WO2015115155A1 - マイクロレンズ形成用樹脂組成物 - Google Patents

マイクロレンズ形成用樹脂組成物 Download PDF

Info

Publication number
WO2015115155A1
WO2015115155A1 PCT/JP2015/050510 JP2015050510W WO2015115155A1 WO 2015115155 A1 WO2015115155 A1 WO 2015115155A1 JP 2015050510 W JP2015050510 W JP 2015050510W WO 2015115155 A1 WO2015115155 A1 WO 2015115155A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
microlens
resin composition
forming
Prior art date
Application number
PCT/JP2015/050510
Other languages
English (en)
French (fr)
Inventor
崇洋 坂口
安達 勲
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015559848A priority Critical patent/JP6478053B2/ja
Priority to KR1020167018087A priority patent/KR102122293B1/ko
Priority to CN201580003526.8A priority patent/CN105874355B/zh
Publication of WO2015115155A1 publication Critical patent/WO2015115155A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/402Alkyl substituted imides

Definitions

  • the present invention relates to a resin composition for forming a microlens. More specifically, the present invention relates to a resin composition used for forming a microlens by an etch back method.
  • An etch back method is known as one of the methods for manufacturing a microlens for a CCD / CMOS image sensor (Patent Document 1 and Patent Document 2). That is, a resist pattern is formed on the microlens resin layer formed on the color filter layer, and this resist pattern is reflowed by heat treatment to form a lens pattern. Using the lens pattern formed by reflowing the resist pattern as an etching mask, the lower microlens resin layer is etched back, and the lens pattern shape is transferred to the microlens resin layer to produce a microlens.
  • the present invention has been made based on the above-mentioned circumstances, and its purpose is to form a cured film having excellent transparency, heat resistance, solvent resistance, flatness, and a dry etching rate equivalent to that of a resist film.
  • An object of the present invention is to provide a thermosetting resin composition having excellent storage stability.
  • Another object of the present invention is to provide a microlens having excellent transparency, heat resistance and solvent resistance.
  • the present invention provides a resin composition for forming a microlens comprising a copolymer having a structural unit represented by the following formula (1), formula (2), formula (3) and formula (4), and a solvent. It is.
  • X represents a cyclohexyl group or a phenyl group
  • Y represents a phenyl group, a biphenylyl group or a naphthyl group
  • R 0 independently represents a hydrogen atom or a methyl group
  • R 1 represents a hydrogen atom or the number of carbon atoms 1 to 3 alkyl groups
  • R 2 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms
  • R 1 and R 2 are bonded to each other to form a 4- to 7-membered ring.
  • R 3 represents a single bond or an alkylene group having 1 to 5 carbon atoms, the alkylene group may have an ether bond therein, and R 4 represents an epoxy group Or an organic group having 5 to 12 carbon atoms having an epoxy ring.
  • the present invention is also a cured film obtained from the resin composition for forming a microlens. Furthermore, the present invention is a microlens produced from the resin composition for forming a microlens and a production method thereof.
  • the microlens is manufactured, for example, by the above-described etch back method. That is, applying the microlens-forming resin composition of the present invention on the color filter layer and baking to form a resin layer; forming a resist pattern on the resin layer using a resist composition;
  • the microlens is manufactured by a method including a step of reflowing the resist pattern to form a lens pattern and a step of etching back the resin layer using the lens pattern as an etching mask. The reflow is performed by heating the resist pattern at a temperature not lower than the glass transition temperature (Tg) of the resist pattern and usually lower than 200 ° C.
  • Tg glass transition temperature
  • the copolymer contained in the composition is a self-crosslinking type, it is not always necessary to add a crosslinking agent. Since the carboxyl group is blocked in the structural unit represented by (), the storage stability is excellent. Furthermore, the film formed from the resin composition for forming a microlens of the present invention has excellent transparency, heat resistance, solvent resistance, a glass transition temperature (Tg) of 200 ° C. or higher, and an etching rate equivalent to that of a resist film. Have.
  • the microlens is colored when heat treatment is performed at a high temperature in the formation process or the formation process of peripheral devices such as wiring.
  • the possibility that the lens shape is deformed can be significantly reduced.
  • a resin layer is formed from the resin composition for forming a microlens of the present invention and a resist solution is applied thereon, and when an electrode / wiring forming step is performed after the microlens is formed, mixing with the resist is performed.
  • problems such as deformation and peeling of the microlens due to the organic solvent can be significantly reduced. Therefore, the resin composition for forming a microlens of the present invention is suitable as a material for forming a microlens.
  • the present invention is a resin composition containing a copolymer and a solvent.
  • the solid content obtained by removing the solvent from the resin composition of the present invention is usually 1% by mass to 50% by mass.
  • the copolymer contained in the resin composition of the present invention is a copolymer having structural units represented by the aforementioned formula (1), formula (2), formula (3) and formula (4).
  • the compound (monomer) forming the structural unit represented by the formula (1) include N-cyclohexylmaleimide and N-phenylmaleimide. These compounds may be used alone or in combination of two or more.
  • the compound (monomer) forming the structural unit represented by the formula (2) include styrene, ⁇ -methylstyrene, 2-vinylbiphenyl, 3-vinylbiphenyl, 4-vinylbiphenyl, and 1-vinylnaphthalene. And 2-vinylnaphthalene. These compounds may be used alone or in combination of two or more.
  • the structural unit represented by the formula (3) is, for example, a structural unit represented by the following formula (3-1) or formula (3-2). (Wherein R 0 independently represents a hydrogen atom or a methyl group, R 2 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and b represents 1 or 2) .)
  • Specific examples of the compound (monomer) forming the structural unit represented by the formula (3) include 1-methoxyethyl (meth) acrylate, 1-ethoxyethyl (meth) acrylate, and 1-propoxyethyl (meth) acrylate.
  • monomers such as (meth) acrylate and tetrahydro-2H-pyran-2-yl (meth) acrylate. These monomers may be used alone or in combination of two or more.
  • the compound (monomer) forming the structural unit represented by the formula (3) is a method of polymerizing an acrylate or methacrylate having a protected carboxyl group obtained by reacting acrylic acid or methacrylic acid with an alkenyl ether compound, Alternatively, it can be obtained by a method of reacting a polymer of acrylic acid or methacrylic acid with an alkenyl ether compound.
  • the alkenyl ether compound used here is a compound represented by the following formula (5). (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and R 1 and R 2 may be bonded to each other to form a 4- to 7-membered oxygen-containing ring structure.)
  • the reaction of a compound having a carboxyl group and an alkenyl ether compound can be carried out, for example, by stirring at 70 ° C. using monooctyl phosphate, which is one of phosphate esters, as a catalyst.
  • alkenyl ether compound represented by the formula (5) examples include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, tert-butyl vinyl ether, n-hexyl vinyl ether, cyclohexyl vinyl ether, 2 -Aliphatic vinyl ether compounds such as ethylhexyl vinyl ether, norbornyl vinyl ether, 1-adamantyl vinyl ether, 2-adamantyl vinyl ether, 2,3-dihydrofuran, 4-methyl-2,3-dihydrofuran, 2,3-dihydro-4H -Cyclic vinyl ether compounds such as pyran.
  • the structural unit represented by the formula (4) is, for example, a structural unit represented by the following formula (4-1), formula (4-2), or formula (4-3). (In the formula, each R 0 independently represents a hydrogen atom or a methyl group.)
  • the compound (monomer) forming the structural unit represented by the formula (4) include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl. (Meth) acrylate is mentioned. These monomers may be used alone or in combination of two or more.
  • the rate is 5 mol% to 80 mol%, preferably 10 mol% to 70 mol%
  • the content of the structural unit represented by the formula (2) is 5 mol% to 80 mol%, preferably 10 mol% to 70 mol%
  • the content of the structural unit represented by the formula (3) is 5 mol% to 40 mol%, preferably 10 mol% to 30 mol%
  • the content of the structural unit represented by the formula (4) is 5 mol% to 40 mol%. And preferably It is 10mol% to 30mol%.
  • the weight average molecular weight of the copolymer is usually 1,000 to 100,000, preferably 3,000 to 50,000.
  • the weight average molecular weight is a value obtained by using gel as a standard sample by gel permeation chromatography (GPC).
  • the content of the copolymer in the resin composition of the present invention is usually 1% by mass to 99% by mass, preferably 5% by mass to based on the content in the solid content of the resin composition. 95% by mass.
  • the method for obtaining the copolymer is not particularly limited, but generally the structural units represented by the formula (1), formula (2), formula (3) and formula (4) are formed.
  • the compound (monomer) to be obtained is usually subjected to a polymerization reaction in a solvent in the presence of a polymerization initiator at a temperature of usually 50 ° C to 120 ° C.
  • the copolymer thus obtained is usually in a solution state dissolved in a solvent, and can be used in the resin composition of the present invention without isolation in this state.
  • the copolymer solution obtained as described above is poured into a stirred poor solvent such as hexane, diethyl ether, methanol, water and the like to reprecipitate the copolymer, and the generated precipitate is obtained.
  • the copolymer can be made into powder by drying at normal temperature or under reduced pressure at room temperature or heating. By such an operation, a polymerization initiator and an unreacted compound that coexist with the copolymer can be removed.
  • the powder of the copolymer may be used as it is, or the powder may be redissolved, for example, in a solvent described later and used as a solution.
  • the preparation method of the resin composition of this invention is not specifically limited,
  • the copolymer which has a structural unit represented by said Formula (1), Formula (2), Formula (3), and Formula (4) is used.
  • dissolving in a solvent and making it a uniform solution is mentioned.
  • the solvent is not particularly limited as long as it can dissolve the copolymer.
  • examples of such solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, 2-heptanone, ethyl lactate are used from the viewpoint of improving leveling properties of a coating film formed by applying the resin composition of the present invention on a substrate.
  • Butyl lactate, cyclopentanone and cyclohexanone are preferred.
  • the resin composition of this invention can also contain surfactant for the purpose of improving applicability
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene Polyoxyethylene alkyl aryl ethers such as ethylene nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan Sorbitan fatty acid esters such as tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as rubitan monopalmitate, polyoxyethylene
  • Fluorosurfactant such as Footent series (manufactured by Neos Co., Ltd.) and organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned. These surfactants may be used alone or in combination of two or more.
  • content in the resin composition of this invention is 3 mass% or less based on content in the solid content of the said resin composition, Preferably it is 1 mass%. Or less, more preferably 0.5% by mass or less.
  • the resin composition of the present invention may contain a crosslinking agent, a curing aid, an ultraviolet absorber, a sensitizer, a plasticizer, an antioxidant, and a light stabilizer as necessary, as long as the effects of the present invention are not impaired.
  • Additives such as adhesion aids can be included.
  • a substrate for example, a semiconductor substrate such as silicon covered with a silicon oxide film, a semiconductor substrate such as silicon covered with a silicon nitride film or a silicon oxynitride film, a semiconductor substrate such as silicon formed with a color filter, or nitride
  • the resin of the present invention is applied on a silicon substrate, a quartz substrate, a glass substrate (including non-alkali glass, low alkali glass, crystallized glass, glass substrate on which an ITO film is formed) by an appropriate coating method such as a spinner or a coater.
  • the microlens resin layer is formed by baking and curing using a heating means such as a hot plate.
  • the baking conditions are appropriately selected from baking temperatures of 80 ° C. to 300 ° C. and baking times of 0.3 minutes to 60 minutes. Bake may be processed in two steps or more.
  • the film thickness of the film formed from the resin composition of the present invention is, for example, 0.001 ⁇ m to 100 ⁇ m, and preferably 0.01 ⁇ m to 10 ⁇ m.
  • a resist solution is applied onto the microlens resin layer formed from the resin composition of the present invention, exposed through a predetermined mask, and post-exposure heating (PEB) is performed as necessary, followed by alkali development and rinsing.
  • PEB post-exposure heating
  • a predetermined resist pattern is formed by drying.
  • g-line, i-line, KrF excimer laser, ArF excimer laser can be used.
  • a heat treatment is performed to reflow the resist pattern to form a lens pattern.
  • the microlens resin layer is etched back using this lens pattern as an etching mask, and the lens pattern shape is transferred to the microlens resin layer to produce a microlens.
  • the mixture was further reacted for 18 hours to obtain a copolymer solution (solid content concentration: 25% by mass).
  • the weight average molecular weight Mw of the obtained copolymer was 20,000 (polystyrene conversion).
  • the mixture was further reacted for 18 hours to obtain a copolymer solution (solid content concentration: 25% by mass).
  • the weight average molecular weight Mw of the obtained copolymer was 20,000 (polystyrene conversion).
  • Example 2 As a surfactant, 0.01 g of Megafac [registered trademark] R-30 (manufactured by DIC Corporation) was dissolved in 40.0 g of the copolymer solution obtained in Synthesis Example 2 (containing 10.0 g of solid content). It was. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and prepared the fat composition for microlens formation.
  • Megafac [registered trademark] R-30 manufactured by DIC Corporation
  • Example 3 As a surfactant, 0.01 g of Megafac [registered trademark] R-30 (manufactured by DIC Corporation) was dissolved in 40.0 g of the copolymer solution obtained in Synthesis Example 3 (containing 10.0 g of solid content). It was. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and prepared the fat composition for microlens formation.
  • Megafac [registered trademark] R-30 manufactured by DIC Corporation
  • Example 4 As a surfactant, 0.01 g of Megafac [registered trademark] R-30 (manufactured by DIC Corporation) was dissolved in 40.0 g of the copolymer solution obtained in Synthesis Example 4 (including 10.0 g of solid content). It was. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and prepared the fat composition for microlens formation.
  • Megafac [registered trademark] R-30 manufactured by DIC Corporation
  • Example 5 As a surfactant, 0.01 g of Megafac [registered trademark] R-30 (manufactured by DIC Corporation) was dissolved in 40.0 g of the copolymer solution obtained in Synthesis Example 5 (including 10.0 g of solid content). It was. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and prepared the fat composition for microlens formation.
  • Megafac [registered trademark] R-30 manufactured by DIC Corporation
  • ⁇ Reference Example 1> As a surfactant, 0.01 g of MegaFace (registered trademark) R-30 (manufactured by DIC Corporation) was dissolved in 40.0 g of the copolymer solution obtained in Synthesis Example 6 (containing 10.0 g of solid content). It was. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and prepared the fat composition for microlens formation.
  • MegaFace registered trademark
  • R-30 manufactured by DIC Corporation
  • Table 1 shows the values of the minimum transmittance measured in the wavelength range of 400 nm to 800 nm before and after heating at 260 ° C. for 5 minutes.
  • Each of the microlens forming resin compositions prepared in Examples 1 to 5, Reference Examples 1 to 3 and Comparative Examples 1 to 5 was applied onto a silicon wafer using a spin coater, and then hot plate The film was baked at 100 ° C. for 1 minute and further at 230 ° C. for 10 minutes to form a film having a thickness of 2 ⁇ m. Using the etcher and the etching gas, the dry etching rates of these films were measured. Similarly, a resist solution (THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)) was applied on a silicon wafer using a spin coater, and was heated on a hot plate at 90 ° C. for 1.5 minutes and at 110 ° C. for 1.5 minutes.
  • THMR-iP1800 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the resist film was baked for 1 minute at 180 ° C. for 1 minute to form a resist film having a thickness of 1 ⁇ m, and the dry etching rate was measured, and Examples 1 to 5 and Reference Examples 1 to 1 for the resist film were measured. 3 and the dry etching rate of the film
  • the microlens-forming resin composition of the present invention has a result satisfying this. It became.
  • the Tg of the film formed from the resin composition for forming a microlens is preferably 200 ° C. or higher, and at a temperature exceeding 200 ° C. More preferably. 200 ° C. is a temperature equal to or higher than the heating temperature necessary for forming a resist pattern on the film in the process of manufacturing a microlens from the film, and is also equal to or higher than the reflow temperature of the resist pattern.
  • the film formed from the resin composition for forming a microlens according to the present invention satisfied that Tg was 200 ° C. or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記式(1)、式(2)、式(3)及び式(4)で表される構造単位を有する共重合体、及び溶剤を含有するマイクロレンズ形成用樹脂組成物を提供する。 (式中、Xはシクロヘキシル基又はフェニル基を表し、Yはフェニル基、ビフェニリル基又はナフチル基を表し、Rはそれぞれ独立に水素原子又はメチル基を表し、Rは水素原子又は炭素原子数1乃至3のアルキル基を表し、Rは炭素原子数1乃至10の直鎖状、分岐鎖状又は環状のアルキル基を表し、RとRは互いに結合して4乃至7員環の含酸素環構造を形成してもよく、Rは単結合又は炭素原子数1乃至5のアルキレン基を表し、当該アルキレン基はその中にエーテル結合を有してもよく、Rはエポキシ基、又はエポキシ環を有する炭素原子数5乃至12の有機基を表す。)

Description

マイクロレンズ形成用樹脂組成物
本発明は、マイクロレンズ形成用樹脂組成物に関する。より詳しくは、エッチバック法によりマイクロレンズを形成するために用いられる樹脂組成物に関する。
近年、CCD/CMOSイメージセンサの高精細化が進み、センサ感度の向上が要求されるようになってきたことから、搭載されるマイクロレンズに対しては、高透明性や高耐熱性が要求される。
CCD/CMOSイメージセンサ用マイクロレンズの製造方法の1つとして、エッチバック法が知られている(特許文献1及び特許文献2)。すなわち、カラーフィルター層上に形成したマイクロレンズ用樹脂層上にレジストパターンを形成し、熱処理によってこのレジストパターンをリフローしてレンズパターンを形成する。このレジストパターンをリフローして形成したレンズパターンを、エッチングマスクとして下層のマイクロレンズ用樹脂層をエッチバックし、レンズパターン形状をマイクロレンズ用樹脂層に転写することによってマイクロレンズを作製する。
エッチバック法では、レンズパターン形状を忠実に下層のマイクロレンズ用樹脂層へ転写するにあたり、レジスト膜のドライエッチングレートXとマイクロレンズ用樹脂層のドライエッチングレートYが同等(例えば、X:Y=1:0.8~1.2)であることが求められる(特許文献3及び特許文献4)。
特開平1-10666号公報 特開平6-112459号公報 国際公開第2013/005619号 国際公開第2013/035569号
本発明は、前記の事情に基づいてなされたものであり、その目的は、優れた透明性、耐熱性、耐溶剤性、平坦性及びレジスト膜と同等のドライエッチングレートを有する硬化膜を形成できる、保存安定性に優れた熱硬化性の樹脂組成物を提供することである。また、本発明の他の目的は、優れた透明性、耐熱性及び耐溶剤性を有するマイクロレンズを提供することにある。
本発明者らは、前記の課題を解決するべく鋭意検討を行った結果、本発明を完成するに至った。
すなわち、本発明は、下記式(1)、式(2)、式(3)及び式(4)で表される構造単位を有する共重合体、及び溶剤を含有するマイクロレンズ形成用樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004



(式中、Xはシクロヘキシル基又はフェニル基を表し、Yはフェニル基、ビフェニリル基又はナフチル基を表し、Rはそれぞれ独立に水素原子又はメチル基を表し、Rは水素原子又は炭素原子数1乃至3のアルキル基を表し、Rは炭素原子数1乃至10の直鎖状、分岐鎖状又は環状のアルキル基を表し、RとRは互いに結合して4乃至7員環の含酸素環構造を形成してもよく、Rは単結合又は炭素原子数1乃至5のアルキレン基を表し、当該アルキレン基はその中にエーテル結合を有してもよく、Rはエポキシ基、又はエポキシ環を有する炭素原子数5乃至12の有機基を表す。)
本発明はまた、前記マイクロレンズ形成用樹脂組成物から得られる硬化膜である。さらに本発明は、前記マイクロレンズ形成用樹脂組成物から作製されるマイクロレンズとその作製方法である。当該マイクロレンズは、例えば前述のエッチバック法によって作製される。すなわち、カラーフィルター層上に本発明のマイクロレンズ形成用樹脂組成物を塗布しベークして樹脂層を形成する段階と、前記樹脂層上にレジスト組成物を用いてレジストパターンを形成する段階と、前記レジストパターンをリフローしてレンズパターンを形成する段階と、前記レンズパターンをエッチングマスクとして前記樹脂層をエッチバックする段階を含む方法によって、該マイクロレンズは作製される。前記リフローは、前記レジストパターンのガラス転移温度(Tg)以上、通常200℃未満の温度で、当該レジストパターンを加熱することによって行われる。
本発明のマイクロレンズ形成用樹脂組成物は、当該組成物に含まれる共重合体が自己架橋タイプであるため必ずしも架橋剤が添加される必要はなく、熱硬化性を有すると共に、前記式(3)で表される構造単位においてカルボキシル基がブロック化されているため、保存安定性に優れる。さらに、本発明のマイクロレンズ形成用樹脂組成物から形成される膜は、優れた透明性、耐熱性、耐溶剤性、200℃以上のガラス転移温度(Tg)及びレジスト膜と同等のエッチングレートを有する。
以上より、本発明のマイクロレンズ形成用樹脂組成物から形成される膜は、その形成工程、又は配線等の周辺装置の形成工程において、高温での加熱処理が行われる場合にマイクロレンズが着色し、レンズ形状が変形する可能性を、著しく減少できる。また、本発明のマイクロレンズ形成用樹脂組成物から樹脂層を形成しその上にレジスト溶液を塗布する場合、及びマイクロレンズを形成後に電極/配線形成工程が行われる場合には、レジストとのミキシング、有機溶剤によるマイクロレンズの変形及び剥離といった問題も著しく減少できる。したがって、本発明のマイクロレンズ形成用樹脂組成物は、マイクロレンズを形成する材料として好適である。
本発明は、共重合体と溶剤を含有する樹脂組成物である。以下、各成分の詳細を説明する。本発明の樹脂組成物から溶剤を除いた固形分は通常、1質量%乃至50質量%である。
<共重合体>
本発明の樹脂組成物に含まれる共重合体は、前述の式(1)、式(2)、式(3)及び式(4)で表される構造単位を有する共重合体である。
前記式(1)で表される構造単位を形成する化合物(モノマー)の具体例としては、N-シクロヘキシルマレイミド、N-フェニルマレイミドが挙げられる。これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
前記式(2)で表される構造単位を形成する化合物(モノマー)の具体例としては、スチレン、α-メチルスチレン、2-ビニルビフェニル、3-ビニルビフェニル、4-ビニルビフェニル、1-ビニルナフタレン及び2-ビニルナフタレンが挙げられる。これらの化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。
前記式(3)で表される構造単位は、例えば下記式(3-1)又は式(3-2)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000005



(式中、Rはそれぞれ独立に水素原子又はメチル基を表し、Rは炭素原子数1乃至10の直鎖状、分岐鎖状又は環状のアルキル基を表し、bは1又は2を表す。)
前記式(3)で表される構造単位を形成する化合物(モノマー)の具体例としては、1-メトキシエチル(メタ)アクリレート、1-エトキシエチル(メタ)アクリレート、1-プロポキシエチル(メタ)アクリレート、1-イソプロポキシエチル(メタ)アクリレート、1-n-ブトキシエチル(メタ)アクリレート、1-tert-ブトキシエチル(メタ)アクリレート、1-n-ヘキシルオキシエチル(メタ)アクリレート、1-シクロヘキシルオキシエチル(メタ)アクリレート、テトラヒドロ-2H-ピラン-2-イル(メタ)アクリレート等のモノマーが挙げられる。なお、これらのモノマーは単独で使用しても、2種以上を組み合わせて使用してもよい。
前記式(3)で表される構造単位を形成する化合物(モノマー)は、アクリル酸もしくはメタクリル酸とアルケニルエーテル化合物を反応させて得られる保護されたカルボキシル基を有するアクリレートもしくはメタクリレートを重合する方法、又はアクリル酸もしくはメタクリル酸の重合体とアルケニルエーテル化合物とを反応させる方法によって得られる。
ここで用いられる上記アルケニルエーテル化合物は下記式(5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000006



(式中、Rは水素原子又は炭素原子数1乃至3のアルキル基を表し、Rは炭素原子数1乃至10の直鎖状、分岐鎖状又は環状のアルキル基を表し、RとRは互いに結合して4乃至7員環の含酸素環構造を形成してもよい。)
カルボキシル基を有する化合物とアルケニルエーテル化合物の反応は、例えば、リン酸エステル類の1つであるリン酸モノオクチルを触媒とし、70℃で攪拌することにより行なうことができる。
前記式(5)で表されるアルケニルエーテル化合物としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、tert-ブチルビニルエーテル、n-ヘキシルビニルエーテル、シクロヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル、ノルボルニルビニルエーテル、1-アダマンチルビニルエーテル、2-アダマンチルビニルエーテル等の脂肪族ビニルエーテル化合物、2,3-ジヒドロフラン、4-メチル-2,3-ジヒドロフラン、2,3-ジヒドロ-4H-ピラン等の環状ビニルエーテル化合物が挙げられる。
前記式(4)で表される構造単位は、例えば下記式(4-1)、式(4-2)又は式(4-3)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000007



(式中、Rはそれぞれ独立に水素原子又はメチル基を表す。)
前記式(4)で表される構造単位を形成する化合物(モノマー)の具体的な例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートが挙げられる。これらのモノマーは単独で使用しても、2種以上を組み合わせて使用してもよい。
前記式(1)、式(2)、式(3)及び式(4)で表される構造単位を有する共重合体において、前記式(1)で表される構造単位、前記式(2)で表される構造単位、前記式(3)で表される構造単位及び前記式(4)で表される構造単位の和100mol%に対し、前記式(1)で表される構造単位の含有率は5mol%乃至80mol%であり、好ましくは10mol%乃至70mol%、前記式(2)で表される構造単位の含有率は5mol%乃至80mol%であり、好ましくは10mol%乃至70mol%、前記式(3)で表される構造単位の含有率は5mol%乃至40mol%であり、好ましくは10mol%乃至30mol%、前記式(4)で表される構造単位の含有率は5mol%乃至40mol%であり、好ましくは10mol%乃至30mol%である。
前記共重合体の重量平均分子量は通常、1,000乃至100,000であり、好ましくは3,000乃至50,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。
また、本発明の樹脂組成物における前記共重合体の含有量は、当該樹脂組成物の固形分中の含有量に基づいて通常、1質量%乃至99質量%であり、好ましくは5質量%乃至95質量%である。
本発明において、前記共重合体を得る方法は特に限定されないが、一般的には、前記式(1)、式(2)、式(3)及び式(4)で表される構造単位を形成する化合物(モノマー)を、重合開始剤存在下の溶剤中において、通常50℃乃至120℃の温度下で重合反応させることにより得られる。このようにして得られる共重合体は、通常、溶剤に溶解した溶液状態であり、この状態で単離することなく、本発明の樹脂組成物に用いることもできる。
また、上記のようにして得られた共重合体の溶液を、攪拌させたヘキサン、ジエチルエーテル、メタノール、水等の貧溶媒に投入して当該共重合体を再沈殿させ、生成した沈殿物をろ過・洗浄後、常圧又は減圧下で常温乾燥又は加熱乾燥することで、当該共重合体を粉体とすることができる。このような操作により、前記共重合体と共存する重合開始剤や未反応化合物を除去することができる。本発明においては、前記共重合体の粉体をそのまま用いても良く、あるいはその粉体を、例えば後述する溶剤に再溶解して溶液の状態として用いても良い。
本発明の樹脂組成物の調製方法は、特に限定されないが、例えば、前記式(1)、式(2)、式(3)及び式(4)で表される構造単位を有する共重合体を溶剤に溶解し、均一な溶液とする方法が挙げられる。さらに、この調製方法の適当な段階において、必要に応じて、その他の添加剤を更に添加して混合する方法が挙げられる。
前記溶剤としては、共重合体を溶解するものであれば特に限定されない。そのような溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、γ-ブチロラクトンを挙げることができる。これらの溶剤は、単独で使用しても、2種以上を組み合わせて使用してもよい。
これらの溶剤の中でも、本発明の樹脂組成物を基板上に塗布して形成される塗膜のレベリング性の向上の観点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、2-ヘプタノン、乳酸エチル、乳酸ブチル、シクロペンタノン及びシクロヘキサノンが好ましい。
また、本発明の樹脂組成物は、塗布性を向上させる目的で、界面活性剤を含有することもできる。
当該界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ〔登録商標〕EF301、同EF303、同EF352(以上、三菱マテリアル電子化成(株)製)、メガファック〔登録商標〕F-171、同F-173、同R-30、同R-40、同R-40-LM(以上、DIC(株)製)、フロラードFC430、同FC431(以上、住友スリーエム(株)製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子(株)製)、FTX-206D、FTX-212D、FTX-218、FTX-220D、FTX-230D、FTX-240D、FTX-212P、FTX-220P、FTX-228P、FTX-240G等のフタージェントシリーズ((株)ネオス製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤は、単独で使用しても、2種以上を組み合わせて使用してもよい。
また、前記界面活性剤が使用される場合、本発明の樹脂組成物における含有量は、当該樹脂組成物の固形分中の含有量に基づいて、3質量%以下であり、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。
また、本発明の樹脂組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、架橋剤、硬化助剤、紫外線吸収剤、増感剤、可塑剤、酸化防止剤、光安定剤、密着助剤等の添加剤を含むことができる。
以下、本発明の樹脂組成物から得られる硬化膜の代表的な使用例となる本発明のマイクロレンズ作製方法について説明する。該方法は以下の4段階を含む。
まずは、基板{例えば、酸化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素膜又は酸化窒化珪素膜で被覆されたシリコン等の半導体基板、カラーフィルターが形成されたシリコン等の半導体基板、窒化珪素基板、石英基板、ガラス基板(無アルカリガラス、低アルカリガラス、結晶化ガラスを含む)、ITO膜が形成されたガラス基板}上に、スピナー、コーター等の適当な塗布方法により本発明の樹脂組成物を塗布後、ホットプレート等の加熱手段を用いてベークして硬化させてマイクロレンズ用樹脂層を形成する段階である。
ベーク条件は、ベーク温度80℃乃至300℃、ベーク時間0.3分乃至60分間の中から適宜選択される。ベークは2ステップ以上処理してもよい。
また、本発明の樹脂組成物から形成される膜の膜厚としては、例えば0.001μm乃至100μmであり、好ましくは0.01μm乃至10μmである。
その後、本発明の樹脂組成物から形成されたマイクロレンズ用樹脂層の上にレジスト溶液を塗布し、所定のマスクを通して露光し、必要に応じて露光後加熱(PEB)を行い、アルカリ現像、リンス、乾燥することにより、所定のレジストパターンを形成する段階である。露光には、例えば、g線、i線、KrFエキシマレーザー、ArFエキシマレーザーを使用することができる。
次いで、加熱処理することにより、上記レジストパターンをリフローしてレンズパターンを形成する段階である。さらにこのレンズパターンをエッチングマスクとして下層のマイクロレンズ用樹脂層をエッチバックして、レンズパターン形状をマイクロレンズ用樹脂層に転写することによってマイクロレンズを作製する段階である。
以下、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものでない。
〔得られた共重合体の重量平均分子量の測定〕
装置:日本分光(株)製GPCシステム
カラム:Shodex〔登録商標〕KF-804L及びKF-803L
カラムオーブン:40℃
流量:1mL/分
溶離液:テトラヒドロフラン
[共重合体の合成]
<合成例1>
N-フェニルマレイミド5.0g、2-ビニルナフタレン4.5g、1-n-ブトキシエチルメタクリレート3.6g、3,4-エポキシシクロヘキシルメチルメタクリレート(サイクロマー〔登録商標〕M100((株)ダイセル製))3.8g、及び2,2’-アゾビスイソブチロニトリル0.84gをシクロヘキサノン41.2gに溶解させた後、この溶液を、シクロヘキサノン11.8gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは30,000(ポリスチレン換算)であった。
<合成例2>
N-フェニルマレイミド5.0g、2-ビニルナフタレン5.9g、1-n-ブトキシエチルメタクリレート2.7g、4-ヒドロキシブチルアクリレートグリシジルエーテル(4HBAGE(日本化成(株)製))2.9g、及び2,2’-アゾビスイソブチロニトリル0.83gをシクロヘキサノン40.5gに溶解させた後、この溶液を、シクロヘキサノン11.6gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは20,000(ポリスチレン換算)であった。
<合成例3>
N-フェニルマレイミド8.5g、4-ビニルビフェニル5.3g、1-n-ブトキシエチルメタクリレート1.8g、グリシジルメタクリレート1.4g、及び2,2’-アゾビスイソブチロニトリル0.85gをシクロヘキサノン41.7gに溶解させた後、この溶液を、シクロヘキサノン11.9gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは22,000(ポリスチレン換算)であった。
<合成例4>
N-フェニルマレイミド3.5g、4-ビニルビフェニル10.9g、1-n-ブトキシエチルメタクリレート1.9g、グリシジルメタクリレート1.5g、及び2,2’-アゾビスイソブチロニトリル0.90gをシクロヘキサノン43.5gに溶解させた後、この溶液を、シクロヘキサノン12.5gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは18,000(ポリスチレン換算)であった。
<合成例5>
N-シクロヘキシルマレイミド3.5g、4-ビニルビフェニル10.5g、テトラヒドロ-2H-ピラン-2-イルメタクリレート1.7g、グリシジルメタクリレート1.4g、及び2,2’-アゾビスイソブチロニトリル0.86gをシクロヘキサノン42.0gに溶解させた後、この溶液を、シクロヘキサノン12.0gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは16,000(ポリスチレン換算)であった。
<合成例6>
N-シクロヘキシルマレイミド3.5g、4-ビニルビフェニル10.5g、2-ヒドロキシエチルメタクリレート1.3g、2-(O-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(カレンズ〔登録商標〕MOI-BM(昭和電工(株)製))2.4g、及び2,2’-アゾビスイソブチロニトリル0.88gをシクロヘキサノン43.4gに溶解させた後、この溶液を、シクロヘキサノン12.4gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは19,000(ポリスチレン換算)であった。
<合成例7>
N-フェニルマレイミド3.5g、2-ビニルナフタレン7.8g、4-ヒドロキシブチルアクリレート2.2g、2-(O-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(カレンズ〔登録商標〕MOI-BM(昭和電工(株)製))3.7g、及び2,2’-アゾビスイソブチロニトリル0.86gをシクロヘキサノン42.0gに溶解させた後、この溶液を、シクロヘキサノン12.0gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは21,000(ポリスチレン換算)であった。
<合成例8>
N-フェニルマレイミド4.0g、スチレン2.4g、2-ビニルナフタレン7.1g、2-ヒドロキシエチルメタクリレート1.5g、2-[(3,5-ジメチルピラゾリル)カルボキシアミノ]エチルメタクリレート(カレンズ〔登録商標〕MOI-BP(昭和電工(株)製))2.9g、及び2,2’-アゾビスイソブチロニトリル0.90gをシクロヘキサノン43.9gに溶解させた後、この溶液を、シクロヘキサノン12.6gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは15,000(ポリスチレン換算)であった。
<合成例9>
スチレン12.0g、2-ヒドロキシエチルメタクリレート1.9g、2-(O-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(カレンズ〔登録商標〕MOI-BM(昭和電工(株)製))3.5g、及び2,2’-アゾビスイソブチロニトリル0.87gをシクロヘキサノン42.5gに溶解させた後、この溶液を、シクロヘキサノン12.2gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは16,000(ポリスチレン換算)であった。
<合成例10>
2-ビニルナフタレン14.0g、1-n-ブトキシエチルメタクリレート2.1g、グリシジルメタクリレート1.6g、及び2,2’-アゾビスイソブチロニトリル1.3gをシクロヘキサノン44.3gに溶解させた後、この溶液を、シクロヘキサノン12.6gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは7,000(ポリスチレン換算)であった。
<合成例11>
2-ビニルナフタレン8.0g、2-ヒドロキシエチルメタクリレート3.4g、2-(O-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(カレンズ〔登録商標〕MOI-BM(昭和電工(株)製))6.3g、及び2,2’-アゾビスイソブチロニトリル0.88gをシクロヘキサノン43.3gに溶解させた後、この溶液を、シクロヘキサノン12.4gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは20,000(ポリスチレン換算)であった。
<合成例12>
4-ビニルビフェニル9.0g、1-n-ブトキシエチルメタクリレート4.7g、グリシジルメタクリレート3.6g、及び2,2’-アゾビスイソブチロニトリル0.86gをシクロヘキサノン42.1gに溶解させた後、この溶液を、シクロヘキサノン12.0gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは14,000(ポリスチレン換算)であった。
<合成例13>
N-フェニルマレイミド8.0g、2-ヒドロキシエチルメタクリレート3.0g、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(カレンズ〔登録商標〕MOI-BP(昭和電工(株)製))5.8g、及び2,2’-アゾビスイソブチロニトリル0.84gをシクロヘキサノン41.2gに溶解させた後、この溶液を、シクロヘキサノン11.8gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、さらに18時間反応させて、共重合体の溶液(固形分濃度25質量%)を得た。得られた共重合体の重量平均分子量Mwは19,000(ポリスチレン換算)であった。
[マイクロレンズ形成用樹脂組成物の調製]
<実施例1>
合成例1で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<実施例2>
合成例2で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<実施例3>
合成例3で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<実施例4>
合成例4で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<実施例5>
合成例5で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<参考例1>
合成例6で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<参考例2>
合成例7で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<参考例3>
合成例8で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<比較例1>
合成例9で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<比較例2>
合成例10で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<比較例3>
合成例11で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<比較例4>
合成例12で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
<比較例5>
合成例13で得られた共重合体の溶液40.0g(固形分10.0g含む)に界面活性剤としてメガファック〔登録商標〕R-30(DIC(株)製)0.01gを溶解させた。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過してマイクロレンズ形成用脂組成物を調製した。
[耐溶剤性試験]
実施例1乃至実施例5、参考例1乃至参考例3及び比較例1乃至比較例5で調製したマイクロレンズ形成用樹脂組成物をそれぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに230℃で10分間ベークを行い、膜厚2μmの膜を形成した。これらの膜に対して、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、アセトン、メチルイソブチルケトン、2-ヘプタノン、2-プロパノール、及び2.38質量%濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液に、それぞれ23℃の温度条件下、5分間浸漬する試験を行った。浸漬前後において膜厚変化を測定し、上記浸漬溶剤のうち1つでも、浸漬前の膜厚に対して5%以上の膜厚増減があった場合は“×”、全ての溶剤について膜厚増減が5%未満であった場合は“○”として耐溶剤性を評価した。評価結果を表1に示す。
[透過率測定]
実施例1乃至実施例5、参考例1乃至参考例3及び比較例1乃至比較例5で調製したマイクロレンズ形成用樹脂組成物をそれぞれ、石英基板上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに230℃で10分間ベークを行い、膜厚2μmの膜を形成した。これらの膜に対して、紫外線可視分光光度計UV-2550((株)島津製作所製)を用いて、波長400nm~800nmの範囲で波長を2nmずつ変化させて透過率を測定した。さらにこの膜を260℃で5分間加熱した後、再び波長400nm~800nmの範囲で波長を2nmずつ変化させて透過率を測定した。260℃で5分間加熱する前及び後での、波長400nm~800nmの範囲で測定された最低透過率の値を表1に示す。
[ドライエッチングレートの測定]
ドライエッチングレートの測定に用いたエッチャー及びエッチングガスは、以下の通りである。
エッチャー:RIE-10NR(サムコ(株)製)
エッチングガス:CF
実施例1乃至実施例5、参考例1乃至参考例3及び比較例1乃至比較例5で調製したマイクロレンズ形成用樹脂組成物をそれぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに230℃で10分間ベークを行い、膜厚2μmの膜を形成した。上記エッチャー及びエッチングガスを用い、これらの膜のドライエッチングレートを測定した。同様に、レジスト溶液(THMR-iP1800(東京応化工業(株)製)を、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において90℃で1.5分間、110℃で1.5分間、さらに180℃で1分間ベークを行い、膜厚1μmのレジスト膜を形成し、ドライエッチングレートを測定した。そして、前記レジスト膜に対する、実施例1乃至実施例5、参考例1乃至参考例3及び比較例1乃至比較例5で調製したマイクロレンズ形成用樹脂組成物から得られた膜のドライエッチングレートを求めた。評価結果を表1に示す。
[ガラス転移温度(Tg)の測定]
実施例1乃至実施例5、参考例1乃至参考例3及び比較例1乃至比較例5で調製したマイクロレンズ形成用樹脂組成物をそれぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに230℃で10分間ベークを行い、膜厚2μmの膜を形成した。これらの膜をシリコンウエハーから剥離し、示差走査熱量計DSC3100SR((株)マックサイエンス製)を用いて測定した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008


                 
表1の結果から、本発明のマイクロレンズ形成用樹脂組成物から形成された膜は、高耐溶剤性、高透明性であると共に、260℃で加熱した後でも着色しない高耐熱性を有するものであった。さらに、エッチバック法では、レンズパターン形状を忠実に下層のマイクロレンズ用樹脂層へ転写するにあたり、レジスト膜のドライエッチングレートXとマイクロレンズ用樹脂層のドライエッチングレートYが同等(X:Y=1:0.8~1.2、好ましくはX:Y=1:0.9~1.1)であることが求められるが、本発明のマイクロレンズ形成用樹脂組成物はこれを満足する結果となった。また、マイクロレンズ形成プロセスの観点及び永久部材としての信頼性の観点において、マイクロレンズ形成用樹脂組成物から形成された膜のTgは、200℃以上であることが好ましく、200℃を超える温度であることがより好ましい。200℃とは、当該膜からマイクロレンズを作製するプロセスにおいて、当該膜上にレジストパターンを形成する際に必要な加熱温度以上の温度であり、レジストパターンのリフロー温度以上の温度でもある。本発明のマイクロレンズ形成用樹脂組成物から形成された膜は、Tgが200℃以上であることを満足する結果となった。一方、比較例1乃至比較例5で調製したマイクロレンズ形成用樹脂組成物から形成された膜については、全ての特性を満足するものではないことが分かった。参考例1乃至参考例3で調製したマイクロレンズ形成用樹脂組成物から形成された膜はいずれも、Tgは200℃であった。

Claims (7)

  1. 下記式(1)、式(2)、式(3)及び式(4)で表される構造単位を有する共重合体、及び溶剤を含有するマイクロレンズ形成用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001


    (式中、Xはシクロヘキシル基又はフェニル基を表し、Yはフェニル基、ビフェニリル基又はナフチル基を表し、Rはそれぞれ独立に水素原子又はメチル基を表し、Rは水素原子又は炭素原子数1乃至3のアルキル基を表し、Rは炭素原子数1乃至10の直鎖状、分岐鎖状又は環状のアルキル基を表し、RとRは互いに結合して4乃至7員環の含酸素環構造を形成してもよく、Rは単結合又は炭素原子数1乃至5のアルキレン基を表し、当該アルキレン基はその中にエーテル結合を有してもよく、Rはエポキシ基、又はエポキシ環を有する炭素原子数5乃至12の有機基を表す。)
  2. 前記式(3)で表される構造単位は下記式(3-1)又は式(3-2)で表される構造単位である、請求項1に記載のマイクロレンズ形成用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002


    (式中、R及びRは請求項1に記載の定義と同義であり、bは1又は2を表す。)
  3. 前記式(4)で表される構造単位は下記式(4-1)、式(4-2)又は式(4-3)で表される構造単位である、請求項1又は請求項2に記載のマイクロレンズ形成用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003


    (式中、Rは請求項1に記載の定義と同義である。)
  4. さらに界面活性剤を含む請求項1乃至請求項3のいずれか一項に記載のマイクロレンズ形成用樹脂組成物。
  5. 前記共重合体の重量平均分子量が1,000乃至100,000である、請求項1乃至請求項4のいずれか一項に記載のマイクロレンズ形成用樹脂組成物。
  6. 請求項1乃至請求項5のいずれか一項に記載のマイクロレンズ形成用樹脂組成物から得られる硬化膜。
  7. カラーフィルター層上に請求項1乃至請求項5のいずれか一項に記載のマイクロレンズ形成用樹脂組成物を塗布しベークして樹脂層を形成する段階と、前記樹脂層上にレジスト組成物を用いてレジストパターンを形成する段階と、前記レジストパターンをリフローしてレンズパターンを形成する段階と、前記レンズパターンをエッチングマスクとして前記樹脂層をエッチバックする段階とを含む、マイクロレンズの作製方法。
PCT/JP2015/050510 2014-01-30 2015-01-09 マイクロレンズ形成用樹脂組成物 WO2015115155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015559848A JP6478053B2 (ja) 2014-01-30 2015-01-09 マイクロレンズ形成用樹脂組成物
KR1020167018087A KR102122293B1 (ko) 2014-01-30 2015-01-09 마이크로렌즈 형성용 수지 조성물
CN201580003526.8A CN105874355B (zh) 2014-01-30 2015-01-09 微透镜形成用树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-015564 2014-01-30
JP2014015564 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015115155A1 true WO2015115155A1 (ja) 2015-08-06

Family

ID=53756732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050510 WO2015115155A1 (ja) 2014-01-30 2015-01-09 マイクロレンズ形成用樹脂組成物

Country Status (5)

Country Link
JP (1) JP6478053B2 (ja)
KR (1) KR102122293B1 (ja)
CN (1) CN105874355B (ja)
TW (1) TWI671350B (ja)
WO (1) WO2015115155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220061167A (ko) 2019-11-26 2022-05-12 후지필름 가부시키가이샤 조성물, 막, 마이크로 렌즈, 고체 촬상 소자 및 표시 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418993B (zh) * 2017-03-28 2021-12-07 株式会社尼康 光学***以及光学设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170305A (ja) * 2010-01-19 2011-09-01 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2011221496A (ja) * 2010-01-22 2011-11-04 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2012108460A (ja) * 2010-10-22 2012-06-07 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2013242540A (ja) * 2012-04-24 2013-12-05 Jsr Corp 感放射線性樹脂組成物、表示素子用層間絶縁膜及びその形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652321B2 (ja) * 1985-01-22 1994-07-06 旭硝子株式会社 有機光学材料
JP2776810B2 (ja) 1987-07-03 1998-07-16 ソニー株式会社 固体撮像装置の製造方法
JP3254759B2 (ja) 1992-09-25 2002-02-12 ソニー株式会社 光学素子およびオンチップレンズの製造方法
WO2010007915A1 (ja) * 2008-07-16 2010-01-21 日産化学工業株式会社 ポジ型レジスト組成物及びマイクロレンズの製造方法
WO2012105288A1 (ja) * 2011-01-31 2012-08-09 日産化学工業株式会社 マイクロレンズ形成用感光性樹脂組成物
US9994685B2 (en) * 2011-07-07 2018-06-12 Nissan Chemical Industries, Ltd. Resin composition
WO2013035569A1 (ja) 2011-09-05 2013-03-14 日産化学工業株式会社 樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170305A (ja) * 2010-01-19 2011-09-01 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2011221496A (ja) * 2010-01-22 2011-11-04 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2012108460A (ja) * 2010-10-22 2012-06-07 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2013242540A (ja) * 2012-04-24 2013-12-05 Jsr Corp 感放射線性樹脂組成物、表示素子用層間絶縁膜及びその形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220061167A (ko) 2019-11-26 2022-05-12 후지필름 가부시키가이샤 조성물, 막, 마이크로 렌즈, 고체 촬상 소자 및 표시 장치

Also Published As

Publication number Publication date
CN105874355A (zh) 2016-08-17
TW201542665A (zh) 2015-11-16
TWI671350B (zh) 2019-09-11
CN105874355B (zh) 2020-04-10
KR20160113593A (ko) 2016-09-30
JP6478053B2 (ja) 2019-03-06
JPWO2015115155A1 (ja) 2017-03-23
KR102122293B1 (ko) 2020-06-12

Similar Documents

Publication Publication Date Title
JP5950125B2 (ja) 樹脂組成物
JP2015174877A (ja) 特定の硬化促進触媒を含む樹脂組成物
JP6406525B2 (ja) 樹脂組成物
KR101626472B1 (ko) 수지 조성물
KR101935033B1 (ko) 비감광성 수지 조성물
JP6478053B2 (ja) マイクロレンズ形成用樹脂組成物
CN106663627B (zh) 平坦化膜用或微透镜用树脂组合物
KR20220098133A (ko) 비감광성 수지 조성물
KR102414942B1 (ko) 수지 조성물
JP6936449B2 (ja) 熱硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559848

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167018087

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743178

Country of ref document: EP

Kind code of ref document: A1