hydroxyl group, a carboxyl group, R An alkoxy group or aryloxy group represented by 11 O—, an alkylcarbonyl group or arylcarbonyl group represented by R 15 CO—, a carbonyloxy group represented by R 16 COO—, or an oxycarbonyl group represented by R 17 OCO— A certain one, or at least two of R1 to R8 are bonded to each other and two adjacent to each other are fine. Those which form a ring.
 紫外線照射によりスルホン酸エステル部分を分解させるための必須官能基であるR9は、置換基を有しても良い炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)である。置換基としては、置換基(T)として例示したものが使用できる。炭素数1~18の炭化水素基としては、アルキル基、アリール基及び複素環式炭化水素基が挙げられる。 R9, which is an essential functional group for decomposing the sulfonic acid ester moiety by ultraviolet irradiation, is an optionally substituted hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is substituted with fluorine). It may be). As the substituent, those exemplified as the substituent (T) can be used. Examples of the hydrocarbon group having 1 to 18 carbon atoms include an alkyl group, an aryl group, and a heterocyclic hydrocarbon group.
アルキル基としては、炭素数1~18の直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、炭素数1~18の分枝鎖アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル及びイソオクタデシル)、及び炭素数3~18のシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及び4-デシルシクロヘキシル、10-カンファーイル等)等が挙げられる。 Examples of the alkyl group include linear alkyl groups having 1 to 18 carbon atoms (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n- Hexadecyl, n-octadecyl, etc.), branched alkyl groups having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl and isooctadecyl), and 3 carbon atoms -18 cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and 4-decylcyclohexyl, 10-camphoryl, etc.) and the like.
 アリール基としては、炭素数6~10のアリール基(フェニル、トリル、ジメチルフェニル、ナフチル及びペンタフルオロフェニル等)等が挙げられる。 Examples of the aryl group include aryl groups having 6 to 10 carbon atoms (such as phenyl, tolyl, dimethylphenyl, naphthyl, and pentafluorophenyl).
 複素環式炭化水素基としては、炭素数4~18の複素環式炭化水素基(チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、ジベンゾチエニル、キサントニル、チオキサントニル及びジベンゾフラニル等)等が挙げられる。 The heterocyclic hydrocarbon group includes a heterocyclic hydrocarbon group having 4 to 18 carbon atoms (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, quinolyl, isoquinolyl. Quinoxalinyl, quinazolinyl, carbazolyl, acridinyl, phenothiazinyl, phenazinyl, xanthenyl, thianthenyl, phenoxazinyl, phenoxathinyl, chromanyl, isochromanyl, dibenzothienyl, xanthonyl, thioxanthonyl, dibenzofuranyl and the like.
 置換基を有しても良い炭素数1~18の炭化水素基の水素の一部又は全部がフッ素で置換された基としては、電子吸引性の大きいCxFyが挙げられる。
電子吸引性の大きいCxFyは、炭素原子数1~8(x=1~8)、及びフッ素原子数3~17(y=3~17)からなる官能基である。
炭素原子数が1以上であれば強酸の合成が容易であり、8以下であれば耐熱安定性に優れる。フッ素原子数が3以上であれば強酸として作用することができ、17以下であれば強酸の合成が容易である。
非イオン系酸発生剤(A)中のCxFyは1種で用いてもよいし、2種以上を併用してもよい。
Examples of the group in which part or all of the hydrogen atoms of the hydrocarbon group having 1 to 18 carbon atoms which may have a substituent are substituted with fluorine include CxFy having a high electron-withdrawing property.
CxFy having a high electron withdrawing property is a functional group having 1 to 8 carbon atoms (x = 1 to 8) and 3 to 17 fluorine atoms (y = 3 to 17).
If the number of carbon atoms is 1 or more, the synthesis of strong acid is easy, and if it is 8 or less, the heat resistance stability is excellent. If the number of fluorine atoms is 3 or more, it can act as a strong acid, and if it is 17 or less, the synthesis of a strong acid is easy.
CxFy in the nonionic acid generator (A) may be used singly or in combination of two or more.
 CxFyとしては、水素原子がフッ素原子で置換された直鎖アルキル基(RF1)、分岐鎖アルキル基(RF2)、シクロアルキル基(RF3)、及びアリール基(RF4)が挙げられる。 Examples of CxFy include a linear alkyl group (RF1), a branched alkyl group (RF2), a cycloalkyl group (RF3), and an aryl group (RF4) in which hydrogen atoms are substituted with fluorine atoms.
水素原子がフッ素原子で置換された直鎖アルキル基(RF1)としては、例えば、トリフルオロメチル基(x=1,y=3)、ペンタフルオロエチル基(x=2,y=5)、ノナフルオロブチル基(x=4,y=9)、パーフルオロヘキシル基(x=6,y=13)、及びパーフルオロオクチル基(x=8,y=17)等が挙げられる。 Examples of the linear alkyl group (RF1) in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group (x = 1, y = 3), a pentafluoroethyl group (x = 2, y = 5), nona Examples include a fluorobutyl group (x = 4, y = 9), a perfluorohexyl group (x = 6, y = 13), a perfluorooctyl group (x = 8, y = 17), and the like.
水素原子がフッ素原子で置換された分岐鎖アルキル基(RF2)としては、例えば、パーフルオロイソプロピル基(x=3,y=7)、パーフルオロ-tert-ブチル基(x=4,y=9)、及びパーフルオロ-2-エチルヘキシル基(x=8,y=17)等が挙げられる。 Examples of the branched alkyl group (RF2) in which a hydrogen atom is substituted with a fluorine atom include a perfluoroisopropyl group (x = 3, y = 7) and a perfluoro-tert-butyl group (x = 4, y = 9). And a perfluoro-2-ethylhexyl group (x = 8, y = 17) and the like.
水素原子がフッ素原子で置換されたシクロアルキル基(RF3)としては、例えば、パーフルオロシクロブチル基(x=4,y=7)、パーフルオロシクロペンチル基(x=5,y=9)、パーフルオロシクロヘキシル基(x=6,y=11)、及びパーフルオロ(1-シクロヘキシル)メチル基(x=7,y=13)等が挙げられる。 Examples of the cycloalkyl group (RF3) in which a hydrogen atom is substituted with a fluorine atom include a perfluorocyclobutyl group (x = 4, y = 7), a perfluorocyclopentyl group (x = 5, y = 9), Examples thereof include a fluorocyclohexyl group (x = 6, y = 11) and a perfluoro (1-cyclohexyl) methyl group (x = 7, y = 13).
水素原子がフッ素原子で置換されたアリール基(RF4)としては、例えば、ペンタフルオロフェニル基(x=6,y=5)、及び3-トリフルオロメチルテトラフルオロフェニル基(x=7,y=7)等が挙げられる。 Examples of the aryl group (RF4) in which a hydrogen atom is substituted with a fluorine atom include a pentafluorophenyl group (x = 6, y = 5) and a 3-trifluoromethyltetrafluorophenyl group (x = 7, y = 7) and the like.
 R9のうち、好ましくは電子吸引性の大きいCxFyであり、CxFyのうち、入手のしやすさ、及びスルホン酸エステル部分の分解性の観点から、好ましくは、直鎖アルキル基(RF1)、分岐鎖アルキル基(RF2)、及びアリール基(RF4)、さらに好ましくは直鎖アルキル基(RF1)、及びアリール基(RF4)、特に好ましくはトリフルオロメチル基(x=1,y=3)、ペンタフルオロエチル基(x=2,y=5)、ヘプタフルオロプロピル基(x=3,y=7)、ノナフルオロブチル基(x=4,y=9)、及びペンタフルオロフェニル基(x=6,y=5)である。 Among R9, CxFy having a high electron-withdrawing property is preferable. From CxFy, from the viewpoint of availability and decomposability of the sulfonic acid ester portion, a linear alkyl group (RF1), a branched chain is preferable. Alkyl group (RF2) and aryl group (RF4), more preferably linear alkyl group (RF1) and aryl group (RF4), particularly preferably trifluoromethyl group (x = 1, y = 3), pentafluoro Ethyl group (x = 2, y = 5), heptafluoropropyl group (x = 3, y = 7), nonafluorobutyl group (x = 4, y = 9), and pentafluorophenyl group (x = 6, y = 5).
 一般式(1)で表されるイミドスルホネート化合物の好ましい具体例として、合成の容易さ、吸収波長領域の調整、及び耐熱安定性の観点から下記が挙げられるが、これらに限定されない。 Preferred examples of the imide sulfonate compound represented by the general formula (1) include, but are not limited to, the following from the viewpoints of ease of synthesis, adjustment of the absorption wavelength region, and heat stability.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
本発明のイミドスルホネート化合物の合成方法は目的物を合成できれば特に限定はされないが、例えば、前駆体となるN-ヒドロキシイミド化合物(P1)と(R9-SOOで示されるスルホン酸無水物との反応、又はN-ヒドロキシイミド化合物(P1)の塩とR9-SOCl示されるスルホン酸クロライドとの反応によって合成できる。 The method for synthesizing the imide sulfonate compound of the present invention is not particularly limited as long as the target product can be synthesized. For example, sulfonic acid anhydrides represented by N-hydroxyimide compound (P1) and (R9-SO 2 ) 2 O as precursors Or a reaction of a salt of the N-hydroxyimide compound (P1) with a sulfonic acid chloride represented by R9-SO 2 Cl.
 本発明の非イオン系光酸発生剤(A)は上記イミドスルホネート化合物を含有する。
本発明の非イオン系光酸発生剤(A)は、レジスト材料への溶解を容易にするため、あらかじめ反応を阻害しない溶剤に溶かしておいてもよい。
The nonionic photoacid generator (A) of the present invention contains the imide sulfonate compound.
The nonionic photoacid generator (A) of the present invention may be dissolved in advance in a solvent that does not inhibit the reaction in order to facilitate dissolution in the resist material.
 溶剤としては、カーボネート(プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート及びジエチルカーボネート等);エステル(酢酸エチル、乳酸エチル、β-プロピオラクトン、β―ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン及びε-カプロラクトン等);エーテル(エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等);及びエーテルエステル(エチレングリコールモノメチルエーテル酢酸エステル、プロピレングリコールモノエチルエーテル酢酸エステル及びジエチレングリコールモノブチルエーテル酢酸エステル等)等が挙げられる。 Solvents include carbonates (propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, etc.); esters (ethyl acetate, ethyl lactate, β-propiolactone, β-butyrolactone, γ-butyrolactone, δ -Valerolactone and ε-caprolactone, etc.); ethers (ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol dibutyl ether, etc.); and ether esters ( Ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate And diethylene glycol monobutyl ether acetate, etc.) and the like.
 溶剤を使用する場合、溶剤の使用割合は、本発明の非イオン系光酸発生剤100重量部に対して、15~1000重量部が好ましく、さらに好ましくは30~500重量部である。 When a solvent is used, the proportion of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 500 parts by weight, with respect to 100 parts by weight of the nonionic photoacid generator of the present invention.
 本発明のフォトリソグラフィー用樹脂組成物(Q)は、非イオン系光酸発生剤(A)を必須成分として含むため、紫外線照射及び露光後加熱(PEB)を行うことで、露光部と未露光部の現像液に対する溶解性に差がつく。非イオン系光酸発生剤(A)は1種単独、又は2種以上を組み合わせて使用することができる。
 フォトリソグラフィー用樹脂組成物(Q)としては、ネガ型化学増幅樹脂(QN)と非イオン系光酸発生剤(A)との混合物;及びポジ型化学増幅樹脂(QP)と非イオン系光酸発生剤(A)との混合物が挙げられる。
Since the resin composition for photolithography (Q) of the present invention contains the nonionic photoacid generator (A) as an essential component, the exposed portion and the unexposed portion are exposed by performing ultraviolet irradiation and post-exposure heating (PEB). Difference in solubility in the developer of the part. A nonionic photoacid generator (A) can be used individually by 1 type or in combination of 2 or more types.
Examples of the resin composition (Q) for photolithography include a mixture of a negative chemical amplification resin (QN) and a nonionic photoacid generator (A); and a positive chemical amplification resin (QP) and a nonionic photoacid. A mixture with a generator (A) is mentioned.
 ネガ型化学増幅樹脂(QN)としては、フェノール性水酸基含有樹脂(QN1)と架橋剤(QN2)から構成される。 The negative chemical amplification resin (QN) is composed of a phenolic hydroxyl group-containing resin (QN1) and a crosslinking agent (QN2).
フェノール性水酸基含有樹脂(QN1)としてはフェノール性水酸基を含有している樹脂であれば特に制限はなく、例えば、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール性水酸基を含有するポリイミド、フェノール性水酸基を含有するポリアミック酸、フェノール-ジシクロペンタジエン縮合樹脂等が用いられる。これらのなかでも、ノボラック樹脂、ポリヒドロキシスチレン、ポリヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール-キシリレングリコール縮合樹脂が好ましい。尚、これらのフェノール性水酸基含有樹脂(QN1)は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it contains a phenolic hydroxyl group. For example, a novolak resin, a polyhydroxystyrene, a copolymer of hydroxystyrene, a copolymer of hydroxystyrene and styrene Copolymer, copolymer of hydroxystyrene, styrene and (meth) acrylic acid derivative, phenol-xylylene glycol condensation resin, cresol-xylylene glycol condensation resin, polyimide containing phenolic hydroxyl group, polyamic acid containing phenolic hydroxyl group Phenol-dicyclopentadiene condensation resin is used. Among these, novolak resins, polyhydroxystyrene, copolymers of polyhydroxystyrene, copolymers of hydroxystyrene and styrene, copolymers of hydroxystyrene, styrene and (meth) acrylic acid derivatives, phenol-xylylene glycol Condensed resins are preferred. In addition, these phenolic hydroxyl group containing resin (QN1) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
上記ノボラック樹脂は、例えば、フェノール類とアルデヒド類とを触媒の存在下で縮合させることにより得ることができる。
上記フェノール類としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトール等が挙げられる。
また、上記アルデヒド類としてはホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。
The novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
Examples of the phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples include trimethylphenol, catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol and the like.
Examples of the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
具体的なノボラック樹脂としては、例えば、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂等が挙げられる。 Specific examples of the novolak resin include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, and the like.
また、上記フェノール性水酸基含有樹脂(QN1)には、成分の一部としてフェノール性低分子化合物が含有されていてもよい。
上記フェノール性低分子化合物としては、例えば、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、トリス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、トリス(4-ヒドロキシフェニル)エタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、4,4’-{1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エチリデン}ビスフェノール等が挙げられる。これらのフェノール性低分子化合物は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
The phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular weight compound as a part of the component.
Examples of the phenolic low molecular weight compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- Phenylethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4 -[1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethane, 1,1,2,2-tetra (4-hydroxy) Phenyl) ethane, 4,4 '- {1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene} bisphenol and the like. These phenolic low molecular weight compounds may be used alone or in combination of two or more.
このフェノール性低分子化合物のフェノール性水酸基含有樹脂(QN1)中における含有割合は、フェノール性水酸基含有樹脂(QN1)を100重量%とした場合、40重量%以下であることが好ましく、より好ましくは1~30重量%である。 The content ratio of the phenolic low molecular weight compound in the phenolic hydroxyl group-containing resin (QN1) is preferably 40% by weight or less, more preferably, based on 100% by weight of the phenolic hydroxyl group-containing resin (QN1). 1 to 30% by weight.
フェノール性水酸基含有樹脂(QN1)の重量平均分子量は、得られる絶縁膜の解像性、熱衝撃性、耐熱性、残膜率等の観点から、2000以上であることが好ましく、より好ましくは2000~20000程度である。
また、ネガ型化学増幅樹脂(QN)中におけるフェノール性水酸基含有樹脂(QN1)の含有割合は、溶剤を除いた組成物の全体を100重量%とした場合に、30~90重量%であることが好ましく、より好ましくは40~80重量%である。このフェノール性水酸基含有樹脂(QN1)の含有割合が30~90重量%である場合には、感光性絶縁樹脂組成物を用いて形成された膜がアルカリ水溶液による十分な現像性を有しているため好ましい。
The weight average molecular weight of the phenolic hydroxyl group-containing resin (QN1) is preferably 2000 or more, more preferably 2000 from the viewpoint of the resolution, thermal shock resistance, heat resistance, residual film ratio, etc. of the obtained insulating film. About 20,000.
In addition, the content of the phenolic hydroxyl group-containing resin (QN1) in the negative chemically amplified resin (QN) is 30 to 90% by weight when the total composition excluding the solvent is 100% by weight. Is more preferable, and 40 to 80% by weight is more preferable. When the content of the phenolic hydroxyl group-containing resin (QN1) is 30 to 90% by weight, the film formed using the photosensitive insulating resin composition has sufficient developability with an alkaline aqueous solution. Therefore, it is preferable.
架橋剤(QN2)としては、非イオン系光酸発生剤(A)から発生した強酸によりフェノール性水酸基含有樹脂(QN1)を架橋し得る化合物であれば特に限定されない。 The crosslinking agent (QN2) is not particularly limited as long as it is a compound that can crosslink the phenolic hydroxyl group-containing resin (QN1) with a strong acid generated from the nonionic photoacid generator (A).
架橋剤(QN2)としては、例えば、ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物、オキセタン化合物、メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有尿素化合物、メチロール基含有フェノール化合物、アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有尿素化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有メラミン樹脂、カルボキシメチル基含有ベンゾグアナミン樹脂、カルボキシメチル基含有尿素樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有尿素化合物及びカルボキシメチル基含有フェノール化合物等を挙げることができる。 Examples of the crosslinking agent (QN2) include bisphenol A epoxy compounds, bisphenol F epoxy compounds, bisphenol S epoxy compounds, novolac resin epoxy compounds, resole resin epoxy compounds, poly (hydroxystyrene) epoxy compounds, and oxetanes. Compound, methylol group-containing melamine compound, methylol group-containing benzoguanamine compound, methylol group-containing urea compound, methylol group-containing phenol compound, alkoxyalkyl group-containing melamine compound, alkoxyalkyl group-containing benzoguanamine compound, alkoxyalkyl group-containing urea compound, alkoxyalkyl group -Containing phenol compound, carboxymethyl group-containing melamine resin, carboxymethyl group-containing benzoguanamine resin, carboxymethyl group-containing urea Fat, carboxymethyl group-containing phenol resin, carboxymethyl group-containing melamine compounds, carboxymethyl group-containing benzoguanamine compounds, mention may be made of carboxymethyl group-containing urea compounds and carboxymethyl group-containing phenol compounds and the like.
これら架橋剤(QN2)のうち、メチロール基含有フェノール化合物、メトキシメチル基含有メラミン化合物、メトキシメチル基含有フェノール化合物、メトキシメチル基含有グリコールウリル化合物、メトキシメチル基含有ウレア化合物及びアセトキシメチル基含有フェノール化合物が好ましく、さらに好ましくはメトキシメチル基含有メラミン化合物(例えばヘキサメトキシメチルメラミン等)、メトキシメチル基含有グリコールウリル化合物及びメトキシメチル基含有ウレア化合物等である。メトキシメチル基含有メラミン化合物は、CYMEL300、CYMEL301、CYMEL303、CYMEL305(三井サイアナミッド(株)製)等の商品名で、メトキシメチル基含有グリコールウリル化合物はCYMEL1174(三井サイアナミッド(株)製)等の商品名で、またメトキシメチル基含有ウレア化合物は、MX290(三和ケミカル(株)製)等の商品名で市販されている。 Among these crosslinking agents (QN2), methylol group-containing phenol compounds, methoxymethyl group-containing melamine compounds, methoxymethyl group-containing phenol compounds, methoxymethyl group-containing glycoluril compounds, methoxymethyl group-containing urea compounds and acetoxymethyl group-containing phenol compounds More preferred are methoxymethyl group-containing melamine compounds (for example, hexamethoxymethyl melamine), methoxymethyl group-containing glycoluril compounds, methoxymethyl group-containing urea compounds, and the like. The methoxymethyl group-containing melamine compound is a trade name such as CYMEL300, CYMEL301, CYMEL303, CYMEL305 (manufactured by Mitsui Cyanamid Co., Ltd.), and the methoxymethyl group-containing glycoluril compound is a trade name such as CYMEL1174 (manufactured by Mitsui Cyanamid Co., Ltd.). Further, the methoxymethyl group-containing urea compound is commercially available under a trade name such as MX290 (manufactured by Sanwa Chemical Co., Ltd.).
架橋剤(QN2)の含有量は、残膜率の低下、パターンの蛇行や膨潤及び現像性の観点から、フェノール性水酸基含有樹脂(QN1)中の全酸性官能基に対して、通常、5~60モル%、好ましくは10~50モル%、さらに好ましくは15~40モル%である。 The content of the crosslinking agent (QN2) is usually 5 to 5 with respect to all acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoints of reduction of the remaining film ratio, pattern meandering and swelling, and developability. The amount is 60 mol%, preferably 10 to 50 mol%, more preferably 15 to 40 mol%.
ポジ型化学増幅樹脂(QP)としては、フェノール性水酸基、カルボキシル基、又はスルホニル基等の1種以上の酸性官能基を含有するアルカリ可溶性樹脂(QP1)中の酸性官能基の水素原子の一部あるいは全部を、酸解離性基で置換した保護基導入樹脂(QP2)が挙げられる。
なお、酸解離性基は非イオン系光酸発生剤(A)から発生した強酸の存在下で解離することができる基である。
 保護基導入樹脂(QP2)は、それ自体としてはアルカリ不溶性又はアルカリ難溶性である。
As a positive chemical amplification resin (QP), a part of hydrogen atoms of acidic functional groups in an alkali-soluble resin (QP1) containing one or more acidic functional groups such as phenolic hydroxyl group, carboxyl group, or sulfonyl group Or the protecting group introduction | transduction resin (QP2) which substituted all by the acid dissociable group is mentioned.
The acid dissociable group is a group that can be dissociated in the presence of a strong acid generated from the nonionic photoacid generator (A).
The protecting group-introduced resin (QP2) is itself insoluble in alkali or hardly soluble in alkali.
アルカリ可溶性樹脂(QP1)としては、例えば、フェノール性水酸基含有樹脂(QP11)、カルボキシル基含有樹脂(QP12)、及びスルホン酸基含有樹脂(QP13)等が挙げられる。
フェノール性水酸基含有樹脂(QP11)としては、上記フェノール性水酸基含有樹脂(QN1)と同じものが使用できる。
Examples of the alkali-soluble resin (QP1) include a phenolic hydroxyl group-containing resin (QP11), a carboxyl group-containing resin (QP12), and a sulfonic acid group-containing resin (QP13).
As the phenolic hydroxyl group-containing resin (QP11), the same phenolic hydroxyl group-containing resin (QN1) can be used.
カルボキシル基含有樹脂(QP12)としては、カルボキシル基を有するポリマーでああれば特に制限はなく、例えば、カルボキシル基含有ビニルモノマー(Ba)と、必要により疎水基含有ビニルモノマー(Bb)とをビニル重合することで得られる。 The carboxyl group-containing resin (QP12) is not particularly limited as long as it is a polymer having a carboxyl group. For example, vinyl polymerization of a carboxyl group-containing vinyl monomer (Ba) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) is vinyl-polymerized. It is obtained by doing.
カルボキシル基含有ビニルモノマー(Ba)としては、例えば、不飽和モノカルボン酸[(メタ)アクリル酸、クロトン酸および桂皮酸など]、不飽和多価(2~4価)カルボン酸[(無水)マレイン酸、イタコン酸、フマル酸およびシトラコン酸など]、不飽和多価カルボン酸アルキル(炭素数1~10のアルキル基)エステル[マレイン酸モノアルキルエステル、フマル酸モノアルキルエステルおよびシトラコン酸モノアルキルエステルなど]、並びにこれらの塩[アルカリ金属塩(ナトリウム塩およびカリウム塩等)、アルカリ土類金属塩(カルシウム塩およびマグネシウム塩等)、アミン塩およびアンモニウム塩等]が挙げられる。
これらのうち好ましいのは重合性、及び入手のしやすさの観点から不飽和モノカルボン酸、さらに好ましいのは(メタ)アクリル酸である。
Examples of the carboxyl group-containing vinyl monomer (Ba) include unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, cinnamic acid, etc.], unsaturated polyvalent (2- to 4-valent) carboxylic acids [(anhydrous) maleic acid, and the like. Acid, itaconic acid, fumaric acid, citraconic acid and the like], unsaturated polyvalent carboxylic acid alkyl (alkyl group having 1 to 10 carbon atoms) ester [maleic acid monoalkyl ester, fumaric acid monoalkyl ester, citraconic acid monoalkyl ester, etc. And salts thereof [alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt, etc.), amine salts, ammonium salts, etc.].
Of these, unsaturated monocarboxylic acids are preferred from the viewpoint of polymerizability and availability, and (meth) acrylic acid is more preferred.
疎水基含有ビニルモノマー(Bb)としては、(メタ)アクリル酸エステル(Bb1)、及び芳香族炭化水素モノマー(Bb2)等が挙げられる。 Examples of the hydrophobic group-containing vinyl monomer (Bb) include (meth) acrylic acid ester (Bb1) and aromatic hydrocarbon monomer (Bb2).
(メタ)アクリル酸エステル(Bb1)としては、例えば、アルキル基の炭素数1~20のアルキル(メタ)アクリレート[例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレートおよび2-エチルヘキシル(メタ)アクリレートなど]および脂環基含有(メタ)アクリレート[ジシクロペンタニル(メタ)アクリレート、シジクロペンテニル(メタ)アクリレートおよびイソボルニル(メタ)アクリレートなど]などが挙げられる。 Examples of the (meth) acrylic acid ester (Bb1) include alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, Isopropyl (meth) acrylate, n-butyl (meth) acrylate, n-hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate, etc.] and alicyclic group-containing (meth) acrylate [dicyclopentanyl (meth) acrylate, Sidiclopentenyl (meth) acrylate, isobornyl (meth) acrylate, etc.].
芳香族炭化水素モノマー(Bb2)としては、例えば、スチレン骨格を有する炭化水素モノマー[例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレンおよびベンジルスチレン]およびビニルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon monomer (Bb2) include hydrocarbon monomers having a styrene skeleton [for example, styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene. Cyclohexyl styrene and benzyl styrene] and vinyl naphthalene.
カルボキシル基含有樹脂(QP12)における、(Ba)/(Bb)の仕込みモノマーモル比は、通常10~100/0~90、現像性の観点から、好ましくは10~80/20~90、さらに好ましくは25~85/15~75である。 The charged monomer molar ratio of (Ba) / (Bb) in the carboxyl group-containing resin (QP12) is usually from 10 to 100/0 to 90, preferably from 10 to 80/20 to 90, more preferably from the viewpoint of developability. 25-85 / 15-75.
スルホン酸基含有樹脂(QP13)としては、スルホン酸基を有するポリマーであれば特に制限はなく、例えば、スルホン酸基含有ビニルモノマー(Bc)と、必要により疎水基含有ビニルモノマー(Bb)とをビニル重合することで得られる。
疎水基含有ビニルモノマー(Bb)としては、上記と同じものが使用できる。
The sulfonic acid group-containing resin (QP13) is not particularly limited as long as it is a polymer having a sulfonic acid group. For example, a sulfonic acid group-containing vinyl monomer (Bc) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) are used. Obtained by vinyl polymerization.
As the hydrophobic group-containing vinyl monomer (Bb), the same ones as described above can be used.
スルホン酸基含有ビニルモノマー(Bc)としては、例えば、ビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、α-メチルスチレンスルホン酸、2-(メタ)アクリロイルアミド-2-メチルプロパンスルホン酸およびこれらの塩が挙げられる。塩としてはアルカリ金属(ナトリウムおよびカリウム等)塩、アルカリ土類金属(カルシウムおよびマグネシウム等)塩、第1~3級アミン塩、アンモニウム塩および第4級アンモニウム塩などが挙げられる。 Examples of the sulfonic acid group-containing vinyl monomer (Bc) include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, α-methyl styrene sulfonic acid, 2- (meth) acryloylamide-2-methylpropane sulfonic acid. And salts thereof. Examples of the salt include alkali metal (such as sodium and potassium) salts, alkaline earth metal (such as calcium and magnesium) salts, primary to tertiary amine salts, ammonium salts and quaternary ammonium salts.
スルホン酸基含有樹脂(QP13)における、(Bc)/(Bb)の仕込みモノマーモル比は、通常10~100/0~90、現像性の観点から、好ましくは10~80/20~90、さらに好ましくは25~85/15~75である。 In the sulfonic acid group-containing resin (QP13), the charged monomer molar ratio of (Bc) / (Bb) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90, more preferably from the viewpoint of developability. Is 25 to 85/15 to 75.
アルカリ可溶性樹脂(QP1)のHLB値は、アルカリ可溶性樹脂(QP1)の樹脂骨格によって好ましい範囲が異なるが、好ましくは4~19、さらに好ましくは5~18、特に好ましくは6~17である。
HLB値が4以上であれば現像を行う際に、現像性がさらに良好であり、19以下であれば硬化物の耐水性がさらに良好である。
The preferred range of the HLB value of the alkali-soluble resin (QP1) varies depending on the resin skeleton of the alkali-soluble resin (QP1), but is preferably 4 to 19, more preferably 5 to 18, and particularly preferably 6 to 17.
When the HLB value is 4 or more, developability is further improved when developing, and when it is 19 or less, the water resistance of the cured product is further improved.
なお、本発明におけるHLBは、小田法によるHLB値であり、親水性-疎水性バランス値のことであり、有機化合物の有機性の値と無機性の値との比率から計算することができる。
HLB≒10×無機性/有機性
また、無機性の値及び有機性の値は、文献「界面活性剤の合成とその応用」(槇書店発行、小田、寺村著)の501頁;または、「新・界面活性剤入門」(藤本武彦著、三洋化成工業株式会社発行)の198頁に詳しく記載されている。
The HLB in the present invention is an HLB value according to the Oda method, which is a hydrophilic-hydrophobic balance value, and can be calculated from the ratio between the organic value and the inorganic value of the organic compound.
HLB≈10 × Inorganic / Organic In addition, the inorganic value and the organic value are described in the document “Surfactant Synthesis and Applications” (published by Tsuji Shoten, Oda, Teramura), page 501; It is described in detail on page 198 of “Introduction to New Surfactants” (Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd.).
保護基導入樹脂(QP2)中の酸解離性基としては、例えば、置換メチル基、1-置換エチル基、1-分岐アルキル基、シリル基、ゲルミル基、アルコキシカルボニル基、アシル基及び環式酸解離性基等を挙げることができる。これらは1種単独で用いても良いし、2種以上を組み合わせて使用しても良い。 Examples of the acid dissociable group in the protecting group-introduced resin (QP2) include a substituted methyl group, a 1-substituted ethyl group, a 1-branched alkyl group, a silyl group, a germyl group, an alkoxycarbonyl group, an acyl group, and a cyclic acid. Examples include a dissociable group. These may be used alone or in combination of two or more.
1-置換メチル基としては、例えば、メトキシメチル基、メチルチオメチル基、エトキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、ベンジルオキシメチル基、ベンジルチオメチル基、フェナシル基、ブロモフェナシル基、メトキシフェナシル基、メチルチオフェナシル基、α-メチルフェナシル基、シクロプロピルメチル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、ブロモベンジル基、ニトロベンジル基、メトキシベンジル基、メチルチオベンジル基、エトキシベンジル基、エチルチオベンジル基、ピペロニル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基、n-プロポキシカルボニルメチル基、i-プロポキシカルボニルメチル基、n-ブトキシカルボニルメチル基、tert-ブトキシカルボニルメチル基等を挙げることができる。 Examples of the 1-substituted methyl group include methoxymethyl group, methylthiomethyl group, ethoxymethyl group, ethylthiomethyl group, methoxyethoxymethyl group, benzyloxymethyl group, benzylthiomethyl group, phenacyl group, bromophenacyl group, methoxyphena Sil group, methylthiophenacyl group, α-methylphenacyl group, cyclopropylmethyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, bromobenzyl group, nitrobenzyl group, methoxybenzyl group, methylthiobenzyl group, ethoxybenzyl Group, ethylthiobenzyl group, piperonyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, n-propoxycarbonylmethyl group, i-propoxycarbonylmethyl group, n-butoxycarbonylmethyl group, tert-butyl group Alkoxycarbonylmethyl group, and the like.
1-置換エチル基としては、例えば、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、1-エトキシプロピル基、1-プロポキシエチル基、1-シクロヘキシルオキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1,1-ジフェノキシエチル基、1-ベンジルオキシエチル基、1-ベンジルチオエチル基、1-シクロプロピルエチル基、1-フェニルエチル基、1,1-ジフェニルエチル基、1-メトキシカルボニルエチル基、1-エトキシカルボニルエチル基、1-n-プロポキシカルボニルエチル基、1-イソプロポキシカルボニルエチル基、1-n-ブトキシカルボニルエチル基、1-tert-ブトキシカルボニルエチル基等を挙げることができる。 Examples of the 1-substituted ethyl group include 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group, 1,1-diethoxyethyl. Group, 1-ethoxypropyl group, 1-propoxyethyl group, 1-cyclohexyloxyethyl group, 1-phenoxyethyl group, 1-phenylthioethyl group, 1,1-diphenoxyethyl group, 1-benzyloxyethyl group, 1-benzylthioethyl group, 1-cyclopropylethyl group, 1-phenylethyl group, 1,1-diphenylethyl group, 1-methoxycarbonylethyl group, 1-ethoxycarbonylethyl group, 1-n-propoxycarbonylethyl group 1-isopropoxycarbonylethyl group, 1-n-butoxycarbonylethyl group, 1-tert- Butoxycarbonyl ethyl group and the like.
1-分岐アルキル基としては、例えば、i-プロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基等を挙げることができる。 Examples of the 1-branched alkyl group include i-propyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group and the like. it can.
シリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、i-プロピルジメチルシリル基、メチルジ-i-プロピルシリル基、トリ-i-プロピルシリル基、tert-ブチルジメチルシリル基、メチルジ-tert-ブチルシリル基、トリ-tert-ブチルシリル基、フェニルジメチルシリル基、メチルジフェニルシリル基、トリフェニルシリル基等のトリカルビルシリル基を挙げることができる。 Examples of the silyl group include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl group, tert-butyl. Examples thereof include tricarbylsilyl groups such as dimethylsilyl group, methyldi-tert-butylsilyl group, tri-tert-butylsilyl group, phenyldimethylsilyl group, methyldiphenylsilyl group, and triphenylsilyl group.
ゲルミル基としては、例えば、トリメチルゲルミル基、エチルジメチルゲルミル基、メチルジエチルゲルミル基、トリエチルゲルミル基、イソプロピルジメチルゲルミル基、メチルジ-i-プロピルゲルミル基、トリ-i-プロピルゲルミル基、tert-ブチルジメチルゲルミル基、メチルジ-tert-ブチルゲルミル基、トリ-tert-ブチルゲルミル基、フェニルジメチルゲルミル基、メチルジフェニルゲルミル基、トリフェニルゲルミル基等のトリカルビルゲルミル基を挙げることができる。 Examples of the germyl group include trimethylgermyl group, ethyldimethylgermyl group, methyldiethylgermyl group, triethylgermyl group, isopropyldimethylgermyl group, methyldi-i-propylgermyl group, and tri-i-propylgel. Tricarbylgermyl groups such as mil group, tert-butyldimethylgermyl group, methyldi-tert-butylgermyl group, tri-tert-butylgermyl group, phenyldimethylgermyl group, methyldiphenylgermyl group, triphenylgermyl group, etc. Can be mentioned.
アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、i-プロポキシカルボニル基、tert-ブトキシカルボニル基等を挙げることができる。 Examples of the alkoxycarbonyl group include methoxycarbonyl group, ethoxycarbonyl group, i-propoxycarbonyl group, tert-butoxycarbonyl group and the like.
アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、p-トルエンスルホニル基、メシル基等を挙げることができる。 Acyl groups include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauroyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, canphoroyl group, benzoyl group , Phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group, atropoyl group, cinnamoyl group, furoyl group, thenoyl group, nicotinoyl group, isonicoti Yl group, p- toluenesulfonyl group, and mesyl group.
環式酸解離性基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘキセニル基、4-メトキシシクロヘキシル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3-ブロモテトラヒドロピラニル基、4-メトキシテトラヒドロピラニル基、4-メトキシテトラヒドロチオピラニル基、3-テトラヒドロチオフェン-1,1-ジオキシド基等を挙げることができる。 Examples of the cyclic acid dissociable group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexenyl group, a 4-methoxycyclohexyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl group. Group, 3-bromotetrahydropyranyl group, 4-methoxytetrahydropyranyl group, 4-methoxytetrahydrothiopyranyl group, 3-tetrahydrothiophene-1,1-dioxide group and the like.
これらの酸解離性基のうち、tert-ブチル基、ベンジル基、1-メトキシエチル基、1-エトキシエチル基、トリメチルシリル基、tert-ブトキシカルボニル基、tert-ブトキシカルボニルメチル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基及びテトラヒドロチオフラニル基等が好ましい。 Among these acid dissociable groups, tert-butyl group, benzyl group, 1-methoxyethyl group, 1-ethoxyethyl group, trimethylsilyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tetrahydropyranyl group, A tetrahydrofuranyl group, a tetrahydrothiopyranyl group, a tetrahydrofuranyl group, and the like are preferable.
保護基導入樹脂(QP2)における酸解離性基の導入率{保護基導入樹脂(QP2)中の保護されていない酸性官能基と酸解離性基との合計数に対する酸解離性基の数の割合}は、酸解離性基や該基が導入されるアルカリ可溶性樹脂の種類により一概には規定できないが、好ましくは10~100%、さらに好ましくは15~100%である。 Introduction rate of acid-dissociable groups in protecting group-introducing resin (QP2) {Ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in protecting group-introducing resin (QP2) } Cannot be generally defined by the type of acid-dissociable group or the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, more preferably 15 to 100%.
保護基導入樹脂(QP2)のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量(以下、「Mw」という。)は、好ましくは1,000~150,000、さらに好ましくは3,000~100,000である。 The polystyrene-converted weight average molecular weight (hereinafter referred to as “Mw”) of the protecting group-introduced resin (QP2) measured by gel permeation chromatography (GPC) is preferably 1,000 to 150,000, more preferably 3, 000 to 100,000.
また、保護基導入樹脂(QP2)のMwとゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、通常、1~10、好ましくは1~5である。 The ratio (Mw / Mn) of the Mw of the protecting group-introduced resin (QP2) and the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by gel permeation chromatography (GPC) is usually 1 To 10, preferably 1 to 5.
フォトリソグラフィー用樹脂組成物(Q)の固形分の重量に基づく非イオン系光酸発生剤(A)の含有量は、0.001~20重量%が好ましく、さらに好ましくは0.01~15重量%、特に好ましくは0.05~7重量%である。
0.001重量%以上であれば紫外線に対する感度がさらに良好に発揮でき、20重量%以下であればアルカリ現像液に対し不溶部分の物性がさらに良好に発揮できる。
The content of the nonionic photoacid generator (A) based on the weight of the solid content of the resin composition for photolithography (Q) is preferably 0.001 to 20% by weight, more preferably 0.01 to 15% by weight. %, Particularly preferably 0.05 to 7% by weight.
If it is 0.001% by weight or more, the sensitivity to ultraviolet rays can be exhibited more satisfactorily, and if it is 20% by weight or less, the physical properties of the insoluble part in the alkali developer can be exhibited more satisfactorily.
本発明のフォトリソグラフィー用樹脂組成物(Q)を用いたレジストは、例えば、所定の有機溶剤に溶解(無機微粒子を含んだ場合は溶解と分散)した樹脂溶液を、スピンコート、カーテンコート、ロールコート、スプレーコート、スクリーン印刷等公知の方法を用いて基板に塗布後、加熱又は熱風吹き付けにより溶剤を乾燥させることで形成することができる。 The resist using the resin composition for photolithography (Q) of the present invention is prepared by, for example, applying a resin solution dissolved in a predetermined organic solvent (dissolved and dispersed when inorganic fine particles are included) to a spin coat, curtain coat, roll It can be formed by drying the solvent by heating or hot air blowing after applying to the substrate using a known method such as coating, spray coating or screen printing.
フォトリソグラフィー用樹脂組成物(Q)を溶解させる有機溶剤としては、樹脂組成物を溶解させることができ、樹脂溶液をスピンコート等に適用できる物性(粘度等)に調整できるものであれば特に限定されない。例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、トルエン、エタノール、シクロヘキサノン、メタノール、メチルエチルケトン、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、アセトン及びキシレン等の公知の溶媒が使用できる。
これらの溶媒のうち、乾燥温度等の観点から、沸点が200℃以下のもの(トルエン、エタノール、シクロヘキサノン、メタノール、メチルエチルケトン、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、アセトン及びキシレン)が好ましく、単独又は2種類以上組み合わせで使用することもできる。
 有機溶剤を使用する場合、溶剤の配合量は、特に限定されないが、フォトリソグラフィー用樹脂組成物(Q)の固形分の重量に基づいて、通常30~1,000重量%が好ましく、さらに好ましくは40~900重量%、特に好ましくは50~800重量%である。
The organic solvent for dissolving the resin composition for photolithography (Q) is particularly limited as long as the resin composition can be dissolved and the resin solution can be adjusted to physical properties (viscosity, etc.) applicable to spin coating or the like. Not. For example, known solvents such as N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene Can be used.
Among these solvents, those having a boiling point of 200 ° C. or less (toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene) from the viewpoint of drying temperature and the like Are preferable, and can be used alone or in combination of two or more.
When an organic solvent is used, the amount of the solvent is not particularly limited, but is usually preferably 30 to 1,000% by weight, more preferably based on the weight of the solid content of the resin composition for photolithography (Q). It is 40 to 900% by weight, particularly preferably 50 to 800% by weight.
塗布後の樹脂溶液の乾燥条件は、使用する溶剤により異なるが好ましくは50~200℃で2~30分の範囲で実施され、乾燥後のフォトリソグラフィー用樹脂組成物(Q)の残留溶剤量(重量%)等で適宜決定する。 The drying condition of the resin solution after coating varies depending on the solvent used, but is preferably carried out at 50 to 200 ° C. for 2 to 30 minutes, and the residual solvent amount of the resin composition for photolithography (Q) after drying ( Weight%) and the like.
基板にレジストを形成した後、配線パターン形状の光照射を行う。その後、露光後加熱(PEB)を行った後に、アルカリ現像を行い、配線パターンを形成する。 After the resist is formed on the substrate, the wiring pattern shape is irradiated with light. Then, after performing post-exposure heating (PEB), alkali development is performed to form a wiring pattern.
光照射する方法としては、配線パターンを有するフォトマスクを介して活性光線により、レジストの露光を行う方法が挙げられる。光照射に用いる活性光線としては、本発明のフォトリソグラフィー用樹脂組成物(Q)中の非イオン系光酸発生剤(A)を分解させることができれば特に制限はない。
活性光線としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハロゲンランプ、電子線照射装置、X線照射装置、レーザー(アルゴンレーザー、色素レーザー、窒素レーザー、LED、ヘリウムカドミウムレーザー等)等がある。これらのうち、好ましくは高圧水銀灯及び超高圧水銀灯である。
Examples of the light irradiation method include a method of exposing the resist with actinic rays through a photomask having a wiring pattern. The actinic ray used for the light irradiation is not particularly limited as long as the nonionic photoacid generator (A) in the resin composition for photolithography (Q) of the present invention can be decomposed.
Actinic rays include low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, metal halogen lamp, electron beam irradiation device, X-ray irradiation device, laser (argon laser, dye laser, nitrogen laser, LED, helium Cadmium laser). Of these, high pressure mercury lamps and ultrahigh pressure mercury lamps are preferred.
 露光後加熱(PEB)の温度としては、通常40~200℃であって、好ましくは500~190℃、さらに好ましくは60~180℃である。40℃未満では脱保護反応、又は架橋反応が十分にできないため、紫外線照射部と紫外線未照射部の溶解性に差が不足しパターンが形成できず、200℃より高いと生産性が低下する問題がある。
加熱時間としては、通常0.5~120分であって、好ましくは1~90分、さらに好ましくは2~90分である。0.5分未満では時間と温度の制御が困難で、120分より大きいと生産性が低下する問題がある。
The post-exposure heating (PEB) temperature is usually 40 to 200 ° C., preferably 500 to 190 ° C., more preferably 60 to 180 ° C. If the temperature is lower than 40 ° C., the deprotection reaction or the crosslinking reaction cannot be sufficiently performed. Therefore, there is not enough difference in solubility between the ultraviolet irradiated portion and the ultraviolet unirradiated portion, and a pattern cannot be formed. There is.
The heating time is usually 0.5 to 120 minutes, preferably 1 to 90 minutes, and more preferably 2 to 90 minutes. If it is less than 0.5 minutes, it is difficult to control the time and temperature, and if it is more than 120 minutes, there is a problem that productivity is lowered.
アルカリ現像する方法としては、アルカリ現像液を用いて配線パターン形状に溶解除去する方法が挙げられる。アルカリ現像液としては、フォトリソグラフィー用樹脂組成物(Q)の紫外線照射部と紫外線未照射部の溶解性に差ができる条件であれば特に制限はない。
アルカリ現像液としては水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム及びテトラメチルアンモニウム塩水溶液等がある。
これらアルカリ現像液は水溶性の有機溶剤を加えても良い。水溶性の有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、N-メチルピロリドン等がある。
Examples of the alkali developing method include a method of dissolving and removing the wiring pattern shape using an alkali developer. The alkali developer is not particularly limited as long as the solubility of the ultraviolet-irradiated part and the ultraviolet-irradiated part of the resin composition for photolithography (Q) can be varied.
Examples of the alkali developer include a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, sodium hydrogen carbonate, and a tetramethylammonium salt aqueous solution.
These alkaline developers may contain a water-soluble organic solvent. Examples of the water-soluble organic solvent include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone and the like.
現像方法としては、アルカリ現像液を用いたディップ方式、シャワー方式、及びスプレー方式があるが、スプレー方式の方が好ましい。
現像液の温度は、好ましくは25~40℃で使用される。現像時間は、レジストの厚さに応じて適宜決定される。
As a developing method, there are a dip method, a shower method, and a spray method using an alkali developer.
The temperature of the developer is preferably 25 to 40 ° C. The development time is appropriately determined according to the resist thickness.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
製造例1
N-ヒドロキシビフェニル-2,2’-ジカルボキシイミド[中間体(1)]の合成
 ジフェン酸無水物11.2g(0.050mol)、塩酸ヒドロキシルアミン4.9g(0.070mol)、ピリジン(50mL)の混合物を、100℃で10時間撹拌した。室温冷却後に1N塩酸中に反応液を投入し、析出物をろ過により回収し、表題の化合物[中間体(1)]20.5gを得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm):11.7(s、1H)、8.5(d、1H)、8.3(d、1H)、8.2(d、1H)、7.9(t、1H)、7.6(t、1H)、7.4(t、1H)、7.3(d、1H)、7.2(t、1H)}
Production Example 1
Synthesis of N-hydroxybiphenyl-2,2′-dicarboximide [intermediate (1)] 11.2 g (0.050 mol) of diphenic anhydride, 4.9 g (0.070 mol) of hydroxylamine hydrochloride, pyridine (50 mL) ) Was stirred at 100 ° C. for 10 hours. After cooling to room temperature, the reaction solution was poured into 1N hydrochloric acid, and the precipitate was collected by filtration to obtain 20.5 g of the title compound [intermediate (1)]. The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm): 11.7 (s, 1H), 8.5 (d, 1H), 8.3 (d, 1H), 8.2 (d, 1H), 7.9 (t, 1H), 7.6 (t, 1H), 7.4 (t, 1H), 7.3 (d, 1H), 7.2 (t, 1H)}
製造例2
N-ヒドロキシ-4-メトキシビフェニル-2,2’-ジカルボキシイミド[中間体(2)]の合成
 20%炭酸ナトリウム水溶液(65g)、ジオキサン(250g)を反応容器に入れ混合し、1時間窒素を通気させた。この溶液に、2-ブロモ-5-メトキシトルエン(24.5g)、2-メチルフェニルボロン酸(25g)、テトラキス(トリフェニルホスフィン)パラジウム(1.4g)を添加し、撹拌しながら窒素雰囲気下で60℃まで昇温し、12時間反応させた。反応液を室温に戻した後、反応液が酸性になるまで塩化水素を添加し、塩化メチレンで抽出した。この抽出液を水で洗浄して分液した後、エバポレーターで濃縮し、オレンジ色固体(8.5g)を得た。得られた固体(5.0g)を、ピリジン(150g)に溶解し、別の反応容器であらかじめ混合しておいた、水(500mL)、過マンガン酸カリウム(37g)、水酸化ナトリウム(38g)を1時間かけて滴下した。撹拌しながら80℃に昇温させ、2時間反応させた後ろ過により固体を除去した。得られたろ液に、酸性になるまで塩化水素を加え、沈殿してきた固体を回収し、エタノール、水で洗浄した。得られた固体を、無水酢酸(30g)に溶解させ、還流条件下で2時間反応させた後、減圧にして無水酢酸を留去した。残渣に、ピリジン(10g)を加えて溶解させ、さらに塩酸ヒドロキシルアミン(4.9g)を加え、100℃で10時間撹拌した。室温冷却後に1N塩酸(300mL)中に反応液を投入し、析出物をろ過により回収し、表題の化合物[中間体(2)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm):11.7(s、1H)、8.8(s、1H)、8.3(d、1H)、8.2(d、1H)、7.9(t、1H)、7.4(t、1H)、7.3(d、1H)、7.2(t、1H)、3.7(s、3H)}
Production Example 2
Synthesis of N-hydroxy-4-methoxybiphenyl-2,2′-dicarboximide [intermediate (2)] 20% aqueous sodium carbonate solution (65 g) and dioxane (250 g) were placed in a reaction vessel and mixed for 1 hour with nitrogen. Aerated. To this solution, 2-bromo-5-methoxytoluene (24.5 g), 2-methylphenylboronic acid (25 g), tetrakis (triphenylphosphine) palladium (1.4 g) were added and stirred under a nitrogen atmosphere. The temperature was raised to 60 ° C. and reacted for 12 hours. After returning the reaction solution to room temperature, hydrogen chloride was added until the reaction solution became acidic and extracted with methylene chloride. The extract was washed with water and separated, and then concentrated with an evaporator to obtain an orange solid (8.5 g). The obtained solid (5.0 g) was dissolved in pyridine (150 g) and mixed in advance in another reaction vessel, water (500 mL), potassium permanganate (37 g), sodium hydroxide (38 g). Was added dropwise over 1 hour. The temperature was raised to 80 ° C. with stirring, the reaction was allowed to proceed for 2 hours, and then the solid was removed by filtration. Hydrogen chloride was added to the obtained filtrate until acidic, and the precipitated solid was collected and washed with ethanol and water. The obtained solid was dissolved in acetic anhydride (30 g) and reacted under reflux conditions for 2 hours, and then the pressure was reduced to distill off acetic anhydride. Pyridine (10 g) was added to the residue for dissolution, and hydroxylamine hydrochloride (4.9 g) was further added, followed by stirring at 100 ° C. for 10 hours. After cooling to room temperature, the reaction mixture was poured into 1N hydrochloric acid (300 mL), and the precipitate was collected by filtration to give the title compound [Intermediate (2)]. The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm): 11.7 (s, 1H), 8.8 (s, 1H), 8.3 (d, 1H), 8.2 (d, 1H), 7.9 (t, 1H), 7.4 (t, 1H), 7.3 (d, 1H), 7.2 (t, 1H), 3.7 (s, 3H)}
製造例3
N-ヒドロキシ-5,5’-ジフルオロビフェニル-2,2’-ジカルボキシイミド[中間体(3)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)をN,N-ジメチルホルムアミド(30mL)に溶解し、銅粉末(6.1g)を加え、撹拌しながら130℃で15時間反応させた。室温まで冷却した後、ろ過により固体を除去し、水(20mL)、水酸化ナトリウム(15g)を加え、60℃で3時間反応させた。ビーカーに入れた1N塩酸(100mL)を撹拌しながら反応液を加え、析出してきた固体をろ過により回収した。得られた固体を、無水酢酸(30g)に溶解させ、還流条件下で2時間反応させた後、減圧にして無水酢酸を留去した。残渣に、ピリジン(10g)を加えて溶解させ、さらに塩酸ヒドロキシルアミン(4.9g)を加え、100℃で10時間撹拌した。室温冷却後に1N塩酸(300mL)中に反応液を投入し、析出物をろ過により回収し、表題の化合物[中間体(3)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm):11.7(s、1H)、8.4-8.2(m、3H)、7.3ー7.6(m、3H)、19F-NMR:300MHz、DMSO-d6、δ(ppm)、-98(m、1F)、-114(m、1F)}
Production Example 3
Synthesis of N-hydroxy-5,5′-difluorobiphenyl-2,2′-dicarboximide [intermediate (3)] Methyl 2-bromo-4-fluorobenzoate (5.6 g) was converted to N, N-dimethyl. It melt | dissolved in formamide (30 mL), copper powder (6.1g) was added, and it was made to react at 130 degreeC for 15 hours, stirring. After cooling to room temperature, the solid was removed by filtration, water (20 mL) and sodium hydroxide (15 g) were added, and the mixture was reacted at 60 ° C. for 3 hours. The reaction solution was added while stirring 1N hydrochloric acid (100 mL) placed in a beaker, and the precipitated solid was collected by filtration. The obtained solid was dissolved in acetic anhydride (30 g) and reacted under reflux conditions for 2 hours, and then the pressure was reduced to distill off acetic anhydride. Pyridine (10 g) was added to the residue for dissolution, and hydroxylamine hydrochloride (4.9 g) was further added, followed by stirring at 100 ° C. for 10 hours. After cooling to room temperature, the reaction mixture was poured into 1N hydrochloric acid (300 mL), and the precipitate was collected by filtration to give the title compound [Intermediate (3)]. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm): 11.7 (s, 1H), 8.4-8.2 (m, 3H), 7.3-7.6 (m, 3H ), 19 F-NMR: 300 MHz, DMSO-d6, δ (ppm), −98 (m, 1F), −114 (m, 1F)}
製造例4
N-ヒドロキシ-4,4’-ジメチルビフェニル-2,2’-ジカルボキシイミド[中間体(4)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)を2-ブロモ-5-メチル安息香酸メチル(5.7g)に変更したこと以外、製造例3と同様にして、表題の化合物[中間体(4)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm):11.7(s、1H)、8.3(d、1H)、8.2(d、1H)、8.1(s、1H)、7.6(d、1H)、7.1(s、1H)、7.0(d、1H)、2.5(s、3H)、2.4(s、3H)}
Production Example 4
Synthesis of N-hydroxy-4,4′-dimethylbiphenyl-2,2′-dicarboximide [intermediate (4)] Methyl 2-bromo-4-fluorobenzoate (5.6 g) was converted to 2-bromo-5 -The title compound [Intermediate (4)] was obtained in the same manner as in Production Example 3, except that methyl methylbenzoate (5.7 g) was used. The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm): 11.7 (s, 1H), 8.3 (d, 1H), 8.2 (d, 1H), 8.1 (s, 1H), 7.6 (d, 1H), 7.1 (s, 1H), 7.0 (d, 1H), 2.5 (s, 3H), 2.4 (s, 3H)}
製造例5
N-ヒドロキシ-6,6’-ジメチルビフェニル-2,2’-ジカルボキシイミド[中間体(5)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)を2-ブロモ-3-メチル安息香酸メチル(5.7g)に変更したこと以外、製造例3と同様にして、表題の化合物[中間体(5)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm):11.7(s、1H)、8.1(d、1H)、7.7(d、1H)、7.5(t、1H)、7.3(t、1H)、7.1(d、1H)、7.0(d、1H)、2.4(s、3H)、2.3(s、3H)}
Production Example 5
Synthesis of N-hydroxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [intermediate (5)] Methyl 2-bromo-4-fluorobenzoate (5.6 g) was converted to 2-bromo-3 -The title compound [Intermediate (5)] was obtained in the same manner as in Production Example 3, except that methyl benzoate (5.7 g) was used. The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm): 11.7 (s, 1H), 8.1 (d, 1H), 7.7 (d, 1H), 7.5 (t, 1H), 7.3 (t, 1H), 7.1 (d, 1H), 7.0 (d, 1H), 2.4 (s, 3H), 2.3 (s, 3H)}
製造例6
N-ヒドロキシ-4,4’-ジメトキシビフェニル-2,2’-ジカルボキシイミド[中間体(6)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)を2-ブロモ-5-メトキシ安息香酸メチル(5.9g)に変更したこと以外、製造例3と同様にして、表題の化合物[中間体(6)]を得た。生成物はH-NMRにて同定した{H-NMR:300MHz、DMSO-d6、δ(ppm):11.7(s、1H)、8.3(d、1H)、8.2(d、1H)、7.6(s、1H)、7.4(d、1H)、6.9s、1H)、6.8(d、1H)、3.9(s、3H)、3.4(s、3H)}
Production Example 6
Synthesis of N-hydroxy-4,4′-dimethoxybiphenyl-2,2′-dicarboximide [intermediate (6)] Methyl 2-bromo-4-fluorobenzoate (5.6 g) was converted to 2-bromo-5 The title compound [Intermediate (6)] was obtained in the same manner as in Production Example 3, except that the amount was changed to methyl methoxybenzoate (5.9 g). The product 1 H-NMR was identified by {1 H-NMR: 300MHz, DMSO-d6, δ (ppm): 11.7 (s, 1H), 8.3 (d, 1H), 8.2 ( d, 1H), 7.6 (s, 1H), 7.4 (d, 1H), 6.9s, 1H), 6.8 (d, 1H), 3.9 (s, 3H), 3. 4 (s, 3H)}
製造例7
N-ヒドロキシ-4,4’-ジカルボキシビフェニル-2,2’-ジカルボキシイミド[中間体(7)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)を4-ブロモイソフタル酸ジメチル(7.5g)に変更したこと以外、製造例3と同様にして、表題の化合物[中間体(7)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm):12.4(s、1H)、12.2(s、1H)、11.7(s、1H)、8.3(d、1H)、8.2(d、1H)、8.1(s、1H)、7.6(d、1H)、7.1(s、1H)、7.0(d、1H)}
Production Example 7
Synthesis of N-hydroxy-4,4′-dicarboxybiphenyl-2,2′-dicarboximide [intermediate (7)] Methyl 2-bromo-4-fluorobenzoate (5.6 g) was converted to 4-bromoisophthal The title compound [Intermediate (7)] was obtained in the same manner as in Production Example 3, except that the acid was changed to dimethyl acid (7.5 g). The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm): 12.4 (s, 1H), 12.2 (s, 1H), 11.7 (s, 1H), 8.3 (d, 1H), 8.2 (d, 1H), 8.1 (s, 1H), 7.6 (d, 1H), 7.1 (s, 1H), 7.0 (d, 1H)}
製造例8
N-ヒドロキシ-4,4’,5,5’-テトラメトキシビフェニル-2,2’-ジカルボキシイミド[中間体(8)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)を2-ブロモ-4,5-ジメトキシ安息香酸メチル(7.5g)に変更したこと以外、製造例3と同様にして、表題の化合物[中間体(8)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm)11.4(s、1H)、7.7(s、1H)、7.7(s、1H)、7.6(s、1H)、6.8(s、1H)、4.1(s、3H)、3.9(s、3H)、3.8(s、3H)、3.7(s、3H)}
Production Example 8
Synthesis of N-hydroxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [intermediate (8)] methyl 2-bromo-4-fluorobenzoate (5.6 g) Was replaced with methyl 2-bromo-4,5-dimethoxybenzoate (7.5 g) in the same manner as in Production Example 3 to give the title compound [Intermediate (8)]. The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm) 11.4 (s, 1H), 7.7 (s, 1H), 7.7 (s, 1H), 7.6 (s, 1H ), 6.8 (s, 1H), 4.1 (s, 3H), 3.9 (s, 3H), 3.8 (s, 3H), 3.7 (s, 3H)}
製造例9
N-ヒドロキシ-1,1’-ビナフタレン-2,2’-ジカルボキシイミド[中間体(9)]の合成
2-ブロモ-4-フルオロ安息香酸メチル(5.6g)を1-ブロモ-2-ナフタレンカルボン酸メチル(7.8g)に変更したこと以外、製造例3と同様にして、表題の化合物[中間体(9)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、DMSO-d6、δ(ppm)11.7(s、1H)、8.3-6.8(m、10H)}
Production Example 9
Synthesis of N-hydroxy-1,1′-binaphthalene-2,2′-dicarboximide [intermediate (9)] Methyl 2-bromo-4-fluorobenzoate (5.6 g) was converted to 1-bromo-2- The title compound [Intermediate (9)] was obtained in the same manner as in Production Example 3 except for changing to methyl naphthalenecarboxylate (7.8 g). The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, DMSO-d6, δ (ppm) 11.7 (s, 1H), 8.3-6.8 (m, 10H)}
実施例1
N-トリフルオロメタンスルホニルオキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-1)]の合成 
製造例1で得られた[中間体(1)](3.0g)をピリジン(20ml)に溶解し、0℃で撹拌しながら、トリフルオロメタンスルホン酸無水物(12.3g)を滴下投入した。25℃で8時間撹拌後、この反応液をジクロロメタン-水で抽出した後、有機層を減圧にて溶剤を除去することで橙色油状物を得た。さらにメタノールで再結晶を行うことで表題の化合物[非イオン系光酸発生剤(A-1)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.6(d、1H)、8.5(d、1H)、8.2(d、1H)、8.0(d、1H)、7.9(t、1H)、7.7-7.6(m、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 1
Synthesis of N-trifluoromethanesulfonyloxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-1)]
[Intermediate (1)] (3.0 g) obtained in Production Example 1 was dissolved in pyridine (20 ml), and trifluoromethanesulfonic anhydride (12.3 g) was added dropwise with stirring at 0 ° C. . After stirring at 25 ° C. for 8 hours, the reaction mixture was extracted with dichloromethane-water, and the organic layer was removed under reduced pressure to give an orange oil. Further, the title compound [nonionic photoacid generator (A-1)] was obtained by recrystallization from methanol. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.6 (d, 1H), 8.5 (d, 1H), 8.2 (d, 1H), 8.0 (d, 1H) , 7.9 (t, 1H), 7.7-7.6 (m, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm) -75 (s, 3F)}
実施例2
N-トリフルオロメタンスルホニルオキシ-4-メトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-1)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例2で得られた[中間体(2)](3.4g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-2)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.8(s、1H)、8.3(d、1H)、8.2(d、1H)、7.9(t、1H)、7.4(t、1H)、7.3(d、1H)、7.2(t、1H)、3.7(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 2
Synthesis of N-trifluoromethanesulfonyloxy-4-methoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-1)] obtained in Production Example 1 [Intermediate (1)] (3.0 g) was changed to [Intermediate (2)] (3.4 g) obtained in Production Example 2, and the title compound [nonionic photoacid generator] was obtained in the same manner as in Example 1. (A-2)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.8 (s, 1H), 8.3 (d, 1H), 8.2 (d, 1H), 7.9 (t, 1H) 7.4 (t, 1H), 7.3 (d, 1H), 7.2 (t, 1H), 3.7 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm ) -75 (s, 3F)}
実施例3
N-トリフルオロメタンスルホニルオキシ-5,5’-ジフルオロビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-3)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例3で得られた[中間体(3)](3.5g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-3)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.3(d、1H)、8.1-8.0(m、3H)、7.6-7.5(m、2H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)、-98(m、1F)、-114(m、1F)}
Example 3
Synthesis of N-trifluoromethanesulfonyloxy-5,5′-difluorobiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-3)] [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1 except that [Intermediate (3)] (3.5 g) obtained in Preparation Example 3 was used. Acid generator (A-3)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.3 (d, 1H), 8.1-8.0 (m, 3H), 7.6-7.5 (m, 2H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm) -75 (s, 3F), -98 (m, 1F), -114 (m, 1F)}
実施例4
N-トリフルオロメタンスルホニルオキシ-4,4’-ジメチルビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-4)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例4で得られた[中間体(4)](3.4g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-4)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.4(d、1H)、8.3(d、1H)、7.9(s、1H)、7.8(s、1H)、7.7(d、1H)、7.5(s、1H)、2.6(s、3H)、2.5(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 4
Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-4)] [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1 except that [Intermediate (4)] (3.4 g) obtained in Preparation Example 4 was used. Acid generator (A-4)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.4 (d, 1H), 8.3 (d, 1H), 7.9 (s, 1H), 7.8 (s, 1H) 7.7 (d, 1H), 7.5 (s, 1H), 2.6 (s, 3H), 2.5 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm ) -75 (s, 3F)}
実施例5
N-トリフルオロメタンスルホニルオキシ-6,6’-ジメチルビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-5)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例5で得られた[中間体(5)](3.4g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-5)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.1(d、1H)、7.7(d、1H)、7.5(t、1H)、7.3(t、1H)、7.1(d、1H)、7.0(d、1H)、2.6(s、3H)、2.5(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 5
Synthesis of N-trifluoromethanesulfonyloxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-5)] obtained in Production Example 1 [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1, except that [Intermediate (5)] (3.4 g) obtained in Preparation Example 5 was used. Acid generator (A-5)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.1 (d, 1H), 7.7 (d, 1H), 7.5 (t, 1H), 7.3 (t, 1H) 7.1 (d, 1H), 7.0 (d, 1H), 2.6 (s, 3H), 2.5 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm ) -75 (s, 3F)}
実施例6
N-トリフルオロメタンスルホニルオキシ-4,4’-ジメトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-6)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例6で得られた[中間体(6)](3.8g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-6)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.4(d、1H)、8.3(d、1H)、7.5(s、1H)、7.4(d、1H)、7.3s、1H)、7.2(d、1H)、4.0(s、3H)、3.9(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 6
Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dimethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-6)] [Intermediate ( 1)] (3.0 g) in the same manner as in Example 1 except that [Intermediate (6)] (3.8 g) obtained in Preparation Example 6 was used. Acid generator (A-6)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.4 (d, 1 H), 8.3 (d, 1 H), 7.5 (s, 1 H), 7.4 (d, 1 H) 7.3s, 1H), 7.2 (d, 1H), 4.0 (s, 3H), 3.9 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm)- 75 (s, 3F)}
実施例7
N-トリフルオロメタンスルホニルオキシ-4,4’-ジカルボキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-7)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例7で得られた[中間体(7)](4.1g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-7)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)12.7(s、1H)、12.4(s、1H)、8.3(d、1H)、8.2(d、1H)、8.1(s、1H)、7.6(d、1H)、7.1(s、1H)、7.0(d、1H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 7
Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dicarboxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-7)] obtained in Production Example 1 [Intermediate] (1)] (3.0 g) was changed to [Intermediate (7)] (4.1 g) obtained in Production Example 7 in the same manner as in Example 1 except that the title compound [Nonionic System] Photoacid generator (A-7)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 12.7 (s, 1H), 12.4 (s, 1H), 8.3 (d, 1H), 8.2 (d, 1H) 8.1 (s, 1 H), 7.6 (d, 1 H), 7.1 (s, 1 H), 7.0 (d, 1 H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm ) -75 (s, 3F)}
実施例8
N-トリフルオロメタンスルホニルオキシ-4,4’,5,5’-テトラメトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-8)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例8で得られた[中間体(8)](3.8g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-8)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)7.6(s、1H)、7.5(s、1H)、7.4(s、1H)、7.3(s、1H)、4.2(s、sH)、4.1(s、3H)、4.0(s、3H)、3.9(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 8
Synthesis of N-trifluoromethanesulfonyloxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-8)] The obtained [Intermediate (1)] (3.0 g) was changed to [Intermediate (8)] (3.8 g) obtained in Production Example 8 in the same manner as in Example 1, except that Compound [Nonionic photoacid generator (A-8)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 7.6 (s, 1H), 7.5 (s, 1H), 7.4 (s, 1H), 7.3 (s, 1H) 4.2 (s, sH), 4.1 (s, 3H), 4.0 (s, 3H), 3.9 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm ) -75 (s, 3F)}
実施例9
N-トリフルオロメタンスルホニルオキシ-1,1’-ビナフタレン-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-9)]の合成
製造例1で得られた[中間体(1)](3.0g)を製造例9で得られた[中間体(9)](4.3g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-9)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.3-6.8(m、10H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 9
Synthesis of N-trifluoromethanesulfonyloxy-1,1′-binaphthalene-2,2′-dicarboximide [nonionic photoacid generator (A-9)] [Intermediate (1 )] (3.0 g) in the same manner as in Example 1 except that [Intermediate (9)] (4.3 g) obtained in Preparation Example 9 was used. Generator (A-9)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.3-6.8 (m, 10 H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm) -75 (s, 3F)}
実施例10
N-トリフルオロメタンスルホニルオキシ-4,4’-ジカルボニルオキシメチルビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-10)]の合成
実施例7で得られた[非イオン系光酸発生剤(A-7)](4.6g)を、塩化チオニル(30g)に溶解し、60℃で1時間反応させた後、60℃で減圧にして、塩化チオニルと発生した塩化水素を留去した。この残渣をアセトニトリル(15mL)に溶解し、メタノール(2.5g)を加えた後、氷浴で冷却しながら、ピリジン(2.3g)を30分かけて滴下し、室温(25℃)で3時間反応させた。ビーカーに入れた水(150mL)を撹拌しながら反応液を投入し、析出してきた白色固体をろ別、洗浄し、表題の化合物[非イオン系光酸発生剤(A-10)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.3(d、1H)、8.2(d、1H)、8.1(s、1H)、7.6(d、1H)、7.1(s、1H)、7.0(d、1H)、2.5(s、3H)、2.4(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 10
Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dicarbonyloxymethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-10)] obtained in Example 7 [ Nonionic photoacid generator (A-7)] (4.6 g) was dissolved in thionyl chloride (30 g), reacted at 60 ° C. for 1 hour, and reduced in pressure at 60 ° C. to generate thionyl chloride. Hydrogen chloride was distilled off. This residue was dissolved in acetonitrile (15 mL), methanol (2.5 g) was added, pyridine (2.3 g) was added dropwise over 30 minutes while cooling with an ice bath, and the mixture was stirred at room temperature (25 ° C.) for 3 minutes. Reacted for hours. The reaction solution was added while stirring water (150 mL) in a beaker, and the precipitated white solid was filtered and washed to obtain the title compound [nonionic photoacid generator (A-10)]. . The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.3 (d, 1H), 8.2 (d, 1H), 8.1 (s, 1H), 7.6 (d, 1H) 7.1 (s, 1H), 7.0 (d, 1H), 2.5 (s, 3H), 2.4 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm) ) -75 (s, 3F)}
実施例11
N-トリフルオロメタンスルホニルオキシ-4,4’-ジヒドロキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-11)]の合成
実施例6で得られた[非イオン系光酸発生剤(A-6)](4.3g)を窒素雰囲気下でジクロロメタン(20mL)に溶解し、-78℃まで冷却した後、撹拌しながら三臭化ホウ素(12.5g)を滴下し6時間反応させた。この反応液を飽和塩化アンモニウム水溶液(100mL)中に投入し、塩化メチレン(50mL)で抽出した後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、エバポレーターで溶媒を除去して、表題の化合物[非イオン系光酸発生剤(A-11)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.4(d、1H)、8.3(d、1H)、7.5(s、1H)、7.4(d、1H)、7.3s、1H)、7.2(d、1H)、5.3(s、1H)、5.1(s、1H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 11
Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dihydroxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-11)] obtained in Example 6 [nonionic Photoacid generator (A-6)] (4.3 g) was dissolved in dichloromethane (20 mL) under a nitrogen atmosphere, cooled to −78 ° C., and boron tribromide (12.5 g) was added dropwise with stirring. And allowed to react for 6 hours. The reaction mixture was poured into a saturated aqueous ammonium chloride solution (100 mL) and extracted with methylene chloride (50 mL). The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution, the solvent was removed with an evaporator, and the title compound [ Nonionic photoacid generator (A-11)] was obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.4 (d, 1 H), 8.3 (d, 1 H), 7.5 (s, 1 H), 7.4 (d, 1 H) 7.3s, 1H), 7.2 (d, 1H), 5.3 (s, 1H), 5.1 (s, 1H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm)- 75 (s, 3F)}
実施例12
N-トリフルオロメタンスルホニルオキシ-4,4’-ジブチロイルオキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-12)]の合成
実施例11で得られた[非イオン系光酸発生剤(A-11)](4.0g)を、アセトニトリル(15mL)に溶解し、ブチロイルクロリド(2。7g)を加え、氷浴で冷却しながら、ピリジン(2。5g)を30分かけて滴下し、室温(25℃)で3時間反応させた。ビーカーに入れた水(150mL)を撹拌しながら反応液を投入し、析出してきた白色固体をろ別、洗浄し、表題の化合物[非イオン系光酸発生剤(A-12)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.4(d、1H)、8.3(d、1H)、7.5(s、1H)、7.4(d、1H)、7.3s、1H)、7.2(d、1H)、2.4(d、2H)、1.7(m、2H)、1.2(m、2H)、0.9(t、3 H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-75(s、3F)}
Example 12
Synthesis of N-trifluoromethanesulfonyloxy-4,4′-dibutyroyloxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-12)] obtained in Example 11 [non- Ionic photoacid generator (A-11)] (4.0 g) was dissolved in acetonitrile (15 mL), butyroyl chloride (2.7 g) was added, and pyridine (2.5 g) was cooled in an ice bath. ) Was added dropwise over 30 minutes and reacted at room temperature (25 ° C.) for 3 hours. The reaction solution was added while stirring water (150 mL) in a beaker, and the precipitated white solid was collected by filtration and washed to obtain the title compound [nonionic photoacid generator (A-12)]. . The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.4 (d, 1 H), 8.3 (d, 1 H), 7.5 (s, 1 H), 7.4 (d, 1 H) 7.3s, 1H), 7.2 (d, 1H), 2.4 (d, 2H), 1.7 (m, 2H), 1.2 (m, 2H), 0.9 (t, 3 H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm) -75 (s, 3F)}
実施例13
N-ペンタフルオロベンゼンスルホニルオキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-13)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)をペンタフルオロベンゼンスルホニルクロリド(11.4g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-13)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.6(d、1H)、8.5(d、1H)、8.2(d、1H)、8.0(d、1H)、7.9(t、1H)、7.7-7.6(m、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-125(m、2F)、-133(m、1F)、-151(m、2F)}
Example 13
Synthesis of N-pentafluorobenzenesulfonyloxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-13)] Trifluoromethanesulfonic anhydride (12.3 g) was converted to pentafluorobenzenesulfonyl chloride. The title compound [Nonionic Photoacid Generator (A-13)] was obtained in the same manner as in Example 1, except that the amount was changed to (11.4 g). The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.6 (d, 1H), 8.5 (d, 1H), 8.2 (d, 1H), 8.0 (d, 1H) , 7.9 (t, 1H), 7.7-7.6 (m, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm) -125 (m, 2F), -133 (m, 1F), -151 (m, 2F)}
実施例14
N-ペンタフルオロベンゼンスルホニルオキシ-6,6’-ジメチルビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-14)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)をペンタフルオロベンゼンスルホニルクロリド(11.4g)に変更したこと以外、実施例5と同様にして、表題の化合物[非イオン系光酸発生剤(A-14)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.1(d、1H)、7.7(d、1H)、7.5(t、1H)、7.3(t、1H)、7.1(d、1H)、7.0(d、1H)、2.6(s、3H)、2.5(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-125(m、2F)、-133(m、1F)、-151(m、2F)}
Example 14
Synthesis of N-pentafluorobenzenesulfonyloxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-14)] Trifluoromethanesulfonic anhydride (12.3 g) ) Was changed to pentafluorobenzenesulfonyl chloride (11.4 g) in the same manner as in Example 5 to obtain the title compound [nonionic photoacid generator (A-14)]. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.1 (d, 1H), 7.7 (d, 1H), 7.5 (t, 1H), 7.3 (t, 1H) 7.1 (d, 1H), 7.0 (d, 1H), 2.6 (s, 3H), 2.5 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm ) -125 (m, 2F), -133 (m, 1F), -151 (m, 2F)}
実施例15
N-ペンタフルオロベンゼンスルホニルオキシ-4,4’-ジメトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-15)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)をペンタフルオロベンゼンスルホニルクロリド(11.4g)に変更したこと以外、実施例6と同様にして、表題の化合物[非イオン系光酸発生剤(A-15)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.4(d、1H)、8.3(d、1H)、7.5(s、1H)、7.4(d、1H)、7.3s、1H)、7.2(d、1H)、4.0(s、3H)、3.9(s、3H)、19F-NMR:300MHz、重クロロホルム、δ(ppm)-125(m、2F)、-133(m、1F)、-151(m、2F)}
Example 15
Synthesis of N-pentafluorobenzenesulfonyloxy-4,4′-dimethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-15)] Trifluoromethanesulfonic anhydride (12.3 g) ) Was changed to pentafluorobenzenesulfonyl chloride (11.4 g) in the same manner as in Example 6 to obtain the title compound [nonionic photoacid generator (A-15)]. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.4 (d, 1 H), 8.3 (d, 1 H), 7.5 (s, 1 H), 7.4 (d, 1 H) 7.3s, 1H), 7.2 (d, 1H), 4.0 (s, 3H), 3.9 (s, 3H), 19 F-NMR: 300 MHz, deuterated chloroform, δ (ppm)- 125 (m, 2F), -133 (m, 1F), -151 (m, 2F)}
実施例16
N-ペンタフルオロベンゼンスルホニルオキシ-4,4’,5,5’-テトラメトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-16)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)をペンタフルオロベンゼンスルホニルクロリド(11.4g)に変更したこと以外、実施例8と同様にして、表題の化合物[非イオン系光酸発生剤(A-16)]を得た。生成物はH-NMR、19F-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)7.6(s、1H)、7.5(s、1H)、7.4(s、1H)、7.3(s、1H)、4.2(s、sH)、4.1(s、3H)、4.0(s、3H)、3.9(s、3H)、重クロロホルム、δ(ppm)-125(m、2F)、-133(m、1F)、-151(m、2F)}
Example 16
Synthesis of N-pentafluorobenzenesulfonyloxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-16)] Trifluoromethanesulfonic acid The title compound [nonionic photoacid generator (A-16)] was prepared in the same manner as in Example 8 except that the anhydride (12.3 g) was changed to pentafluorobenzenesulfonyl chloride (11.4 g). Obtained. The product was identified by 1 H-NMR and 19 F-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 7.6 (s, 1H), 7.5 (s, 1H), 7.4 (s, 1H), 7.3 (s, 1H) 4.2 (s, sH), 4.1 (s, 3H), 4.0 (s, 3H), 3.9 (s, 3H), deuterated chloroform, δ (ppm) -125 (m, 2F ), -133 (m, 1F), -151 (m, 2F)}
実施例17
N-(+)-10-カンファースルホニルオキシ-ビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-17)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)を(+)-10-カンファースルホニルクロリド(11.0g)に変更したこと以外、実施例1と同様にして、表題の化合物[非イオン系光酸発生剤(A-17)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm){H-NMR:300MHz、重クロロホルム、δ(ppm)8.6(d、1H)、8.5(d、1H)、8.2(d、1H)、8.0(d、1H)、7.9(t、1H)、7.7-7.6(m、3H)、3.0(d、1H)、2.5(m、2H)、2.3(m、1H)、1.9-1.7(m、3H)、1.4-1.2(m、2H)、1.0(s、3H)、0.8(s、3H)}
Example 17
Synthesis of N-(+)-10-camphorsulfonyloxy-biphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-17)] Trifluoromethanesulfonic anhydride (12.3 g) The title compound [Nonionic Photoacid Generator (A-17)] was obtained in the same manner as in Example 1 except for changing to (+)-10-camphorsulfonyl chloride (11.0 g). The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.6 (d, 1 H), 8.5 (d, 1 H), 8. 2 (d, 1H), 8.0 (d, 1H), 7.9 (t, 1H), 7.7-7.6 (m, 3H), 3.0 (d, 1H), 2.5 (M, 2H), 2.3 (m, 1H), 1.9-1.7 (m, 3H), 1.4-1.2 (m, 2H), 1.0 (s, 3H), 0.8 (s, 3H)}
実施例18
N-(+)-10-カンファースルホニルオキシ-6,6’-ジメチルビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-18)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)を(+)-10-カンファースルホニルクロリド(11.0g)に変更したこと以外、実施例5と同様にして、表題の化合物[非イオン系光酸発生剤(A-18)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.1(d、1H)、7.7(d、1H)、7.5(t、1H)、7.3(t、1H)、7.1(d、1H)、7.0(d、1H)、3.0(d、1H)、2.6(s、3H)、2.5(s、3H)、2.5(m、2H)、2.3(m、1H)、1.9-1.7(m、3H)、1.4-1.2(m、2H)、1.0(s、3H)、0.8(s、3H)}
Example 18
Synthesis of N-(+)-10-camphorsulfonyloxy-6,6′-dimethylbiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-18)] Trifluoromethanesulfonic anhydride The title compound [nonionic photoacid generator (A-18)] was obtained in the same manner as in Example 5 except that (12.3 g) was changed to (+)-10-camphorsulfonyl chloride (11.0 g). ] The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.1 (d, 1H), 7.7 (d, 1H), 7.5 (t, 1H), 7.3 (t, 1H) 7.1 (d, 1H), 7.0 (d, 1H), 3.0 (d, 1H), 2.6 (s, 3H), 2.5 (s, 3H), 2.5 ( m, 2H), 2.3 (m, 1H), 1.9-1.7 (m, 3H), 1.4-1.2 (m, 2H), 1.0 (s, 3H), 0 .8 (s, 3H)}
実施例19
N-(+)-10-カンファースルホニルオキシ-4,4’-ジメトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-19)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)を(+)-10-カンファースルホニルクロリド(11.0g)に変更したこと以外、実施例6と同様にして、表題の化合物[非イオン系光酸発生剤(A-19)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)8.4(d、1H)、8.3(d、1H)、7.5(s、1H)、7.4(d、1H)、7.3s、1H)、7.2(d、1H)、4.0(s、3H)、3.9(s、3H)、3.0(d、1H)、2.5(m、2H)、2.3(m、1H)、1.9-1.7(m、3H)、1.4-1.2(m、2H)、1.0(s、3H)、0.8(s、3H)}
Example 19
Synthesis of N-(+)-10-camphorsulfonyloxy-4,4′-dimethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-19)] Trifluoromethanesulfonic anhydride The title compound [nonionic photoacid generator (A-19)] was obtained in the same manner as in Example 6 except that (12.3 g) was changed to (+)-10-camphorsulfonyl chloride (11.0 g). ] The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 8.4 (d, 1 H), 8.3 (d, 1 H), 7.5 (s, 1 H), 7.4 (d, 1 H) 7.3s, 1H), 7.2 (d, 1H), 4.0 (s, 3H), 3.9 (s, 3H), 3.0 (d, 1H), 2.5 (m, 2H), 2.3 (m, 1H), 1.9-1.7 (m, 3H), 1.4-1.2 (m, 2H), 1.0 (s, 3H), 0.8 (S, 3H)}
実施例20
N-(+)-10-カンファースルホニルオキシ-4,4’,5,5’-テトラメトキシビフェニル-2,2’-ジカルボキシイミド[非イオン系光酸発生剤(A-20)]の合成
 トリフルオロメタンスルホン酸無水物(12.3g)を(+)-10-カンファースルホニルクロリド(11.0g)に変更したこと以外、実施例8と同様にして、表題の化合物[非イオン系光酸発生剤(A-20)]を得た。生成物はH-NMRにて同定した。{H-NMR:300MHz、重クロロホルム、δ(ppm)7.6(s、1H)、7.5(s、1H)、7.4(s、1H)、7.3(s、1H)、4.2(s、sH)、4.1(s、3H)、4.0(s、3H)、3.9(s、3H)、3.0(d、1H)、2.5(m、2H)、2.3(m、1H)、1.9-1.7(m、3H)、1.4-1.2(m、2H)、1.0(s、3H)、0.8(s、3H)}
Example 20
Synthesis of N-(+)-10-camphorsulfonyloxy-4,4 ′, 5,5′-tetramethoxybiphenyl-2,2′-dicarboximide [nonionic photoacid generator (A-20)] The title compound [nonionic photoacid generation] was carried out in the same manner as in Example 8, except that trifluoromethanesulfonic anhydride (12.3 g) was changed to (+)-10-camphorsulfonyl chloride (11.0 g). Agent (A-20)] was obtained. The product was identified by 1 H-NMR. { 1 H-NMR: 300 MHz, deuterated chloroform, δ (ppm) 7.6 (s, 1H), 7.5 (s, 1H), 7.4 (s, 1H), 7.3 (s, 1H) 4.2 (s, sH), 4.1 (s, 3H), 4.0 (s, 3H), 3.9 (s, 3H), 3.0 (d, 1H), 2.5 ( m, 2H), 2.3 (m, 1H), 1.9-1.7 (m, 3H), 1.4-1.2 (m, 2H), 1.0 (s, 3H), 0 .8 (s, 3H)}
比較例1
N-トリフルオロメタンスルホニルオキシ-1,8-ナフタル酸イミド[非イオン系光酸発生剤(A’-1)]の合成
Comparative Example 1
Synthesis of N-trifluoromethanesulfonyloxy-1,8-naphthalimide [nonionic photoacid generator (A'-1)]
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
ジフェン酸無水物11.2g(0.050mol)を、1,8-ナフタル酸無水物(3.0g、0.050mmol)に変更した以外は、実施例1と同様にして、上式で表される標題の非イオン系光酸発生剤(A’-1)(3.5g、0.010mol)を得た。 It is represented by the above formula in the same manner as in Example 1 except that 11.2 g (0.050 mol) of diphenic anhydride is changed to 1,8-naphthalic anhydride (3.0 g, 0.050 mmol). The title non-ionic photoacid generator (A′-1) (3.5 g, 0.010 mol) was obtained.
比較例2
<イオン系光酸発生剤(A’-2)の合成>
Comparative Example 2
<Synthesis of ionic photoacid generator (A'-2)>
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ジフェニルスルホキシド(12.1g)、ジフェニルスルフィド(9.3g)及びメタンスルホン酸(43.0g)を撹拌しながら、これに無水酢酸7.9(g)を滴下し、40~50℃で5時間反応させた後、25℃まで冷却し、この反応溶液をフルオメタンスルホン酸カリウム水溶液(121g)中に投入し、50℃で8時間撹拌して、黄色のやや粘調な油状物が析出した。この油状物を酢酸エチルにて抽出し、有機層を水で数回洗浄した後、有機層から溶剤を留去し、得られた残渣にトルエンを加えて溶解した後、ヘキサンを加え、10℃で1時間よく撹拌した後静置した。1時間後、溶液は2層に分離したため、上層を分液によって除いた。残った下層にヘキサンを加え、25℃でよく混合すると淡黄色の結晶が析出した。これをろ別し、減圧乾燥して、上式で表されるイオン系光酸発生剤(A’-2)を得た。 While stirring diphenyl sulfoxide (12.1 g), diphenyl sulfide (9.3 g) and methanesulfonic acid (43.0 g), acetic anhydride 7.9 (g) was added dropwise thereto and stirred at 40-50 ° C. for 5 hours. After the reaction, the reaction solution was cooled to 25 ° C., and the reaction solution was put into an aqueous solution of potassium fluomethanesulfonate (121 g) and stirred at 50 ° C. for 8 hours to precipitate a yellow slightly viscous oil. This oily substance was extracted with ethyl acetate, the organic layer was washed several times with water, the solvent was distilled off from the organic layer, and the resulting residue was dissolved by adding toluene. The mixture was stirred well for 1 hour and allowed to stand. After 1 hour, since the solution was separated into two layers, the upper layer was removed by liquid separation. When hexane was added to the remaining lower layer and mixed well at 25 ° C., pale yellow crystals were precipitated. This was filtered off and dried under reduced pressure to obtain an ionic photoacid generator (A′-2) represented by the above formula.
比較例3
N-ペンタフルオロベンゼンスルホニルオキシ-1,8-ナフタル酸イミド[非イオン系光酸発生剤(A’-3)]の合成
 トリフルオロメタンスルホン酸無水物(7.4g、26mmol)をペンタフルオロベンゼンスルホニルクロリド(6.9g、26mmol)に変更したこと以外、比較例1と同様にして、表題の化合物[非イオン系光酸発生剤(A’-3)]を得た。
Comparative Example 3
Synthesis of N-pentafluorobenzenesulfonyloxy-1,8-naphthalimide [nonionic photoacid generator (A′-3)] Trifluoromethanesulfonic anhydride (7.4 g, 26 mmol) was converted to pentafluorobenzenesulfonyl. The title compound [Nonionic Photoacid Generator (A′-3)] was obtained in the same manner as in Comparative Example 1, except that it was changed to chloride (6.9 g, 26 mmol).
比較例4
<イオン系光酸発生剤(A’-4)の合成>
トリフルオメタンスルホン酸カリウム水溶液を、ペンタフルオロベンゼンスルホン酸カリウム水溶液に変更したこと以外、比較例2と同様にして、イオン系光酸発生剤(A’-4)を得た。
Comparative Example 4
<Synthesis of Ionic Photoacid Generator (A'-4)>
An ionic photoacid generator (A′-4) was obtained in the same manner as in Comparative Example 2 except that the potassium trifluoromethanesulfonate solution was changed to a potassium pentafluorobenzenesulfonate solution.
比較例5
N-(+)-10-カンファースルホニルオキシ-1,8-ナフタル酸イミド[非イオン系光酸発生剤(A’-5)]の合成
 トリフルオロメタンスルホン酸無水物(7.4g、26mmol)を(+)-10-カンファースルホニルクロリド(6.5g、26mmol)に変更したこと以外、比較例1と同様にして、表題の化合物[非イオン系光酸発生剤(A’-5)]を得た。
Comparative Example 5
Synthesis of N-(+)-10-camphorsulfonyloxy-1,8-naphthalimide [nonionic photoacid generator (A′-5)] Trifluoromethanesulfonic anhydride (7.4 g, 26 mmol) The title compound [Nonionic photoacid generator (A′-5)] was obtained in the same manner as in Comparative Example 1, except that it was changed to (+)-10-camphorsulfonyl chloride (6.5 g, 26 mmol). It was.
比較例6
<イオン系光酸発生剤(A’-6)の合成>
トリフルオメタンスルホン酸カリウム水溶液を、(+)-10-カンファースルホン酸カリウム水溶液に変更したこと以外、比較例2と同様にして、イオン系光酸発生剤(A’-6)を得た。
Comparative Example 6
<Synthesis of Ionic Photoacid Generator (A'-6)>
An ionic photoacid generator (A′-6) was obtained in the same manner as in Comparative Example 2, except that the aqueous potassium trifluoromethanesulfonate solution was changed to a (+)-10-camphorsulfonic acid potassium aqueous solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<性能評価>
光酸発生剤の性能評価として、得られた非イオン系光酸発生剤(A-1)~(A20)、非イオン系光酸発生剤(A’-1)、(A’-3)、(A’-5)、イオン系酸発生剤(A’-2)、(A’-4)及び(A’-6)のモル吸光係数、レジスト硬化性、熱分解温度、及び溶剤溶解性、アミン耐性について以下の方法で評価した。
<Performance evaluation>
As performance evaluation of the photoacid generator, the obtained nonionic photoacid generators (A-1) to (A20), nonionic photoacid generators (A′-1), (A′-3), Molar absorption coefficient, resist curability, thermal decomposition temperature, and solvent solubility of (A′-5), ionic acid generators (A′-2), (A′-4) and (A′-6), The amine resistance was evaluated by the following method.
<モル吸光係数>
 合成した光酸発生剤をアセトニトリルにより0.25mmol/Lに希釈し、紫外可視分光光度計(島津製作所社製、UV-2550)を用いて、200nmから500nmの範囲で1cmのセル長の吸光度を測定した。下記式から、i線(365nm)のモル吸光係数(ε365)を算出した。
ε365(L・mol-1・cm-1)=A365/(0.00025mol/L×1cm)
[式中、A365は365nmの吸光度を表す。]
<Molar extinction coefficient>
The synthesized photoacid generator was diluted to 0.25 mmol / L with acetonitrile, and the absorbance of a cell length of 1 cm was measured in the range of 200 nm to 500 nm using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2550). It was measured. From the following formula, the molar extinction coefficient (ε 365 ) of i-line (365 nm) was calculated.
ε 365 (L · mol −1 · cm −1 ) = A 365 /(0.00025 mol / L × 1 cm)
[In the formula, A 365 represents absorbance at 365 nm. ]
<レジスト硬化性>
フェノール樹脂(DIC社製、「フェノライトTD431」)75部、メラミン硬化剤(三井サイアナミッド(株)社製、「サイメル300」)25部、合成した光酸発生剤1部、及びプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略記する。)200部の樹脂溶液を、10cm各のガラス基板上にスピンコーターを用いて1000rpmで10秒の条件で塗布した。次いで25℃で5分間真空乾燥した後、80℃のホットプレート上で3分間乾燥させることで、膜厚約3μmのレジストを形成した。
このレジストに紫外線照射装置(株式会社オーク製作所社製、HMW-661F-01)を用いて、L-34(株式会社ケンコー光学製、340nm未満の光をカットするフィルター)フィルターによって波長を限定した紫外光を所定量全面に露光した。なお積算露光量は365nmの波長を測定した。
次いで、120℃の順風乾燥機で10分間露光後加熱(PEB)を行った後、0.5%水酸化カリウム溶液を用いて30秒間浸漬することで現像し、直ちに水洗、乾燥を行った。
このレジストの膜厚を形状測定顕微鏡(超深度形状測定顕微鏡VK-8550、株式会社キーエンス製)を用いて測定した。
ここで現像前後のレジストの膜厚変化が10%以内となる最低露光量から、レジスト硬化性を以下の基準により評価した。
○: 最低露光量が250mJ/cm以下
△: 最低露光量が250mJ/cmより大きく、500mJ/cm以下
×: 最低露光量が500mJ/cmより大きい
<Resistance curability>
75 parts of phenolic resin (manufactured by DIC, “Phenolite TD431”), 25 parts of melamine curing agent (manufactured by Mitsui Cyanamid Co., Ltd., “Cymel 300”), 1 part of synthesized photoacid generator, and propylene glycol monomethyl ether 200 parts of a resin solution of acetate (hereinafter abbreviated as PGMEA) was applied on a 10 cm glass substrate using a spin coater at 1000 rpm for 10 seconds. Next, after vacuum drying at 25 ° C. for 5 minutes, it was dried on a hot plate at 80 ° C. for 3 minutes to form a resist having a film thickness of about 3 μm.
This resist was irradiated with ultraviolet rays (HMW-661F-01, manufactured by Oak Manufacturing Co., Ltd.), and ultraviolet light whose wavelength was limited by a filter L-34 (manufactured by Kenko Optical Co., Ltd., which cuts light of less than 340 nm). A predetermined amount of light was exposed on the entire surface. The integrated exposure was measured at a wavelength of 365 nm.
Subsequently, after performing post-exposure heating (PEB) for 10 minutes with a 120 ° C. normal air dryer, development was performed by immersing in a 0.5% potassium hydroxide solution for 30 seconds, followed by immediately washing with water and drying.
The film thickness of this resist was measured using a shape measuring microscope (ultra-deep shape measuring microscope VK-8550, manufactured by Keyence Corporation).
Here, the resist curability was evaluated according to the following criteria from the minimum exposure amount at which the change in resist film thickness before and after development was within 10%.
○: minimum exposure amount 250 mJ / cm 2 or less △: Minimum exposure amount greater than 250mJ / cm 2, 500mJ / cm 2 or less ×: Minimum exposure amount is greater than 500 mJ / cm 2
<熱分解温度>
 合成した光酸発生剤を示差熱・熱重量同時測定装置(SII社製、TG/DTA6200)を用いて、窒素雰囲気下、30度から500℃まで10℃/分の昇温条件で重量変化を測定し、2%重量が減少した点を熱分解温度とした。
<Thermal decomposition temperature>
Using the differential thermal / thermogravimetric simultaneous measurement device (TG / DTA6200, manufactured by SII), the synthesized photoacid generator was subjected to a change in weight under a nitrogen atmosphere from 30 ° C. to 500 ° C. under a temperature rising condition of 10 ° C./min. The point at which the weight decreased by 2% was defined as the thermal decomposition temperature.
<溶剤溶解性>
合成した光酸発生剤を0.1g試験管にとり、25℃温調下で有機溶剤(酢酸ブチル、トルエン、及びPGMEA)0.2gずつ加え、光酸発生剤が完全に溶解するまで加えた。なお20g加えても完全に溶解しない場合には、溶解しないものと評価した。
<Solvent solubility>
The synthesized photoacid generator was placed in a 0.1 g test tube, and 0.2 g of organic solvent (butyl acetate, toluene, and PGMEA) was added under 25 ° C. temperature control until the photoacid generator was completely dissolved. When 20 g was not completely dissolved, it was evaluated as not dissolved.
<アミン耐性>
 合成した光酸発生剤を、0.25mmol/Lの濃度でアミン(ピリジン、トリエチルアミン)を溶解させたアセトニトリルにより0.25mmol/Lに希釈し、HPLC分析により純度を算出しておく。この溶液を25℃、遮光条件下で24時間保管した後、再度HPLC分析により純度を算出し、保管前後での純度の低下率から、アミン耐性を以下の基準により評価した。
 
◎: 純度の低下率が0.1%未満
○: 純度の低下率が0.1%~1.0%未満
△: 純度の低下率が1.0%~10%未満
×: 純度の低下率が10%以上
 
<Amine resistance>
The synthesized photoacid generator is diluted to 0.25 mmol / L with acetonitrile in which amine (pyridine, triethylamine) is dissolved at a concentration of 0.25 mmol / L, and the purity is calculated by HPLC analysis. This solution was stored at 25 ° C. under light-shielding conditions for 24 hours, and then the purity was calculated again by HPLC analysis, and the amine resistance was evaluated according to the following criteria from the rate of decrease in purity before and after storage.

◎: Purity reduction rate is less than 0.1% ○: Purity reduction rate is 0.1% to less than 1.0% Δ: Purity reduction rate is 1.0% to less than 10% ×: Purity reduction rate 10% or more
 実施例で作成した本発明の非イオン系光酸発生剤(A-1)~(A20)、比較例で作成した比較のための非イオン系光酸発生剤(A’-1)、(A’-3)、(A’-5)、イオン系酸発生剤(A’-2)、(A’-4)及び(A’-6)のモル吸光係数、熱分解温度、溶剤溶解性、アミン耐性を前述した方法で測定した結果を表2に示す。 Nonionic photoacid generators (A-1) to (A20) of the present invention prepared in Examples, and nonionic photoacid generators (A′-1) for comparison prepared in Comparative Examples, (A '-3), (A'-5), molar extinction coefficient, thermal decomposition temperature, solvent solubility of ionic acid generators (A'-2), (A'-4) and (A'-6), Table 2 shows the results of measuring amine resistance by the method described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2から明らかなように、本発明の実施例1~20の非イオン系光酸発生剤(A)は、i線(365nm)において十分なモル吸光係数を有し、レジスト硬化性が良好であることがわかる。また、溶剤に対する溶解性に優れており、レジストを作成する場合においてハンドリング性が良好であることがわかる。また、熱分解温度は220℃以上であり、十分な安定性を有している。また、アミン耐性が高いため、レジストを作成する場合において、クエンチャーとして使用できるアミンの選択肢が広いことがわかる。
一方、従来から知られているイオン系の酸発生を使用した比較例2、4、6では、i線に対する感度が低く、レジスト硬化性も十分とはいえない。また、比較例1、3、5の非イオン系光酸発生剤は溶剤への溶解性が不足している。また、比較例1、3、5の非イオン系光酸発生剤はアミン耐性も不十分であり、レジストを作成する場合において、トリエチルアミンのような比較的pKaの高いアルキルアミンを使用すると、保管時に酸発生剤が分解して経時変化する恐れがある。
As is apparent from Table 2, the nonionic photoacid generators (A) of Examples 1 to 20 of the present invention have a sufficient molar extinction coefficient at i-line (365 nm) and have good resist curability. I know that there is. Moreover, it is excellent in the solubility with respect to a solvent, and it turns out that handling property is favorable when producing a resist. Moreover, the thermal decomposition temperature is 220 ° C. or higher, and it has sufficient stability. Moreover, since amine tolerance is high, it turns out that the choice of the amine which can be used as a quencher is wide when producing a resist.
On the other hand, Comparative Examples 2, 4, and 6 using conventionally known ionic acid generation have low sensitivity to i-line and the resist curability is not sufficient. Further, the nonionic photoacid generators of Comparative Examples 1, 3, and 5 are insufficient in solubility in a solvent. Further, the nonionic photoacid generators of Comparative Examples 1, 3, and 5 have insufficient amine resistance. When a resist having a relatively high pKa such as triethylamine is used, The acid generator may decompose and change over time.
本発明のイミドスルホネート化合物は、ポジ型レジスト、レジストフィルム、液状レジスト、ネガ型レジスト、MEMS用レジスト、感光性材料、ナノインプリント材料、マイクロ光造形用材料等に用いられる光酸発生剤として好適である。また、本発明のフォトリソグラフィー用樹脂組成物(Q)は、上記の用途に好適である。
 
The imide sulfonate compound of the present invention is suitable as a photoacid generator for use in positive resists, resist films, liquid resists, negative resists, MEMS resists, photosensitive materials, nanoimprint materials, micro stereolithography materials, and the like. . Moreover, the resin composition (Q) for photolithography of this invention is suitable for said use.

Claims (5)

  1.  一般式(1)で表されることを特徴とするイミドスルホネート化合物。
    Figure JPOXMLDOC01-appb-C000010
    [式(1)中、R1~R8は互いに独立に、水素原子、ハロゲン原子、炭素数1~18のアルキル基もしくは炭素数1~18のフルオロアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~18のアリール基、水酸基、カルボキシル基、シリル基、ニトロ基、シアノ基、アミノ基、R11O-で表わされるアルコキシ基もしくはアリールオキシ基、R12S-で表わされるアルキルチオ基もしくはアリールチオ基、R13SO-で表わされるスルフィニル基、R14SO-で表わされるスルホニル基、R15CO-で表わされるアルキルカルボニル基もしくはアリールカルボニル基、R16COO-で表わされるカルボニルオキシ基、R17OCO-で表わされるオキシカルボニル基、R18OCOO-で表わされるカーボネート基、R19NHCOO-で表わされるウレタン基を表す。R1~R8の少なくとも2つが互いに結合し環構造を形成しても良い。R9は置換基を有しても良い炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)を表す。]
    An imidosulfonate compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000010
    [In the formula (1), R1 to R8 are independently of each other a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms or a fluoroalkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, carbon An alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, a hydroxyl group, a carboxyl group, a silyl group, a nitro group, a cyano group, an amino group, an alkoxy group or an aryloxy group represented by R 11 O—, R 12 An alkylthio group or an arylthio group represented by S—, a sulfinyl group represented by R 13 SO—, a sulfonyl group represented by R 14 SO 2 —, an alkylcarbonyl group or an arylcarbonyl group represented by R 15 CO—, R 16 COO - carbonyloxy group represented by, oxycarbonyl group represented by R 17 OCO-, R 8 carbonate group represented by -OCOO-, represents a urethane group represented by R 19 NHCOO-. At least two of R1 to R8 may be bonded to each other to form a ring structure. R9 represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms (part or all of hydrogen may be substituted with fluorine). ]
  2.  一般式(1)において、R1~R8の全てが水素原子または、R1~R8の少なくともいずれか一つが互いに独立に、ハロゲン原子、炭素数1~18のアルキル基もしくは炭素数1~18のフルオロアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~18のアリール基、水酸基、カルボキシル基、R11O-で表わされるアルコキシ基もしくはアリールオキシ基、R15CO-で表わされるアルキルカルボニル基もしくはアリールカルボニル基、R16COO-で表わされるカルボニルオキシ基、R17OCO-で表わされるオキシカルボニル基である請求項1に記載のイミドスルホネート化合物。 In the general formula (1), all of R1 to R8 are hydrogen atoms, or at least one of R1 to R8 is independently a halogen atom, an alkyl group having 1 to 18 carbon atoms, or a fluoroalkyl having 1 to 18 carbon atoms. A group having 2 to 18 carbon atoms, an alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, a hydroxyl group, a carboxyl group, an alkoxy group or an aryloxy group represented by R 11 O—, R 15 2. The imide sulfonate compound according to claim 1, which is an alkylcarbonyl group or arylcarbonyl group represented by CO—, a carbonyloxy group represented by R 16 COO—, or an oxycarbonyl group represented by R 17 OCO—.
  3.  一般式(1)において、R9がCxFyで表され、炭素原子数1~8(x=1~8)、及びフッ素原子数3~17(y=3~17)である請求項1又は2に記載のイミドスルホネート化合物。 3. In the general formula (1), R9 is represented by CxFy and has 1 to 8 carbon atoms (x = 1 to 8) and 3 to 17 fluorine atoms (y = 3 to 17). The imide sulfonate compound described.
  4. 請求項1~3のいずれかに記載のイミドスルホネート化合物を含有する非イオン系光酸発生剤(A)。 A nonionic photoacid generator (A) comprising the imide sulfonate compound according to any one of claims 1 to 3.
  5.  請求項4に記載の非イオン系光酸発生剤(A)を含むフォトリソグラフィー用樹脂組成物(Q)。
     
    A resin composition for photolithography (Q) comprising the nonionic photoacid generator (A) according to claim 4.
PCT/JP2015/001406 2014-03-24 2015-03-13 Imide sulfonate compound, photoacid generator, and resin composition for photolithography WO2015146053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509984A JPWO2015146053A1 (en) 2014-03-24 2015-03-13 Imidosulfonate compound, photoacid generator, and resin composition for photolithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059657 2014-03-24
JP2014059657 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146053A1 true WO2015146053A1 (en) 2015-10-01

Family

ID=54194605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001406 WO2015146053A1 (en) 2014-03-24 2015-03-13 Imide sulfonate compound, photoacid generator, and resin composition for photolithography

Country Status (2)

Country Link
JP (1) JPWO2015146053A1 (en)
WO (1) WO2015146053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558409A (en) * 2019-09-25 2021-03-26 常州强力先端电子材料有限公司 Sulfonyl imide photoacid generator capable of generating acid at I line

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100054A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Positive type photosensitive composition
JPH112901A (en) * 1996-04-25 1999-01-06 Fuji Photo Film Co Ltd Positive photosensitive composition
JP2004217748A (en) * 2003-01-14 2004-08-05 Konica Minolta Holdings Inc Active ray-curable ink composition, method of image formation using the same, and ink jet printer using the same
JP2005314633A (en) * 2003-09-26 2005-11-10 Dainippon Printing Co Ltd Photo-radical generator, photosensitive resin composition, and article
JP2008266495A (en) * 2007-04-23 2008-11-06 Sanbo Chemical Ind Co Ltd Photo acid-generating agent, production method thereof and resin composition for photo lithography
WO2011087011A1 (en) * 2010-01-13 2011-07-21 株式会社Adeka Novel sulfonic acid derivative compound and novel naphthalic acid derivative compound
US20110229821A1 (en) * 2008-09-15 2011-09-22 Centre National De La Recherche Scientifique-Cnrs Method of Photochemical Hydrolysis-Polycondensation of Cross-Linkable Chromophores with Steric Hindrance, Catalysed by a Photogenerated Acid, and the Applications Thereof
JP2013001821A (en) * 2011-06-17 2013-01-07 San Apro Kk Photoacid generator and resin composition for photolithography

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100054A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Positive type photosensitive composition
JPH112901A (en) * 1996-04-25 1999-01-06 Fuji Photo Film Co Ltd Positive photosensitive composition
JP2004217748A (en) * 2003-01-14 2004-08-05 Konica Minolta Holdings Inc Active ray-curable ink composition, method of image formation using the same, and ink jet printer using the same
JP2005314633A (en) * 2003-09-26 2005-11-10 Dainippon Printing Co Ltd Photo-radical generator, photosensitive resin composition, and article
JP2008266495A (en) * 2007-04-23 2008-11-06 Sanbo Chemical Ind Co Ltd Photo acid-generating agent, production method thereof and resin composition for photo lithography
US20110229821A1 (en) * 2008-09-15 2011-09-22 Centre National De La Recherche Scientifique-Cnrs Method of Photochemical Hydrolysis-Polycondensation of Cross-Linkable Chromophores with Steric Hindrance, Catalysed by a Photogenerated Acid, and the Applications Thereof
WO2011087011A1 (en) * 2010-01-13 2011-07-21 株式会社Adeka Novel sulfonic acid derivative compound and novel naphthalic acid derivative compound
JP2013001821A (en) * 2011-06-17 2013-01-07 San Apro Kk Photoacid generator and resin composition for photolithography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558409A (en) * 2019-09-25 2021-03-26 常州强力先端电子材料有限公司 Sulfonyl imide photoacid generator capable of generating acid at I line
CN112558409B (en) * 2019-09-25 2022-05-20 常州强力先端电子材料有限公司 Sulfonylimide photoacid generators capable of highly generating acid on line I

Also Published As

Publication number Publication date
JPWO2015146053A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015001804A1 (en) Photoacid generator, and resin composition for photolithography
WO2014061063A1 (en) Photo-acid generator, and resin composition for photolithography
JP5715892B2 (en) Photoacid generator and resin composition for photolithography
JP6622210B2 (en) Sulfonate compound, photoacid generator, and resin composition for photolithography
JP7116669B2 (en) Photoacid generator and resin composition for photolithography
TWI704136B (en) Non-ionic photoacid generator and resin composition for photolithography
KR102438543B1 (en) Photoacid generator and resin composition for photolithography
JP7498179B2 (en) Sulfonamide compound, nonionic photoacid generator, and resin composition for photolithography
JP6747990B2 (en) Photo-acid generator and resin composition for photolithography
JP6723914B2 (en) Photo-acid generator and resin composition for photolithography
JP2015152669A (en) Photoacid generator and resin composition for photolithography
WO2015146053A1 (en) Imide sulfonate compound, photoacid generator, and resin composition for photolithography
JP6205285B2 (en) Photoacid generator and resin composition for photolithography
JP6059953B2 (en) Photoacid generator and resin composition for photolithography
WO2022030107A1 (en) Nonionic photoacid generator, and photolithography resin composition
CN116283945A (en) Imide sulfonate photoacid generator, resist composition, application thereof and electronic component
CN114516863A (en) Imide sulfonate photo-acid generator with high acid yield, composition and application
CN115611874A (en) Oxime sulfonate photoacid, resist composition containing the same, electronic device, and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768751

Country of ref document: EP

Kind code of ref document: A1