WO2015072269A1 - 原動機の駆動制御装置 - Google Patents

原動機の駆動制御装置 Download PDF

Info

Publication number
WO2015072269A1
WO2015072269A1 PCT/JP2014/077392 JP2014077392W WO2015072269A1 WO 2015072269 A1 WO2015072269 A1 WO 2015072269A1 JP 2014077392 W JP2014077392 W JP 2014077392W WO 2015072269 A1 WO2015072269 A1 WO 2015072269A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
determination
abnormality
value
output torque
Prior art date
Application number
PCT/JP2014/077392
Other languages
English (en)
French (fr)
Inventor
達矢 有海
落合 志信
辻 直樹
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480011153.4A priority Critical patent/CN105121822B/zh
Priority to US14/897,391 priority patent/US9863334B2/en
Priority to DE112014002955.6T priority patent/DE112014002955B4/de
Priority to JP2015523332A priority patent/JP6077656B2/ja
Publication of WO2015072269A1 publication Critical patent/WO2015072269A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a drive control device for a prime mover such as an internal combustion engine or an electric motor that drives a vehicle, and more particularly to a drive control device having a function of determining an abnormality in output torque control of the prime mover.
  • Patent Document 1 discloses a control device for a vehicle drive unit having an abnormality determination function. According to this apparatus, it is determined that an abnormality has occurred when the actual torque of the drive unit (estimated output torque calculated from the intake air flow rate, ignition timing, etc.) exceeds the allowable torque for a predetermined time. .
  • the predetermined time applied to the abnormality determination is set to be constant regardless of the magnitude of the estimated output torque or the torque difference between the estimated output torque and the allowable torque. Therefore, when the predetermined time is relatively short, an erroneous determination is likely to occur when the torque difference is relatively small. On the other hand, when the predetermined time is relatively long, the torque difference is large, and it is necessary to quickly determine the abnormality. Nevertheless, there is a problem that it takes a long time to determine that there is an abnormality.
  • the present invention has been made paying attention to this point, and accurately performs abnormality determination with a determination time suitable for the magnitude of the torque difference between the actual output torque (estimated output torque) of the prime mover and its control target value. It is an object of the present invention to provide a drive control device capable of performing
  • the present invention calculates a target torque (TRQCMD), which is a target value of the output torque of the prime mover (1) that drives the vehicle, and outputs it so that the output torque of the prime mover matches the target torque.
  • TRQCMD target torque
  • a drive control device for a prime mover comprising an output torque control means for performing torque control and an abnormality determination means for judging abnormality of the output torque control means, an estimated output torque (TRQE) which is an estimated value of the actual output torque of the prime mover
  • TRQE estimated output torque
  • the estimated output torque calculating means for calculating the torque difference, and the torque difference for calculating the torque difference integrated value (SUMTDTRQ) that approximates the time integral value of the torque difference (DTRQ) between the target torque (TRQCMD) and the estimated output torque (TRQE).
  • An integrated value calculating means wherein the abnormality determining means sets the torque difference integrated value (SUMTDRQ) to a constant value.
  • SUMDTTH determination threshold value
  • the target torque that is the target value of the output torque of the prime mover that drives the vehicle is calculated, and the output torque control is performed so that the output torque of the prime mover matches the target torque.
  • An estimated output torque that is an estimated value of the actual output torque of the prime mover is calculated, a torque difference integrated value that approximates a time integral value of the torque difference between the target torque and the estimated output torque is calculated, and the torque difference is calculated by the first determination means.
  • the integrated value exceeds a determination threshold set to a constant value, it is determined that an abnormality has occurred in the output torque control means.
  • the torque difference integrated value reaches the determination threshold in a shorter time. Accordingly, an abnormality can be quickly determined when the excessive driving force is large, while high determination accuracy can be obtained by performing the abnormality determination after a longer monitoring period when the excessive driving force is relatively small. Further, even if the value changes after the excessive driving force is generated, the change is reflected in the integrated torque difference value. Therefore, the monitoring period (from the generation of the excessive driving force until it is determined that the abnormality has occurred) Even if the excessive driving force changes during (period), an appropriate determination corresponding to the change can be made.
  • the drive control device uses a correction coefficient (KCR) corresponding to a characteristic of a driving force transmission mechanism (2, 3, 4, 5) that transmits the output torque of the prime mover to the driving wheels of the vehicle, and the torque difference.
  • KCR correction coefficient
  • the difference integrated value calculating means calculates the torque difference integrated value (SUMTDRQ) by integrating the corrected torque difference (DTRQC).
  • the correction coefficient corresponding to the characteristic of the driving force transmission mechanism that transmits the output torque of the prime mover to the drive wheels of the vehicle is calculated according to the torque difference, and is corrected by multiplying the torque difference by the correction coefficient.
  • the torque difference is calculated, and the torque difference integrated value is calculated by integrating the corrected torque difference.
  • the correction coefficient (KCR) is less than “1”.
  • the correction coefficient is set to a value smaller than “1”. Therefore, when the torque difference exceeds the predetermined upper limit value, Suppresses an adverse effect that the time required for abnormality determination becomes too short, and when the torque difference is smaller than the predetermined lower limit value, it is possible to suppress a decrease in determination accuracy by increasing the time required for abnormality determination.
  • the abnormality determination unit includes a determination time setting unit that sets a determination time (TDET) according to the torque difference (DTRQ), and a state in which the torque difference (DTRQ) is greater than a predetermined difference value (DTMGN2).
  • TDET determination time
  • DTMGN2 predetermined difference value
  • a second determination unit that determines that an abnormality has occurred in the output torque control unit when the determination time (TDET) has continued for more than the determination time (TDET), and the abnormality has occurred in both the first determination unit and the second determination unit When the determination is made, the abnormality determination is finalized.
  • the second determination means performs a determination by a method obtained by improving the method shown in Patent Document 1, and sets the determination time according to the torque difference, thereby making a determination in comparison with the method shown in Patent Document 1. The balance between the time required and the determination accuracy can be improved. And when it determines with both a 1st determination means and a 2nd determination means being abnormal, the reliability of a final determination result can be improved by determining abnormality determination.
  • the second determination means sets the minimum value of the determination time (TDTMP (j)) when the determination time (TDTMP (j)) changes corresponding to the change of the torque difference (DTRQ). Applies to the determination.
  • the output torque control means includes an actuator (11, 12, 13) for changing the output torque of the prime mover, and an operating parameter (TH) indicating an operating state of the actuator and an acceleration intention of the driver of the vehicle. , AP), and control calculation means (100) for outputting a drive signal for driving the actuator in accordance with an operation parameter detected by the detection means.
  • An abnormality of calculation in the calculation means (100) is determined, and a related device abnormality determination means for determining an abnormality other than the calculation abnormality in the control calculation means (100) is provided separately from the abnormality determination means. .
  • the drive control device includes an allowable torque calculating means for calculating an allowable torque (TRQLMH) according to an operating state of the prime mover, and when the estimated output torque (TRQE) exceeds the allowable torque (TRQLMH)
  • TRQLMH allowable torque
  • the apparatus further comprises third determining means for determining that an abnormality may have occurred in the output torque control means, and when the third determining means determines that an abnormality may have occurred, Determination by one determination means or determination by the first and second determination means is performed.
  • the allowable torque is calculated according to the operating state of the prime mover, and it is determined that an abnormality may have occurred in the output torque control means when the estimated output torque exceeds the allowable torque, and the first determination means Or the determination by the first and second determination means. Therefore, the abnormality determination is doubled or tripled, and the accuracy of the abnormality determination can be further increased.
  • the allowable torque calculating means sets the allowable torque (TRQLMH) to a predetermined amount for deceleration state when the value of the acceleration operation amount (AP) indicating the acceleration intention of the driver of the prime mover is in the vicinity of “0”.
  • TRQLMH allowable torque
  • the allowable torque is set to the predetermined amount for the deceleration state.
  • the acceleration manipulated variable is in the vicinity of “0”
  • the operating state of the prime mover is relatively stable and the target torque is a negative value close to “0”.
  • the allowable torque calculation means is an acceleration state greater than the deceleration state predetermined amount (DTC2).
  • the allowable torque (TRQLMH) is calculated by adding a predetermined amount (DTC1) for use to the target torque (TRQCMD).
  • the allowable torque is calculated by adding a predetermined correction amount larger than the deceleration state predetermined amount to the target torque.
  • the predetermined amount for the acceleration state is larger than the predetermined amount for the deceleration state. Is added to calculate the allowable torque, thereby preventing erroneous determination.
  • the allowable torque calculation means is configured such that the acceleration operation amount (AP) is not less than the first operation amount threshold (APL) and smaller than the second operation amount threshold (APM) greater than the first operation amount threshold.
  • the target torque (TRQCMD) is larger than the predetermined torque threshold (TRQR2)
  • the allowable torque (TRQLMH) is set to the predetermined torque threshold (TRQR2)
  • the predetermined torque threshold (TRQR2) is set to the second operation.
  • a value larger than the average target torque value corresponding to the amount threshold (APM) is set.
  • the allowable torque is set to the predetermined torque threshold
  • the torque threshold value is set to a value larger than the average target torque value corresponding to the second operation amount threshold value. Therefore, if the target torque exceeds the predetermined torque threshold, it is determined that there is a high possibility that there is an abnormality in the calculation of the target torque, and the allowable torque is set according to the target torque by setting the allowable torque to the predetermined torque threshold. An erroneous determination due to setting of torque can be avoided.
  • the drive control device further includes an acceleration detection means for detecting a rotational acceleration (DNE) of the prime mover, and when the rotational acceleration (DNE) exceeds a predetermined acceleration threshold value (DNETH), the first determination means.
  • DNE rotational acceleration
  • DNETH predetermined acceleration threshold value
  • the determination by the first determination means and the third determination means or the first, second, and third determination means Judgment is prohibited.
  • a predetermined acceleration threshold value for example, when starting the engine when the engine is an internal combustion engine or when performing an idling, an accurate determination cannot be made. A misjudgment can be prevented.
  • FIG. 1 shows a vehicle drive apparatus according to an embodiment of the present invention, which transmits an output torque of an engine 1 and an internal combustion engine (hereinafter referred to as “engine”) 1 that is a prime mover for driving the vehicle. And a drive wheel 6 via the output shaft 3, the differential gear mechanism 4, and the drive shaft 5 of the transmission 2.
  • engine an internal combustion engine
  • the engine 1 has a throttle valve provided in an intake passage, and an actuator 11 for changing the opening degree of the throttle valve is connected to an electronic control unit (hereinafter referred to as “ECU”) 100.
  • the engine 1 has a fuel injection valve 12 and a spark plug 13 for injecting fuel into the intake passage, and the operation of the actuator 11, the fuel injection valve 12, and the spark plug 13 is controlled by the ECU 100.
  • the ECU 100 includes an engine speed sensor 101 that detects the engine speed NE, an accelerator pedal sensor 102 that detects an accelerator pedal operation amount (hereinafter referred to as “accelerator pedal operation amount”) AP, and a throttle valve opening TH.
  • an engine speed sensor 101 that detects the engine speed NE
  • an accelerator pedal sensor 102 that detects an accelerator pedal operation amount (hereinafter referred to as “accelerator pedal operation amount”) AP
  • a throttle valve opening TH are connected to the throttle valve opening sensor 103 for detecting the intake air flow rate sensor 104 for detecting the intake air amount flow rate GAIR of the engine 1, and various sensors (not shown), and the detection signals of these sensors are supplied to the ECU 100. .
  • a cooling water temperature sensor for detecting the engine cooling water temperature TW for detecting the engine cooling water temperature TW
  • an intake air temperature sensor for detecting the intake air temperature TA for detecting the intake air temperature
  • an intake pressure sensor for detecting the intake pressure for detecting the intake pressure
  • an air-fuel ratio sensor for detecting the air-fuel ratio AF and the like are connected.
  • an electronic control unit that controls the transmission 2 an electronic control unit that performs vehicle running stabilization control, and the like are connected via a LAN (Local Area Network).
  • LAN Local Area Network
  • ECU 100 calculates target torque TRQCMD of engine 1 mainly according to accelerator pedal operation amount AP, and controls throttle valve opening TH and ignition timing IGLOG so that the output torque of engine 1 matches target torque TRQCMD.
  • the fuel injection time by the fuel injection valve 12 is controlled according to the intake air flow rate GAIR and the target air-fuel ratio.
  • the throttle valve opening TH is controlled by driving the actuator 11 so that the throttle valve opening TH detected by the throttle valve opening sensor 103 coincides with the target opening THCMD. It is calculated according to the torque TRQCMD.
  • the request from the external ECU is also reflected in the calculation of the target torque TRQCMD.
  • This torque control abnormality determination includes a first determination and a second determination. When both the determination results of the first determination and the second determination indicate that an abnormality has occurred, an abnormality has occurred in torque control. The abnormality occurrence determination is finalized.
  • abnormality determination is performed with a relatively long determination time TDET in a state where the torque difference DTRQ is relatively small, and the abnormality determination is performed as the torque difference DTRQ increases.
  • the determination time TDET By shortening the determination time TDET required for this, it is possible to prevent the determination accuracy from being lowered when the torque difference DTRQ is small, and to make a quick determination when the torque difference DTRQ is large.
  • abnormality determination is performed so that the torque difference DTRQ and the determination time TDET satisfy the relationship indicated by the curve L1 in FIG. 2, and the product of the torque difference DTRQ and the determination time TDET is a constant value PTH as the curve L1.
  • DTMGN1 shown in FIG. 2 is a first allowable torque difference applied in the first determination, and an abnormality has occurred if the time during which the torque difference DTRQ exceeds the first allowable torque difference DTMGN1 continues for the determination time TDET or more.
  • a state in which the torque difference DTRQ is equal to or smaller than the first allowable torque difference DTMGN1 is determined as a normal state.
  • a determination time TDET that satisfies the relationship of the curve L1 of FIG. 2 is calculated according to the torque difference DTRQ at the time tEX, By determining that an abnormality has occurred when the determination time TDET has elapsed from the time point tEX, it is possible to perform an abnormality determination that satisfies the relationship of the curve L1.
  • the first determination is performed by integrating the product P of the torque difference DTRQ and the calculation cycle DT every calculation cycle DT (for example, 20 msec) as shown in FIG.
  • the integrated value SUMP that approximates the time integral value of the torque difference DTRQ (the area value of the region surrounded by the curve indicating the transition of DTRQ shown in FIG. 3 and the time axis) is calculated, and the integrated value SUMP is equal to the constant value PTH.
  • a method is adopted that, when exceeded, determines that an abnormality has occurred.
  • the torque difference DTRQ indicates an excessively generated torque exceeding the target torque TRQCMD, and the engine output torque is proportional to the driving force FD generated by the engine. Therefore, the product P of the torque difference DTRQ and the calculation cycle DT is the torque It is a parameter proportional to the product of the excess driving force FDEX corresponding to the difference DTRQ and the time DT during which the excess driving force is applied, that is, a parameter proportional to the change amount of the vehicle momentum per time DT. Therefore, the fact that the integrated value SUMP exceeds the certain value PTH corresponds to the increase in the vehicle momentum due to the excessive driving force FDEX exceeding the threshold momentum.
  • FIG. 4 shows the relationship between the torque difference DTRQ and the determination time TDET applied in the second determination, and the determination time TDET is set to be shorter as the torque difference DTRQ increases as in FIG. Yes.
  • DTMGN2 shown in FIG. 4 is a second allowable torque difference applied in the second determination.
  • the temporary determination time TDTMP (j) is calculated according to the torque difference DTRQ using the relationship (table) shown in FIG. The determination is performed using the minimum value MIN (TDTMP (j)) of the temporary determination time TDTMP (j) calculated in (1). That is, when the state where the torque difference DTRQ exceeds the second allowable torque difference DTMGN2 exceeds the minimum value MIN (TDTMP (j)), it is determined that an abnormality has occurred.
  • FIG. 5 is a flowchart of the abnormality determination process, and this process is executed by the CPU (central processing unit) of the ECU 100 every calculation cycle DT.
  • the estimated output torque TRQE is calculated using a known method according to the intake air flow rate GAIR, the ignition timing IGLOG, and the air-fuel ratio AF, and in step S12, the target torque TRQCMD is subtracted from the estimated output torque TRQE.
  • the torque difference DTRQ is calculated.
  • step S13 the first determination process shown in FIG. 6 is executed. If it is determined in the first determination process that an abnormality has occurred, the first abnormality determination flag FFAIL1 is set to “1”.
  • step S14 the second determination process shown in FIG. 7 is executed. If it is determined in the second determination process that an abnormality has occurred, the second abnormality determination flag FFAIL2 is set to “1”.
  • step S15 it is determined whether or not the first abnormality determination flag FFAIL1 is “1”. If the answer is affirmative (YES), it is determined whether or not the second abnormality determination flag FFAIL2 is “1”. It discriminate
  • the torque control system includes an accelerator pedal sensor 102, a throttle valve opening sensor 103, an intake air flow rate sensor 104, an actuator 11, a fuel injection valve 12, a spark plug 13, and other related devices, and an ECU 100.
  • FIG. 6 is a flowchart of the first determination process executed in step S13 of FIG.
  • step S21 it is determined whether or not the torque difference DTRQ is larger than the first allowable torque difference DTMGN1. If the answer is negative (NO), the integrated value SUMDTRQ is set to “0” (step S22), and the first abnormality determination flag FFAIL1 is set to “0” (step S26), and the process is terminated. .
  • FIG. 7 is a flowchart of the second determination process executed in step S14 of FIG.
  • step S31 it is determined whether or not the torque difference DTRQ is larger than the second allowable torque difference DTMGN2. If the answer is negative (NO), both the value of the timer TM and the index parameter j are set to “0” (step S32), and the second abnormality determination flag FFAIL2 is set to “0” (step S38). ), The process is terminated.
  • the timer TM is a timer that measures the time during which the torque difference DTRQ continues and exceeds the second allowable torque difference DTMGN2, and the index parameter j indicates the discretization time at which the value of the timer TM is discretized at the calculation cycle DT. .
  • step S31 If the answer to step S31 is affirmative (YES), a temporary determination time TDTMP (j) is calculated using the torque difference DTRQ and the relationship shown in FIG. 4 (step S33).
  • step S34 the determination time TDET is set to the minimum value of the temporary determination time TDTMP (j) calculated up to that point.
  • step S35 the value of the timer TM is increased by the calculation cycle DT, and the index parameter j is increased by “1”.
  • step S36 it is determined whether or not the value of the timer TM is equal to or greater than the determination time TDET. If the answer is negative (NO), the process proceeds to step S38. If the answer is affirmative (YES), the process proceeds to step S37.
  • the second abnormality determination flag FFAIL2 is set to “1”.
  • the target torque TRQCMD of the engine 1 that drives the vehicle is calculated, and the output torque control is performed so that the output torque of the engine 1 matches the target torque TRQCMD.
  • the estimated output torque TRQE is calculated according to the intake air flow rate GAIR and the like, and the time difference value of the torque difference DTRQ is approximated by integrating the torque difference DTRQ between the target torque TRQCMD and the estimated output torque TRQE with a constant calculation cycle DT.
  • the integrated value SUMDTRQ to be calculated is calculated, and it is determined that an abnormality has occurred in the torque control system when the integrated value SUMDTRQ exceeds a determination threshold SUMDTTH set to a constant value in the first determination process (FIG. 6).
  • the integrated value SUMDTRQ reaches the determination threshold SUMDTTH in a shorter time. Therefore, an abnormality can be quickly determined when the excessive driving force FDEX is large, while high determination accuracy can be obtained by performing an abnormality occurrence determination after a longer monitoring period when the excessive driving force FDEX is relatively small. it can. Further, even when the value changes after the excessive driving force FDEX is generated, the change is reflected in the integrated value SUMDTRQ. Therefore, the monitoring period (from the generation of the excessive driving force FDEX until the occurrence of an abnormality is determined). Even if the excessive driving force FDEX changes during the period of (), an appropriate determination corresponding to the change can be made.
  • the determination time TDET is set according to the torque difference DTRQ, and when the torque difference DTRQ is greater than the second allowable torque difference DTMGN2 for the determination time TDET or more, the torque control system
  • the abnormality determination is finalized.
  • the second determination process improves the method shown in Patent Document 1 and sets the determination time TDET according to the torque difference DTRQ, so that the time required for determination and the accuracy of determination are compared with the method shown in Patent Document 1. The balance can be improved.
  • the reliability of the final determination result can be improved by determining the abnormality determination.
  • the temporary determination time TDTMP (j) is calculated according to the torque difference DTRQ, and the determination time TDET is set to the minimum value of the temporary determination time TDTMP (j), so the torque difference DTRQ has changed. In some cases, it is possible to make a determination with an emphasis on rapidity.
  • the output torque control means includes an accelerator pedal sensor 102, a throttle valve opening sensor 103, an intake air flow rate sensor 104, an actuator 11, a fuel injection valve 12, a spark plug 13, and other related devices, and an ECU 100. Is done.
  • the ECU 100 constitutes an abnormality determination unit, an estimated output torque calculation unit, a torque difference integrated value calculation unit, a first determination unit, a determination time calculation unit, and a second determination unit.
  • step S11 in FIG. 5 corresponds to estimated output torque calculation means
  • step S12 in FIG. 5 and step S23 in FIG. 6 correspond to torque difference integrated value calculation means
  • steps S24 and S25 in FIG. 7 corresponds to the first determination means
  • step S33 in FIG. 7 corresponds to the determination time calculation means
  • steps S34 to S37 correspond to the second determination means.
  • the torque difference DTRQ is multiplied by the correction coefficient KCR to calculate the correction torque difference DTRQC, and the correction torque difference DTRQ is integrated to calculate the integrated value SUMDTRQ.
  • the second embodiment is the same as the first embodiment.
  • FIG. 8A is a diagram for explaining the correction of the torque difference DTRQ in the present embodiment.
  • a curve L1 is shown in the same manner as in FIG. 2, and a broken line L2 and a lower limit correction for explaining the upper limit correction are shown.
  • a broken line L3 for explanation and broken lines L4 and L5 for explaining correction according to the efficiency of the torque transmission mechanism (hereinafter referred to as “transmission mechanism correction”) are shown.
  • the upper limit correction is performed in consideration of the maximum output torque of the engine 1.
  • the torque difference DTRQ becomes very large, if the relationship of the curve L1 is applied as it is, the determination time TDET is corrected too short. To do.
  • the correction indicated by the broken line L2 is applied when the torque difference DTRQ exceeds the upper limit value DTRQHL, and is realized by setting a correction coefficient KCR for multiplying the torque difference DTRQ to a value smaller than “1.0”.
  • the lower limit correction is performed in consideration of the calculation error of the estimated output torque TRQE. If the relationship of the curve L1 is applied as it is, the determination accuracy may be lowered, so that the determination time TDET is substantially increased. to correct.
  • the correction indicated by the broken line L3 is applied when the torque difference DTRQ falls below the lower limit value DTRQLL, and is realized by setting the correction coefficient KCR to a value smaller than “1.0”.
  • the transmission mechanism correction is a correction that is performed in consideration of the characteristics of the torque transmission mechanism from the engine 1 to the drive wheels 6. For example, a change in torque transmission efficiency corresponding to a change in engine output torque is considered.
  • a broken line L4 indicates an example of correction for extending the determination time TDET, and is realized by setting the correction coefficient KCR to a value smaller than “1.0”.
  • the transmission mechanism correction is not limited to the broken line L4 but may be corrected as indicated by the broken line L5 according to the characteristics of the torque transmission mechanism.
  • the correction of the broken line L5 is realized by setting the correction coefficient KCR to a value larger than “1.0”.
  • FIG. 8B shows an example of the setting characteristic of the correction coefficient KCR according to the torque difference DTRQ.
  • the correction coefficient KCR is “1.0”
  • the relationship between the torque difference DTRQ and the determination time TDET coincides with the curve L1
  • the correction coefficient KCR is set smaller than “1.0”
  • the correction coefficient KCR is set larger than “1.0”
  • the relationship indicated by the broken line L5 is obtained.
  • FIG. 9 is a flowchart of the first determination process in the present embodiment. Steps S41, S42, and S46 to S48 in FIG. 9 are the same as steps S21, S22, and S24 to S26 in FIG. 6 in the first embodiment, respectively.
  • a correction coefficient KCR is calculated by searching a KCR table set as shown in FIG. 8B according to the torque difference DTRQ, for example.
  • a corrected torque difference DTRQC is calculated by the following equation (4).
  • DTRQC DTRQ ⁇ KCR (4)
  • step S45 an integrated value SUMDTRQ is calculated by integrating the corrected torque difference DTRQC.
  • the correction coefficient KCR corresponding to the characteristic of the torque transmission mechanism that transmits the output torque of the engine 1 to the drive wheels 6 is calculated according to the torque difference DTRQ, and the torque difference DTRQ is multiplied by the correction coefficient KCR.
  • the corrected torque difference DTRQC is calculated
  • the integrated value SUMDTRQ is calculated by integrating the corrected torque difference DTRQC.
  • the correction coefficient KCR is set to a value smaller than “1.0”.
  • the upper limit value DTRQHL is exceeded, the time required for abnormality determination is prevented from becoming too short, and when the torque difference DTRQ is smaller than the predetermined lower limit value DTRQLL, the determination time is lengthened, thereby reducing the determination accuracy. Can be suppressed.
  • step S43 in FIG. 9 corresponds to the correction coefficient calculation means
  • step S44 corresponds to the correction means
  • steps S45 to S47 correspond to the first determination means.
  • related device failure determination processing is performed by executing related device failure determination processing before executing the abnormality determination processing (FIG. 5) in the first embodiment.
  • 103, the actuator 11 and the like is executed in a state where no failure has occurred.
  • the second embodiment is the same as the first embodiment.
  • FIG. 10 is a flowchart showing the overall configuration of the torque control system abnormality determination process in the present embodiment. This process is executed by the CPU of the ECU 100 every calculation cycle DT. In step S51, a related device failure determination process is executed, and the flags referred to in steps S52, S54, S56, and S58 are set.
  • step S52 it is determined whether or not the accelerator pedal sensor failure flag FAPSNSF is “1”. If the answer is affirmative (YES), it is determined that an abnormality has occurred in the accelerator pedal sensor 102 (step S53). ), The process is terminated.
  • step S54 and S56 it is determined whether or not the throttle valve opening sensor failure flag FTHSNSF is “1” and whether or not the throttle actuator failure flag FTHACTF is “1” (steps S54 and S56). If (YES), it is determined that the throttle valve opening sensor 103 is abnormal or the actuator 11 is abnormal (steps S55 and S57), and the process is terminated.
  • step S58 it is determined whether or not a related device failure flag FRDVSF indicating that a failure of related devices other than the above (for example, the intake air flow rate sensor 104, the fuel injection valve 12, etc.) has been detected (step S58), If the answer is affirmative (YES), it is determined that the related device is abnormal (step S59), and the process is terminated. If the answer to step S59 is negative (NO), the process proceeds to the abnormality determination process shown in FIG.
  • FRDVSF indicating that a failure of related devices other than the above (for example, the intake air flow rate sensor 104, the fuel injection valve 12, etc.)
  • the abnormality determination of the related device other than the ECU 100 is executed first, and the abnormality determination process of FIG. 5 is executed in a state where no abnormality is detected. Therefore, the abnormality determination process of FIG. It is possible to determine the occurrence of abnormality in the calculation in (1).
  • the actuator 11, the fuel injection valve 12, and the spark plug 13 correspond to the actuator
  • the accelerator pedal sensor 102, the throttle valve opening sensor 103, the intake air flow rate sensor 104, the air-fuel ratio sensor, and the like correspond to the detection means.
  • the ECU 100 constitutes a control calculation unit and a related device abnormality determination unit. Specifically, steps S51 to S59 in FIG. 10 correspond to related device abnormality determination means.
  • FIG. 11 is a flowchart of the abnormality determination process in the present embodiment, and this process corresponds to a process in which steps S40 to S44 are added to the process shown in FIG.
  • a rotational speed change amount DNE corresponding to the rotational acceleration of the engine 1 is calculated by the following equation (5).
  • K in Expression (5) is a discretization time discretized at a sampling period (for example, 100 msec) of the engine speed NE.
  • DNE NE (k) -NE (k-1) (5)
  • step S41 it is determined whether or not the rotational speed change amount DNE is equal to or less than a predetermined threshold value DNETH.
  • the predetermined threshold value DNETH is set to about 500 rpm / 100 msec, for example.
  • the rotational speed change amount DNE may exceed a predetermined threshold value DNETH. In such a case, accurate torque abnormality determination may be performed. Can not. Accordingly, when the answer to step S41 is negative (NO), the process is immediately ended.
  • step S41 If the answer to step S41 is affirmative (YES), an estimated output torque TRQE is calculated (step S11).
  • step S42 an allowable torque calculation process shown in FIG. An allowable torque TRQLMH corresponding to the upper limit value according to the state is calculated.
  • step S43 it is determined whether or not the estimated output torque TRQE is greater than the allowable torque TRQLMH. If the answer to step S43 is negative (NO), that is, if the estimated output torque TRQE is equal to or less than the allowable torque TRQLMH, it is determined that the torque control system is normal (step S44). On the other hand, when the answer to step S43 is affirmative (YES), it is determined that there is a possibility that an abnormality has occurred in the torque control system, and the processes after step S12, that is, the first and second determination processes described above are executed. To do.
  • FIG. 12 is a flowchart of the allowable torque calculation process executed in step S42 of FIG.
  • step S51 it is determined whether or not the external request flag FEXTD is “1”.
  • the external request flag FEXTD is set to “1” when a request for the output torque of the engine 1 is input from an external ECU (transmission control ECU, vehicle travel stabilization control ECU, etc.). If the answer to step S51 is affirmative (YES), that is, if an external request is input, the basic allowable torque TRQLMB is set to the target torque TRQCMD (step S52), and the correction amount DTCR is set to the third predetermined amount DTC3 ( In step S53), the allowable torque TRQLMH is calculated by the following equation (6) (step S63).
  • the third predetermined amount DTC3 is set to a value of about 15 to 20% of the maximum torque TRQMAX, for example.
  • TRQLMH TRQLMB + DTCR (6)
  • step S51 If the answer to step S51 is negative (NO), it is determined whether or not the accelerator pedal operation amount AP is smaller than a first operation amount threshold APL (for example, set to a value of about 3% of the maximum operation amount). (Step S54). If the answer is affirmative (YES) and the accelerator pedal operation amount AP is substantially “0”, the basic allowable torque TRQLMB is set to the first predetermined torque TRQR1 (step S55), and the correction amount DTCR is set to the first value. 2 Set to a predetermined amount DTC2 (step S56), and proceed to step S63.
  • a first operation amount threshold APL for example, set to a value of about 3% of the maximum operation amount.
  • the target torque TRQCMD is assumed to be set to a negative value when the accelerator pedal operation amount AP is substantially “0”, the first predetermined torque TRQR1 is set to a value near “0”, for example.
  • the second predetermined amount DTC2 is set to a value of about 10% of the maximum torque TRQMAX.
  • the driving state in which the accelerator pedal operation amount AP is substantially “0” is considered to be a relatively stable driving state, so the second predetermined amount DTC2 corresponding to the margin for preventing erroneous determination is set to a relatively small value. Is done.
  • step S54 When the answer to step S54 is negative (NO), that is, when the accelerator pedal operation amount AP is equal to or greater than the first operation amount threshold APL, the accelerator pedal operation amount AP is equal to the second operation amount threshold APM (for example, about 30% of the maximum operation amount). It is determined whether it is smaller than (set to the value of (step S57)). If the answer is affirmative (YES), it is determined whether or not the target torque TRQCMD is greater than a second predetermined torque TRQR2 (step S58). The second predetermined torque TRQR2 is set to a value of about 70% of the maximum torque TRQMAX, for example.
  • the second predetermined torque TRQR2 is an average target torque TRQCMD value (maximum torque) corresponding to the second operation amount threshold value APM. (A value of about 30% of TRQMAX).
  • step S58 When the answer to step S58 is affirmative (YES), it is considered that the target torque TRQCMD is set to an abnormally large value with respect to the accelerator pedal operation amount AP.
  • the basic allowable torque TRQLMB is set to the second predetermined torque TRQR2 (step S59)
  • the correction amount DTCR is set to the fourth predetermined amount DTC4 (step S60)
  • the process proceeds to step S63. Since the second predetermined torque TRQR2 is set to a relatively large value, the fourth predetermined amount DTC4 is set to a small value near “0”.
  • step S57 If the answer to step S57 is negative (NO) and the accelerator pedal operation amount AP is greater than or equal to the second operation amount threshold APM, or the answer to step S58 is negative (NO) and the target torque TRQCMD is the second When it is equal to or less than the predetermined torque TRQR2, the process proceeds to step S61, the basic allowable torque TRQLMB is set to the target torque TRQCMD, the correction amount DTCR is set to the first predetermined amount DTC1 (step S62), and the process proceeds to step S63.
  • the first predetermined amount DTC1 is set to the same level as the third predetermined amount DTC3, that is, about 15 to 20% of the maximum torque TRQMAX.
  • the stability of the engine operating state is lower than when the accelerator pedal operation amount AP is in the vicinity of “0”. Therefore, the first predetermined amount DTC1 is greater than the second predetermined amount DTC2. Set to a large value.
  • FIG. 13 is a diagram illustrating a function realized by the ECU 100 divided into an input unit 111, a target torque calculation unit 112, and an engine control unit 113.
  • the target torque calculation unit 112 is configured to input input operation parameters and external parameters.
  • the target torque TRQCMD is calculated in response to a request from the ECU, and the engine control unit 113 performs intake air flow rate control, fuel injection amount control, and ignition timing control for realizing the target torque TRQCMD.
  • an abnormality determined using the calculated allowable torque TRQLMH (TRQCMD + DTC3) is assumed to be an abnormality of the engine control unit 113.
  • the allowable torque TRQLMH is calculated according to the operating state of the engine 1, and it is determined that an abnormality may have occurred in the torque control system when the estimated output torque TRQE exceeds the allowable torque TRQLMH. Then, the determination by the first and second determination processes is performed. Therefore, abnormality determinations are multiplexed in triplicate, and the accuracy of abnormality determination can be further increased.
  • the allowable torque TRQLMH corresponds to the predetermined amount for the deceleration state (first predetermined amount).
  • Torque TRQR1 + second predetermined amount DTC2 When the driver does not intend to accelerate, the engine operating state is relatively stable and the target torque TRQCMD is a negative value close to “0”. By setting the predetermined amount for deceleration state (DTC2) to be small, the abnormality determination can be performed with high accuracy.
  • the allowable torque is obtained by adding the first predetermined amount DTC1 larger than the second predetermined amount DTC2 corresponding to the predetermined amount for deceleration state to the target torque TRQCMD.
  • TRQLMH is calculated (FIG. 12, steps S61 to S63).
  • the accelerator pedal operation amount AP is equal to or greater than the first operation amount threshold value APL and smaller than the second operation amount threshold value APM
  • the target torque TRQCMD is greater than the second predetermined torque TRQR2
  • the basic allowable torque TRQLMB is the second predetermined torque.
  • the second predetermined torque TRQR2 is set to TRQR2, and is set to a value larger than the average target torque TRQCMD corresponding to the second operation amount threshold APM (FIG. 12, steps S57 to S59).
  • the fourth predetermined amount DTC4 step S60
  • the allowable torque TRQLMH is substantially equal to the basic allowable torque TRQLMB.
  • the allowable torque TRQLMH is set to the second predetermined torque TRQR2 (or the second predetermined torque By setting the torque TRQR2 to a value substantially equal to the torque TRQR2, it is possible to avoid erroneous determination due to setting the allowable torque TRQLMH to a value corresponding to the target torque TRQCMD.
  • the processing in FIG. 12 corresponds to the allowable torque calculation means
  • step S43 in FIG. 11 corresponds to the third determination means
  • the engine speed NE sensor 101 and step S40 in FIG. 11 correspond to the acceleration detection means. To do.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • an electric motor (hereinafter referred to as “motor”) 7 having a function as a prime mover and a generator is provided so as to be able to drive the input shaft of the transmission 2.
  • the PDU 201 is connected to the battery 202, and the PDU 201 is connected to the ECU 100a.
  • ECU100a performs drive control of the engine 1 and the motor 7 so that the drive torque by the engine 1 and / or the motor 7 may correspond with the target torque TRQCMD.
  • the difference between the estimated output torque TRQE of the engine 1, the total estimated output torque TRQM of the motor 7, and the target torque TRQCMD is calculated as the torque difference DTRQ.
  • the abnormality occurrence determination is determined when both of the determination results of the first determination process and the second determination process indicate the occurrence of the abnormality.
  • the abnormality occurrence determination may be confirmed only by processing.
  • the abnormality occurrence determination may be confirmed only by the first determination process.
  • the integrated value SUMDTRQ of the torque difference DTRQ itself is used as a parameter that approximates the time integral value of the torque difference DTRQ by using the fact that the calculation cycle DT is constant.
  • the calculation cycle DT is constant.
  • an integrated value obtained by integrating the product of the torque difference DTRQ and the calculation cycle DT may be used as a parameter that approximates the time integral value of the torque difference DTRQ.
  • the device for inputting the driver's intention to accelerate is not limited to the accelerator pedal, and an input device using a manual lever can also be used.
  • the operation amount of the manual lever is applied as the acceleration operation amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 車両を駆動する原動機の出力トルクの目標値である目標トルクを算出し、原動機の出力トルクが目標トルクと一致するように出力トルクを制御するとともに、その出力トルク制御の異常を判定する駆動制御装置が提供される。原動機の実出力トルクの推定値である推定出力トルクが算出され、目標トルクと推定出力トルクとのトルク差分の時間積分値を近似するトルク差分積算値が算出される。トルク差分積算値が、一定値に設定される判定閾値を超えたときに、出力トルク制御に異常が発生したと判定される。

Description

原動機の駆動制御装置
 本発明は、車両を駆動する内燃機関や電動機などの原動機の駆動制御装置に関し、特に原動機の出力トルク制御における異常を判定する機能を有する駆動制御装置に関する。
 特許文献1には、異常判定機能を有する車両駆動ユニットの制御装置が示されている。この装置によれば、駆動ユニットの実際のトルク(吸入空気流量、点火時期などから算出される推定出力トルク)が許容トルクを超えている時間が所定時間を超えると異常が発生したと判定される。
特許第3955328号公報
 特許文献1に示された装置では、異常判定に適用される所定時間は、推定出力トルクの大きさあるいは、推定出力トルクと許容トルクとのトルク差分とは無関係に一定に設定される。そのため、所定時間が比較的短い場合には、トルク差分が比較的小さいときに誤判定が起き易くなる一方、所定時間が比較的長い場合にはトルク差分が大きく、異常判定を迅速に行う必要があるにも拘わらず、異常と判定するまでの時間が長くなるという課題がある。
 本発明はこの点に着目してなされたものであり、原動機の実出力トルク(推定出力トルク)とその制御目標値とのトルク差分の大きさに適した判定時間で異常判定を精度よく行うことができる駆動制御装置を提供することを目的とする。
 上記目的を達成するため本発明は、車両を駆動する原動機(1)の出力トルクの目標値である目標トルク(TRQCMD)を算出し、前記原動機の出力トルクが前記目標トルクと一致するように出力トルク制御を行う出力トルク制御手段と、該出力トルク制御手段の異常を判定する異常判定手段とを備える原動機の駆動制御装置において、前記原動機の実出力トルクの推定値である推定出力トルク(TRQE)を算出する推定出力トルク算出手段と、前記目標トルク(TRQCMD)と前記推定出力トルク(TRQE)とのトルク差分(DTRQ)の時間積分値を近似するトルク差分積算値(SUMDTRQ)を算出するトルク差分積算値算出手段とを備え、前記異常判定手段は、前記トルク差分積算値(SUMDTRQ)が、一定値に設定される判定閾値(SUMDTTH)を超えたときに、前記出力トルク制御手段に異常が発生したと判定する第1判定手段を有することを特徴とする。
 この構成によれば、車両を駆動する原動機の出力トルクの目標値である目標トルクが算出され、原動機の出力トルクが目標トルクと一致するように出力トルク制御が行われる。原動機の実出力トルクの推定値である推定出力トルクが算出され、目標トルクと推定出力トルクとのトルク差分の時間積分値を近似するトルク差分積算値が算出され、第1判定手段によって、トルク差分積算値が、一定値に設定される判定閾値を超えたときに、出力トルク制御手段に異常が発生したと判定される。トルク差分積算値は、原動機が発生した駆動力のうち目標値を超える過剰駆動力と、その過剰駆動力が作用した時間との積(力積=運動量の変化量)にほぼ比例するパラメータであり、過剰駆動力(トルク差分)が大きいほどトルク差分積算値は、より短い時間で判定閾値に達する。したがって、過剰駆動力が大きい状態では迅速に異常を判定することができる一方、過剰駆動力が比較的小さい状態ではより長い監視期間後に異常発生判定を行うことで高い判定精度を得ることができる。さらに、過剰駆動力が発生してからその値が変化した場合でも、その変化がトルク差分積算値に反映されるため、監視期間(過剰駆動力が発生してから異常発生と判定されるまでの期間)中に過剰駆動力が変化しても変化に対応した適切な判定を行うことができる。
 好ましくは前記駆動制御装置は、前記原動機の出力トルクを前記車両の駆動輪まで伝達する駆動力伝達機構(2,3,4,5)の特性に応じた補正係数(KCR)を、前記トルク差分(DTRQ)に応じて算出する補正係数算出手段と、前記トルク差分(DTRQ)に前記補正係数(KCR)を乗算することにより補正トルク差分(DTRQC)を算出する補正手段とをさらに備え、前記トルク差分積算値算出手段は、前記補正トルク差分(DTRQC)を積算することにより、前記トルク差分積算値(SUMDTRQ)を算出する。
 この構成によれば、原動機の出力トルクを車両の駆動輪まで伝達する駆動力伝達機構の特性に応じた補正係数が、トルク差分に応じて算出され、トルク差分に補正係数を乗算することにより補正トルク差分が算出され、補正トルク差分を積算することにより、トルク差分積算値が算出される。駆動力伝達機構の特性に応じた補正係数を適用することによって、駆動力伝達機構の特性が反映されたトルク差分積算値が得られるので、例えばトルク差分が小さくなるほど、トルク差分積算値への寄与度合を減少させるといった補正が可能となり、異常判定に要する時間及び判定精度のバランスを、駆動力伝達機構の特性に対応して適切に設定することが可能となる。
 好ましくは、前記トルク差分(DTRQ)が所定上限値(DTRQHL)より大きいとき、及び前記トルク差分(DTRQ)が所定下限値(DTRQLL)より小さいときは、前記補正係数(KCR)は「1」より小さい値に設定される。
 この構成によれば、トルク差分が所定上限値より大きいとき及び所定下限値より小さいときは、補正係数は「1」より小さい値に設定されるので、トルク差分が所定上限値を超えた場合には異常判定に要する時間が短くなりすぎる弊害を抑制し、トルク差分が所定下限値より小さい場合には異常判定に要する時間をより長くすることよって判定精度の低下を抑制することができる。
 好ましくは、前記異常判定手段は、前記トルク差分(DTRQ)に応じて判定時間(TDET)を設定する判定時間設定手段と、前記トルク差分(DTRQ)が所定差分値(DTMGN2)より大きい状態が前記判定時間(TDET)以上継続したときに、前記出力トルク制御手段に異常が発生したと判定する第2判定手段とを有し、前記第1判定手段及び第2判定手段がともに前記異常が発生したとの判定を行ったときに、異常判定を確定する。
 この構成によれば、トルク差分に応じて判定時間が設定され、トルク差分が所定差分値より大きい状態が判定時間以上継続したときに、第2判定手段によって出力トルク制御手段に異常が発生したと判定され、第1判定手段及び第2判定手段がともに異常が発生したとの判定を行ったときに、異常判定が確定される。第2判定手段は特許文献1に示される手法を改良した手法で判定を行うものであり、トルク差分に応じて判定時間を設定することによって、特許文献1に示される手法と比較して判定に要する時間と判定精度のバランスを向上させることができる。そして、第1判定手段と第2判定手段がともに異常であるとの判定を行ったときに、異常判定を確定することにより、最終判定結果の信頼性を高めることができる。
 好ましくは、前記第2判定手段は、前記トルク差分(DTRQ)の変化に対応して前記判定時間(TDTMP(j))が変化したときは、前記判定時間(TDTMP(j))の最小値を前記判定に適用する。
 この構成によれば、トルク差分の変化に対応して判定時間が変化したときは、判定時間の最小値が判定に適用されるので、第2判定手段によればトルク差分が変化した場合には迅速性を重視した判定を行うことができる。
 好ましくは、前記出力トルク制御手段は、前記原動機の出力トルクを変化させるためのアクチュエータ(11,12,13)と、前記アクチュエータの作動状態及び前記車両の運転者の加速意図を示す運転パラメータ(TH,AP)を検出する検出手段と、前記検出手段による検出される運転パラメータに応じて、前記アクチュエータを駆動する駆動信号を出力する制御演算手段(100)とを含み、前記異常判定手段は前記制御演算手段(100)における演算の異常を判定するものであり、前記制御演算手段(100)における演算の異常以外の異常を判定する関連デバイス異常判定手段が前記異常判定手段とは別に設けられている。
 この構成によれば、出力トルク制御手段における演算の異常以外の異常判定は、関連デバイス異常判定手段によって行われるので、異常判定手段によって制御演算手段の演算における異常の発生を判定することが可能となる。
 好ましくは、前記駆動制御装置は、前記原動機の運転状態に応じて許容トルク(TRQLMH)を算出する許容トルク算出手段と、前記推定出力トルク(TRQE)が前記許容トルク(TRQLMH)を超えるときに、前記出力トルク制御手段に異常が発生した可能性があると判定する第3判定手段をさらに備え、前記第3判定手段によって異常が発生した可能性があるとの判定がなされたときに、前記第1判定手段による判定、または前記第1及び第2判定手段による判定を行う。
 この構成によれば、原動機の運転状態に応じて許容トルクが算出され、推定出力トルクが許容トルクを超えるときに出力トルク制御手段に異常が発生した可能性があると判定され、第1判定手段による判定、または第1及び第2判定手段による判定が行われる。したがって、異常判定が二重または三重に多重化され、異常判定の精度をより高めることができる。
 好ましくは、前記許容トルク算出手段は、前記原動機の運転者の加速意図を示す加速操作量(AP)の値が「0」近傍にあるときは、前記許容トルク(TRQLMH)を減速状態用所定量(DTC2)に設定する。
 この構成によれば、原動機の運転者の加速意図を示す加速操作量の値が「0」近傍にあるときは、許容トルクが減速状態用所定量に設定される。加速操作量の値が「0」近傍にあるときは、原動機の運転状態が比較的安定しており、かつ目標トルクは「0」に近い負の値となることから、誤判定防止のための余裕量を比較的小さい減速状態用所定量に設定することで、異常判定を精度良く行うことができる。
 好ましくは、前記許容トルク算出手段は、前記加速操作量(AP)が「0」より大きい第1操作量閾値(APL)以上であるときは、前記減速状態用所定量(DTC2)より大きい加速状態用所定量(DTC1)を前記目標トルク(TRQCMD)に加算することによって前記許容トルク(TRQLMH)を算出する。
 この構成によれば、加速操作量が「0」より大きい第1操作量閾値以上であるときは、減速状態用所定量より大きい所定補正量を目標トルクに加算することによって許容トルクが算出される。運転者に加速意図があるときは、加速操作量の値が「0」近傍にあるときより原動機運転状態の安定度が低下するため、目標トルクに減速状態用所定量より大きい加速状態用所定量を加算して許容トルクを算出することにより、誤判定を防止することができる。
 好ましくは、前記許容トルク算出手段は、前記加速操作量(AP)が前記第1操作量閾値(APL)以上でかつ該第1操作量閾値より大きい第2操作量閾値(APM)より小さい場合において、前記目標トルク(TRQCMD)が所定トルク閾値(TRQR2)より大きいときは、前記許容トルク(TRQLMH)を前記所定トルク閾値(TRQR2)に設定し、前記所定トルク閾値(TRQR2)は、前記第2操作量閾値(APM)に対応する平均的な前記目標トルクの値より大きな値に設定される。
 この構成によれば、加速操作量が第1操作量閾値以上でかつ第2操作量閾値より小さい場合において、目標トルクが所定トルク閾値より大きいときは、許容トルクが所定トルク閾値に設定され、所定トルク閾値は第2操作量閾値に対応する平均的な目標トルクの値より大きな値に設定される。したがって、目標トルクが所定トルク閾値を超えるような場合には、目標トルクの算出に異常がある可能性が高いと判定し、許容トルクを所定トルク閾値に設定することにより、目標トルクに応じて許容トルクを設定することによる誤判定を回避することができる。
 好ましくは、前記駆動制御装置は、前記原動機の回転加速度(DNE)を検出する加速度検出手段をさらに備え、前記回転加速度(DNE)が所定加速度閾値(DNETH)を超えるときは、前記第1判定手段及び第3判定手段による判定または前記第1、第2、及び第3判定手段による判定を禁止する。
 この構成によれば、原動機の回転加速度が検出され、その回転加速度が所定加速度閾値を超えるときは、第1判定手段及び第3判定手段による判定または第1、第2、及び第3判定手段による判定が禁止される。回転加速度が所定加速度閾値を超えるような場合、例えば原動機が内燃機関である場合の始動時や空ふかしを行ったような場合には正確な判定を行うことができないため、判定を禁止することによって誤判定を防止できる。
本発明の一実施形態にかかる車両駆動装置の構成を示す図である。 トルク制御の異常判定に適用するトルク差分(目標トルクと推定トルクの差分:DTRQ)と、判定時間(TDET)との関係を示す図である。 トルク差分(DTRQ)と演算周期(DT)との積を積算して積算値(SUMP)を算出する処理を説明するための図である。 異常判定(第2判定)の手法を説明するための図である。 異常判定処理のフローチャートである。 図5の処理で実行される第1判定処理のフローチャートである。 図5の処理で実行される第2判定処理のフローチャートである。 トルク差分(DTRQ)の補正を説明するための図である。 第1判定処理のフローチャートである(第2の実施形態)。 トルク制御系異常判定処理の全体構成を示すフローチャートである(第3の実施形態)。 異常判定処理のフローチャートである(第4の実施形態)。 図11の処理で実行される許容トルク算出処理のフローチャートである。 機関制御用電子制御ユニットの機能を3つのブロックに分割して示す図である。 原動機として内燃機関及びモータを備える車両駆動装置を示す図である。
 以下本発明の実施の形態を図面を参照して説明する。
 [第1の実施形態]
 図1は本発明の一実施形態にかかる車両駆動装置を示し、この車両駆動装置は、車両を駆動する原動機である内燃機関(以下「エンジン」という)1と、エンジン1の出力トルクを伝達するための変速機2とを備え、変速機2の出力軸3、差動ギヤ機構4、及び駆動軸5を介して駆動輪6を駆動するように構成されている。
 エンジン1は、吸気通路内に設けられたスロットル弁を有し、スロットル弁の開度を変更するためのアクチュエータ11が電子制御ユニット(以下「ECU」という)100に接続されている。エンジン1は、吸気通路内に燃料を噴射する燃料噴射弁12及び点火プラグ13を有しており、アクチュエータ11、燃料噴射弁12、及び点火プラグ13はECU100によってその作動が制御される。
 ECU100には、エンジン回転数NEを検出するエンジン回転数センサ101、当該車両のアクセルペダルの操作量(以下「アクセルペダル操作量」という)APを検出するアクセルペダルセンサ102、スロットル弁の開度THを検出するスロットル弁開度センサ103、エンジン1の吸入空気量流量GAIRを検出する吸入空気流量センサ104、及び図示しない各種センサが接続されており、それらのセンサの検出信号はECU100に供給される。図示しないセンサとしては、例えばエンジン冷却水温TWを検出する冷却水温センサ、吸気温TAを検出する吸気温センサ、吸気圧を検出する吸気圧センサ、空燃比AFを検出する空燃比センサなどが接続されている。また、図示は省略しているが、変速機2の制御を行う電子制御ユニット、車両走行安定化制御を行う電子制御ユニットなどが、LAN(Local Area Network)を介して接続されている。以下これらの電子制御ユニットを「外部ECU」という。
 ECU100は、主としてアクセルペダル操作量APに応じてエンジン1の目標トルクTRQCMDを算出し、エンジン1の出力トルクが目標トルクTRQCMDと一致するように、スロットル弁開度TH及び点火時期IGLOGを制御するとともに、吸入空気流量GAIR及び目標空燃比に応じて燃料噴射弁12による燃料噴射時間を制御する。スロットル弁開度THの制御は、スロットル弁開度センサ103により検出されるスロットル弁開度THが目標開度THCMDと一致するようにアクチュエータ11を駆動することにより行われ、目標開度THCMDは目標トルクTRQCMDに応じて算出される。なお、目標トルクTRQCMDの算出には、上記外部ECUからの要求も反映される。
 更に本実施形態ではECU100は、吸入空気流量GAIR、点火時期IGLOG、及び空燃比AFに応じてエンジン1の出力トルクの推定値である推定出力トルクTRQEを算出し、推定出力トルクTRQEと目標トルクTRQCMDとのトルク差分DTRQ(=TRQE-TRQCMD)に基づいて、エンジントルク制御における異常判定(トルク制御異常判定)を行う。
 図2~図4を参照して、本実施形態におけるトルク制御異常判定の概要を説明する。このトルク制御異常判定は、第1判定と第2判定とからなり、第1判定と第2判定の判定結果がともに異常の発生を示すものとなったときに、トルク制御において異常が発生したとの異常発生判定が確定される。
 上述した先行技術の課題を解決するため、本実施形態の第1判定ではトルク差分DTRQが比較的小さい状態では比較的長い判定時間TDETで異常判定を行い、トルク差分DTRQが増加するほど、異常判定に要する判定時間TDETを短くすることによって、トルク差分DTRQが小さい状態で判定精度が低下することを防止するとともに、トルク差分DTRQが大きい状態では迅速な判定を行う。具体的には、トルク差分DTRQ及び判定時間TDETが図2の曲線L1で示される関係を満たすように異常判定を行い、曲線L1としては、トルク差分DTRQと判定時間TDETの積が一定値PTHとなる双曲線を使用する。
 なお図2に示すDTMGN1は第1判定で適用される第1許容トルク差であり、トルク差分DTRQが第1許容トルク差DTMGN1を超えている時間が判定時間TDET以上継続すると、異常が発生したと判定し、トルク差分DTRQが第1許容トルク差DTMGN1以下である状態は正常状態と判定する。
 トルク差分DTRQが第1許容トルク差DTMGN1を超えた時点tEXからトルク差分DTRQが一定であれば、時点tEXにおけるトルク差分DTRQに応じて図2の曲線L1の関係を満たす判定時間TDETを算出し、時点tEXから判定時間TDETが経過した時点で異常が発生したと判定することで、曲線L1の関係を満たす異常判定を行うことができる。
 しかし通常はトルク差分DTRQは変化することを考慮し、第1判定では図3に示すように演算周期DT(例えば20msec)毎に、トルク差分DTRQと演算周期DTとの積Pを積算することにより、トルク差分DTRQの時間積分値(図3に示すDTRQの推移を示す曲線と時間軸とで囲まれる領域の面積値)を近似する積算値SUMPを算出し、積算値SUMPが上記一定値PTHを超えたときに、異常が発生したと判定する手法を採用している。
 すなわち、図3に破線で示す矩形領域の面積の合計である積算値SUMPが、図2に破線で例示する矩形領域R1の面積に相当する一定値PTHを超えたときに、異常が発生したと判定される。
 これによって、トルク差分DTRQが変化する実際の運転状態において、トルク差分DTRQが比較的小さい状態では比較的長い判定時間TDETで異常判定を行い、トルク差分DTRQが増加するほど、異常判定に要する判定時間TDETを短くするという要求を満たし、トルク差分DTRQの変化に拘わらず、判定に要する時間と判定精度のバランスを向上させることが可能となる。また、曲線L1を双曲線とすることによって、積算値SUMPと一定値PTHとを比較することにより判定を行うことができるので、トルク差分DTRQに応じて判定時間TDETを設定する手法に比べて判定処理を簡略化することができる。
 トルク差分DTRQは、目標トルクTRQCMDを超える過剰発生トルクを示しており、またエンジン出力トルクは、エンジンが発生する駆動力FDに比例することから、トルク差分DTRQと演算周期DTの積Pは、トルク差分DTRQに対応する過剰駆動力FDEXとその過剰駆動力が印加された時間DTとの積、すなわち力積に比例するパラメータであり、時間DT当たりの車両運動量の変化量に比例するパラメータである。したがって、積算値SUMPが一定値PTHを超えるということは、過剰駆動力FDEXによる車両運動量の増加量が閾値運動量を超えるということに相当する。
 積算値SUMPは、下記式(1)で示されるが、演算周期DTは一定であることから、後述する異常判定処理では、トルク差分DTRQと演算周期DTとの積Pの演算を行わずに、演算周期毎に算出されるトルク差分DTRQそのものの積算値に相当する積算値SUMDTRQを算出し(式(2))、積算値SUMDTRQが判定閾値SUMDTTH(=PTH/DT)を超えたときに異常が発生したと判定するようにしている。式(1)(2)の「i」は、演算周期DTで離散化した離散化時刻である。
 SUMP=ΣDTRQ(i)×DT              (1)
 SUMDTRQ=SUMP/DT=ΣDTRQ(i)      (2)
 次に図4を参照して、第2判定の手法を説明する。図4は、第2判定において適用される、トルク差分DTRQと判定時間TDETとの関係を示しており、図2と同様にトルク差分DTRQが増加するほど判定時間TDETが短くなるように設定されている。また図4に示すDTMGN2は、第2判定で適用される第2許容トルク差である。
 第2判定では、トルク差分DTRQが第2許容トルク差DTMGN2を超えると、トルク差分DTRQに応じて図4に示す関係(テーブル)を用いて仮判定時間TDTMP(j)を算出し、演算周期毎に算出される仮判定時間TDTMP(j)の最小値MIN(TDTMP(j))を用いて判定を行う。すなわち、トルク差分DTRQが第2許容トルク差DTMGN2を超えている状態が、最小値MIN(TDTMP(j))を超えると異常が発生したと判定する。
 図5は異常判定処理のフローチャートであり、この処理はECU100のCPU(中央演算ユニット)において演算周期DT毎に実行される。
 ステップS11では、吸入空気流量GAIR、点火時期IGLOG、及び空燃比AFに応じて公知の手法を用いて推定出力トルクTRQEを算出し、ステップS12では、推定出力トルクTRQEから目標トルクTRQCMDを減算することにより、トルク差分DTRQを算出する。
 ステップS13では図6に示す第1判定処理を実行する。第1判定処理で異常が発生したと判定されると、第1異常判定フラグFFAIL1が「1」に設定される。ステップS14では、図7に示す第2判定処理を実行する。第2判定処理で異常が発生したと判定されると、第2異常判定フラグFFAIL2が「1」に設定される。
 ステップS15では第1異常判定フラグFFAIL1が「1」であるか否かを判別し、その答が肯定(YES)であるときは、第2異常判定フラグFFAIL2が「1」であるか否かを判別する(ステップS16)。ステップS15またはS16の答が否定(NO)であるときは直ちに処理を終了し、ステップS16の答が肯定(YES)であるときは、トルク制御系に異常が発生したとの判定を確定する(ステップS17)。
 トルク制御系は、アクセルペダルセンサ102,スロットル弁開度センサ103,吸入空気流量センサ104,アクチュエータ11,燃料噴射弁12,点火プラグ13などの関連デバイスと、ECU100とによって構成される。
 図6は、図5のステップS13で実行される第1判定処理のフローチャートである。
 ステップS21では、トルク差分DTRQが第1許容トルク差DTMGN1より大きいか否かを判別する。その答が否定(NO)であるときは、積算値SUMDTRQを「0」に設定する(ステップS22)とともに、第1異常判定フラグFFAIL1を「0」に設定し(ステップS26)、処理を終了する。
 ステップS21の答が肯定(YES)であるときは、下記式(3)により積算値SUMDTRQを算出する(ステップS23)。右辺のSUMDTRQは前回算出値である。
 SUMDTRQ=SUMDTRQ+DTRQ       (3)
 ステップS24では積算値SUMDTRQが判定閾値SUMDTTHより大きいか否かを判別し、その答が否定(NO)であるときはステップS26に進む一方、肯定(YES)となるとステップS25に進んで第1異常判定フラグFFAIL1を「1」に設定する。
 図7は、図5のステップS14で実行される第2判定処理のフローチャートである。
 ステップS31では、トルク差分DTRQが第2許容トルク差DTMGN2より大きいか否かを判別する。その答が否定(NO)であるときは、タイマTMの値及びインデクスパラメータjをともに「0」に設定する(ステップS32)とともに、第2異常判定フラグFFAIL2を「0」に設定し(ステップS38)、処理を終了する。タイマTMは、トルク差分DTRQが継続して第2許容トルク差DTMGN2を超えている時間を計測するタイマであり、インデクスパラメータjはタイマTMの値を演算周期DTで離散化した離散化時刻を示す。
 ステップS31の答が肯定(YES)であるときは、トルク差分DTRQ及び図4に示す関係を用いて、仮判定時間TDTMP(j)を算出する(ステップS33)。ステップS34では、判定時間TDETを、その時点までに算出された仮判定時間TDTMP(j)の最小値に設定する。ステップS35では、タイマTMの値を演算周期DTだけ増加させるとともに、インデクスパラメータjを「1」だけ増加させる。
 ステップS36では、タイマTMの値が判定時間TDET以上であるか否かを判別し、その答が否定(NO)であるときはステップS38に進む一方、肯定(YES)となるとステップS37に進んで第2異常判定フラグFFAIL2を「1」に設定する。
 以上のように本実施形態では、車両を駆動するエンジン1の目標トルクTRQCMDが算出され、エンジン1の出力トルクが目標トルクTRQCMDと一致するように出力トルク制御が行われる。推定出力トルクTRQEが吸入空気流量GAIRなどに応じて算出され、目標トルクTRQCMDと推定出力トルクTRQEとのトルク差分DTRQを一定の演算周期DTで積算することにより、トルク差分DTRQの時間積分値を近似する積算値SUMDTRQが算出され、第1判定処理(図6)において、積算値SUMDTRQが一定値に設定される判定閾値SUMDTTHを超えたときに、トルク制御系に異常が発生したと判定される。積算値SUMDTRQは、エンジン1が発生した駆動力のうち目標値を超える過剰駆動力FDEXと、その過剰駆動力FDEXが作用した時間との積(力積=運動量の変化量)に比例するパラメータであり、過剰駆動力FDEX(トルク差分DTRQ)が大きいほど積算値SUMDTRQは、より短い時間で判定閾値SUMDTTHに達する。したがって、過剰駆動力FDEXが大きい状態では迅速に異常を判定することができる一方、過剰駆動力FDEXが比較的小さい状態ではより長い監視期間後に異常発生判定を行うことで高い判定精度を得ることができる。さらに、過剰駆動力FDEXが発生してからその値が変化した場合でも、その変化が積算値SUMDTRQに反映されるため、監視期間(過剰駆動力FDEXが発生してから異常発生と判定されるまでの期間)中に過剰駆動力FDEXが変化しても変化に対応した適切な判定を行うことができる。
 また第2判定処理(図7)において、トルク差分DTRQに応じて判定時間TDETが設定され、トルク差分DTRQが第2許容トルク差DTMGN2より大きい状態が判定時間TDET以上継続したときに、トルク制御系に異常が発生したと判定され、第1判定処理及び第2判定処理においてともに異常が発生したとの判定がなされたときに、異常判定が確定される。第2判定処理は特許文献1に示される手法を改良し、トルク差分DTRQに応じて判定時間TDETを設定することによって、特許文献1に示される手法と比較して判定に要する時間と判定精度のバランスを向上させることができる。そして、第1判定処理と第2判定処理でともに異常であるとの判定が行われたときに、異常判定を確定することにより、最終判定結果の信頼性を高めることができる。
 また第2判定処理では、トルク差分DTRQに応じて仮判定時間TDTMP(j)を算出し、判定時間TDETは仮判定時間TDTMP(j)の最小値に設定されるので、トルク差分DTRQが変化した場合には迅速性を重視した判定を行うことができる。
 本実施形態では、出力トルク制御手段は、アクセルペダルセンサ102,スロットル弁開度センサ103,吸入空気流量センサ104,アクチュエータ11,燃料噴射弁12,点火プラグ13などの関連デバイスと、ECU100とによって構成される。またECU100が、異常判定手段、推定出力トルク算出手段、トルク差分積算値算出手段、第1判定手段、判定時間算出手段、及び第2判定手段を構成する。具体的には、図5のステップS11が推定出力トルク算出手段に相当し、図5のステップS12及び図6のステップS23がトルク差分積算値算出手段に相当し、図6のステップS24及びS25が第1判定手段に相当し、図7のステップS33が判定時間算出手段に相当し、ステップS34~S37が第2判定手段に相当する。
 [第2の実施形態]
 本実施形態はトルク差分DTRQに補正係数KCRを乗算することにより補正トルク差分DTRQCを算出し、補正トルク差分DTRQCを積算することにより積算値SUMDTRQを算出するようにしたものである。以下に説明する点以外は、第1の実施形態と同一である。
 図8(a)は、本実施形態におけるトルク差分DTRQの補正を説明するための図であり、図2と同様に曲線L1が示され、さらに上限補正を説明するための破線L2、下限補正を説明するための破線L3、及びトルク伝達機構の効率などに応じた補正(以下「伝達機構補正」という)を説明するための破線L4及びL5が示されている。
 上限補正は、エンジン1の最大出力トルクを考慮して行われるものであり、トルク差分DTRQが非常に大きくなった場合には曲線L1の関係をそのまま適用すると判定時間TDETが短くなりすぎる点を補正する。破線L2で示す補正は、トルク差分DTRQが上限値DTRQHLを超えたときに適用され、トルク差分DTRQに乗算する補正係数KCRを「1.0」より小さい値に設定することによって実現される。
 下限補正は、推定出力トルクTRQEの演算誤差を考慮して行われるものであり、曲線L1の関係をそのまま適用すると判定精度が低下するおそれがあるため、実質的に判定時間TDETが長くなるように補正する。破線L3で示す補正は、トルク差分DTRQが下限値DTRQLLを下回ったときに適用され、補正係数KCRを「1.0」より小さい値に設定することによって実現される。
 伝達機構補正は、エンジン1から駆動輪6までのトルク伝達機構の特性を考慮して行われる補正であり、例えばエンジン出力トルクの変化に対応するトルク伝達効率の変化などが考慮される。破線L4は、判定時間TDETを長くする補正の例を示すものであり、補正係数KCRを「1.0」より小さい値に設定することによって実現される。伝達機構補正は、破線L4に限るものではなく、トルク伝達機構の特性に応じて破線L5に示すように補正する場合もある。破線L5の補正は、補正係数KCRを「1.0」より大きい値に設定することによって実現される。
 図8(b)は、トルク差分DTRQに応じた補正係数KCRの設定特性の一例を示す。補正係数KCRが「1.0」であるときは、トルク差分DTRQと判定時間TDETとの関係は曲線L1と一致し、補正係数KCRを「1.0」より小さく設定すると、破線L2、L3またはL4に示す関係となり、補正係数KCRを「1.0」より大きく設定すると、破線L5で示す関係となる。
 図9は、本実施形態における第1判定処理のフローチャートである。図9のステップS41,S42,S46~S48は、それぞれ第1の実施形態における図6のステップS21,S22,S24~S26と同一である。
 ステップS43では、トルク差分DTRQに応じて例えば図8(b)に示されるように設定されたKCRテーブルを検索して補正係数KCRを算出する。ステップS44では、下記式(4)により補正トルク差分DTRQCを算出する。
 DTRQC=DTRQ×KCR           (4)
 ステップS45では、補正トルク差分DTRQCを積算することより、積算値SUMDTRQを算出する。
 本実施形態では、エンジン1の出力トルクを駆動輪6まで伝達するトルク伝達機構の特性に応じた補正係数KCRが、トルク差分DTRQに応じて算出され、トルク差分DTRQに補正係数KCRを乗算することにより補正トルク差分DTRQCが算出され、補正トルク差分DTRQCを積算することにより、積算値SUMDTRQが算出される。トルク伝達機構の特性に応じた補正係数KCRを適用することによって、トルク伝達機構の特性が反映された積算値SUMDTRQが得られるので、例えばトルク差分DTRQが小さくなるほど、積算値SUMDTRQへの寄与度合を減少させるといった補正が可能となり、異常判定に要する時間及び判定精度のバランスを、トルク伝達機構の特性に対応して適切に設定することが可能となる。
 またトルク差分DTRQが所定上限値DTRQHLより大きいとき、及びトルク差分DTRQが所定下限値DTRQLLより小さいときは、補正係数KCRは「1.0」より小さい値に設定されるので、トルク差分DTRQが所定上限値DTRQHLを超えた場合には異常判定に要する時間が短くなりすぎる弊害を抑制し、トルク差分DTRQが所定下限値DTRQLLより小さい場合には判定時間をより長くすることより、判定精度の低下を抑制することができる。
 本実施形態では、図9のステップS43が補正係数算出手段に相当し、ステップS44が補正手段に相当し、ステップS45~S47が第1判定手段に相当する。
 [第3の実施形態]
 本実施形態は、第1の実施形態における異常判定処理(図5)を実行する前に関連デバイスの故障判定処理を実行し、トルク制御に関わる関連デバイス(アクセルペダルセンサ102、スロットル弁開度センサ103、アクチュエータ11など)の故障が発生していない状態で図5の異常判定処理を実行するようにしたものである。以下に説明する点以外は、第1の実施形態と同一である。
 図10は本実施形態におけるトルク制御系異常判定処理の全体構成示すフローチャートである。この処理はECU100のCPUで演算周期DT毎に実行される。
 ステップS51では、関連デバイスの故障判定処理を実行し、ステップS52,S54,S56,S58で参照されるフラグの設定を行う。
 ステップS52では、アクセルペダルセンサ故障フラグFAPSNSFが「1」であるか否かを判別し、その答が肯定(YES)であるときは、アクセルペダルセンサ102に異常が発生したと判定し(ステップS53)、処理を終了する。
 同様に、スロットル弁開度センサ故障フラグFTHSNSFが「1」であるか否か、スロットルアクチュエータ故障フラグFTHACTFが「1」であるか否かを判別し(ステップS54,S56)、それらの答が肯定(YES)であるときは、スロットル弁開度センサ103が異常である、あるいはアクチュエータ11が異常であると判定し(ステップS55,S57)、処理を終了する。
 さらに上記以外の関連デバイス(例えば吸入空気流量センサ104,燃料噴射弁12など)の故障が検出されたことを示す関連デバイス故障フラグFRDVSFが「1」である否かを判別し(ステップS58)、その答が肯定(YES)であるときは、当該関連デバイスが異常であると判定して(ステップS59)処理を終了する。
 ステップS59の答が否定(NO)であるときは、図5に示す異常判定処理へ進む。
 本実施形態では、ECU100以外の関連デバイスの異常判定が先に実行され、異常が検出されていない状態で図5の異常判定処理が実行されるので、図5の異常判定処理によってECU100(のCPU)における演算の異常発生を判定することができる。
 本実施形態では、アクチュエータ11,燃料噴射弁12,点火プラグ13がアクチュエータに相当し、アクセルペダルセンサ102,スロットル弁開度センサ103、吸入空気流量センサ104,空燃比センサなどが検出手段に相当し、ECU100が制御演算手段及び関連デバイス異常判定手段を構成する。具体的には、図10のステップS51~S59が関連デバイス異常判定手段に相当する。
 [第4の実施形態]
 本実施形態は、第1の実施形態における異常判定処理(図5)にステップを追加して、異常判定処理をさらに多重化して判定精度を高めるようにしたものである。以下に説明する点以外は第1の実施形態と同一である。
 図11は、本実施形態における異常判定処理のフローチャートであり、この処理は、図5に示す処理にステップS40~S44を追加したものに相当する。
 ステップS40では、下記式(5)によりエンジン1の回転加速度に相当する回転数変化量DNEを算出する。式(5)のkは、エンジン回転数NEのサンプリング周期(例えば100msec)で離散化した離散化時刻である。
 DNE=NE(k)-NE(k-1)          (5)
 ステップS41では、回転数変化量DNEが所定閾値DNETH以下であるか否かを判別する。所定閾値DNETHは、例えば500rpm/100msec程度に設定される。エンジン1の始動時や運転者による空ふかしが行われたような場合に、回転数変化量DNEが所定閾値DNETHを超えることがあり、そのような場合には正確なトルク異常判定を行うことができない。したがって、ステップS41の答が否定(NO)であるときは直ちに処理を終了する。
 ステップS41の答が肯定(YES)であるときは、推定出力トルクTRQEの算出を行い(ステップS11)、ステップS42では、図12に示す許容トルク算出処理を実行し、エンジン出力トルクの、エンジン運転状態に応じた上限値に相当する許容トルクTRQLMHを算出する。
 ステップS43では、推定出力トルクTRQEが許容トルクTRQLMHより大きいか否かを判別する。ステップS43の答が否定(NO)、すなわち推定出力トルクTRQEが許容トルクTRQLMH以下であるときは、トルク制御系は正常と判定する(ステップS44)。一方、ステップS43の答が肯定(YES)であるときは、トルク制御系に異常が発生した可能性があると判定し、ステップS12以下の処理、すなわち上述した第1及び第2判定処理を実行する。
 図12は、図11のステップS42で実行される許容トルク算出処理のフローチャートである。
 ステップS51では、外部要求フラグFEXTDが「1」であるか否かを判別する。外部要求フラグFEXTDは、外部ECU(変速機制御用ECU,車両走行安定化制御用ECU等)からエンジン1の出力トルクに対する要求が入力されたときに「1」に設定される。ステップS51の答が肯定(YES)、すなわち外部要求が入力されたときは、基本許容トルクTRQLMBを目標トルクTRQCMDに設定するとともに(ステップS52)、補正量DTCRを第3所定量DTC3に設定し(ステップS53)、下記式(6)によって許容トルクTRQLMHを算出する(ステップS63)。第3所定量DTC3は、例えば最大トルクTRQMAXの15~20%程度の値に設定される。
 TRQLMH=TRQLMB+DTCR        (6)
 ステップS51の答が否定(NO)であるときは、アクセルペダル操作量APが第1操作量閾値APL(例えば最大操作量の3%程度の値に設定される)より小さいか否かを判別する(ステップS54)。この答が肯定(YES)であって、アクセルペダル操作量APがほぼ「0」であるときは、基本許容トルクTRQLMBを第1所定トルクTRQR1に設定するとともに(ステップS55)、補正量DTCRを第2所定量DTC2に設定し(ステップS56)、ステップS63に進む。
 アクセルペダル操作量APがほぼ「0」であるときは目標トルクTRQCMDは負の値に設定されると想定されるので、第1所定トルクTRQR1は例えば「0」近傍の値に設定される。また第2所定量DTC2は最大トルクTRQMAXの10%程度の値に設定される。アクセルペダル操作量APがほぼ「0」である運転状態は、比較的安定した運転状態と考えられるので、誤判定防止のための余裕量に相当する第2所定量DTC2は比較的小さな値に設定される。
 ステップS54の答が否定(NO)、すなわちアクセルペダル操作量APが第1操作量閾値APL以上であるときは、アクセルペダル操作量APが第2操作量閾値APM(例えば最大操作量の30%程度の値に設定される)より小さいか否かを判別する(ステップS57)。その答が肯定(YES)であるときは、目標トルクTRQCMDが第2所定トルクTRQR2より大きいか否かを判別する(ステップS58)。第2所定トルクTRQR2は、例えば最大トルクTRQMAXの70%程度の値に設定される。第2操作量閾値APMは、最大操作量の30%程度の値に設定されるので、第2所定トルクTRQR2は、第2操作量閾値APMに対応する平均的な目標トルクTRQCMDの値(最大トルクTRQMAXの30%程度の値)より大きな値に設定されている。
 ステップS58の答が肯定(YES)であるときは、アクセルペダル操作量APに対して目標トルクTRQCMDが異常に大きな値に設定されていると考えられる。その場合は、基本許容トルクTRQLMBを第2所定トルクTRQR2に設定する(ステップS59)とともに、補正量DTCRを第4所定量DTC4に設定し(ステップS60)、ステップS63に進む。第2所定トルクTRQR2が比較的大きな値に設定されるため、第4所定量DTC4は、「0」近傍の小さな値に設定される。基本許容トルクTRQLMBを第2所定トルクTRQR2とほぼ等しい値に設定することにより、基本許容トルクTRQLMBを、異常に大きな値の目標トルクTRQCMDに設定することによる誤判定を回避することができる。
 ステップS57の答が否定(NO)であって、アクセルペダル操作量APが第2操作量閾値APM以上であるとき、またはステップS58の答が否定(NO)であって、目標トルクTRQCMDが第2所定トルクTRQR2以下であるときは、ステップS61に進み、基本許容トルクTRQLMBを目標トルクTRQCMDに設定するとともに、補正量DTCRを第1所定量DTC1に設定し(ステップS62)、ステップS63に進む。第1所定量DTC1は、第3所定量DTC3と同程度、すなわち最大トルクTRQMAXの15~20%程度の値に設定される。アクセルペダル操作が行われているときは、アクセルペダル操作量APが「0」近傍であるときと比べてエンジン運転状態の安定度が低下するため、第1所定量DTC1は第2所定量DTC2より大きな値に設定される。
 図13は、ECU100によって実現される機能を、入力部111、目標トルク算出部112、及びエンジン制御部113に分割して示す図であり、目標トルク算出部112は、入力される運転パラメータ及び外部ECUからの要求に応じて目標トルクTRQCMDを算出し、エンジン制御部113は、目標トルクTRQCMDを実現するための吸入空気流量制御、燃料噴射量制御、及び点火時期制御を行う。
 図12において、アクセルペダル操作量APが第1操作量閾値APLより小さい運転状態では、算出される許容トルクTRQLMH(=TRQR1+DTC2)を用いて判定される異常は入力部111、目標トルク算出部112、またはエンジン制御部113の何れかの異常と想定される。また、アクセルペダル操作量APが第2操作量閾値APM以上であるとき、または第1操作量閾値APL以上であって第2操作量閾値APMより小さく、かつ目標トルクTRQCMDが第2所定トルクTRQR2以下である運転状態では、算出される許容トルクTRQLMH(=TRQCMD+DTC1)を用いて判定される異常はエンジン制御部113の異常と想定される。また、第2操作量閾値APMより小さくかつ目標トルクTRQCMDが第2所定トルクTRQR2より大きい運転状態では、算出される許容トルクTRQLMH(=TRQR2+DTC4)を用いて判定される異常は目標トルク算出部112の異常と想定される。また、外部ECUからの要求があるときは、算出される許容トルクTRQLMH(TRQCMD+DTC3)を用いて判定される異常はエンジン制御部113の異常と想定される。
 以上のように本実施形態では、エンジン1の運転状態に応じて許容トルクTRQLMHが算出され、推定出力トルクTRQEが許容トルクTRQLMHを超えるときにトルク制御系に異常が発生した可能性があると判定され、第1及び第2判定処理による判定が行われる。したがって、異常判定が三重に多重化され、異常判定の精度をより高めることができる。
 またエンジン1の運転者の加速意図を示すアクセルペダル操作量APが第1操作量閾値APLより小さく「0」近傍にあるときは、許容トルクTRQLMHが減速状態用所定量に相当する(第1所定トルクTRQR1+第2所定量DTC2)に設定される。運転者の加速意図がないときは、エンジン運転状態が比較的安定しており、かつ目標トルクTRQCMDは「0」に近い負の値となることから、誤判定防止のための余裕量を比較的小さい減速状態用所定量(DTC2)に設定することで、異常判定を精度良く行うことができる。
 またアクセルペダル操作量APが第1操作量閾値APL以上であるときは、減速状態用所定量に相当する第2所定量DTC2より大きい第1所定量DTC1を目標トルクTRQCMDに加算することによって許容トルクTRQLMHが算出される(図12,ステップS61~S63)。運転者に加速意図があるときは、アクセルペダル操作量APが「0」近傍にあるときよりエンジン運転状態の安定度が低下するため、目標トルクTRQCMDに第2所定量DTC2より大きい第1所定量DTC1を加算して許容トルクTRQLMHを算出することにより、誤判定を防止することができる。
 またアクセルペダル操作量APが第1操作量閾値APL以上でかつ第2操作量閾値APMより小さい場合において、目標トルクTRQCMDが第2所定トルクTRQR2より大きいときは、基本許容トルクTRQLMBが第2所定トルクTRQR2に設定され、第2所定トルクTRQR2は第2操作量閾値APMに対応する平均的な目標トルクTRQCMDの値より大きな値に設定される(図12,ステップS57~S59)。ここで、第4所定量DTC4(ステップS60)は上述したように「0」に近い値に設定されるため、許容トルクTRQLMH(=TRQLMB+DTC4)は、基本許容トルクTRQLMBとほぼ等しくなる。したがって、目標トルクTRQCMDが第2所定トルクTRQR2を超えるような場合には、目標トルクTRQCMDの算出に異常がある可能性が高いと判定し、許容トルクTRQLMHを第2所定トルクTRQR2(または第2所定トルクTRQR2とほぼ等しい値)に設定することにより、許容トルクTRQLMHを目標トルクTRQCMDに応じた値を設定することによる誤判定を回避することができる。
 またエンジン1の回転数変化量DNEが検出され、その回転数変化量DNEが所定閾値DNETHを超えるときは、図11の処理が直ちに終了し、異常判定が行われない。回転数変化量DNEが所定閾値DNETHを超えるような場合、すなわちエンジン1の始動時や空ふかしを行ったような場合には正確な判定を行うことができないため、異常判定を禁止することによって誤判定を防止できる。
 本実施形態では、図12の処理が許容トルク算出手段に相当し、図11のステップS43が第3判定手段に相当し、エンジン回転数NEセンサ101及び図11のステップS40が加速度検出手段に相当する。
 なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では原動機が内燃機関である例を示したが、原動機として図14に示すように内燃機関及びモータ(電動機)を備えるハイブリッド車両や、モータのみを備える電動車両などにおける原動機の駆動制御装置にも適用可能である。
 図14に示す例では、原動機及び発電機としての機能を有する電動機(以下「モータ」という)7が、変速機2の入力軸を駆動可能に設けられており、モータ7は、パワードライブユニット(以下「PDU」という)201に接続され、PDU201はバッテリ202に接続され、PDU201はECU100aに接続されている。
 ECU100aは、エンジン1及び/またはモータ7による駆動トルクが目標トルクTRQCMDと一致するように、エンジン1及びモータ7の駆動制御を行う。この変形例では、エンジン1の推定出力トルクTRQEと、モータ7の推定出力トルクTRQMの合計と、目標トルクTRQCMDとの差分がトルク差分DTRQとして算出される。
 また上述した第1~第3の実施形態では、第1判定処理及び第2判定処理の判定結果がともに異常発生を示すものであるときに異常発生判定を確定するようにしたが、第1判定処理のみによって異常発生判定を確定するようにしてもよい。また第4の実施形態においては、図11のステップS43の答が肯定(YES)である(TRQE>TRQLMH)場合に、第1判定処理のみによって異常発生判定を確定するようにしてもよい。
 また上述した実施形態では、演算周期DTが一定であること利用して、トルク差分DTRQそのものの積算値SUMDTRQを、トルク差分DTRQの時間積分値を近似するパラメータとして使用したが、演算周期DTが一定でないような場合には、トルク差分DTRQと演算周期DTとの積を積算することにより得られる積算値をトルク差分DTRQの時間積分値を近似するパラメータとして使用するようにしてもよい。
 また運転者の加速意図を入力する装置としてはアクセルペダルに限らず、手動レバーによる入力装置なども使用可能であり、その場合には手動レバーの操作量が加速操作量として適用される。
 1 内燃機関(原動機)
 2 変速機
 6 駆動輪
 11 アクチュエータ
 12 燃料噴射弁
 13 点火プラグ
 100 電子制御ユニット(出力トルク制御手段、異常判定手段、推定出力トルク算出手段、トルク差分積算値算出手段、第1判定手段、判定時間算出手段、第2判定手段、補正係数算出手段、補正手段、制御演算手段、関連デバイス異常判定手段、許容トルク算出手段、第3判定手段、加速度検出手段)
 101 エンジン回転数センサ(加速度検出手段)
 102 アクセルペダルセンサ
 103 スロットル弁開度センサ
 104 吸入空気流量センサ

Claims (20)

  1.  車両を駆動する原動機の出力トルクの目標値である目標トルクを算出し、前記原動機の出力トルクが前記目標トルクと一致するように出力トルク制御を行う出力トルク制御手段と、該出力トルク制御手段の異常を判定する異常判定手段とを備える原動機の駆動制御装置において、
     前記原動機の実出力トルクの推定値である推定出力トルクを算出する推定出力トルク算出手段と、
     前記目標トルクと前記推定出力トルクとのトルク差分の時間積分値を近似するトルク差分積算値を算出するトルク差分積算値算出手段とを備え、
     前記異常判定手段は、前記トルク差分積算値が、一定値に設定される判定閾値を超えたときに、前記出力トルク制御手段に異常が発生したと判定する第1判定手段を有することを特徴とする原動機の駆動制御装置。
  2.  前記原動機の出力トルクを前記車両の駆動輪まで伝達する駆動力伝達機構の特性に応じた補正係数を、前記トルク差分に応じて算出する補正係数算出手段と、
     前記トルク差分に前記補正係数を乗算することにより補正トルク差分を算出する補正手段とをさらに備え、
     前記トルク差分積算値算出手段は、前記補正トルク差分を積算することにより、前記トルク差分積算値を算出する請求項1の駆動制御装置。
  3.  前記トルク差分が所定上限値より大きいとき、及び前記トルク差分が所定下限値より小さいときは、前記補正係数は「1」より小さい値に設定される請求項2の駆動制御装置。
  4.  前記異常判定手段は、
     前記トルク差分に応じて判定時間を設定する判定時間設定手段と、
     前記トルク差分が所定差分値より大きい状態が前記判定時間以上継続したときに、前記出力トルク制御手段に異常が発生したと判定する第2判定手段とを有し、
     前記第1判定手段及び第2判定手段がともに前記異常が発生したとの判定を行ったときに、異常判定を確定する請求項1から3の何れか1項の駆動制御装置。
  5.  前記第2判定手段は、前記トルク差分の変化に対応して前記判定時間が変化したときは、前記判定時間の最小値を前記判定に適用する請求項4の駆動制御装置。
  6.  前記出力トルク制御手段は、前記原動機の出力トルクを変化させるためのアクチュエータと、前記アクチュエータの作動状態及び前記車両の運転者の加速意図を示す運転パラメータを検出する検出手段と、前記検出手段による検出される運転パラメータに応じて、前記アクチュエータを駆動する駆動信号を出力する制御演算手段とを含み、
     前記異常判定手段は前記制御演算手段における演算の異常を判定するものであり、前記制御演算手段における演算の異常以外の異常を判定する関連デバイス異常判定手段が前記異常判定手段とは別に設けられている請求項1から5の何れか1項の駆動制御装置。
  7.  前記原動機の運転状態に応じて許容トルクを算出する許容トルク算出手段と、
     前記推定出力トルクが前記許容トルクを超えるときに、前記出力トルク制御手段に異常が発生した可能性があると判定する第3判定手段をさらに備え、
     前記第3判定手段によって異常が発生した可能性があるとの判定がなされたときに、前記第1判定手段による判定、または前記第1及び第2判定手段による判定を行う請求項4または5の駆動制御装置。
  8.  前記許容トルク算出手段は、前記原動機の運転者の加速意図を示す加速操作量の値が「0」近傍にあるときは、前記許容トルクを減速状態用所定量に設定する請求項7の駆動制御装置。
  9.  前記許容トルク算出手段は、前記加速操作量が「0」より大きい第1操作量閾値以上であるときは、前記減速状態用所定量より大きい加速状態用所定量を前記目標トルクに加算することによって前記許容トルクを算出する請求項8の駆動制御装置。
  10.  前記許容トルク算出手段は、前記加速操作量が前記第1操作量閾値以上でかつ該第1操作量閾値より大きい第2操作量閾値より小さい場合において、前記目標トルクが所定トルク閾値より大きいときは、前記許容トルクを前記所定トルク閾値に設定し、前記所定トルク閾値は、前記第2操作量閾値に対応する平均的な前記目標トルクの値より大きな値に設定される請求項9の駆動制御装置。
  11.  前記原動機の回転加速度を検出する加速度検出手段をさらに備え、
     前記回転加速度が所定加速度閾値を超えるときは、前記第1判定手段及び第3判定手段による判定または前記第1、第2、及び第3判定手段による判定を禁止する請求項7から10の何れか1項の駆動制御装置。
  12.  車両を駆動する原動機の出力トルクの目標値である目標トルクを算出し、前記原動機の出力トルクが前記目標トルクと一致するように出力トルク制御を行うステップaと、該出力トルク制御の異常を判定するステップbとを備える原動機の駆動制御方法において、
     c)前記原動機の実出力トルクの推定値である推定出力トルクを算出し、
     d)前記目標トルクと前記推定出力トルクとのトルク差分の時間積分値を近似するトルク差分積算値を算出するステップをさらに備え、
     前記ステップbは、前記トルク差分積算値が、一定値に設定される判定閾値を超えたときに、前記出力トルク制御に異常が発生したと判定するステップb1を含むことを特徴とする原動機の駆動制御装置。
  13.  e)前記原動機の出力トルクを前記車両の駆動輪まで伝達する駆動力伝達機構の特性に応じた補正係数を、前記トルク差分に応じて算出し、
     f)前記トルク差分に前記補正係数を乗算することにより補正トルク差分を算出するステップをさらに備え、
     前記ステップdでは、前記補正トルク差分を積算することにより、前記トルク差分積算値が算出される請求項12の駆動制御方法。
  14.  前記トルク差分が所定上限値より大きいとき、及び前記トルク差分が所定下限値より小さいときは、前記補正係数は「1」より小さい値に設定される請求項13の駆動制御方法。
  15.  前記ステップbは、
     b2)前記トルク差分に応じて判定時間を設定し、
     b3)前記トルク差分が所定差分値より大きい状態が前記判定時間以上継続したときに、前記出力トルク制御に異常が発生したと判定するステップを含み、
     前記ステップb1及びb3においてともに前記異常が発生したとの判定が行われたときに、異常判定を確定する請求項12から14の何れか1項の駆動制御方法。
  16.  前記ステップb2において設定される前記判定時間が、前記トルク差分の変化に対応して変化したときは、前記判定時間の最小値が前記ステップb3における判定に適用される請求項15の駆動制御方法。
  17.  前記ステップaは、
     a1)前記原動機の出力トルクを変化させアクチュエータの作動状態及び前記車両の運転者の加速意図を示す運転パラメータを検出し、
     a2)検出される運転パラメータに応じて、前記アクチュエータを駆動する駆動信号を出力するステップを含み、
     前記ステップbは前記ステップa2における演算の異常を判定するものであり、前記ステップa2における演算の異常以外の異常を判定するステップgを、前記ステップbとは別に含む請求項12から16の何れか1項の駆動制御方法。
  18.  h)前記原動機の運転状態に応じて許容トルクを算出し、
     i)前記推定出力トルクが前記許容トルクを超えるときに、前記出力トルク制御に異常が発生した可能性があると判定するステップをさらに備え、
     前記ステップiおいて異常が発生した可能性があるとの判定がなされたときに、前記ステップb1による判定、または前記ステップb1及びb3による判定を行う請求項15または16の駆動制御方法。
  19.  前記ステップhにおいて、前記原動機の運転者の加速意図を示す加速操作量の値が「0」近傍にあるときは、前記許容トルクは減速状態用所定量に設定される請求項18の駆動制御方法。
  20.  前記ステップhにおいて、前記加速操作量が「0」より大きい第1操作量閾値以上であるときは、前記減速状態用所定量より大きい加速状態用所定量を前記目標トルクに加算することによって前記許容トルクが算出される請求項19の駆動制御方法。
PCT/JP2014/077392 2013-11-13 2014-10-15 原動機の駆動制御装置 WO2015072269A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480011153.4A CN105121822B (zh) 2013-11-13 2014-10-15 原动机的驱动控制装置
US14/897,391 US9863334B2 (en) 2013-11-13 2014-10-15 Drive control apparatus for prime mover
DE112014002955.6T DE112014002955B4 (de) 2013-11-13 2014-10-15 Antriebssteuervorrichtung und -verfahren für Primärantrieb
JP2015523332A JP6077656B2 (ja) 2013-11-13 2014-10-15 原動機の駆動制御装置及び方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-234547 2013-11-13
JP2013234547 2013-11-13
JP2014079645 2014-04-08
JP2014-079645 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015072269A1 true WO2015072269A1 (ja) 2015-05-21

Family

ID=53057211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077392 WO2015072269A1 (ja) 2013-11-13 2014-10-15 原動機の駆動制御装置

Country Status (5)

Country Link
US (1) US9863334B2 (ja)
JP (1) JP6077656B2 (ja)
CN (1) CN105121822B (ja)
DE (1) DE112014002955B4 (ja)
WO (1) WO2015072269A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321263A (zh) * 2015-06-30 2017-01-11 丰田自动车株式会社 发动机控制装置和发动机控制方法
JP2017014974A (ja) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 エンジン制御装置
JP2017031857A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 トルクアシスト異常診断装置
FR3043604A1 (fr) * 2015-11-13 2017-05-19 Renault Sas Systeme et procede de surveillance du couple moteur d'un vehicule electrique ou hybride
JP2017194048A (ja) * 2016-04-15 2017-10-26 トヨタ自動車株式会社 内燃機関の故障診断装置
WO2019026545A1 (ja) * 2017-08-01 2019-02-07 株式会社デンソー トルク監視装置および内燃機関制御システム
CN113829889A (zh) * 2020-06-08 2021-12-24 丰田自动车株式会社 用于车辆的控制装置和计算机可读介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248548B2 (ja) * 2013-10-31 2017-12-20 株式会社デンソー 車両制御装置
WO2017203678A1 (ja) 2016-05-27 2017-11-30 日産自動車株式会社 駆動力制御システムの異常診断方法及び異常診断装置
CN106438069B (zh) * 2016-08-24 2019-02-15 中国第一汽车股份有限公司 一种稀燃天然气发动机扭矩估计方法
CN112384688B (zh) * 2018-05-18 2023-03-24 博世株式会社 发动机控制装置以及发动机控制方法
JP7185704B2 (ja) * 2018-12-14 2022-12-07 日立Astemo株式会社 制御装置
CN112332746B (zh) * 2019-07-31 2022-11-11 比亚迪股份有限公司 电机控制***和车辆
WO2021141053A1 (ja) * 2020-01-10 2021-07-15 株式会社デンソー 回転電機の制御装置
JP7096852B2 (ja) * 2020-02-25 2022-07-06 本田技研工業株式会社 エンジン制御装置
KR102642950B1 (ko) * 2021-12-27 2024-03-04 주식회사 현대케피코 지능형 차량 제어 시스템 및 그것의 오류 검출 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522617A (ja) * 2002-04-08 2005-07-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関を監視するための方法
JP3955328B2 (ja) * 1996-03-09 2007-08-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両駆動ユニットの制御方法及び装置
JP2011052696A (ja) * 2010-12-14 2011-03-17 Denso Corp 内燃機関の監視装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808167C1 (de) * 1998-02-27 1999-08-26 Daimler Chrysler Ag Verfahren zur Korrektur eines rechnerisch ermittelten Drehmoments im Antriebsstrang eines Kraftfahrzeugs
DE19836059A1 (de) * 1998-08-10 2000-02-17 Mannesmann Vdo Ag Verfahren und Vorrichtung zur Ansteuerung einer Leistungsverstelleinrichtung eines Fahrzeugmotors
JP2001295677A (ja) * 2000-03-29 2001-10-26 Robert Bosch Gmbh 車両速度の制御方法および装置
JP3979066B2 (ja) * 2001-03-30 2007-09-19 日産自動車株式会社 エンジンの空燃比制御装置
DE102006028695B4 (de) * 2005-06-23 2017-11-30 Denso Corporation Elektronisches Steuersystem mit Fehlfunktionsüberwachung
DE102005058511A1 (de) 2005-12-08 2007-06-14 Daimlerchrysler Ag Verfahren und Einrichtung zur Erkennung eines Fehlers in einem Steuerungssystem einer Drehmomentübertragungseinrichtung
US8000855B2 (en) * 2008-06-30 2011-08-16 GM Global Technology Operations LLC Accumulated error time monitoring diagnostic control system
JP4924905B2 (ja) 2008-08-08 2012-04-25 株式会社デンソー 車両の制御装置
JP4877296B2 (ja) * 2008-08-21 2012-02-15 トヨタ自動車株式会社 駆動装置およびその制御装置
JP2012091667A (ja) * 2010-10-27 2012-05-17 Nissan Motor Co Ltd ハイブリッド車輌の制御装置
SE537011C2 (sv) * 2013-02-20 2014-12-02 Scania Cv Ab Reglering av ett begärt moment i ett fordon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955328B2 (ja) * 1996-03-09 2007-08-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両駆動ユニットの制御方法及び装置
JP2005522617A (ja) * 2002-04-08 2005-07-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関を監視するための方法
JP2011052696A (ja) * 2010-12-14 2011-03-17 Denso Corp 内燃機関の監視装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321263A (zh) * 2015-06-30 2017-01-11 丰田自动车株式会社 发动机控制装置和发动机控制方法
JP2017014973A (ja) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 エンジン制御装置
JP2017014974A (ja) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 エンジン制御装置
DE102016111713B4 (de) 2015-06-30 2021-11-18 Toyota Jidosha Kabushiki Kaisha Maschinensteuerungsvorrichtung und Maschinensteuerungsverfahren
JP2017031857A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 トルクアシスト異常診断装置
FR3043604A1 (fr) * 2015-11-13 2017-05-19 Renault Sas Systeme et procede de surveillance du couple moteur d'un vehicule electrique ou hybride
JP2017194048A (ja) * 2016-04-15 2017-10-26 トヨタ自動車株式会社 内燃機関の故障診断装置
WO2019026545A1 (ja) * 2017-08-01 2019-02-07 株式会社デンソー トルク監視装置および内燃機関制御システム
JP2019027394A (ja) * 2017-08-01 2019-02-21 株式会社デンソー トルク監視装置および内燃機関制御システム
CN113829889A (zh) * 2020-06-08 2021-12-24 丰田自动车株式会社 用于车辆的控制装置和计算机可读介质
CN113829889B (zh) * 2020-06-08 2024-03-19 丰田自动车株式会社 用于车辆的控制装置和计算机可读介质

Also Published As

Publication number Publication date
DE112014002955T5 (de) 2016-03-24
JPWO2015072269A1 (ja) 2017-03-16
JP6077656B2 (ja) 2017-02-08
US20160138494A1 (en) 2016-05-19
CN105121822A (zh) 2015-12-02
US9863334B2 (en) 2018-01-09
DE112014002955B4 (de) 2018-12-13
CN105121822B (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6077656B2 (ja) 原動機の駆動制御装置及び方法
KR101226321B1 (ko) 내연 기관의 연료 컷 오프 상태의 전이 단계를 제어하는 장치
JP5287818B2 (ja) エンジンの制御装置
JP3915335B2 (ja) ハイブリッド車両の制御装置
JP2003209902A (ja) 車両の駆動力制御装置
JP2018105305A (ja) 車載制御装置
US9227624B2 (en) Hybrid vehicle control device
US20070203632A1 (en) Oscillation control apparatus for vehicle and method for controlling oscillation
US8739762B2 (en) Engine controlling apparatus
EP1323564A2 (en) Control system for hybrid vehicle
JP5273398B2 (ja) 内燃機関の出力制御装置
JP2004215402A (ja) 車輌の制御装置
JP2009185738A (ja) 車両制御装置および車両制御方法
JP2008286012A (ja) 車両の制御装置
JP5040487B2 (ja) ハイブリッド車両の駆動力制御装置
JP6020178B2 (ja) ハイブリッド車のモータ制御装置
JP2014234757A (ja) Mbt点火時期演算装置及びこれを用いたエンジンの制御装置
KR101210753B1 (ko) 슬립 방지 제어 시스템 및 방법
KR102644617B1 (ko) 엔진 부분부하 토크 제어장치 및 제어 방법
JP7185704B2 (ja) 制御装置
US20230264683A1 (en) Controller and control method for hybrid electric vehicle
JP4069335B2 (ja) エンジンの燃料噴射制御装置
JP4952412B2 (ja) 回転速度検出バックアップ装置
JP3891165B2 (ja) 車両用駆動制御装置
KR20240059815A (ko) 하이브리드 차량의 변속 제어 시스템 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015523332

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897391

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002955

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861943

Country of ref document: EP

Kind code of ref document: A1