WO2015080084A1 - 凹凸を有するパネル - Google Patents

凹凸を有するパネル Download PDF

Info

Publication number
WO2015080084A1
WO2015080084A1 PCT/JP2014/081064 JP2014081064W WO2015080084A1 WO 2015080084 A1 WO2015080084 A1 WO 2015080084A1 JP 2014081064 W JP2014081064 W JP 2014081064W WO 2015080084 A1 WO2015080084 A1 WO 2015080084A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing
panel
rectangular
top surface
convex portion
Prior art date
Application number
PCT/JP2014/081064
Other languages
English (en)
French (fr)
Inventor
亮 米林
嘉明 中澤
清水 信孝
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015550927A priority Critical patent/JP6112224B2/ja
Priority to CN201480064445.4A priority patent/CN105764781B/zh
Priority to US15/034,586 priority patent/US10030388B2/en
Priority to KR1020167013552A priority patent/KR101734792B1/ko
Priority to MX2016006868A priority patent/MX2016006868A/es
Publication of WO2015080084A1 publication Critical patent/WO2015080084A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/08Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of metal, e.g. sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/326Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with corrugations, incisions or reliefs in more than one direction of the element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled

Definitions

  • the present invention relates to a panel, and more particularly to a panel having high rigidity.
  • Japanese Patent No. 5218633 discloses a panel.
  • the panel includes a plurality of protrusions and a plurality of recesses.
  • Each convex portion has a flat top surface.
  • Each recess has a flat bottom surface.
  • Protrusions and recesses are alternately arranged in rows and columns.
  • Japanese Patent Application Laid-Open No. 2012-50004 discloses a plate material having an uneven portion.
  • This plate material has a plurality of convex portions and a plurality of recesses.
  • Each convex portion has a flat top surface.
  • Each recess has a flat bottom surface.
  • Each of the top surface and the bottom surface has a pair of extending portions and a connecting portion that connects the pair of extending portions.
  • Protrusions and recesses are alternately arranged in rows and columns. In a plan view, the pair of extending portions that one of the top surface and the bottom surface has is positioned between the pair of extending portions that the other has.
  • Japanese Patent No. 4402745 discloses a heat insulator.
  • the heat insulator has a large number of convex portions.
  • Each convex portion has a hexagonal shape in plan view, and a longitudinal section passing through a vertex forming a diagonal has an arc shape. No flat plate portion remains linearly between the convex portions.
  • JP 2011-27248 A discloses a plate material having an uneven portion.
  • the concavo-convex portion includes a first region, a second region, and a third region having different protruding heights in the thickness direction.
  • Each region is distributed and arranged such that each region is in contact with two different types of regions without the region of the same type being continuously connected.
  • Japanese Patent Application Laid-Open No. 2011-101893 discloses a plate material having an uneven portion.
  • the concavo-convex portion has a first protrusion, a second protrusion, and an intermediate plane.
  • the first protrusion has a 12-pyramidal shape or a 12-pyramidal frustum shape.
  • the second protruding portion protrudes on the opposite side to the first protruding portion, and has a hexagonal pyramid shape or a hexagonal pyramid shape.
  • the intermediate plane is a quadrangular plane provided on the intermediate reference plane.
  • Japanese Unexamined Patent Application Publication No. 2011-110847 discloses a plate material having an uneven portion.
  • this plate material there are a first row in which first regions and intermediate regions are alternately arranged in a straight line, and a second region and intermediate regions. These first and second columns are alternately arranged.
  • the first region in the first row is adjacent to the intermediate region in the second row.
  • the second region in the second row is adjacent to the intermediate region in the first row.
  • the first region and the second region are connected by the first skirt portion.
  • the intermediate region and the first region are connected by the second skirt portion.
  • the intermediate region and the second region are connected by the third skirt portion.
  • Japanese Unexamined Patent Application Publication No. 2011-110554 discloses a vehicle panel.
  • the vehicle panel includes an inner panel.
  • the inner panel has an uneven portion.
  • the concavo-convex portion has a first protrusion, a second protrusion, and an intermediate plane.
  • the first protrusion has a 12-pyramidal shape or a 12-pyramidal frustum shape.
  • the second protruding portion protrudes on the opposite side to the first protruding portion, and has a hexagonal pyramid shape or a hexagonal pyramid shape.
  • the intermediate plane is a quadrangular plane provided on the intermediate reference plane.
  • the inventors of the present invention examined the rigidity when the uneven portion described in the above publication is provided. As a result, in the case where the uneven portions described in Japanese Patent No. 5218633 and Japanese Patent Application Laid-Open No. 2012-5004 are provided, the knowledge that the rigidity is improved is obtained as compared with the case where the uneven portions described in other publications are provided. . However, it has also been found that the irregularities described in Japanese Patent No. 5218633 and Japanese Patent Application Laid-Open No. 2012-50004 include the following drawbacks.
  • the unevenness is shallow, and the boundary between the convex part and the concave part extends along the rows and columns. Therefore, the cross-sectional second moment is reduced. As a result, the bending rigidity is reduced. In particular, since the secondary moment of the cross section is the smallest at the boundary between the convex portion and the concave portion, deformation is likely to occur. That is, the bending rigidity is reduced.
  • the boundary between the convex portion and the concave portion does not extend along the rows and columns. Therefore, it can suppress that a cross-sectional secondary moment becomes small at the boundary of a convex part and a recessed part. As a result, bending deformation hardly occurs at the boundary between the convex portion and the concave portion. In any cross-section, since the cross-sectional secondary moment is high, the bending rigidity can be ensured.
  • An object of the present invention is to provide a panel that can achieve both bending rigidity and torsional rigidity.
  • the panel according to the embodiment of the present invention includes a reinforcing unit.
  • the reinforcing unit includes a plurality of first rectangular areas and a plurality of second rectangular areas.
  • the first rectangular area and the second rectangular area are alternately arranged in rows and columns.
  • Each of the first rectangular regions includes a first convex portion.
  • the first convex portion has a flat top surface that protrudes entirely in a first direction perpendicular to the virtual reference surface and is flat.
  • Each of the second rectangular regions includes a second convex portion and a reinforcing convex portion.
  • the second convex portion partially protrudes in a second direction opposite to the first direction and has a flat top surface.
  • the reinforcing convex portion partially protrudes in the first direction across the opposing sides and has a flat top surface.
  • the top surface of the reinforcing projection forms the same plane as the top surface of the first projection.
  • the panel according to the embodiment of the present invention can achieve both bending rigidity and torsional rigidity.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3. It is a perspective view which shows the reinforcement unit of FIG. It is a top view which shows a reinforcement unit.
  • FIG. 7 is a sectional view taken along line BB in FIG. It is a perspective view for demonstrating bending rigidity and torsional rigidity.
  • 10 is a plan view showing a panel according to Comparative Example 1.
  • FIG. It is a perspective view which shows the panel which concerns on the comparative example 1.
  • FIG. 10 is a plan view showing a panel according to Comparative Example 2.
  • FIG. It is a perspective view which shows the panel which concerns on the comparative example 2.
  • FIG. It is a top view which shows the case where the top surface and bottom face are inclinedly arranged about the panel which concerns on the example of this invention.
  • It is a top view which shows the case where the top surface and bottom face are inclinedly arranged about the panel which concerns on the comparative example 1.
  • FIG. It is a top view which shows the case where the top surface and bottom face are inclinedly arranged about the panel which concerns on the comparative example 2.
  • FIG. It is a graph which shows the result of having simulated about bending rigidity and torsional rigidity at the time of arranging top and bottom.
  • FIG. 26 is a sectional view taken along line FF in FIG. 25. It is a top view which expands and shows a part of several reinforcement unit with which the panel by the 4th Embodiment of this invention is provided. It is a top view which expands and shows a part of several reinforcement unit with which the panel by the 5th Embodiment of this invention is provided. It is a top view which shows a reinforcement unit.
  • FIG. 30 is a sectional view taken along line GG in FIG. 29. It is a top view which shows a reinforcement unit.
  • FIG. 32 is a sectional view taken along line HH in FIG. 31. It is a top view which expands and shows a part of several reinforcement unit with which the panel by the 6th Embodiment of this invention is provided. It is a top view which shows a reinforcement unit.
  • FIG. 35 is a cross-sectional view taken along the line II in FIG. It is a top view which shows a reinforcement unit.
  • FIG. 37 is a sectional view taken along line JJ in FIG. 36. It is a top view which expands and shows a part of several reinforcement unit with which the panel by the 7th Embodiment of this invention is provided. It is a top view which shows a reinforcement unit.
  • FIG. 40 is a cross-sectional view taken along the line KK in FIG. 39. It is a top view which shows a reinforcement unit. It is KK sectional drawing in FIG.
  • the panel according to the embodiment of the present invention includes a reinforcing unit.
  • the reinforcing unit includes a plurality of first rectangular areas and a plurality of second rectangular areas.
  • the first rectangular area and the second rectangular area are alternately arranged in rows and columns.
  • Each of the first rectangular regions includes a first convex portion.
  • the first convex portion has a flat top surface that protrudes entirely in a first direction perpendicular to the virtual reference surface and is flat.
  • Each of the second rectangular regions includes a second convex portion and a reinforcing convex portion.
  • the second convex portion partially protrudes in a second direction opposite to the first direction and has a flat top surface.
  • the reinforcing convex portion partially protrudes in the first direction across the opposing sides and has a flat top surface.
  • the top surface of the reinforcing projection forms the same plane as the top surface of the first projection.
  • the top surface of the reinforcing convex portion forms the same plane as the top surface of the first convex portion. That is, the reinforcing convex portion is formed integrally with the first convex portion. Therefore, it can suppress that a cross-sectional secondary moment becomes small in the boundary of a 1st rectangular area
  • the top surface of the reinforcing convex portion does not form the same plane as the top surface of the first convex portion
  • the top surface of the reinforcing convex portion is positioned between the virtual reference surface and the top surface of the first convex portion.
  • the height of the reinforcing projection is reduced. Therefore, the cross-sectional second moment is reduced at the boundary between the first rectangular region and the second rectangular region. As a result, bending deformation tends to occur.
  • the top surface of a reinforcement convex part forms the same plane as the top surface of a 1st convex part. Therefore, it can suppress that a cross-sectional secondary moment falls. As a result, bending deformation hardly occurs.
  • the first rectangular area and the second rectangular area are alternately arranged in rows and columns. Therefore, the top surface of the first convex portion is uniformly arranged in the reinforcing unit. That is, in the reinforcement unit, the flat surface divided by the ridge line is uniformly arranged. For this reason, when torsional deformation is applied, in-plane shear stress is easily generated uniformly throughout the panel. That is, torsional rigidity can be ensured.
  • the first rectangular region and the second rectangular region have a square shape in plan view.
  • the length of one side of the flat surface (specifically, the top surface of the first convex portion) divided by the ridge lines is the same in the row direction and the column direction. Therefore, in-plane shear stress is generated in substantially the same manner when the torsional deformation is applied around the axis extending in the row direction and when the torsional deformation is applied around the axis extending in the column direction. That is, the torsional rigidity can be made substantially the same when the torsional deformation is applied around the axis extending in the row direction and when the torsional deformation is applied around the axis extending in the column direction. In other words, anisotropy of torsional rigidity can be suppressed.
  • the ratio of the number of first rectangular areas to the number of second rectangular areas is in the range of 4: 6 to 6: 4. Therefore, both bending rigidity and torsional rigidity can be achieved.
  • the ratio of the number of first rectangular regions to the number of second rectangular regions within the above range, for example, the number of first rectangular regions is made larger than the number of second rectangular regions, and the torsional rigidity is increased.
  • the configuration may be a little emphasized, or conversely, the number of the first rectangular regions may be less than the number of the second rectangular regions 14B, and the bending rigidity may be a little emphasized.
  • a plurality of reinforcing units are provided.
  • the plurality of reinforcing units are arranged in rows and / or columns.
  • the top surface of the reinforcing convex part of the second rectangular region included in one reinforcing unit is the top surface of the second convex part of the second rectangular region included in the other reinforcing unit or the other Forming the same plane as the top surface of the first convex portion of the first rectangular region included in the reinforcing unit.
  • the top surface of the reinforcing convex part of the second rectangular region included in one reinforcing unit is the top surface of the second convex part of the second rectangular region included in the other reinforcing unit or the first rectangle included in the other reinforcing unit.
  • the top surface of the reinforcing convex part in one reinforcing unit is the top of the virtual reference surface and the second convex part in the other reinforcing unit. The case where it locates between a surface or the top surface of a 1st convex part is assumed. In this case, the height of the reinforcing projection is reduced.
  • the cross-sectional secondary moment at the boundary between one reinforcing unit and the other reinforcing unit is reduced.
  • the top surface of the reinforcement convex part in one reinforcement unit forms the same plane as the top surface of the 2nd convex part or the top surface of the 1st convex part in the other reinforcement unit. . Therefore, it is possible to suppress a decrease in the cross-sectional secondary moment at the boundary between one reinforcing unit and the other reinforcing unit.
  • the panel 10 includes a plurality of reinforcing units.
  • the plurality of reinforcement units include a plurality of reinforcement units 12 and a plurality of reinforcement units 12A.
  • the reinforcing units 12 and the reinforcing units 12A are alternately arranged in rows and columns.
  • FIG. 2 is an enlarged view of a portion where four reinforcing units 12, 12, 12A, 12A are arranged in two rows and two columns among a plurality of reinforcing units provided in the panel 10.
  • the reinforcing unit 12 and the reinforcing unit 12A will be described.
  • the reinforcing unit 12 includes a plurality of first rectangular regions 14A and a plurality of second rectangular regions 14B. As shown in FIG. 3, the plurality of first rectangular regions 14A and the plurality of second rectangular regions 14B are alternately arranged in rows and columns. In the reinforcing unit 12, the first rectangular area 14A and the second rectangular area 14B are arranged in 3 rows and 3 columns. In the reinforcing unit 12, the first rectangular area 14A is arranged more than the second rectangular area 14B.
  • a direction in which the first rectangular region 14A and the second rectangular region 14B make a row is a row direction
  • a direction in which the first rectangular region 14A and the second rectangular region 14B make a column is a column direction.
  • the row direction corresponds to the direction in which the reinforcement unit 12 and the reinforcement unit 12A make a row
  • the column direction corresponds to the direction in which the reinforcement unit 12 and the reinforcement unit 12A make a row.
  • the first rectangular region 14A has a rectangular shape in plan view.
  • the first rectangular region 14 ⁇ / b> A has a square shape in plan view.
  • the first rectangular area 14 ⁇ / b> A includes a first protrusion 18.
  • the first convex portion 18 is perpendicular to the virtual reference surface 16 (for example, a plane passing through the center of the thickness direction of the panel in a side view of the panel) (hereinafter, the front direction). Is formed to protrude. That is, the first convex portion 18 is formed so as to protrude in a direction away from the reference surface 16. In the first convex portion 18, the cross section parallel to the reference surface 16 becomes gradually smaller in the direction away from the reference surface 16.
  • the first convex portion 18 includes a top surface 20 and four side surfaces 22 as shown in FIGS.
  • the top surface 20 is parallel to the reference surface 16.
  • the top surface 20 has a square shape in plan view.
  • Each side 22 is connected to the top surface 20.
  • Each side surface 22 is connected to each of the side surfaces 22 located on both sides around the top surface 20.
  • Each side surface 22 is inclined with respect to the reference surface 16. As the inclination angle ⁇ of each side surface 22 with respect to the reference surface 16 is larger, the rigidity is improved, but local thickness reduction and cracking are likely to occur during molding.
  • the inclination angle ⁇ of each side surface 22 with respect to the reference surface 16 is appropriately set in consideration of improvement in rigidity and ease of molding of the material. In the case of a steel material, the inclination angle ⁇ is preferably 15 to 60 degrees, and more preferably 45 degrees.
  • the first rectangular area 14A further includes a recess 24 as shown in FIG.
  • the recess 24 is formed corresponding to the first protrusion 18 and opens in the reverse direction opposite to the front direction.
  • the second rectangular region 14B has a rectangular shape in plan view.
  • the second rectangular region 14B has a square shape in plan view.
  • the shape and size of the second rectangular region 14B in plan view are the same as the shape and size of the first rectangular region 14A in plan view.
  • the second rectangular region 14 ⁇ / b> B includes a pair of second convex portions 30 and 30 and a reinforcing convex portion 32.
  • the 2nd convex part 30 is projected and formed in the back direction, as shown in FIG. That is, the second convex portion 30 is formed so as to protrude in a direction away from the reference surface 16. In the second convex portion 30, the cross section parallel to the reference surface 16 becomes gradually smaller in the direction away from the reference surface 16.
  • the second convex portion 30 includes a top surface 34 and a side surface 36 as shown in FIGS. Although not clearly shown in FIGS. 3 to 5, there are four side surfaces 36.
  • the top surface 34 is parallel to the reference surface 16.
  • the top surface 34 has a rectangular shape extending in the column direction in plan view.
  • the top surface 34 is smaller than the top surface 20.
  • Each side surface 36 is connected to the top surface 34.
  • Each side surface 36 is connected to the side surfaces 36 located on both sides around the top surface 34.
  • Each side surface 36 is inclined with respect to the reference surface 16.
  • the inclination angle of each side surface 36 with respect to the reference surface 16 is the same as the inclination angle of each side surface 22 with respect to the reference surface 16.
  • the second rectangular area 14B further includes a recess 38.
  • the recess 38 is formed corresponding to the second protrusion 30 and opens in the front direction.
  • the reinforcing protrusion 32 is formed to protrude in the front direction as shown in FIG. That is, the reinforcing protrusion 32 is formed so as to protrude in a direction away from the reference surface 16. In the reinforcing protrusion 32, the cross section parallel to the reference surface 16 gradually decreases in the direction away from the reference surface 16.
  • the reinforcing protrusion 32 is disposed between a pair of sides extending in the column direction among the four sides of the second rectangular region 14B. That is, the reinforcing convex portion 32 extends in the column direction and is disposed between the pair of second convex portions 30 and 30 in a plan view.
  • the reinforcing protrusion 32 includes a top surface 40 and a pair of side surfaces 42 and 42 as shown in FIGS.
  • the top surface 40 is parallel to the reference surface 16.
  • the top surface 40 has a rectangular shape extending in the column direction in plan view.
  • the top surface 40 is formed continuously with the top surface 20 of the first convex portion 18. That is, the distance of the top surface 40 from the reference surface 16 is the same as the distance of the top surface 20 from the reference surface 16.
  • Each side 42 is connected to the top surface 40.
  • Each side surface 42 is connected to the side surface 22 of the 1st convex part 18 which 14 A of 1st rectangular area
  • Each side surface 42 is continuously formed on the side surface of the recess 38.
  • Each side surface 42 is inclined with respect to the reference surface 16.
  • the inclination angle of each side surface 42 with respect to the reference surface 16 is the same as the inclination angle of each side surface 22 with respect to the reference surface 16.
  • the second rectangular area 14B further includes a concave groove 44.
  • the concave groove 44 is formed corresponding to the reinforcing convex portion 32 and opens in the reverse direction.
  • the concave groove 44 is connected to the concave portion 24 of the adjacent first rectangular region 14A. That is, the bottom surface of the groove 44 is formed continuously with the bottom surface of the recess 24.
  • the side surface of the concave groove 44 is formed continuously with the side surface 36 of the second convex portion 30.
  • the reinforcing unit 12A is obtained by turning the reinforcing unit 12 upside down and rotating 90 degrees. In the reinforcing unit 12A, as shown in FIGS. 6 and 7, the first convex portion 18 and the reinforcing convex portion 32 protrude in the reverse direction, and the second convex portion 30 protrudes in the front direction. In the reinforcing unit 12A, each reinforcing protrusion 32 extends in the row direction.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12 is continuous with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12A.
  • the bottom surface of the concave groove 44 included in the second rectangular region 14B in the reinforcing unit 12A is formed continuously with the bottom surface of the recess 38 included in the second rectangular region 14B in the reinforcing unit 12.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12A is the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12. It is formed continuously.
  • the panel 10 has a plurality of reinforcing units 12 and 12A. Therefore, both bending rigidity and torsional rigidity can be achieved. The reason is as follows.
  • panel PL has four sides S1 to S4. Of the four sides S1 to S4, two sides S1 and S2 extend in the X direction. The two sides S3 and S4 extend in the Y direction. The X direction corresponds to the row direction, and the Y direction corresponds to the column direction.
  • FIG. 8 shows a state where the side S1 of the panel PL is fixed.
  • the bending rigidity indicates the difficulty of deformation of the panel PL when displacement in the Z direction (displacement in the bending direction) is given to the side S2 parallel to the side S1 among the four sides of the panel PL.
  • the torsional rigidity indicates the difficulty of deformation of the panel PL when a displacement around the reference line SL extending in the Y direction (displacement in the torsional direction) is given.
  • the reference line SL passes through the center C1 of the panel PL and is perpendicular to the sides S1 and S2.
  • FIGS. 9A and 9B panel PL1 having a reinforcing portion as shown in these drawings will be described. Note that the sides S1 to S4 shown in FIGS. 9A and 9B correspond to the sides S1 to S4 shown in FIG.
  • the convex portions 50 having the top surface 50A and the concave portions 52 having the bottom surface 52A are alternately arranged in rows and columns.
  • the top surface 50 ⁇ / b> A and the bottom surface 52 ⁇ / b> A have a square shape in plan view and are connected by the side surface 54.
  • the panel PL1 As in the case shown in FIG. 8, it is assumed that a displacement in the torsional direction is given with the side S1 fixed.
  • top surface 50A and bottom surface 52A are arranged in a lattice pattern and share a ridge line located at the boundary of the irregularities. Therefore, when displacement in the torsional direction occurs, a load propagates to the entire panel through the shared ridgeline, and in-plane shear stress is generated on the top surface 50A and the bottom surface 52A. That is, when a displacement in the torsional direction occurs, the in-plane shear stress can be uniformly generated throughout the panel PL1. Therefore, the panel PL1 has a high torsional rigidity.
  • FIG. 10A and FIG. 10B a panel PL2 having a reinforcing portion as shown in these drawings will be described. Note that the sides S1 to S4 shown in FIGS. 10A and 10B correspond to the sides S1 to S4 shown in FIG.
  • the convex portions 60 having the top surface 64 and the concave portions 62 having the bottom surface 66 are alternately arranged in rows and columns.
  • the top surface 64 includes a pair of extending portions 64A and 64A and a connecting portion 64B that connects them.
  • the bottom surface 66 includes a pair of extending portions 66A and 66A, and a connecting portion 66B that connects them.
  • the top surface 64 and the bottom surface 66 are connected by a side surface 68.
  • the panel PL1 has high torsional rigidity
  • the panel PL2 has high bending rigidity.
  • panel PL1 and panel PL2 have the following problems.
  • the panel PL1 since the shallow irregularities of the square shape are formed, the cross-sectional secondary moment is small, and particularly at the boundary between the convex portion 50 and the concave portion 52, the cross-sectional secondary moment is small. Therefore, when a displacement in the bending direction occurs, bending deformation may occur particularly at the boundary between the convex portion 50 and the concave portion 52. That is, the panel PL1 has a characteristic specialized for torsional rigidity, and the bending rigidity is extremely lower than the torsional rigidity.
  • the panel PL2 In the panel PL2, it is difficult to secure a wide area of the top surface 64 and the bottom surface 66. For this reason, when a displacement in the torsional direction occurs, it is difficult to generate in-plane shear stress uniformly on the entire panel PL2. As a result, torsional deformation may occur. That is, the panel PL2 has a characteristic specialized for bending rigidity, and its torsional rigidity is extremely lower than the bending rigidity.
  • the first rectangular regions 14A and the second rectangular regions 14B are alternately arranged in rows and columns. That is, the top surface 20 is uniformly arranged in all of the plurality of reinforcing units 12 and 12A. Therefore, in all of the plurality of reinforcing units 12, 12A, a flat plane divided by the ridge line exists uniformly. As a result, when the torsional deformation is exerted, the in-plane shear stress tends to be generated uniformly throughout the panel 10. That is, torsional rigidity can be ensured.
  • the top surface 40 forms the same plane as the top surface 20 in all of the plurality of reinforcing units 12 and 12A. Therefore, in all the reinforcement units 12, it can suppress that a cross-sectional secondary moment becomes small in the boundary in the column direction of 14 A of 1st rectangular areas, and the 2nd rectangular area 14B. As a result, in all the reinforcing units 12, bending deformation is unlikely to occur at the boundary in the column direction between the first rectangular region 14A and the second rectangular region 14B. Moreover, in all the reinforcement units 12A, it can suppress that a cross-sectional secondary moment becomes small in the boundary in the row direction of 14 A of 1st rectangular areas, and the 2nd rectangular area 14B.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12 is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12A. Is done. Further, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12A is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12. . Therefore, it can suppress that a cross-sectional secondary moment becomes small in the boundary of the reinforcement unit 12 and the reinforcement unit 12A. As a result, bending deformation hardly occurs at the boundary between the reinforcing unit 12 and the reinforcing unit 12A.
  • the ratio of the number of the first rectangular regions 14A and the number of the second rectangular regions 14B is 5: 4 in all of the plurality of reinforcing units 12 and 12A. That is, in the present embodiment, in all of the plurality of reinforcing units 12 and 12A, the number of first rectangular regions 14A and the number of second rectangular regions 14B are approximately the same, specifically, the ratio thereof is 4: It is in the range of 6 to 6: 4. Therefore, both bending rigidity and torsional rigidity can be achieved.
  • the first rectangular region 14A and the second rectangular region 14B have a square shape in plan view.
  • the length of one side of the flat surface (specifically, the top surface 20) divided by the ridge lines is the same in the row direction and the column direction. Therefore, in-plane shear stress is generated in substantially the same manner when the torsional deformation is applied around the axis extending in the row direction and when the torsional deformation is applied around the axis extending in the column direction.
  • the torsional rigidity can be made substantially the same when the torsional deformation is applied around the axis extending in the row direction and when the torsional deformation is applied around the axis extending in the column direction.
  • anisotropy of torsional rigidity can be suppressed.
  • the bending rigidity and torsional rigidity of the panel (hereinafter referred to as the panel 10 according to the example of the present invention) including the reinforcing portion shown in FIG. 2 were evaluated by FEM analysis.
  • a panel provided with the reinforcing portion shown in FIGS. 9A and 9B hereinafter referred to as panel PL1 according to Comparative Example 1
  • a panel provided with the reinforcing portion shown in FIGS. 10A and 10B hereinafter referred to as Comparative Example 2
  • the FEM analysis was performed on the panel PL2).
  • FEM analysis was performed using commercially available general-purpose program code LS-DYNA ver. 971 was used.
  • the element type was a fully integral shell element.
  • the element size was a square with a side length of 1 mm.
  • a static implicit method for solving the force balance equation was selected and applied.
  • the panel material was a material corresponding to JAC270D.
  • the Young's modulus was 206 GPa.
  • the Poisson's ratio was 0.30.
  • the 0.2% proof stress was 183 MPa.
  • the tensile strength was 308 MPa.
  • the n value was 0.20.
  • the panel was a square with a side length of 470 mm.
  • the thickness of the panel was 0.6 mm.
  • each side (L1 in FIG. 2) of the first rectangular region 14A was set to 50 mm.
  • the length of each side of the top surface 20 (L2 in FIG. 2) was 42.5 mm.
  • the length of each side of the reinforcing unit (L3 in FIG. 2) was 150 mm.
  • the width of the top surface 40 (W1 in FIG. 2) was 5 mm.
  • the unevenness depth (H in FIG. 4) was 5 mm.
  • the unevenness depth was set to 3 mm.
  • the length of the bottom surface 66 in the row direction (L1 in FIG. 10A) was set to 35 mm.
  • the distance (L2 in FIG. 10A) between the connecting portions 64B of the convex portion 60 located on both sides of the concave portion 62 in the row direction was 45 mm.
  • the length in the column direction of the extending portion 66A in the concave portion 62 (W1 in FIG. 10A) was 19 mm.
  • the length (W2 in FIG. 10A) of the connecting portion 64B in the convex portion 60 was 29 mm.
  • the bending rigidity is fixed on one side of the panel (side S1 shown in FIGS. 2, 9A, 10A, 11, 12, and 13), and is parallel to the one side (FIGS. 2, 9A, 10A, Evaluation was performed using a load-displacement curve when a load of 1 N was applied to the side S2) shown in FIGS.
  • the torsional rigidity is obtained by fixing one side of the panel (side S1 shown in FIGS. 2, 9A, 10A, 11, 12, and 13) and one side perpendicular to the one side (FIGS. 2, 9A, 10A, Evaluation was performed using a load-displacement curve in the case where the torsional deformation of 1 degree was given to the side S3) shown in FIGS.
  • FIG. 14 is a graph showing the results of FEM analysis of bending stiffness and torsional stiffness in the standard arrangement.
  • FIG. 15 is a graph showing the results of FEM analysis of bending rigidity and torsional rigidity in the case of the inclined arrangement.
  • the numerical value N indicated by the bending rigidity increase rate for the flat plate indicates that the bending rigidity is N times that of the flat plate
  • the numerical value M indicated by the torsional rigidity increase rate for the flat plate indicates that the torsional rigidity is M times that of the flat plate. Show.
  • the bending rigidity was superior to the torsional rigidity, and the bending rigidity was significantly higher than that of the flat plate. That is, the panel PL2 according to Comparative Example 2 had characteristics specialized in bending rigidity.
  • the torsional rigidity is low but the bending rigidity is high as compared with the panel PL1 according to the comparative example 1.
  • the bending rigidity is low but the torsional rigidity is high as compared with the panel PL2 according to the comparative example 2.
  • the difference between the torsional rigidity improvement margin for the flat plate and the bending rigidity improvement margin for the flat plate was small as compared with the panels PL1 and PL2 according to Comparative Examples 1 and 2.
  • the panel PL1 according to the comparative example 1 is superior in bending rigidity to torsional rigidity, and the difference is considerably large. That is, the panel PL1 according to the comparative example 1 has a characteristic specialized in bending rigidity in the case of the inclined arrangement. In other words, the panel PL1 according to the comparative example 1 has a characteristic specialized in either bending rigidity or torsional rigidity in the case of the reference arrangement and the case of the inclined arrangement.
  • the bending rigidity was superior to the torsional rigidity not only in the case of the reference arrangement but also in the case of the inclined arrangement.
  • the difference between torsional rigidity and bending rigidity was extremely small as compared with the case of the reference arrangement. That is, in panel PL2 according to Comparative Example 2, an extreme difference in torsional rigidity occurred depending on the relationship between the direction in which the convex portions 60 and the concave portions 62 are arranged and the direction in which the deformation in the bending direction and the torsional direction is applied.
  • the bending rigidity was superior to the torsional rigidity in the case of the inclined arrangement. That is, the panel 10 according to the example of the present invention had excellent characteristics in either bending rigidity or torsional rigidity in the case of the reference arrangement and the case of the inclined arrangement.
  • the difference between the bending rigidity and the torsional rigidity was substantially the same between the reference arrangement and the inclined arrangement.
  • the bending rigidity and the torsion are irrespective of the relationship between the direction in which the first rectangular region 14A and the second rectangular region 14B are arranged and the direction in which the deformation in the bending direction and the torsional direction is applied.
  • the difference in rigidity was small.
  • the panel 10 according to the present invention is more deformed in the direction in which the convex portions and the concave portions are aligned, and in the bending direction and the twist direction than the panels PL1 and PL2 according to the first and second comparative examples. Regardless of the relationship with the applied direction, it was possible to achieve both torsional rigidity and bending rigidity.
  • FIG. 16 is a graph showing a result of FEM analysis of torsional rigidity in the case of the standard arrangement and a result of FEM analysis of torsional rigidity in the case of the inclined arrangement.
  • the numerical value M indicated by the torsional rigidity increasing rate with respect to the flat plate indicates that the flat plate has torsional rigidity M times that of the flat plate.
  • the torsional rigidity was superior in the case of the reference arrangement than in the case of the inclined arrangement.
  • the panel 10 according to the example of the present invention was superior in the torsional rigidity in the case of the inclined arrangement as compared with the panel PL1 according to the comparative example 1.
  • the panel 10 according to the example of the present invention was superior in torsional rigidity in the case of the reference arrangement as compared with the panel PL2 according to the comparative example 2.
  • the torsional rigidity in the case of the inclined arrangement was substantially the same.
  • the difference between the torsional rigidity in the case of the reference arrangement and the torsional rigidity in the case of the inclined arrangement was small as compared with the panels PL1 and PL2 according to Comparative Examples 1 and 2.
  • the panel 10 according to the example of the present invention was able to suppress the anisotropy of torsional rigidity as compared with the panels PL1 and PL2 according to Comparative Examples 1 and 2.
  • the plurality of reinforcement units include a plurality of reinforcement units 12B and a plurality of reinforcement units 12C.
  • the reinforcing units 12B and the reinforcing units 12C are alternately arranged in rows and columns.
  • FIG. 17 shows a portion in which the reinforcement units 12B and 12C are arranged in two rows and two columns among the plurality of reinforcement units.
  • the reinforcing unit 12B will be described with reference to FIGS.
  • the first rectangular area 14A and the second rectangular area 14B are arranged in 3 rows and 3 columns.
  • the first rectangular area 14A is disposed less than the second rectangular area 14B.
  • each reinforcement convex part 32 is extended in a row direction.
  • the reinforcing unit 12C will be described with reference to FIGS.
  • the reinforcing unit 12C is obtained by turning the reinforcing unit 12B upside down and rotating 90 degrees.
  • the first convex portion 18 and the reinforcing convex portion 32 protrude in the reverse direction, and the second convex portion 30 protrudes in the front direction.
  • each reinforcing protrusion 32 extends in the row direction.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12B is continuous with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12C.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12C is formed continuously with the bottom surface of the recess 38 included in the second rectangular region 14B in the reinforcing unit 12B.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12C is the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12B. It is formed continuously.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B is continuously formed on the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12C.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12C is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12B.
  • bending deformation is less likely to occur at the boundary between adjacent reinforcing units than in the first embodiment.
  • the plurality of reinforcement units include a plurality of reinforcement units 12B, a plurality of reinforcement units 12C, a plurality of reinforcement units 12D, and a plurality of reinforcement units 12E.
  • the reinforcing units 12B and 12C are alternately arranged in the row direction
  • the reinforcing units 12D and the reinforcing units 12E are alternately arranged in the row direction
  • the reinforcing units 12B and 12D are alternately arranged in the column direction.
  • the reinforcing units 12C and the reinforcing units 12E are alternately arranged in the column direction.
  • FIG. 22 shows a portion in which the reinforcement unit 12B, the reinforcement unit 12C, the reinforcement unit 12D, and the reinforcement unit 12E are arranged in two rows and two columns among the plurality of reinforcement units.
  • each reinforcing protrusion 32 extends in the row direction as compared to the reinforcing unit 12.
  • the reinforcing unit 12E will be described with reference to FIGS.
  • the reinforcing unit 12E is obtained by turning the reinforcing unit 12D upside down and rotating 90 degrees.
  • the 1st convex part 18 and the reinforcement convex part 32 protrude in a back direction
  • the 2nd convex part 30 protrudes in a surface direction.
  • each reinforcing protrusion 32 extends in the column direction.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12B is formed continuously with the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12D.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12C is formed continuously with the bottom surface of the recess 38 included in the second rectangular region 14B in the reinforcing unit 12B. That is, although not shown, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12C is the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12B.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12D is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12E.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12E is formed continuously with the bottom surface of the recess 24 included in the first rectangular region 14A in the reinforcing unit 12C.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12E is the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12C. It is formed continuously.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B is continuously formed on the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12D. There is one.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12C is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12B. There are two. Therefore, the deformation is less likely to occur at the boundary between adjacent reinforcing units than in the first embodiment.
  • the plurality of reinforcement units include a plurality of reinforcement units 12, a plurality of reinforcement units 12A, a plurality of reinforcement units 12B, and a plurality of reinforcement units 12C.
  • the reinforcing units 12 and the reinforcing units 12A are alternately arranged in the column direction
  • the reinforcing units 12B and the reinforcing units 12C are alternately arranged in the column direction
  • the reinforcing units 12 and the reinforcing units 12B are alternately arranged in the row direction.
  • FIG. 27 shows a portion in which the reinforcement unit 12, the reinforcement unit 12A, the reinforcement unit 12B, and the reinforcement unit 12C are arranged in two rows and two columns among the plurality of reinforcement units.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12 is formed continuously to the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12A.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12A is formed continuously with the bottom surface of the recess 24 included in the first rectangular region 14A in the reinforcing unit 12C. That is, although not shown, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12A is the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12C.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12C is formed continuously with the bottom surface of the recess 24 included in the first rectangular region 14A in the reinforcing unit 12A. That is, although not shown, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12C is the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12A. It is formed continuously.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12B is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12C.
  • the top surface 40 of the reinforcing convex portion 32 of the second rectangular region 14B is continuously formed on the top surface 20 of the first convex portion 18 of the first rectangular region 14A of the reinforcing unit 12C. There is one. Further, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12 is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12A. There is one.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B is formed continuously with the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12A is formed continuously with the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12C. There is one.
  • deformation is less likely to occur at the boundary between adjacent reinforcing units (particularly, the boundary between the reinforcing unit 12A and the reinforcing unit 12C and the boundary between the reinforcing unit 12B and the reinforcing unit 12C) than in the first embodiment.
  • the plurality of reinforcement units include a plurality of reinforcement units 12F, a plurality of reinforcement units 12G1, and a plurality of reinforcement units 12G2.
  • the reinforcing units 12F and the reinforcing units 12G1 are alternately arranged in rows and columns.
  • the reinforcement units 12F and the reinforcement units 12G2 are alternately arranged in rows and columns.
  • the reinforcing units 12G1 and the reinforcing units 12G2 are alternately arranged in the diagonal direction.
  • FIG. 28 shows a portion in which the reinforcement unit 12F, the reinforcement unit 12G1, and the reinforcement unit 12G2 are arranged in two rows and two columns among the plurality of reinforcement units.
  • the reinforcing unit 12F will be described with reference to FIGS. 29 and 30.
  • the reinforcing unit 12G1 will be described with reference to FIGS.
  • the reinforcement unit 12G1 compared with the reinforcement unit 12B, one of the five reinforcement protrusions 32 extends in the row direction.
  • the reinforcing unit 12G2 is obtained by rotating the reinforcing unit 12G1 by 90 degrees.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12F is formed continuously to the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12G1.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing units 12G1 and 12G2 is formed continuously to the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12F. .
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12G2 is formed continuously with the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12F.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12F is formed continuously with the top surface 20 of the first convex portion 18 included in the first rectangular region 14A in the reinforcing unit 12G2.
  • each of the reinforcing unit 12F and the reinforcing units 12G1 and 12G2 there are reinforcing convex portions 32 extending in the row direction and reinforcing convex portions 32 extending in the column direction. Therefore, in each of the reinforcing unit 12F and the reinforcing units 12G1 and 12G2, it is possible to suppress a decrease in the cross-sectional secondary moment at the boundary in the column direction between the first rectangular region 14A and the second rectangular region 14B, and the first rectangular region It is possible to suppress the cross-sectional secondary moment from becoming small at the boundary in the row direction between 14A and the second rectangular region 14B. Therefore, bending deformation hardly occurs at these boundaries.
  • the plurality of reinforcement units include a plurality of reinforcement units 12H and a plurality of reinforcement units 12I.
  • the reinforcing units 12H and the reinforcing units 12I are alternately arranged in rows and columns.
  • FIG. 33 shows a portion where the reinforcement units 12H and the reinforcement units 12I are arranged in two rows and two columns among the plurality of reinforcement units.
  • the reinforcing unit 12H will be described with reference to FIGS. 34 and 35.
  • two first rectangular areas 14A and two second rectangular areas 14B are arranged in two rows and two columns. That is, in the reinforcing unit 12H, the first rectangular areas 14A and the second rectangular areas 14B are alternately arranged in the row direction and the column direction.
  • the reinforcing protrusions 32 included in the second rectangular region 14B extend in the column direction.
  • the reinforcing unit 12I will be described with reference to FIGS.
  • the reinforcing unit 12I is obtained by turning the reinforcing unit 12H upside down and changing the extending direction of the reinforcing convex portion 32 included in each second rectangular region 14B to the row direction.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12I is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12H.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12H is formed continuously with the bottom surface of the recess 38 included in the second rectangular region 14B in the reinforcing unit 12I. That is, although not shown, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12H is the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12I. It is formed continuously.
  • the plurality of reinforcement units include a plurality of reinforcement units 12J and a plurality of reinforcement units 12K.
  • the reinforcing units 12J and the reinforcing units 12K are alternately arranged in rows and columns.
  • FIG. 38 shows a portion where the reinforcement units 12J and the reinforcement units 12K are arranged in two rows and two columns among the plurality of reinforcement units.
  • the reinforcing unit 12J will be described with reference to FIGS. 39 and 40.
  • the reinforcing unit 12J is obtained by rotating the reinforcing unit 12H by 90 degrees.
  • the reinforcing unit 12K will be described with reference to FIGS. 41 and 42.
  • FIG. The reinforcing unit 12K is obtained by rotating the reinforcing unit 12I by 90 degrees.
  • the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12K is formed continuously with the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12J.
  • the bottom surface of the groove 44 included in the second rectangular region 14B in the reinforcing unit 12J is formed continuously with the bottom surface of the recess 38 included in the second rectangular region 14B in the reinforcing unit 12K. That is, although not illustrated, the top surface 40 of the reinforcing convex portion 32 included in the second rectangular region 14B in the reinforcing unit 12J is the top surface 34 of the second convex portion 30 included in the second rectangular region 14B in the reinforcing unit 12K. It is formed continuously.
  • the shape and application of the panel are not particularly limited as long as the panel has a portion where the reinforcing unit is formed.
  • the panel may be used for panel parts such as an automobile floor panel, a door inner panel, a dash panel, a trunk lid inner panel, and a hood inner panel, or may be used as a member constituting an automobile frame. . Or you may use for a building material and household appliances.
  • the panel may include a flat frame-like portion surrounding all the reinforcing units. You may join a panel with another member using this frame-shaped part.
  • a reinforcement unit may be present at the edge of the panel. In this case, a part of the reinforcing unit may be cut.
  • the material of the panel may be, for example, a metal such as steel, aluminum alloy, titanium, stainless steel, or a synthetic resin.
  • the panel only needs to be provided with a reinforcing unit only in a portion where strength is required. For example, a certain area at the end of the panel in FIG. 1 is more advantageous when it is joined with another member or when another process such as bending or cutting is performed. .
  • the arrangement of the reinforcing units is appropriately set according to, for example, the shape and size of the part where the reinforcing units are formed on the panel.
  • the reinforcing unit may be formed on a flat surface or a curved surface.
  • the reinforcing unit can be easily formed by plastic working such as press working or roll working. You may press-work in the state which heated and improved the moldability of the panel like warm forming and hot stamping.
  • the reinforcing unit can be easily formed by injection molding or hot stamping.
  • the panel does not need to have multiple reinforcement units.
  • the panel may include one reinforcing unit.
  • the second rectangular area may include a plurality of reinforcing protrusions.
  • the arrangement of 2 rows and 2 columns and the arrangement of 3 rows and 3 columns have been described as the arrangement of the first rectangular region 14A and the second rectangular region 14B.
  • the arrangement of the region 14B is not limited to these arrangements. For example, an arrangement having four or more rows and columns may be used. Further, the number of rows and the number of columns may be different.
  • the arrangement of the first rectangular area 14 ⁇ / b> A and the second rectangular area 14 ⁇ / b> B is appropriately set according to, for example, the shape and size of the part where the reinforcing unit is formed in the panel 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Superstructure Of Vehicle (AREA)
  • Body Structure For Vehicles (AREA)
  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

 曲げ剛性及びねじり剛性を両立できるパネルを提供する。本発明の実施の形態によるパネルは、補強ユニット(12)を備える。補強ユニットは、複数の第1矩形領域(14A)と複数の第2矩形領域(14B)と含む。第1矩形領域及び第2矩形領域は行及び列に交互に配置される。第1矩形領域の各々は、第1凸部(18)を含む。第1凸部は、仮想の基準面(16)に対して垂直な第1方向に全体的に突出しかつ平坦な頂面(20)を有する。第2矩形領域の各々は、第2凸部(30)と、補強凸部(32)とを含む。第2凸部は、第1方向と反対の第2方向に部分的に突出しかつ平坦な頂面(34)を有する。補強凸部は、対向する両辺の間にわたって第1方向に部分的に突出しかつ平坦な頂面(40)を有する。補強凸部の頂面は第1凸部の頂面と同一平面を形成する。

Description

凹凸を有するパネル
 本発明は、パネルに関し、詳しくは、高い剛性を有するパネルに関する。
 近年、自動車等に用いられるパネルには、軽量化が求められている。軽量化を実現する方法として、例えば、板厚を薄くすることが考えられる。しかしながら、板厚を薄くすると、剛性が低下するという問題が生じる。そこで、板厚を増加させることなく、剛性を確保するために、凹凸部を形成することが提案されている。なお、凹凸部としては、他部品との干渉を抑制するために、できるだけ小さな凹凸深さで剛性を向上させる形状が求められる。
 特許第5218633号公報には、パネルが開示されている。パネルは、複数の凸部と、複数の凹所とを備える。各凸部は平坦な頂面を有する。各凹所は平坦な底面を有する。凸部と凹所とが行及び列に交互に配置される。
 特開2012-51004号公報には、凹凸部を有する板材が開示されている。この板材は、複数の凸部及び複数の凹所を有する。各凸部は平坦な頂面を有する。各凹所は平坦な底面を有する。頂面及び底面は、それぞれ、一対の延出部と、一対の延出部を連結する連結部とを有する。凸部と凹所とが行及び列に交互に配置される。平面視において、頂面及び底面の一方が有する一対の延出部は、他方が有する一対の延出部の間に位置する。
 特許第4402745号公報には、ヒートインシュレータが開示されている。ヒートインシュレータは、多数の凸部を有する。各凸部は、平面視六角形状を呈し、且つ、対角を形成する頂点を通る縦断面が円弧状を呈する。凸部同士の間には、平板部が直線状に残っていない。
 特開2011-27248号公報には、凹凸部を有する板材が開示されている。この板材において、凹凸部は、厚み方向における突出高さが異なる第1領域、第2領域及び第3領域を備える。各領域は、同種の領域が連続的に連なることなく、各領域が必ず異なる他の2種の領域と接するように、分散配置されている。
 特開2011-101893号公報には、凹凸部を有する板材が開示されている。この板材において、凹凸部は、第1突出部と、第2突出部と、中間平面とを有する。第1突出部は、12角錐形状または12角錐台形状を呈する。第2突出部は、第1突出部とは反対側に突出し、6角錐形状または6角錐台形状を呈する。中間平面は、中間基準面上に設けられた4角形状の平面である。
 特開2011-110847号公報には、凹凸部を有する板材が開示されている。この板材では、第1領域と中間領域とが交互に直線状に配列された第1列と、第2領域と中間領域とが存在する。これら第1列及び第2列が交互に配置されている。第1列の第1領域が第2列の中間領域と隣接する。第2列の第2領域が第1列の中間領域と隣接する。第1領域及び第2領域は、第1スカート部により、連結されている。中間領域及び第1領域は、第2スカート部により、連結されている。中間領域及び第2領域は、第3スカート部により、連結されている。
 特開2011-110954号公報には、車両パネルが開示されている。車両パネルは、インナーパネルを備える。インナーパネルは、凹凸部を有する。凹凸部は、第1突出部と、第2突出部と、中間平面とを有する。第1突出部は、12角錐形状または12角錐台形状を呈する。第2突出部は、第1突出部とは反対側に突出し、6角錐形状または6角錐台形状を呈する。中間平面は、中間基準面上に設けられた4角形状の平面である。
 本発明者等は、上記公報に記載の凹凸部を備える場合の剛性について検討した。その結果、特許第5218633号公報及び特開2012-51004号公報に記載の凹凸部を備える場合には、その他の公報に記載の凹凸部を備える場合よりも、剛性が向上するとの知見を得た。しかしながら、特許第5218633号公報及び特開2012-51004号公報に記載の凹凸部には、以下の欠点が含まれることも判明した。
 特許第5218633号公報に記載のパネルでは、稜線によって区切られた平坦な面からなる領域を確保し易い。そのため、パネルにねじり変形が及ぼされる際に、凹凸の境界に位置する稜線を共有していることでパネル全体に荷重が伝播し、かつ稜線によって区切られた平坦な面の1つ1つに大きな面内せん断が生じるため、面内せん断応力がパネル全体に均一に生じ易くなる。その結果、ねじり剛性を確保できる。
 しかしながら、上記パネルでは、凹凸が浅く、且つ、凸部と凹所との境界が行及び列に沿って延びる。そのため、断面二次モーメントが小さくなる。その結果、曲げ剛性が小さくなる。特に、凸部と凹所との境界で最も断面二次モーメントが小さいため、変形が生じ易くなる。つまり、曲げ剛性が低下する。
 特開2012-51004号公報に記載の板材では、凸部と凹所との境界が行及び列に沿って延びていない。そのため、断面二次モーメントが凸部と凹所との境界で小さくなるのを抑制できる。その結果、凸部と凹所との境界で曲げ変形が生じ難くなる。何れの断面においても、断面二次モーメントが高くなるので、曲げ剛性を確保できる。
 しかしながら、特許第5218633号公報に記載のパネルと比べると、板面内にせん断力を生じる平坦な面からなる領域が少ない。そのため、ねじり変形時において、面内せん断応力がパネル全体に均一に発生し難くなる。その結果、ねじり剛性を確保し難くなる。
 本発明の目的は、曲げ剛性及びねじり剛性を両立できるパネルを提供することである。
 本発明の実施の形態によるパネルは、補強ユニットを備える。補強ユニットは、複数の第1矩形領域と複数の第2矩形領域と含む。第1矩形領域及び第2矩形領域は行及び列に交互に配置される。第1矩形領域の各々は、第1凸部を含む。第1凸部は、仮想の基準面に対して垂直な第1方向に全体的に突出しかつ平坦な頂面を有する。第2矩形領域の各々は、第2凸部と、補強凸部とを含む。第2凸部は、第1方向と反対の第2方向に部分的に突出しかつ平坦な頂面を有する。補強凸部は、対向する両辺の間にわたって第1方向に部分的に突出しかつ平坦な頂面を有する。補強凸部の頂面は第1凸部の頂面と同一平面を形成する。
 本発明の実施の形態によるパネルは、曲げ剛性及びねじり剛性を両立できる。
本発明の第1の実施の形態によるパネルを示す平面図である。 図1に示すパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 補強ユニットを示す平面図である。 図3におけるA-A断面図である。 図3の補強ユニットを示す斜視図である。 補強ユニットを示す平面図である。 図6におけるB-B断面図である。 曲げ剛性及びねじり剛性について説明するための斜視図である。 比較例1に係るパネルを示す平面図である。 比較例1に係るパネルを示す斜視図である。 比較例2に係るパネルを示す平面図である。 比較例2に係るパネルを示す斜視図である。 本発明例に係るパネルについて、頂面及び底面を傾斜配置する場合を示す平面図である。 比較例1に係るパネルについて、頂面及び底面を傾斜配置する場合を示す平面図である。 比較例2に係るパネルについて、頂面及び底面を傾斜配置する場合を示す平面図である。 頂面及び底面を基準配置する場合の曲げ剛性及びねじり剛性についてシミュレーションした結果を示すグラフである。 頂面及び底面を傾斜配置する場合の曲げ剛性及びねじり剛性についてシミュレーションした結果を示すグラフである。 頂面及び底面を基準配置する場合と傾斜配置する場合とについてのねじり剛性をシミュレーションした結果を示すグラフである。 本発明の第2の実施の形態によるパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 補強ユニットを示す平面図である。 図18におけるC-C断面図である。 補強ユニットを示す平面図である。 図20におけるD-D断面図である。 本発明の第3の実施の形態によるパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 補強ユニットを示す平面図である。 図23におけるE-E断面図である。 補強ユニットを示す平面図である。 図25におけるF-F断面図である。 本発明の第4の実施の形態によるパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 本発明の第5の実施の形態によるパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 補強ユニットを示す平面図である。 図29におけるG-G断面図である。 補強ユニットを示す平面図である。 図31におけるH-H断面図である。 本発明の第6の実施の形態によるパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 補強ユニットを示す平面図である。 図34におけるI-I断面図である。 補強ユニットを示す平面図である。 図36におけるJ-J断面図である。 本発明の第7の実施の形態によるパネルが備える複数の補強ユニットの一部を拡大して示す平面図である。 補強ユニットを示す平面図である。 図39におけるK-K断面図である。 補強ユニットを示す平面図である。 図41におけるK-K断面図である。
 本発明の実施の形態によるパネルは、補強ユニットを備える。補強ユニットは、複数の第1矩形領域と複数の第2矩形領域と含む。第1矩形領域及び第2矩形領域は行及び列に交互に配置される。第1矩形領域の各々は、第1凸部を含む。第1凸部は、仮想の基準面に対して垂直な第1方向に全体的に突出しかつ平坦な頂面を有する。第2矩形領域の各々は、第2凸部と、補強凸部とを含む。第2凸部は、第1方向と反対の第2方向に部分的に突出しかつ平坦な頂面を有する。補強凸部は、対向する両辺の間にわたって第1方向に部分的に突出しかつ平坦な頂面を有する。補強凸部の頂面は第1凸部の頂面と同一平面を形成する。
 上記パネルでは、補強凸部の頂面が第1凸部の頂面と同一平面を形成する。つまり、補強凸部が第1凸部と連続して一体的に形成される。そのため、断面二次モーメントが第1矩形領域と第2矩形領域との境界で小さくなるのを抑制できる。その結果、第1矩形領域と第2矩形領域との境界で曲げ変形が生じ難くなる。加えて、第2矩形領域が凹凸形状を有する。そのため、補強凸部が延びる方向と交差する断面における断面二次モーメントが大きくなる。その結果、曲げ変形が生じ難くなる。つまり、何れの断面においても、断面二次モーメントが大きくなるので、曲げ剛性を確保できる。
 補強凸部の頂面が第1凸部の頂面と同一平面を形成しない場合として、例えば、補強凸部の頂面が、仮想の基準面と第1凸部の頂面との間に位置する場合を想定する。この場合、補強凸部の高さが低くなる。そのため、第1矩形領域と第2矩形領域との境界にて、断面二次モーメントが低下する。その結果、曲げ変形が生じやすくなる。これに対して、上記パネルでは、補強凸部の頂面が第1凸部の頂面と同一平面を形成している。そのため、断面二次モーメントが低下するのを抑えることができる。その結果、曲げ変形が生じ難くなる。
 上記パネルでは、第1矩形領域及び第2矩形領域が行及び列に交互に配置される。そのため、第1凸部の頂面が補強ユニット内で均一に配置される。つまり、補強ユニットにおいては、稜線によって区切られた平坦な面が均一に配置される。そのため、ねじり変形が及ぼされる際に、面内せん断応力がパネル全体に均一に生じやすくなる。つまり、ねじり剛性を確保できる。
 好ましくは、第1矩形領域及び第2矩形領域は、平面視で正方形状を有する。この場合、稜線で区切られた平坦な面(具体的には、第1凸部の頂面)の一辺の長さが行方向及び列方向で同じになる。そのため、行方向に延びる軸線周りにねじり変形が及ぼされる場合と、列方向に延びる軸線周りにねじり変形が及ぼされる場合とのそれぞれにおいて、略同じように面内せん断応力が生じる。つまり、行方向に延びる軸線周りにねじり変形が及ぼされる場合と、列方向に延びる軸線周りにねじり変形が及ぼされる場合とで、ねじり剛性を略同じにすることができる。換言すれば、ねじり剛性の異方性を抑えることができる。
 好ましくは、第1矩形領域の数と第2矩形領域の数との比が、4:6~6:4の範囲にある。そのため、曲げ剛性及びねじり剛性を両立させることができる。第1矩形領域の数と第2矩形領域の数との比を上記の範囲内で変更することにより、例えば、第1矩形領域の数を第2矩形領域の数よりも大きくしてねじり剛性をやや重視する構成としてもよいし、逆に、第1矩形領域の数を第2矩形領域14Bの数よりも少なくして曲げ剛性をやや重視する構成としてもよい。
 好ましくは、補強ユニットは複数設けられる。複数の補強ユニットは、行及び/又は列に配置される。互いに隣接する2つの補強ユニットにおいて、一方の補強ユニットに含まれる第2矩形領域の補強凸部の頂面は、他方の補強ユニットに含まれる第2矩形領域の第2凸部の頂面又は他方の補強ユニットに含まれる第1矩形領域の第1凸部の頂面と同一平面を形成する。
 この場合、断面二次モーメントが一方の補強ユニットと他方の補強ユニットとの境界で小さくなるのを抑制できる。
 一方の補強ユニットに含まれる第2矩形領域の補強凸部の頂面が、他方の補強ユニットに含まれる第2矩形領域の第2凸部の頂面又は他方の補強ユニットに含まれる第1矩形領域の第1凸部の頂面と同一平面を形成しない場合として、例えば、一方の補強ユニットにおける補強凸部の頂面が、仮想の基準面と、他方の補強ユニットにおける第2凸部の頂面又は第1凸部の頂面との間に位置する場合を想定する。この場合、補強凸部の高さが低くなる。そのため、一方の補強ユニットと他方の補強ユニットとの境界における断面二次モーメントが低下する。これに対して、上記好ましい態様においては、一方の補強ユニットにおける補強凸部の頂面は、他方の補強ユニットにおける第2凸部の頂面又は第1凸部の頂面と同一平面を形成する。そのため、一方の補強ユニットと他方の補強ユニットとの境界において、断面二次モーメントが小さくなるのを抑制できる。
 以下、図面を参照しながら、本発明の実施の形態について説明する。図中同一又は相当部分には、同一符号を付して、その説明は繰り返さない。
 [第1の実施の形態]
 図1を参照しながら、本発明の第1の実施の形態によるパネル10について説明する。パネル10は、複数の補強ユニットを備える。複数の補強ユニットは、複数の補強ユニット12及び複数の補強ユニット12Aを含む。補強ユニット12と補強ユニット12Aとは、行及び列に交互に配置される。
 図2は、パネル10が備える複数の補強ユニットのうち、4つの補強ユニット12、12、12A、12Aが2行2列に配置されている部分を拡大して示す。以下、補強ユニット12及び補強ユニット12Aについて説明する。
 [補強ユニット12]
 補強ユニット12は、図3に示すように、複数の第1矩形領域14A及び複数の第2矩形領域14Bを含む。図3に示すように、複数の第1矩形領域14A及び複数の第2矩形領域14Bは、行及び列に交互に配置される。補強ユニット12では、第1矩形領域14A及び第2矩形領域14Bが3行3列に配置される。補強ユニット12では、第1の矩形領域14Aのほうが第2の矩形領域14Bよりも多く配置される。
 以下、第1矩形領域14A及び第2矩形領域14Bが行を為す方向を行方向とし、第1矩形領域14A及び第2矩形領域14Bが列を為す方向を列方向とする。なお、行方向は補強ユニット12及び補強ユニット12Aが行を為す方向に対応し、列方向は補強ユニット12及び補強ユニット12Aが列を為す方向に対応する。
 [第1矩形領域]
 第1矩形領域14Aは、平面視で矩形形状を有する。図3に示す例では、第1矩形領域14Aは、平面視で正方形状を有する。第1矩形領域14Aは、図4に示すように、第1凸部18を含む。第1凸部18は、図4に示すように、仮想の基準面16(例えば、パネルの側面視でパネルの厚さ方向の中心を通る平面)に対して垂直な方向(以下、表方向)に突出して形成される。つまり、第1凸部18は、基準面16から離れる方向に突出して形成される。第1凸部18においては、基準面16から離れる方向に向かって、基準面16と平行な断面が次第に小さくなる。
 第1凸部18は、図3~図5に示すように、頂面20と、4つの側面22とを含む。
 頂面20は、基準面16に平行である。頂面20は、平面視で正方形状を有する。
 各側面22は、頂面20に接続される。各側面22は、頂面20の周囲で両隣に位置する側面22のそれぞれに接続される。
 各側面22は、基準面16に対して傾斜している。各側面22の基準面16に対する傾斜角θが大きいほど、剛性は向上するが、成形時に局所的な板厚減少や割れを生じやすくなる。各側面22の基準面16に対する傾斜角θは、剛性の向上及び材料の成形のし易さ等を考慮して、適当に設定される。鉄鋼材料の場合、傾斜角θは、好ましくは15~60度であり、さらに好ましくは45度である。
 第1矩形領域14Aは、図4に示すように、凹所24をさらに含む。凹所24は、第1凸部18に対応して形成され、表方向とは反対の裏方向に開口する。
 [第2矩形領域]
 第2矩形領域14Bは、平面視で矩形形状を有する。図3に示す例では、第2矩形領域14Bは、平面視で正方形状を有する。第2矩形領域14Bの平面視での形状及び大きさは、第1矩形領域14Aの平面視での形状及び大きさと同じである。第2矩形領域14Bは、図4に示すように、一対の第2凸部30,30と、補強凸部32とを含む。
 第2凸部30は、図4に示すように、裏方向に突出して形成される。つまり、第2凸部30は、基準面16から離れる方向に突出して形成される。第2凸部30においては、基準面16から離れる方向に向かって、基準面16と平行な断面が次第に小さくなる。
 第2凸部30は、図3~図5に示すように、頂面34と、側面36とを含む。なお、図3~図5では必ずしも明らかではないが、側面36は4つある。
 頂面34は、基準面16に平行である。頂面34は、平面視で列方向に延びる長方形状を有する。頂面34は、頂面20よりも小さい。
 各側面36は、頂面34に接続される。各側面36は、頂面34の周囲で両隣に位置する側面36に接続される。
 各側面36は、基準面16に対して傾斜している。各側面36の基準面16に対する傾斜角は、各側面22の基準面16に対する傾斜角と同じである。
 第2矩形領域14Bは、凹所38をさらに含む。凹所38は、第2凸部30に対応して形成され、表方向に開口する。
 補強凸部32は、図4に示すように、表方向に突出して形成される。つまり、補強凸部32は、基準面16から離れる方向に突出して形成される。補強凸部32においては、基準面16から離れる方向に向かって、基準面16と平行な断面が次第に小さくなる。補強凸部32は、第2矩形領域14Bが有する4つの辺のうち、列方向に延びる一対の辺の間に配置される。つまり、補強凸部32は、列方向に延び、平面視で一対の第2凸部30、30の間に配置される。
 補強凸部32は、図3~図5に示すように、頂面40と、一対の側面42、42とを含む。
 頂面40は、基準面16に平行である。頂面40は、平面視で列方向に延びる長方形状を有する。頂面40は、第1凸部18の頂面20に連続して形成される。つまり、頂面40の基準面16からの距離は、頂面20の基準面16からの距離と同じである。
 各側面42は、頂面40に接続される。各側面42は、列方向で隣に配置される第1矩形領域14Aが有する第1凸部18の側面22に接続される。各側面42は、凹所38の側面に連続して形成される。
 各側面42は、基準面16に対して傾斜している。各側面42の基準面16に対する傾斜角は、各側面22の基準面16に対する傾斜角と同じである。
 第2矩形領域14Bは、凹溝44をさらに含む。凹溝44は、補強凸部32に対応して形成され、裏方向に開口する。凹溝44は、隣の第1矩形領域14Aが有する凹所24に接続される。つまり、凹溝44の底面は、凹所24の底面に連続して形成される。凹溝44の側面は、第2凸部30の側面36に連続して形成される。
 [補強ユニット12A]
 補強ユニット12Aは、補強ユニット12を裏返し、且つ、90度回転させたものである。補強ユニット12Aでは、図6及び図7に示すように、第1凸部18及び補強凸部32が裏方向に突出し、第2凸部30が表方向に突出する。補強ユニット12Aでは、各補強凸部32が行方向に延びる。
 図2に示すように、補強ユニット12において第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Aにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。また、補強ユニット12Aにおいて第2矩形領域14Bが有する凹溝44の底面が、補強ユニット12において第2矩形領域14Bが有する凹所38の底面に連続して形成される。つまり、図示はしていないが、補強ユニット12Aにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12において第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。
 パネル10は、複数の補強ユニット12、12Aを有する。そのため、曲げ剛性及びねじり剛性を両立させることができる。その理由は、以下のとおりである。
 先ず、図8を参照しながら、曲げ剛性及びねじり剛性について説明する。図8を参照して、パネルPLは、4つの辺S1~S4を有する。4つの辺S1~S4のうち、2つの辺S1、S2は、X方向に延びる。2つの辺S3、S4は、Y方向に延びる。なお、X方向は行方向に対応し、Y方向は列方向に対応する。図8は、パネルPLの辺S1が固定された状態を示す。曲げ剛性は、パネルPLの有する4つの辺のうち、辺S1と平行な辺S2にZ方向の変位(曲げ方向の変位)を与えたときのパネルPLの変形のし難さを示す。ねじり剛性は、Y方向に延びる基準線SL周りの変位(ねじり方向の変位)を与えたときのパネルPLの変形のし難さを示す。ここで、基準線SLは、パネルPLの中心C1を通り、且つ、辺S1、S2に垂直である。
 図9A及び図9Bを参照して、これらの図に示すような補強部を有するパネルPL1について説明する。なお、図9A及び図9Bに示す辺S1~S4は、図8に示す辺S1~S4に対応している。
 パネルPL1においては、頂面50Aを有する凸部50、及び、底面52Aを有する凹部52が、行及び列に交互に配置されている。頂面50A及び底面52Aは、平面視で正方形状を有しており、側面54によって接続されている。
 パネルPL1において、図8に示す場合と同様に、辺S1を固定した状態で、ねじり方向の変位を与えた場合を想定する。パネルPL1においては、頂面50A及び底面52Aが格子状に配置され、凹凸の境界に位置する稜線を共有している。そのため、ねじり方向の変位が発生した場合、共有している稜線を通じてパネル全体に荷重が伝播するとともに、頂面50A及び底面52Aにおいて、面内せん断応力が発生する。つまり、ねじり方向の変位が発生したときに、面内せん断応力をパネルPL1の全体に均一に発生させることができる。それ故、パネルPL1は、高いねじり剛性を有する。
 図10A及び図10Bを参照して、これらの図に示すような補強部を有するパネルPL2について説明する。なお、図10A及び図10Bに示す辺S1~S4は、図8に示す辺S1~S4に対応している。
 パネルPL2においては、頂面64を有する凸部60、及び、底面66を有する凹部62が、行及び列に交互に配置されている。頂面64は、一対の延出部64A、64Aと、これらを連結する連結部64Bとを含む。底面66は、一対の延出部66A、66Aと、これらを連結する連結部66Bとを含む。頂面64及び底面66は、側面68によって接続されている。
 パネルPL2において、図8に示す場合と同様に、辺S1を固定した状態で、曲げ方向の変位を与えた場合を想定する。パネルPL2においては、Y方向の何れの位置においても、Y方向に垂直なXZ平面での断面二次モーメントが小さくなるのを抑制できる。その結果、曲げ剛性を確保することができる。
 上記のように、パネルPL1は高いねじり剛性を有し、パネルPL2は高い曲げ剛性を有する。しかしながら、パネルPL1及びパネルPL2には、以下の問題がある。
 パネルPL1においては、正方形状の浅い凹凸が形成されているために、断面二次モーメントが小さく、特に凸部50と凹部52との境界において、断面二次モーメントが小さくなる。そのため、曲げ方向の変位が発生したときに、特に凸部50と凹部52との境界において、曲げ変形が発生するおそれがある。つまり、パネルPL1は、ねじり剛性に特化した特性を有するものであって、ねじり剛性と比べて、曲げ剛性が極端に低くなっている。
 パネルPL2においては、頂面64及び底面66の面積を広く確保し難い。そのため、ねじり方向の変位が発生したときに、パネルPL2の全体に均一に面内せん断応力が発生し難くなる。その結果、ねじり変形が発生するおそれがある。つまり、パネルPL2は、曲げ剛性に特化した特性を有するものであって、曲げ剛性と比べて、ねじり剛性が極端に低くなっている。
 これに対して、パネル10では、複数の補強ユニット12、12Aの全てにおいて、第1矩形領域14A及び第2矩形領域14Bが行及び列に交互に配置される。つまり、複数の補強ユニット12、12Aの全てにおいて、頂面20が均一に配置される。そのため、複数の補強ユニット12、12Aの全てにおいて、稜線によって区切られた平坦な平面が均一に存在する。その結果、ねじり変形が及ぼされる際に、面内せん断応力がパネル10の全体に均一に生じやすくなる。つまり、ねじり剛性を確保できる。
 パネル10では、複数の補強ユニット12,12Aの全てにおいて、頂面40が頂面20と同一平面を形成する。そのため、全ての補強ユニット12において、第1矩形領域14Aと第2矩形領域14Bとの列方向での境界で断面二次モーメントが小さくなるのを抑制できる。その結果、全ての補強ユニット12において、第1矩形領域14Aと第2矩形領域14Bとの列方向での境界で曲げ変形が生じ難くなる。また、全ての補強ユニット12Aにおいて、第1矩形領域14Aと第2矩形領域14Bとの行方向での境界で断面二次モーメントが小さくなるのを抑制できる。その結果、全ての補強ユニット12Aにおいて、第1矩形領域14Aと第2矩形領域14Bとの行方向での境界で曲げ変形が生じ難くなる。加えて、複数の補強ユニット12,12Aの全てにおいて、第2矩形領域14Bが凹凸形状を有する。そのため、補強凸部32の延びる方向に交差する断面における断面二次モーメントが大きくなる。その結果、曲げ変形が生じ難くなる。つまり、何れの断面においても、断面二次モーメントが大きくなる。その結果、曲げ剛性を確保できる。
 パネル10では、補強ユニット12において第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Aにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。また、補強ユニット12Aにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12において第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。そのため、断面二次モーメントが補強ユニット12と補強ユニット12Aとの境界で小さくなるのを抑制できる。その結果、補強ユニット12と補強ユニット12Aとの境界で曲げ変形が生じ難くなる。
 パネル10では、複数の補強ユニット12、12Aの全てにおいて、第1矩形領域14Aの数と第2矩形領域14Bの数との比が、5:4である。つまり、本実施形態では、複数の補強ユニット12、12Aの全てにおいて、第1矩形領域14Aの数と第2矩形領域14Bの数とが同程度、具体的には、これらの比が、4:6~6:4の範囲にある。そのため、曲げ剛性及びねじり剛性を両立させることができる。
 パネル10では、複数の補強ユニット12、12Aの全てにおいて、第1矩形領域14A及び第2矩形領域14Bが、平面視で正方形状を有する。この場合、稜線で区切られた平坦な面(具体的には、頂面20)の一辺の長さが行方向及び列方向で同じになる。そのため、行方向に延びる軸線周りにねじり変形が及ぼされる場合と、列方向に延びる軸線周りにねじり変形が及ぼされる場合とのそれぞれにおいて、略同じように面内せん断応力が生じる。つまり、行方向に延びる軸線周りにねじり変形が及ぼされる場合と、列方向に延びる軸線周りにねじり変形が及ぼされる場合とで、ねじり剛性を略同じにすることができる。要するに、本実施形態では、ねじり剛性の異方性を抑えることができる。
 図2に示す補強部を備えるパネル(以下、本発明例に係るパネル10とする)について、FEM解析により、曲げ剛性及びねじり剛性を評価した。比較のために、図9A及び図9Bに示す補強部を備えるパネル(以下、比較例1に係るパネルPL1とする)と、図10A及び図10Bに示す補強部を備えるパネル(以下、比較例2に係るパネルPL2とする)とについても、同様に、FEM解析を行った。
 [FEM解析の条件]
 FEM解析は、市販の汎用プログラムコードLS-DYNA ver.971を用いた。要素タイプは、完全積分シェル要素とした。要素寸法は、各辺の長さが1mmの正方形とした。剛性を評価するために、力のつり合い方程式を解く静的陰解法を選択して適用した。パネルの材料は、JAC270Dに相当する材料とした。ヤング率は、206GPaとした。ポアソン比は、0.30とした。0.2%耐力は、183MPaとした。引張強度は、308MPaとした。n値は、0.20とした。パネルは、各辺の長さが470mmの正方形とした。パネルの厚さは、0.6mmとした。
 [本発明例に係るパネル]
 図2に示すように、本発明例に係るパネルでは、第1矩形領域14Aの各辺の長さ(図2におけるL1)を50mmとした。頂面20の各辺の長さ(図2におけるL2)を42.5mmとした。補強ユニットの各辺の長さ(図2におけるL3)を150mmとした。頂面40の幅(図2におけるW1)を5mmとした。凹凸深さ(図4におけるH)は、5mmとした。
 [比較例1に係るパネル]
 比較例1に係るパネルPL1では、凹凸深さを3mmとした。頂面50Aの各辺の長さ(図9AにおけるL1)を27mmとした。凸部50の各辺の長さ(図9AにおけるL2)を30mmとした。
 [比較例2に係るパネル]
 比較例2に係るパネルPL2では、凹凸深さを3mmとした。底面66の行方向の長さ(図10AにおけるL1)を35mmとした。行方向で凹部62の両隣に位置する凸部60の連結部64B間の距離(図10AにおけるL2)を45mmとした。凹部62における延出部66Aの列方向の長さ(図10AにおけるW1)を19mmとした。凸部60における連結部64Bの長さ(図10AにおけるW2)を29mmとした。
 [頂面及び底面の配置]
 曲げ剛性及びねじり剛性は、頂面及び底面を基準配置する場合と傾斜配置する場合とについて評価した。ここで、頂面及び底面を基準配置する場合(以下、単に基準配置の場合とする)とは、図2、図9A及び図10Aに示す場合である。頂面及び底面を傾斜配置する場合(以下、単に傾斜配置の場合とする)とは、図11、図12及び図13に示す場合である。つまり、傾斜配置する場合は、基準配置する場合と比べて、凸部及び凹部の並ぶ方向を45度回転させている。
 [曲げ剛性の評価方法]
 曲げ剛性は、パネルの一辺(図2、図9A、図10A、図11、図12及び図13に示す辺S1)を固定し、当該一辺と平行な一辺(図2、図9A、図10A、図11、図12及び図13に示す辺S2)に1Nの荷重を付与した場合の荷重-変位曲線を用いて評価した。
 [ねじり剛性の評価方法]
 ねじり剛性は、パネルの一辺(図2、図9A、図10A、図11、図12及び図13に示す辺S1)を固定し、当該一辺に垂直な一辺(図2、図9A、図10A、図11、図12及び図13に示す辺S3)に1度のねじり変形を付与した場合の荷重-変位曲線を用いて評価した。
 [FEM解析の結果]
 図14は、基準配置の場合の曲げ剛性及びねじり剛性のFEM解析の結果を示すグラフである。図15は、傾斜配置の場合の曲げ剛性及びねじり剛性のFEM解析の結果を示すグラフである。各グラフにおいて、平板に対する曲げ剛性増加率が示す数値Nは平板のN倍の曲げ剛性を有することを示し、平板に対するねじり剛性増加率が示す数値Mは平板のM倍のねじり剛性を有することを示す。
 図14に示すように、比較例1に係るパネルPL1においては、曲げ剛性よりもねじり剛性が優れており、且つ、平板に比べてねじり剛性が飛躍的に高い剛性値を示した。つまり、比較例1に係るパネルPL1は、ねじり剛性に特化した特性を有していた。
 比較例2に係るパネルPL2においては、ねじり剛性よりも曲げ剛性が優れており、且つ、平板に比べて曲げ剛性が飛躍的に高い剛性値を示した。つまり、比較例2に係るパネルPL2は、曲げ剛性に特化した特性を有していた。
 本発明例に係るパネル10においては、比較例1に係るパネルPL1と比べると、ねじり剛性は低いが、曲げ剛性は高い。本発明例に係るパネル10においては、比較例2に係るパネルPL2と比べると、曲げ剛性は低いが、ねじり剛性は高い。本発明例に係るパネル10においては、比較例1及び2に係るパネルPL1、PL2と比べると、平板に対するねじり剛性の向上代と平板に対する曲げ剛性の向上代との差は小さかった。
 図15に示すように、比較例1に係るパネルPL1においては、ねじり剛性よりも曲げ剛性が優れており、且つ、その差がかなり大きかった。つまり、比較例1に係るパネルPL1は、傾斜配置の場合では、曲げ剛性に特化した特性を有していた。別の表現をすれば、比較例1に係るパネルPL1は、基準配置の場合と傾斜配置の場合とで、曲げ剛性及びねじり剛性の何れかに特化する特性を有していた。要するに、比較例1に係るパネルPL1では、凸部50及び凹部52が並ぶ方向と、曲げ方向及びねじり方向の変形が付与される方向との関係によっては、曲げ剛性及びねじり剛性にかなりの差が生じた。
 比較例2に係るパネルPL2においては、基準配置の場合だけでなく、傾斜配置の場合においても、ねじり剛性よりも曲げ剛性が優れていた。比較例2に係るパネルPL2では、基準配置の場合と比べて、ねじり剛性と曲げ剛性との差が極端に小さくなった。つまり、比較例2に係るパネルPL2では、凸部60及び凹部62が並ぶ方向と、曲げ方向及びねじり方向の変形が付与される方向との関係によっては、ねじり剛性に極端な差が生じた。
 本発明例に係るパネル10においては、傾斜配置の場合では、ねじり剛性よりも曲げ剛性が優れていた。つまり、本発明例に係るパネル10は、基準配置の場合と傾斜配置の場合とで、曲げ剛性及びねじり剛性の何れかに優れた特性を有していた。曲げ剛性とねじり剛性との差は、基準配置の場合と傾斜配置の場合とで、略同じであった。つまり、本発明例に係るパネル10では、第1矩形領域14A及び第2矩形領域14Bが並ぶ方向と、曲げ方向及びねじり方向の変形が付与される方向との関係に関わらず、曲げ剛性及びねじり剛性の差が小さかった。
 以上の説明から明らかなように、本発明例に係るパネル10は、比較例1及び2に係るパネルPL1、PL2と比べて、凸部及び凹部が並ぶ方向と、曲げ方向及びねじり方向の変形が付与される方向との関係に関わらず、ねじり剛性と曲げ剛性とを両立することができた。
 図16は、基準配置の場合におけるねじり剛性のFEM解析の結果と、傾斜配置の場合におけるねじり剛性のFEM解析の結果とを併せて示すグラフである。このグラフにおいて、平板に対するねじり剛性増加率が示す数値Mは平板のM倍のねじり剛性を有することを示す。
 図16に示すように、比較例1に係るパネルPL1では、基準配置の場合のほうが傾斜配置の場合よりも、ねじり剛性が極端に優れていた。つまり、基準配置の場合と傾斜配置の場合とで、ねじり剛性に極端な差が生じた。
 比較例2に係るパネルPL2では、傾斜配置の場合のほうが基準配置の場合よりも、ねじり剛性が優れていた。
 本発明例に係るパネル10では、基準配置の場合のほうが傾斜配置の場合よりも、ねじり剛性が優れていた。本発明例に係るパネル10は、比較例1に係るパネルPL1と比べると、傾斜配置の場合におけるねじり剛性に優れていた。本発明例に係るパネル10は、比較例2に係るパネルPL2と比べると、基準配置の場合におけるねじり剛性に優れていた。傾斜配置の場合におけるねじり剛性は、略同じであった。本発明例に係るパネル10では、比較例1及び2に係るパネルPL1、PL2と比べて、基準配置の場合におけるねじり剛性と傾斜配置の場合におけるねじり剛性との差が小さかった。
 以上の説明から明らかなように、本発明例に係るパネル10は、比較例1及び2に係るパネルPL1、PL2と比べて、ねじり剛性の異方性を抑制することができた。
 [第2の実施の形態]
 図17~図21を参照しながら、本発明の第2の実施の形態によるパネルが備える複数の補強ユニットについて説明する。複数の補強ユニットは、複数の補強ユニット12B及び複数の補強ユニット12Cを含む。補強ユニット12B及び補強ユニット12Cは、行及び列に交互に配置される。図17は、複数の補強ユニットのうち、補強ユニット12B及び補強ユニット12Cが2行及び2列に配置されている部分を示す。
 [補強ユニット12B]
 図18及び図19を参照しながら、補強ユニット12Bについて説明する。補強ユニット12Bでは、第1矩形領域14A及び第2矩形領域14Bが3行3列に配置される。補強ユニット12Bでは、補強ユニット12と比べて、第1矩形領域14Aが第2の矩形領域14Bより少なく配置される。補強ユニット12Bでは、各補強凸部32が列方向に延びる。
 [補強ユニット12C]
 図20及び図21を参照しながら、補強ユニット12Cについて説明する。補強ユニット12Cは、補強ユニット12Bを裏返し、且つ、90度回転させたものである。補強ユニット12Cでは、第1凸部18及び補強凸部32が裏方向に突出し、第2凸部30が表方向に突出する。補強ユニット12Cでは、各補強凸部32が行方向に延びる。
 図17に示すように、補強ユニット12Bにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Cにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。補強ユニット12Cにおいて第2矩形領域14Bが有する凹溝44の底面が、補強ユニット12Bにおいて第2矩形領域14Bが有する凹所38の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Cにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Bにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。
 補強ユニット12Bにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Cにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される箇所が2つある。また、補強ユニット12Cにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Bにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される箇所が2つある。そのため、第1の実施の形態よりも、隣接する補強ユニットの境界で曲げ変形が生じ難くなる。
 [第3の実施の形態]
 図22~図26を参照しながら、本発明の第3の実施の形態によるパネルが備える複数の補強ユニットについて説明する。複数の補強ユニットは、複数の補強ユニット12B、複数の補強ユニット12C、複数の補強ユニット12D及び複数の補強ユニット12Eを含む。補強ユニット12Bと補強ユニット12Cとが行方向に交互に配置され、補強ユニット12Dと補強ユニット12Eとが行方向に交互に配置され、補強ユニット12Bと補強ユニット12Dとが列方向に交互に配置され、補強ユニット12Cと補強ユニット12Eとが列方向に交互に配置される。図22は、複数の補強ユニットのうち、補強ユニット12B、補強ユニット12C、補強ユニット12D及び補強ユニット12Eが2行2列に配置されている部分を示す。
 [補強ユニット12D]
 図23及び図24を参照しながら、補強ユニット12Dについて説明する。補強ユニット12Dは、補強ユニット12と比べて、各補強凸部32が行方向に延びる。
 [補強ユニット12E]
 図25及び図26を参照しながら、補強ユニット12Eについて説明する。補強ユニット12Eは、補強ユニット12Dを裏返し、且つ、90度回転させたものである。補強ユニット12Eでは、第1凸部18及び補強凸部32が裏方向に突出し、第2凸部30が表方向に突出する。補強ユニット12Eでは、各補強凸部32が列方向に延びる。
 補強ユニット12Bにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Dにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。補強ユニット12Cにおいて第2矩形領域14Bが有する凹溝44の底面が、補強ユニット12Bにおいて第2矩形領域14Bが有する凹所38の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Cにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Bにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。補強ユニット12Dにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Eにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。補強ユニット12Eにおいて第2矩形領域14Bが有する凹溝44の底面は、補強ユニット12Cにおいて第1矩形領域14Aが有する凹所24の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Eにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Cにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。
 補強ユニット12Bにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Dにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される箇所が2つある。また、補強ユニット12Cにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Bにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される箇所が2つある。そのため、第1の実施の形態よりも、隣接する補強ユニットの境界で変形が生じ難くなる。
 [第4の実施の形態]
 図27を参照しながら、本発明の第4の実施の形態によるパネルが備える複数の補強ユニットについて説明する。複数の補強ユニットは、複数の補強ユニット12、複数の補強ユニット12A、複数の補強ユニット12B及び複数の補強ユニット12Cを含む。補強ユニット12と補強ユニット12Aとが列方向に交互に配置され、補強ユニット12Bと補強ユニット12Cとが列方向に交互に配置され、補強ユニット12と補強ユニット12Bとが行方向に交互に配置され、補強ユニット12Aと補強ユニット12Cとが行方向に交互に配置される。図27は、複数の補強ユニットのうち、補強ユニット12、補強ユニット12A、補強ユニット12B及び補強ユニット12Cが2行2列に配置されている部分を示す。
 補強ユニット12において第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Aにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。補強ユニット12Aにおいて第2矩形領域14Bが有する凹溝44の底面が、補強ユニット12Cにおいて第1矩形領域14Aが有する凹所24の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Aにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Cにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。補強ユニット12Cにおいて第2矩形領域14Bが有する凹溝44の底面は、補強ユニット12Aにおいて第1矩形領域14Aが有する凹所24の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Cにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Aにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。補強ユニット12Bにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Cにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。
 補強ユニット12Bにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Cにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される箇所が2つある。また、補強ユニット12において第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Aにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される箇所が1つある。また、補強ユニット12Cにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12において第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される箇所が2つある。また、補強ユニット12Aにおいて第2矩形領域14Bが有する補強凸部32の頂面40が補強ユニット12Cにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される箇所が1つある。そのため、第1の実施の形態よりも、隣接する補強ユニットの境界(特に、補強ユニット12Aと補強ユニット12Cとの境界及び補強ユニット12Bと補強ユニット12Cとの境界)で変形が生じ難くなる。
 [第5の実施の形態]
 図28~図32を参照しながら、本発明の第5の実施の形態によるパネルが備える複数の補強ユニットについて説明する。複数の補強ユニットは、複数の補強ユニット12F、複数の補強ユニット12G1及び複数の補強ユニット12G2を含む。補強ユニット12F及び補強ユニット12G1は、行及び列に交互に配置される。補強ユニット12F及び補強ユニット12G2は、行及び列に交互に配置される。補強ユニット12G1及び補強ユニット12G2は、対角方向に交互に配置される。図28は、複数の補強ユニットのうち、補強ユニット12F、補強ユニット12G1及び補強ユニット12G2が2行2列に配置されている部分を示す。
 [補強ユニット12F]
 図29及び図30を参照しながら、補強ユニット12Fについて説明する。補強ユニット12Fでは、補強ユニット12と比べて、4つの補強凸部32のうち、2つの凸部32が行方向に延びている。
 [補強ユニット12G1]
 図31及び図32を参照しながら、補強ユニット12G1について説明する。補強ユニット12G1では、補強ユニット12Bと比べて、5つの補強凸部32のうち、1つの凸部32が行方向に延びている。
 [補強ユニット12G2]
 補強ユニット12G2は、補強ユニット12G1を90度回転させたものである。
 補強ユニット12Fにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12G1において第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。補強ユニット12G1及び12G2において第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Fにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。補強ユニット12G2において第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Fにおいて第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。補強ユニット12Fにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12G2において第1矩形領域14Aが有する第1凸部18の頂面20に連続して形成される。
 補強ユニット12F、補強ユニット12G1及び12G2のそれぞれにおいて、行方向に延びる補強凸部32と、列方向に延びる補強凸部32とが存在する。そのため、補強ユニット12F、補強ユニット12G1及び12G2のそれぞれにおいて第1矩形領域14Aと第2矩形領域14Bとの列方向での境界で断面二次モーメントが小さくなるのを抑制できるとともに、第1矩形領域14Aと第2矩形領域14Bとの行方向での境界で断面二次モーメントが小さくなるのを抑制できる。そのため、これらの境界で曲げ変形が生じ難くなる。
 [第6の実施の形態]
 図33~図37を参照しながら、本発明の第6の実施の形態によるパネルが備える複数の補強ユニットについて説明する。複数の補強ユニットは、複数の補強ユニット12H及び複数の補強ユニット12Iを含む。補強ユニット12H及び補強ユニット12Iは、行及び列に交互に配置される。図33は、複数の補強ユニットのうち、補強ユニット12H及び補強ユニット12Iが2行2列に配置されている部分を示す。
 [補強ユニット12H]
 図34及び図35を参照しながら、補強ユニット12Hについて説明する。補強ユニット12Hでは、2つの第1矩形領域14A及び2つの第2矩形領域14Bが2行2列に配置される。つまり、補強ユニット12Hでは、第1矩形領域14A及び第2矩形領域14Bが行方向及び列方向に交互に配置される。また、補強ユニット12Hでは、第2矩形領域14Bが有する補強凸部32は、列方向に延びる。
 [補強ユニット12I]
 図36及び図37を参照しながら、補強ユニット12Iについて説明する。補強ユニット12Iは、補強ユニット12Hを裏返し、且つ、各第2矩形領域14Bが有する補強凸部32の延出方向を行方向に変更したものである。
 補強ユニット12Iにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Hにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。補強ユニット12Hにおいて第2矩形領域14Bが有する凹溝44の底面が、補強ユニット12Iにおいて第2矩形領域14Bが有する凹所38の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Hにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Iにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。
 [第7の実施の形態]
 図38~図42を参照しながら、本発明の第7の実施の形態によるパネルが備える複数の補強ユニットについて説明する。複数の補強ユニットは、複数の補強ユニット12J及び複数の補強ユニット12Kを含む。補強ユニット12J及び補強ユニット12Kは、行及び列に交互に配置される。図38は、複数の補強ユニットのうち、補強ユニット12J及び補強ユニット12Kが2行2列に配置されている部分を示す。
 [補強ユニット12J]
 図39及び図40を参照しながら、補強ユニット12Jについて説明する。補強ユニット12Jは、補強ユニット12Hを90度回転させたものである。
 [補強ユニット12K]
 図41及び図42を参照しながら、補強ユニット12Kについて説明する。補強ユニット12Kは、補強ユニット12Iを90度回転させたものである。
 補強ユニット12Kにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Jにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。補強ユニット12Jにおいて第2矩形領域14Bが有する凹溝44の底面が、補強ユニット12Kにおいて第2矩形領域14Bが有する凹所38の底面に連続して形成される。つまり、図示はされていないが、補強ユニット12Jにおいて第2矩形領域14Bが有する補強凸部32の頂面40は、補強ユニット12Kにおいて第2矩形領域14Bが有する第2凸部30の頂面34に連続して形成される。
 以上、本発明の実施の形態について、詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施の形態によって、何等、限定されない。
 パネルは、補強ユニットが形成される部分を備えていれば、その形状及び用途は特に限定されない。例えば、パネルは、自動車のフロアパネルやドアインナーパネル、ダッシュパネル、トランクリッドインナーパネル、フードインナーパネル等のパネル部品に用いられてもよいし、自動車のフレームを構成する部材に用いられてもよい。或いは、建築用材料や家電製品に用いられてもよい。パネルは、全ての補強ユニットを囲む平坦な枠状部分を含んでいてもよい。この枠状部分を利用して、パネルを他の部材と接合してもよい。パネルの縁部に、補強ユニットが存在してもよい。この場合、補強ユニットの一部が切断されていてもよい。パネルの材料は、例えば、鉄鋼、アルミニウム合金、チタン、ステンレス等の金属であってもよいし、合成樹脂であってもよい。
 パネルは、強度が必要となる部分にだけ補強ユニットが形成されていればよい。例えば、図1におけるパネルの端部のある程度の領域は、他の部材と接合する場合や、曲げ、切断等の別の加工がなされることを想定した場合には、平坦であるほうが有利である。
 補強ユニットの配置は、例えば、パネルにおいて補強ユニットが形成される部位の形状及び大きさ等に応じて、適当に設定される。補強ユニットは、平坦な面に形成されていてもよいし、曲面に形成されていてもよい。補強ユニットは、パネルが金属からなる場合、プレス加工やロール加工等の塑性加工によって容易に形成できる。温間成形やホットスタンプのように、加熱してパネルの成形性を向上させた状態で、プレス加工してもよい。パネルが合成樹脂からなる場合、補強ユニットは、射出成形やホットスタンプによって容易に形成できる。
 パネルは、複数の補強ユニットを備えている必要はない。例えば、パネルは、1つの補強ユニットを備えていてもよい。
 第2矩形領域は、複数の補強凸部を備えていてもよい。この場合、1つの補強凸部を備える場合と比べて、第1矩形領域と第2矩形領域との境界で断面二次モーメントが小さくなるのをさらに抑制できる。その結果、第1矩形領域と第2矩形領域との境界で曲げ変形がさらに生じ難くなる。
 上記実施の形態では、第1矩形領域14A及び第2矩形領域14Bの配置として、2行2列の配置と、3行3列の配置とを説明したが、第1矩形領域14A及び第2矩形領域14Bの配置は、これらの配置に限定されない。例えば、4以上の行及び列を有する配置であってもよい。また、行の数と列の数とが異なっていてもよい。第1矩形領域14A及び第2矩形領域14Bの配置は、例えば、パネル10において補強ユニットが形成される部位の形状及び大きさ等に応じて、適当に設定される。

Claims (12)

  1.  複数の第1矩形領域と複数の第2矩形領域と含む補強ユニットを備え、
     前記第1及び第2矩形領域は行及び列に交互に配置され、
     前記第1矩形領域の各々は、
     仮想の基準面に対して垂直な第1方向に全体的に突出しかつ平坦な頂面を有する第1凸部を含み、
     前記第2矩形領域の各々は、
     前記第1方向と反対の第2方向に部分的に突出しかつ平坦な頂面を有する第2凸部と、
     対向する両辺の間にわたって前記第1方向に部分的に突出しかつ平坦な頂面を有する補強凸部とを含み、
     前記補強凸部の頂面は前記第1凸部の頂面と同一平面を形成する、パネル。
  2.  請求項1に記載のパネルであって、
     前記補強凸部の1つは行に沿って延び、もう1つは列に沿って延びる、パネル。
  3.  請求項1又は2に記載のパネルであって、
     前記第1矩形領域の数は前記第2矩形領域の数よりも多い、パネル。
  4.  請求項1又は2に記載のパネルであって、
     前記第1矩形領域の数と前記第2矩形領域の数との比は、4:6~6:4の範囲にある、パネル。
  5.  請求項1~4の何れか1項に記載のパネルであって、
     前記第1矩形領域及び前記第2矩形領域は、平面視で正方形状を有する、パネル。
  6.  請求項1~5の何れか1項に記載のパネルであって、
     前記補強ユニットは複数設けられ、
     前記複数の補強ユニットは、行及び/又は列に配置され、
     互いに隣接する2つの補強ユニットにおいて、一方の補強ユニットに含まれる第2矩形領域の補強凸部の頂面は他方の補強ユニットに含まれる第2矩形領域の第2凸部の頂面又は他方の補強ユニットに含まれる第1矩形領域の第1凸部の頂面と同一平面を形成する、パネル。
  7.  請求項6に記載のパネルであって、
     前記一方の補強ユニットに含まれる第2矩形領域の補強凸部は行に沿って延び、
     前記他方の補強ユニットに含まれる第2矩形領域の補強凸部は列に沿って延びる、パネル。
  8.  請求項6又は7に記載のパネルであって、
     前記補強ユニットにおいて、前記第1及び第2矩形領域が3行3列に配置される、パネル。
  9.  請求項8に記載のパネルであって、
     前記第1矩形領域が5つ配置され、前記第2矩形領域が4つ配置される、パネル。
  10.  請求項8に記載のパネルであって、
     前記第1矩形領域が4つ配置され、前記第2矩形領域が5つ配置される、パネル。
  11.  請求項6又は7に記載のパネルであって、
     前記補強ユニットにおいて、前記第1矩形領域及び前記第2矩形領域が2行2列に配置される、パネル。
  12.  請求項11に記載のパネルであって、
     前記第1矩形領域が2つ配置され、前記第2矩形領域が2つ配置される、パネル。
PCT/JP2014/081064 2013-11-26 2014-11-25 凹凸を有するパネル WO2015080084A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015550927A JP6112224B2 (ja) 2013-11-26 2014-11-25 凹凸を有するパネル
CN201480064445.4A CN105764781B (zh) 2013-11-26 2014-11-25 具有凹凸的面板
US15/034,586 US10030388B2 (en) 2013-11-26 2014-11-25 Panel having recesses and protrusions
KR1020167013552A KR101734792B1 (ko) 2013-11-26 2014-11-25 요철을 갖는 패널
MX2016006868A MX2016006868A (es) 2013-11-26 2014-11-25 Panel que tiene rebajes y protuberancias.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-243823 2013-11-26
JP2013243823 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015080084A1 true WO2015080084A1 (ja) 2015-06-04

Family

ID=53199024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081064 WO2015080084A1 (ja) 2013-11-26 2014-11-25 凹凸を有するパネル

Country Status (6)

Country Link
US (1) US10030388B2 (ja)
JP (1) JP6112224B2 (ja)
KR (1) KR101734792B1 (ja)
CN (1) CN105764781B (ja)
MX (1) MX2016006868A (ja)
WO (1) WO2015080084A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164079A1 (ja) * 2016-03-23 2017-09-28 新日鐵住金株式会社 ドアインナーパネル及びドアインナーパネル製造方法
JPWO2020145199A1 (ja) * 2019-01-10 2021-10-28 日本製鉄株式会社 自動車フード

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130097833A1 (en) * 2011-04-15 2013-04-25 Tac-Fast Georgia L.L.C. Methods and systems for engagement of decorative covering
US10286958B2 (en) * 2017-07-14 2019-05-14 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles including mesh stamped panels
CN109968699B (zh) * 2019-04-11 2024-05-28 大庆市九天新型保温建筑材料有限公司 斜面缝扎机及其制作的缝扎网织增强纤维保温板
USD912856S1 (en) * 2019-10-28 2021-03-09 Arktura Llc Architectural fixture
USD912855S1 (en) * 2019-10-28 2021-03-09 Arktura Llc Architectural fixture
USD913531S1 (en) * 2019-10-28 2021-03-16 Arktura Llc Architectural fixture
USD913530S1 (en) * 2019-10-28 2021-03-16 Arktura Llc Architectural fixture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202350A (ja) * 2010-03-24 2011-10-13 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2012045622A (ja) * 2010-07-28 2012-03-08 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにそれを用いた車両パネル及び積層構造体
JP2012051004A (ja) * 2010-09-01 2012-03-15 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネルおよび積層構造体
JP2012096694A (ja) * 2010-11-03 2012-05-24 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012081269A1 (ja) * 2010-12-17 2012-06-21 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012096085A1 (ja) * 2011-01-11 2012-07-19 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012098787A1 (ja) * 2011-01-17 2012-07-26 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2012148290A (ja) * 2011-01-17 2012-08-09 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにそれを用いた車両パネル及び積層構造体
JP2013040555A (ja) * 2011-07-20 2013-02-28 Nippon Steel & Sumitomo Metal パネル

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2481046A (en) * 1947-11-13 1949-09-06 Western Engineering Associates Panel structure
US2858247A (en) * 1955-08-04 1958-10-28 Swart Dev Company De Panel material
JP2006205871A (ja) * 2005-01-27 2006-08-10 Mazda Motor Corp 車体のフロアパネル構造
JP2011027248A (ja) 2009-07-01 2011-02-10 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材及びその凹凸部形状の設計方法
JP4402745B2 (ja) 2009-08-07 2010-01-20 株式会社深井製作所 ヒートインシュレータ
CH701771A2 (de) * 2009-09-15 2011-03-15 Nico Ros Geschlossenzelliges Paneel mit Wabenstruktur aus zwei Schichten einer strukturierten Folie.
JP2011101893A (ja) 2009-11-11 2011-05-26 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材およびこれを用いた積層構造体
WO2011058922A1 (ja) * 2009-11-13 2011-05-19 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた積層構造体及び車両パネル
JP2011110954A (ja) 2009-11-24 2011-06-09 Sumitomo Light Metal Ind Ltd 車両パネル
JP2011110847A (ja) 2009-11-27 2011-06-09 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
BR112012016859A2 (pt) 2010-01-13 2023-11-21 Nippon Steel Corp "painel"
JP2011230174A (ja) 2010-04-30 2011-11-17 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
EP2594347A4 (en) * 2010-07-12 2014-01-08 Sumitomo Light Metal Ind UNPACKED PLATE AND VEHICLE PLATE AND LAMINATED STRUCTURE THEREWITH
US9090288B2 (en) * 2010-09-08 2015-07-28 Sumitomo Light Metal Industries, Ltd. Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
USD673779S1 (en) * 2010-10-04 2013-01-08 Sumitomo Light Metals Industries, Ltd. Metal sheet material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202350A (ja) * 2010-03-24 2011-10-13 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2012045622A (ja) * 2010-07-28 2012-03-08 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにそれを用いた車両パネル及び積層構造体
JP2012051004A (ja) * 2010-09-01 2012-03-15 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネルおよび積層構造体
JP2012096694A (ja) * 2010-11-03 2012-05-24 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012081269A1 (ja) * 2010-12-17 2012-06-21 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012096085A1 (ja) * 2011-01-11 2012-07-19 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012098787A1 (ja) * 2011-01-17 2012-07-26 住友軽金属工業株式会社 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2012148290A (ja) * 2011-01-17 2012-08-09 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにそれを用いた車両パネル及び積層構造体
JP2013040555A (ja) * 2011-07-20 2013-02-28 Nippon Steel & Sumitomo Metal パネル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164079A1 (ja) * 2016-03-23 2017-09-28 新日鐵住金株式会社 ドアインナーパネル及びドアインナーパネル製造方法
JP6206629B1 (ja) * 2016-03-23 2017-10-04 新日鐵住金株式会社 ドアインナーパネル及びドアインナーパネル製造方法
US10857858B2 (en) 2016-03-23 2020-12-08 Nippon Steel Corporation Door inner panel and method for manufacturing door inner panel
JPWO2020145199A1 (ja) * 2019-01-10 2021-10-28 日本製鉄株式会社 自動車フード

Also Published As

Publication number Publication date
CN105764781A (zh) 2016-07-13
MX2016006868A (es) 2016-08-17
US20160273222A1 (en) 2016-09-22
JP6112224B2 (ja) 2017-04-12
US10030388B2 (en) 2018-07-24
KR20160075656A (ko) 2016-06-29
KR101734792B1 (ko) 2017-05-11
JPWO2015080084A1 (ja) 2017-03-16
CN105764781B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
JP6112224B2 (ja) 凹凸を有するパネル
JP5868858B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP6662331B2 (ja) 車体構造
WO2011058922A1 (ja) 凹凸部を有する板材並びにこれを用いた積層構造体及び車両パネル
JP6660482B2 (ja) 自動車用フロアパネルおよび自動車用フロアパネルの製造方法
JP2011230174A (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5549964B2 (ja) 耐衝突性能に優れた車両用骨格部材構造
JP2011027248A (ja) 凹凸部を有する板材及びその凹凸部形状の設計方法
US11912341B2 (en) Automobile hood
JP2011110847A (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
WO2012081269A1 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
BR112014015054B1 (pt) Painel de piso frontal
JP5941846B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2011110983A (ja) 車両パネル
JP5901542B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5700767B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5861288B2 (ja) 車両の前部車体構造
JP7173940B2 (ja) 構造部材
JP2011110954A (ja) 車両パネル
JP2012051004A (ja) 凹凸部を有する板材並びにこれを用いた車両パネルおよび積層構造体
JP7207616B1 (ja) 自動車外装部品
CN113272210B (zh) 汽车发动机罩
JP2020032606A (ja) 車両用パネル
JP6123403B2 (ja) 耐衝突性能に優れた車両用骨格部材構造および車両用骨格部材構造の衝突性能算出方法
JP2013132986A (ja) 衝撃吸収部材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550927

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201602812

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 15034586

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167013552

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006868

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865844

Country of ref document: EP

Kind code of ref document: A1