WO2015098942A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2015098942A1
WO2015098942A1 PCT/JP2014/084110 JP2014084110W WO2015098942A1 WO 2015098942 A1 WO2015098942 A1 WO 2015098942A1 JP 2014084110 W JP2014084110 W JP 2014084110W WO 2015098942 A1 WO2015098942 A1 WO 2015098942A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voltage
switching elements
drive device
lower arms
Prior art date
Application number
PCT/JP2014/084110
Other languages
English (en)
French (fr)
Inventor
俊彰 佐藤
矢吹 俊生
田口 泰貴
敬之 畑山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013273560A external-priority patent/JP5858035B2/ja
Priority claimed from JP2014097818A external-priority patent/JP2015144543A/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201811522619.3A priority Critical patent/CN110022115B/zh
Priority to CN201480070191.7A priority patent/CN105850031B/zh
Publication of WO2015098942A1 publication Critical patent/WO2015098942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking

Definitions

  • the present invention relates to a motor drive device.
  • overvoltage protection means as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2007-166815) is provided.
  • the input transformer is a transformer with a load tap changer, and when the voltage exceeding the threshold is input to the inverter over a predetermined time, the tap of the transformer with the load tap changer is lowered. Switched to the side.
  • the transformer with a load tap changer as described above is suitable for a large-scale electric facility, but it is not easy to apply to a drive device of an inverter controlled motor such as a home appliance.
  • the time required for the power supply voltage to become excessive is extremely short, and the tap switching as described above takes too much time, so it is difficult to reliably protect such a motor drive device.
  • a semiconductor element such as a semiconductor element that has a short time to withstand overvoltage cannot be protected by being interrupted by a relay.
  • increasing the withstand voltage of a semiconductor element or the like only for an instantaneous excessive voltage leads to an increase in cost and size.
  • an object of the present invention is to provide a motor drive device provided with a compact and low-cost overvoltage protection means for protecting a device from a momentary excessive voltage.
  • each of a plurality of upper and lower arms corresponding to each of a plurality of phases of the motor is configured by connecting two switching elements in series, and a connection point formed thereby
  • a motor driving device that outputs a voltage to the corresponding phase from each, and includes a power supply unit, a voltage detection unit, and a control unit.
  • the power supply unit supplies a DC voltage Vdc to the upper and lower arms.
  • the voltage detector is connected in parallel to the upper and lower arms.
  • the control unit turns on and off the switching element. Further, the control unit turns off both the switching elements of the upper and lower arms when the detection value of the voltage detection unit exceeds a predetermined threshold value.
  • the DC voltage Vdc is applied to the switching element in which the upper and lower arms are off while any of the switching elements in the upper and lower arms is operating. There is a high possibility that an excessive voltage is applied to one switching element and it is destroyed.
  • the motor drive device is the motor drive device according to the first aspect, further comprising a motor brake circuit.
  • the control unit brakes the motor after turning off both switching elements of the upper and lower arms.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series, and the excessive voltage applied to one switching element. Is reduced to half that when either one is operating, so that the switching element can be protected from destruction.
  • the switching element is likely to be turned on by the energy of the motor inductance component and the induced voltage due to the rotation of the motor, but after turning off both the switching elements of the upper and lower arms, the motor is electrically braked and stopped quickly.
  • the energy of the inductance component can be quickly consumed, the rotational energy of the motor can be quickly attenuated, and the time during which the switching element is on can be shortened.
  • the motor drive device is the motor drive device according to the first aspect or the second aspect, and further includes a resistive load and a resistive load connecting means.
  • the resistive load connecting means connects or blocks between the connection point of the two switching elements and the resistive load.
  • the control unit turns off both the switching elements of the upper and lower arms, and then connects the connection point and the resistive load.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series, and the excessive voltage applied to one switching element. Is reduced to half that when either one is operating, so that the switching element can be protected from destruction.
  • the switching element is likely to be turned on by the energy of the motor inductance component and the induced voltage due to the rotation of the motor, but after turning off both switching elements of the upper and lower arms, a resistive load is connected to each phase of the motor.
  • a motor driving device is the motor driving device according to any one of the first to third aspects, and further includes a mechanical brake that is attachable to and detachable from a rotating shaft of the motor. .
  • the control unit mechanically brakes the motor after turning off both switching elements of the upper and lower arms.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series, and the excessive voltage applied to one switching element. Is reduced to half that when either one is operating, so that the switching element can be protected from destruction.
  • the switching element is highly likely to be turned on by the energy of the motor inductance component and the induced voltage due to the rotation of the motor, but after turning off both switching elements of the upper and lower arms, the motor is mechanically braked and stopped quickly. As a result, the rotational energy of the motor is attenuated, and the time during which the switching element is on can be shortened.
  • a motor driving device is the motor driving device according to any one of the first to fourth aspects, wherein the control unit has a detection value of the voltage detection unit exceeding a threshold value. After turning on all the switching elements of one of the two switching elements of all the upper and lower arms, all the switching elements are turned off.
  • this motor drive device by turning on all the switching elements of one of the two switching elements of all the upper and lower arms, the current from the motor is circulated, and the DC voltage generated by the regeneration of the rotational energy of the motor is reduced. While preventing boosting, the current is attenuated to 0 by the internal impedance of the motor. After that, even if the switching elements of all the upper and lower arms are turned off and the switching elements are turned on due to the energy of the motor inductance component and the induced voltage due to the rotation of the motor, the on-time can be shortened. .
  • a motor driving device is the motor driving device according to any one of the second to fifth aspects, wherein the control unit has a detection value of the voltage detection unit exceeding a threshold value. Otherwise, the brake is not applied to the motor.
  • This motor drive unit suppresses unnecessary motor stops by limiting the brake operation only to overvoltage.
  • a motor drive device is the motor drive device according to any one of the first to sixth aspects, and further includes a bootstrap circuit.
  • the bootstrap circuit generates a higher potential than the low potential side of the switching element for driving power of the upper arm side switching element of the upper and lower arms.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series, and the excessive voltage applied to one switching element. Is reduced to half that when either one is operating, so that the switching element can be protected from destruction.
  • the voltage of the direct-current voltage section (hereinafter abbreviated as DC section) can withstand a voltage that is twice the withstand voltage of one element. .
  • the midpoint potential of the upper and lower arms is about one element withstand voltage at most (there is no need to consider since the element will be destroyed if it is more than that).
  • a design that can withstand the normal rated voltage (that is, one-element breakdown voltage) of the DC section is sufficient.
  • a motor drive device is the motor drive device according to any one of the first to sixth aspects, and further includes an insulated power source.
  • the insulated power supply is used to drive the upper arm side switching element of the upper and lower arms.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series, and the excessive voltage applied to one switching element. Is reduced to half that when either one is operating, so that the switching element can be protected from destruction.
  • the midpoint potential of the upper and lower arms is at most about one element withstand voltage (the element is destroyed beyond that). Is sufficient to have a design that can withstand the normal rated voltage (that is, one-element breakdown voltage) of the DC section.
  • the motor drive device is the motor drive device according to the first aspect, further comprising a balance circuit.
  • the balance circuit is disposed between a pair of DC buses connecting the power supply unit and the upper and lower arms and the connection point.
  • the control unit turns on and off the switching element. Further, the control unit turns off both the switching elements of the upper and lower arms when the detection value of the voltage detection unit exceeds a predetermined threshold value.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series, and the excessive voltage applied to one switching element. Is reduced to about half of when either one is operating, so that the switching element can be protected from destruction.
  • the motor drive device is the motor drive device according to the ninth aspect, wherein the balance circuit is arranged so as to correspond to each of the switching elements of the plurality of upper and lower arms.
  • the overvoltage protection circuit according to the eleventh aspect of the present invention is the motor drive device according to the ninth aspect or the tenth aspect, and includes a switch.
  • the switch connects or disconnects between a connection point of two switching elements connected in series and an intermediate point of a pair of balance circuits corresponding thereto.
  • the control unit connects the balance circuit when the detection value of the voltage detection unit exceeds a predetermined threshold.
  • a switch is arranged between the connection points NU, NV, NW and the intermediate point of the corresponding pair of balance circuits, and the balance circuit is connected only when the inverter is off, thereby Power consumption can be suppressed.
  • a motor drive device is the motor drive device according to any one of the ninth to eleventh aspects, and the balance circuit is configured by a resistance element.
  • both switching elements of the upper and lower arms are turned off, whereby the excessive voltage is divided across the two switching elements connected in series. Since the excessive voltage applied to one switching element is reduced to half of when one of the switching elements is operating, the switching element can be protected from destruction.
  • the switching elements of the upper and lower arms when both the switching elements of the upper and lower arms are turned off, there is a high possibility that the switching elements are turned on by the energy of the motor inductance component and the induced voltage due to the rotation of the motor.
  • the switching element After switching off both the switching elements of the upper and lower arms, connecting the resistive load to each phase of the motor, the switching element is turned on by consuming the energy of the motor's inductance component in the resistive load in a short time Time can be shortened.
  • the motor drive device when both the switching elements of the upper and lower arms are turned off, there is a high possibility that the switching elements are turned on by the energy of the motor inductance component and the induced voltage due to the rotation of the motor. After the switching elements of both the upper and lower arms are turned off, the time during which the switching elements are turned on can be shortened by applying a mechanical brake to the motor and quickly stopping the motor.
  • the motor drive device by turning on all the switching elements of one of the two switching elements of all the upper and lower arms, the current from the motor is circulated to rotate the motor. While preventing the DC voltage from being boosted due to energy regeneration, the current is attenuated by the internal impedance of the motor to zero. Thereafter, even if the switching elements of all the upper and lower arms are turned off and the switching elements are turned on by the energy and induced voltage of the inductance component of the motor, the on-time can be shortened.
  • the midpoint potential of the upper and lower arms is at most about one element withstand voltage.
  • a design that can withstand the normal rated voltage (ie, one-device breakdown voltage) of the DC section is sufficient.
  • both the switching elements of the upper and lower arms are turned off, so that the midpoint potential of the upper and lower arms is at most about one element withstand voltage.
  • a design that can withstand the normal rated voltage (that is, one-element breakdown voltage) of the DC section is sufficient.
  • the DC voltage Vdc is applied to the switching element in which the upper and lower arms are turned off while any one of the switching elements in the upper and lower arms is operating, so that it becomes an excessive voltage.
  • an excessive voltage is applied to one switching element that is turned off, and the possibility of destruction is high.
  • the motor drive device in the case of an inverter circuit, since three pairs of upper and lower arms are connected in parallel, by connecting a balance circuit to each upper and lower arm, the DC voltage Vdc is Since the voltage is divided almost evenly across the two switching elements of each upper and lower arm, the switching elements can be protected from destruction.
  • a switch is arranged between the connection points NU, NV, NW and the intermediate point of the corresponding pair of balance circuits, and the balance circuit is connected only when the inverter is off. By doing so, the power consumption of the balance circuit can be suppressed.
  • the resistance element is relatively inexpensive, an increase in cost due to the installation of the balance circuit can be suppressed.
  • FIG. 1 is a block diagram showing an overall configuration of a system in which a motor drive device according to a first embodiment of the present invention is employed and a circuit configuration of the motor drive device.
  • FIG. 7B is a graph showing a change in the voltage Vds at both ends of a semiconductor element having an avalanche region on the graph showing the control with respect to the change in the DC voltage Vdc in FIG. 7A.
  • the circuit diagram of the principal part of the motor drive device provided with the bootstrap circuit.
  • the circuit diagram of the principal part of the motor drive device provided with the insulated power supply.
  • the circuit diagram of the principal part of the motor drive device provided with the charge pump circuit.
  • the block diagram which shows the circuit structure of the motor drive device which concerns on 4th Embodiment of this invention.
  • FIG. 1 is a block diagram showing an overall configuration of a system 100 in which a motor drive device 10 according to a first embodiment of the present invention is employed and an internal configuration of the motor drive device 10.
  • a system 100 includes a motor driving device 10 and a motor 51.
  • the motor 51 is a three-phase brushless DC motor, and includes a stator 52 and a rotor 53.
  • the stator 52 includes U-phase, V-phase, and W-phase drive coils Lu, Lv, and Lw that are star-connected.
  • One ends of the drive coils Lu, Lv, and Lw are connected to drive coil terminals TU, TV, and TW of U-phase, V-phase, and W-phase wirings extending from the inverter 25, respectively.
  • the other ends of the drive coils Lu, Lv, and Lw are connected to each other as a terminal TN.
  • These three-phase drive coils Lu, Lv, and Lw generate an induced voltage according to the rotational speed and the position of the rotor 53 as the rotor 53 rotates.
  • the rotor 53 includes a multi-pole permanent magnet composed of an N pole and an S pole, and rotates about the rotation axis with respect to the stator 52.
  • the motor 51 is, for example, a compressor motor or a fan motor of a heat pump type air conditioner.
  • the motor driving device 10 includes a rectifying unit 21, a smoothing capacitor 22, a voltage detecting unit 23, a current detecting unit 24, an inverter 25, a gate driving circuit 26, and a control unit 40. I have. These may be mounted on, for example, one printed board.
  • the rectifying unit 21 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 22 and function as the positive side output terminal of the rectifying unit 21. The anode terminals of the diodes D1b and D2b are both connected to the negative side terminal of the smoothing capacitor 22 and function as the negative side output terminal of the rectifying unit 21.
  • connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 91.
  • a connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 91.
  • the rectifying unit 21 rectifies the AC voltage output from the commercial power supply 91 to generate a DC power supply, and supplies this to the smoothing capacitor 22.
  • the smoothing capacitor 22 has one end connected to the positive output terminal of the rectifying unit 21 and the other end connected to the negative output terminal of the rectifying unit 21.
  • the smoothing capacitor 22 smoothes the voltage rectified by the rectifying unit 21.
  • the voltage after smoothing by the smoothing capacitor 22 is referred to as a DC voltage Vdc.
  • the DC voltage Vdc is applied to the inverter 25 connected to the output side of the smoothing capacitor 22. That is, the rectifying unit 21 and the smoothing capacitor 22 constitute a power supply unit 20 for the inverter 25.
  • condenser although an electrolytic capacitor, a film capacitor, a tantalum capacitor etc. are mentioned, a film capacitor is employ
  • the voltage detector 23 is connected to the output side of the smoothing capacitor 22 and detects the voltage across the smoothing capacitor 22, that is, the value of the DC voltage Vdc.
  • the voltage detection unit 23 is configured such that two resistors connected in series with each other are connected in parallel to the smoothing capacitor 22 and the DC voltage Vdc is divided. The voltage value at the connection point between the two resistors is input to the control unit 40.
  • the current detection unit 24 is connected between the smoothing capacitor 22 and the inverter 25 and connected to the negative output terminal side of the smoothing capacitor 22.
  • the current detection unit 24 detects the motor current Im flowing through the motor 51 after the motor 51 is started as a total value of currents for three phases.
  • the current detection unit 24 may be composed of, for example, an amplifier circuit using a shunt resistor and an operational amplifier that amplifies the voltage across the resistor.
  • the motor current detected by the current detection unit 24 is input to the control unit 40.
  • Inverter 25 In the inverter 25, three upper and lower arms corresponding to the U-phase, V-phase, and W-phase drive coils Lu, Lv, and Lw of the motor 51 are connected in parallel to each other and to the output side of the smoothing capacitor 22.
  • an inverter 25 includes a plurality of IGBTs (insulated gate bipolar transistors, hereinafter referred to simply as transistors) Q3a, Q3b, Q4a, Q4b, Q5a, Q5b and a plurality of free-wheeling diodes D3a, D3b, D4a, D4b, D5a and D5b are included.
  • IGBTs insulated gate bipolar transistors
  • Transistors Q3a and Q3b, Q4a and Q4b, Q5a and Q5b are connected to each other in series to form each upper and lower arm, and the corresponding phase from each of connection points NU, NV, and NW formed thereby.
  • Output lines extend toward the drive coils Lu, Lv, and Lw.
  • the diodes D3a to D5b are connected in parallel to the transistors Q3a to Q5b so that the collector terminal of the transistor and the cathode terminal of the diode are connected, and the emitter terminal of the transistor and the anode terminal of the diode are connected.
  • Each of these transistors and diodes connected in parallel constitutes a switching element.
  • the DC voltage Vdc from the smoothing capacitor 22 is applied via the DC bus (power supply lines 801 and 802), and the transistors Q3a to Q5b are turned on and off at the timing instructed by the gate drive circuit 26.
  • drive voltages SU, SV, and SW for driving the motor 51 are generated.
  • the drive voltages SU, SV, SW are output to the drive coils Lu, Lv, Lw of the motor 51 from the connection points NU, NV, NW of the transistors Q3a and Q3b, Q4a and Q4b, and Q5a and Q5b.
  • the inverter 25 of this embodiment is a voltage source inverter, it is not limited to it, A current source inverter may be sufficient.
  • Gate drive circuit 26 The gate drive circuit 26 changes the on / off states of the transistors Q3a to Q5b of the inverter 25 based on the command voltage Vpwm from the control unit 40. Specifically, the gate drive circuit 26 includes the transistors Q3a to Q5b so that pulsed drive voltages SU, SV, and SW having a duty determined by the control unit 40 are output from the inverter 25 to the motor 51. Gate control voltages Gu, Gx, Gv, Gy, Gw, and Gz to be applied to the gate are generated. The generated gate control voltages Gu, Gx, Gv, Gy, Gw, Gz are applied to the gate terminals of the respective transistors Q3a to Q5b.
  • Control unit 40 is connected to the voltage detection unit 23, the current detection unit 24, and the gate drive circuit 26.
  • the control unit 40 drives the motor 51 by a rotor position sensorless method.
  • it since it is not limited to a rotor position sensorless system, you may carry out by a sensor system.
  • the rotor position sensorless method uses various parameters indicating the characteristics of the motor 51, the detection result of the voltage detection unit 23 after the motor 51 is started, the detection result of the current detection unit 24, a predetermined mathematical model related to the control of the motor 51, and the like.
  • the rotor position and the rotational speed are estimated, the PI control for the rotational speed, the PI control for the motor current, and the like are driven.
  • various parameters indicating the characteristics of the motor 51 include the winding resistance, inductance component, induced voltage, and number of poles of the motor 51 used. Since there are many patent documents regarding the rotor position sensorless control, refer to them for details (for example, Japanese Patent Laid-Open No. 2013-17289).
  • control unit 40 monitors the detection value of the voltage detection unit 23, and performs protection control to turn off the transistors Q3a to Q5b when the detection value of the voltage detection unit 23 exceeds a predetermined threshold value.
  • the brake circuit 61 includes three transistors 61u, 61v, and 61w.
  • the transistor 61u is connected in the middle of the wiring connecting the U-phase drive coil Lu and the common connection point N.
  • the transistor 61v is connected in the middle of the wiring connecting the V-phase drive coil Lv and the common connection point N.
  • the transistor 61w is connected in the middle of the wiring connecting the W-phase drive coil Lw and the common connection point N.
  • a reflux diode is connected to each of the transistors 61u to 61w.
  • Each base of the three transistors 61u, 61v, 61w is connected to the control unit 40 via a signal line.
  • control unit 40 While the motor 51 is rotating normally, the control unit 40 does not output drive signals to the bases of the three transistors 61u, 61v, 61w, and therefore, between the collectors and emitters of the three transistors 61u, 61v, 61w. Is a non-conductive state.
  • control unit 40 outputs drive signals to the bases of the three transistors 61u, 61v, 61w, the collectors and emitters become conductive, the drive coils Lu, Lv, Lw are connected, and the motor 51 is braked. Take it.
  • control unit 40 outputs a waveform to the gate drive circuit 26 and controls the waveform output state to drive the motor 51 at a predetermined rotational speed.
  • FIG. 2A is a diagram showing how voltage is applied to the upper and lower arms during operation of the motor drive device 10
  • FIG. 2B is a diagram showing how voltage is applied to the upper and lower arms when the motor drive device 10 is stopped.
  • the upper arm transistor Q3a corresponding to the drive coil Lu, the lower arm transistor Q4b corresponding to the drive coil Lv, and the lower arm transistor Q5b corresponding to the drive coil Lw are turned on.
  • the DC voltage Vdc is applied to the switching elements (transistors Q3b, Q4a, Q5a, diodes D3b, D4a, D5a) in which the upper and lower arms are off.
  • control unit 40 determines that the detection value of the voltage detection unit 23 exceeds a predetermined threshold, the control unit 40 turns off the transistors Q3a, Q3b, Q4a, Q4b, Q5a, and Q5b of the upper and lower arms.
  • the excessive voltage is applied to each of the two switching elements (transistors Q3a, Q3b, Q4a, Q4b, Q5a, Q5b, diodes D3a, D3b, D4a, D4b, D5a, D5b) connected in series. Divided at both ends. For example, the divided voltage value V1 is applied to both ends of the upper arm switching elements (transistors Q3a, Q4a, Q5a, diodes D3a, D4a, D5a), and the lower arm switching elements (transistors Q3b, Q4b, Q5b, diodes D3b, D4b). , D5b) is applied with a partial pressure value V2.
  • V1 V2 if the impedance of each switching element is equal, so that the overvoltage applied to one switching element is reduced to half that when either one is operating, and each switching element is destroyed. Can be protected.
  • control unit 40 After turning off the transistors Q3a to Q5b, the control unit 40 outputs drive signals to the respective bases of the three transistors 61u, 61v, 61w of the brake circuit 61, and makes the collectors and emitters conductive. As a result, the motor 51 is braked.
  • the purpose of braking the motor 51 is that the diodes D3a to D5b of the switching element are likely to be turned on by the energy of the inductance component of the motor 51 and the induced voltage due to the rotation of the motor 51. Even if the diodes D3a to D5b are turned on, the time during which the diodes D3a to D5b are turned on can be shortened by applying an electric brake to the motor 51 and quickly stopping it.
  • control unit 40 does not brake the motor 51 except when the detection value of the voltage detection unit 23 exceeds the threshold value. That is, unnecessary motor stops are suppressed by limiting the operation of the brake only to overvoltage.
  • FIG. 3 is a block diagram showing an overall configuration of a system 100 in which a motor drive device 10 according to a second embodiment of the present invention is employed and an internal configuration of the motor drive device 10.
  • the motor drive device 10 is provided with a resistance load 71 and a relay circuit 73 in place of the brake circuit 61 in the first embodiment shown in FIG. Accordingly, the resistance load 71 and the relay circuit 73 will be described here, and the other elements are the same as those in the first embodiment (the configuration excluding the brake circuit 61). Is omitted.
  • the resistance load 71 is composed of three resistance elements 71u, 71v, 71w.
  • the resistance element 71u is connected in the middle of a line connecting the U-phase drive coil Lu and the common connection point N.
  • the resistance element 71v is connected in the middle of a line connecting the V-phase drive coil Lv and the common connection point N.
  • the resistance element 71 w is connected in the middle of a line connecting the W-phase drive coil Lw and the common connection point N.
  • each line is interrupted by a relay circuit 73.
  • the relay circuit 73 includes a relay contact 73a for electrically opening and closing lines connecting the drive coils Lu, Lv, and Lw of each phase of the motor 51 and the corresponding resistance elements 71u, 71v, and 71w, and a relay contact 73a.
  • a relay coil 73b to be operated and a transistor 73c for energizing and de-energizing the relay coil 73b are included.
  • One end of the relay coil 73b is connected to the positive electrode of the driving power supply Vb, and the other end is connected to the collector side of the transistor 73c.
  • the control unit 40 switches between the presence and absence of the base current of the transistor 73c, turns on and off the collector and the emitter, and energizes and de-energizes the relay coil 73b.
  • control unit 40 determines that the detection value of the voltage detection unit 23 has exceeded a predetermined threshold, it is the same as in the first embodiment until the transistors Q3a to Q5b of the upper and lower arms are turned off. The description is omitted.
  • the control unit 40 turns off the transistors Q3a to Q5b and then outputs a drive signal to the base of the transistor 73c of the relay circuit 73 so that each collector-emitter is in a conductive state.
  • the relay coil 73b is excited, the relay contact 73a is closed, the resistance element 71u and the U-phase drive coil Lu, the resistance element 71v and the V-phase drive coil Lv, and further the resistance elements 71w and W
  • the phase drive coil Lw is connected, and the energy of the inductance component of the motor 51 is consumed in a short time by the resistance elements 71u, 71v, 71w, and an electric brake is applied.
  • the diodes D3a to D5b are turned on by the energy and induced voltage of the inductance component of the motor 51. Even if the diodes D3a to D5b are turned on, the energy of the inductance component of the motor 51 is converted into the resistance elements 71u, By consuming 71v and 71w in a short time, the time during which the diodes D3a to D5b are on can be shortened.
  • FIG. 4 is a block diagram showing an overall configuration of a system 100 in which a motor drive device 10 according to a third embodiment of the present invention is employed and an internal configuration of the motor drive device 10.
  • the motor drive device 10 according to the third embodiment can be attached to and detached from the output shaft of the motor 51 in a configuration in which the electric brake circuit 61 in the first embodiment shown in FIG. 1 is removed.
  • a mechanical brake 81 is newly provided. Therefore, the brake 81 will be described here, and the other elements are the same as those in the first embodiment (the configuration excluding the brake circuit 61).
  • the brake 81 is a mechanical brake, and includes an electromagnetic clutch 83 and a load 85 connected to the rotating shaft of the motor 51 via the electromagnetic clutch 83.
  • the electromagnetic clutch 83 connects or releases the rotating shaft of the motor 51 and the load 85 according to a drive signal from the control unit 40.
  • the load 85 is composed of a rotary disk or a rotary damper having a moment of inertia sufficiently larger than that of the rotor 53 of the motor 51 in order to attenuate the rotational force of the rotor 53.
  • the load 85 is not limited to the rotary disk and the rotary damper, and the load 85 may be anything that can attenuate the rotational force of the rotor 53.
  • control unit 40 determines that the detection value of the voltage detection unit 23 has exceeded a predetermined threshold, it is the same as in the first embodiment until the transistors Q3a to Q5b of the upper and lower arms are turned off. The description is omitted.
  • the control unit 40 turns off the transistors Q3a to Q5b and then operates the electromagnetic clutch 83 to connect the rotating shaft of the motor 51 and the load 85.
  • an electric brake or a mechanical brake is provided to brake the motor 51 with the energy of the inductance component of the motor 51 and the rotational energy of the motor 51. Is consumed in a short time, and the time during which the switching elements (diodes D3a to D5b) are on is shortened.
  • control unit 40 determines that the detection value of the voltage detection unit 23 exceeds the threshold value, all the transistors in one of the two transistors Q3a, Q3b, Q4a, Q4b, Q5a, and Q5b of all the upper and lower arms After turning on, all the transistors Q3a to Q5b are turned off.
  • the current from the motor 51 is returned and the rotational energy of the motor 51 is reduced. While preventing the DC voltage from being boosted due to regeneration, the current is attenuated to 0 by the internal impedance of the motor 51.
  • FIG. 5 is a block diagram showing an overall configuration of a system 100 in which a motor drive device 10 according to another embodiment of the present invention is employed and an internal configuration of the motor drive device 10.
  • the motor drive device 10 has a configuration in which the brake circuit 61 is removed from the first embodiment shown in FIG. Yes.
  • the smoothing capacitor is an electrolytic capacitor 77. Therefore, here, the relay circuit 75 and the electrolytic capacitor 77 will be described, and the other elements are the same as those in the first embodiment (the configuration excluding the brake circuit 61). Is omitted.
  • the relay circuit 75 includes a relay contact 75a for opening and closing the power supply line 801, a relay coil 75b for operating the relay contact 75a, and a transistor 75c for energizing and de-energizing the relay coil 75b. Contains.
  • the controller 40 switches between the presence and absence of the base current of the transistor 75c, turns on and off the collector and the emitter, and performs energization and de-energization of the relay coil 75b.
  • the relay circuit 75 closes the power supply line 801, that is, makes it conductive. On the other hand, at the time of overvoltage, the relay circuit 75 cuts off the power supply line 801 in response to a signal output from the control unit 40.
  • Electrolytic capacitor 77 is an electrolytic capacitor connected in parallel with the inverter 25.
  • the state in which the overvoltage is applied to the electrolytic capacitor 77 continues for a period of about 10 msec from when the relay circuit 75 receives the signal output from the control unit 40 to when the power supply line 801 is cut off. That is, it is assumed that the overvoltage value may exceed the withstand voltage of the electrolytic capacitor 77 between the time when the voltage detection unit 23 detects the overvoltage and the time when the relay circuit 75 shuts off the power supply line 801.
  • FIG. 6 is a graph of voltage / current characteristics showing the relationship between the voltage applied to both ends of the electrolytic capacitor 77 and the current flowing through the electrolytic capacitor 77.
  • the formation voltage when a voltage higher than the withstand voltage of the oxide film is applied, the formation of the oxide film is performed (the voltage at this time is referred to as the formation voltage), and the current flowing in the electrolytic capacitor 77 Will increase.
  • the electrolytic capacitor 77 is not broken in about 10 msec, and the voltage at both ends thereof is clamped by the conversion voltage.
  • FIG. 7A is a graph showing control with respect to a change in DC voltage Vdc. 5 and 7A, when the DC voltage Vdc increases and the detection value of the voltage detection unit 23 exceeds the overvoltage threshold, the control unit 40 cuts off the power supply line 801 through the relay circuit 75.
  • the DC voltage Vdc exceeds the capacitor withstand voltage until the relay contact 75a of the relay circuit 75 cuts off the power supply line 801, but is clamped to the formation voltage (generally about 1.3 to 1.5 times the capacitor withstand voltage). Is done.
  • the element breakdown voltage of the semiconductor switching element transistor, diode
  • the relay contact 75a cuts off the power supply line 801 during the voltage clamping period, so the DC voltage Vdc is The breakdown voltage of the semiconductor device is not reached.
  • the overvoltage applied to the inverter 25 can be suppressed to the formation voltage of the electrolytic capacitor 77, and the relay circuit 75 is connected to the power line 801 within that period.
  • the relay circuit 75 is connected to the power line 801 within that period.
  • the avalanche region is a region where a phenomenon in which carriers rapidly flow exceeding a certain breakdown voltage of a semiconductor occurs.
  • FIG. 7B is a graph in which the change in the voltage Vds at both ends of the semiconductor element having the avalanche region is placed on the graph showing the control with respect to the change in the DC voltage Vdc in FIG. 7A.
  • the voltage Vds across the MOSFET generally becomes higher than the DC voltage Vdc due to a surge generated by wiring inductance or a boosting operation.
  • the voltage Vds rises as the DC voltage Vdc rises as the power supply voltage rises.
  • the semiconductor device breakdown voltage of the MOSFET is lower than the formation voltage of the electrolytic capacitor, and the voltage Vds exceeds the semiconductor device breakdown voltage before the voltage across the electrolytic capacitor 77 is clamped by the formation voltage. Even when it is clamped by the avalanche voltage, the voltage across the electrolytic capacitor 77 is clamped by the formation voltage during that time, and then the relay contact 75a cuts off the power supply line 801.
  • the avalanche operation can withstand overvoltage, so that it is not necessary to make the MOSFET a high withstand voltage product.
  • the avalanche energy of the MOSFET can be suppressed by clamping the voltage across the electrolytic capacitor 77 with the formation voltage.
  • a charge pump circuit is configured. Since the withstand voltage of the switch or the like is generally designed to be about the withstand voltage of one switching element (that is, about the normal DC voltage Vdc), the final withstand voltage capability is the withstand voltage of the switch or the like constituting the charge pump circuit (see FIG. 10). Limited by ability.
  • the first switch element 465 is turned on and the second switch element 466 is turned off, whereby the first capacitor 461 is charged. Thereafter, the first switch element 465 is turned off and the second switch element 466 is turned on, whereby the charge accumulated in the first capacitor 461 is transferred to the second capacitor 462.
  • the upper arm driving power source charged second capacitor 462 can be created. Charging of the first capacitor 461 and the second capacitor 462 is performed by the oscillation circuit 464.
  • the second capacitor 462 is charged up to Vb, but since the low potential side of the second capacitor 462 is connected to Vdc, the high potential side of the second capacitor 462 becomes Vb + Vdc.
  • both the first switch element 465 and the second switch element 466 need to have a breakdown voltage equal to or higher than Vb + Vdc, and are normally designed with a breakdown voltage equivalent to one switching element (that is, about a normal DC voltage Vdc). Is done. Therefore, there remains a problem that the breakdown voltage at the time of overvoltage is limited to the breakdown voltage of the first switch element 465 and the second switch element 466.
  • the bootstrap system is used as a system for creating a driving power source for the upper arm side switching element (increasing the gate potential corresponding to the changing upper and lower arm connection point potential). It is preferable.
  • FIG. 8 is a circuit diagram of the main part of the motor drive device 10 provided with the bootstrap circuit 31.
  • a bootstrap circuit 31 is provided to increase the gate potential of the upper arm side switching element.
  • the gate drive circuit 26 and the bootstrap circuit 31 will be described.
  • the gate drive circuit 26 includes an upper arm side drive circuit 26a for driving the upper arm side transistors Q3a, Q4a, and Q5a, and a lower arm side transistor Q3b, A lower arm side drive circuit 26b for driving Q4b and Q5b, and 10 terminals Vcc, Vdd, Hin, Lin, Vss, Vbo, Ho, Vs, Lo, and COM.
  • the positive electrode of the driving power source Vb for driving the transistor is connected to the terminal Vcc, and the positive electrode of the logic power source Vc is connected to the terminal Vdd.
  • the signal line from the control unit 40 is connected to the terminal Hin and the terminal Lin, and the negative electrodes of the driving power supply Vb and the logic power supply Vc are connected to the terminal Vss and also connected to the negative electrode of the motor power supply (DC voltage Vdc). ing.
  • the line branched from the high potential side pole of the capacitor 311 of the bootstrap circuit 31 is connected to the terminal Vbo, the emitters of the transistors Q3a, Q4a, and Q5a are connected to the terminal Vs, and the transistors Q3b, Q4b, and Q5b are connected to each other.
  • the emitter is connected to the terminal COM.
  • the gates of the transistors Q3a, Q4a, and Q5a are connected to the terminal Ho, and the gates of the transistors Q3b, Q4b, and Q5b are connected to the terminal Lo.
  • the transistors Q3a, Q4a, Q5a, Q3b, Q4b, and Q5b are turned on / off by the gate drive circuit 26 controlling the gate potential via the terminal Ho and the terminal Lo.
  • the operation of the gate drive circuit 26 is controlled based on a duty ratio control signal input from the control unit 40 to the terminal Hin and the terminal Lin.
  • the gate drive circuit 26 includes a drive power supply Vb connected to the terminal Vcc in order to appropriately input a gate potential to the transistors Q3a, Q4a, Q5a on the upper arm side.
  • the bootstrap circuit 31 is provided between the positive electrode of the transistor and the emitters of the transistors Q3a, Q4a, and Q5a.
  • FIG. 8 shows only the gate drive circuit 26 corresponding to the transistors Q3a and Q3b of the upper and lower arms and the bootstrap circuit 31 corresponding to the gate drive circuit 26.
  • a gate drive circuit and a bootstrap circuit are provided correspondingly.
  • the bootstrap circuit 31 includes a capacitor 311, a resistor 312, and a diode 313.
  • One end of the capacitor 311 is connected to a connection point NU between the emitter of the transistor Q3a on the upper arm side and the collector of the transistor Q3b on the lower arm side.
  • the other end of the capacitor 311 is connected to the positive electrode of the driving power supply Vb via a resistor 312 and a diode 313.
  • the resistor 312 is provided to limit the charging current of the capacitor 311, and the diode 313 is arranged in order so that the capacitor 311 is not discharged via the resistor 312, and the current does not flow to Vb even when the Vs potential changes.
  • the direction is directed from the positive electrode side of the driving power supply Vb to the capacitor 311 side.
  • the upper arm side drive circuit 26a inside the gate drive circuit 26 takes in a high potential from the capacitor 311 in order to control on / off of the transistor Q3a.
  • the lower arm side drive circuit 26b in the gate drive circuit 26 controls on / off of the transistor Q3b. However, since the emitter side of the transistor Q3b is grounded, the potential of the positive electrode of the drive power supply Vb connected to the terminal Vcc. Can only be controlled.
  • the capacitor 311 since the capacitor 311 is charged, it can be used as an upper arm side driving power source.
  • the Vs potential changes between Vdc and 0 by switching of the upper and lower arm transistors, but no current flows to the Vb side due to the diode 313.
  • the withstand voltage of the diode 313 is normally designed to a value that can withstand the normal rated voltage (that is, one element withstand voltage) of the DC section.
  • the midpoint potential of the upper and lower arms is at most about one device breakdown voltage (there is no need to consider since the device will be destroyed if it is higher), so the bootstrap circuit 31 has a circuit configuration.
  • a design that can withstand the normal rated voltage (that is, one-element breakdown voltage) of the DC section is sufficient.
  • the bootstrap circuit 31 (see FIG. 8) is recommended as a method for raising the gate potential of the upper arm side switching element instead of the charge pump method, but is not limited thereto.
  • FIG. 9 is a circuit diagram of the main part of the motor drive device 10 provided with the insulated power source 36.
  • an insulated power source 36 is provided for each gate of the upper arm.
  • FIG. 9 shows only the gate drive circuit 26 corresponding to the transistors Q3a and Q3b of the upper and lower arms and the insulated power supply 36 corresponding to the gate drive circuit 26.
  • a gate drive circuit and an insulated power supply are provided.
  • the middle point potential of the upper and lower arms is at most one element withstand voltage. Since the power supply becomes to the extent (the element is destroyed beyond that), a design that can withstand the normal rated voltage (that is, the one-device breakdown voltage) of the DC section is sufficient for the insulated power supply 36.
  • FIG. 11 is a block diagram showing a circuit configuration of a motor drive device 10 according to a fourth embodiment of the present invention.
  • the overall system 100 includes a motor driving device 10 and a motor 51.
  • the motor drive device 10 has a configuration in which the brake circuit 61 is removed from the first embodiment shown in FIG. 1, and the balance circuits 33a, 33b, and 34a are newly added. , 34b, 35a, 35b, and an electrolytic capacitor is used as the smoothing capacitor 22.
  • an overvoltage protection circuit 50 a portion constituted by the voltage detection unit 23, the current detection unit 24, and the balance circuits 33a, 33b, 34a, 34b, 35a, and 35b is referred to as an overvoltage protection circuit 50.
  • the balance circuits 33a to 35b are composed of resistance elements.
  • the pair of balance circuits 33a and 33b correspond to a pair of switching elements (transistors Q3a and Q3b and diodes D3a and D3b) constituting the upper and lower arms.
  • the pair of balance circuits 34a and 34b corresponds to a pair of switching elements (transistors Q4a and Q4b and diodes D4a and D4b)
  • the pair of balance circuits 35a and 35b includes a pair of switching elements (transistors Q5a, Q5b and Corresponding to the diodes D5a, D5b).
  • the balance circuits 33a and 33b, 34a and 34b, 35a and 35b are connected to each other in series, and the connection points MU, MV, and MW formed thereby are transistors Q3a and Q3b, Q4a and Q4b, and Q5a and Q5b, respectively. It is connected to connection points NU, NV, NW formed by being connected in series.
  • a line connecting the connection point MU and the connection point NU is a line 47u
  • a line connecting the connection point MV and the connection point NV is a line 47v
  • a line connecting the connection point MW and the connection point NW is a line 47w.
  • control unit 40 outputs a waveform to the gate drive circuit 26 and controls the waveform output state to drive the motor 51 at a predetermined rotational speed.
  • FIG. 12A is a diagram showing how voltage is applied to the upper and lower arms during operation of the motor drive device 10
  • FIG. 12B is a diagram showing how voltage is applied to the upper and lower arms when the motor drive device 10 is stopped.
  • the upper arm transistor Q3a corresponding to the drive coil Lu, the lower arm transistor Q4b corresponding to the drive coil Lv, and the lower arm transistor Q5b corresponding to the drive coil Lw are turned on.
  • the DC voltage Vdc is applied to the off transistors of the upper and lower arms.
  • control unit 40 determines that the detection value of the voltage detection unit 23 exceeds a predetermined threshold, the control unit 40 turns off the transistors Q3a, Q3b, Q4a, Q4b, Q5a, and Q5b of the upper and lower arms.
  • the excessive voltage is applied to each of the two switching elements (transistors Q3a, Q3b, Q4a, Q4b, Q5a, Q5b, diodes D3a, D3b, D4a, D4b, D5a, D5b) connected in series. Divided at both ends. For example, the divided voltage value V1 is applied to both ends of the upper arm switching elements (transistors Q3a, Q4a, Q5a, diodes D3a, D4a, D5a), and the lower arm switching elements (transistors Q3b, Q4b, Q5b, diodes D3b, D4b). , D5b) is applied with a partial pressure value V2.
  • the balance circuits 33a and 33b are used as switching elements (transistors Q3a and Q3b, diodes D3a and D3b), and the balance circuits 34a and 34b are used as switching elements (transistors Q4a and Q4b, diodes D4a and D4b).
  • the circuits 35a and 35b are connected to correspond to the switching elements (transistors Q5a and Q5b, diodes D5a and D5b).
  • the divided voltage value V1 applied to both ends of the upper arm switching elements (transistors Q3a, Q4a, Q5a, diodes D3a, D4a, D5a) and the lower arm switching elements (transistors Q3b, Q4b, Q5b, diodes D3b, D4b). , D5b) can be made equal to the partial pressure value V2 applied to both ends.
  • the balance circuits 33a and 33b are transistors Q3a and Q3b and diodes D3a and D3b, the balance circuits 34a and 34b are transistors Q4a and Q4b, the diodes D4a and D4b, the balance circuits 35a and 35b are transistors Q5a and Q5b, and the diode D5a.
  • the divided voltage value V1 applied to both ends of the upper arm switching elements (transistors Q3a, Q4a, Q5a, diodes D3a, D4a, D5a) and the lower arm switching elements (transistors Q3b, Q4b, Q5b, diodes D3b, D4b, D5b) can be made equal to the divided voltage value V2 at both ends, and switching elements (transistors Q3a to Q5b and diodes D3a to D5b) caused by unequal voltage division can be obtained. Destruction It is possible to prevent.
  • FIG. 13 is a block diagram showing a circuit configuration of a motor drive device 10 according to the second embodiment of the present invention.
  • the entire system 100 includes a motor driving device 10 and a motor 51.
  • the motor drive device 10 is provided with relay circuits 43, 44, and 45 in addition to the fourth embodiment shown in FIG. Accordingly, the relay circuits 43, 44, and 45 will be described here, and the other elements are the same as those in the first embodiment, and thus the same names and symbols are assigned and detailed description thereof is omitted.
  • Relay circuits 43, 44, 45 open and close lines 47u, 47v, and 47w.
  • opening and closing the lines 47u, 47v, 47w means connecting or blocking between the connection point MU and the connection point NU, between the connection point MV and the connection point NV, and between the connection point MW and the connection point NW. It is to be.
  • Relay circuits 43, 44, and 45 include relay contacts 43a, 44a, and 45a, relay coils 43b, 44b, and 45b, and transistors 43c, 44c, and 45c.
  • Relay contacts 43a, 44a, 45a open and close lines 47u, 47v, 47w.
  • Relay coils 43b, 44b, and 45b operate relay contacts 43a, 44a, and 45a.
  • Transistors 43c, 44c, and 45c conduct and de-energize relay coils 43b, 44b, and 45b.
  • One end of the relay coils 43b, 44b, 45b is connected to the positive electrode of the driving power supply Vb, and the other end is connected to the collector side of the transistors 43c, 44c, 45c.
  • the control unit 40 switches the presence / absence of the base current of the transistors 43c, 44c, and 45c, turns on and off the collector and the emitter, and energizes and de-energizes the relay coils 43b, 44b, and 45b.
  • the relay circuits 43, 44, and 45 maintain the lines 47u, 47v, and 47w in a non-conductive state.
  • the drive signal is output from the control unit 40 to the bases of the transistors 43c, 44c, 45c of the relay circuits 43, 44, 45, the relay coils 43b, 44b, 45b are excited and relay contacts 43a, 44a, and 45a operate in a direction for conducting the lines 47u, 47v, and 47w.
  • control unit 40 determines that the detection value of the voltage detection unit 23 has exceeded a predetermined threshold, it is the same as in the first embodiment until the transistors Q3a to Q5b of the upper and lower arms are turned off. The description is omitted.
  • the control circuit 40 When the control unit 40 turns off the transistors Q3a, Q3b, Q4a, Q4b, Q5a, and Q5b of the upper and lower arms, the control circuit 40 connects the balance circuits 33a and 33b to the transistors Q3a, Q3b, and the relay circuit 43, 44, and 45, respectively.
  • the balance circuits 34a and 34b are connected to the diodes D3a and D3b so as to correspond to the transistors Q4a and Q4b and the diodes D4a and D4b, and the balance circuits 35a and 35b are connected to the transistors Q5a and Q5b and the diodes D5a and D5b.
  • the divided voltage value V1 applied to both ends of the upper arm switching elements (transistors Q3a, Q4a, Q5a, diodes D3a, D4a, D5a) and the lower arm switching elements (transistors Q3b, Q4b, Q5b, diodes D3b, D4b). , D5b) can be made equal to the partial pressure value V2 applied to both ends.
  • the control circuit 40 When the control unit 40 turns off the transistors Q3a, Q3b, Q4a, Q4b, Q5a, and Q5b of the upper and lower arms, the control circuit 40 connects the balance circuits 33a and 33b to the transistors Q3a, Q3b, and the relay circuits 43, 44, and 45, respectively. Since the balance circuits 34a and 34b are connected to the diodes D3a and D3b so as to correspond to the transistors Q4a and Q4b and the diodes D4a and D4b, and the balance circuits 35a and 35b are connected so as to correspond to the transistors Q5a and Q5b and the diodes D5a and D5b.
  • the balance circuit is connected only when the inverter is off, thereby suppressing the power consumption of the balance circuit. Can do.
  • the DC voltage Vdc is applied to the balance circuit on one arm side when the switching element of the inverter is turned on. If the resistance value is R, the power consumption of the balance circuit is (Vdc) 2 / R, but in the state where the balance circuit is not connected, the power consumption of the balance circuit is (Vdc) 2 / 2R. Power consumption can be reduced to 1 ⁇ 2.
  • the switch may be a semiconductor switch such as a MOSFET instead of a relay. In that case, since the balance circuit can be connected at a higher speed, the state where the partial pressure becomes uneven can be quickly removed.
  • a second switch for connecting / cutting off the balance circuit itself may be further provided.
  • FIG. 14 is a diagram illustrating how voltage is applied to the upper and lower arms when the balance circuits 33a and 33b are connected after the motor driving device 10 according to another embodiment is stopped.
  • the second switch 47 normally has the contact 47a turned off (opened), and the relay switch 43 of the relay circuit 43 is turned on. At the same time, the second switch 47 turns on the contact 47a (closed). The power consumption of the balance circuit in the state can be made zero.
  • the present invention can protect each transistor of the upper and lower arms from an overvoltage, and thus is useful not only for motor drive devices but also for other drive devices using inverters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

 本発明の課題は、瞬間的な過大電圧から機器を保護する小型・低コストの過電圧保護手段を備えたモータ駆動装置を提供することにある。モータ駆動装置(10)では、過大電圧発生時に上下アームの両方のトランジスタ(Q3a~Q5b)をオフすることによって、過大電圧は直列接続された2つのトランジスタそれぞれの両端に分圧され、1つのトランジスタにかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、トランジスタを破壊から保護することができる。また、モータ(51)のインダクタンス成分が持つエネルギー及びモータ51の誘起電圧によって、スイッチング素子(ダイオードD3a~D5b)がオンする可能性が高いが、上下アームの両方のトランジスタをオフした後、モータ(51)に電気的ブレーキをかけて素早く停止させることによって、スイッチング素子(ダイオード)がオンしている時間を短くすることができる。

Description

モータ駆動装置
 本発明は、モータ駆動装置に関する。
 交流電圧を整流して直流電圧を得る機器においては、直流電圧は交流電圧に応じて変動する。特に、電源電圧の変動が起こり易い地域で使用される機器は、電圧上昇時の対策如何によっては、機器の故障を招く虞がある。それゆえ、特許文献1(特開2007-166815号公報)に開示されているような過電圧保護手段が設けられる。この過電圧保護手段は、入力変圧器を負荷時タップ切換器付き変圧器とし、インバータに閾値以上の電圧が所定時間を越えて入力されたときに、負荷時タップ切換器付き変圧器のタップを低圧側に切り換えている。
 しかしながら、上記のような負荷時タップ切換器付き変圧器は大規模な電気設備向けとしては適しているが、家電製品などのインバータ制御されるモータの駆動装置に適用することは容易ではない。
 また、電源電圧が過大となるのに要する時間は極めて短く、上記のようなタップ切換は時間がかかり過ぎるので、そのようなモータ駆動装置を確実に保護することは困難である。さらに、半導体素子のような、過電圧に耐えうる時間が短いものについては、リレーによる遮断では保護ができない。かといって瞬間的な過大電圧のためだけに半導体素子などの耐圧を高くすることは高コスト化、大型化を招来する。
 そこで、本発明の課題は、瞬間的な過大電圧から機器を保護する小型・低コストの過電圧保護手段を備えたモータ駆動装置を提供することにある。
 本発明の第1観点に係るモータ駆動装置は、モータの複数の相それぞれに対応する複数の上下アームそれぞれが、2つのスイッチング素子を直列に接続することによって構成され、それによって形成された接続点それぞれから対応する前記相へ電圧を出力するモータ駆動装置であって、電源供給部と、電圧検出部と、制御部とを備えている。電源供給部は、上下アームに直流電圧Vdcを供給する。電圧検出部は、上下アームに並列に接続されている。制御部は、スイッチング素子をオンオフ動作させる。また、制御部は、電圧検出部の検出値が所定の閾値を超えたとき、上下アームの両方のスイッチング素子をオフにする。
 このモータ駆動装置では、上下アームのいずれかのスイッチング素子が動作している間は、直流電圧Vdcは上下アームのオフしているスイッチング素子にかかるので、過大電圧になったときはオフしている1つのスイッチング素子にその過大電圧がかかり破壊される可能性が高い。
 そこで、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 本発明の第2観点に係るモータ駆動装置は、第1観点に係るモータ駆動装置であって、モータのブレーキ回路をさらに備えている。制御部は、上下アームの両方のスイッチング素子をオフした後、モータにブレーキをかける。
 このモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 また、モータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンする可能性が高いが、上下アームの両方のスイッチング素子をオフした後、モータに電気的ブレーキをかけて素早く停止させることによって、インダクタンス成分のエネルギーを素早く消費すると共に、モータの回転エネルギーを素早く減衰させ、スイッチング素子がオンしている時間を短くすることができる。
 本発明の第3観点に係るモータ駆動装置は、第1観点又は第2観点に係るモータ駆動装置であって、抵抗負荷と、抵抗負荷接続手段とをさらに備えている。抵抗負荷接続手段は、2つのスイッチング素子の接続点と抵抗負荷との間を接続又は遮断する。制御部は、上下アームの両方のスイッチング素子をオフした後、その接続点と抵抗負荷とを接続する。
 このモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 また、モータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンする可能性が高いが、上下アームの両方のスイッチング素子をオフした後、モータの各相に抵抗負荷を連結し、モータのインダクタンス成分がもつエネルギーを抵抗負荷で短時間に消費させることによって、スイッチング素子がオンしている時間を短くすることができる。
 本発明の第4観点に係るモータ駆動装置は、第1観点から第3観点のいずれか1つに係るモータ駆動装置であって、モータの回転軸に着脱可能な機械的ブレーキをさらに備えている。制御部は、上下アームの両方のスイッチング素子をオフした後、モータに機械的なブレーキをかける。
 このモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 また、モータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンする可能性が高いが、上下アームの両方のスイッチング素子をオフした後、モータに機械的ブレーキをかけて素早く停止させることによって、モータの回転エネルギーを減衰させ、スイッチング素子がオンしている時間を短くすることができる。
 本発明の第5観点に係るモータ駆動装置は、第1観点から第4観点のいずれか1つに係るモータ駆動装置であって、制御部は、電圧検出部の検出値が閾値を超えたとき、全ての上下アームの2つのスイッチング素子のいずれか片方のアームのスイッチング素子全てをオンにした後、全てのスイッチング素子をオフにする。
 このモータ駆動装置では、全ての上下アームの2つのスイッチング素子のいずれか片方のアームのスイッチング素子全てをオンにすることによって、モータからの電流を還流させ、モータの回転エネルギーの回生による直流電圧の昇圧を防止しながら、モータ内部インピーダンスで電流を減衰させて0とする。その後、全ての上下アームのスイッチング素子をオフにして、仮にモータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンしても、そのオンしている時間を短くすることができる。
 本発明の第6観点に係るモータ駆動装置は、第2観点から第5観点のいずれか1つに係るモータ駆動装置であって、制御部は、電圧検出部の検出値が閾値を超えたとき以外は、前記モータに前記ブレーキをかけない。
 このモータ駆動装置では、ブレーキの稼動を過電圧時のみに限定することによって、不必要なモータ停止を抑制する。
 本発明の第7観点に係るモータ駆動装置は、第1観点から第6観点のいずれか1つに係るモータ駆動装置であって、ブートストラップ回路をさらに備えている。ブートストラップ回路は、上下アームの上アーム側スイッチング素子の駆動電源のために、そのスイッチング素子の低電位側よりも高い電位を生成する。
 このモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。言い換えれば、直列接続された2つのスイッチング素子のそれぞれが素子耐圧まで耐え得るため、直流電圧部(以下、DC部と略す)の電圧としては、一素子耐圧の倍の電圧まで耐え得ることになる。
 このとき、上下アームの中点電位は最大でも一素子耐圧程度である(それ以上であれば素子が破壊してしまうため考慮の必要がない)ので、ブートストラップ回路については、その回路構成上、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る設計で十分である。
 本発明の第8観点に係るモータ駆動装置は、第1観点から第6観点のいずれか1つに係るモータ駆動装置であって、絶縁電源をさらに備えている。絶縁電源は、上下アームの上アーム側スイッチング素子の駆動に利用される。
 このモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 このとき、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、上下アームの中点電位は最大でも一素子耐圧程度までとなる(それ以上は素子が破壊する)ので、絶縁電源については、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る設計で十分である。
 本発明の第9観点に係るモータ駆動装置は、第1観点に係るモータ駆動装置であって、バランス回路をさらに備えている。バランス回路は、電源供給部と上下アームとを結ぶ一対のDCバスと上記接続点との間に配置される。制御部は、スイッチング素子をオンオフ動作させる。また、制御部は、電圧検出部の検出値が所定の閾値を超えたとき、上下アームの両方のスイッチング素子をオフにする。
 上下アームのいずれかのスイッチング素子が動作している間は、直流電圧Vdcは上下アームのオフしているスイッチング素子にかかるので、過大電圧になったときはオフしている1つのスイッチング素子にその過大電圧がかかり破壊される可能性が高い。
 このモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分程度に低減されるので、スイッチング素子を破壊から保護することができる。
 但し、直流電圧Vdcは2つのスイッチング素子のインピーダンスの違いにより均等に分圧されることはないので、バランス回路を接続することによって、直流電圧Vdcが2つのスイッチング素子の両端にほぼ均等に分圧されるようにする。
 本発明の第10観点に係るモータ駆動装置は、第9観点に係るモータ駆動装置であって、バランス回路が、複数の上下アームのスイッチング素子ごとに対応するように配置されている。
 このモータ駆動装置では、例えばインバータ回路の場合、3対の上下アームが並列に接続されているので、各上下アームにバランス回路を接続することによって、過電圧時には直流電圧Vdcが各上下アームの2つのスイッチング素子の両端にほぼ均等に分圧されるので、スイッチング素子を破壊から保護することができる。
 本発明の第11観点に係る過電圧保護回路は、第9観点又は第10観点に係るモータ駆動装置であって、スイッチを備えている。スイッチは、直列接続された2つのスイッチング素子の接続点と、それに対応する一対のバランス回路の中間点との間を接続又は遮断する。制御部は、電圧検出部の検出値が所定の閾値を超えたとき、バランス回路を接続する。
 このモータ駆動装置では、接続点NU,NV,NWと、それに対応する一対のバランス回路の中間点との間にスイッチを配置し、インバータのオフ時のみバランス回路を接続することで、バランス回路の消費電力を抑制することができる。
 本発明の第12観点に係るモータ駆動装置は、第9観点から第11観点のいずれか1つに係るモータ駆動装置であって、バランス回路は抵抗素子で構成されている。
 このモータ駆動装置では、抵抗素子が比較的安価であるので、バランス回路の設置によるコスト増を抑制することができる。
 本発明の第1観点に係るモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 本発明の第2観点に係るモータ駆動装置では、上下アームの両方のスイッチング素子をオフしたとき、モータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンする可能性が高いが、上下アームの両方のスイッチング素子をオフした後、モータに電気的ブレーキをかけて素早く停止させることによって、スイッチング素子がオンしている時間を短くすることができる。
 本発明の第3観点に係るモータ駆動装置では、上下アームの両方のスイッチング素子をオフしたとき、モータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンする可能性が高いが、上下アームの両方のスイッチング素子をオフした後、モータの各相に抵抗負荷を連結し、モータのインダクタンス成分がもつエネルギーを抵抗負荷で短時間に消費させることによって、スイッチング素子がオンしている時間を短くすることができる。
 本発明の第4観点に係るモータ駆動装置では、上下アームの両方のスイッチング素子をオフしたとき、モータのインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってスイッチング素子がオンする可能性が高いが、上下アームの両方のスイッチング素子をオフした後、モータに機械的ブレーキをかけて素早く停止させることによって、スイッチング素子がオンしている時間を短くすることができる。
 本発明の第5観点に係るモータ駆動装置では、全ての上下アームの2つのスイッチング素子のいずれか片方のアームのスイッチング素子全てをオンにすることによって、モータからの電流を還流させ、モータの回転エネルギーの回生による直流電圧の昇圧を防止しながら、モータ内部インピーダンスで電流を減衰させて0とする。その後、全ての上下アームのスイッチング素子をオフにして、仮にモータのインダクタンス成分が持つエネルギー及び誘起電圧によってスイッチング素子がオンしても、そのオンしている時間を短くすることができる。
 本発明の第6観点に係るモータ駆動装置では、ブレーキの稼動を過電圧時のみに限定することによって、不必要なモータ停止を抑制する。
 本発明の第7観点に係るモータ駆動装置では、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、上下アームの中点電位は最大でも一素子耐圧程度までとなるので、ブートストラップ回路については、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る設計で十分である。
 本発明の第8観点に係るモータ駆動装置は、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、上下アームの中点電位は最大でも一素子耐圧程度までとなるので、絶縁電源については、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る設計で十分である。
 本発明の第9観点に係るモータ駆動装置では、上下アームのいずれかのスイッチング素子が動作している間は、直流電圧Vdcは上下アームのオフしているスイッチング素子にかかるので、過大電圧になったときはオフしている1つのスイッチング素子にその過大電圧がかかり破壊される可能性が高い。
 しかし、過大電圧発生時に上下アームの両方のスイッチング素子をオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分程度に低減されるので、スイッチング素子を破壊から保護することができる。
 但し、直流電圧Vdcは2つのスイッチング素子のインピーダンスの違いにより均等に分圧されることはないので、バランス回路を接続することによって、直流電圧Vdcが2つのスイッチング素子の両端にほぼ均等に分圧されるようにする。
 本発明の第10観点に係るモータ駆動装置では、インバータ回路の場合、3対の上下アームが並列に接続されているので、各上下アームにバランス回路を接続することによって、過電圧時には直流電圧Vdcが各上下アームの2つのスイッチング素子の両端にほぼ均等に分圧されるので、スイッチング素子を破壊から保護することができる。
 本発明の第11観点に係るモータ駆動装置では、接続点NU,NV,NWと、それに対応する一対のバランス回路の中間点との間にスイッチを配置し、インバータのオフ時のみバランス回路を接続することで、バランス回路の消費電力を抑制することができる。
 本発明の第12観点に係るモータ駆動装置では、抵抗素子が比較的安価であるので、バランス回路の設置によるコスト増を抑制することができる。
本発明の第1実施形態に係るモータ駆動装置が採用されているシステムの全体構成と、モータ駆動装置の回路構成とを示すブロック図。 モータ駆動装置の運転時における上下アームへの電圧のかかり方を示す図。 モータ駆動装置の停止時における上下アームへの電圧のかかり方を示す図。 本発明の第2実施形態に係るモータ駆動装置が採用されるシステムの全体構成と、モータ駆動装置の回路構成とを示すブロック図。 本発明の第3実施形態に係るモータ駆動装置が採用されるシステムの全体構成と、モータ駆動装置の回路構成とを示すブロック図。 本発明の他の実施形態に係るモータ駆動装置が採用されているシステムの全体構成と、モータ駆動装置の内部構成とを示すブロック図。 電解コンデンサの両端にかかる電圧と電解コンデンサに流れる電流との関係を示す電圧・電流特性のグラフ。 直流電圧Vdcの変化に対する制御を示すグラフ。 図7Aの直流電圧Vdcの変化に対する制御を示すグラフに、アバランシェ領域を持つ半導体素子の両端の電圧Vdsの変化を載せたグラフ。 ブートストラップ回路を備えたモータ駆動装置の主要部の回路図。 絶縁電源を備えたモータ駆動装置の主要部の回路図。 チャージポンプ回路を備えたモータ駆動装置の主要部の回路図。 本発明の第4実施形態に係るモータ駆動装置の回路構成を示すブロック図。 モータ駆動装置の運転時における上下アームへの電圧のかかり方を示す図。 モータ駆動装置の停止時における上下アームへの電圧のかかり方を示す図。 モータ駆動装置の停止後、バランス回路を接続したときの上下アームへの電圧のかかり方を示す図。 本発明の第5実施形態に係るモータ駆動装置の回路構成を示すブロック図。 その他の実施形態に係るモータ駆動装置の停止後、バランス回路を接続したときの上下アームへの電圧のかかり方を示す図。
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 <第1実施形態>
 (1)概要
 図1は、本発明の第1実施形態に係るモータ駆動装置10が採用されているシステム100の全体構成と、モータ駆動装置10の内部構成とを示すブロック図である。図1において、システム100は、モータ駆動装置10とモータ51とで構成されている。
 (1-1)モータ51
 モータ51は、3相のブラシレスDCモータであって、ステータ52と、ロータ53とを備えている。ステータ52は、スター結線されたU相、V相及びW相の駆動コイルLu,Lv,Lwを含む。各駆動コイルLu,Lv,Lwの一方端は、それぞれインバータ25から延びるU相、V相及びW相の各配線の駆動コイル端子TU,TV,TWに接続されている。各駆動コイルLu,Lv,Lwの他方端は、互いに端子TNとして接続されている。これら3相の駆動コイルLu,Lv,Lwは、ロータ53が回転することによりその回転速度とロータ53の位置に応じた誘起電圧を発生させる。
 ロータ53は、N極及びS極からなる複数極の永久磁石を含み、ステータ52に対し回転軸を中心として回転する。
 なお、モータ51は、例えばヒートポンプ式空気調和機の圧縮機モータ、ファンモータである。
 (1-2)モータ駆動装置10
 モータ駆動装置10は、図1に示すように、整流部21と、平滑コンデンサ22と、電圧検出部23と、電流検出部24と、インバータ25と、ゲート駆動回路26と、制御部40とを備えている。これらは、例えば1枚のプリント基板上に実装されてもよい。
 (2)モータ駆動装置10の詳細構成
 (2-1)整流部21
 整流部21は、4つのダイオードD1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。ダイオードD1a,D2aの各カソード端子は、共に平滑コンデンサ22のプラス側端子に接続されており、整流部21の正側出力端子として機能する。ダイオードD1b,D2bの各アノード端子は、共に平滑コンデンサ22のマイナス側端子に接続されており、整流部21の負側出力端子として機能する。
 ダイオードD1a及びダイオードD1bの接続点は、商用電源91の一方の極に接続されている。ダイオードD2a及びダイオードD2bの接続点は、商用電源91の他方の極に接続されている。整流部21は、商用電源91から出力される交流電圧を整流して直流電源を生成し、これを平滑コンデンサ22へ供給する。
 (2-2)平滑コンデンサ22
 平滑コンデンサ22は、一端が整流部21の正側出力端子に接続され、他端が整流部21の負側出力端子に接続されている。平滑コンデンサ22は、整流部21によって整流された電圧を平滑する。以下、説明の便宜上、平滑コンデンサ22による平滑後の電圧を直流電圧Vdcという。
 直流電圧Vdcは、平滑コンデンサ22の出力側に接続されるインバータ25へ印加される。つまり、整流部21及び平滑コンデンサ22は、インバータ25に対する電源供給部20を構成している。
 なお、コンデンサの種類としては、電解コンデンサやフィルムコンデンサ、タンタルコンデンサ等が挙げられるが、本実施形態においては、平滑コンデンサ22としてフィルムコンデンサが採用される。
 (2-3)電圧検出部23
 電圧検出部23は、平滑コンデンサ22の出力側に接続されており、平滑コンデンサ22の両端電圧、即ち直流電圧Vdcの値を検出するためのものである。電圧検出部23は、例えば、互いに直列に接続された2つの抵抗が平滑コンデンサ22に並列接続され、直流電圧Vdcが分圧されるように構成される。それら2つの抵抗同士の接続点の電圧値は、制御部40に入力される。
 (2-4)電流検出部24
 電流検出部24は、平滑コンデンサ22及びインバータ25の間であって、かつ平滑コンデンサ22の負側出力端子側に接続されている。電流検出部24は、モータ51の起動後、モータ51に流れるモータ電流Imを三相分の電流の合計値として検出する。
 電流検出部24は、例えば、シャント抵抗及び該抵抗の両端の電圧を増幅させるオペアンプを用いた増幅回路で構成されてもよい。電流検出部24によって検出されたモータ電流は、制御部40に入力される。
 (2-5)インバータ25
 インバータ25は、モータ51のU相、V相及びW相の駆動コイルLu,Lv,Lwそれぞれに対応する3つの上下アームが互いに並列に、且つ平滑コンデンサ22の出力側に接続されている。
 図1において、インバータ25は、複数のIGBT(絶縁ゲート型バイポーラトランジスタ、以下、単にトランジスタという)Q3a,Q3b,Q4a,Q4b,Q5a,Q5b及び複数の還流用のダイオードD3a,D3b,D4a,D4b,D5a,D5bを含む。
 トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bは、それぞれ互いに直列に接続されることによって各上下アームを構成しており、それによって形成された接続点NU,NV,NWそれぞれから対応する相の駆動コイルLu,Lv,Lwに向かって出力線が延びている。
 各ダイオードD3a~D5bは、各トランジスタQ3a~Q5bに、トランジスタのコレクタ端子とダイオードのカソード端子が、また、トランジスタのエミッタ端子とダイオードのアノード端子が接続されるよう、並列接続されている。このそれぞれ並列接続されたトランジスタとダイオードにより、スイッチング素子が構成される。
 インバータ25は、平滑コンデンサ22からの直流電圧VdcがDCバス(電源ライン801,802)を介して印加され、かつゲート駆動回路26により指示されたタイミングで各トランジスタQ3a~Q5bがオン及びオフを行うことによって、モータ51を駆動する駆動電圧SU,SV,SWを生成する。この駆動電圧SU,SV,SWは、各トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bの各接続点NU,NV,NWからモータ51の駆動コイルLu,Lv,Lwに出力される。
 なお、本実施形態のインバータ25は、電圧形インバータであるが、それに限定されるものではなく、電流形インバータでもよい。
 (2-6)ゲート駆動回路26
 ゲート駆動回路26は、制御部40からの指令電圧Vpwmに基づき、インバータ25の各トランジスタQ3a~Q5bのオン及びオフの状態を変化させる。具体的には、ゲート駆動回路26は、制御部40によって決定されたデューティを有するパルス状の駆動電圧SU,SV,SWがインバータ25からモータ51に出力されるように、各トランジスタQ3a~Q5bのゲートに印加するゲート制御電圧Gu,Gx,Gv,Gy,Gw,Gzを生成する。生成されたゲート制御電圧Gu,Gx,Gv,Gy,Gw,Gzは、それぞれのトランジスタQ3a~Q5bのゲート端子に印加される。
 (2-7)制御部40
 制御部40は、電圧検出部23、電流検出部24、及びゲート駆動回路26と接続されている。本実施形態では、制御部40は、モータ51をロータ位置センサレス方式にて駆動させている。なお、ロータ位置センサレス方式に限定されるものではないので、センサ方式で行なってもよい。
 ロータ位置センサレス方式とは、モータ51の特性を示す各種パラメータ、モータ51起動後の電圧検出部23の検出結果、電流検出部24の検出結果、及びモータ51の制御に関する所定の数式モデル等を用いて、ロータ位置及び回転数の推定、回転数に対するPI制御、モータ電流に対するPI制御等を行い駆動する方式である。モータ51の特性を示す各種パラメータとしては、使用されるモータ51の巻線抵抗、インダクタンス成分、誘起電圧、極数などが挙げられる。なお、ロータ位置センサレス制御については多くの特許文献が存在するので、詳細はそれらを参照されたい(例えば、特開2013-17289号公報)。
 また、制御部40は、電圧検出部23の検出値を監視し、電圧検出部23の検出値が所定の閾値を超えたとき、トランジスタQ3a~Q5bをオフにする保護制御も行っている。
 (2-8)ブレーキ回路61
 図1において、ブレーキ回路61は、3つのトランジスタ61u、61v、61wで構成されている。トランジスタ61uは、U相の駆動コイルLuと共通接続点Nとを結ぶ配線途中に接続されている。トランジスタ61vは、V相の駆動コイルLvと共通接続点Nとを結ぶ配線途中に接続されている。トランジスタ61wは、W相の駆動コイルLwと共通接続点Nとを結ぶ配線途中に接続されている。また、トランジスタ61u~61wには、それぞれ還流用のダイオードが接続されている。
 3つのトランジスタ61u、61v、61wの各ベースは信号線を介して制御部40に接続されている。
 モータ51が正常に回転している間、制御部40は3つのトランジスタ61u,61v,61wの各ベースに駆動信号を出力していないので、3つのトランジスタ61u,61v,61wの各コレクタ-エミッタ間は非導通状態である。
 しかし、制御部40が3つのトランジスタ61u,61v,61wの各ベースに駆動信号を出力すると、各コレクタ-エミッタ間が導通状態となり、駆動コイルLu,Lv,Lwが接続され、モータ51にブレーキがかかる。
 (3)モータ駆動装置10の動作
 以下、モータ駆動装置10の動作について説明する。図1において、制御部40は、ゲート駆動回路26への波形出力を行なうと共に、その波形出力状態を制御して、モータ51を所定回転数で駆動する。
 図2Aはモータ駆動装置10の運転時における上下アームへの電圧のかかり方を示す図であり、図2Bはモータ駆動装置10の停止時における上下アームへの電圧のかかり方を示す図である。
 図2Aに示すように、運転中、駆動コイルLuに対応する上アームのトランジスタQ3a、駆動コイルLvに対応する下アームのトランジスタQ4b、及び駆動コイルLwに対応する下アームのトランジスタQ5bがオン動作している間は、直流電圧Vdcは各上下アームのオフしているスイッチング素子(トランジスタQ3b、Q4a、Q5a、ダイオードD3b、D4a、D5a)にかかっている。
 このとき、直流電圧Vdcが過大電圧になった場合、オフしているスイッチング素子のトランジスタとダイオードにその過大電圧がかかる。一つのスイッチング素子(トランジスタQ3a~Q5b、及びダイオードD3a~D5b)の素子耐圧をVrとすると、直流電圧Vdc>素子耐圧Vrとなったときにスイッチング素子のトランジスタQ3a~Q5bもしくはダイオードD3a~D5bが破壊される可能性が高い。
 そこで、制御部40は、電圧検出部23の検出値が所定の閾値を超えたと判断したとき、上下アームの両方のトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bをオフする。
 これによって、図2Bに示すように、過大電圧は直列接続された2つのスイッチング素子(トランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5b、ダイオードD3a,D3b,D4a,D4b,D5a,D5b)それぞれの両端に分圧される。例えば、上アームのスイッチング素子(トランジスタQ3a、Q4a、Q5a、ダイオードD3a,D4a,D5a)の両端には分圧値V1がかかり、下アームのスイッチング素子(トランジスタQ3b、Q4b、Q5b、ダイオードD3b,D4b,D5b)の両端には分圧値V2がかかる。理想的には各スイッチング素子のインピーダンスが等しければV1=V2となるので、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分にまで低減され、各スイッチング素子を破壊から保護することができる。
 さらに、制御部40は、トランジスタQ3a~Q5bをオフした後、ブレーキ回路61の3つのトランジスタ61u,61v,61wの各ベースに駆動信号を出力し、各コレクタ-エミッタ間を導通状態にする。その結果、モータ51にブレーキがかかる。
 モータ51にブレーキをかける目的は、モータ51のインダクタンス成分が持つエネルギー及びモータ51の回転による誘起電圧によってスイッチング素子のダイオードD3a~D5bがオンする可能性が高いためである。仮に、ダイオードD3a~D5bがオンしても、モータ51に電気的ブレーキをかけて素早く停止させることによって、ダイオードD3a~D5bがオンしている時間を短くすることができる。
 なお、本実施形態では、制御部40は、電圧検出部23の検出値が閾値を超えたとき以外は、モータ51にブレーキをかけないようにしている。つまり、ブレーキの稼動を過電圧時のみに限定することによって、不必要なモータ停止を抑制している。
 (4)第1実施形態の特徴
 (4-1)
 モータ駆動装置10では、過大電圧発生時に上下アームの両方のトランジスタQ3a~Q5bをオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。
 (4-2)
 モータ駆動装置10では、モータ51のインダクタンス成分が持つエネルギー及びモータ51の回転による誘起電圧によってダイオードD3a~D5bがオンする可能性が高いが、上下アームの両方のトランジスタQ3a~Q5bをオフした後、モータ51に電気的ブレーキをかけて素早く停止させることによって、ダイオードD3a~D5bがオンしている時間を短くすることができる。
 <第2実施形態>
 (1)概要
 図3は、本発明の第2実施形態に係るモータ駆動装置10が採用されているシステム100の全体構成と、モータ駆動装置10の内部構成とを示すブロック図である。
 図3おいて、第2実施形態に係るモータ駆動装置10は、図1で示された第1実施形態におけるブレーキ回路61に替えて、抵抗負荷71及びリレー回路73が設けられている。したがって、ここでは抵抗負荷71及びリレー回路73について説明し、それ以外の要素は第1実施形態(ブレーキ回路61を除いた構成)と同様であるので、同じ名称及び符号を付して詳細な説明を省略する。
 (2)モータ駆動装置10の詳細構成
 (2-1)抵抗負荷71
 図3において、抵抗負荷71は、3つの抵抗素子71u、71v、71wで構成されている。抵抗素子71uは、U相の駆動コイルLuと共通接続点Nとを結ぶラインの途中に接続されている。抵抗素子71vは、V相の駆動コイルLvと共通接続点Nとを結ぶラインの途中に接続されている。抵抗素子71wは、W相の駆動コイルLwと共通接続点Nとを結ぶラインの途中に接続されている。通常、上記各ラインはリレー回路73によって遮断されている。
 (2-2)リレー回路73
 リレー回路73は、モータ51の各相の駆動コイルLu,Lv,Lwと、それらに対応する各抵抗素子71u,71v,71wを結ぶラインを電気的に開閉するリレー接点73aと、リレー接点73aを動作させるリレーコイル73bと、リレーコイル73bへの通電と非通電とを行うトランジスタ73cとを含んでいる。リレーコイル73bの一端は、駆動用電源Vbの正極に接続され、他端はトランジスタ73cのコレクタ側に接続されている。制御部40は、トランジスタ73cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル73bへの通電と非通電を行う。
 (3)モータ駆動装置10の動作
 以下、モータ駆動装置10の動作について説明する。なお、制御部40が、電圧検出部23の検出値が所定の閾値を超えたと判断したとき、上下アームの両方のトランジスタQ3a~Q5bをオフするところまでは、第1実施形態と同じであるので、説明を省略する。
 制御部40は、トランジスタQ3a~Q5bをオフした後、リレー回路73のトランジスタ73cのベースに駆動信号を出力し、各コレクタ-エミッタ間を導通状態にする。このとき、リレーコイル73bが励磁され、リレー接点73aが閉じて、抵抗素子71uとU相の駆動コイルLuとを、また抵抗素子71vとV相の駆動コイルLvとを、さらに抵抗素子71wとW相の駆動コイルLwとを結び、モータ51のインダクタンス成分がもつエネルギーを抵抗素子71u,71v,71wで短時間に消費させ、電気的ブレーキをかける。
 モータ51のインダクタンス成分が持つエネルギー及び誘起電圧によってダイオードD3a~D5bがオンする可能性が高いが、仮に、ダイオードD3a~D5bがオンしても、モータ51のインダクタンス成分がもつエネルギーを抵抗素子71u,71v,71wで短時間に消費させることによって、ダイオードD3a~D5bがオンしている時間を短くすることができる。
 (4)第2実施形態の特徴
 (4-1)
 モータ駆動装置10では、過大電圧発生時に上下アームの両方のトランジスタQ3a~Q5bをオフすることによって、過大電圧は直列接続された2つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)それぞれの両端に分圧され、1つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子のトランジスタQ3a~Q5b及びダイオードD3a~D5bを破壊から保護することができる。
 (4-2)
 モータ駆動装置10では、モータ51のインダクタンス成分が持つエネルギー及びモータの回転による誘起電圧によってダイオードD3a~D5bがオンする可能性が高いが、上下アームの両方のトランジスタをオフした後、モータ51のインダクタンス成分がもつエネルギーを抵抗素子71u,71v,71wで短時間に消費させることによって、ダイオードD3a~D5bがオンしている時間を短くすることができる。
 <第3実施形態>
 (1)概要
 図4は、本発明の第3実施形態に係るモータ駆動装置10が採用されているシステム100の全体構成と、モータ駆動装置10の内部構成とを示すブロック図である。
 図4おいて、第3実施形態に係るモータ駆動装置10は、図1で示された第1実施形態における電気的なブレーキ回路61が取り外された構成において、モータ51の出力軸に着脱可能な機械的なブレーキ81が新たに設けられている。したがって、ここではブレーキ81について説明し、それ以外の要素は第1実施形態(ブレーキ回路61を除いた構成)と同様であるので、同じ名称及び符号を付して詳細な説明を省略する。
 (2)モータ駆動装置10の構成
 ブレーキ81は、機械的ブレーキであって、電磁クラッチ83と、モータ51の回転軸に電磁クラッチ83を介して接続される負荷85とで構成されている。電磁クラッチ83は、制御部40からの駆動信号によって、モータ51の回転軸と負荷85とを連結又は解除する。
 負荷85は、ロータ53の回転力を減衰させるため、モータ51のロータ53よりも十分に大きい慣性モーメントを有する回転盤、或いは、ロータリーダンパで構成されている。もちろん、回転盤及びロータリーダンパに限定されるものではなく、負荷85はロータ53の回転力を減衰することができるものであればよい。
 (3)モータ駆動装置10の動作
 以下、モータ駆動装置10の動作について説明する。なお、制御部40が、電圧検出部23の検出値が所定の閾値を超えたと判断したとき、上下アームの両方のトランジスタQ3a~Q5bをオフするところまでは、第1実施形態と同じであるので、説明を省略する。
 制御部40は、トランジスタQ3a~Q5bをオフした後、電磁クラッチ83を動作させて、モータ51の回転軸と負荷85とを連結する。
 このとき、モータ51のインダクタンス成分がもつエネルギーとモータ51の回転エネルギーとが、負荷85を回転させようとするエネルギーとして短時間に消費される。
 モータ51のインダクタンス成分が持つエネルギー及び回転による誘起電圧によってダイオードD3a~D5bがオンする可能性が高いが、仮に、ダイオードD3a~D5bがオンしても、モータ51のインダクタンス成分がもつエネルギーとモータ51の回転エネルギーとを負荷85を回転させようとするエネルギーとして短時間に消費させることによって、ダイオードD3a~D5bがオンしている時間を短くすることができる。
 (4)第3実施形態の特徴
 (4-1)
 モータ駆動装置10では、過大電圧発生時に上下アームの両方のトランジスタQ3a~Q5bをオフすることによって、過大電圧は直列接続された2つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)それぞれの両端に分圧され、1つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子のトランジスタQ3a~Q5b、及びダイオードD3a~D5bを破壊から保護することができる。
 (4-2)
 モータ駆動装置10では、モータ51のインダクタンス成分が持つエネルギー及び回転による誘起電圧によってダイオードD3a~D5bがオンする可能性が高いが、上下アームの両方のトランジスタQ3a~Q5bをオフした後、モータ51のインダクタンス成分がもつエネルギー及びモータ51の回転エネルギーを機械的なブレーキ81で短時間に消費させることによって、ダイオードD3a~D5bがオンしている時間を短くすることができる。
 <その他>
 (A)
 第1実施形態、第2実施形態及び第3実施形態では、電気的ブレーキ又は機械的ブレーキを設けて、モータ51のインダクタンス成分がもつエネルギーとモータ51の回転エネルギーとをモータ51にブレーキをかけることによって短時間に消費させ、スイッチング素子(ダイオードD3a~D5b)がオンしている時間を短くする、というものである。
 しかし、コスト的、構造的な観点からブレーキ回路又は機械的ブレーキを設けることができない場合もある。このような場合は、以下のような制御を行うと効果的である。
 例えば、制御部40が電圧検出部23の検出値が閾値を超えたと判断したとき、全ての上下アームの2つのトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bのいずれか片方のアームのトランジスタ全てをオンにした後、全てのトランジスタQ3a~Q5bをオフにする。
 全ての上下アームの2つのトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bのいずれか片方のアームのトランジスタ全てをオンにすることによって、モータ51からの電流を還流させ、モータ51の回転エネルギーの回生による直流電圧の昇圧を防止しながら、モータ51内部インピーダンスで電流を減衰させて0とする。
 その後、全ての上下アームのトランジスタQ3a~Q5bをオフにし、仮にモータ51のインダクタンス成分が持つエネルギー及びモータ51の誘起電圧によってダイオードD3a~D5bがオンしても、そのオンしている時間を短くすることができる。
 (B)
 (B-1)概要
 図5は、本発明の他の実施形態に係るモータ駆動装置10が採用されているシステム100の全体構成と、モータ駆動装置10の内部構成とを示すブロック図である。
 図5おいて、本実施形態に係るモータ駆動装置10は、図1で示された第1実施形態からブレーキ回路61を取り外した構成において、電源ラインを遮断するリレー回路75が新たに設けられている。また、平滑コンデンサを、電解コンデンサ77としている。したがって、ここではリレー回路75及び電解コンデンサ77について説明し、それ以外の要素は第1実施形態(ブレーキ回路61を除いた構成)と同様であるので、同じ名称及び符号を付して詳細な説明を省略する。
 (B-2)モータ駆動装置10の構成
 (B-2-1)リレー回路75
 図5において、リレー回路75は電源ライン801を開閉する。ここで、電源ライン801を開閉するとは、電源ライン801を導通又は遮断して非導通にすることである。
 図5に示すように、リレー回路75は、電源ライン801を開閉するリレー接点75aと、リレー接点75aを動作させるリレーコイル75bと、リレーコイル75bへの通電と非通電とを行うトランジスタ75cとを含んでいる。
 リレーコイル75bの一端は、駆動用電源Vbの正極に接続され、他端はトランジスタ75cのコレクタ側に接続されている。制御部40は、トランジスタ75cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル75bへの通電と非通電を行う。
 通常、リレー回路75は電源ライン801を閉、つまり導通状態にしている。他方、過電圧時には、制御部40からの信号出力を受けて、リレー回路75が電源ライン801を遮断する。
 (B-2-2)電解コンデンサ77
 電解コンデンサ77は、インバータ25と並列接続される、電解コンデンサである。ここで、リレー回路75が制御部40から信号出力を受けてから電源ライン801を遮断するまでに10msec程度の期間は、電解コンデンサ77に過電圧が印加された状態が継続する。つまり、電圧検出部23が過電圧を検出してからリレー回路75が電源ライン801を遮断するまでの間に、過電圧値が電解コンデンサ77の耐圧を超える可能性が想定される。
 図6は、電解コンデンサ77の両端にかかる電圧と電解コンデンサ77に流れる電流との関係を示す電圧・電流特性のグラフである。
 図6において、電解コンデンサ77の場合、酸化皮膜の耐圧よりも高い電圧がかかると、酸化皮膜が形成される化成が行われ(このときの電圧を化成電圧という)、電解コンデンサ77内に流れる電流は増加する。
 但し、電解コンデンサ77が10msec程度で破壊されることはなく、その両端電圧が化成電圧でクランプされる。
 (B-3)モータ駆動装置10の動作
 図7Aは、直流電圧Vdcの変化に対する制御を示すグラフである。図5及び図7Aにおいて、直流電圧Vdcが上昇し、電圧検出部23の検出値が過電圧閾値を超えたとき、制御部40はリレー回路75を介して電源ライン801を遮断する。
 リレー回路75のリレー接点75aが電源ライン801を遮断するまでの10msec程度の間に直流電圧Vdcはコンデンサ耐圧を超えるが、化成電圧(一般にコンデンサ耐圧の1.3~1.5倍程度)にクランプされる。ここで、半導体スイッチング素子(トランジスタ、ダイオード)の素子耐圧を、コンデンサの化成電圧よりも高い値としておけば、その電圧クランプ期間中にリレー接点75aが電源ライン801を遮断するので、直流電圧Vdcは半導体素子耐圧まで至らない。
 したがって、電解コンデンサ77の両端電圧が化成電圧でクランプされている期間は、インバータ25に印加される過電圧を電解コンデンサ77の化成電圧に抑えることができ、その期間内にリレー回路75が電源ライン801を遮断することによって、電解コンデンサ77を破壊から防止し、且つ、インバータ25のトランジスタ(IGBT)のようなアバランシェ領域を持たない半導体素子へのストレスを低減することができる。
 なお、アバランシェ領域とは、半導体のある耐圧を超えてキャリアが急激に流れる現象を起す領域である。
 次に、図7Bは、図7Aの直流電圧Vdcの変化に対する制御を示すグラフに、アバランシェ領域を持つ半導体素子の両端の電圧Vdsの変化を載せたグラフである。図7Bにおいて、例えば、インバータ25のトランジスタをIGBTに替えてMOSFETを採用した場合、MOSFET両端の電圧Vdsは配線インダクタンスによる発生サージもしくは昇圧動作などによって、一般に直流電圧Vdcよりも高くなる。そして、電圧Vdsは、電源電圧の上昇に伴う直流電圧Vdcの上昇に従って上昇する。
 この場合には、仮に、MOSFETの半導体素子耐圧が電解コンデンサの化成電圧よりも低い場合であって、電解コンデンサ77の両端電圧が化成電圧でクランプされる前に電圧Vdsが半導体素子耐圧を超えたときでも、アバランシェ電圧でクランプされるので、その間に電解コンデンサ77の両端電圧が化成電圧でクランプされ、その後、リレー接点75aが電源ライン801を遮断する。
 以上のように、電源ライン801が遮断されるまでの10msec程度の期間は、アバランシェ動作で過電圧に耐えるので、MOSFETを高耐圧品にする必要がなくなる。
 また、電解コンデンサ77の両端電圧が化成電圧でクランプされることにより、MOSFETのアバランシェエネルギーを抑制することもできる。
 (C)
 第3実施形態では機械的ブレーキのみを用いているが、第1実施形態や第2実施形態のようなブレーキ(電気的ブレーキ)を併用してもよい。
 (D)
 (D-1)チャージポンプ回路46採用時の課題
 上記第1、第2及び第3実施形態では、上下アームのスイッチング素子の過電圧保護を重点に説明してきた。しかし、実使用においては、過電圧はスイッチング素子に限らず、ゲート駆動回路26の出力回路にも及ぶ。
 特に、上アーム側スイッチング素子の駆動用電源を作成する(変動する上下アーム接続点電位に対応してゲート電位を高める)方式として、チャージポンプ方式が採用されている場合、チャージポンプ回路を構成するスイッチ等の耐圧は一般に一スイッチング素子の耐圧程度(すなわち通常時の直流電圧Vdc程度)に設計されているため、最終的な耐圧実力がチャージポンプ回路(図10参照)を構成するスイッチ等の耐圧実力に制限されてしまう。
 図10において、チャージポンプ回路46では、第1スイッチ素子465がオンし、第2スイッチ素子466がオフすることによって、第1コンデンサ461が充電される。その後、第1スイッチ素子465がオフし、第2スイッチ素子466がオンすることによって第1コンデンサ461に溜まった電荷が第2コンデンサ462に移される。この動作を繰り返すことで、上アーム駆動用電源(充電された第2コンデンサ462)を作成することができる。第1コンデンサ461及び第2コンデンサ462への充電は発振回路464によって行われる。
 第2コンデンサ462はVbまで充電されるが、第2コンデンサ462の低電位側がVdcに接続されているので、第2コンデンサ462の高電位側はVb+Vdcとなる。
 したがって、チャージポンプ回路46では、第1スイッチ素子465及び第2スイッチ素子466ともにVb+Vdc以上の耐圧が必要となり、通常はスイッチング素子一素子分程度の耐圧(すなわち通常時の直流電圧Vdc程度)で設計される。そのため、過電圧時の耐圧が第1スイッチ素子465及び第2スイッチ素子466の耐圧に制限されるという問題が残る。
 (D-2)ブートストラップ回路31の採用
 それゆえ、上アーム側スイッチング素子の駆動用電源を作成する(変動する上下アーム接続点電位に対応してゲート電位を高める)方式としてブートストラップ方式を用いることが好ましい。
 図8は、ブートストラップ回路31を備えたモータ駆動装置10の主要部の回路図である。図8において、上アーム側スイッチング素子のゲート電位を高めるため、ブートストラップ回路31が設けられている。ここでは、ゲート駆動回路26とブートストラップ回路31について説明する。
 (D-2-1)ゲート駆動回路26の構成
 ゲート駆動回路26は、内部に、上アーム側のトランジスタQ3a,Q4a,Q5aを駆動する上アーム側駆動回路26aと、下アーム側のトランジスタQ3b,Q4b,Q5bを駆動する下アーム側駆動回路26bとを有し、外部にはVcc、Vdd、Hin、Lin、Vss、Vbo、Ho、Vs、LoおよびCOMの10個の端子を有している。
 ゲート駆動回路26では、トランジスタを駆動する駆動用電源Vbの正極が端子Vccに接続され、ロジック用電源Vcの正極が端子Vddに接続されている。制御部40からの信号線は端子Hin、端子Linに接続され、駆動用電源Vbおよびロジック用電源Vcの負極は端子Vssに接続されるとともに、モータ用電源(直流電圧Vdc)の負極と接続されている。
 また、ブートストラップ回路31のコンデンサ311の高電位側の極から分岐したラインは端子Vboと接続され、トランジスタQ3a,Q4a,Q5aの各エミッタが端子Vsに接続され、トランジスタQ3b,Q4b,Q5bの各エミッタが端子COMに接続されている。さらに、トランジスタQ3a,Q4a,Q5aのゲートは端子Hoに接続され、トランジスタQ3b,Q4b,Q5bのゲートは端子Loに接続されている。
 トランジスタQ3a,Q4a,Q5a,Q3b,Q4b,Q5bのオン/オフは、ゲート駆動回路26が端子Hoおよび端子Loを介してゲート電位を制御することによって行われる。ゲート駆動回路26の動作は、制御部40から端子Hinおよび端子Linに入力されるデューティ比制御信号に基づいて制御される。
 (D-2-2)ブートストラップ回路31の構成
 ゲート駆動回路26は、上アーム側のトランジスタQ3a,Q4a,Q5aに適切にゲート電位を入力するために、端子Vccに接続された駆動用電源Vbの正極と、トランジスタQ3a,Q4a,Q5aの各エミッタとの間に、ブートストラップ回路31が設けられている。
 図8には、上下アームのトランジスタQ3a,Q3bに対応したゲート駆動回路26と、ゲート駆動回路26に対応するブートストラップ回路31とだけを記載しているが、実際には3組の上下アームそれぞれに対応してゲート駆動回路とブートストラップ回路とが設けられている。
 ブートストラップ回路31はコンデンサ311、抵抗312及びダイオード313で構成されている。コンデンサ311の一端は、上アーム側のトランジスタQ3aのエミッタと下アーム側のトランジスタQ3bのコレクタとの接続点NUに繋がっている。コンデンサ311の他端は、抵抗312とダイオード313を介して駆動用電源Vbの正極と繋がっている。
 抵抗312はコンデンサ311の充電電流を制限するために設けられ、ダイオード313は抵抗312を介してコンデンサ311が放電されないよう、また、Vs電位の変動時もVbに電流が流れないように、その順方向を駆動用電源Vbの正極側からコンデンサ311側へと向けている。
 ゲート駆動回路26内部の上アーム側駆動回路26aは、トランジスタQ3aのオンオフを制御するため、コンデンサ311から高電位を取り入れる。なお、ゲート駆動回路26内部の下アーム側駆動回路26bは、トランジスタQ3bのオンオフを制御するが、トランジスタQ3bのエミッタ側が接地されているので、端子Vccに接続された駆動用電源Vbの正極の電位だけで制御することができる。
 下アーム側駆動回路26bにより下アーム側のトランジスタQ3bをオンすることによって、駆動用電源Vb(正極)-ダイオード313-抵抗312-コンデンサ311-下アーム側トランジスタQ3b-駆動用電源Vb(負極)の経路で電流が流れる。このとき、コンデンサ311が充電されるので、上アーム側駆動用電源として用いることが可能となる。Vs電位は、上下アームのトランジスタのスイッチングによってVdc~0の間で変化するが、ダイオード313により、Vb側に電流が流れることはない。ここでダイオード313の耐圧は、通常、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る値に設計される。
 (D-3)ブートストラップ回路31採用時の効果
 モータ駆動装置10では、過大電圧発生時に上下アームの両方のトランジスタQ3a~Q5bをオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子を破壊から保護することができる。言い換えれば、直列接続された2つのスイッチング素子のそれぞれが素子耐圧まで耐え得るため、DC部の電圧としては、一素子耐圧の倍の電圧まで耐え得ることになる。
 このとき、上下アームの中点電位は最大でも一素子耐圧程度である(それ以上であれば素子が破壊してしまうため考慮の必要がない)ので、ブートストラップ回路31については、その回路構成上、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る設計で十分である。
 (E)
 上記(D)では、上アーム側スイッチング素子のゲート電位を高める方式として、チャージポンプ方式に替えてブートストラップ回路31(図8参照)を推奨しているが、それに限定されるものではない。
 図9は、絶縁電源36を備えたモータ駆動装置10の主要部の回路図である。図9において、上アームのゲートごとに絶縁電源36が設けられている。図9には、上下アームのトランジスタQ3a,Q3bに対応したゲート駆動回路26と、ゲート駆動回路26に対応する絶縁電源36とだけを記載しているが、実際には3組の上下アームそれぞれに対応してゲート駆動回路と絶縁電源とが設けられている。
 上記、ブートストラップ回路で説明したのと同様に、モータ駆動装置10では、過大電圧発生時に上下アームの両方のトランジスタQ3a~Q5bをオフすることによって、上下アームの中点電位は最大でも一素子耐圧程度までとなる(それ以上は素子が破壊する)ので、絶縁電源36については、DC部の通常の定格電圧(すなわち一素子耐圧)に耐え得る設計で十分である。
 <第4実施形態>
 (1)概要
 図11は、本発明の第4実施形態に係るモータ駆動装置10の回路構成を示すブロック図である。図11において、全体のシステム100は、モータ駆動装置10とモータ51とで構成されている。
 図11おいて、第4実施形態に係るモータ駆動装置10は、図1で示された第1実施形態からブレーキ回路61が取り外された構成にした上で、新たにバランス回路33a,33b,34a,34b,35a,35bが設けられ、さらに平滑コンデンサ22として電解コンデンサが採用されている。
 本実施形態では、電圧検出部23、電流検出部24、及びバランス回路33a,33b,34a,34b,35a,35bで構成される部分を過電圧保護回路50という。
 について説明し、それ以外の要素は第1実施形態(ブレーキ回路61を除いた構成)と同様であるので、同じ名称及び符号を付して詳細な説明を省略する。
 (2)バランス回路33a,33b,34a,34b,35a,35b
 バランス回路33a~35bは、抵抗素子で構成されている。一対のバランス回路33a,33bは、上下アームを構成する一対のスイッチング素子(トランジスタQ3a,Q3b及びダイオードD3a,D3b)と対応する。同様に、一対のバランス回路34a,34bは、一対のスイッチング素子(トランジスタQ4a,Q4b及びダイオードD4a,D4b)と対応し、一対のバランス回路35a,35bは、一対のスイッチング素子(トランジスタQ5a,Q5b及びダイオードD5a,D5b)と対応している。
 バランス回路33aと33b、34aと34b、35aと35bはそれぞれ互いに直列に接続され、それによって形成された接続点MU,MV,MWは、トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bがそれぞれ互いに直列に接続されることによって形成された接続点NU,NV,NWと繋がっている。
 説明の便宜上、接続点MUと接続点NUとを結ぶ配線をライン47u、接続点MVと接続点NVとを結ぶ配線をライン47v、接続点MWと接続点NWとを結ぶ配線をライン47wとする。
 (3)モータ駆動装置10の動作
 以下、モータ駆動装置10の動作について説明する。図11において、制御部40は、ゲート駆動回路26への波形出力を行なうと共に、その波形出力状態を制御して、モータ51を所定回転数で駆動する。
 図12Aはモータ駆動装置10の運転時における上下アームへの電圧のかかり方を示す図であり、図12Bはモータ駆動装置10の停止時における上下アームへの電圧のかかり方を示す図である。
 図12Aに示すように、運転中、駆動コイルLuに対応する上アームのトランジスタQ3a、駆動コイルLvに対応する下アームのトランジスタQ4b、及び駆動コイルLwに対応する下アームのトランジスタQ5bがオン動作している間は、直流電圧Vdcは各上下アームのオフしているトランジスタにかかっている。
 このとき、直流電圧Vdcが過大電圧になった場合、オフしているスイッチング素子のトランジスタQ3b,Q4a,Q5aとダイオードD3b,D4a,D5aにその過大電圧がかかる。一つのスイッチング素子(トランジスタQ3a~Q5b及びダイオードD3a~D5b)の素子耐圧をVrとすると、直流電圧Vdc>素子耐圧Vrとなったときにスイッチング素子のトランジスタQ3a~Q5bもしくはダイオードD3a~D5bが破壊される可能性が高い。
 そこで、制御部40は、電圧検出部23の検出値が所定の閾値を超えたと判断したとき、上下アームの両方のトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bをオフする。
 これによって、図2Bに示すように、過大電圧は直列接続された2つのスイッチング素子(トランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5b、ダイオードD3a、D3b,D4a,D4b,D5a,D5b)それぞれの両端に分圧される。例えば、上アームのスイッチング素子(トランジスタQ3a、Q4a、Q5a、ダイオードD3a,D4a,D5a)の両端には分圧値V1がかかり、下アームのスイッチング素子(トランジスタQ3b、Q4b、Q5b、ダイオードD3b,D4b,D5b)の両端には分圧値V2がかかる。理想的には各スイッチング素子のインピーダンスが等しければV1=V2となるので、1つのスイッチング素子にかかる過大電圧はどちらか一方が動作していた時の半分にまで低減され、各スイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)を破壊から保護することができる。
 但し、実際には、上下アームの両方のスイッチング素子(トランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5b、ダイオードD3a,D3b,D4a,D4b,D5a,D5b)の内部抵抗(漏れ電流)や素子の容量成分に応じて分圧されるので、均等な分圧にはならない。
 そこで、図1のようにバランス回路33a,33bをスイッチング素子(トランジスタQ3a,Q3b、ダイオードD3a,D3b)に、バランス回路34a,34bをスイッチング素子(トランジスタQ4a,Q4b、ダイオードD4a,D4b)に、バランス回路35a,35bをスイッチング素子(トランジスタQ5a,Q5b、ダイオードD5a,D5b)に対応するように接続する。
 これによって、上アームのスイッチング素子(トランジスタQ3a、Q4a、Q5a、ダイオードD3a,D4a,D5a)の両端にかかる分圧値V1と、下アームのスイッチング素子(トランジスタQ3b、Q4b、Q5b、ダイオードD3b,D4b,D5b)の両端にかかる分圧値V2とを均等にすることができる。
 (4)第1実施形態の特徴
 (4-1)
 モータ駆動装置10では、制御部40が過大電圧発生時に上下アームの両方のトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bをオフすることによって、過大電圧は直列接続された2つのスイッチング素子それぞれの両端に分圧され、1つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)を破壊から保護することができる。
 (4-2)
 バランス回路33a,33bをトランジスタQ3a,Q3b、及びダイオードD3a,D3bに、バランス回路34a,34bをトランジスタQ4a,Q4b、及びダイオードD4a,D4bに、バランス回路35a,35bをトランジスタQ5a,Q5b、及びダイオードD5a,D5bに対応するように接続するので、上アームのスイッチング素子(トランジスタQ3a、Q4a、Q5a、ダイオードD3a、D4a,D5a)の両端にかかる分圧値V1と、下アームのスイッチング素子(トランジスタQ3b、Q4b、Q5b、ダイオードD3b,D4b,D5b)の両端にかかる分圧値V2とを均等にすることができ、不均等な分圧に起因するスイッチング素子(トランジスタQ3a~Q5b及びダイオードD3a~D5b)の破壊を防止することができる。
 <第5実施形態>
 (1)概要
 図13は、本発明の第2実施形態に係るモータ駆動装置10の回路構成を示すブロック図である。図13において、全体のシステム100は、モータ駆動装置10とモータ51とで構成されている。
 図13において、第2実施形態に係るモータ駆動装置10は、図11で示された第4実施形態に加えて、リレー回路43,44,45が設けられている。したがって、ここではリレー回路43,44,45について説明し、それ以外の要素は第1実施形態と同様であるので、同じ名称及び符号を付して詳細な説明を省略する。
 (2)モータ駆動装置10の詳細構成
 (2-1)リレー回路43,44,45
 リレー回路43,44,45は、ライン47u,47v,47wを開閉する。ここで、ライン47u,47v,47wを開閉するとは、接続点MUと接続点NUとの間、接続点MVと接続点NVとの間、接続点MWと接続点NWとの間を接続又は遮断することである。
 リレー回路43,44,45は、リレー接点43a,44a,45aと、リレーコイル43b,44b,45bと、トランジスタ43c,44c,45cと、を含んでいる。
 リレー接点43a,44a,45aはライン47u,47v,47wを開閉する。リレーコイル43b,44b,45bは、リレー接点43a,44a,45aを動作させる。
 トランジスタ43c,44c,45cは、リレーコイル43b,44b,45bへの通電と非通電とを行う。
 リレーコイル43b,44b,45bの一端は、駆動用電源Vbの正極に接続され、他端はトランジスタ43c,44c,45cのコレクタ側に接続されている。
 制御部40は、トランジスタ43c,44c,45cのベース電流の有無を切り換えて、コレクタとエミッタ間をオンオフし、リレーコイル43b,44b,45bへの通電と非通電を行う。
 通常時、リレー回路43,44,45はライン47u,47v,47wを非導通状態に維持している。そして、制御部40から各リレー回路43,44,45のトランジスタ43c,44c,45cの各ベースに対して駆動信号が出力されたときに、各リレーコイル43b,44b,45bが励磁され、リレー接点43a,44a,45aがライン47u,47v,47wを導通させる方向に動作させる。
 (3)モータ駆動装置10の動作
 以下、モータ駆動装置10の動作について説明する。なお、制御部40が、電圧検出部23の検出値が所定の閾値を超えたと判断したとき、上下アームの両方のトランジスタQ3a~Q5bをオフするところまでは、第1実施形態と同じであるので、説明を省略する。
 制御部40は、上下アームの両方のトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bをオフするときに、リレー回路43,44,45を介して、バランス回路33a,33bをトランジスタQ3a,Q3b及びダイオードD3a,D3bに、バランス回路34a,34bをトランジスタQ4a,Q4b及びダイオードD4a,D4bに、バランス回路35a,35bをトランジスタQ5a,Q5b及びダイオードD5a,D5bに対応するように接続する。
 これによって、上アームのスイッチング素子(トランジスタQ3a、Q4a、Q5a、ダイオードD3a,D4a,D5a)の両端にかかる分圧値V1と、下アームのスイッチング素子(トランジスタQ3b、Q4b、Q5b、ダイオードD3b,D4b,D5b)の両端にかかる分圧値V2とを均等にすることができる。
 (4)第5実施形態の特徴
 (4-1)
 モータ駆動装置10では、過大電圧発生時に上下アームの両方のトランジスタQ3a~Q5bをオフすることによって、過大電圧は直列接続された2つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)それぞれの両端に分圧され、1つのスイッチング素子(トランジスタQ3a~Q5b、ダイオードD3a~D5b)にかかる過大電圧はどちらか一方が動作していた時の半分に低減されるので、スイッチング素子のトランジスタQ3a~Q5b及びダイオードD3a~D5bを破壊から保護することができる。
 (4-2)
 制御部40は、上下アームの両方のトランジスタQ3a、Q3b,Q4a、Q4b,Q5a、Q5bをオフする際に、リレー回路43,44,45を介して、バランス回路33a,33bをトランジスタQ3a,Q3b及びダイオードD3a,D3bに、バランス回路34a,34bをトランジスタQ4a,Q4b及びダイオードD4a,D4bに、バランス回路35a,35bをトランジスタQ5a,Q5b及びダイオードD5a,D5bに対応するように接続するので、上アームのスイッチング素子(トランジスタQ3a、Q4a、Q5a、ダイオードD3a、D4a,D5a)の両端にかかる分圧値V1と、下アームのスイッチング素子(トランジスタQ3b、Q4b、Q5b、ダイオードD3b,D4b,D5b)の両端にかかる分圧値V2とを均等にすることができ、不均等な分圧に起因するスイッチング素子(トランジスタQ3a~Q5b及びダイオードD3a~D5b)の破壊を防止することができる。
 (4-3)
 接続点NU,NV,NWと、それに対応する一対のバランス回路の中間点との間にスイッチを配置し、インバータのオフ時のみバランス回路を接続することで、バランス回路の消費電力を抑制することができる。
 すなわち、スイッチがなくバランス回路が常時接続されている場合には、インバータのスイッチング素子のオン時には、片アーム側のバランス回路に対して直流電圧Vdcが印加されることになるため、例えばバランス回路の抵抗値をRとすれば、バランス回路の消費電力は(Vdc)2/Rとなるが、バランス回路が接続されていない状態では、バランス回路の消費電力は(Vdc)2/2Rとなるため、消費電力を1/2に抑えることができる。
 <その他の実施形態>
 (A)
 スイッチはリレーではなく、MOSFETなどの半導体スイッチを用いてもよい。その場合はより高速にバランス回路を接続することができるため、分圧が不均一となる状態を早く脱することができる。
 (B)
 第2実施形態より更に消費電力を低減するため、バランス回路自体を接続/遮断する第2スイッチを更に設けてもよい。
 図14は、その他の実施形態に係るモータ駆動装置10の停止後、バランス回路33a,33bを接続したときの上下アームへの電圧のかかり方を示す図である。図14において、第2スイッチ47は通常は接点47aをオフ(開)としておき、リレー回路43のリレー接点43aをオンすると同時に第2スイッチ47が接点47aをオン(閉)とすることにより、通常状態におけるバランス回路の電力消費をゼロとすることができる。
 本願発明は、上下アームの各トランジスタを過電圧から保護することができるので、モータ駆動装置だけに限らす、インバータを用いた他の駆動装置に有用である。
10  モータ駆動装置
20  電源供給部
23  電圧検出部
31  ブートストラップ回路
33a  バランス回路
33b  バランス回路
34a  バランス回路
34b  バランス回路
35a  バランス回路
35b  バランス回路
36  絶縁電源
40  制御部
43   リレー回路(スイッチ)
44   リレー回路(スイッチ)
45   リレー回路(スイッチ)
50   過電圧保護回路
51  モータ
61  ブレーキ回路
71  抵抗負荷
73  リレー回路(抵抗負荷接続手段)
81  ブレーキ(機械的ブレーキ)
Q3a トランジスタ(スイッチング素子)
Q3b トランジスタ(スイッチング素子)
Q4a トランジスタ(スイッチング素子)
Q4b トランジスタ(スイッチング素子)
Q5a トランジスタ(スイッチング素子)
Q5b トランジスタ(スイッチング素子)
D3a ダイオード(スイッチング素子)
D3b ダイオード(スイッチング素子)
D4a ダイオード(スイッチング素子)
D4b ダイオード(スイッチング素子)
D5a ダイオード(スイッチング素子)
D5b ダイオード(スイッチング素子)
NU  接続点
NV  接続点
NW  接続点
Vdc 直流電圧
特開2007-166815号公報

Claims (12)

  1.  モータの複数の相それぞれに対応する複数の上下アームそれぞれが、2つのスイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b、D3a、D3b、D4a、D4b、D5a、D5b)を直列に接続することによって構成され、それによって形成された接続点(NU,NV,NW)それぞれから対応する前記相へ電圧を出力するモータ駆動装置であって、
     前記上下アームに直流電圧(Vdc)を供給する電源供給部(20)と、
     前記上下アームに並列に接続された電圧検出部(23)と、
     前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)をオンオフ動作させる制御部(40)と、
    を備え、
     前記制御部(40)は、前記電圧検出部(23)の検出値が所定の閾値を超えたとき、前記上下アームの両方の前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)をオフにする、
    モータ駆動装置(10)。
  2.  前記モータのブレーキ回路(61)をさらに備え、
     前記制御部(40)は、前記上下アームの両方の前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)をオフした後、前記モータにブレーキをかける、
    請求項1に記載のモータ駆動装置(10)。
  3.  抵抗負荷(71)と、
     前記接続点(NU,NV,NW)と前記抵抗負荷(71)との間を接続又は遮断する抵抗負荷接続手段(73)と、
    をさらに備え、
     前記制御部(40)は、前記上下アームの両方の前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)をオフした後、前記接続点(NU,NV,NW)と前記抵抗負荷(71)とを接続する、
    請求項1又は請求項2に記載のモータ駆動装置(10)。
  4.  前記モータの回転軸に着脱可能な機械的ブレーキ(81)をさらに備え、
     前記制御部(40)は、前記上下アームの両方の前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)をオフした後、前記モータに機械的なブレーキをかける、
    請求項1から請求項3のいずれか1項に記載のモータ駆動装置(10)。
  5.  前記制御部(40)は、前記電圧検出部(23)の検出値が前記閾値を超えたとき、全ての前記上下アームの2つの前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)のいずれか片方のアームの前記スイッチング素子全てをオンにした後、全ての前記スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)をオフにする、
    請求項1から請求項4のいずれか1項に記載のモータ駆動装置(10)。
  6.  前記制御部(40)は、前記電圧検出部(23)の検出値が前記閾値を超えたとき以外は、前記モータに前記ブレーキをかけない、
    請求項2から請求項5のいずれか1項に記載のモータ駆動装置(10)。
  7.  前記上下アームの上アーム側スイッチング素子(Q3a,Q4a,Q5a)の駆動電源のために、前記スイッチング素子(Q3a,Q4a,Q5a)の低電位側よりも高い電位を生成するブートストラップ回路(31)をさらに備える、
    請求項1から請求項6のいずれか1項に記載のモータ駆動装置(10)。
  8.  前記上下アームの上アーム側スイッチング素子(Q3a,Q4a,Q5a)の駆動に利用される絶縁電源(36)をさらに備える、
    請求項1から請求項6のいずれか1項に記載のモータ駆動装置(10)。
  9.  前記電源供給部(20)と前記上下アームとを結ぶ一対のDCバスと前記接続点(NU,NV,NW)との間に配置されるバランス回路(33a、33b,34a、34b,35a、35b)をさらに備える、
    請求項1に記載のモータ駆動装置(10)。
  10.  前記バランス回路(33a、33b,34a、34b,35a、35b)は、複数の前記上下アームの各スイッチング素子(Q3a、Q3b,Q4a、Q4b,Q5a、Q5b)ごとに対応するように配置されている、
    請求項9に記載のモータ駆動装置(10)。
  11.  前記接続点(NU,NV,NW)と、それに対応する一対の前記バランス回路(33a、33b,34a、34b,35a、35b)の中間点との間を接続又は遮断するスイッチ(43,44,45)をさらに備え、
     前記制御部(40)は、前記電圧検出部(23)の検出値が所定の閾値を超えたとき、前記バランス回路(33a、33b,34a、34b,35a、35b)を接続する、
    請求項9又は請求項10に記載のモータ駆動装置(10)。
  12.  前記バランス回路(33a、33b,34a、34b,35a、35b)は、抵抗素子で構成されている、
    請求項9から請求項11のいずれか1項に記載のモータ駆動装置(10)。
PCT/JP2014/084110 2013-12-27 2014-12-24 モータ駆動装置 WO2015098942A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811522619.3A CN110022115B (zh) 2013-12-27 2014-12-24 电机驱动装置
CN201480070191.7A CN105850031B (zh) 2013-12-27 2014-12-24 电机驱动装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013273558 2013-12-27
JP2013-273560 2013-12-27
JP2013-273558 2013-12-27
JP2013273560A JP5858035B2 (ja) 2013-12-27 2013-12-27 過電圧保護回路
JP2014097818A JP2015144543A (ja) 2013-12-27 2014-05-09 モータ駆動装置
JP2014-097818 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015098942A1 true WO2015098942A1 (ja) 2015-07-02

Family

ID=53478793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084110 WO2015098942A1 (ja) 2013-12-27 2014-12-24 モータ駆動装置

Country Status (2)

Country Link
CN (1) CN110022115B (ja)
WO (1) WO2015098942A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699198A (zh) * 2016-08-09 2019-04-30 日立汽车***株式会社 感应电压抑制装置、电动机***以及电力转换***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111648911B (zh) * 2020-06-30 2021-07-16 国家电网有限公司 一种防止水电站机组机械制动高转速加闸的控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314990U (ja) * 1989-06-27 1991-02-14
JP2005020392A (ja) * 2003-06-26 2005-01-20 Toshiba Lsi System Support Kk 信号伝送回路およびドライブ装置
JP2007124728A (ja) * 2005-10-25 2007-05-17 Shinano Kenshi Co Ltd モータ駆動回路
JP2012005229A (ja) * 2010-06-16 2012-01-05 Hitachi Automotive Systems Ltd 電力変換装置
JP2012196065A (ja) * 2011-03-17 2012-10-11 Sanden Corp インバータ装置
JP2013013198A (ja) * 2011-06-28 2013-01-17 Aisin Aw Co Ltd 回転電機制御装置
JP2013102658A (ja) * 2011-11-10 2013-05-23 Rohm Co Ltd モータ駆動装置及びこれを用いた電気機器
JP2013162646A (ja) * 2012-02-06 2013-08-19 Toshiba Corp モータ制御回路及びモータ駆動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318754A (ja) * 2004-04-30 2005-11-10 Mitsubishi Electric Corp 電動機駆動用インバータ装置
JP2007325388A (ja) * 2006-05-31 2007-12-13 Hitachi Ltd 電動機の制御装置及び車載用電動機駆動システム
JP5381361B2 (ja) * 2009-06-11 2014-01-08 株式会社豊田自動織機 インバータ装置
JP2013223371A (ja) * 2012-04-18 2013-10-28 Denso Corp モータ駆動装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314990U (ja) * 1989-06-27 1991-02-14
JP2005020392A (ja) * 2003-06-26 2005-01-20 Toshiba Lsi System Support Kk 信号伝送回路およびドライブ装置
JP2007124728A (ja) * 2005-10-25 2007-05-17 Shinano Kenshi Co Ltd モータ駆動回路
JP2012005229A (ja) * 2010-06-16 2012-01-05 Hitachi Automotive Systems Ltd 電力変換装置
JP2012196065A (ja) * 2011-03-17 2012-10-11 Sanden Corp インバータ装置
JP2013013198A (ja) * 2011-06-28 2013-01-17 Aisin Aw Co Ltd 回転電機制御装置
JP2013102658A (ja) * 2011-11-10 2013-05-23 Rohm Co Ltd モータ駆動装置及びこれを用いた電気機器
JP2013162646A (ja) * 2012-02-06 2013-08-19 Toshiba Corp モータ制御回路及びモータ駆動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699198A (zh) * 2016-08-09 2019-04-30 日立汽车***株式会社 感应电压抑制装置、电动机***以及电力转换***
EP3499704A4 (en) * 2016-08-09 2020-04-29 Hitachi Automotive Systems, Ltd. DEVICE FOR SUPPRESSING INDUCED VOLTAGE, MOTOR SYSTEM AND CURRENT CONVERSION SYSTEM

Also Published As

Publication number Publication date
CN110022115B (zh) 2022-12-20
CN110022115A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
US9998061B2 (en) Motor control device and motor control method
TWI383575B (zh) Winding switch of AC motor and its winding switching system
US7239099B2 (en) Circuit configuration and method for controlling an electric motor, in particular of a washing machine
US20090302792A1 (en) AC rotating machine with improved drive for its stator coil
JP6636207B2 (ja) 電動機の駆動装置および冷凍サイクル適用機器
US20120281446A1 (en) Preventing load dump overvoltages in synchronous rectifiers,
JP6390811B2 (ja) モータ駆動装置
CN105850031B (zh) 电机驱动装置
US10615591B2 (en) Power electronics unit
JP6289597B1 (ja) 車両用電源装置および車両用電源装置の制御方法
JPWO2019082272A1 (ja) 電動機駆動装置
JP2013511247A (ja) インバータ
JP2013511249A (ja) インバータ用パワースイッチ装置
WO2015098942A1 (ja) モータ駆動装置
JP7002619B1 (ja) 電力変換装置
JP5858035B2 (ja) 過電圧保護回路
CN116073736A (zh) 电动机控制装置和电动机驱动***
JP7205176B2 (ja) モータ駆動システム
JP2015216746A (ja) 過電圧保護回路
JP2015128358A (ja) 電力変換装置、及びモータ駆動装置
CN111771329B (zh) 电机的驱动控制装置和电机的驱动控制方法
JP2019110623A (ja) 電力変換器の制御装置
US8598835B2 (en) Protection circuit for a drive circuit of a permanent magnet motor and corresponding system
JP6835052B2 (ja) モータ駆動回路、及びそのモータ駆動回路を備えた冷凍装置
JP7028676B2 (ja) モータの駆動制御装置およびモータの駆動制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016/08827

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604928

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14875219

Country of ref document: EP

Kind code of ref document: A1