WO2015035712A1 - 富锂锰基正极材料及其制备方法 - Google Patents

富锂锰基正极材料及其制备方法 Download PDF

Info

Publication number
WO2015035712A1
WO2015035712A1 PCT/CN2013/088597 CN2013088597W WO2015035712A1 WO 2015035712 A1 WO2015035712 A1 WO 2015035712A1 CN 2013088597 W CN2013088597 W CN 2013088597W WO 2015035712 A1 WO2015035712 A1 WO 2015035712A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
delithiation
rich manganese
agent
positive electrode
Prior art date
Application number
PCT/CN2013/088597
Other languages
English (en)
French (fr)
Inventor
夏永高
邱报
刘兆平
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to US15/021,172 priority Critical patent/US10074856B2/en
Priority to KR1020167009242A priority patent/KR101826453B1/ko
Publication of WO2015035712A1 publication Critical patent/WO2015035712A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium-rich manganese-based cathode material and preparation method thereof Lithium-rich manganese-based cathode material and preparation method thereof
  • the invention relates to the technical field of cathode materials for lithium ion batteries, in particular to a lithium-rich manganese-based positive electrode material and a preparation method thereof. Background technique
  • lithium cobaltate, lithium manganate, nickel-cobalt-manganese ternary materials and lithium manganese iron phosphate have been successfully applied to the positive electrode materials of lithium ion batteries, among which lithium cobalt oxide basically occupies the market of small lithium ion batteries, but due to its High price, low performance and high safety hazard can not be used as positive electrode materials for lithium ion power batteries. Therefore, in recent years, other three materials have attracted much attention as cathode materials for lithium ion power batteries. However, the actual specific capacity of the above three kinds of positive electrode materials is generally less than 150 mAh/g.
  • the lithium-rich manganese-based positive electrode material has a discharge specific capacity of up to 300 mAh/g, which has received great attention from researchers.
  • the lithium-rich manganese-based cathode material has the technical problems of low coulombic efficiency, poor rate performance and poor cycleability, which hinders its large-scale application.
  • the Chinese Patent Publication No. CN101562245A discloses a method for surface coating a lithium-rich cathode material by using Mn0 2 , which reduces the first irreversible capacity loss of the material and improves the cycle performance of the material at a high rate, but The modified material has a low discharge capacity.
  • the Chinese patent publication CN102738458A uses an oxide or phosphate of an element such as Al, Ce, Mn, Ru, Y, Ni, Co or the like as a coating layer of a lithium-rich manganese-based positive electrode material, which improves the efficiency and improvement of the first coulon. Cycle performance and rate performance, but this modification method reduces the discharge voltage platform of the lithium-rich manganese-based cathode material, resulting in a decrease in the energy density of the lithium-rich cathode material.
  • Public Chinese Patent No. CN102694164A discloses a lithium-rich manganese-based positive electrode material doped with nitrogen or carbon. Although this method improves the cycle performance of the lithium-rich manganese-based positive electrode material, this method does not solve the first low coulombic efficiency. The problem.
  • Non-Patent Document J. Electrochem. Soc. 153, A1186-A1192, (2006) proposed a method for treating the surface of a lithium-rich manganese-based positive electrode material with a strong acid, and as a result, it was confirmed that the chemical activation method of strong acid treatment is an improvement for the first time. An effective means of efficiency.
  • the acid treatment process although lithium vacancies and oxygen vacancies are formed on the surface of the particles, the surface structure of the material is seriously damaged, and some of the H protons are exchanged with Li ions, resulting in a significant decrease in the cycle performance and rate performance of the material. Summary of the invention
  • the technical problem solved by the invention is to provide a lithium-rich manganese-based cathode material with high first-order efficiency, cycle performance and rate performance, and a preparation method thereof.
  • the present invention provides a lithium-rich manganese-based positive electrode material of the formula (I), wherein the diffraction peak intensity of the Bragg angle is about 18.7° in the X-ray diffraction spectrum of the lithium-rich manganese-based cathode material.
  • the ratio of the intensity of the diffraction peak to the Bragg angle of about 44.6° is 1.10 to 1.24; ( xy ) Li 2 Mn0 3 -yMn0 2 - ( 1-x ) Li ( M a M' b ) 0 2 ( I );
  • M is one or more of nickel, cobalt, manganese, iron, boron, aluminum and vanadium;
  • M' is one or more of titanium, chromium, copper, zinc, zirconium, hafnium and molybdenum;
  • the present invention also provides a method for preparing a lithium-rich manganese-based positive electrode material, comprising the steps of: mixing a lithium-rich manganese-based compound represented by formula (II) with a delithiation agent, performing a delithiation reaction, and obtaining a reaction such as a lithium-rich manganese-based cathode material represented by formula (I);
  • M is one or more of nickel, cobalt, manganese, iron, boron, aluminum and vanadium;
  • M' is one or more of titanium, chromium, copper, zinc, zirconium, hafnium and molybdenum;
  • the delithiation agent is a gas delithiation agent or a solid delithiation agent
  • the gas delithiation agent is an acid gas or a basic gas
  • the solid delithiation agent is decomposed to generate an acid gas or an alkaline gas.
  • the acid gas is one or more of sulfur dioxide, nitrogen dioxide, carbon dioxide, hydrogen fluoride, a halogen gas, and hydrogen sulfide.
  • the basic gas is ammonia gas, phosphine or hydrazine.
  • the solid delithiation agent is one or more of ammonium chloride, ammonium sulfite, ammonium carbonate, ammonium hydrogencarbonate, ammonium acetate, oxalic acid ammonia, phosphating ammonia and urea.
  • the delithiation reaction is a solid phase delithiation reaction or a liquid phase delithiation reaction.
  • the solid phase delithiation reaction is: mixing the solid delithiation agent with the lithium-rich manganese-based compound at a molar ratio of 1:100 to 1:2, and then reacting at 40 ° C to 1000 ° C. 2 ⁇ 30h.
  • the solid phase delithiation reaction is: introducing a mixed gas of a gas delithiation agent and an inert gas in a molar ratio of 1:100 to 1:2 in the lithium-rich manganese-based compound at 40 ° C.
  • the reaction was carried out at 1000 ° C for 2 to 30 h.
  • the liquid phase delithiation reaction is: mixing the lithium-rich manganese-based compound and the solid delithiation agent with water, and reacting at 60 to 300 ° C for 2 to 30 hours, the lithium-rich manganese-based compound and the solid
  • the molar ratio of the delithiation agent is 1:100 to 1:2.
  • the product is treated after completion of the reaction: the reacted product is mixed with a liquid phase extractant, filtered and then subjected to heat treatment.
  • the present invention provides a method of preparing a positive electrode material for a lithium manganese-based rich by the rich delithiated reacted with the lithium manganese-based compound, the use of Lithium stripped off portion enriched lithium manganese-based compound is Li 2 Mn0 3 Li 2 0 A lithium-rich manganese-based positive electrode material having lithium vacancies and oxygen vacancies is obtained.
  • the lithium-rich manganese-based compound is treated by using a delithiation agent, and the surface structure thereof is not changed, except that Li 2 0 is removed from the surface.
  • the invention also provides the lithium-rich manganese-based cathode material prepared by the above method; the generation of Li 2 0 is the main reason for the low efficiency of the first coulon, and therefore, the lithium-rich manganese-based cathode material of the invention is firstly reduced by the reduction of Li 2 0 The coulombic efficiency is improved; at the same time, due to the presence of oxygen vacancies and lithium vacancies in the lithium-rich manganese-based positive electrode material of the present invention, lithium ions are easily diffused, thereby improving rate performance and cycle performance.
  • FIG. 1 is an X-ray diffraction pattern of the lithium-rich manganese-based positive electrode materials of Examples 1 to 6;
  • FIG. 2 is a capacity-voltage differential curve during the first charge and discharge of the lithium-rich manganese-based positive electrode materials prepared in Examples 1 to 6;
  • FIG. 3 is a transmission electron micrograph of the lithium-rich manganese-based cathode material prepared in Example 15;
  • FIG. 4 is a first charge and discharge curve of the lithium ion battery prepared in Example 1 and Example 15;
  • FIG. 5 is a preparation of Example 1 and Example 15. A comparison of the rate performance of lithium-ion batteries.
  • the embodiment of the invention discloses a lithium-rich manganese-based cathode material as shown in formula (I).
  • formula (I) the diffraction peak intensity near the Bragg angle of 18.7° and Prague
  • the ratio of the intensity of the diffraction peak at an angle of around 44.6° is 1.10 to 1.24;
  • M is one or more of nickel, cobalt, manganese, iron, boron, aluminum and vanadium;
  • M' is one or more of titanium, chromium, copper, zinc, zirconium, hafnium and molybdenum;
  • the present invention defines the properties of the lithium-rich manganese-based positive electrode material itself in terms of the ratio of the diffraction peak intensities of the lithium-rich manganese-based positive electrode material.
  • the X-ray diffraction conditions of the lithium-rich manganese-based cathode material of the present invention are as follows: Cu target, tube pressure is 40V, tube current is 40 mA, scanning speed is 2°/min, 2 ⁇ scanning range is 15° ⁇ 90°, step The length is 0.02°, the emission slit (DS) is 1 mm, the anti-scatter slit (SS) is 8 mm, and the graphite monochromator.
  • the curve of the lithium-ion battery after the capacity-voltage differentiation in the first charge and discharge process, the position of the first peak is between 3.0 and 3.4 V
  • the capacity-voltage differential curve can reflect the discharge platform potential of the battery, and the larger the potential content-voltage differential intensity, the higher the discharge capacity of the obtained lithium-rich manganese-based positive electrode material.
  • the test conditions for obtaining the capacity-voltage differential curve of the present invention are: current density is 25 mA/g (0.1C), the voltage range is 2 ⁇ 4.8V.
  • the present invention also provides a method for preparing the above lithium-rich manganese-based positive electrode material, comprising the steps of: mixing a lithium-rich manganese-based compound represented by formula (II) with a delithiation agent to carry out a delithiation reaction, and obtaining a reaction according to the formula (I) a lithium-rich manganese-based positive electrode material as shown;
  • M is one or more of nickel, cobalt, manganese, iron, boron, aluminum and vanadium;
  • M' is one or more of titanium, chromium, copper, zinc, zirconium, hafnium and molybdenum;
  • the invention provides a preparation method of the lithium-rich manganese-based positive electrode material, which comprises mixing a lithium-rich manganese-based compound with a delithiation agent, and extracting Li 2 Mn0 3 from the lithium-rich manganese-based compound by a delithiation agent. 20 , a lithium-rich manganese-based positive electrode material having lithium vacancies and oxygen vacancies is obtained, and the desorbed Li 2 0 reacts with a gas or a liquid to form a soluble lithium-containing compound.
  • a lithium-rich manganese-based compound represented by the formula (II) is mixed with a delithiation agent, and the lithium-rich manganese group is used under the action of a delithiation agent.
  • Li 2 Mn0 3 in the compound desorbs part of Li 2 0.
  • the delithiation agent may be a gas or a solid. If the delithiation agent is a gas, the delithiation agent is preferably an acid gas or a basic gas, and the acid gas includes, but is not limited to, Sulfur dioxide, nitrogen dioxide, carbon dioxide, hydrogen fluoride, a halogen element or hydrogen sulfide, which is preferably ammonia gas, phosphine or hydrazine.
  • the delithiation agent is preferably one or more of substances which can be decomposed to generate an acid gas or a basic gas; more preferably ammonium chloride, ammonium sulfite, ammonium carbonate, carbonic acid One or more of ammonium hydrogen hydride, ammonium acetate, oxalic acid ammonia, phosphating ammonia, and urea.
  • the delithiation reaction is preferably a solid phase delithiation reaction or a liquid phase delithiation reaction.
  • the solid phase delithiation reaction can be carried out in the following manner: under a closed condition, the solid delithiation agent and the lithium-rich manganese-based compound are uniformly mixed at a molar ratio of 1:100 to 1:2, and then at 40 ° C.
  • the solid phase delithiation reaction can also be carried out as follows: a gas delithiation agent having a molar ratio of 1:100 to 1:2 is introduced into the lithium-rich manganese-based compound and Mixture of inert gases Body, react at 40 ° C ⁇ 1000 ° C for 2 ⁇ 30h.
  • the liquid phase delithiation reaction is: mixing the lithium-rich manganese-based compound, the solid delithiation agent with water, reacting at 60 to 300 ° C for 2 to 30 h, the lithium-rich manganese-based compound and the solid delithiation agent
  • the molar ratio is 1: 100 ⁇ 1:2.
  • the lithium-rich manganese-based positive electrode material is prepared by using sulfur dioxide as a delithiation agent, and the delithiation reaction process can be expressed by the following reaction equation:
  • M is one or more of nickel, cobalt, manganese, iron, boron, aluminum and vanadium;
  • M' is one or more of titanium, chromium, copper, zinc, zirconium, hafnium and molybdenum;
  • the present invention after the lithium-rich manganese-based compound is reacted with the delithiation agent, a soluble lithium compound and a lithium-rich manganese-based positive electrode material having lithium vacancies and oxygen vacancies are obtained.
  • the present invention preferably mixes the product reacted with the delithiation agent with a liquid phase extractant to dissolve the lithium compound precipitated on the surface of the material, and removes soluble lithium after filtration.
  • the compound is then subjected to a second heat treatment, which serves to remove the particle surface extractant, thereby obtaining a lithium-rich manganese-based positive electrode material having excellent properties.
  • the temperature of the second heat treatment is preferably from 120 to 500 ° C, more preferably from 180 to 350 ° C.
  • the invention provides a preparation method of a lithium-rich manganese-based positive electrode material, which is obtained by reacting a delithiation agent with a lithium-rich manganese-based compound to remove Li 2 0 in Li 2 Mn0 3 to obtain an enrichment with lithium vacancies and oxygen vacancies.
  • Lithium manganese based cathode material Lithium manganese based cathode material.
  • the lithium-rich manganese-based compound is treated by using a delithiation agent, and the surface structure thereof is not changed, except that Li 2 0 is removed from the surface.
  • the present invention also provides a lithium-rich manganese-based positive electrode material prepared by the above method.
  • the present invention is a lithium-rich
  • the manganese-based positive electrode material improves the first coulombic efficiency due to the decrease of Li 2 0.
  • lithium ions are easily diffused, thereby improving rate performance and cycle performance.
  • the experimental results show that the lithium-ion battery-rich lithium-manganese-based cathode material provided by the present invention has a first efficiency of more than 93%, a specific capacity of 260 mAh/g at room temperature of 1 260, and a cycle of 100 cycles at room temperature, and the cycle performance is not significantly decreased.
  • the lithium-rich manganese-based positive electrode material provided by the present invention and a preparation method thereof will be described in detail below with reference to the examples, and the scope of protection of the present invention is not limited by the following examples.
  • step 2) The material obtained in the step 1) is washed with distilled water and repeated 3 times. After filtering, the material is heated to 120 ° C and heat treated for 16 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.49Li 2 MnO 3 - according to the present invention. 0.5LiCo 1/3 Mn 1/3 Ni 1/3 O 2 -0.01MnO 2 .
  • step 2) The material obtained in the step 1) is washed with distilled water and repeated 3 times. After filtering, the material is heated to 120 ° C and heat treated for 16 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.45Li 2 MnO 3 - 0.5LiCo 1/3 Mn 1/3 Ni 1/3 O 2 -0.05MnO 2 .
  • step 2) The material obtained in the step 1) is washed with distilled water and repeated 3 times. After filtration, the material is heated to 120 ° C and heat treated for 16 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.4Li 2 MnO 3 - 0.5LiCo 1/3 Mn 1/3 Ni 1/3 O 2 -0.1MnO 2 .
  • Example 5 1) 1 mol of 0.5Li 2 MnO 3 O.5LiCo 1/3 Mn 1/3 Ni 1/3 O 2 synthesized in Example 1 was placed in a reactor, 0.2 mol of SO 2 gas was introduced, and the mixture was heated to 120 ° after sealing. C, heat treatment for 16h.
  • step 2) The material obtained in the step 1) is washed with distilled water and repeated 3 times. After filtering, the material is heated to 120 ° C and heat treated for 16 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.3Li 2 MnO 3 - 0.5LiCo 1/3 Mn 1/3 Ni 1/3 O 2 -0.2MnO 2 .
  • step 2) The material obtained in the step 1) is washed with distilled water and repeated 3 times. After filtration, the material is heated to 120 ° C and heat treated for 16 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.5LiCo 1/3 Mn according to the present invention. 1/3 Ni 1/3 O 2 -0.5MnO 2 .
  • the lithium-rich manganese-based positive electrode materials obtained in Examples 1 to 5 were subjected to X-ray diffraction analysis using an X-ray diffractometer of Bruker, Germany.
  • the measurement conditions are: Cu- ⁇ line as light source, Cu target, tube pressure: 40V, tube flow: 40mA, scanning speed: 2°/min, 2 ⁇ scanning range: 15 ⁇ 90°, step size: 0.02°, divergence slit (DS): lmm, anti-scatter slit (SS): 8mm, graphite monochromator.
  • the X-ray diffraction patterns of the lithium-rich manganese-based positive electrode materials of Examples 1 to 5 are shown in Fig. 1.
  • Half-cell test 1) 8 g of the lithium vacancy and oxygen vacancy-rich lithium manganese-based positive electrode materials obtained in Examples 1 to 5, lg acetylene black, lg polyvinylidene fluoride and 30 g of N-decylpyrrolidone were mixed at normal temperature and pressure. Forming a slurry, uniformly coating the surface of the aluminum foil to obtain a pole piece; the obtained pole piece is dried at 80 ° C and then compacted, and cut into a circular sheet having an area of 1.32 cm 2 as a positive electrode and a lithium metal plate as a negative electrode.
  • the obtained half-battery was subjected to cyclic performance test using an electrochemical tester, and the test temperature was
  • the capacity-voltage differential curve is the capacity-voltage differential curve of the lithium-rich manganese-based cathode material prepared in Example 6, and it can be seen from the figure that the first reduction of the lithium-rich manganese-based cathode material of lithium vacancies and oxygen vacancies The position of the peak is between 3.2 and 3.4V.
  • the electrochemical performance and XRD data of the lithium-rich manganese-based positive electrode materials of Examples 1 to 6 are shown in Table 1.
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 300 ° C, and heat treated for 6 hours to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.49Li 2 MnO 3 -0.5LiCo according to the present invention. 1 / 3 Mn 1/3 Ni 1 / 3 O2-0.01MnO
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 400 ° C, and heat treated for 6 hours to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.45Li 2 MnO 3 -0.5LiCo according to the present invention. 1/3 Mn 1/3 Ni 1/3 O 2 -0.05MnO 2 .
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 300 ° C, and heat treated for 6 hours to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.4Li 2 MnO 3 -0.5LiCo according to the present invention. 1 / 3 Mn 1 / 3 Ni 1 / 3 O2-0.1 Mn0 2 .
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 200 ° C, and heat treated for 6 hours to obtain the lithium vacancy lithium-rich manganese-based positive electrode material according to the present invention.
  • step 2) The material obtained in step 1) is washed three times with distilled water, filtered, and heated to
  • the lithium vacancy lithium-rich manganese-based positive electrode material 0.5LiCo 1/3 Mn 1/3 Ni 1/3 O 2 -0.5 Mn0 2 according to the present invention was obtained by heat treatment at 400 ° C for 6 h.
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 350 ° C, and heat treated for 8 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.59Li 2 MnO 3 -0.4LiCo according to the present invention. 0 . 2 Mn 03 Ni 0 . 5 O 2 -0.01MnO 2 .
  • Example 14 1) 1 mol of 0.6Li 2 MnO 3 '0.4LiCo 0 . 2 Mn 0 . 3 Ni 0 . 5 O 2 was placed in the upper layer of the reactor, 0.05 mol of ammonium hydrogencarbonate was placed in the reactor, sealed, and heated to 180 ° C. , heat treatment for 20h.
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 400 ° C, and heat treated for 8 hours to obtain a lithium vacancy lithium-rich manganese-based positive electrode material 0.55Li 2 MnO 3 -0.4LiCo according to the present invention. 0 . 2 Mn 03 Ni 0 . 5 O 2 -0.05MnO 2 .
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 350 ° C, and heat treated for 8 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material according to the present invention.
  • FIG. 3 is a transmission electron micrograph of the lithium-rich manganese-based positive electrode material prepared in Example 15.
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 350 ° C, and heat treated for 8 h to obtain a lithium vacancy lithium-rich manganese-based positive electrode material 0.3Li 2 MnO 3 -0.6 LiCo according to the present invention. 1 / 3 Mn 1/5 Ni 7 / 1 5O2-0.1MnO2o
  • phosphine ammonia 0.3 mol was placed in the reactor and sealed, heated to 250 ° C, and heat treated for 18 h.
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 350 ° C, and heat treated for 8 h to obtain the lithium vacancy lithium-rich manganese-based positive electrode material 0.2Li 2 MnO 3 -0.5 LiCo according to the present invention. 1 / 3 Mn 1/5 Ni 7 / 1 5O2-0.3MnO2o
  • step 2) The material obtained in the step 1) is washed three times with distilled water, filtered, heated to 350 ° C, and heat treated for 8 h to obtain the lithium vacancy lithium-rich manganese-based cathode material of the present invention.
  • step 2) Mix the material obtained in step 1) with 2 mol of ethanol, filter, and heat to
  • the lithium vacancy lithium-rich manganese-based cathode material of the present invention is obtained 0.79Li 2 Mn0 3 -0.2LiCoo.95Feo.o4Nbo.oi02-0.01Mn0
  • step 2) The material obtained in the step 1) is uniformly mixed with 20 mol of ethanol, filtered, heated to 150 ° C, and heat-treated for 3 h to obtain a lithium vacancy lithium-rich manganese-based positive electrode material 0.78Li 2 Mn0 3 -0.2LiCoo according to the present invention.
  • step 2) The material obtained in the step 1) is uniformly mixed with 2 mol of H 2 O, filtered, heated to 250 ° C, and heat-treated for 36 h to obtain a lithium vacancy lithium-rich manganese-based positive electrode material 0.47Li 2 MnO 3 O according to the present invention. 5LiCo 0 . 33 Mn 0 3 4Ni 0 . 3 B 003 O 2 -0.03MnO 2 .
  • the material obtained in the step 1) is uniformly mixed with 2 mol of H 2 0, filtered, heated to 250 ° C, and heat-treated for 36 h to obtain a lithium vacancy lithium-rich manganese-based positive electrode material 0.3Li 2 MnO 3 O according to the present invention. 6LiCo 1/3 Mn 1/5 Ni 7/15 O 2 -0.1MnO 2.
  • H 2 0 was uniformly mixed, heated to 300 ° C, and heat treated for 20 h.
  • step 2) Mix the material obtained in step 1) with 20 mol of ethanol, filter, and heat to
  • 95 Fe 00 4Nb 001 O 2 -0.5MnO 2 according to the present invention was obtained by heat treatment at 180 ° C for 3 h.
  • FIG. 4 is the first embodiment and the fifteenth embodiment.
  • the first charging curve of the lithium ion battery, curve D is the first charging curve of the lithium ion battery prepared in Example 1.
  • Example 5 is a comparison diagram of the ratio performance of the lithium ion batteries of Example 1 and Example 15, wherein the area A is the specific capacity of the lithium ion battery prepared in Example 15, and the specific area is the specific capacity of the lithium ion battery prepared in Example 15. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种如式(I)所示的富锂锰基正极材料,所述富锂锰基正极材料的X射线衍射图谱中,布拉格角度在18.7°附近的衍射峰强度与布拉格角度在44.6°附近的衍射峰强度的比值为1.10~1.24。一种所述富锂锰基正极材料的制备方法,将富锂锰基化合物与脱锂剂混合,在脱锂剂的作用下,富锂锰基化合物中的Li2MnO3脱除部分Li2O,得到富锂锰基正极材料,所述富锂锰基正极材料由于不可逆产物Li2O的减少使首次库伦效率提高,并且由于存在锂空位与氧空位,提高了倍率性能的同时也具有良好的循环性能;(x-y)Li2MnO3·yMnO2·(1-x)Li(MaM'b)O2(I)。

Description

富锂锰基正极材料及其制备方法
本申请要求于 2013 年 09 月 12 日提交中国专利局、 申请号为 201310416745.1、 发明名称为 "富锂锰基正极材料及其制备方法" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及锂离子电池正极材料技术领域,尤其涉及一种富锂锰基正 极材料及其制备方法。 背景技术
目前,钴酸锂、锰酸锂、镍钴锰三元材料以及磷酸锰铁锂已经成功应 用于锂离子电池的正极材料,其中钴酸锂基本上占据了小型锂离子电池的 市场, 但是由于其价格高、 性能低以及安全隐患较大, 不能作为锂离子动 力电池的正极材料, 因此,近年来其它三种材料作为锂离子动力电池正极 材料备受关注。 然而, 上述三种正极材料的实际比容量一般小于 150mAh/g, 因此若要发展具有广阔应用前景的锂离子动力电池, 迫切需 要研究出高比容量、低成本、 高安全性的新型正极材料。在已经研究出的 新型正极材料中, 富锂锰基正极材料的放电比容量高达 300mAh/g, 受到 了研究者的极大关注。
就目前的研究情况而言, 富锂锰基正极材料存在首次库伦效率低、倍 率性能差和循环性差的技术难题, 阻碍了其大规模应用。研究表明, 通过 表面包覆能够有效改善富锂锰基正极材料的库伦效率。 如公开号为 CN101562245A的中国专利公开了一种利用 Mn02对富锂正极材料进行表 面包覆的方法,该方法降低了材料的首次不可逆容量损失,改善了材料在 高倍率下的循环性能, 但是改性后的材料放电容量较低。 公开号为 CN102738458A的中国专利使用 Al、 Ce、 Mn、 Ru、 Y、 Ni、 Co等元素的 氧化物或磷酸盐作为富锂锰基正极材料的包覆层,该方法提高了首次库伦 效率、改善了循环性能和倍率性能,但是这种改性方法使富锂锰基正极材 料的放电电压平台有所下降,导致富锂正极材料的能量密度有所下降。公 开号为 CN102694164A的中国专利公开了一种表面掺氮或碳的富锂锰基 正极材料,该方法虽然提高了富锂锰基正极材料的循环性能,但是这种方 法没有解决首次库伦效率较低的问题。
最近, 非专利文献 J. Electrochem. Soc. 153, A1186-A1192, ( 2006 )提 出了一种强酸处理富锂锰基正极材料表面的方法,结果证明,强酸处理的 化学活化法是一种提高首次效率的有效手段。但是在酸处理过程中, 虽然 在颗粒表面形成了锂空位和氧空位,但是材料表面结构发生严重破坏, 而 且部分 H质子与 Li离子发生交换, 从而导致材料的循环性能和倍率性能 大幅度降低。 发明内容
本发明解决的技术问题在于提供一种首次效率、循环性能与倍率性能 都较高的富锂锰基正极材料及其制备方法。
有鉴于此, 本发明提供了一种如式( I )所示的富锂锰基正极材料, 所述富锂锰基正极材料的 X射线衍射图谱中, 布拉格角度在 18.7°附近的 衍射峰强度与布拉格角度在 44.6°附近的衍射峰强度的比值为 1.10〜1.24; ( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02 ( I );
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0 < x<0.8; 0.01<y<0.2;
a+b=l ; 0<b<0.5„
本发明还提供了一种富锂锰基正极材料的制备方法, 包括以下步骤: 将如式( II )所示的富锂锰基化合物与脱锂剂混合, 进行脱锂反应, 反应后得到如式( I ) 所示的富锂锰基正极材料;
( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02 ( I );
xLi2Mn03- ( 1-x ) Li ( MaM'b ) 02 ( II );
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0 < x<0.8; 0.01<y<0.2; a+b=l ; 0<b<0.5„
优选的,所述脱锂剂为气体脱锂剂或固体脱锂剂,所述气体脱锂剂为 酸性气体或碱性气体;所述固体脱锂剂为可以分解产生酸性气体或碱性气 体的物质中的一种或多种。
优选的, 所述酸性气体为二氧化硫、 二氧化氮、 二氧化碳、 氟化氢、 卤素气体和硫化氢中的一种或多种。
优选的, 所述碱性气体为氨气、 磷化氢或联氨。
优选的, 所述固体脱锂剂为氯化铵、 亚硫酸铵、 碳酸铵、 碳酸氢铵、 乙酸铵、 草酸氨、 磷化氨和尿素中的一种或多种。
优选的, 所述脱锂反应为固相脱锂反应或液相脱锂反应。
优选的,所述固相脱锂反应为:将所述固体脱锂剂与富锂锰基化合物 按照摩尔比 1:100〜1:2混合均匀后, 在 40°C〜1000°C下反应 2〜30h。
优选的,所述固相脱锂反应为:在所述富锂锰基化合物中通入摩尔比 为 1:100〜1:2的气体脱锂剂与惰性气体的混合气体, 在 40°C〜1000°C下反 应 2〜30h。
优选的, 所述液相脱锂反应为: 将所述富锂锰基化合物、 固体脱锂剂 与水混合, 在 60〜300°C下反应 2〜30h, 所述富锂锰基化合物与固体脱锂 剂的摩尔比为 1: 100〜1:2。
优选的,所述反应结束后对产物进行处理:将反应后的产物与液相萃 取剂混合, 过滤后进行热处理。
本发明提供了一种富锂锰基正极材料的制备方法,通过将脱锂剂与富 锂锰基化合物反应, 利用脱锂剂脱去富锂锰基化合物中 Li2Mn03的部分 Li20,得到具有锂空位和氧空位的富锂锰基正极材料。本发明通过采用脱 锂剂对富锂锰基化合物进行处理,其表面结构未发生变化,只是表面脱出 了 Li20。 本发明还提供了上述方法制备的富锂锰基正极材料; Li20的产 生是导致首次库伦效率低的主要原因, 因此,本发明的富锂锰基正极材料 由于 Li20的减少使首次库伦效率提高; 同时由于本发明的富锂锰基正极 材料氧空位与锂空位的存在,使锂离子容易扩散,从而使倍率性能与循环 性能提高。 附图说明
图 1为实施例 1〜6的富锂锰基正极材料的 X射线衍射图谱; 图 2为实施例 1〜6制备的富锂锰基正极材料首次充放电过程中容量- 电压微分曲线;
图 3为实施例 15制备的富锂锰基正极材料的透射电镜照片; 图 4为实施例 1与实施例 15制备的锂离子电池首次充放电曲线; 图 5为实施例 1与实施例 15制备的锂离子电池的倍率性能对比图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行 描述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是对本发明权利要求的限制。
本发明实施例公开了一种如式( I )所示的富锂锰基正极材料, 所述 富锂锰基正极材料的 X射线衍射图谱中, 布拉格角度在 18.7°附近的衍射 峰强度与布拉格角度在 44.6°附近的衍射峰强度的比值为 1.10〜1.24;
( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02 ( I );
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0 < x<0.8; 0.01<y<0.2;
a+b=l ; 0<b<0.5„
本发明以富锂锰基正极材料的衍射峰强度的比值来限定富锂锰基正 极材料本身的性质。 本发明对富锂锰基正极材料进行 X射线衍射的测定 条件为: Cu靶, 管压为 40V, 管电流为 40mA, 扫描速度为 2°/min, 2Θ 扫描范围为 15°〜90°, 步长为 0.02°, 发射狭缝(DS ) 为 1mm, 防散射狭 缝(SS ) 为 8mm, 石墨单色器。
将本发明的富锂锰基材料作为锂离子电池正极材料时,锂离子电池在 首次充放电过程中容量-电压微分后的曲线, 第一个峰的位置在 3.0〜3.4V 之间, 所述容量 -电压微分曲线能够反映电池的放电平台电位, 该电位内 容量-电压微分强度越大, 则获得的富锂锰基正极材料的放电容量越高。 本发明得到容量-电压微分曲线的测试条件为: 电流密度为 25mA/g (0.1C), 电压范围为 2〜4.8V。
本发明还提供了上述富锂锰基正极材料的制备方法, 包括以下步骤: 将如式( II )所示的富锂锰基化合物与脱锂剂混合, 进行脱锂反应, 反应后得到如式( I ) 所示的富锂锰基正极材料;
( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02 ( I );
xLi2Mn03- ( 1-x ) Li ( MaM'b ) 02 ( II );
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0 < x<0.8; 0.01<y<0.2;
a+b=l ; 0<b<0.5„
本发明提供了所述富锂锰基正极材料的制备方法,将富锂锰基化合物 与脱锂剂混合, 在脱锂剂的作用下使富锂锰基化合物中的 Li2Mn03脱出 部分 Li20, 得到具有锂空位和氧空位的富锂锰基正极材料, 同时脱出的 Li20与气体或液体反应生成可溶性的含锂化合物。
按照本发明, 在制备富锂锰基正极材料的过程中, 将如式( II )所示 的富锂锰基化合物与脱锂剂混合,在脱锂剂的作用下从所述富锂锰基化合 物中的 Li2Mn03脱出部分 Li20。
本发明中, 所述脱锂剂可以为气体, 也可以为固体, 若所述脱锂剂为 气体,所述脱锂剂优选为酸性气体或碱性气体,所述酸性气体包括但不限 于为二氧化硫、 二氧化氮、 二氧化碳、 氟化氢、 卤素元素或硫化氢, 所述 碱性气体优选为氨气、磷化氢或联氨。 若所述脱锂剂为固体, 所述脱锂剂 优选为可以分解产生酸性气体或碱性气体的物质中的一种或多种;更优选 为氯化铵、 亚硫酸铵、 碳酸铵、 碳酸氢铵、 乙酸铵、 草酸氨、 磷化氨和尿 素中的一种或多种。
按照本发明,所述脱锂反应优选为固相脱锂反应或液相脱锂反应。所 述固相脱锂反应可以按照如下方式进行:在密闭条件下,将所述固体脱锂 剂与富锂锰基化合物按照摩尔比 1:100〜1:2混合均匀后, 在 40°C〜100(TC 下反应 2〜30h; 所述固相脱锂反应还可以按照如下方式进行: 在所述富锂 锰基化合物中通入摩尔比为 1:100〜1 :2的气体脱锂剂与惰性气体的混合气 体, 在 40°C〜1000°C下反应 2〜30h。 所述液相脱锂反应为: 将所述富锂锰 基化合物、 固体脱锂剂与水混合, 在 60〜300°C下反应 2〜30h, 所述富锂 锰基化合物与固体脱锂剂的摩尔比为 1: 100〜 1 :2。
所述富锂锰基正极材料的制备, 以二氧化硫为脱锂剂,脱锂反应过程 可用下述反应方程式表示:
xLi2Mn03- ( 1-x ) Li ( MaM'b ) 02+yS02= ( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02+yLi2S03;
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0 < x<0.8; 0.01<y<0.2; a+b=l ; 0≤b≤0.5。
按照本发明,所述富锂锰基化合物与所述脱锂剂反应后,得到可溶性 锂化合物与具有锂空位和氧空位的富锂锰基正极材料。为了使所述锂化合 物与富锂锰基正极材料能够有效分离,本发明优选将与脱锂剂反应后的产 物与液相萃取剂混合,使材料表面析出的锂化合物溶解,过滤后除去可溶 性锂化合物后进行第二次热处理,所述第二次热处理的作用是除去颗粒表 面萃取剂,从而得到性能优异的富锂锰基正极材料。所述第二次热处理的 温度优选为 120〜500°C , 更优选为 180〜350°C。
本发明提供了一种富锂锰基正极材料的制备方法,通过将脱锂剂与富 锂锰基化合物反应, 脱去 Li2Mn03中的 Li20, 得到具有锂空位和氧空位 的富锂锰基正极材料。 本发明通过采用脱锂剂对富锂锰基化合物进行处 理, 其表面结构未发生变化, 只是表面脱出了 Li20。 本发明还提供了上 述方法制备的富锂锰基正极材料。现有理论认为富锂锰基正极材料在充电 时 Li2Mn03会发生活化产生 Li20与 Mn02, Li20的产生是导致首次库伦 效率低的主要原因, 因此, 本发明的富锂锰基正极材料由于 Li20的减少 使首次库伦效率提高;同时由于本发明的富锂锰基正极材料氧空位与锂空 位的存在,使锂离子容易扩散,从而使倍率性能与循环性能提高。 实验结 果表明,本发明提供的锂离子电池富锂锰基正极材料的首次效率大于 93% 以上, 在室温下 1C倍率的放电比容量为 260mAh/g, 常温循环 100周, 循环性能没有明显下降。 为了进一步理解本发明 ,下面结合实施例对本发明提供的富锂锰基正 极材料及其制备方法进行详细说明,本发明的保护范围不受以下实施例的 限制。
实施例 1
1 )将硫酸锰、 硫酸钴、 硫酸镍和氢氧化钠按照锰元素、 钴元素、 镍 元素和钠元素摩尔比为 1 : 0.25: 0.25: 3的比例混合, 混合搅拌 5小时, 烘干沉淀物, 得到前驱体 MnCo。.25Ni。.25(OH)2.5;
2 )将步骤 1 )得到的前驱体 MnCo。.25Ni。.25(OH)2.5与氢氧化锂按照摩 尔比 1 : 1.5在温度为 850°C下热处理 24小时, 冷却研磨后得到普通富锂 锰基正极材料 0.5Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2.
实施例 2
1 )将实施例 1合成的 lmol 0.5Li2MnO3O.5LiCo1/3Mn1/3Ni1/3O2放入到 反应器中, 通入 0.01molSO2气体, 密闭后加热至 120°C , 热处理 16h。
2 )将步骤 1 )得到的物料用蒸馏水洗涤, 重复 3次, 过滤后将材料 加热至 120°C , 热处理 16h, 得到本发明所述的锂空位富锂锰基正极材料 0.49Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.01MnO2
实施例 3
1 )将实施例 1合成的 lmol 0.5Li2MnO3O.5LiCo1/3Mn1/3Ni1/3O2放入到 反应器中, 通入 0.05molSO2气体, 密闭后加热至 120°C , 热处理 16h。
2 )将步骤 1 )得到的物料用蒸馏水洗涤, 重复 3次, 过滤后将材料 加热至 120°C , 热处理 16h, 得到本发明所述的锂空位富锂锰基正极材料 0.45Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.05MnO2
实施例 4
1 )将实施例 1合成的 lmol (XSL^MnC O LiAl Mn^Ni^C 放入到 反应器中, 通入 0.1molSO2气体, 密闭后加热至 120°C , 热处理 16h。
2 )将步骤 1 )得到的物料用蒸馏水洗涤, 重复 3次, 过滤后将材料 加热至 120°C , 热处理 16h, 得到本发明所述的锂空位富锂锰基正极材料 0.4Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.1MnO2
实施例 5 1 )将实施例 1合成的 lmol 0.5Li2MnO3O.5LiCo1/3Mn1/3Ni1/3O2放入到 反应器中, 通入 0.2molSO2气体, 密闭后加热至 120°C , 热处理 16h。
2 )将步骤 1 )得到的物料用蒸馏水洗涤, 重复 3次, 过滤后将材料 加热至 120°C , 热处理 16h, 得到本发明所述的锂空位富锂锰基正极材料 0.3Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.2MnO2
实施例 6
1 )将实施例 1合成的 lmol 0.5Li2MnO3O.5LiCo1/3Mn1/3Ni1/3O2放入到 反应器中, 通入 0.5mol S02气体, 密闭后加热至 120°C , 热处理 16h。
2 )将步骤 1 )得到的物料用蒸馏水洗涤, 重复 3次, 过滤后将材料 加热至 120°C , 热处理 16h, 得到本发明所述的锂空位富锂锰基正极材料 0.5LiCo1/3Mn1/3Ni1/3O2-0.5MnO2
实施例 7
利用德国布鲁克公司的 X射线衍射仪对实施例 1〜5得到的富锂锰基 正极材料进行 X射线衍射分析。 测定条件为: Cu-Κα线为光源, Cu靶, 管压: 40V, 管流: 40mA, 扫描速度: 2°/min, 2Θ扫描范围: 15〜90°, 步 长: 0.02°, 发散狭缝(DS ): lmm, 防散射狭缝( SS ): 8mm, 石墨单色 器。 实施例 1〜5的富锂锰基正极材料的 X射线衍射图谱如图 1所示。
半电池测试: 1 )将 8g实施例 1〜5 中得到的锂空位和氧空位富锂锰 基正极材料、 lg乙炔黑、 lg聚偏氟乙烯和 30g N-曱基吡咯烷酮在常温常 压下混合形成浆料, 均匀涂覆在铝箔表面制得极片; 得到的极片在 80°C 下烘干后压紧, 裁剪成面积为 1.32cm2的圓形薄片作为正极, 以金属锂片 为负极, 以 lmol/L的 LiPF6的碳酸乙烯酯( EC )和碳酸二曱酯( DMC ) 溶液为电解液, 其中 EC与 DMC的体积比为 1 : 1 , 然后在充满氩气的手 套箱中组装成扣式电池。
利用电化学测试仪对得到的半电池进行循环性能测试, 测试温度为
25 °C , 充放电电流为 0.1C〜3C, 充电截止电压为 4.8V, 放电截止电压为 2.0V, 容量-电压微分曲线图如图 2所示, 图 2中——曲线为实施例 1制 备的富锂锰基正极材料的容量-电压微分曲线, - -曲线为实施例 2制备 的富锂锰基正极材料的容量-电压微分曲线, . - -曲线为实施例 3制备的 富锂锰基正极材料的容量-电压微分曲线, ——曲线为实施例 4制备的富 锂锰基正极材料的容量-电压微分曲线, ——曲线为实施例 5制备的富锂 锰基正极材料的容量-电压微分曲线, ——曲线为实施例 6制备的富锂锰 基正极材料的容量-电压微分曲线, 由图可知, 锂空位和氧空位的富锂锰 基正极材料的第一个还原峰的位置在 3.2〜3.4V之间。 实施例 1〜6的富锂 锰基正极材料的电化学性能和 XRD数据如表 1所示。
表 1实施例 1〜6的物化指标和电化学性能数据表
Figure imgf000011_0001
实施例 8
1 )将 lmol 0.5Li2MnO3O.5LiCo1/3Mn1/3Ni1/3O2放入到反应器中, 通入 0.01mol NO2气体, 密闭后, 加热至 120°C , 热处理 16h。
2 )将步骤 1 )得到的物料重复 3 次用蒸馏水洗涤, 过滤后,加热至 300 °C , 热处理 6h , 得到本发明所述的锂空位富锂锰基正极材料 0.49Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.01MnO
实施例 9
1 )将 lmol 0.5Li2MnO3O.5LiCo1/3Mn1/3Ni1/3O2放入到反应器中, 通入 0.05mol C02气体, 密闭后, 加热至 120°C, 热处理 16h。
2)将步骤 1 )得到的物料重复 3次用蒸馏水洗涤, 过滤后, 加热至 400 °C , 热处理 6h, 得到本发明所述的锂空位富锂锰基正极材料 0.45Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.05MnO2
实施例 10
1)将 lmolOJL^MnC O-SLiCo^Mn^Ni^C 放入到反应器中, 通入 0.1molCl2气体, 密闭后, 加热至 180°C, 热处理 8h。
2)将步骤 1 )得到的物料重复 3次用蒸馏水洗涤, 过滤后, 加热至 300 °C , 热处理 6h, 得到本发明所述的锂空位富锂锰基正极材料 0.4Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.1 Mn02
实施例 11
1)将 lmolOJL^MnC O-SLiCo^Mn^Ni^C 放入到反应器中, 通入 0.2molHCl气体, 密闭后, 加热至 150°C, 热处理 5h。
2)将步骤 1 )得到的物料重复 3次用蒸馏水洗涤, 过滤后, 加热至 200 °C , 热处理 6h, 得到本发明所述的锂空位富锂锰基正极材料
0.4Li2MnO3-0.5LiCo1/3Mn1/3Ni1/3O2-0.1MnO2
实施例 12
1)将 lmolOJL^MnC O-SLiCo^Mn^Ni^C 放入到反应器中, 通入 0.5mol¾S气体, 密闭后, 加热至 220°C, 热处理 10h。
2)将步骤 1 )得到的物料重复 3次用蒸馏水洗涤, 过滤后, 加热至
400 °C , 热处理 6h, 得到本发明所述的锂空位富锂锰基正极材料 0.5LiCo1/3Mn1/3Ni1/3O2-0.5 Mn02
实施例 13
1)将 lmol 0.6Li2MnO3'0.4LiCo0.2Mn0.3Ni0.5O2放入反应器上层, 将 O.Olmol碳酸铵放入到反应器后密闭,加热至 160°C, 热处理 12h。
2)将步骤 1)得到的物料重复 3 次用蒸馏水洗涤、 过滤后,加热至 350°C , 热处理 8h, 得到本发明所述的锂空位富锂锰基正极材料 0.59Li2MnO3-0.4LiCo0.2Mn03Ni0.5O2-0.01MnO2
实施例 14 1)将 lmol 0.6Li2MnO3'0.4LiCo0.2Mn0.3Ni0.5O2放入反应器上层, 将 0.05mol碳酸氢铵放入到反应器后密闭,加热至 180°C, 热处理 20h。
2)将步骤 1)得到的物料重复 3 次用蒸馏水洗涤、 过滤后,加热至 400 °C , 热处理 8h, 得到本发明所述的锂空位富锂锰基正极材料 0.55Li2MnO3-0.4LiCo0.2Mn03Ni0.5O2-0.05MnO2
实施例 15
1)将 lmol 0.4Li2MnO3'0.6LiCo1/3Mn1/5Ni7/15O2放入反应器上层, 将 0. lmol氯化铵放入到反应器后密闭, 加热至 200°C, 热处理 10h。
2)将步骤 1)得到的物料重复 3 次用蒸馏水洗涤, 过滤后,加热至 350°C , 热处理 8h, 得到本发明所述的锂空位富锂锰基正极材料
0.3Li2MnO3O.6LiCo1/3Mn1/5Ni7/15O2'0.1MnO2。 如图 3所示, 图 3为实施例 15制备的富锂锰基正极材料的透射电镜照片。
实施例 16
1)将 lmol 0.4Li2MnO3'0.6LiCo1/3Mn1/5Ni7/15O2放入反应器上层, 将 0.2mol亚硫酸铵放入到反应器下层。 密闭后,加热至 200°C, 热处理 10h。
2)将步骤 1)得到的物料重复 3 次用蒸馏水洗涤, 过滤后,加热至 350°C , 热处理 8h, 得到本发明所述的锂空位富锂锰基正极材料 0.3Li2MnO3-0.6LiCo1/3Mn1/5Ni7/15O2-0.1MnO2o
实施例 17
1)将 lmol 0.5Li2MnO3'0.5LiCo1/3Mn1/3Ni1/3O2放入反应器上层, 将
0.3mol磷化氨放入到反应器后密闭, 加热至 250°C , 热处理 18h。
2)将步骤 1)得到的物料重复 3 次用蒸馏水洗涤, 过滤后,加热至 350°C , 热处理 8h, 得到本发明所述的锂空位富锂锰基正极材料 0.2Li2MnO3-0.5LiCo1/3Mn1/5Ni7/15O2-0.3MnO2o
实施例 18
1)将 lmol 0.4Li2MnO3'0.6LiCo1/3Mn1/5Ni7/15O2放入反应器上层, 将 0.5mol尿素放入到反应器下层。 密闭后, 加热至 200°C, 热处理 10h。
2)将步骤 1)得到的物料重复 3 次用蒸馏水洗涤, 过滤后,加热至 350°C , 热处理 8h, 得到本发明所述的锂空位富锂锰基正极材料 0.6LiCo1/3Mn1/5Ni7/15O2-0.4MnO2
实施例 19
1 )将 lmol 0.8Li2Mn03-0.2LiCoo.95Feo.o4Nbo.oi02, O.Olmol草酸铵、 4mol H20混合均匀,加热至 500 °C , 热处理 10h。
2 )将步骤 1 )得到的物料与 2mol 乙醇混合均匀, 过滤后, 加热至
150°C , 热处理 3h , 得到本发明所述的锂空位富锂锰基正极材料 0.79Li2Mn03-0.2LiCoo.95Feo.o4Nbo.oi02-0.01Mn0
实施例 20
1 )将 lmol 0.8Li2MnO3O.2LiCo。.95Fe。。4Nb。01O2、 0.02mol乙酸铵、5mol H20混合均匀,加热至 400 °C , 热处理 20h。
2 )将步骤 1 )得到的物料与 20mol乙醇混合均匀, 过滤后, 加热至 150°C , 热处理 3h , 得到本发明所述的锂空位富锂锰基正极材料 0.78Li2Mn03-0.2LiCoo.95Feo.o4Nbo.oi02-0.02Mn0
实施例 21
1 )将 lmol 0.5Li2MnO3'0.5LiCo。.33Mn。 34Ni。.3B。。3O2、 0.06mol 氟化铵,
6mol H20混合均匀,加热至 180 °C , 热处理 16h。
2 )将步骤 1 )得到的物料与 2mol H20混合均匀, 过滤后, 加热至 250°C , 热处理 36h , 得到本发明所述的锂空位富锂锰基正极材料 0.47Li2MnO3O.5LiCo0.33Mn0 34Ni0.3B003O2-0.03MnO2
实施例 22
1 )将 lmol 0.4Li2MnO3'0.6LiCo1/3Mn1/5Ni7/15O2、 0. lmol尿素, lOmol H20混合均匀,加热至 250 °C , 热处理 10h。
2 )将步骤 1 )得到的物料与 2mol H20混合均匀, 过滤后, 加热至 250°C , 热处理 36h , 得到本发明所述的锂空位富锂锰基正极材料 0.3Li2MnO3O.6LiCo1/3Mn1/5Ni7/15O2-0.1MnO2
实施例 23
1 )将 lmol O.SL^MnC O^LiCoo FeoiMNboinC 0.5mol碳酸铵、 3mol
H20混合均匀,加热至 300 °C , 热处理 20h。
2 )将步骤 1 )得到的物料与 20mol乙醇混合均匀, 过滤后, 加热至 180°C , 热处理 3h , 得到本发明所述的锂空位富锂锰基正极材料 0.3Li2MnO3-0.2LiCo0.95Fe004Nb001O2-0.5MnO2
采用实施例 15和实施例 1制备的富锂锰基正极材料作为锂离子电池 的正极材料, 测试锂离子电池的性能, 如图 4、 图 5所示, 图 4为实施例 1与实施例 15制备的锂离子电池首次充放电曲线; 其中曲线 A为实施例 1制备的锂离子电池的首次放电曲线, 曲线 B为实施例 15制备的锂离子 电池的首次放电曲线, 曲线 C为实施例 15制备的锂离子电池的首次充电 曲线, 曲线 D为实施例 1制备的锂离子电池的首次充电曲线。 图 5为实 施例 1与实施例 15的锂离子电池的倍率性能对比图, 其中 A区域为实施 例 15制备的锂离子电池的比容量,國区域为实施例 15制备的锂离子电池 的比容量。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当 指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提 下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明 权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使 用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的 情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的 这些实施例,而是要符合与本文所公开的原理和新颖的特点相一致的最宽 的范围。

Claims

权 利 要 求
1、 一种如式( I )所示的富锂锰基正极材料, 所述富锂锰基正极材 料的 X射线衍射图谱中, 布拉格角度在 18.7°附近的衍射峰强度与布拉格 角度在 44.6°附近的衍射峰强度的比值为 1.10〜1.24;
( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02 ( I );
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0<x<0.8; 0.01<y<0.2;
a+b=l ; 0<b<0.5„
2、 一种富锂锰基正极材料的制备方法, 包括以下步骤:
将如式( II )所示的富锂锰基化合物与脱锂剂混合, 进行脱锂反应, 反应后得到如式( I ) 所示的富锂锰基正极材料;
( x-y ) Li2Mn03-yMn02- ( 1-x ) Li ( MaM'b ) 02 ( I );
xLi2Mn03- ( 1-x ) Li ( MaM'b ) 02 ( II );
其中, M为镍、 钴、 锰、 铁、 硼、 铝和钒中的一种或多种;
M'为钛、 铬、 铜、 锌、 锆、 铌和钼中的一种或多种;
0<x<0.8; 0.01<y<0.2;
a+b=l ; 0<b<0.5„
3、 如权利要求 2所述的制备方法, 其特征在于, 所述脱锂剂为气体 脱锂剂或固体脱锂剂,所述气体脱锂剂为酸性气体或碱性气体;所述固体 脱锂剂为可以分解产生酸性气体或碱性气体的物质中的一种或多种。
4、 如权利要求 3所述的制备方法, 其特征在于, 所述酸性气体为二 氧化硫、 二氧化氮、 二氧化碳、 氟化氢、 卤素气体和硫化氢中的一种或多 种。
5、 如权利要求 3所述的制备方法, 其特征在于, 所述碱性气体为氨 气、 磷化氢或联氨。
6、 如权利要求 3所述的制备方法, 其特征在于, 所述固体脱锂剂为 氯化铵、 亚硫酸铵、 碳酸铵、 碳酸氢铵、 乙酸铵、 草酸氨、 磷化氨和尿素 中的一种或多种。
7、 如权利要求 2所述的制备方法, 其特征在于, 所述脱锂反应为固 相脱锂反应或液相脱锂反应。
8、 如权利要求 7所述的制备方法, 其特征在于, 所述固相脱锂反应 为: 将所述固体脱锂剂与富锂锰基化合物按照摩尔比 1 : 100〜1 :2混合均匀 后, 在 40°C〜1000°C下反应 2〜30h。
9、 如权利要求 7所述的制备方法, 其特征在于, 所述固相脱锂反应 为: 在所述富锂锰基化合物中通入摩尔比为 1 : 100〜1 :2的气体脱锂剂与惰 性气体的混合气体, 在 40°C〜1000°C下反应 2〜30h。
10、如权利要求 7所述的制备方法, 其特征在于, 所述液相脱锂反应 为: 将所述富锂锰基化合物、 固体脱锂剂与水混合, 在 60〜300°C下反应 2〜30h, 所述富锂锰基化合物与固体脱锂剂的摩尔比为 1 : 100〜1 :2。
11、 如权利要求 2所述的制备方法, 其特征在于, 所述反应结束后对 产物进行处理: 将反应后的产物与液相萃取剂混合, 过滤后进行热处理。
PCT/CN2013/088597 2013-09-12 2013-12-05 富锂锰基正极材料及其制备方法 WO2015035712A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/021,172 US10074856B2 (en) 2013-09-12 2013-12-05 Lithium-rich manganese-based positive electrode material and preparation method therefor
KR1020167009242A KR101826453B1 (ko) 2013-09-12 2013-12-05 리튬이 풍부한 망간계 양극 재료 및 이의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310416745.1A CN104466157B (zh) 2013-09-12 2013-09-12 富锂锰基正极材料及其制备方法
CN201310416745.1 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015035712A1 true WO2015035712A1 (zh) 2015-03-19

Family

ID=52664994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088597 WO2015035712A1 (zh) 2013-09-12 2013-12-05 富锂锰基正极材料及其制备方法

Country Status (4)

Country Link
US (1) US10074856B2 (zh)
KR (1) KR101826453B1 (zh)
CN (1) CN104466157B (zh)
WO (1) WO2015035712A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087403A1 (en) * 2015-11-16 2017-05-26 The Regents Of The University Of California Lithium-excess cathode material and co-precipitation formation method
CN107195898A (zh) * 2016-03-15 2017-09-22 株式会社东芝 活性物质、非水电解质电池、电池包及车辆
CN107204439A (zh) * 2016-03-16 2017-09-26 株式会社东芝 活性物质、非水电解质电池、电池包及车辆
CN114373881A (zh) * 2021-12-17 2022-04-19 东北大学 一种基于还原气氛处理的富锂锰基正极材料表面改性方法
CN114875471A (zh) * 2022-05-24 2022-08-09 宁夏汉尧石墨烯储能材料科技有限公司 一种单晶富锂锰正极材料的制备方法及其应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375021B (zh) * 2015-10-27 2018-07-06 中国科学院宁波材料技术与工程研究所 一种正极材料、其制备方法及锂离子电池
CN106910642B (zh) * 2015-12-22 2019-06-07 比亚迪股份有限公司 一种超级电容器及其制备方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102133916B1 (ko) 2016-12-28 2020-07-15 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019002116A1 (en) * 2017-06-28 2019-01-03 Basf Se METHOD FOR MANUFACTURING CATHODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY
CN107946571B (zh) * 2017-11-20 2021-04-23 中国科学院宁波材料技术与工程研究所 一种富锂氧化物正极材料及其制备方法以及一种锂离子电池
KR102084499B1 (ko) 2018-02-06 2020-03-04 숭실대학교산학협력단 리튬망간산화물-카본소스 양극활물질의 제조방법 및 이에 의해 제조된 리튬망간산화물-카본소스 양극활물질
CN110416534B (zh) * 2019-07-19 2023-05-23 蜂巢能源科技有限公司 富锂锰基正极材料及其制备方法和应用
CN110726940B (zh) * 2019-09-19 2021-10-01 深圳市比克动力电池有限公司 锂离子电池高镍正极材料循环性能的快速评价方法
CN110931775A (zh) * 2019-12-19 2020-03-27 海安常州大学高新技术研发中心 一种富锂锰基正极材料的改性方法
CN111029562B (zh) * 2019-12-23 2022-04-19 北京理工大学重庆创新中心 一种在富锂锰基正极材料表面预构建氧空位的方法
CN111446437B (zh) * 2020-04-28 2022-07-15 哈尔滨工业大学 一种表面自重构改性富锂正极材料及其制备方法
CN113697866B (zh) * 2021-04-06 2022-09-20 北京理工大学 一种表面具有锂空位结构的ncm三元正极材料
CN113415794B (zh) * 2021-06-17 2022-12-13 山东大学 一种通过磷化工艺制备的水系锌电池正极材料及其制备方法与应用
CN113912137B (zh) * 2021-10-09 2024-01-19 宁波容百新能源科技股份有限公司 一种富多面体的复合相前驱体及其制备方法和富锂正极材料
CN114566636B (zh) * 2021-12-29 2023-11-17 中国科学院过程工程研究所 一种富锂锰基正极材料及其制备方法和用途
CN114639821A (zh) * 2022-03-20 2022-06-17 北京工业大学 一种类单晶梯度富锂锰基层状氧化物表面改性方法
CN114678522A (zh) * 2022-04-25 2022-06-28 西安理工大学 锰空位调控富锂锰基正极材料改性方法及材料的应用
CN115275179A (zh) * 2022-08-19 2022-11-01 天津巴莫科技有限责任公司 富锂锰基正极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099508A1 (en) * 2000-06-22 2006-05-11 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CN102055012A (zh) * 2009-10-29 2011-05-11 上海比亚迪有限公司 一种锂离子电池及其制备方法
CN102169979A (zh) * 2010-02-26 2011-08-31 比亚迪股份有限公司 一种正极材料的活化方法
CN102244237A (zh) * 2011-06-10 2011-11-16 北京理工大学 一种高容量锂离子电池正极材料的合成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653409B2 (ja) 1999-01-29 2005-05-25 三洋電機株式会社 リチウム二次電池用正極活物質及びその製造方法、この正極活物質を用いたリチウム二次電池用正極及びその製造方法、この正極を用いたリチウム二次電池及びその製造方法
CA2578870C (en) * 2004-09-03 2016-01-26 The University Of Chicago Manganese oxide composite electrodes for lithium batteries
US8080340B2 (en) * 2004-09-03 2011-12-20 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
CN101378117A (zh) * 2007-08-28 2009-03-04 德固赛(中国)投资有限公司 非水电解质电池用电极的制造方法
US8835027B2 (en) * 2007-09-21 2014-09-16 Uchicago Argonne, Llc Positive electrodes for lithium batteries
US8313721B2 (en) * 2007-09-21 2012-11-20 Uchicago Argonne, Llc Lithium-oxygen (AIR) electrochemical cells and batteries
CN101562245B (zh) * 2009-05-22 2011-01-19 北京工业大学 一种高倍率富锂正极材料的改性方法
CN102694164B (zh) 2012-06-08 2015-02-04 南开大学 表面掺氮或碳的富锂氧化物正极材料及其制备方法
CN102738458B (zh) 2012-06-13 2015-03-11 北京有色金属研究总院 一种富锂正极材料的表面改性方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099508A1 (en) * 2000-06-22 2006-05-11 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CN102055012A (zh) * 2009-10-29 2011-05-11 上海比亚迪有限公司 一种锂离子电池及其制备方法
CN102169979A (zh) * 2010-02-26 2011-08-31 比亚迪股份有限公司 一种正极材料的活化方法
CN102244237A (zh) * 2011-06-10 2011-11-16 北京理工大学 一种高容量锂离子电池正极材料的合成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087403A1 (en) * 2015-11-16 2017-05-26 The Regents Of The University Of California Lithium-excess cathode material and co-precipitation formation method
US10978709B2 (en) 2015-11-16 2021-04-13 The Regents Of The University Of California Lithium-excess cathode material and co-precipitation formation method
CN107195898A (zh) * 2016-03-15 2017-09-22 株式会社东芝 活性物质、非水电解质电池、电池包及车辆
CN107204439A (zh) * 2016-03-16 2017-09-26 株式会社东芝 活性物质、非水电解质电池、电池包及车辆
CN114373881A (zh) * 2021-12-17 2022-04-19 东北大学 一种基于还原气氛处理的富锂锰基正极材料表面改性方法
CN114875471A (zh) * 2022-05-24 2022-08-09 宁夏汉尧石墨烯储能材料科技有限公司 一种单晶富锂锰正极材料的制备方法及其应用

Also Published As

Publication number Publication date
US10074856B2 (en) 2018-09-11
CN104466157B (zh) 2017-04-12
KR101826453B1 (ko) 2018-02-06
CN104466157A (zh) 2015-03-25
US20160226068A1 (en) 2016-08-04
KR20160055204A (ko) 2016-05-17

Similar Documents

Publication Publication Date Title
WO2015035712A1 (zh) 富锂锰基正极材料及其制备方法
Zhang et al. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material
EP2911224B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
CN104953199B (zh) 利用锂离子电池正极废料合成的金属掺杂镍钴锰酸锂及其制备方法和用途
JP5712544B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN103066275B (zh) 一种球形高电压镍锰酸锂正极材料的制备方法
CN102074679B (zh) 一种锂离子电池正极材料球形掺铝镍钴酸锂的制备方法
CN104362295B (zh) 一种锂离子电池用镍基正极材料及其制备方法
CN106299338A (zh) 一种高品质富锂锰基锂离子电池正极材料及其合成方法
CN107068995B (zh) 一种原位析出氧化物包覆锂离子电池正极材料及其制备方法及应用
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
CN103715418A (zh) 一种球形四氧化三钴的制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN109301207B (zh) 一种表层掺杂Ce3+且表层包覆CeO2的NCM三元正极材料及其制备方法
Li et al. Preparation and electrochemical properties of re-synthesized LiCoO 2 from spent lithium-ion batteries
JP2006253140A (ja) 非水電解質リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
CN104600285A (zh) 一种球形镍锰酸锂正极材料的制备方法
CN108134064B (zh) 一种正极材料前驱体及其制备方法和正极材料
CN105375021A (zh) 一种正极材料、其制备方法及锂离子电池
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
Li et al. Regeneration of high-performance Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
CN111403842B (zh) 废旧锂电池正极材料的回收方法和球形氧化镍材料及应用
CN102856543A (zh) 锰酸锂材料及其制备方法
CN104009209A (zh) 一种核壳结构锂离子电池正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009242

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13893231

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 05-08-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 13893231

Country of ref document: EP

Kind code of ref document: A1