WO2015099379A1 - 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지 - Google Patents

도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2015099379A1
WO2015099379A1 PCT/KR2014/012641 KR2014012641W WO2015099379A1 WO 2015099379 A1 WO2015099379 A1 WO 2015099379A1 KR 2014012641 W KR2014012641 W KR 2014012641W WO 2015099379 A1 WO2015099379 A1 WO 2015099379A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
conductive
carbon
composition
material composition
Prior art date
Application number
PCT/KR2014/012641
Other languages
English (en)
French (fr)
Other versions
WO2015099379A8 (ko
Inventor
이길선
손권남
권원종
양승보
김인영
유광현
이미진
이진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140184901A external-priority patent/KR101652921B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016538068A priority Critical patent/JP6162338B2/ja
Priority to CN201480071378.9A priority patent/CN105849821B/zh
Priority to EP14873341.3A priority patent/EP3057104B1/en
Priority to US15/038,857 priority patent/US10033044B2/en
Publication of WO2015099379A1 publication Critical patent/WO2015099379A1/ko
Publication of WO2015099379A8 publication Critical patent/WO2015099379A8/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention enables the provision of an electrode containing two or more kinds of carbon-based materials in a uniformly dispersed state, the conductive material composition to enable the processing of a battery such as a lithium secondary battery having more improved electrical and life characteristics
  • the present invention relates to a slurry composition for forming an electrode of a lithium secondary battery using the same and a lithium secondary battery.
  • conductive carbon-based materials such as graphene, carbon nano-rubber, or carbon black
  • conductive carbon-based materials having different structural properties may be in point contact, line contact, and / or cotton.
  • the contacts can be formed together to form a three-dimensional network structure.
  • graphene and carbon nanotubes or carbon black are used together, carbon nanotubes or carbon blocks are adsorbed on the graphene surface, and the carbon nanotubes or carbon black are in contact with each other.
  • a network structure can be formed.
  • the carbon black is adsorbed on the surface of the carbon nanotubes while the carbon black or the carbon nanotubes are in contact with each other, resulting in a three-dimensional network. It may also form a structure.
  • conductive carbonaceous materials may be used .
  • a method for producing a conductive material including together in a dispersed state has been studied, and several methods have been proposed as follows.
  • this method has an advantage of obtaining the powder composition of graphene and carbon nanotubes in an aqueous solvent, the overall process is complicated, and very harsh process conditions such as acid treatment using strong acid are required. After recovering the powdered composition, it is true that problems such as stacking occur again, and thus there is a limit in obtaining a powdered composition in a state in which these two components are uniformly dispersed. Therefore, even when obtaining the powder composition thus obtained and applying it as a conductive material of the battery, it may not be able to fully express the effects of applying two or more kinds of conductive carbon-based materials together.
  • the present invention can be prepared in a powder composition in which two or more carbon-based materials are uniformly dispersed, it is possible to provide an electrode including these carbon-based materials in a uniformly dispersed state, and further improve electrical and life characteristics. It is to provide a conductive material composition and a method for producing the same that can provide a battery such as a lithium secondary battery having.
  • this invention provides the slurry composition for electrode formation of the lithium secondary battery using the said electrically conductive material composition.
  • the present invention also provides a lithium secondary battery exhibiting more improved properties, including an electrode formed from the slurry composition for electrode formation.
  • the present invention is a carbon nanotube, graphene, and carbon black material selected from the group consisting of carbon black; And comprising the poly-aromatic hydrocarbons, oxides of a plurality of kinds, molecular weights of about 300 to 1000 of a poly-aromatic hydrocarbons oxide increased about 60 0 /, which provides a conductive material composition containing a dispersing agent containing the above content.
  • the dispersant may be adsorbed on the surface of the conductive carbon-based material, and the conductive material composition may be a powder composition in which the two or more conductive carbon-based materials are uniformly dispersed.
  • the conductive carbon-based material may include 10 to 90 weight 0 /. Of carbon black, and 90 weight percent of at least 10 internal magnetic particles selected from graphene and carbon nano-rubber.
  • the oxygen content can be about 12 to 50 parts by weight 0/0 of the total element content of the dispersant.
  • the polyaromatic hydrocarbon oxide may have 5 to 30, or 7 to 20 benzene rings. It may have a structure in which at least one oxygen-containing functional group is bonded to the aromatic hydrocarbon included.
  • the oxygen-containing functional group may be at least one selected from the group consisting of a hydroxyl group, an epoxy group, a carboxyl group, a nitro group and a sulfonic acid.
  • the above-mentioned conductive material composition may include 1 to 50 parts by weight of the dispersant based on 100 parts by weight of the conductive carbonaceous material.
  • the above-described conductive material composition may be used for forming the electrode of the battery, and in more specific examples, may be included in the electrode slurry composition of the lithium secondary battery.
  • the present invention comprises the steps of forming a dispersion in which the conductive carbon-based material and the dispersant are dispersed in a polar solvent; And dispersing the conductive carbonaceous material by irradiating ultrasonic waves or applying a physical force to the dispersion liquid.
  • the method for producing a conductive material composition may further include recovering and drying a powdered conductive material composition from the dispersion after the dispersing step.
  • This invention also provides the slurry composition for electrode formation of the lithium secondary battery containing an electrode active material, the above-mentioned electrically conductive material composition, a binder, and a solvent.
  • the electrode active material may comprise a positive electrode active material or a negative electrode active material
  • the binder may be vinylidene fluoride / nucleus fluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate.
  • Polyacrylate polytetrafluoroethylene, poly (styrene-butadiene) copolymer, alginate, and polydopamine.
  • the solvent may include one or more selected from the group consisting of water, N-methylpyridone, acetone, tetrahydrofuran and decane.
  • the slurry composition is 70 to 98 parts by weight of the electrode active material, 0.1 to 15 parts by weight of the conductive material composition, 1.0 of the binder with respect to 100 parts by weight of the total content of the solid content of the electrode active material, the conductive material composition and the binder It may include from 20 parts by weight,
  • the present invention includes a negative electrode including a current collector, a negative electrode active material, a conductive material and a binder and a negative electrode active material layer formed on the current collector; Current collector, positive electrode active material, A positive electrode including a positive electrode active material layer formed on a current collector and including a conductive material and a binder; And an electrolyte, and at least one of the negative electrode active material layer or the conductive material included in the positive electrode active material layer provides a lithium secondary battery including the conductive material composition described above.
  • a powdery conductive material including two or more kinds of conductive carbon-based materials in a uniformly dispersed state may be more easily manufactured and provided.
  • powdery conductive material compositions can be prepared and provided in a much simpler manner than previously known, and furthermore, due to the action of the dispersant, they can exhibit very good redispersibility for various polar solvents.
  • the conductive material composition of the present invention can be maximized and expressed by the effect of including two or more kinds of conductive carbon-based materials, and contribute greatly to providing a battery such as a lithium secondary battery having more improved electrical and life characteristics. Can be.
  • 1a and 1b (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the pitch analyzed by MALC -TOF mass spectrum.
  • 2A and 2B (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the dispersant obtained in Preparation Example 1 by MALDI-TOF mass spectrum.
  • FIG. 3 is a diagram showing a result of analyzing the pitch and the dispersant of Preparation Example 1 by 13C CPMAS NMR, respectively.
  • Fig. 4 is a graph showing the analysis results of the pitch and the dispersant of Preparation Example 1, respectively, by FT-IR.
  • 5 is a diagram illustrating the molecular weight distribution of the dispersant obtained in Preparation Examples 2 to 4 by MALDI-TOF mass spectrum, and comparing the results of the analysis.
  • 6A to 6D are electron micrographs of the powdery conductive material composition obtained in Examples 1 to 4; 7A and 7B are electron micrographs of the powdery conductive material compositions in Examples 5 and 6, respectively, to obtain a composition for forming a slurry for forming a positive electrode and a negative electrode, and then applying the same to a copper current collector (tape) and drying them.
  • FIG. 8 is a visual observation photograph showing a result of redispersing the conductive material composition of Example 3 in various polar solvents in Test Example 2.
  • FIG. 8 is a visual observation photograph showing a result of redispersing the conductive material composition of Example 3 in various polar solvents in Test Example 2.
  • dispenser means any component for uniformly dispersing other components, such as graphene, carbon black, or carbon nano-rubber, in an aqueous solvent, an organic solvent, or a liquid medium. It may refer to an ingredient.
  • conductive material composition may refer to any composition that can be used as a conductive material in a composition for forming an electrode of a battery such as a lithium secondary battery.
  • the composition of the "conductor composition” or the composition for forming an electrode, and any composition that can be added as a conductive material to any electrode forming composition may belong to the category of "conductor composition".
  • conductor composition any composition that can be used as a conductive material in a composition for forming an electrode of a battery such as a lithium secondary battery.
  • polyaromatic hydrocarbon may refer to an aromatic hydrocarbon compound having two or more, or five or more, aromatic rings, for example, benzene rings, bonded and included in a single compound structure.
  • polyaromatic hydrocarbon oxide may refer to any compound in which the "polyaromatic hydrocarbon” described above reacts with an oxidant such that at least one oxygen containing functional group is bonded in its chemical structure.
  • the oxygen-containing functional group that can be introduced into the "polyaromatic hydrocarbon” by the reaction with the oxidizing agent may be bonded to an aromatic ring such as hydroxy group, epoxy group, carboxyl group, nitro group or sulfonic acid and contains at least one oxygen in the functional group. It can be a functional group of.
  • a conductive material composition comprising a dispersant comprising a poly aromatic hydrocarbon oxide in an amount of at least about 60 weight 0 /.
  • the conductive material composition of one embodiment includes two or more kinds of conductive carbon-based materials selected from carbon nanotubes, graphene, and carbon black, and together with a dispersant including a mixture of predetermined polyaromatic hydrocarbon oxides. .
  • a dispersant including a mixture of predetermined polyaromatic hydrocarbon oxides.
  • the two or more conductive carbonaceous materials are mixed in a solvent and dispersed by applying a physical force such as ultrasonic irradiation or agitation, without going through dark process conditions or complicated processes.
  • the conductive material composition of one embodiment may be prepared and provided by a simplified method such as recovery and drying.
  • the conductive material composition may be a powder composition in which two or more kinds of conductive carbon-based materials are uniformly dispersed.
  • the conductive composition may be used to uniformly form a large amount of conductive carbon-based material in the electrode composition slurry composition and the electrode. It can be included in a distributed state.
  • the conductive material composition may exhibit very good redispersibility for various polar solvents due to the action of the dispersant. Therefore, the conductive material composition can be redispersed in various polar solvents to produce and provide various electrode forming slurry compositions, and are very suitable for forming electrodes of various batteries including the positive and negative electrodes of lithium secondary batteries. Can be applied.
  • the conductive material composition can express the maximum effect of including two or more kinds of conductive carbon-based materials together, and can greatly contribute to providing a battery such as a lithium secondary battery having more improved electrical and life characteristics.
  • the conductive material composition of one embodiment may include two or more kinds of conductive carbon-based materials in a more uniformly dispersed state due to the specific dispersant, and may be expected to be due to the characteristics described below of the specific dispersant. .
  • Pitch discharged from wastes during the refining of fossil fuels such as petroleum or coal is a by-product used for asphalt production, etc., and has a viscous complex form containing a plurality of polyaromatic hydrocarbons having a plurality of aromatic rings. Can be destroyed.
  • the mixture of polyaromatic hydrocarbon oxides obtained by this method is about 60% by weight or more, or about 60% by weight, of polyaromatic hydrocarbon oxides having a molecular weight of about 300 to 1000, or about 300 to 700 when analyzed by MALDI-TOF MS. 65 were identified including a weight 0/0 or more, or about 70 to 95 weight ./.
  • the specific kind, structure, and distribution of the polyaromatic hydrocarbon oxides included in such a mixture may vary depending on the kind of pitch used as the raw material, its origin, or the kind of oxidizing agent.
  • the mixture of polyaromatic hydrocarbon oxides included in the dispersant may be a polyaromatic hydrocarbon oxide having a structure in which at least one oxygen-containing functional group is introduced into each of the polyaromatic hydrocarbons including 5 to 30, or 7 to 20, respectively. It contains a plurality of species, the polyaromatic hydrocarbon oxide in such a mixture has a molecular weight distribution described above, that is, a molecular weight distribution of the molecular weight of about 300 to 100 or about 300 to 700 of about 60% by weight or more of the total mixture. .
  • the type of the oxygen-containing functional group may vary depending on the type of oxidizing agent used in the oxidation process such as pitch, etc., for example, at least one selected from the group consisting of hydroxy group, epoxy group, carboxyl group, nitro group and sulfonic acid.
  • various polyaromatic hydrocarbon oxides having a plurality of various functional groups selected from the above-mentioned functional groups may be included and mixed.
  • hydrophobic ⁇ -domains can interact with ⁇ - ⁇ with surfaces such as carbon nanotubes on which carbon-carbon bonds are formed, and hydrophilic regions can allow repulsive force to be expressed between each single carbon nano-leube. .
  • the dispersant comprising the mixture of polyaromatic hydrocarbon oxides is present between the powders or particles (including particles having any shape such as sheets or flakes) constituting the respective conductive carbon-based material, such conductive carbon-based
  • the materials can be distributed more evenly. More specifically, the dispersant may be adsorbed on the surface of each particle of the conductive carbon-based material by the aforementioned ⁇ - ⁇ interaction. Therefore, the conductive material composition of the embodiment including the specific dispersing agent described above may be prepared and provided in a very simplified process, and may include two or more kinds of conductive carbon-based materials in a uniformly dispersed state.
  • the conductive composition may be used to include a conductive carbon-based material having a high content in the slurry composition for forming the electrode and the electrode in a uniformly dispersed state.
  • a conductive carbon-based material having a high content in the slurry composition for forming the electrode and the electrode in a uniformly dispersed state.
  • an electrode including a higher content of a conductive carbon-based material in a uniformly dispersed state such as an electrode showing more improved characteristics, a battery such as a lithium secondary battery exhibiting excellent capacity characteristics and life characteristics, etc. Can contribute greatly to the provision of.
  • the dispersant included in the conductive material composition of the above embodiment can be prepared from a raw material such as a low-cost pitch through a simplified oxidation process, it can be easily obtained at a low manufacturing cost. Only by using such a dispersant, an electrode, a battery, and the like exhibiting excellent characteristics can be provided, which makes it possible to more easily achieve high capacity and high efficiency of the battery.
  • a conductive material composition comprising a fibrous carbon, such as carbon nanotubes, and a polymer dispersant having a pyrene or quinacridone skeleton (Korean Patent Publication No. 2010-0095473).
  • a polymer dispersant having a pyrene or quinacridone skeleton
  • the polymer dispersing agent and the conductive material composition including the same are difficult to be provided in a powder state, and in particular, it is difficult to uniformly disperse carbon nanotubes and the like in a high content in such a powder state.
  • a conventional polymer dispersant when two or more kinds of conductive carbon-based are included in the conductive material composition, it is difficult to uniformly disperse them simultaneously in a high content.
  • the dispersant included in the conductive material composition of the embodiment has a state of a mixture of polyaromatic ⁇ hydrocarbon oxides having a range of various molecular weights and various oxygen-containing functional groups, and so on, without introducing a separate functional group,
  • a plurality of conductive carbonaceous materials may be uniformly dispersed in various solvents or media, and a conductive material composition including a higher content of conductive carbonaceous materials in a uniformly dispersed state may be more easily manufactured and provided. .
  • the dispersant included in the composition of the embodiment can evenly disperse a high content of the conductive carbon-based material, even in a powder state, so that it is easy to use the electrode and the battery containing a higher content of the conductive carbon-based material It can be provided.
  • any conductive carbon-based material such as carbon nanotubes, graphene, or carbon black may be used in any form of carbon-based material that is known to be usable for various electrode compositions.
  • the carbon nanotubes a single wall carbon nanotube or a multi wall carbon nanotube may be used without any limitation, and an aspect ratio of about 100 to 2000 may be used.
  • Carbon nanotubes having (length / diameter) can be used.
  • any graphene or carbon black having any kind or form known to be usable in various electrode compositions may be used without particular limitation.
  • the graphene which is peeled and manufactured from graphite or a derivative thereof, has a size of about 50 nm to 10 ⁇ , and a thickness of about 0.34 nm to 50 nm. Flakes can be used as appropriate.
  • the conductive dispersant contained in the "conductive material composition with a carbon-based material is The poly-aromatic hydrocarbons containing a plurality of types when elemental analysis of the oxide, the oxygen content contained in the entire dispersant, about 12 to the total element content of 50 Weight percent, or about 15 to 45 weight 0 /.
  • the oxygen content reflects the degree to which the oxygen-containing functional group is introduced by the oxidation process in the additive polyaromatic hydrocarbon oxide, and the hydrophilic region described above may be included to an appropriate degree according to the satisfaction of the oxygen content.
  • the conductive carbon-based material can be more appropriately dispersed using the dispersant described above.
  • the oxygen content may be calculated by elemental analysis of a plurality of polyaromatic hydrocarbon oxides contained in the above-described mixture.
  • the mixture sample for example, about 1 mg
  • the temperature is raised to about 1500 to 1800 ° C while the foil is melted momentarily.
  • gas may be generated from the mixture sample, and the collection and element content may be measured and analyzed.
  • the total elemental content of carbon, oxygen, hydrogen and nitrogen contained in the polyaromatic hydrocarbon oxides of the plurality can be measured and analyzed, and the oxygen content can be obtained for the total elemental content.
  • the dispersant included in the conductive material composition of the above-described embodiment may be prepared by a method including oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 in the presence of an oxidizing agent.
  • oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 in the presence of an oxidizing agent.
  • the pitch discharged from the remnants and the like during the refining process of fossil fuels such as petroleum or coal may take the form of a viscous complex containing a plurality of polyaromatic hydrocarbons.
  • the specific type, structure, composition ratio or molecular weight distribution of the polyaromatic hydrocarbon may vary depending on the raw material or the origin of the pitch, the pitch may be, for example, 5 to 50 aromatic rings, for example, a benzene ring. It may include a plurality of polyaromatic hydrocarbons contained in the structure, and may generally include polyaromatic hydrocarbons having a molecular weight of 200 to 1500.
  • molecular weight 200 to used as a starting material in the production method of the dispersant may include poly-aromatic hydrocarbons, such as molecular weight of from about 80 weight 0/0 above, or a content of about 90 weight 0/0 or more.
  • polyaromatic hydrocarbons having an excessively large molecular weight are decomposed in the polyaromatic hydrocarbons included in the pitch, and a relatively narrow molecular weight distribution is obtained.
  • Mixtures of polyaromatic hydrocarbons having can be obtained.
  • polyaromatic hydrocarbons having molecular weights in excess of about 1000 or about 700 can be broken down to small molecular weights.
  • At least one oxygen-containing functional group is introduced into the aromatic ring of each polyaromatic hydrocarbon, a mixture containing a plurality of polyaromatic hydrocarbon oxides, that is, the dispersant described above can be produced very simply.
  • the oxidizing agent is not particularly limited, and any oxidizing agent can be used without any particular limitation as long as it can cause an oxidation reaction for introducing an oxygen-containing functional group into an aromatic hydrocarbon.
  • oxidants include nitric acid (HN0 3 ), sulfuric acid (H 2 S0 4 ), hydrogen peroxide (H 2 0 2 ), ammonium cerium (IV) sulfate; (NH 4 ) 4 Ce ( S0 4 ) 4 ) or ammonium cerium (IV) nitrate (Ammonium cerium (IV) nitrate; (NH 4 ) 2 Ce (N0 3 ) 6 ), and the like.
  • HN0 3 sulfuric acid
  • H 2 S0 4 hydrogen peroxide
  • ammonium cerium (IV) sulfate NH 4 ) 4 Ce ( S0 4 ) 4
  • ammonium cerium (IV) nitrate Ammonium cerium (IV) nitrate
  • this oxidation step can be carried out in a solvent, for about 0.5 to 20 hours at a reaction temperature of about 10 to " 0 ° C.
  • a solution phase oxidant such as sulfuric acid and / or nitric acid
  • a certain amount of the mixture including the polyaromatic hydrocarbons may be added, and the oxidation step may be performed at room temperature, for example, at about 20 ° C. or 8 ° C. for about 1 to 12 hours.
  • the mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 as a starting material of the production method may be derived from a pitch obtained from a fossil fuel or a product thereof.
  • the type, structure or molecular weight distribution of the polyaromatic hydrocarbons may be different from each other. Nevertheless, as the oxidation process is carried out for a mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 derived from the above pitch, etc., the above-described dispersant exhibiting excellent dispersibility for carbon-based materials can be simply prepared.
  • the above-described manufacturing method after the oxidation step, may further comprise the step of purifying the resultant to obtain a mixture of a plurality of polyaromatic hydrocarbon oxides
  • the purification step is a step of centrifuging the result of the oxidation step It may proceed to include.
  • the conductive material composition of the embodiment including the above-described dispersant and the like is a powder state comprising two or more kinds of conductive carbon-based material in the powder or particle state, and a dispersant present on the powder or particle surface of the conductive carbon-based material.
  • the dispersant is adsorbed on the powder or particles of each conductive carbon-based material by ⁇ - ⁇ interaction or the like, and through such ⁇ - ⁇ interaction and repulsive force, the powder or particulate conductive carbon-based material, in particular, 2 or more types can be disperse
  • the slurry composition and the electrode may be obtained by mixing the powdery conductive material composition with other components of the slurry composition for forming an electrode, which will be described later. Furthermore, since the powdery conductive material composition exhibits very excellent redispersibility in various polar solvents. It is possible to manufacture a slurry composition for forming an electrode and an electrode in which two or more kinds of conductive carbon-based materials in a high content are uniformly dispersed and included while improving processability.
  • the two or more kinds of conductive carbon-based materials may be selected from two kinds of carbon nanotubes, graphene, and carbon black in consideration of electrical characteristics to be obtained or types of batteries or electrodes to be applied.
  • the above may be appropriately selected.
  • the blending ratio of two or more selected conductive carbon-based materials may also be appropriately controlled by those skilled in the art in view of the above electrical characteristics or the type of battery or electrode to be applied.
  • the conductive carbonaceous material is about 10 to about carbon black. 90 parts by weight 0 /., And graphene 10 and at least one member selected from carbon nanotubes, to 90 parts by weight 0 /. May include.
  • the conductive material composition of the embodiment is about 1 to 50 parts by weight, or about 5 to 30 parts by weight of the dispersant, based on 100 parts by weight of the two or more conductive carbonaceous materials, black is about 10 to 20 parts by weight Or, about 15 to 30 parts by weight.
  • two or more kinds of conductive carbon-based materials may be more uniformly dispersed together.
  • the conductive material composition of one embodiment described above may be used for forming electrodes of various batteries, and may be included in, for example, an electrode slurry composition of a lithium secondary battery and used for forming an electrode such as a positive electrode or a negative electrode of a lithium secondary battery.
  • the conductive material composition as the above-described specific dispersant is adsorbed on the surface of each particle of the conductive carbon-based material, various polar solvents or aqueous solvents, in particular, the aqueous solvent used in the negative electrode manufacturing of the lithium secondary battery
  • very good redispersibility can be exhibited for NMP and the like used in the production of the positive electrode.
  • the conductive material composition may be used to form electrodes of a wide variety of batteries, including the positive electrode and the negative electrode of a lithium secondary battery.
  • the conductive material composition of the above embodiment comprises the steps of forming a dispersion in which the two or more conductive carbon-based material, and the dispersant is dispersed in a polar solvent; And dispersing the conductive carbonaceous material by irradiating ultrasonic waves or applying a physical force to the dispersion.
  • the manufacturing method may further include a step of recovering and drying the conductive material composition in powder form from the dispersion after the dispersing step.
  • the conductive material composition is obtained by dispersing a conductive carbonaceous material and a dispersant in a polar solvent to obtain a dispersion, and uniformly dispersing it by ultrasonic irradiation or the like, and recovering the conductive material composition in powder form from the dispersion. And a very simplified method of drying.
  • the polar solvent may be water, NMP, acetone, DMF ( ⁇ , ⁇ -dimethylformamide), DMSO (dimethyl sulfoxide), ethanol, isopropyl alcohol, methanol, Butane, 2-ethoxy ethanol, 2-butoxy ethanol, 2-methoxy propanol, THF (tetrahydrofuran), ethylene glycol, pyridine, dimethylacetamide, N-vinylpyridone, methyl ethyl ketone (butanone), Any aqueous solvent or polar organic solvent such as one or more selected from the group consisting of alpha-terpinol, formic acid, ethyl acetate and acrylonitrile can be used.
  • the conductive material composition of one embodiment may be prepared in a very simple process, even if using a non-toxic solvent such as ethane without the application of separate dark process conditions or complex processes.
  • the dispersion may include about 1 to 10 parts by weight of the conductive carbonaceous material and about 0.1 to 5 parts by weight of the dispersant based on 100 parts by weight of the polar solvent.
  • the conductive material composition of one embodiment may be appropriately prepared.
  • the dispersing step performed after obtaining the dispersion may be performed by any method of applying a physical force, such as irradiating the ultrasonic dispersion, stirring the dispersion, or stirring by hand, even if proceeded in this way, It is possible to obtain a conductive material composition in which the two or more kinds of conductive carbon-based materials are uniformly dispersed.
  • the ultrasonic irradiation may also proceed by various methods such as bath-type sonication or tip-type sonication
  • the method of applying the physical force may also proceed by various methods such as stirring or shaking by applying mechanical stirring or attraction force.
  • a conductive material composition in which conductive carbon-based materials are more uniformly dispersed can be obtained.
  • the recovery step after the dispersing step may be performed by centrifugation, reduced pressure filtration, or pressure filtration.
  • the drying step may be carried out by vacuum drying at a temperature of about 30 to 90 ° C.
  • a slurry composition for forming an electrode of a rechargeable secondary battery including the conductive material composition described above.
  • a slurry composition may include an electrode active material, the conductive material composition of the above-described embodiment, a binder, and a solvent.
  • the slurry composition for forming an electrode may be prepared by mixing the aforementioned powdery conductive material composition with other components such as an active material, a binder, and a solvent.
  • the conductive carbon-based materials are obtained by using a conductive material composition uniformly dispersed by itself, it may include a conductive material of the conductive carbon-based material uniformly dispersed in a high concentration, a high content of conductive carbon-based An electrode including the materials in a uniformly dispersed state can be obtained.
  • the slurry composition of the other embodiment may be in accordance with the composition and preparation method of the slurry composition for forming an electrode of a conventional lithium secondary battery, except for using the conductive material composition of the embodiment.
  • the slurry composition may include an electrode active material of a positive electrode active material or a negative electrode active material
  • the positive electrode active material may be a metal oxide, a lithium composite metal oxide, or a lithium composite metal capable of intercalating / deintercalating lithium. Sulfides or lithium composite metal nitrides may be used.
  • a negative electrode active material lithium metal and a lithium alloy; Any lithium or alloy thereof known to be usable as a negative electrode active material of a lithium secondary battery, such as coke, artificial alum, natural alum, organic polymer combustor, carbon fiber, Si, SiO x> Sn or SnO 2 , or carbon
  • the silicon-based or silicon-based materials may be used without any particular limitation.
  • the binder may be vinylidene fluoride / nucleus fluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyacrylate, polytetrafluoroethylene, poly (styrene-butadiene ) Copolymers, alginates, and polydopamine, or resins containing one or more selected from the group consisting of these can be used.
  • the solvent may be one solvent selected from the group consisting of water, N-methylpyridone, acetone, tetrahydrofuran and decane, or two or more mixed solvents.
  • the slurry composition of another embodiment described above is about 70 to 98 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material, the conductive material composition and the binder, excluding the solvent, About 0.1 to 15 parts by weight and about 1.0 to 20 parts by weight of the binder.
  • the slurry as the composition includes the conductive material composition described above the conductive material may include a conductive material including two or more kinds of conductive carbon-based materials as a high content of about 15 parts by weight relative to the total solids, and the conductive carbon-based material in such a slurry composition. The material can be kept uniformly dispersed. Therefore, by using such a slurry composition, it is possible to manufacture an electrode and a battery containing two or more kinds of conductive carbon-based materials as a uniformly dispersed state in a high content, and exhibit more excellent electrical properties and the like.
  • a lithium secondary battery obtained using the above-described conductive material composition and the electrode slurry composition.
  • Such a lithium secondary battery includes a negative electrode including a current collector, a negative electrode active material, a conductive material and a binder, and a negative electrode active material layer formed on the current collector;
  • an electrolyte, and at least one of the negative electrode active material layer or the conductive material included in the positive electrode active material layer may include the conductive material composition of the above-described embodiment.
  • Such a lithium secondary battery may be included in a state in which two or more kinds of conductive carbon-based materials having a high content are uniformly dispersed in an electrode. Therefore, the three-dimensional network structure between two or more kinds of conductive carbon-based materials is well formed, so that the electrical characteristics of the electrode itself can be further improved, and the improved electrical properties are maximized by maximizing the advantages of using two or more kinds of conductive carbon-based materials together. It is possible to provide a lithium secondary battery round battery which exhibits characteristics, capacity characteristics, life characteristics, and the like. As a result, the present invention can greatly contribute to realizing high capacity characteristics of various batteries such as lithium secondary batteries.
  • the lithium secondary battery uses a conductive material composition of one embodiment as a conductive material, it may be according to the configuration of a conventional lithium secondary battery, further description thereof will be omitted.
  • the operation and effects of the invention will be described in more detail with reference to specific embodiments of the invention. However, such embodiments are only to be presented as an example of the invention, whereby the scope of the invention is not defined.
  • Pitch which is a petroleum by-product obtained from POSCO, was subjected to the following oxidation and purification processes to prepare a dispersant of Preparation Example 1.
  • the pitch reaction solution subjected to the oxidation reaction was cooled down to room temperature, diluted with distilled water about 5 times, and centrifuged at about 3500 rpm for 30 minutes. Subsequently, the supernatant was removed, the same amount of distilled water was added and redispersed, followed by centrifugation again under the same conditions, and finally the precipitate was recovered and dried. Through this, the dispersant of Preparation Example 1 was prepared.
  • the molecular weight distribution of the pitch used as a raw material during the preparation of such a dispersant was analyzed by MALDI-TOF mass spectrum and shown in FIGS. 1A and 1B (an enlarged view of the molecular weight 400 to 500 region).
  • the molecular weight distribution of the dispersant was similarly analyzed and shown in FIGS. 2A and 2B (an enlarged view of the molecular weight 400 to 500 region). This analysis was carried out using MALDI-TOF mass spectrum equipment (Ultraflex II, Bruker), the pitch or dispersant was added to the matrix, mixed, and dried.
  • the pitch was found to include polyaromatic hydrocarbons having a molecular weight of 200 to 1500, especially in the enlarged view of FIG. From the peaks detected, it was confirmed that a plurality of polyaromatic hydrocarbons having different numbers of aromatic rings (benzene rings) were connected by aliphatic hydrocarbons. In contrast, referring to FIGS. 2A and 2B (enlarged view), the dispersants of Preparation Example 1 were observed in the polyaromatic hydrocarbons with large peaks present at intervals of 44 Da and 16 D, respectively.
  • oxygen-containing functional groups such as -OH or -S03H exist in the form of a mixture of introduced polyaromatic hydrocarbon oxides
  • oxides having a molecular weight of about 300 to 1000 and black to about 300 to 700 Inclusion was confirmed.
  • the pitch (top) used as the raw material and the dispersant (bottom) of Preparation Example 1 were analyzed by 13C CPMAS NMR (Varian 400MHz Solid-State NMR), respectively, and analyzed. The results are shown in comparison with FIG. 3.
  • a carbon-derived peak of an aromatic hydrocarbon and a carbon-derived peak of some aliphatic hydrocarbons were confirmed, but the presence of an oxygen-containing functional group was found. Not confirmed.
  • the peak of the oxygen-containing functional group was confirmed.
  • Such oxygen-containing functional groups were found to be epoxy groups, hydroxyl groups, carboxyl groups, and the like.
  • This dispersant was analyzed by MALDI-TOF mass spectrum in the same manner as in Preparation Example 1, and is shown together with FIG. 5.
  • the content of the component (polyaromatic hydrocarbon oxide) having a molecular weight of about 1000 or more than about 700 in the dispersant is absorbed, and thus the molecular weight of about 300 to 1000 and black is about 300 to 700. It was found that a dispersant in the form of a mixture containing a higher content of polyaromatic hydrocarbon oxides was obtained.
  • Test Example 1 Measurement of Oxygen Content of Dispersant
  • THF 500m ⁇ 5g of conductive carbon-based material mixed with a weight ratio of 8: 2 and graphene flakes and carbon black, 2.5g of dispersant of Preparation Example 1 was added and ultrasonically irradiated for 60 minutes through tip-type sonication I was. This was centrifuged at 3500 rpm for 30 minutes and vacuum dried at 50 ° C to prepare a powdery conductive material composition of Example 1.
  • Example 2 Preparation of Conductive Material Composition
  • THF 500m Ml, graphene flakes and carbon black were dispersed by ultrasonic irradiation for 180 minutes through bath-type sonication with 5 g of a conductive carbon-based material mixed with a weight ratio of 8: 2 and 2.5 g of the dispersant of Preparation Example 1. . This was centrifuged at 3500 rpm for 30 minutes, and vacuum dried at 50 ° C to prepare a powdery conductive material composition of Example 2.
  • Example 3 Preparation of Conductive Material Composition
  • Example 4 Preparation of Conductive Material Composition
  • the powdery conductive material composition of Example 4 was prepared by centrifugation at 3500 rpm for 30 minutes and vacuum drying at 50 ° C.
  • Example 5 Slurry Composition for Cathode Formation and Cathode Preparation
  • the conductive material composition and the negative electrode active material were mixed with mortal in an aqueous solvent (water) at a weight ratio of 1:80 to prepare a slurry composition for forming a negative electrode, and then a copper current collector ( Copper tape) and dried.
  • An electron micrograph of the resultant thus obtained is shown in FIG. 7A.
  • the powdery conductive material composition exhibits excellent redispersibility for an aqueous solvent, and after the preparation of the slurry composition and the electrode for forming the anode, the carbon nanotubes and the carbon black are uniformly dispersed. It has been confirmed that it is in a closed state.
  • Example 6 Preparation of Slurry Composition and Anode for Cathode Formation ''
  • the conductive material composition, the positive electrode active material (Ni-Mn-Co ternary oxide) and the binder (PVDF) were mixed at a weight ratio of 2: 96: 2 by using homodisperse in NMP to prepare a slurry composition for positive electrode formation. This was applied to a copper current collector (copper tape) and dried.
  • FIG. 7B An electron micrograph of the resultant thus obtained is shown in FIG. 7B.
  • the powdery conductive material composition exhibits excellent redispersibility for NMP, and even after preparing a slurry composition and an electrode for forming an anode, the carbon nano-rubber and carbon black are uniformly dispersed. It has been confirmed that it is in a closed state.
  • Test Example 2 Evaluation of Redispersibility for Polar Solvent of Powdered Conductive Material Composition 20 mg of the powdered conductive material composition obtained in Example 3 was added to 10 ml of various solvents shown in FIG. 8 and redispersed for 1 hour with a bath type sonicator. . 8 is a visual observation photograph showing the results of evaluating such redispersibility.
  • the powder-type conductive material composition obtained in Examples exhibits excellent redispersibility in various polar solvents, and evenly forms two or more conductive carbonaceous materials even when forming an electrode forming slurry composition and an electrode using the same. It was confirmed that it can be included in the form. Therefore, the powder type conductive material composition of the embodiment can be suitably applied to form various battery electrodes including the positive electrode and the negative electrode of a lithium secondary battery.
  • Test Example 3 Surface resistance measurement of positive electrode slurry using powdered conductive material composition
  • Cathode material (LG03): Conductive material of Example 3: Weight ratio of binder (KF1300) 92: 2:
  • the slurry prepared in the composition of 2 was coated on PET through bar coating, and then surface resistance was measured using four probes, and the results are shown in FIG. 9.
  • the result indicated by C in FIG. 9 is a measurement result using the conductive material of Example 3, and the embodiment
  • Test Example 4 Slurry physical property test of mixed powder type conductive material (positive electrode)
  • the maximum particle size of the particles in the slurry obtained in Test Example 3 was measured five times and averaged. The results are shown in Table 2 below.
  • the secondary particle size is lower than that of the slurry prepared using the conductive material containing only 1 / zm carbon nanotube, and the viscosity test shows that the viscosity is low even though the solid content is high. It was confirmed that it has flowability.

Abstract

본 발명은 2 종 이상의 탄소계 소재가 균일하게 분산된 상태로 포함된 전극의 제공을 가능케 하여, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공할 수 있게 하는 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지에 관한 것이다. 상기 도전재 조성물은 탄소 나노 튜브, 그래핀, 및 카본블랙으로 이루어진 군에서 선택된 2 종 이상의 전도성 탄소계 소재; 및 복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량% 이상의 함량으로 포함하는 분산제를 포함하는 것이다.

Description

【명세서】
【발명의 명칭】
도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
【기술분야】
본 발명은 2 종 이상의 탄소계 소재가 균일하게 분산된 상태로 포함된 전극의 제공을 가능케 하여, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 거ᅵ공할 수 있게 하는 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지에 관한 것이다.
【배경기술】
최근 들어, 전기 자동차, 전력 저장용 전지 또는 모바일 스마트 기기 등의 시장이 급격히 성장함에 따라, 이전에 알려진 것보다 높은 용량 및 출력 특성을 나타내는 리튬 이차 전지 등 전지의 개발이 요구되고 있다.
이러한 고용량 전지의 개발을 위해서는, 일반적으로 전극의 두께가 두꺼워질 필요가 있고, 두꺼워진 전극으로부터 current collector까지 전자의 이송이 원활하게 이루어질 필요가 있다. 그런데, 기존에 이차 전지에서 도전재로 적용되던 영차원 구조인 카본블랙의 경우, 효과적인 도전 경로를 만들지 못하여, 위와 같은 기술적 요구를 제대로 충족하지 못하는 단점이 있다.
이로 인해, 최근에는 상기 도전재로서 2 종 이상의 전도성 탄소계 소재를 함께 사용하여 도전재 및 전극의 특성을 보다 향상시키고자 하는 시도가 이루어지고 있다.
예를 들어, 그래핀, 탄소 나노 류브 또는 카본블랙 등의 전도성 탄소계 소재 중 2 종 이상을 함께 사용하는 경우, 서로 다른 구조적 특성을 갖는 전도성 탄소계 소재들끼리 점 접촉, 선 접촉 및 /또는 면 접촉을 함께 형성하여 3 차원 네트워크 구조를 형성할 수 있다. 대표적인 예로서, 그래핀과, 탄소 나노 튜브 또는 카본블랙을 함께 사용하는 경우, 탄소 나노 튜브 또는 카본블택이 그래핀 표면에 흡착되는 한편, 탄소 나노 튜브나 카본블랙 간에 서로 접촉이 발생하여, 3 차원 네트워크 구조를 형성할 수 있다. 다른 예로서, 탄소 나노 튜브와 카본블랙이 함께 사용하는 경우에도, 탄소 나노 류브 표면에 카본블랙이 흡착되는 한편 카본 블랙 또는 탄소 나노 튜브끼리 접촉이 발생하여 3 차원 네트워크 구조를 형성할 수도 있다.
이러한 3 차원 네트워크 구조를 형성할 경우,' 입체 장애 (steric hinderance)로 인해, 그래핀 또는 탄소 나노 튜브 간의 π - π 상호 작용이 감소될 수 있고, 그 결과 도전재 내에서 각 전도성 탄소계 소재들이 재응집되어 전기적 특성이 오히려 감소하는 것을 억제할 수 있다.
이러한 장점으로 인해, 2종 이상의 전도성 탄소계 소재를 균.일하게 분산된 상태로 함께 포함하는 도전재를 제조할 수 있는 방법이 연구되어 왔으며, 이하와 같은 몇 가지 방법이 제안된 바 있다.
먼저,ᅳ 그래핀과 탄소 나노 튜브를 균일하게 분산된 상태로 함께 포함하는 분말상 조성물을 얻기 위한 방법으로서, Hummers method로 그래핀 분말을 얻고, 이를 수성 용매 내에서 산처리하고 탄소 나노 튜브와 흔합한 후, 열적 환원시키고 초음파 분산시킨 다음 원심 분리 등을 통해 회수는 방법이 알려진 바 있다 (丄 Mater. Chem., 201 1 , 21 , 2374-2380).
이러한 방법은 상기 그래핀과 탄소 나노 튜브의 분말상 조성물을 수계 용매 내에서 얻을 수 있는 장점이 있기는 하지만, 전체적인 공정이 복잡하고, 강산을 이용한 산처리 과정 등 매우 가혹한 공정 조건이 요구될 뿐 아니라, 상기 분말상 조성물을 회수한 후 다시 뭉치는 (restacking) 문제점 등이 발생하여, 이들 양 성분이 균일하게 분산된 상태의 분말상 조성물을 얻기에 한계가 있었던 것이 사실이다. 따라서, 이렇게 얻은 분말상 조성물을 얻고 이를 전지의 도전재로 적용하더라도, 2 종 이상의 전도성 탄소계 소재를 함께 적용함에 따른 효과를 층분히 발현시키지 못할 수 있다.
기존에 알려진 다른 방법으로서, 예를 들어, 구리 등 금속 호일 (foil)에 촉매 성분을 스핀 코팅한 후, CVD 등 증착 공정을 통해 그래핀과, 탄소 나노 튜브를 함께 성장시키는 방법이 알려진 바 있다 (Carbon, 201 1 , 49, 2844-2949). 이러한 방법에서는 그래핀과 탄소 나노 튜브의 고체상 조성물을 원하는 형태 및 물성을 갖도록 조절하면서 얻을 수 있는 장점이 있다. 그러나, 이러한 방법은 실제 산업계에서의 양산 공정에는 적용되기 어려운 실험적 방법에 불과하므로, 이러한 방법에 따르더라도, 2 종 이상의 전도성 탄소계 소재가 균일하게 분산된 상태의 분말상 조성물 또는 도전재를 용이하게 얻기^ 어려운 것이 현실이다. 이러한 종래 기술의 문제점으로 인해, 2종 이상의 탄소계 소재가 균일하게 분산된 상태로 포함된 분말상 도전재 조성물 및 이의 제조에 관한 기술이 계속적으로 요청되고 있는 실정이다.
【발명의 내용】
【해결하려는 과제】
본 발명은 2 종 이상의 탄소계 소재가 균일하게 분산된 분말상 조성물로 제조될 수 있으므로, 이들 탄소계 소재가 균일하게 분산된 상태로 포함된 전극의 제공을 가능케 하며, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공할 수 있게 하는 도전재 조성물 및 이의 제조 방법을 제공하는 것이다.
또한, 본 발명은 상기 도전재 조성물을 사용한 라튬 이차 전지의 전극 형성용 슬러리 조성물을 제공하는 것이다.
본 발명은 또한, 상기 전극 형성용 슬러리 조성물로부터 형성된 전극을 포함하여 보다 향상된 특성을 나타내는 리튬 이차 전지를 제공하는 것이다.
【과제의 해결 수단】
본 발명은 탄소 나노 튜브, 그래핀, 및 카본블랙으로 이루어진 군에서 선택된 2 종 이상의 전도성 탄소계 소재; 및 복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 약 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 약 60 증량0 /。 이상의 함량으로 포함하는 분산제를 포함하는 도전재 조성물을 제공한다.
이러한 도전재 조성물에서, 상기 분산제는 상기 전도성 탄소계 소재의 표면에 흡착되어 있을 수 있으며, 이러한 도전재 조성물은 상기 2 종 이상의 전도성 탄소계 소재가 균일하게 분산되어 있는 분말상 조성물로 될 수 있다.
ΞΕ, 상기 도전재 조성물에서, 상기 전도성 탄소계 소재는 카본블랙의 10 내지 90 중량 0/。와, 그래핀 및 탄소 나노 류브로부터 선택된 1 종 이상의 10 내자 90 중량%를 포함할 수 있다.
그리고, 상기 도전재 조성물에서, 상기 분산제에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 상기 분산제의 전체 원소 함량의 약 12 내지 50 중량0 /0로 될 수 있다. 또한, 이러한 분산제에서, 상기 폴리 방향족 탄화수소 산화물은 5 내지 30 개, 혹은 7 내지 20 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 가질 수 있다. 이에 더하여, 상기 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 및 술폰산으로 이루어진 군에서 선택된 1종 이상으로 될 수 있다.
또한, 상술한 도전재 조성물은 상기 전도성 탄소계 소재의 100 중량부를 기준으로, 분산제의 1 내지 50 중량부를 포함할 수 있다.
상술한 도전재 조성물은, 전지의 전극 .형성을 위해 사용될 수 있고, 보다 구체적인 예에서, 리튬 이차 전지의 전극 슬러리 조성물에 포함될 수 있다.
한편, 본 발명은 상기 전도성 탄소계 소재와, 분산제가 극성 용매 내에 분산되어 있는 분산액을 형성하는 단계; 및 상기 분산액에 초음파를 조사하거나 물리적 힘을 인가하여 상기 전도성 탄소계 소재를 분산시키는 단계를 포함하는 상기 도전재 조성물의 제조 방법을 제공한다.
이러한 도전재 조성물의 제조 방법은 상기 분산 단계 후에, 상기 분산액으로부터 분말 상태의 도전재 조성물을 회수 및 건조하는 단계를 더 포함할 수 있다.
본 발명은 또한, 전극 활물질, 상술한 도전재 조성물, 결합제 및 용매를 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물을 제공한다.
이러한 슬러리 조성물에서, 전극 활물질은 양극 활물질 또는 음극 활물질을 포함할 수 있고, 상기 결합제는 비닐리덴플루오라이드 /핵사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 풀리아크릴레이트, 폴리테트라플루오로에틸렌, 폴리 (스티렌 -부타디엔) 공중합체, 알지네이트 및 폴리도파민으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 용매는 물, N-메틸피를리돈, 아세톤, 테트라하이드로퓨란 및 데칸으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
그리고, 상기 슬러리 조성물은 전극 활물질, 도전재 조성물 및 결합제를 합한 고형분의 총 함량 100 중량부에 대해, 전극 활물질의 70 내지 98 중량부와, 도전재 조성물의 0.1 내지 15 중량부와, 결합제의 1.0 내지 20 중량부를 포함할 수 있다,
또한, 본 발명은 집전체와, 음극 활물질, 도전재 및 결합제를 포함하고 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극; 집전체와, 양극 활물질, 도전재 및 결합제를 포함하고 집전체 상에 형성된 양극 활물질층을 포함하는 양극; 및 전해질을 포함하고, 상기 음극 활물질층 또는 양극 활물질층에 포함된 도전재의 적어도 하나는 상술한 도전재 조성물을 포함하는 리튬 이차 전지를 제공한다.
【발명의 효과】
본 발명에 따르면, 특정한 분산제의 사용에 따라, 2 종 이상의 전도성 탄소계 소재가 균일하게 분산된 상태로 포함된 분말상 도전재가 보다 용이하게 제조 및 제공될 수 있다. 특히, 이러한 분말상 도전재 조성물은 이전에 알려진 것보다 매우 단순화된 방법으로 제조 및 제공될 수 있으며, 더 나아가, 상기 분산제의 작용으로 인해 다양한 극성 용매에 대해 매우 우수한 재분산성을 나타낼 수 있다.
따라서, 상기 본 발명의 도전재 조성물은 2 종 이상의 전도성 탄소계 소재를 함께 포함함에 따른 효과를 극대화하여 발현할 수 있고, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공하는데 크게 기여할 수 있다.
【도면의 간단한 설명】
도 1 a 및 도 1 b (분자량 400 내지 500 영역의 확대도)는 pitch의 분자량 분포를 MALC -TOF mass spectrum으로 분석하여 나타낸 도면이다.
도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)는 제조예 1 에서 얻어진 분산제의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 나타낸 도면이다.
도 3은 pitch 및 제조예 1의 분산제를 각각 13C CPMAS NMR로 분석하여, 그 분석 결과를 나타낸 도면이다.
도 4 는 pitch 및 제조예 1 의 분산제를 각각 FT-IR 로 분석하여, 그 분석 결과를 나타낸 도면이다.
도 5 는 제조예 2 내지 4 에서 각각 얻어진 분산제의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하고, 그 분석 결과를 비교하여 나타낸 도면이다.
도 6a 내지 6d는 실시예 1 내지 4 에서 얻은 분말형 도전재 조성물의 전자 현미경 사진아다. 도 7a 및 7b는 각각 실시예 5 및 6 에서 분말형 도전재 조성물을 사용해 양극 및 음극 형성용 슬러리 형성용 조성물을 얻은 후에, 이를 구리 집전체 (테이프)에 도포하여 건조한 후의 전자 현미경 사진이다.
도 8 은 시험예 2 에서 다양한 극성 용매에 실시예 3 의 도전재 조성물을 재분산시킨 결과를 나타내는 육안 관찰 사진이다.
도 9는 시험예 3에서 얻어진 슬러리의 면 저항 측정 결과이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구체적인 구현예에 따른 도전재 조성물, 이를 사용한 전극 '형성용 슬러리 조성물 및 리튬 이차 전지에 대해 보다 구체적으로 설명하기로 한다.
먼저, 이하의 명세서에서, "분산제"란 수용매, 유기 용매 기타 액상의 매질 내에 다른 성분, 예를 들어, 그래핀, 카본블랙 또는 탄소 나노 류브 등의 탄소계 소재를 균일하게 분산시키기 위한 임의의 성분을 지칭할 수 있다.
또, "도전재 조성물 "이라 함은 리튬 이차 전지 등 전지의 전극 형성용 조성물에 도전재로서 사용될 수 있는 임의의 조성물을 지칭할 수 있다. 이때, 상기 "도전재 조성물" 또는 전극 형성용 조성물의 상태나 구체적인 용도를 블문하고, 임의의 전극 형성용 조성물에 도전재로서 추가될 수 있는 조성물은 모두 "도전재 조성물 "의 범주에 속할 수 있음은 물론이다.
그리고, 이하의 명세서에서 , "폴리 방향족 탄화수소"라 함은 단일 화합물 구조 내에 방향족 고리, 예를 들어, 벤젠 고리가 2 개 이상, 혹은 5 개 이상 결합 및 포함되어 있는 방향족 탄화수소 화합물을 지칭할 수 있다. 또한, "폴리 방향족 탄화수소 산화물 "은 상술한 "폴리 방향족 탄화수소"가 산화제와 반응을 일으켜 이의 화학 구조 내에 산소 함유 작용기가 하나 이상 결합되어 있는 임의의 화합물을 지칭할 수 있다. 이때, 상기 산화제와의 반응에 의해 "폴리 방향족 탄화수소"에 도입될 수 있는 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 또는 술폰산 등 방향족 고리에 결합될 수 있고 작용기 중에 산소를 하나 이상 포함하는 임의의 작용기로 될 수 있다.
한편, 발명의 일 구현예에 따르면, 탄소 나노 튜브, 그래핀, 및 카본블랙으로 이루어진 군에서 선택된 2 종 이상의 전도성 탄소계 소재; 및 복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 약 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 약 60 중량0 /。 이상의 함량으로 포함하는 분산제를 포함하는 도전재 조성물이 제공된다.
일 구현예의 도전재 조성물은 탄소 나노 튜브, 그래핀, 및 카본블랙 중에서 선택되는 2 종 이상의 전도성 탄소계 소재를 함께 포함하며, 이와 함께 소정의 폴리 방향족 탄화수소 산화물의 흔합물을 포함한 분산제를 포함하고 있다. 본 발명자들의 실험 결과, 이러한 특정 분산제의 작용으로 상기 2 종 이상의 전도성 탄소계 소재를 매우 균일하게 분산시킬 수 있음이 확인되었다.
따라서, 이러한 분산제의 사용으로 인해, 가흑한 공정 조건 또는 복잡한 공정을 통하지 않고도, 상기 2 종 이상의 전도성 탄소계 소재를 용매 내에서 흔합하고 이를 초음파 조사나 교반 등 물리적 힘을 가하는 방법으로 분산시킨 후, 회수 및 건조하는 등의 단순화된 방법으로 일 구현예의 도전재 조성물이 제조 및 제공될 수 있다.
특히, 이러한 도전재 조성물은 2 종 이상의 전도성 탄소계 소재가 균일하게 분산된 분말상 조성물로 될 수 있으며, 이러한 도전재 조성물을 사용해 전극 형성용 슬러리 조성물 및 전극에 큰 함량의 전도성 탄소계 소재를 균일하게 분산된 상태로 포함시킬 수 있다. 더구나, 상기 도전재 조성물은 상기 분산제의 작용으로 인해 다양한 극성 용매에 대해 매우 우수한 재분산성을 나타낼 수 있다. 따라서, 이러한 도전재 조성물을 다양한 극성 용매에 재분산시켜 여러 가지 전극 형성용 슬러리 조성물들을 제조 및 제공할 수 있게 되며, 리튬 이차 전지의 양극 및 음극을 포함한 다양한 전지의 전극 등을 형성하는데 매우 적합하게 적용될 수 있다.
그러므로, 상기 도전재 조성물은 2 종 이상의 전도성 탄소계 소재를 함께 포함함에 따른 효과를 극대 하여 발현할 수 있고, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공하는데 크게 기여할 수 있다. 한편, 일 구현예의 도전재 조성물이 2 종 이상의 전도성 탄소계 소재를 보다 균일하게 분산된 상태로 포함할 수 있는 것은 상기 특정한 분산제에 기인한 것으로서, 이러한 특정 분산제의 후술하는 특성 때문인 것으로 예측될 수 있다. 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치 (pitch)는 아스팔트 제조 등을 위해 사용되는 부산물로서, 다수의 방향족 고리를 갖는 폴리 방향족 탄화수소를 복수 종 포함하는 점성 있는 흔합물 형태를 멸 수 있다. 그런데, 본 발명자들의 실험 결과, 이러한 피치 등에 대해 산화제를 사용한 산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 중 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들의 적어도 일부가 분쉐되고, 원심분리 등의 정제 공정을 통해 300 이하의 매우 낮은 분자량을 갖는 것들이 분리되어, 결과적으로 비교적 좁은 분자량 분포를 갖는 플리 방향족 탄화수소들의 흔합물이 얻어지는 것으로 확인되었다. 이와 함께, 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물이 얻어지는 것으로 확인되었다. 구체적으로, 이러한 방법으로 얻어지는 폴리 방향족 탄화수소 산화물들의 흔합물은 MALDI-TOF MS로 분석하였을 때, 분자량이 약 300 내지 1000, 혹은 약 300 내지 700 인 폴리 방향족 탄화수소 산화물들을 약 60 중량 % 이상, 혹은 약 65 중량0 /0 이상, 혹은 약 70 내지 95 중량。/。로 포함함이 확인되었다. 이러한 흔합물 중에 포함되는 폴리 방향족 탄화수소 산화물들의 구체적인 종류, 구조 및 분포 등은 그 원료로 되는 피치의 종류나 그 유래, 혹은 산화제의 종류 등에 따라 달라질 수 있다. 그러나, 적어도, 상기 분산제에 포함되는 폴리 방향족 탄화수소 산화물들의 흔합물은 5 내지 30 개, 혹은 7 내지 20 개 각각 포함된 폴리 방향족 탄화수소에 산소 함유 작용기가 하나 이상 도입된 구조를 갖는 폴리 방향족 탄화수소 산화물을 복수 종 포함하며, 이러한 흔합물 중의 폴리 방향족 탄화수소 산화물은 상술한 분자량 분포, 즉, 분자량 약 300 내지 100으 혹은 약 300 내지 700 의 산화물이 전체 흔합물의 약 60 중량 % 이상으로 되는 분자량 분포를 갖게 된다.
이때, 상기 산소 함유 작용기의 종류는 피치 등의 산화 공정에서 사용되는 산화제의 종류 등에 따라 달라질 수 있지만, 예를 들어, 히드록시기, 에폭시기, 카르복시기, 니트로기 및 술폰산으로 이루어진 군에서 선택된 1 종 이상으로 될 수 있고, 상기 폴리 방향족 탄화수소 산화물들의 흔합물 내에는 위에서 언급한 작용기들 중에 선택된 복수 종의 다양한 작용기들을 갖는 여러 가지 폴리 방향족 탄화수소 산화물들이 포함 및 흔합될 수 있다.
상술한 구조적 특성 및 분자량 분포 등을 층족하는 폴리 방향족 탄화수소 산화물들과, 이들의 흔합물은 방향족 고리들이 모인 소수성 π - 도메인과, 상기 방향족 고리 등에 결합된 산소 함유 작용기들에 의한 친수성 영역을 동시에 가질 수 있다. 이들 중 소수성 π - 도메인은 탄소 -탄소 결합들이 형성되어 있는 탄소 나노 튜브 등의 표면과 π - π 상호 작용을 할 수 있으며, 친수성 영역은 각각의 단일한 탄소 나노 류브 간의 반발력이 발현되도록 할 수 있다. 그 결과, 상기 폴리 방향족 탄화수소 산화물들의 흔합물을 포함하는 상기 분산제는 각각의 전도성 탄소계 소재를 이루는 분말 또는 입자 (시트 또는 플레이크 등 임의의 형상을 갖는 입자 포함)의 사이에 존재하여 이러한 전도성 탄소계 소재들을 보다 균일하게 분산시킬 수 있다. 보다 구체적으로, 상기 분산제는 상술한 π - π 상호 작용에 의해 전도성 탄소계 소재의 각 입자 표면에 흡착되어 존재할 수 있다. 따라서, 상술한 특정 분산제를 포함하는 일 구현예의 도전재 조성물은 매우 단순화된 공정으로 제조 및 제공되면서도, 2 종 이상의 전도성 탄소계 소재를 균일하게 분산된 상태로 포함할 수 있다.
이에 따라, 상기 도전재 조성물을 사용해 전극 형성용 슬러리 조성물 및 전극에 높은 함량의 전도성 탄소계 소재를 균일하게 분산된 상태로 포함시킬 수 있다. 이로 인해, 2 종 이상의 전도성 탄소계 소재 간의 3 차원 네트워크 구조를 매우 양호하게 형성하여, 전도성 탄소계 소재를 2 종 이상 함께 사용함에 따라 발현되는 전기적 특성 등의 향상 효과를 극대화할 수 있다. 그 결과, 상대적으로 낮은 함량의 도전재 조성물을 사용하여도 우수한 특성을 나타내는 전극 등을 제공할 수 있고, 전극에 더욱 높은 함량의 활물질을 포함시키는 것도 가능해진다. 또한, 보다 높은 함량의 전도성 탄소계 소재를 균일하게 분산된 상태로 포함하는 전극 등도 용이하게 제공할 수 있으므로, 보다 향상된 특성을 나타내는 전극과, 우수한 용량 특성 및 수명 특성 등을 나타내는 리튬 이차 전지 등 전지의 제공에 크게 기여할 수 있다.
더구나, 상기 일 구현예의 도전재 조성물에 포함되는 분산제는 저가의 피치 등의 원료로부터 단순화된 산화 공정을 통해 제조될 수 있으므로, 낮은 제조 단가로 용이하게 얻어질 수 있다. 이러한 분산제의 사용만으로도 우수한 특성을 나타내는 전극 및 전지 등을 제공할 수 있어, 전지의 고용량화 및 고효율화를 보다 쉽게 달성할 수 있게 된다.
한편, 기존에는 탄소 나노 튜브 등의 섬유상 탄소와, 피렌 또는 퀴나크리돈 골격을 갖는 고분자 분산제를 포함한 도전재 조성물이 알려진 바 있다 (한국 공개 특허 공보 제 2010-0095473 호). 그러나, 이와 같은 고분자 분산제를 단독으로 사용할 경우, 상기 전도성 탄소계 소재를 분산시키고자 하는 매질 (예를 들어, 상기 도전재 조성물에 포함되는 용매 등)의 종류에 따라, 고분자 분산제에 적절한 작용기를 도입하여 사용할 필요가 있다. 더구나, 위와 같은 고분자 분산제 및 이를 포함한 도전재 조성물은 분말 상태로 제공되기 어렵고, 특히, 이러한 분말 상태에서 탄소 나노 튜브 등을 높은 함량으로 균일하게 분산시키기 어렵게 된다. 부가하여, 이러한 기존의 고분자 분산제는 도전재 조성물에 2 종 이상의 전도성 탄소계 가 함께 포함될 경우, 이들을 동시에 높은 함량으로 균일하게 분산시키기 어렵게 된다.
그러나, 상기 일 구현예의 도전재 조성물에 포함된 분산제는 일정 범위의 다양한 분자량 및 여러 가지 산소 함유 작용기 등을 갖는 폴리 방향족ᅳ탄화수소 산화물들의 흔합물 상태를 가지므로, 별도의 작용기를 도입할 필요 없이, 다양한 용매 또는 매질에 대해 복수 종의 전도성 탄소계 소재를 균일하게 분산시킬 수 있고, 보다 높은 함량의 전도성 탄소계 소재를 균일하게 분산된 상태로 포함하는 도전재 조성물이 보다 쉽게 제조 및 제공될 수 있다. 더구나, 상기 일 구현예의 조성물에 포함된 분산제는 분말 상태에서도, 높은 함량의 전도성 탄소계 소재를 균일하게 분산시킬 수 있으므로, 이를 사용해 보다 높은 함량의 전도성 탄소계 소재를 포함하는 전극 및 전지를 용이하게 제공할 수 있게 된다.
한편, 일 구현예의 도전재 조성물을 각 성분별로 설명하면 이하와 같다. 상기 일 구현예의 도전재 조성물에서, 탄소 나노 튜브, 그래핀, 또는 카본블랙 등의 전도성 탄소계 소재로는 이전부터 각종 전극용 조성물 등에 사용 가능한 것으로 알려진 임의의 형태의 탄소계 소재를 사용할 수 있다. 예를 들어, 상기 탄소 나노 튜브로는 단일 벽 탄소 나노 튜브 (Single Wall Carbon Nano Tube) 또는 다중 벽 탄소 나노 튜브 (Multi Wall Carbon Nano Tube)를 별다른 제한 없이 사용할 수 있으며, 약 100 내지 2000 의 aspect ratio (길이 /직경)를 갖는 탄소 나노 튜브를 사용할 수 있다.
또한, 상기 그래핀 또는 카본블랙으로도, 이전부터 각종 전극용 조성물 등에 사용 가능한 것으로 알려진 임의의 종류나 형태를 갖는 그래핀 또는 카본블랙을 별다른 제한 없이 모두 사용할 수 있다. 예를 들어, 상기 그래핀으로는, 그라파이트 또는 이의 유도체로부터 박리 및 제조된 것으로서, 크기가 약 50 nm 내지 10 μιη이고, 두께가 약 0.34nm 내지 50nm인 그래핀 플레이크를 적절히 사용할 수 있다.
그리고, 상기 전도성 탄소계 소재와 함께 '도전재 조성물에 포함되는 분산제는 이에 포함된 복수 종의 폴리 방향족 탄화수소 산화물들을 원소 분석하였을 때, 전체 분산제에 포함된 산소 함량이 전체 원소 함량의 약 12 내지 50 중량 %, 혹은 약 15 내지 45 중량 0/。로 될 수 있다. 이러한 산소 함량은 상가 폴리 방향족 탄화수소 산화물에서 산화 공정에 의해 산소 함유 작용기가 도입된 정도를 반영하는 것으로서, 이러한 산소 함량의 충족에 따라 상술한 친수성 영역이 적절한 정도로 포함될 수 있다. 그 결과, 상술한 분산제를 사용해 전도성 탄소계 소재를 보다 적절히 분산시킬 수 있다.
상기 산소 함량은 상술한 흔합물에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하여 산출할 수 있다. 즉,.상기 흔합물 시료 (예를 들어, 약 1 mg)를, 예를 들어, 얇은 호일 위에서 약 90CTC 내외의 고온으로 가열하면 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 1800 °C까지 상승할 수 있고, 이러한 고온에 의해 상기 흔합물 시료로부터 기체가 발생하여 이를 포집 및 원소 함량을 측정 및 분석할 수 있다. 이러한 원소 분석 결과, 상기 복수 종의 폴리 방향족 탄화수소 산화물에 포함된 탄소, 산소, 수소 및 질소의 총 원소 함량이 측정 및 분석될 수 있고, 이러한 총 원소 함량에 대한 산소 함량을 구할 수 있다.
그리고, 상술한 일 구현예의 도전재 조성물에 포함되는 분산제는 산화제의 존재 하에, 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을포함한 흔합물을 산화하는 단계를 포함하는 방법으로 제조될 수 있다. 이러한 제조 방법에 대해 보다 구체적으로 설명하면 이하와 같다.
이미 상술한 바와 같이, 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치는 폴리 방향족 탄화수소를 복수 종 포함하는 점성 있는 흔합물 형태를 띨 수 있다. 물론, 피치의 원료나 유래 등에 따라 상기 폴리 방향족 탄화수소의 구체적 종류, 구조, 조성비 또는 분자량 분포 등이 달라질 수 있지만, 상기 피치는, 예를 들어, 5 내지 50 개의 방향족 고리, 예를 들어, 벤젠 고리가 구조 중에 포함된 폴리 방향족 탄화수소를 복수 종 포함할 수 있으며, 대체로 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함할 수 있다. 예를 들어, 상기 분산제의 제조 방법에서 출발 물질로 사용되는 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물 (예를 들어, 피치)은 이러한 분자량 범위의 폴리 방향족 탄화수소들을 약 80 중량0 /0 이상, 혹은 약 90 중량0 /0 이상의 함량으로 포함할 수 있다.
그런데, 이러한 피치 등 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화제를 사용한 산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 중에 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들이 분해되고, 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들의 흔합물이 얻어질 수 있다. 예를 들어, 약 1000, 혹은 약 700 을 초과하는 분자량을 갖는 폴리 방향족 탄화수소들이 작은 분자량을 갖는 것으로 분해될 수 있다. 또한, 이와 함께 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물, 다시 말해서 상술한 분산제가 매우 간단하게 제조될 수 있다.
이러한 분산제의 제조 방법에서, 산화제는 그 종류가 특히 제한되지 않고 방향족 탄화수소에 산소 함유 작용기를 도입하는 산화 반응을 일으킬 수 있는 것이라면 별다른 제한 없이 모두 사용될 수 있다. 이러한 산화제의 구체적인 예로는, 질산 (HN03), 황산 (H2S04), 과산화수소 (H202), 암모늄 세륨 (IV) 황산염 (Ammonium cerium(IV) sulfate; (NH4)4Ce(S04)4) 또는 암모늄 세륨 (IV) 질산염 (Ammonium cerium(IV) nitrate; (NH4)2Ce(N03)6) 등을 들 수 있고, 이들 중에 선택된 2종 이상의 흔합물을 사용할 수도 있음은 물론이다.
그리고, 이러한 산화 단계는 수용매 내에서, 약 10 내지 " 0°C의 반웅 온도 하에 약 0.5 내지 20 시간 동안 진행될 수 있다. 구체적인 예에서, 황산 및 /또는 질산 등의 용액상 산화제의 존재 하에, 상기 폴리 방향족 탄화수소들을 포함한 흔합물을 일정량 첨가하고, 상온, 예를 들어, 약 20°C 혹은 8C C에서 약 1 내지 12 시간 동안 상기 산화 단계를 진행할 수 있다. 이러한 산화 단계의 반응 온도 또는 시간 등을 조절함에 따라, 상술한 분산제의 특성, 예를 들어, 폴리 방향족 탄화수소들이 산화되는 정도 등을 적절히 조절하여 원하는 특성을 갖는 분산제를 제조할 수 있다.
또한, 이미 상술한 바와 같이, 상기 제조 방법의 출발 물질로 되는 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물은 화석 연료 또는 이의 산물로부터 얻어진 피치 (pitch)에서 유래할 수 있으며, 이러한 원료 등의- 종류에 따라, 상기 폴리 방향족 탄화수소들의 종류, 구조 또는 분자량 분포 등은 서로 달라질 수 있다. 그럼에도 불구하고, 상기 피치 등에서 유래한 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화 공정을 진행함에 따라, 탄소계 소재에 대해 우수한 분산력을 나타내는 상술한 분산제가 간단히 제조될 수 있다.
한편, 상술한 제조 방법은, 산화 단계 후에, 그 결과물을 정제하여 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물을 얻는 단계를 더 포함할 수 있고, 이러한 정제 단계는 산화 단계의 결과물을 원심분리하는 단계를 포함하여 진행될 수 있다. 이러한 정제 단계의 진행으로, 이미 상술한 분자량 분포 등을 충족하는 폴리 방향족 탄화수소 산화물들의 흔합물, 즉, 상술한 분산제를 보다 순도 높고 적절하게 얻을 수 있으며, 상기 분산제를 사용해 탄소 나노 튜브를 균일하게 분산시킬 수 있다.
한편, 상술한 분산제 등을 포함하는 일 구현예의 도전재 조성물은 분말상 또는 입자 상태의 2 종 이상의 전도성 탄소계 소재와, 이러한 전도성 탄소계 소재의 분말 또는 입자 표면에 존재하는 분산제를 포함하는 분말 상태를 가질 수 있다. 즉, 상기 분산제는 각 전도성 탄소계 소재의 분말 또는 입자 상에 π - π 상호 작용 등에 의해 흡착되어 존재하며, 이러한 π - π 상호 작용 및 반발력 등을 통해 분말 또는 입자상 전도성 탄소계 소재, 특히 이들의 2 종 이상을 함께 균일하게 분산시킬 수 있다. 따라서, 상기 분말상 도전재 조성물을 후술하는 전극 형성용 슬러리 조성물의 다른 성분과 흔합하여 상기 슬러리 조성물 및 전극을 얻을 수 있으며, 더 나아가 상기 분말상 도전재 조성물이 다양한 극성 용매에 매우 우수한 재분산성을 나타내므로, 공정성을 보다 향상시키면서 높은 함량의 2 종 이상의 전도성 탄소계 소재들이 균일하게 분산 및 포함된 전극 형성용 슬러리 조성물 및 전극을 제조하는 것이 가능해 진다.
또, 상기 일 구현예의 도전재 조성물에서, 상기 2종 이상의 전도성 탄소계 소재는 얻고자 하는 전기적 특성이나 적용될 전지 또는 전극의 종류 등을 고려하여, 탄소 나노 튜브, 그래핀, 및 카본블랙 중에서 2 종 이상 적절히 선택될 수 있다. 또한, 2 종 이상 선택된 전도성 탄소계 소재의 배합 비율 역시 상기 전기적 특성이나 적용될 전지 또는 전극의 종류 등을 고려하여 당업자가 적절히 제어할 수 있다. 예를 들어, 상기 전도성 탄소계 소재는 카본블랙의 약 10 내지 90 중량 0/。와, 그래핀 및 탄소 나노 튜브로부터 선택된 1 종 이상의 약 10 내지 90 중량 0/。를 포함할 수 있다.
또, 상기 일 구현예의 도전재 조성물은 상기 2 종 이상의 전도성 탄소계 소재의 100 중량부를 기준으로, 분산제의 약 1 내지 50 증량부, 혹은 약 5 내지 30 중량부, 흑은 약 10 내지 20 중량부, 혹은 약 15 내지 30 중량부를 포함할 수 있다. 이러한 분산제의 함량 범위에 따라 2 종 이상의 전도성 탄소계 소재를 함께 보다 균일하게 분산시킬 수 있다.
상술한 일 구현예의 도전재 조성물은 다양한 전지의 전극 형성을 위해 사용될 수 있으며, 예를 들어, 리튬 이차 전지의 전극 슬러리 조성물에 포함되어 리튬 이차 전지의 양극 또는 음극 등의 전극 형성을 위해 사용될 수 있다. 특히, 상기 도전재 조성물은 전도성 탄소계 소재의 각 입자 등의 표면에 상술한 특정 분산제가 흡착되어 있음에 따라, 다양한 극성 용매나 수성 용매, 특히, 리튬 이차 전지의 음극 제조시 사용되는 수성 용매뿐만 아니라, 양극 제조시 사용되는 NMP 등에 대해서도 매우 우수한 재분산성을 나타낼 수 있다.
따라서, 상기 도전재 조성물은 리튬 이차 전지의 양극 및 음극을 포함하여 매우 다양한 전지의 전극 등을 형성하는데 사용될 수 있다.
한편, 상술한 일 구현예의 도전재 조성물은 상기 2 종 이상의 전도성 탄소계 소재와, 분산제가 극성 용매 내에 분산되어 있는 분산액을 형성하는 단계; 및 상기 분산액에 초음파를 조사하거나 물리적 힘을 인가하여 상기 전도성 탄소계 소재를 분산시키는 단계를 포함하는 매우 단순화된 방법으로 제조될 수 있다. 또, 이러한 제조 방법은 상기 분산 단계 후에, 상기 분산액으로부터 분말 상태의 도전재 조성물을 회수 및 건조하는 단계를 더 포함할 수 있다.
즉, 일 구현예의 도전재 조성물은 극성 용매 내에서 전도성 탄소계 소재 및 분산제를 혼합하여 분산액을 얻은 후, 이를 초음파 조사 등의 방법으로 균일하게 분산시키고, 상기 분산액으로부터 분말 상태의 도전재 조성물을 회수 및 건조하는 매우 단순화된 방법으로 제조될 수 있다.
이러한 제조 방법에서, 상기 전도성 탄소계 소재 및 분산제에 관해서는 이미 층분히 설명한 바 있으므로, 추가적인 설명은 생략한다.
또, 상기 분산액에서, 상기 극성 용매로는, 물, NMP, 아세톤, DMF (Ν,Ν- dimethylformamide), DMSO (Dimethyl sulfoxide), 에탄올, 이소프로필알코올, 메탄올, 부탄을, 2-에록시 에탄올, 2-부록시 에탄올, 2-메록시 프로판올, THF (tetrahydrofuran), 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N-비닐피를리돈, 메틸에틸케톤 (부탄온), 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1 종 이상과 같은 임의의 수용매 또는 극성 유기 용매를 사용할 수 있다. 이와 같이, 일 구현예의 도전재 조성물은 별도의 가흑한 공정 조건 또는 복잡한 공정의 적용 없이 에탄을등 non-toxic한 용매를 사용하더라도, 매우 간단한 공정으로 제조될 수 있다.
그리고, 상기 분산액은 상기 극성 용매의 100 중량부에 대해, 상기 전도성 탄소계 소재의 약 1 내지 10 중량부와, 분산제의 약 0.1 내지 5 중량부를 포함할 수 있다. 이러한 도전재 조성물을 사용하여, 일 구현예의 도전재 조성물을 적절히 제조할 수 있다.
또, 상기 분산액을 얻은 후 진행하는 분산 단계는 상기 분산액에 초음파를 조사하거나, 상기 분산액을 교반하거나, 손으로 저어주는 등 물리적 힘을 인가하는 임의의 방법으로 진행할 수 있으며, 이러한 방법으로 진행하더라도, 상기 2 종 이상의 전도성 탄소계 소재가 균일하게 분산된 도전재 조성물을 얻을 수 있다. 이때, 초음파 조사 역시 bath-type sonication이나, tip-type sonication 등의 다양한 방법으로 진행할 수 있으며, 상기 물리적 힘을 인가하는 방법 역시 기계적 교반, 인력을 가하여 저어주거나 흔들어 주는 등 다양한 방법으로 진행할 수 있다. 다만, 상기 bath-type sonication과 같은 초음파 조사와, 교반을 조합하여 순차 진행함으로서, 전도성 탄소계 소재들이 보다 균일하게 분산된 도전재 조성물을 얻을 수 있다.
한편, 상기 초음파 조사 또는 물리적 힘을 인가하는 등의 방법을 진행하는 구체적인 조건은 상기 분산액의 양, 전도성 탄소계 소재나 분산제의 구쎄적 종류, 양 또는 농도 등을 고려하여 당업자가 자명하게 조절할 수 있다.
그리고, 상기 분산 단계 후의 회수 단계는 원심 분리, 감압 여과 또는 가압 여과 등으로 진행될 수 있다. 또, 상기 건조 단계는 약 30 내지 90 °C의 온도 하에 진공 건조하여 진행될 수 있다.
발명의 다른 구현예에 따르면, 상술한 도전재 조성물을 포함한 리틈 이차 전지의 전극 형성용 슬러리 조성물이 제공된다. 이러한 슬러리 조성물은 전극 활물질, 상술한 일 구현예의 도전재 조성물, 결합제 및 용매를 포함할 수 있다. 이러한 전극 형성용 슬러리 조성물은 상술한 분말상 도전재 조성물을 활물질, 결합제 및 용매 등의 다른 성분과 흔합하여 제조될 수 있다. 특히, 전도성 탄소계 소재들이 그 자체로 균일하게 분산된 도전재 조성물을 사용하여 얻어짐에 따라, 고농도로 균일하게 분산된 전도성 탄소계 소재의 도전재를 포함할 수 있고, 높은 함량의 전도성 탄소계 소재들을 균일하게 분산된 상태로 포함하는 전극을 얻을 수 있다.
다만, 상기 다른 구현예의 슬러리 조성물은 상기 일 구현예의 도전재 조성물을 사용함을 제외하고는, 통상적인 리튬 이차 전지의 전극 형성용 슬러리 조성물의 조성 및 제조 방법에 따를 수 있다.
예를 들어, 상기 슬러리 조성물은 양극 활물질 또는 음극 활물질의 전극 활물질을 포함할 수 있고, 양극 활물질로는 리튬을 인터칼레이션 /디인터칼레이션할 수 있는 금속 산화물, 리튬 복합 금속 산화물, 리튬 복합 금속 황화물 또는 리튬 복합 금속 질화물 등이 사용될 수 있다. 또, 음극 활물질로는 리튬 금속이나 리튬 합금; 코크스, 인조 혹연, 천연 혹연, 유기 고분자 화합물 연소체, 탄소 섬유, Si, SiOx> Sn 또는 SnO2 등과 같이 이전부터 리튬 이차 전지의 음극 활물질로 사용 가능한 것으로 알려진 임의의 리튬 또는 이의 합금이나, 탄소계 또는 실리콘계 소재 등이 별다른 제한 없이 모두 사용될 수 있다.
또한, 상기 결합제로는 비닐리덴플루오라이드 /핵사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리아크릴레이트, 폴리테트라플루오로에틸렌, 폴리 (스티렌 -부타디엔) 공중합체, 알지네이트 및 폴리도파민으로 이루어진 군에서 선택된 1종 이상을 포함하는 수지 또는 이들의 흔합물을 사용할 수 있다.
그리고, 상기 용매로는 물, N-메틸피를리돈, 아세톤, 테트라하이드로퓨란 및 데칸으로 이루어진 군에서 선택된 1 종의 용매 또는 2 종 이상의 흔합 용매를 사용할 수 있다.
한편, 상술한 다른 구현예의 슬러리 조성물은 용매를 제외하고, 전극 활물질, 도전재 조성물 및 결합제를 합한 고형분의 총 함량 100 중량부에 대해, 전극 활물질의 약 70 내지 98 중량부와, 도전재 조성물의 약 0.1 내지 15 중량부와, 결합제의 약 1 .0 내지 20 중량부를 포함할 수 있다. 상기 슬러리 조성물은 상술한 도전재 조성물을 포함함에 따라, 2 종 이상의 전도성 탄소계 소재를 포함한 도전재를 전체 고형분 대비 약 15 중량부에 이르는 높은 함량으로서 포함할 수 있으며, 이러한 슬러리 조성물 내에서 상기 전도성 탄소계 소재가 균일하게 분산된 상태를 유지할 수 있다. 따라서, 이러한 슬러리 조성물을 이용해, 2 종 이상의 전도성 탄소계 소재를 높은 함량으로 균일하게 분산된 상태로서 포함하고, 보다 우수한 전기적 특성 등을 나타내는 전극 및 전지를 제조할 수 있다.
한편, 발명의 또 다른 구현예에 따르면, 상술한 도전재 조성물 및 전극 형성용 슬러리 조성물을 사용해 얻어지는 리튬 이차 전지가 제공된다. 이러한 리튬 이차 전지는 집전체와, 음극 활물질, 도전재 및 결합제를 포함하고 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극; 집전체와, 양극 활물질, 도전재 및 결합제를 포함하고 집전체 상에 형성된 양극 활물질층을 포함하는 양극; 및 전해질을 포함하고, 상기 음극 활물질층 또는 양극 활물질층에 포함된 도전재의 적어도 하나는 상술한 일 구현예의 도전재 조성물을 포함하는 것일 수 있다.
이러한 리튬 이차 전지는 전극에 높은 함량의 2 종 이상의 전도성 탄소계 소재가 균일하게 분산된 상태로 포함될 수 있다. 따라서, 2 종 이상의 전도성 탄소계 소재 간의 3 차원 네트워크 구조가 양호하게 형성되어 전극 자체의 전기적 특성 등이 더욱 향상될 수 있고, 2 종 이상의 전도성 탄소계 소재를 함께 사용함에 따른 장점을 극대화하여 향상된 전기적 특성, 용량 특성 및 수명 특성 등을 나타내는 리튬 이차 전지 둥 전지를 제공할 수 있게 된다. 그 결과, 본 발명은 리튬 이차 전지 등 각종 전지의 고용량 특성을 구현하는데 크게 기여할 수 있다.
한편, 상기 리튬 이차 전지는 도전재로서 일 구현예의 도전재 조성물을 사용함을 제외하고는, 통상적인 리튬 이차 전지의 구성에 따를 수 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다. 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 블과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. 제조예 1 : 분산제의 제조
포스코로부터 입수한 석유 부산물인 피치 (pitch)에 대해 다음과 같은 산화 공정 및 정제 공정을 진행하여 제조예 1의 분산제를 제조하였다.
먼저, 황산 /질산의 흔합 용액 (부피비 3:1 )의 75 ml에 피치 0.5 내지 1 .5 g을 첨가하고, 약 70 °C에서 약 3.5 시간 동안 산화 반응을 진행하였다.
이후, 상기 산화 반응이 진행된 피치 반웅 용액을 상온으로 넁각시킨 후, 5 배 가량 증류수로 희석시킨 다음, 약 3500 rpm에서 30 분간 원심분리하였다. 이어서, 상등액을 제거하고, 동일량의 증류수를 넣고 재분산한 후에, 동일 조건에서 다시 원심분리하여 최종적으로 침전물을 회수하고 건조하였다. 이를 통해, 제조예 1의 분산제를 제조하였다.
먼저, 이러한 분산제의 제조 과정 중 원료로 사용된 피치의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 도 1 a 및 도 1 b (분자량 400 내지 500 영역의 확대도)에 도시하였고, 제조예 1 의 분산제의 분자량 분포를 마찬가지로 분석하여 도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)에 도시하였다. 이러한 분석은 MALDI-TOF mass spectrum 장비 (Ultraflex II, Bruker)를 사용하여, 상기 피치 또는 분산제를 matrix에 넣고 흔합한 후에 건조하여 진행하였다.
상기 도 1 a 및 도 1 b (확대도)를 참고하면, pitch의 경우 분자량 200 내지 1500 의 분자량을 갖는 폴리 방향족 탄화수소들을 포함하는 것으로 확인되었고, 특히 도 1 b의 확대도에서 분자량 14Da 간격으로 큰 피크들이 검출되는 것으로부터 서로 다른 개수의 방향족 고리 (벤젠 고리)들을 갖는 복수 종의 폴리 방향족 탄화수소들이 aliphatic hydrocarbon에 의하여 연결되어 있음이 확인되었다. 이에 비해, 도 2a 및 도 2b (확대도)를 참고하면, 제조예 1 의 분산제는 폴리 방향족 탄화수소들에 각각 44Da과 16D의 간격으로 존재하는 큰 피크들이 관찰되었는데 이는 이러한 방향족 탄화수소들에 -COOH, -OH 또는 -S03H 등 산소 함유 작용기들이 도입된 폴리 방향족 탄화수소 산화물들의 흔합물 형태로 존재함을 증명하는 것으로, 약 300 내지 1000, 흑은 약 300 내지 700 의 분자량을 갖는 산화물들이 60 중량 % 이상으로 포함됨이 확인되었다.
또한, 상기 원료로 사용된 pitch (상단) 및 제조예 1 의 분산제 (하단)를 각각 13C CPMAS NMR (Varian 400MHz Solid-State NMR)로 분석하여, 그 분석 결과를 도 3 에 비교하여 나타내었다. 도 3 을 참고하면, pitch에서는 방향족 탄화수소의 탄소 유래 피크와, 일부 지방족 탄화수소의 탄소 유래 피크가 확인되었으나, 산소 함유 작용기의 존재는. 확인되지 않았다. 이에 비해, 제조예 1 의 분산제에 대한 NMR 분석 결과, 산소 함유 작용기의 피크가 확인되었다. 이러한 산소 함유 작용기의 종류는 에폭시기, 히드록시기 또는 카르복시기 등인 것으로 확인되었다.
부가하여, 상기 원료로 사용된 pitch 및 제조예 1 의 분산제를 각각 분말 상태로서 FT-IR (Agilent 660-IR)로 분석하여 그 분석 결과를 도 4 에 비교하여 나타내었다. 이러한 도 4 를 통해서도, 제조예 1 의 분산제에서 산소 함유 작용기의 피크가 생성됨을 확인하였다. 제조예 2 내지 4: 분산제의 제조
포스코로부터 입수한 석유 부산물인 피치 (pitch; 단, 제조예 1 과는 다른 샘플의 피치 사용)를 사용하고, 산화 반웅 시간을 각각 1 시간 (제조예 2), 3.5 시간 (제조예 3) 및 7 시간으로 달리한 것을 제외하고는 제조예 1 과 동일한 방법으로 진행하여 제조예 2 내지 4의 분산제를 각각 제조하였다.
이러한 분산제를 제조예 1 과 동일한 방법으로 MALDI-TOF mass spectrum으로 분석하여, 도 5 에 비교하여 함께 나타내었다. 도 5 를 참고하면, 산화 시간의 증가에 따라, 분산제 중 분자량 약 1000, 혹은 약 700 초과의 성분 (폴리 방향족 탄화수소 산화물)의 함량이 즐어들어, 분자량 약 300 내지 1000, 흑은 약 300 내지 700 의 폴리 방향족 탄화수소 산화물을 보다 높은 함량으로 포함하는 흔합물 형태의 분산제가 얻어짐이 확인되었다. 시험예 1 : 분산제의 산소 함량 측정
제조예 3 및 4 에서 얻어진 분산제 시료약 1 mg을 얇은 호일 위에서 약
900 °C 내외의 고온으로 가열하였다. 이때, 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 180C C까지 상승하였으며, 이러한 고온에 의해 상기 시료로부터 기체가 발생하였다. 이러한 기체를 포집 및 원소 분석하여 탄소, 산소, 수소 및 질소의 각 원소 함량을 측정 및 분석하였다. 이러한 분석 결과는 각 분산제 제조를 위해 사용된 피치에 대한 분석 결과와 비교하여 하가표 1에 나타내었다. [표 1]
Figure imgf000022_0001
상기 표 1 을 참고하면, 제조예 3 및 4 의 분산제 중에는, 각 원소의 함량을 분석하였을 때 산소의 함량이 전체 원소 함량의 약 12 내지 50 중량0 /。, 혹은 약 30 내지 40 중량 0/。로 됨이 확인되었다. 실시예 1 : 도전재 조성물의 제조
THF 500mᅵ에, 그래핀 플레이크 및 카본블랙을 8 : 2 의 중량비로 흔합한 전도성 탄소계 소재의 5g과, 제조예 1의 분산제 2.5g을 넣고 tip-type sonication을 통하여 60 분 동안 초음파 조사하여 분산시켰다. 이를 3500 rpm에서 30 분 동안 원심분리하고, 50°C에서 진공 건조하여 실시예 1 의 분말형 도전재 조성물을 제조하였다.
이렇게 얻은 실시예 1 의 도전재 조성물의 전자 현미경 사진을 도 1 에 나타내었다. 도 1 을 참고하면, 상기 그래핀 플레이크 및 카본블택이 균일하게 분산된 형태로 포함된 분말형 도전재 조성물이 형성되었음이 확인되었다. 실시예 2: 도전재 조성물의 제조
THF 500m Ml , 그래핀 플레이크 및 카본블랙을 8 : 2 의 중량비로 흔합한 전도성 탄소계 소재의 5g과, 제조예 1 의 분산제 2.5g을 넣고 bath-type sonication을 통하여 180 분 동안 초음파 조사하여 분산시켰다. 이를 3500 rpm에서 30 분 동안 원심분리하고, 50°C에서 진공 건조하여 실시예 2 의 분말형 도전재 조성물을 제조하였다.
이렇게 얻은 실시예 2 의 도전재 조성물의 전자 현미경 사진을 도 6b에 나타내었다. 도 6b를 참고하면, 상기 그래핀 플레이크 및 카본블랙이 균일하게 분산된 형태로 포함된 분말형 도전재 조성물이 형성되었음이 확인되었다. 실시예 3: 도전재 조성물의 제조
에탄올 500ml에, 탄소 나노 튜브 및 카본블랙을 5 : 5 의 중량비로 흔합한 전도성 탄소계 소재의 5g과, 제조예 1의 분산제 2.5g을 넣고 tip-type sonication을 통하여 60 분 동안 초음파 조사하여 분산시켰다. 이를 3500 rpm에서 30 분 동안 원심분리하고, 50°C에서 진공 건조하여 실시예 3 의 분말형 도전재 조성물을 제조하였다.
이렇게 얻은 실시예 3 의 도전재 조성물의 전자 현미경 사진을 도 6c에 나타내었다. 도 6c를 참고하면, 상기 탄소 나노 튜브 및 카본블랙이 균일하게 분산된 형태로 포함된 분말형 도전재 조성물이 형성되었음이 확인되었다. 실시예 4: 도전재 조성물의 제조
에탄올 500ml에, 그래핀 플레이크, 탄소 나노 튜브 및 카본블랙을 6 : 2 :
2 의 중량비로 흔합한 전도성 탄소계 소재의 5g과, 제조예 1 의 분산제 2.5g을 넣고 tip-type sonication을 통하여 60 분 동안 초음파 조사하여 분산시켰다. 이를
3500 rpm에서 30 분 동안 원심분리하고, 50°C에서 진공 건조하여 실시예 4 의 분말형 도전재 조성물을 제조하였다.
이렇게 얻은 실시예 4 의 도전재 조성물의 전자 현미경 사진을 도 6d에 나타내었다. 도 6d를 참고하면, 상기 그래핀 플레이크, 탄소 나노 튜브 및 카본블랙이 균일하게 분산된 형태로 포함된 분말형 도전재 조성물이 형성되었음이 확인되었다. 실시예 5: 음극 형성용 슬러리 조성물 및 음극 제조
에탄올 150ml에, 탄소 나노 류브 0.5g 및 카본블랙 0.5g을 흔합한 전도성 탄소계 소재와, 제조예 1 의 분산제 0.5g을 넣고 tip-type sonication을 통하여 60 분 동안 초음파 조사하여 분산시켰다. 이를 3500 rpm에서 30 분 동안 원심분리하고 , 50°C에서 진공 건조하여 분말형 도전재 조성물을 제조하였다.
이러한 도전재 조성물과, 음극 활물질 (혹연과 탄소코팅된 SiO)을 1 : 80 의 중량비로 수계 용매 (물) 내에서 mortal 사용하여 흔합하여 음극 형성용 슬러리 조성물을 제조한 후, 이를 구리 집전체 (구리 테이프)에 바른 후 건조하였다. 이렇게 얻은 결과물의 전자 현미경 사진을 도 7a에 도시하였다. 도 7a를 참고하면, 상기 분말형 도전재 조성물은 수계 용매에 대한 우수한 재분산성을 나타내어, 음극 형성용 슬러리 조성물 및 전극을 제조한 후에도, 상기 탄소 나노 튜브 및 카본블랙이 균일하게 분산된 형태로 포함된 상태를 유지함이 확인되었다. 실시예 6: 음극 형성용 슬러리 조성물 및 음극 제조 '
에탄올 150ml에, 탄소 나노 튜브 0.5g 및 카본블랙 0.5g을 흔합한 전도성 탄소계 소재와, 제조예 1 의 분산제 0.5g을 넣고 tip-type sonication을 통하여 60 분 동안 초음파 조사하여 분산시켰다. 이를 3500 ' rpm에서 30 분 동안 원심분리하고 , 50 °C에서 진공 건조하여 분말형 도전재 조성물을 제조하였다.
이러한 도전재 조성물과, 양극 활물질 (Ni-Mn-Co 삼성분계 산화물) 및 바인더 (PVDF)를 2 : 96 : 2 의 중량비로 NMP 내에서 homodisperse를 사용하여 흔합하여 양극 형성용 슬러리 조성물을 제조한 후, 이를 구리 집전체 (구리 테이프)에 바른 후 건조하였다.
이렇게 얻은 결과물의 전자 현미경 사진을 도 7b에 도시하였다. 도 기 3를 참고하면, 상기 분말형 도전재 조성물은 NMP에 대한 우수한 재분산성을 나타내어, 양극 형성용 슬러리 조성물 및 전극을 제조한 후에도, 상기 탄소 나노 류브 및 카본블랙이 균일하게 분산된 형태로 포함된 상태를 유지함이 확인되었다. 시험예 2: 분말형 도전재 조성물의 극성 용매에 대한 재분산성 평가 실시예 3 에서 얻은 분말형 도전재 조성물 20mg을 도 8 에 도시된 다양한 용매 10ml에 가하고, bath type sonicator로 1 시간 동안 재분산시켰다. 도 8 에는 이러한 재분산성을 평가한 결과를 나타낸 육안 관찰 사진이 도시되어 있다.
도 8 을 참고하면, 실시예에서 얻어진 분말형 도전재 조성물은 다양한 극성 용매에 우수한 재분산성을 나타내어, 이를 사용한 전극 형성용 슬러리 조성물 및 전극을 형성하더라도, 2 종 이상의 전도성 탄소계 소재를 균일하게 분산된 형태로 포함시킬 수 있음이 확인되었다. 따라서, 실시예의 분말형 도전재 조성물은 리튬 이차 전지의 양극 및 음극을 포함한 다양한 전지 전극을 형성하는데 적합하게 적용될 수 있다. 시험예 3: 분말형 도전재 조성물을 적용한 양극 슬러리의 면 저항 측정 양극재 (LG03) : 실시예 3의 도전재 : 바인더 (KF1300)의 중량비 = 92 : 2 :
2 의 조성으로 제조된 슬러리를 bar coating을 통해 PET 위에 코팅한 후 four- probe를 사용하여 면 저항을 측정하여 도 9 에 도시하였다. 참고로, 도 9 에서 C로 나타난 결과가 실시예 3 의 도전재를 사용한 측정 결과이고, 상기 실시예
3꾀 도전재에서, 길이 1 μπι 탄소 나노 튜브 (ACN사 chopped CNT) 및 카본블랙의 흔합물 대신 동일 함량의 길이 1 / 탄소 나노 튜브 (ACN사 chopped CNT; A로 나타난 결과) 및 길이 3 /an 탄소 나노 튜브 (ACN사 chopped CNT; B로 나타난 결과)를 사용한 경우의 측정 결과를 비교하여 함께 나타내었다.
도 9 에 따르면, 실시예 3 의 도전재를 사용한 경우, 감소된 면 저항을 나타내어 탄소 나노 튜브만을 사용한 도전재에 비해 우수한 분산성 및 전기적 특성을 나타내는 것으로 확인된다. 시험예 4: 흔합 분말형 도전재 적용 슬러리 물성 테스트 (양극 적용시)
Grinding gauge를 이용하여 상기 시험예 3 에서 얻어진 슬러리 내 입자의 최대 입도를 5회 측정하여 평균하였다. 그 결과를 하기 표 2에 나타내었다. 흔합 분말형 도전재의 경우 1 /zm 탄소 나노 튜브만을 포함한 도전재를 사용하여 제조한 슬러리보다 2 차 입자 크기가 낮아졌으며, 제조된 슬러리의 점도 테스트 결과 고형분 함량이 많음에도 점도가 낮은 편으로 굉장히 좋은 흐름성을 보유하고 있음이 확인되었다.
[표 2]
Figure imgf000025_0001

Claims

【특허청구범위】
【청구항 1】
탄소 나노 튜브, 그래핀, 및 카본블랙으로 이루어진 군에서 선택된 2 종 이상의 전도성 탄소계 소재; 및
복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함하는 분산제를 포함하는 도전재 조성물.
【청구항 2】
제 1 항에 있어서, 상기 분산제는 상기 전도성 탄소계 소재의 표면에 흡착되어 있는 도전재 조성물.
【청구항 3】
제 1 항에 있어서, 분말 상태를 갖는 도전재 조성물.
【청구항 4】
제 1 항에 있어서, 상기 전도성 탄소계 소재는 카본블랙의 10 내지 90 중량%와, 그래핀 및 탄소 나노 튜브로부터 선택된 1 종 이상의 10 내지 90 중량0 /。를 포함하는 도전재 조성물.
【청구항 5】
제 1 항에 있어서, 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 상기 분산제의 전체 원소 함량의 12 내지 50 중량 0/。인 도전재 조성물.
【청구항 6】
제 1 항에 있어서, 폴리 방향족 탄화수소 산화물은 5 내지 30 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 갖는 도전재 조성물.
【청구항 7】
제 6 항에 있어서, 방향족 탄화수소는 7 내지 20 개의 벤젠 고리를 구조 내에 갖는 도전재 조성물.
【청구항 8】
제 6 항에 있어서, 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 및 술폰산으로 이루어진 군에서 선택된 1종 이상을 포함하는 분산제.
【청구항 9】
제 1 항에 있어서, 상기 전도성 탄소계 소재의 100 중량부를 기준으로, 분산제의 1 내지 50 중량부를 포함하는 도전재 조성물.
[청구항 "10】
제 1 항에 있어서, 전지의 전극 형성을 위해 사용되는 도전재 조성물.
[청구항 1 1】
제 10 항에 있어서, 리튬 이차 전지의 전극 슬러리 조성물에 포함되는 도전재 조성물.
【청구항 12】 ,
상기 전도성 탄소계 소재와, 분산제가 극성 용매 내에 분산되어 있는 분산액을 형성하는 단계; 및
상기 분산액에 초음파를 조사하거나 물리적 힘을 인가하여 상기 전도성 탄소계 소재를 분산시키는 단계를 포함하는 제 1 항의 도전재 조성물의 제조 방법.
【청구항 13】
제 12 항에 있어서, 상기 분산 단계 후에 상기 분산액으로부터 분말 상태의 도전재 조성물을 회수 및 건조하는 단계를 더 포함하는 도전재 조성물의 제조 방법.
【청구항 14】
전극 활물질, 제 1 항의 도전재 조성물, 결합제 및 용매를 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
(
【청구항 15】
제 14 항에 있어서, 전극 활물질은 양극 활물질 또는 음극 활물질을 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 16】
제 14 항에 있어서, 결합제는 비닐리덴플루오라이드 /핵사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리아크릴레이트, 폴리테트라플루오로에틸렌, 폴리 (스티렌 -부타디엔) 공중합체, 알지네이트 및 폴리도파민으로 이루어진 군에서 선택된 1종 이상을 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 17】
제 14 항에 있어서, 용매는 물, N-메틸피를리돈, 아세톤, 테트라하이드로퓨란 및 데칸으로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 18】
제 14 항에 있어서, 전극 활물질, 도전재 조성물 및 결합제를 합한 고형분의 총 함량 100 중량부에 대해,
전극 활물질의 70 내지 98 중량부와,
도전재 조성물의 0.1 내지 15 중량부와,
결합제의 1 .0 내지 20 중량부를 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물. 【청구항 19】 집전체와, 음극 활물질, 도전재 및 결합제를 포함하고 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극;
집전체와, 양극 활물질, 도전재 및 결합제를 포함하고 집전체 상에 형성된 양극 활물질층을 포함하는 양극; 및
전해질을 포함하고,
상기 음극 활물질층 또는 양극 활물질층에 포함된 도전재의 적어도 하나는 제 1 항의 도전재 조성물을 포함하는 리튬 이차 전지.
PCT/KR2014/012641 2013-12-27 2014-12-22 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지 WO2015099379A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016538068A JP6162338B2 (ja) 2013-12-27 2014-12-22 導電材組成物、これを使用したリチウム二次電池の電極形成用スラリー組成物およびリチウム二次電池
CN201480071378.9A CN105849821B (zh) 2013-12-27 2014-12-22 导电材料组合物、使用该导电材料组合物用于形成锂可再充电池的电极的浆料组合物和锂可再充电池
EP14873341.3A EP3057104B1 (en) 2013-12-27 2014-12-22 Conductive composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
US15/038,857 US10033044B2 (en) 2013-12-27 2014-12-22 Conducting material composition, and slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130165068 2013-12-27
KR10-2013-0165068 2013-12-27
KR10-2014-0184901 2014-12-19
KR1020140184901A KR101652921B1 (ko) 2013-12-27 2014-12-19 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지

Publications (2)

Publication Number Publication Date
WO2015099379A1 true WO2015099379A1 (ko) 2015-07-02
WO2015099379A8 WO2015099379A8 (ko) 2016-06-16

Family

ID=53479165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012641 WO2015099379A1 (ko) 2013-12-27 2014-12-22 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2015099379A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521476A (ja) * 2016-06-07 2019-07-25 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. 集積化3dグラフェン−炭素−金属ハイブリッドフォームをベースとした電極を有するアルカリ金属電池
CN113793717A (zh) * 2021-09-15 2021-12-14 深圳清研皓隆科技有限公司 石墨烯/纳米炭黑/碳纳米管复合导电粉末及其制备方法
CN114864938A (zh) * 2021-11-22 2022-08-05 广东一纳科技有限公司 含有碳材料的导电浆料以及二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013553A (ko) * 2001-08-08 2003-02-15 엘지전자 주식회사 탄소나노튜브를 도전재로 이용한 이차전지
KR100728160B1 (ko) * 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
KR20090054677A (ko) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20100095473A (ko) 2007-12-25 2010-08-30 가오 가부시키가이샤 리튬전지 양극용 복합재료
KR20110029321A (ko) * 2009-09-15 2011-03-23 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
KR20110072917A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 탄소계 도전재료, 이를 포함하는 전극 조성물 및 이로부터 제조된 전극 및 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013553A (ko) * 2001-08-08 2003-02-15 엘지전자 주식회사 탄소나노튜브를 도전재로 이용한 이차전지
KR100728160B1 (ko) * 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
KR20090054677A (ko) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20100095473A (ko) 2007-12-25 2010-08-30 가오 가부시키가이샤 리튬전지 양극용 복합재료
KR20110029321A (ko) * 2009-09-15 2011-03-23 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
KR20110072917A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 탄소계 도전재료, 이를 포함하는 전극 조성물 및 이로부터 제조된 전극 및 이차 전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARBON, vol. 49, 2011, pages 2844 - 2949
J. MATER. CHEM., vol. 21, 2011, pages 2374 - 2380

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521476A (ja) * 2016-06-07 2019-07-25 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. 集積化3dグラフェン−炭素−金属ハイブリッドフォームをベースとした電極を有するアルカリ金属電池
JP7206114B2 (ja) 2016-06-07 2023-01-17 ナノテク インストゥルメンツ,インコーポレイテッド 集積化3dグラフェン-炭素-金属ハイブリッドフォームをベースとした電極を有するアルカリ金属電池
CN113793717A (zh) * 2021-09-15 2021-12-14 深圳清研皓隆科技有限公司 石墨烯/纳米炭黑/碳纳米管复合导电粉末及其制备方法
CN114864938A (zh) * 2021-11-22 2022-08-05 广东一纳科技有限公司 含有碳材料的导电浆料以及二次电池
CN114864938B (zh) * 2021-11-22 2023-11-21 广东一纳科技有限公司 含有碳材料的导电浆料以及二次电池

Also Published As

Publication number Publication date
WO2015099379A8 (ko) 2016-06-16

Similar Documents

Publication Publication Date Title
KR101652921B1 (ko) 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
JP6098714B2 (ja) グラフェン粉末、グラフェン粉末の製造方法およびグラフェン粉末を含むリチウムイオン電池用電極
Kwon et al. Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high‐capacity energy storage
US10435571B2 (en) Method for preparing carbon nanotube, and dispersion composition of carbon nanotube
KR101858719B1 (ko) 분산제 및 이의 제조 방법
JP6276851B2 (ja) 導電材組成物、これを用いたリチウム二次電池の電極形成用スラリー組成物およびリチウム二次電池
JP6241480B2 (ja) 高分散性グラフェン組成物およびその製造方法、ならびに高分散性グラフェン組成物を含むリチウムイオン二次電池用電極
KR102189514B1 (ko) 그래핀 분말, 리튬 이온 전지용 전극 페이스트 및 리튬 이온 전지용 전극
TW201437143A (zh) 做爲鋰離子電池陽極材料之Si/C複合物
US10910636B2 (en) Method for making battery electrodes
WO2015099379A1 (ko) 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
KR100673987B1 (ko) 리튬/유황이차전지의 사이클 특성을 향상시키기 위해첨가재로 mwnt와 gnf를 이용한 유황전극
KR101508480B1 (ko) 리튬 이차전지용 전극 및 이의 제조방법
KR101460641B1 (ko) 마그네슘 이차전지용 양극활물질 및 이의 제조방법
WO2015178631A1 (ko) 탄소 나노 튜브의 제조 방법과, 탄소 나노 튜브의 분산 조성물
KR20240057841A (ko) 전도성 복합소재 및 이의 제조방법과 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873341

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014873341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15038857

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016538068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE