WO2015032321A1 - 混合动力汽车的控制***和控制方法 - Google Patents

混合动力汽车的控制***和控制方法 Download PDF

Info

Publication number
WO2015032321A1
WO2015032321A1 PCT/CN2014/085826 CN2014085826W WO2015032321A1 WO 2015032321 A1 WO2015032321 A1 WO 2015032321A1 CN 2014085826 W CN2014085826 W CN 2014085826W WO 2015032321 A1 WO2015032321 A1 WO 2015032321A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid vehicle
power
engine
mode
vehicle
Prior art date
Application number
PCT/CN2014/085826
Other languages
English (en)
French (fr)
Inventor
陈昊
阮鸥
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2015032321A1 publication Critical patent/WO2015032321A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the invention relates to the technical field of automobiles, and in particular to a control system of a hybrid vehicle and a control method of the hybrid vehicle.
  • Hybrid Electrical Vehicle refers to a vehicle that is equipped with two sources of power, namely a thermal power source (generated by a conventional gasoline engine or a diesel engine) and an electric power source (generated by a battery and a motor).
  • a thermal power source generated by a conventional gasoline engine or a diesel engine
  • an electric power source generated by a battery and a motor.
  • hybrid hybrid system which is characterized in that the internal combustion engine system and the motor drive system each have a mechanical shifting mechanism, and the two mechanisms are combined by a planetary wheel structure to comprehensively adjust the internal combustion engine and the electric motor. Direct speed relationship.
  • the conventional hybrid vehicle has a single driving mode, and the driver cannot select the driving mode through personal driving habits and long-term fixed driving conditions.
  • the daily driving route is relatively fixed, and the distance is mostly within 50km.
  • This special working condition is very suitable for medium and short distance pure electric driving.
  • the traditional hybrid vehicle is designed to reduce fuel consumption by motor-assisted adjustment of the engine instead of completely eliminating fuel consumption. Therefore, manual EV (Electrical Vehicle) mode switching function is often not available, even if it is due to battery capacity limitation. The electric driving range is short.
  • the traditional hybrid vehicle does not use high-power, high-torque motors and engines for the purpose of reducing fuel consumption.
  • the power of the vehicle is not strong and the driving pleasure is greatly reduced.
  • some hybrid vehicles have a 100-kilometer acceleration time of more than 10 s and high speed performance.
  • some hybrid vehicles use a hybrid structure and its control method. There is no strategy for the engine to be driven separately. Even if the engine is in a relatively economical working area, the battery is charged by the first motor MG1. Through MG1 to adjust the engine speed to achieve shifting; and in the case of large load acceleration conditions, limited by the battery capacity, the engine has a part of the power to drive MG1 to generate electricity, and the battery can jointly provide power to the second motor MG2, both of which are Reduced engine drive efficiency. Moreover, in the engine start-off strategy, the set demand power and the vehicle speed limit are too small, and the vehicle speed switching condition is set to a point instead of a section, which may cause the engine to start too early.
  • some existing hybrid vehicles do not adopt a pluggable structure because of the small battery capacity, and the battery power is converted from gasoline, which increases the use cost, and the hybrid structure is complicated, and adopts ECVT (Electronic Continuously Variable Transmission, The electronically controlled stepless automatic transmission has difficulty in matching and high cost.
  • ECVT Electronic Continuously Variable Transmission
  • the present invention is based on the following findings and findings by the inventors:
  • the powertrain control strategy of a typical hybrid vehicle in the HEV mode is generally: when the SOC (State Of Charge) of the power battery is high, the starting condition, the starting condition, and the low speed work
  • the ECU Electronic Control Unit
  • the ECU monitors the SOC value of the power battery and the actual demand power of the vehicle in real time, and flexibly adjusts the start and stop of the engine; when the SOC of the power battery is low, it is generally Below 45%, pure electric driving is not allowed; when the hybrid vehicle is at rest, the engine starts to idle and warms up for a period of time, and the idle speed is 1200 rpm.
  • the engine will be based on the SOC value of the power battery.
  • the engine water temperature determines whether the flame is extinguished.
  • the engine will idle to generate electricity until the SOC value is at a certain high level or the engine water temperature is at a certain high level; the engine works for a period of time (about 15 minutes) regardless of the initial SOC. After that, the SOC of the power battery will return to the equilibrium position (56%) and keep the position unchanged; the engine During the starting process, the planetary gear is used to realize the stepless speed change, and the speed relationship between the engine and the motor is comprehensively adjusted.
  • the hybrid vehicle has two motors, the MG1 performs the speed control, adjusts the engine to the wheel end speed ratio, and the MG2 performs the torque control. Provides torque and responds to driver and battery charging needs.
  • the SOC of the power battery is high, it is necessary to consider the power demand of the whole vehicle to switch between pure electric power and hybrid power, which may cause frequent starting and stopping of the engine, reduce the life of the starter, increase driving noise, and reduce driving comfort.
  • the SOC of the power battery is low, it is limited by the battery capacity.
  • the SOC value of the defined low-power state is high, and the whole vehicle can easily enter the strategy of quick power-on, and this working condition will increase fuel consumption and emissions;
  • the power car is powered on at rest, the engine starts to idle for a period of time and judges the SOC value of the power battery and the engine water temperature to control the engine to start and stop.
  • the motor has limited ability to regulate the engine.
  • the proportion of the engine participating in the drive is large, which is not conducive to further reducing fuel consumption.
  • the shifting mechanism adopts ECVT, and its engine idle speed is high, idle noise, fuel consumption and emissions are high, and MG1 is added. It is used to adjust the engine speed, increase the cost of the motor, and the ECVT structure is complex, the process requirements are high, and the matching is difficult.
  • the transmission mechanism is also greatly increased the cost of hardware and software; acceleration during high load conditions, the battery capacity is restricted by the engine power to a part of the power to drive the MG1 and MG2 to the common accumulator Providing electric energy drive, the number of energy conversions increases, reducing efficiency.
  • the object of the present invention is to at least solve one of the above technical drawbacks.
  • an object of the present invention is to provide a control system for a hybrid vehicle, in which the engine power subsystem and the motor power subsystem in the control system of the hybrid vehicle are connected in parallel, the power is easily matched, and the conversion efficiency is high and reduced. Fuel consumption, and reduce the frequency of frequent start and stop of the engine, thereby improving the life of the starter, reducing driving noise and improving driving comfort.
  • Another object of the present invention is to provide a control method for a hybrid vehicle.
  • a control system for a hybrid vehicle includes: a transmission device for driving a wheel of a hybrid vehicle; an engine power subsystem, the engine power a subsystem coupled to the transmission; a motor power subsystem, the motor power subsystem coupled to the transmission; and a controller that controls the engine power subsystem and the motor power subsystem to control
  • the hybrid vehicle enters a corresponding operational mode, wherein the operational mode includes a pure electric economy mode and a hybrid economy mode, and the controller, after receiving a switching instruction to switch to the purely electric economy mode, if When it is determined that the SOC of the power battery in the motor power subsystem is greater than or equal to the second power threshold and the vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold, controlling the hybrid vehicle to switch from the hybrid economy mode to The pure electric economy mode.
  • the engine power subsystem and the motor power subsystem are connected in parallel, and the power system of the existing hybrid vehicle is connected in series, which can effectively improve the energy utilization rate.
  • the parallel structure is relatively simple, avoiding the complicated ECVT matching of the hybrid mode, and reducing the risk of unevenness caused by poor matching, so the economic performance is greatly improved under the premise of ensuring the dynamic performance of the whole vehicle.
  • the engine starting point is set higher, which can reduce the proportion of the engine participating in the driving in the urban working condition and reduce the fuel consumption.
  • the engine is prevented from starting and stopping frequently, thereby improving the life of the starter, reducing driving noise and improving driving comfort.
  • another embodiment of the present invention provides a control method of a hybrid vehicle, wherein the hybrid vehicle includes a transmission device, an engine power subsystem, and a motor power subsystem, and the transmission device and the transmission device
  • the engine power subsystem and the motor power subsystem are respectively connected
  • the control method includes the following steps: controlling the hybrid power by controlling the engine power subsystem and the motor power subsystem when the hybrid vehicle is in operation
  • the vehicle enters a corresponding working mode, wherein the working mode includes a pure electric economy mode and a hybrid economic mode; detecting an operating state of the power battery in the motor power subsystem, and detecting a speed of the hybrid vehicle;
  • After receiving the switching instruction to switch to the pure electric economy mode if it is determined that the SOC of the power battery is greater than or equal to the second power threshold and the speed of the hybrid vehicle When the first speed threshold is less than or equal to, the hybrid vehicle is controlled to switch from the hybrid economy mode to the pure electric economy mode.
  • the selectable working mode can satisfy the driving demand of the user under different working conditions, and can meet the power demand of the urban working condition and the power of the suburban working condition.
  • sexual demand truly the vehicle drive is guided by the user's subjective operational intentions to improve driving pleasure.
  • the engine starting point is set higher, which can reduce the proportion of the engine participating in the driving in the urban working condition and reduce the fuel consumption.
  • the engine is prevented from starting and stopping frequently, thereby improving the life of the starter, reducing driving noise and improving driving comfort.
  • FIG. 1A is a block schematic diagram of a control system of a hybrid vehicle in accordance with an embodiment of the present invention
  • FIG. 1B is a block schematic diagram of a control system of a hybrid vehicle in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of signal flow of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a control method of a hybrid vehicle when the hybrid vehicle is in a pure electric economy mode according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing a control method of a hybrid vehicle when the hybrid vehicle is in a pure electric motion mode according to another embodiment of the present invention
  • FIG. 5 is a flowchart of a control method of a hybrid vehicle when a hybrid vehicle is in a hybrid economy mode operation according to still another embodiment of the present invention
  • FIG. 6 is a flow chart showing a control method when a hybrid vehicle is operated in an economical mode when the hybrid vehicle is in a hybrid economy mode according to still another embodiment of the present invention
  • FIG. 7 is a schematic view showing a working area of an engine when a hybrid vehicle is in a hybrid economy mode according to still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a relationship between a power generation power of a motor and a SOC value of a power battery according to an embodiment of the present invention
  • FIG. 9 is a hybrid when a hybrid vehicle is in a hybrid economy mode according to yet another embodiment of the present invention.
  • FIG. 10 is a flowchart of a control method of a hybrid vehicle when a hybrid vehicle is in a hybrid sport mode operation according to still another embodiment of the present invention.
  • FIG. 11 is a flow chart of a control method of a hybrid vehicle according to an embodiment of the present invention.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. Embodiments such that the first and second features may not be in direct contact.
  • FIG. 1A is a block schematic diagram of a control system of a hybrid vehicle in accordance with an embodiment of the invention.
  • the control system of the hybrid vehicle includes a transmission 10, an engine power subsystem 20, a motor power subsystem 30, and a controller 40.
  • the transmission device 10 is used to drive the wheels 2a and 2b of the hybrid vehicle, the engine power subsystem 20 is connected to the transmission device 10, and the motor power subsystem 30 is connected to the transmission device 10.
  • the controller 40 controls the hybrid vehicle to enter a respective operational mode by controlling the engine power subsystem 20 and the motor power subsystem 30, wherein the operational modes include a pure electric economy mode and a hybrid economy mode, and the controller 40 After receiving the switching instruction to switch to the pure electric economy mode, if it is determined that the SOC of the power battery in the motor power subsystem 30 is greater than or equal to the second power threshold and the vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold And controlling the hybrid vehicle to switch from the hybrid economy mode to the pure electric economy mode.
  • the engine power subsystem 20 includes an engine 3, a transmission 4 that includes a motor 5, a speed reducer 6, a power battery 7, and an inverter 8.
  • the engine 3 is connected to the transmission 10 via a transmission 4, and the motor 5 is connected to the transmission 10 via a speed reducer 6 to power the motor 5 of the motor 5.
  • the hybrid vehicle described above is a pluggable dual-mode hybrid vehicle, wherein the engine 3 is a highly efficient turbocharged direct injection engine capable of outputting driving power, and the transmission 4 is capable of transmitting
  • the engine 3 outputs a dual clutch transmission
  • the power battery 7 is connected to the power electronic unit inverter 8 through a DC bus
  • the inverter 8 is connected to the motor 5 through an AC three-phase line
  • the electric power and the fuel power are coupled at the transmission 10 and It is transmitted to the wheels 2a and 2b.
  • the user can select the working mode of the hybrid vehicle through the EV mode selection button, the HEV mode selection button, and the operation mode selection knob button.
  • the operating modes include a pure electric mode and a hybrid electric mode, wherein the pure electric mode includes a pure electric economy mode (EV-eco mode) and a pure electric motion mode (EV-s mode), and the hybrid power Modes include hybrid economy mode (HEV-eco mode) and hybrid sport mode (HEV-s mode).
  • the EV mode selection button is used to manually select the EV mode
  • the HEV mode selection button is used to manually select the HEV mode
  • the operation mode selection knob button is used to manually rotate the eco mode or the Sport mode.
  • the manually switchable EV, HEV working mode, the manually switchable eco, the Sport sport mode, the working mode state EV, and the HEV are both taken, and the sport mode states eco and Sport are both taken.
  • four drive modes namely EV-eco, EV-s, HEV-eco, and HEV-s, can be obtained by mutual switching between modes.
  • the EV mode makes the whole vehicle in the pure electric energy consumption mode, keeping the engine not working
  • the HEV mode makes the whole vehicle in the hybrid energy consumption mode, and the motor cooperates with the engine or assists to drive or adjust the engine to maintain the most comprehensive performance.
  • eco mode limits the maximum output of motor, engine and power battery, ensuring that the motor, engine and power battery work in the most economical area; Sport mode gives priority to the vehicle's power demand.
  • the maximum output of the motor, engine, and power battery is not limited, and the entire energy of the power system can be obtained.
  • the gear position controller SCU (Shift Control Unit) is responsible for collecting gear position signals and EV/HEV/eco/Sport mode signals, and transmitting these two signals to the motor controller ECN (Electromotor-Controller), motor control
  • the device ECN verifies the received EV/HEV/eco/Sport mode signal and forwards it to the battery manager BMS, the engine controller ECM (Engine Control Module), the transmission controller TCU (Transmission Control Unit), the combination meter, and
  • the system implements the corresponding power system control scheme according to different mode strategies, and sends the engine start and stop command and the engine target torque signal to the engine controller ECM;
  • the battery management device BMS Battery Management System
  • receives the EV/HEV/eco/Sport The mode signal is verified and an energy management strategy is executed;
  • the engine controller ECM executes the engine system control scheme and transmits the engine current indicated torque to the transmission controller TCU; the transmission controller E
  • the controller controls the hybrid vehicle in a pure electric economy mode, a pure electric motion mode, a hybrid economic mode, and a hybrid motion according to an operating state of the hybrid vehicle and/or a working state of the power battery. Switch between modes.
  • the controller 40 controls the hybrid vehicle to switch to the hybrid economy when the maximum allowable discharge power of the power battery is less than or equal to the first power threshold, for example, 12 KW, or the current gradient signal detected by the hybrid vehicle is greater than or equal to the upper threshold of the gradient, for example, 15%. mode.
  • the power battery is used to power the motor to drive the vehicle without triggering the mode switching condition, and Keep the engine out of operation.
  • the HEV button is manually pressed, the working mode of the hybrid vehicle is switched to the HEV-eco mode; when the button is manually rotated to the Sport, the working mode of the hybrid vehicle is switched to the EV-s mode; when the mode button is not manually input, If the power storage SOC of the power battery is less than or equal to the lower SOC threshold, for example, 20%, or the maximum allowable discharge power of the power battery is less than or equal to the lower power threshold, for example, 12 KW, or the gradient signal is greater than the upper threshold of the slope, for example, 15%, the controller 40 automatically controls the hybrid.
  • the car switches to HEV-eco mode.
  • the maximum output power of the motor in order to improve the power consumption efficiency to extend the driving range, the maximum output power of the motor is limited, and the overall vehicle acceleration performance in this mode is considered, and the maximum output torque of the motor is not limited, that is, When the hybrid vehicle is in the pure electric economy mode, the controller 40 controls the limited power operation of the hybrid vehicle.
  • the power battery is used to power the motor to drive the vehicle without triggering the mode switching condition, and Keep the engine out of operation.
  • the HEV button is manually pressed, the working mode of the hybrid vehicle is switched to the HEV-s mode; when the button is manually rotated to the eco, the working mode of the hybrid vehicle is switched to the EV-eco mode; when the mode button is not manually input, If the battery charge SOC of the power is less than or equal to the SOC lower limit threshold, for example, 20%, or the maximum allowable discharge power of the power battery is less than or equal to the power lower limit threshold, for example, 12 KW, or the gradient signal is greater than the upper slope threshold, for example, 15%, the controller 40 automatically controls the mixing.
  • the power car switches to the HEV-s mode.
  • the first task is to obtain better power, so the motor output power is not limited.
  • the controller controls the hybrid vehicle to switch to the user.
  • the target mode corresponding to the mode switching instruction.
  • the hybrid vehicle can be placed in the EV-eco working mode or the EV-s operating mode by selecting the EV working mode and the eco/Sport operating mode. Since the hybrid vehicle adopts a pluggable power battery charging structure, the power battery capacity is increased, and a motor with a large power and torque is selected, so that the hybrid vehicle can obtain strong power in the EV mode, and can cope with all urban workers. And most suburban conditions without automatic mode switching, only when the slope signal is greater than the upper slope threshold, for example 15% (EV mode maximum grade), it will automatically switch to HEV mode, unless it is manually switched, it will keep HEV mode running. .
  • the maximum output power of the motor is limited, and the maximum output torque of the motor is not limited, ensuring low-speed climbing performance and high-speed economic performance.
  • the maximum output power and maximum output torque of the motor are not limited, and the strongest power in the EV mode is ensured.
  • the control system of the hybrid vehicle of the embodiment of the invention ensures the power and driving range of the pure electric operation of the hybrid vehicle, and at the same time satisfies the power demand of the whole vehicle, avoids long-term high-power electricity to improve the power efficiency. .
  • the controller determines the power battery after receiving the switching command to switch to the pure electric economy mode.
  • the SOC is greater than or equal to the second power threshold, for example, 30% and the current vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold, for example, 150 km/h, the controller controls the hybrid vehicle to switch to the pure electric economy mode.
  • the controller controls the hybrid vehicle to operate in an economical manner; if the current gradient signal detected by the hybrid vehicle is less than or equal to the lower gradient threshold, for example, 5% and the SOC of the power battery is less than or equal to the first A power threshold is, for example, 20%, or the current slope signal detected by the hybrid vehicle is less than or equal to a lower gradient threshold, for example, 5%, and the maximum allowable discharge power of the power battery is less than or equal to a first power threshold, for example, 12 KW, and the controller controls the hybrid vehicle to be low.
  • the mode operates, where the second power threshold is greater than the first power threshold, and the second power threshold is greater than the first power threshold.
  • the low-power mode means that the engine drives the motor to generate electricity quickly, thereby getting rid of the low-electric state, and the motor has the ability to adjust the working range of the engine, thereby ensuring the economy of the whole vehicle.
  • the controller controls the hybrid vehicle to drive purely.
  • the vehicle speed of the hybrid vehicle is greater than or equal to a third speed threshold, for example, 30 km/h, wherein the vehicle is in a normal vehicle torque demand (the vehicle is normally driving in the current state)
  • the controller controls the engine to perform torque output with a preset torque upper limit curve and controls the motor to perform torque compensation; when the hybrid vehicle's overall vehicle torque demand is less than the engine's pre-load
  • the controller controls the engine to perform torque output with a preset torque lower limit curve and controls the motor to generate electricity; when the hybrid vehicle's vehicle torque demand is less than or equal to the engine's preset torque upper limit curve and is greater
  • the preset torque upper limit curve of the engine and the preset torque lower limit curve of the engine are as shown in FIG. 7.
  • the torque lower limit curve is between, the relationship between the power generation of the motor and the SOC value of the power battery is as shown in Fig. 8.
  • the controller controls the engine to perform torque output with a preset torque upper limit curve, and controls the motor to perform torque compensation; when the hybrid vehicle's overall vehicle torque demand is less than the engine's preset torque lower limit curve, the controller Control the engine to perform torque output with a preset torque lower limit curve and control the motor to generate electricity; when the hybrid vehicle's vehicle torque demand is less than or equal to the engine's preset torque upper limit curve and greater than or equal to the engine
  • the preset torque lower limit curve is used, the controller controls the engine to meet the torque requirement of the vehicle for torque output, and controls the motor to generate electricity.
  • the controller controls the hybrid
  • the working mode of the hybrid vehicle is allowed to switch to the EV-eco mode, otherwise the working mode is not switched; when the button is manually rotated to the sport, the hybrid vehicle The working mode is switched to the HEV-s mode; when the mode button has no manual input, the working mode of the hybrid vehicle keeps the HEV-eco mode unchanged, according to the area of the power battery and the maximum allowable discharge power of the power battery, the engine The motor is dynamically matched according to economic strategy and low power strategy. As shown in Figure 6, the economic strategy requires that the current speed of the hybrid vehicle is less than or equal to 15km/h, pure electric-driven hybrid vehicle.
  • the engine participates in driving until the vehicle speed drops. At 15km/h, it is restored to the pure electric drive. If the motor alarm at this stage causes the drive capacity to be insufficient, the engine is started.
  • the low-power strategy cancels the low-speed pure electric and increases the start-stop function of the P-block engine.
  • the low-power strategy and the economic strategy are consistent in the control method after the engine is started, and the upper limit curve and the lower limit curve of the output torque of the engine are set, as shown in Fig. 7, the principle of the curve design is that the area between the upper and lower limit curves is There may be many economical areas of the engine.
  • the motor is assisted by the engine in this area. Under the condition of small load operation, the engine is pressed to the limit curve output, and the excess torque is used. Power generation, the engine is output according to the upper limit curve during heavy load operation, and the insufficient torque is supplemented by the motor. If the motor is limited by its own or the power battery, the motor will charge and discharge according to its maximum allowable capacity of the power battery, and cancel the engine output.
  • the upper and lower limits the engine is output according to the vehicle demand; between the upper and lower limit curves, the motor mainly participates in power generation, and the power generation has a certain function relationship with the current SOC value, as shown in Figure 8, but the total output torque of the engine does not exceed the upper limit curve.
  • the motor is charged by itself or by battery
  • the motor is charged according to its own and the maximum allowable capacity of the battery; and the HEV-eco mode driving strategy described above is performed when the gradient signal does not exceed the upper gradient threshold, for example, 15%, when the gradient signal exceeds the upper threshold of the slope
  • the engine must be started at this time, and the upper and lower limit curve limits of the engine and the power limit of the motor are canceled until the slope signal is less than the lower threshold of the slope, for example, 5%, and the original execution strategy is restored.
  • the control system of the hybrid vehicle of the embodiment of the present invention adopts one engine and one motor through the dual clutch transmission in parallel, and the hybrid in the related art.
  • the powertrain of the power car uses an engine, an MG1, and an MG2.
  • the control system of the hybrid vehicle according to the embodiment of the present invention does not consider the power demand of the whole vehicle, and only considers the vehicle speed to start and stop the engine within a certain gradient, and the vehicle speed switching point is relatively high, and the slope is relatively high.
  • the large-time engine has been running, and the power system of the hybrid vehicle in the related art considers the vehicle speed, the battery charging power demand, the vehicle driving power demand, and the vehicle speed switching point is low; from the definition of the SOC value of the low-power strategy,
  • the control system of the hybrid vehicle of the embodiment of the invention defines a low power strategy of less than 20%, and the power system of the hybrid vehicle in the related art defines 45% or less; from the perspective of the P-speed idle start and stop strategy, the embodiment of the present invention
  • the control system of the hybrid vehicle is only 0 if the vehicle speed is 0, the gear is P gear, and the SOC value is not less than 20%, then the engine is turned off, and the power system of the hybrid vehicle in the related art should also consider the engine water temperature and the SOC value in one.
  • the control system of the hybrid vehicle of the embodiment of the present invention will be more practical during the whole vehicle operation
  • low-power strategy to switch back and forth instead of maintaining the balance of power
  • the power system of the hybrid vehicle in the related technology runs into a state of equilibrium after a short period of operation; during the engine operation
  • the difference in the structure of the assembly determines the big difference of the control strategy.
  • the MG1 of the power system of the hybrid vehicle is to be speed-adjusted to adjust the engine speed, and the engine idle speed is up to 1200 rpm, and the present invention is implemented.
  • the engine idle speed is about 800 rpm, and only six gears are controlled by the dual clutch, and the shift matching is relatively simple;
  • the power of the engine in the control system of the hybrid vehicle of the embodiment of the present invention is either All of the drive, or part of the drive part of the power generation to the battery, while the hybrid system of the related art power system in the middle and large load operation, the engine always has a part of the energy first through the MG1 power generation and then to the MG2 drive hybrid vehicle.
  • the power system of the hybrid vehicle in the related art has a limited capacity of the battery and the motor, and the vehicle power and the vehicle speed switching point are set to be low, which may cause the engine to start prematurely and over frequency, and the proportion of the engine operation.
  • the increase in fuel consumption is not conducive to urban working conditions, and the control system of the hybrid vehicle of the embodiment of the invention has strong pure electric driving capability, and can satisfy most driving demands, so the engine starting point is relatively high, and The proportion of engine participation in driving in urban working conditions is reduced, and the purpose of reducing fuel consumption in urban working conditions is achieved.
  • the user operates the throttle to make the power demand of the vehicle change more frequently, thus avoiding the judgment of the whole vehicle power, reducing the frequent starting and stopping of the engine, facilitating the extension of the life of the starting motor, reducing the noise, improving the comfort, and reducing the large throttle.
  • the driving force of the engine at the moment of acceleration and climbing increases the driving safety and comfort.
  • the power system of the hybrid vehicle is statically suspended.
  • the P-speed idle start and stop engine needs to consider the SOC value of the power battery and the engine water temperature factor, and is not directly controlled by the person, which is disadvantageous for the customer to grasp the operating law and is limited by the battery capacity.
  • the parking noise is increased, and the comfort is greatly reduced.
  • the engine idle speed is limited to 1200 rpm, and the engine noise is at this time.
  • fuel consumption is higher than ordinary fuel vehicles.
  • the hybrid vehicle of the embodiment of the invention In most cases, the static control P-stop engine will be turned off, which will help the user to master the operating rules, reduce the noise during parking, improve the parking comfort, and the engine idle speed is comparable to that of the conventional fuel vehicle.
  • the battery power in the control system of the hybrid vehicle of the embodiment of the present invention is not made into a balancing strategy, and the vehicle operating state is automatically switched between the economic strategy and the low power strategy according to the actual working condition, and the motor regulating engine can be highlighted.
  • the function of the work area is to further reduce the fuel consumption of the exhaust, and the transmission mechanism of the control system of the hybrid vehicle of the embodiment of the invention adopts a dual-clutch transmission, has a simple structure, and has a short shift matching period, thereby greatly reducing the cost; the engine is driven by the hybrid power.
  • the motor adopts parallel mode, the control strategy is easier to match, and the conversion efficiency between powers is high.
  • the power generation strategy of the control system of the hybrid vehicle according to the embodiment of the present invention adopts a dynamic change associated with the power battery SOC, so that the vehicle can maintain a relatively high power during normal low and medium load driving.
  • the controller determines that the SOC of the power battery is greater than When the second power threshold is equal to, for example, 30%, and the current vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold, for example, 150 km/h, the controller controls the hybrid vehicle to switch to the pure electric motion mode.
  • the controller controls the hybrid vehicle to enter the idle start/stop mode.
  • the hybrid vehicle is in the hybrid motion mode, if the current gear position of the hybrid vehicle is in the non-P gear, wherein when the vehicle torque demand of the hybrid vehicle is greater than the preset peak torque of the engine, the controller controls the engine according to The preset peak torque is used for torque output, and the motor is controlled to perform torque compensation; when the vehicle's total vehicle torque demand is less than or equal to the engine's preset peak torque, the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor. Power generation.
  • the vehicle speed is less than or equal to the first speed threshold, for example, 150km/h, only the working mode of the hybrid vehicle is allowed to switch to the EV-s mode, otherwise the working mode switching is not performed; when the button is manually rotated to the eco, the hybrid vehicle is The working mode is switched to the HEV-eco mode; when the mode button has no manual input, the working mode of the hybrid vehicle keeps the HEV-s mode unchanged, and the HEV-s mode strategy is similar to the low-power strategy of HEV-eco, canceling the low-speed pure Electric, and increase the P-block engine start and stop function, cancel the motor's power limit, cancel the upper and lower limits of the engine torque, the engine and motor can peak output, this working mode can get the best dynamic performance.
  • the first speed threshold for example, 150km/h
  • the dual clutch transmission is used to transfer engine power and perform shifting when the engine is started.
  • HEV-eco mode focuses on fuel consumption.
  • the matching principle of the shift strategy is to make the engine work in the high efficiency area as much as possible.
  • the gear shift points of each gear will be slightly advanced.
  • the engine is mostly operated in the 1500-2000 rpm speed range when driving.
  • the HEV-s mode focuses on the power.
  • the matching principle of the shift strategy is to make the torque transmitted to the wheel end as large as possible.
  • the shift points of each gear will be slightly delayed.
  • the shift point is set at the maximum torque point of the engine's inherent characteristics calibrated under each gear position, and the acceleration performance can be maximized.
  • an upper limit of a current output power of the power battery is less than a first preset power
  • the current output power upper limit of the power battery is less than the second preset power, wherein the second preset power is greater than the first preset power
  • the current output power upper limit of the power battery and the current output power upper limit of the engine are both less than the first preset power, and the current output torque upper limit of the engine is less than the first torque threshold
  • the current output power upper limit of the power battery is less than the second preset power, and the engine allows the current output torque upper limit and the current output power upper limit to be output.
  • the first preset power may be 70 KW
  • the second preset power may be 110 KW
  • the first torque threshold may be 185 N ⁇ M.
  • the pure electric economy mode is that the hybrid vehicle is in the pure electric energy consumption mode, the current output power upper limit of the power battery is less than the economic mode power upper limit, for example, 70 KW, and the power battery is operated in the most economical area;
  • the pure electric motion mode is that the hybrid vehicle is in the pure electric energy consumption mode, the current output power upper limit of the power battery is less than the sports mode power upper limit, for example, 110 KW;
  • the hybrid economic mode is that the hybrid vehicle is in the hybrid energy consumption mode.
  • the current output power upper limit of the power battery is less than the economic mode power upper limit, for example, 70 KW, and the current output power upper limit of the engine is also less than the economic mode power upper limit, for example, 70 KW, and the current output torque upper limit of the engine is less than the economic mode torque upper limit, for example, 185 N ⁇ M.
  • the engine and the power battery are operated in the most economical area; the hybrid motion mode is that the hybrid vehicle is in the hybrid energy consumption mode, and the current output power upper limit of the power battery is less than the sports mode power upper limit, for example, 110 KW, Motivation allowable torque upper limit and the current engine power output.
  • the most economical area in the pure electric mode means that as the power output of the power battery increases, the working efficiency of the power battery decreases correspondingly, so that the vehicle power is satisfied (operational performance and Under the premise of acceleration performance, the power battery is preferably operated with a lower discharge power.
  • the hybrid battery mode means that as the power output of the power battery increases, the working efficiency of the power battery decreases accordingly. Therefore, under the premise of satisfying the vehicle power (operating performance and acceleration performance), the power battery is preferred. Low discharge power is used for operation.
  • the most economical area of the engine is determined by the torque and speed of the engine. As shown in Fig.
  • the abscissa indicates the engine speed
  • the ordinate indicates the engine torque.
  • the engine torque is reduced, and the torque is supplied by the motor; if the engine torque is too low, the engine is increased accordingly. Torque, at this time the vehicle does not need to increase the engine torque for driving, so the energy generated by the increased engine torque is recovered for motor power generation.
  • the economic mode power upper limit can be understood as the upper limit of the output power in the most economical area where the power battery or the engine remains in operation.
  • the sport mode power upper limit is its own characteristic.
  • the power battery or engine output is output according to the current maximum engine torque or power or the current maximum power of the power battery. At this time, the power system provides power or torque output for the vehicle with maximum energy.
  • the working mode when the hybrid vehicle is started is still the working mode when the hybrid vehicle was last turned off.
  • the hybrid vehicle also has a pure fuel mode, and the pure fuel mode is a failure mode.
  • the engine power subsystem and the motor power subsystem are connected in parallel, and the power system of the existing hybrid vehicle is connected in series, which can effectively improve the energy utilization rate.
  • the parallel structure is relatively simple, avoiding the complicated ECVT matching of the hybrid mode, and reducing the risk of unevenness caused by poor matching, so the economic performance is greatly improved under the premise of ensuring the dynamic performance of the whole vehicle.
  • the power and driving range of the pure electric operation of the whole vehicle are ensured, and the long-term high-power electricity is avoided to improve the power consumption efficiency under the premise of satisfying the power demand of the whole vehicle.
  • the engine is prevented from starting and stopping frequently, thereby improving the life of the starter, reducing driving noise and improving driving comfort.
  • the proportion of the engine participating in the driving in the urban working conditions can be reduced, the fuel consumption is reduced, and the energy saving and environmental protection are further improved.
  • the hybrid vehicle comprises a transmission device, an engine power subsystem and a motor power subsystem, and the transmission device is respectively connected to the engine power subsystem and the motor power subsystem.
  • control method of the hybrid vehicle includes the following steps:
  • the hybrid power vehicle When the hybrid vehicle is running, the hybrid power vehicle is controlled to enter a corresponding working mode by controlling the engine power subsystem and the motor power subsystem, wherein the working modes include a pure electric economy mode and a hybrid economic mode.
  • the working mode of the hybrid vehicle includes a pure electric mode and a hybrid mode, wherein the pure electric mode includes a pure electric economy mode and a pure electric motion mode, and the hybrid mode includes a hybrid economic mode and a hybrid power Sports mode.
  • control method of the hybrid vehicle when the hybrid vehicle is in the pure electric economy mode includes the following steps:
  • manual mode button switching information which may be an HEV mode button switching operation, or a Sport mode button switching operation, or a modeless button switching operation, that is, determining whether to perform manual switching, and if yes, proceeding to step S102; if not, then Go to step S103.
  • S102 Receive a mode button switching operation, switch the working mode, switch to another working mode, and execute a corresponding power system control strategy. That is, when the hybrid vehicle is in the pure electric economy mode, if the mode switching instruction of the user is received, the controller controls the hybrid vehicle to switch to the target mode corresponding to the mode switching instruction of the user.
  • S103 receiving the modeless button switching operation, and the working mode is not switched.
  • the current SOC value of the power battery, the maximum allowable discharge power Pb of the power battery, the detected gradient signal i of the hybrid vehicle, and the setting of the three are set.
  • thresholds were compared, i.e., SOC lower limit threshold SOC Down e.g. 20%, the maximum allowed discharge power lower limit threshold battery power Pb down e.g. 12KW, the gradient upper threshold value i up for example 15%, and judges whether SOC ⁇ SOC down, Pb ⁇ Pb down , i up ⁇ i.
  • step S104 if at least one of the three conditions of step S103 is satisfied, the working mode of the hybrid vehicle is automatically switched to the HEV-eco mode, that is, if the SOC of the power battery is less than or equal to the first power threshold, for example, 20%, or the power battery The maximum allowable discharge power is less than or equal to the first power threshold, for example, 12 KW, or the hybrid vehicle is automatically switched to the hybrid economy mode when the current gradient signal detected by the hybrid vehicle is greater than or equal to the upper gradient threshold, for example, 15%.
  • step S105 If the three conditions are not satisfied in step S103, the automatic switching of the HEV-eco mode is not performed, and the hybrid vehicle maintains the EV-eco mode operation.
  • the motor When the hybrid vehicle is driven in the EV-eco mode, the motor is always driven as a single power source without manual or automatic mode switching.
  • the main purpose of this working mode is to save power while meeting the power demand of the whole vehicle.
  • the maximum output power of the motor is limited to Pm max, for example 70KW, and at the same time
  • the climbing performance of the whole vehicle does not limit the maximum output torque of the motor. That is to say, when the hybrid vehicle is in the pure electric economy mode, the hybrid vehicle is controlled to operate at a limited power.
  • the hybrid vehicle is automatically switched to by determining the SOC value of the power battery, the maximum allowable discharge power of the power battery, and the gradient value.
  • the HEV-eco mode strategy ensures the ability of the vehicle to continue to operate normally and avoids the possibility of degrading power performance due to certain factors.
  • the control method of the hybrid vehicle in the EV-eco mode ensures that the motor battery always operates in the high-efficiency zone under the premise of satisfying the vehicle power, thereby realizing the long-lasting pure electric vehicle mileage, low operating cost, and emission of the hybrid vehicle. dramatically drop.
  • control method of the hybrid vehicle when the hybrid vehicle is in the pure electric motion mode includes the following steps:
  • manual mode button switching information which may be an HEV mode button switching operation, or an eco mode button switching operation, or a modeless button switching operation, that is, determining whether to perform manual switching, and if yes, proceeding to step S202; if not, then Go to step S203.
  • S203 receiving the modeless button switching operation, and the working mode is not switched.
  • the current SOC value of the power battery, the maximum allowable discharge power Pb of the power battery, the detected gradient signal i of the hybrid vehicle, and the setting of the three are set.
  • thresholds were compared, i.e., SOC lower limit threshold SOC Down e.g. 20%, the maximum allowed discharge power lower limit threshold battery power Pb down e.g. 12KW, the gradient upper threshold value i up for example 15%, and judges whether SOC ⁇ SOC down, Pb ⁇ Pb down , i up ⁇ i.
  • step S204 if at least one of the three conditions of step S203 is satisfied, the working mode of the hybrid vehicle is automatically switched to the HEV-s mode, that is, if the SOC of the power battery is less than or equal to the first power threshold, for example, 20%, or the power battery The maximum allowable discharge power is less than or equal to the first power threshold, for example, 12 KW, or the hybrid vehicle is automatically switched to the hybrid motion mode when the current gradient signal detected by the hybrid vehicle is greater than or equal to the upper gradient threshold, for example, 15%.
  • step S205 If the three conditions are not satisfied in step S203, the automatic switching of the HEV-s mode is not performed, and the hybrid vehicle maintains the EV-s mode operation.
  • the motor When the hybrid vehicle is driven in the EV-s mode, the motor is always driven as a single power source without manual or automatic mode switching.
  • This working mode does not limit the maximum output torque and power of the motor, and can obtain the maximum capacity of the motor to drive, and meet the higher power requirements of the user in the EV mode (such as overtaking acceleration, rapid climbing, etc.).
  • the hybrid vehicle is automatically switched to by determining the SOC value of the power battery, the maximum allowable discharge power of the power battery, and the gradient value.
  • the HEV-s mode strategy ensures the ability of the vehicle to continue to operate normally and avoids the possibility of degrading power performance due to certain factors.
  • the control method of the above hybrid vehicle in the EV-s mode is suitable for users who want pure electric operation and want better power feeling, and the working mode is more flexible and changeable, so that the user can get more driving pleasure. .
  • control method of the hybrid vehicle when the hybrid vehicle is in the hybrid economy mode operation includes the following steps:
  • step S301 Acquire EV mode button switching information, determine whether to manually switch the EV mode, and if yes, proceed to step S302 or step S303; if no, proceed to step S306.
  • step S302 when receiving the EV mode button switching operation, comparing the current SOC value of the power battery with the set SOC upper limit threshold SOC up, for example, 30%, to determine whether SOC up ⁇ SOC is satisfied, and if so, proceeds to step S303; If no, the process proceeds to step S305.
  • step S303 comparing the current vehicle speed with the set vehicle speed threshold V max, for example, 150 km / h, that is, the maximum vehicle speed that allows the HEV mode to switch to the EV mode, and determining whether v ⁇ V max is satisfied, and if yes, proceeding to step S304; if not, proceeding to step S304; Then, the process proceeds to step S305.
  • V max for example, 150 km / h
  • the controller determines that the SOC of the power battery is greater than or equal to the second power threshold, for example, 30%, and the hybrid
  • the controller controls the hybrid vehicle to switch to the pure electric economy mode.
  • the hybrid car maintains HEV-eco mode operation.
  • step S306 if the EV mode key switching operation is received, the Sport mode key switching information is acquired, and it is determined whether the manual switching of the Sport mode is performed. If yes, the process goes to step S307; if not, the process goes to step S308.
  • the working mode of the hybrid vehicle is not switched, and the gradient information is acquired, and the current slope value i and the set gradient upper and lower threshold i up are, for example, 15%, i down, for example, 5%. Compare and judge the interval where the value of i is.
  • S310 comparing the current SOC value of the power battery, the maximum allowable discharge power Pb of the power battery, and the set thresholds of the two, that is, the SOC upper and lower limit threshold SOC up, for example, 30%, SOC down, for example, 20%, maximum allowable power battery the lower limit threshold discharge power Pb up e.g. 30KW, Pb down e.g. 12KW, determining SOC, Pb where the interval.
  • the hybrid vehicle is controlled according to the economic strategy workflow.
  • the hybrid vehicle when the hybrid vehicle is in the hybrid economy mode, if the current gradient signal detected by the hybrid vehicle is less than or equal to the lower gradient threshold, for example, 5%, and the SOC of the power battery is greater than or equal to the second power threshold, for example, 30%, the power battery The maximum allowable discharge power is greater than or equal to a second power threshold, such as 30 KW, and the controller controls the hybrid vehicle to operate in an economical manner.
  • the lower gradient threshold for example, 5%
  • the SOC of the power battery is greater than or equal to the second power threshold, for example, 30%
  • the maximum allowable discharge power is greater than or equal to a second power threshold, such as 30 KW, and the controller controls the hybrid vehicle to operate in an economical manner.
  • the hybrid vehicle is controlled according to the original strategy workflow, that is, it is still executed according to the economic policy process when it is originally operated in an economical manner, and is still executed according to the low-power policy process when it is operated in a low-power mode.
  • the hybrid vehicle is controlled according to the low power strategy workflow.
  • the hybrid vehicle when the hybrid vehicle is in the hybrid economy mode, if the current gradient signal detected by the hybrid vehicle is less than or equal to the lower gradient threshold, for example, 5% and the SOC of the power battery is less than or equal to the first power threshold, for example, 20%, or hybrid
  • the current slope signal detected by the automobile is less than or equal to the lower threshold of the slope, for example, 5%
  • the maximum allowable discharge power of the power battery is less than or equal to the first power threshold, for example, 12 KW
  • the controller controls the hybrid vehicle to operate in a low power mode, wherein the second power threshold is greater than The first power threshold, the second power threshold being greater than the first power threshold.
  • the hybrid vehicle is controlled according to the original strategy workflow, that is, the control strategy when i ⁇ i down or i up ⁇ i, respectively.
  • S320 controlling the hybrid vehicle to perform the workflow of canceling the low-speed pure electric power, canceling the upper limit of the engine, and canceling the upper limit of the motor on the basis of economic operation.
  • the low-power mode means that the engine drives the motor to generate electricity quickly, thereby getting rid of the low-electric state, and the motor has the ability to adjust the working range of the engine, thereby ensuring the economy of the whole vehicle.
  • control method of the hybrid vehicle when the hybrid vehicle is operated in an economical manner includes the following steps:
  • step S403. When it is determined that the torque demand of the entire vehicle is greater than the torque upper limit curve as shown in FIG. 7, the process proceeds to step S404.
  • step S407 if it is determined that the vehicle torque demand is smaller than the torque lower limit curve as shown in FIG. 7, the process proceeds to step S408.
  • step S411 it is determined that the vehicle torque demand is between the torque upper and lower limit curves as shown in FIG. 7, and the process proceeds to step S412.
  • step S412 determining whether the power system of the hybrid vehicle is faulty, if yes, executing step S414; if not, executing step S413.
  • the engine preferentially meets the vehicle torque demand, and outputs a part of the torque for power generation, that is, when the hybrid vehicle is operated in an economical manner, if the vehicle speed of the hybrid vehicle is greater than or equal to a third speed threshold, for example, 30 km/h.
  • a third speed threshold for example, 30 km/h.
  • the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor to generate power.
  • the power generation principle follows the curve relationship between the power generation power and the SOC value as shown in Figure 8.
  • step S415 it is determined that v up >v>v down , and the process proceeds to step S416.
  • step S416 determining whether the power system of the hybrid vehicle is faulty, if yes, executing step S418; if not, executing step S417.
  • the power system is controlled according to the original strategy workflow, that is, the original motor is still driven according to the original mode, and if the original motor assists the engine to drive or generate electricity, it still operates in this manner.
  • step S419 it is determined that v ⁇ v down , and the process proceeds to step S420.
  • control method of the hybrid vehicle when the hybrid vehicle is operated in a low-power mode includes the following steps:
  • S501 Acquire a shift mode information, and determine a current execution position of the hybrid vehicle.
  • step S503 it is determined that the vehicle torque demand is greater than the torque upper limit curve as shown in FIG. 7, and the process proceeds to step S504.
  • step S504. Determine whether the power system of the hybrid vehicle has a fault. If yes, execute step S506; if no, execute step S505.
  • step S507 if it is determined that the vehicle torque demand is smaller than the torque lower limit curve as shown in FIG. 7, the process proceeds to step S508.
  • the controller controls the engine to perform torque output with a preset torque lower limit curve and controls the motor to generate electricity.
  • step S511 it is determined that the vehicle torque demand is between the torque upper and lower limit curves as shown in FIG. 7, and the process proceeds to step S512.
  • the engine preferentially meets the vehicle torque demand, and outputs a part of the torque for power generation. That is, when the hybrid vehicle is running in a low-power mode, if the current gear of the hybrid vehicle is in a non-P gear, when the hybrid power
  • the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor to generate electricity.
  • the power generation principle follows the curve relationship between the power generation power and the SOC value as shown in Figure 8.
  • step S516 when it is determined that the hybrid vehicle executes the P range, the process proceeds to step S516.
  • the motor and the engine cooperate to improve the energy utilization.
  • the general direction is that when the whole vehicle works in the non-economic area of the engine, the proportion of the motor is greatly increased, and when the whole vehicle works.
  • the engine will send a part of the electricity to charge the battery, and the lower the power, the higher the power will be generated, and the overall strategy of this mode limits the output power of the motor to Pm max to avoid long-term high power. Electricity, thus ensuring that the battery power is always maintained at a high level, prompting the motor to have electric energy at all times to adjust the engine to work in the high efficiency zone, so that the final effect is that the oil consumption during hybrid driving may be reduced, ensuring economy. Performance and emissions performance.
  • the motor can assist the engine to drive together, and the power performance is greatly improved compared with the EV mode. This mode is available when the user needs to travel long distances and wants to minimize fuel consumption.
  • control method of the hybrid vehicle when the hybrid vehicle is in the hybrid motion mode operation includes the following steps:
  • step S601 Acquire EV mode button switching information, determine whether to manually switch the EV mode, if yes, go to step S602 or step S603; if no, go to step S606.
  • step S602 when receiving the EV mode button switching operation, comparing the current SOC value of the power battery with the set SOC upper limit threshold SOC up, for example, 30%, to determine whether SOC up ⁇ SOC is satisfied, and if so, proceeds to step S603; If no, the process proceeds to step S605.
  • step S603 comparing the current vehicle speed with the set vehicle speed threshold V max, for example, 150 km / h, that is, the maximum vehicle speed that allows the HEV mode to switch to the EV mode, and determining whether v ⁇ V max is satisfied, and if yes, proceeding to step S604; if not, proceeding to step S604; Then, the process proceeds to step S605.
  • V max for example, 150 km / h
  • the controller determines that the SOC of the power battery is greater than or equal to the second power threshold, for example, 30%, and the hybrid
  • the controller controls the hybrid vehicle to switch to the pure electric motion mode.
  • the hybrid car maintains the HEV-s mode operation.
  • step S606 when receiving the EV mode-free key switching operation, acquiring the eco mode key switching information, determining whether to manually switch the eco mode, if yes, proceeding to step S607; if not, proceeding to step S608.
  • step S609 when it is determined that the hybrid vehicle executes the P range, the process proceeds to step S610.
  • step S611 when it is determined that the hybrid vehicle performs the non-P range, the process proceeds to step S612.
  • step S612 comparing the vehicle demand torque with the engine peak torque, determining whether the vehicle demand torque>the engine peak torque is satisfied, and if yes, executing step S613; if not, executing step S614.
  • the engine is output according to the peak torque, and the residual torque demand is supplemented by the motor when the motor is subjected to its own or power.
  • the current capacity of the battery is limited, it is driven by the current maximum capacity of the motor and power battery. That is, when the hybrid vehicle is in the hybrid motion mode, if the current gear position of the hybrid vehicle is in the non-P gear, wherein when the vehicle torque demand of the hybrid vehicle is greater than the preset peak torque of the engine, the control The controller controls the engine to perform torque output according to the preset peak torque and controls the motor to perform torque compensation.
  • the engine preferentially meets the vehicle torque demand, and outputs a part of the torque for power generation, that is, when the hybrid vehicle is in the hybrid motion mode, if the current gear of the hybrid vehicle is in the non-P gear, when the hybrid
  • the controller controls the engine to meet the vehicle torque demand for torque output and controls the motor to generate electricity.
  • the power generation principle follows the curve relationship between the power generation power and the SOC value as shown in Figure 8. At the same time, the following two preconditions must be met: 1 The power generation torque to the motor end does not exceed Tm max ; 2 The total output torque of the engine does not exceed the figure.
  • the engine torque peak shown in Fig. 7 is that if the engine torque calculated from the power generation power curve exceeds any of the above two conditions, the above two conditions are used as the upper limit to jointly control the portion of the engine torque for power generation.
  • the hybrid vehicle When the hybrid vehicle is running in HEV-s mode, when the shift mode is non-P gear, the engine is always in the starting state. Only when the shift mode is P gear and the P gear idle speed start and stop condition is met, the engine will only be in the engine. Turn off the fire.
  • the entire strategy of the HEV-s mode no longer limits the maximum output torque and power of the engine and the motor, and can exert the maximum driving capacity of the power system. It is the best in the four driving modes, but the engine is in the process of driving. It is always running, either with the motor or with the side drive motor (the power battery is lower than a certain value), so the fuel consumption is relatively high, and the economic performance cannot be guaranteed.
  • the HEV-s mode is suitable for users who have high requirements on driving dynamics, and can have sufficient power equivalent to large-displacement luxury fuel vehicles to maximize the user's acceleration pleasure.
  • EV-eco four different working modes of EV-eco, EV-s, HEV-eco, and HEV-s can be obtained through switching of four buttons of EV, HEV, eco, and Sport, according to vehicle power.
  • sexuality and economy The different definitions of the four working modes, the focus of the power system driving strategy are different.
  • the hybrid vehicle's powertrain is connected in parallel rather than in series or hybrid.
  • the engine starting point is optimized in the driving strategy, the vehicle speed judgment point is increased, the slope judgment is increased, and the demand power is judged.
  • the engine working area is limited between the upper and lower limit torque curves, and the power generation power adopts a dynamic curve with the SOC value as an independent variable.
  • a plurality of selectable working modes can satisfy the driving demand of the user under different working conditions, and can meet the electricity demand of the urban working condition and meet the suburban working condition.
  • the dynamic demand, the real vehicle drive is guided by the user's subjective operation intention, to improve driving pleasure.
  • the control system of the hybrid vehicle adopts the parallel mode, which can effectively improve the energy multi-step conversion compared with the series mode.
  • High energy utilization, and the parallel structure is relatively simple, avoiding the complicated ECVT matching of the hybrid mode, and reducing the risk of unevenness caused by poor matching.
  • the optimization of the engine starting point in the driving strategy avoids the engine's premature over-frequency starting, which can effectively reduce the starting noise, improve the life of the starting system, and the risk of frequent low-voltage power generation due to frequent starting, and ensure the normality of other low-voltage electrical equipment.
  • the control method can ensure the power and driving range of the pure electric operation of the whole vehicle, avoid the long-term high-power electricity to improve the power efficiency while meeting the power demand of the whole vehicle, and avoid the frequent starting of the engine.
  • the stop phenomenon increases the life of the starter, reduces driving noise and improves driving comfort.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one of the following techniques known in the art or a combination thereof: having logic for implementing data signals A discrete logic circuit of a functional logic gate circuit, an application specific integrated circuit with a suitable combination of logic gate circuits, a programmable gate array (PGA), a field programmable gate array (FPGA), and the like.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力汽车的控制***和控制方法,其中控制***包括:传动装置(10);发动机动力子***(20);电机动力子***(30);控制器(40),控制器(40)通过控制发动机动力子***(20)和电机动力子***(30)以控制混合动力汽车进入相应的工作模式,并且控制器(40)在接收到切换至纯电动经济模式的切换指令之后,如果判断动力电池的SOC大于等于第二电量阈值且混合动力汽车的车速小于等于第一速度阈值时,控制混合动力汽车从混合动力经济模式切换至纯电动经济模式。该混合动力汽车的控制***中的发动机动力子***(20)和电机动力子***(30)采用并联方式,动力容易匹配,转化效率高,降低油耗排放,并且减少发动机频繁启停程度,从而提高了起动机的寿命,降低行车噪声,增加驾驶舒适性。

Description

混合动力汽车的控制***和控制方法 技术领域
本发明涉及汽车技术领域,特别涉及一种混合动力汽车的控制***以及一种混合动力汽车的控制方法。
背景技术
混合动力汽车(Hybrid Electrical Vehicle,简称HEV)是指同时装备两种动力来源即热动力源(由传统的汽油机或者柴油机产生)与电动力源(由电池与电机产生)的汽车。通过在混合动力汽车上使用电机,使得动力***可以按照整车的实际运行工况要求灵活调控,而发动机保持在综合性能最佳的区域内工作,从而降低油耗与排放。
现有的混合动力汽车有些是采用混联式混合动力***,其特点在于内燃机***和电机驱动***各有一套机械变速机构,两套机构采用行星轮式结构结合在一起,从而综合调节内燃机和电动机直接的转速关系。
但是,传统的混合动力汽车的驱动模式单一,驾驶员无法通过个人驾驶习惯以及长期固定的行车工况来进行驱动模式选择。例如,以亚洲人的习惯,居住较集中,每天上下班的行车路线较固定,路程大多在50km以内,这种特殊的工况很适合中短距离纯电动行驶。而传统的混合动力汽车的设计理念是通过电机辅助调节发动机降低油耗而不是彻底消除油耗,因此往往不具备手动EV(Electrical Vehicle,纯电动)模式切换功能,即使有也因为电池容量限制而导致纯电动续驶里程偏短。
同时,传统的混合动力汽车由于以降油耗为目的,不会选用大功率、大扭矩的电机和发动机,因此会导致整车动力性不强,驾驶乐趣大大降低。例如有些混合动力汽车的百公里加速时间超过10s,而且高速性能也较差。
再者,有些混合动力汽车采用的是混联式结构及其的控制方法,不存在发动机单独驱动的策略,即使在发动机处于相当经济的工作区域也会通过第一电机MG1给电池充电,同时要通过MG1调节发动机转速来实现换挡;而且在大负荷加速工况时,受电池容量限制,发动机有一部分功率要带动MG1发电后才能和蓄电池共同给第二电机MG2提供电能驱动,以上两点均降低了发动机的驱动效率。并且,在发动机启动关闭策略上,设定的需求功率和车速限值偏小,且车速切换条件设置为点而非区间,会造成发动机过早过频起动。
此外,现有的有些混合动力汽车由于电池容量小未采用可插电式结构,电池电量均由汽油转化而来,提高了使用成本,同时混联结构比较复杂,采用ECVT(Electronic Continuously Variable Transmission,电控无级式自动变速器)匹配难度大,成本较高。
发明内容
本发明是发明人基于以下认识和发现的:
相关技术中,典型的混合动力汽车在HEV模式下的动力总成控制策略大体为:当动力电池的SOC(State Of Charge,荷电状态)较高时,启动工况、起步工况以及低速工况下整车以纯电动运行,ECU(电子控制单元)实时监测动力电池的SOC值、整车实际需求功率等信息,灵活地调整发动机的启动和停止;当动力电池的SOC较低时,一般为45%以下,不允许纯电动行驶;混合动力汽车静止起动时,发动机起动怠速暖机一段时间才自行停机,怠速转速1200rpm;混合动力汽车静止挂P挡时,发动机会根据动力电池的SOC值及发动机水温决定是否熄火,SOC值低或发动机水温低时发动机会怠速发电直至SOC值处于某一较高水平或发动机水温处于某一较高水平;无论起始SOC如何,发动机工作一段时间(大概15min)后,动力电池的SOC会回到平衡位置(56%)附近,并始终保持这一位置不变;发动机起动过程中,采用行星齿轮实现无级变速,综合调节发动机和电动机之间的转速关系,该混合动力汽车具备两个电机,MG1进行转速控制,调节发动机到车轮端速比,MG2进行扭矩控制,提供扭矩并响应驾驶员和蓄电池充电需求。
然而,当动力电池的SOC较高时,需要考虑整车需求功率来进行纯电动和混合动力间的切换,容易造成发动机的频繁起停,减少起动机的寿命,增加行车噪声,降低驾驶舒适性;当动力电池的SOC较低时,受电池容量限制,此时定义的低电状态的SOC值较高,整车很容易进入快速补电的策略,而此工况会增加油耗及排放;混合动力汽车静止上电起动时,发动机先起动怠速一段时间并判断动力电池的SOC值及发动机水温控制发动机起停,导致若长时间P挡停车发动机会多次起停;动力电池的SOC最终平衡在较高水平,电机调节发动机的能力有限,发动机参与驱动的比重很大,不利于进一步降油耗排放;变速机构采用ECVT,其发动机怠速转速偏高,怠速噪声、油耗及排放均偏高,增加MG1用于调节发动机转速,增加电机成本,且ECVT结构复杂,工艺要求高,匹配难度大,也大大增加了变速机构软硬件成本;在大负荷加速工况时,受电池容量限制,发动机有一部分功率要带动MG1发电后才能和蓄电池共同给MG2 提供电能驱动,能量转化次数增加,降低了效率。
本发明的目的旨在至少解决上述的技术缺陷之一。
为此,本发明的一个目的在于提出一种混合动力汽车的控制***,该混合动力汽车的控制***中的发动机动力子***和电机动力子***采用并联方式,动力容易匹配,转化效率高,降低油耗排放,并且减少发动机频繁启停程度,从而提高了起动机的寿命,减少了行车噪声,提高了驾驶舒适性。
本发明的另一个目的在于提出一种混合动力汽车的控制方法。
为达到上述目的,本发明一方面的实施例提出的一种混合动力汽车的控制***,包括:传动装置,所述传动装置用于驱动混合动力汽车的车轮;发动机动力子***,所述发动机动力子***与所述传动装置相连;电机动力子***,所述电机动力子***与所述传动装置相连;以及控制器,所述控制器通过控制所述发动机动力子***和电机动力子***以控制所述混合动力汽车进入相应的工作模式,其中,所述工作模式包括纯电动经济模式和混合动力经济模式,并且所述控制器在接收到切换至所述纯电动经济模式的切换指令之后,如果判断所述电机动力子***中的动力电池的SOC大于等于第二电量阈值且所述混合动力汽车的车速小于等于第一速度阈值时,控制所述混合动力汽车从所述混合动力经济模式切换至所述纯电动经济模式。
根据本发明实施例的混合动力汽车的控制***,发动机动力子***和电机动力子***采用并联方式,相比于现有的混合动力汽车的动力***采用串联方式,能有效提高能量利用率,同时并联结构相对简单,避免混联方式繁琐的ECVT匹配,降低因匹配不良造成的不平顺性风险,因此在保证整车动力性的前提下经济性能得到大幅提高。并且,发动机起动点设置较高,能使城市工况中发动机参与驱动的比重下降,降低油耗排放。此外还避免发动机频繁启停现象,从而提高了起动机的寿命,减少了行车噪声,提高了驾驶舒适性。
为达到上述目的,本发明另一方面实施例提出了一种混合动力汽车的控制方法,其中,所述混合动力汽车包括传动装置、发动机动力子***和电机动力子***,所述传动装置与所述发动机动力子***和所述电机动力子***分别相连,所述控制方法包括以下步骤:所述混合动力汽车运行时,通过控制所述发动机动力子***和电机动力子***以控制所述混合动力汽车进入相应的工作模式,其中,所述工作模式包括纯电动经济模式和混合动力经济模式;检测所述电机动力子***中的动力电池的工作状态,并检测所述混合动力汽车的车速;在接收到切换至所述纯电动经济模式的切换指令之后,如果判断所述动力电池的SOC大于等于第二电量阈值且所述混合动力汽车的车速 小于等于第一速度阈值时,控制所述混合动力汽车从所述混合动力经济模式切换至所述纯电动经济模式。
根据本发明实施例的混合动力汽车的控制方法,可选择的工作模式能满足用户在不同工况下的驾驶需求,即可满足城市工况的只用电需求,又可满足郊区工况的动力性需求,真正做到整车驱动以用户的主观操作意图为导向,提高驾驶乐趣。并且,发动机启动点设置较高,能使城市工况中发动机参与驱动的比重下降,降低油耗排放。此外还避免发动机频繁启停现象,从而提高了起动机的寿命,减少了行车噪声,提高了驾驶舒适性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1A为根据本发明实施例的混合动力汽车的控制***的方框示意图;
图1B为根据本发明一个实施例的混合动力汽车的控制***的方框示意图;
图2为根据本发明一个实施例的混合动力汽车的信号流示意图;
图3为根据本发明一个实施例的当混合动力汽车处于纯电动经济模式运行时的混合动力汽车的控制方法的流程图;
图4为根据本发明另一个实施例的当混合动力汽车处于纯电动运动模式运行时的混合动力汽车的控制方法的流程图;
图5为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式运行时的混合动力汽车的控制方法的流程图;
图6为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式时的混合动力汽车以经济方式运行时的控制方法的流程图;
图7为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式时发动机的工作区域示意图;
图8为根据本发明一个实施例的电机的发电功率与动力电池的SOC值对应曲线关系示意图;
图9为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式时的混 合动力汽车以低电方式运行时的控制方法的流程图;
图10为根据本发明再一个实施例的当混合动力汽车处于混合动力运动模式运行时的混合动力汽车的控制方法的流程图;以及
图11为根据本发明实施例的混合动力汽车的控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
下面参照附图来描述根据本发明实施例提出的混合动力汽车的控制***和控制方法。
图1A为根据发明实施例的混合动力汽车的控制***的方框示意图。如图1A所示, 该混合动力汽车的控制***包括传动装置10、发动机动力子***20、电机动力子***30和控制器40。
其中,传动装置10用于驱动混合动力汽车的车轮2a和2b,发动机动力子***20与传动装置10相连,电机动力子***30与传动装置10相连。控制器40通过控制发动机动力子***20和电机动力子***30以控制所述混合动力汽车进入相应的工作模式,其中,所述工作模式包括纯电动经济模式和混合动力经济模式,并且控制器40在接收到切换至所述纯电动经济模式的切换指令之后,如果判断电机动力子***30中的动力电池的SOC大于等于第二电量阈值且所述混合动力汽车的车速小于等于第一速度阈值时,控制所述混合动力汽车从所述混合动力经济模式切换至所述纯电动经济模式。
根据本发明的一个实施例,如图1B所示,发动机动力子***20包括发动机3、变速器4,电机动力子***30包括电机5、减速器6、动力电池7和逆变器8。其中,发动机3通过变速器4与传动装置10相连,电机5通过减速器6与传动装置10相连,为电机5供电的动力电池7。
在本发明的一个实施例中,上述的混合动力汽车为可插电式双模混合动力汽车,其中,发动机3为能够输出行驶用的动力的高效涡轮增压直喷发动机,变速器4为能够传递发动机3输出动力的双离合变速器,动力电池7通过直流母线连接电力电子单元逆变器8,逆变器8通过交流三相线连接电机5,电动力与燃油动力在传动装置10处进行耦合并传递到车轮2a和2b。并且用户可以通过EV模式选择按键、HEV模式选择按键和运行模式选择旋钮按键选择混合动力汽车的工作模式。
根据本发明的一个实施例,工作模式包括纯电动模式和混合动力经济模式,其中,纯电动模式包括纯电动经济模式(EV-eco模式)和纯电动运动模式(EV-s模式),混合动力模式包括混合动力经济模式(HEV-eco模式)和混合动力运动模式(HEV-s模式)。其中,EV模式选择按键用于手动选择EV模式,HEV模式选择按键用于手动选择HEV模式,运行模式选择旋钮按键用于手动旋转切换eco模式或Sport模式。
在本发明的实施例中,可手动切换的EV、HEV工作模式,可手动切换的eco、Sport运动模式,工作模式状态EV、HEV两者取其一,运动模式状态eco、Sport两者取其一,利用模式间的相互切换可获得四种驱动模式即EV-eco、EV-s、HEV-eco、HEV-s。其中,EV模式使整车处于纯电动能量消耗模式下,保持发动机不工作;HEV模式使整车处于混合动力的能量消耗模式下,电机配合发动机或辅助驱动或调节发动机使其保持在综合性能最佳的区域内工作;eco模式限制电机、发动机、动力电池最大输出,保证电机、发动机、动力电池工作于最经济区域;Sport模式优先满足整车动力性需求, 不限制电机、发动机、动力电池最大输出,能获得动力***的全部能量。
图2为根据本发明一个实施例的混合动力汽车的信号流示意图。参照图2,档位控制器SCU(Shift Control Unit)负责采集档位信号和EV/HEV/eco/Sport模式信号,并将这两种信号发送给电机控制器ECN(Electromotor-Controller),电机控制器ECN对接收到的EV/HEV/eco/Sport模式信号进行核实并转发给电池管理器BMS、发动机控制器ECM(Engine Control Module)、传动控制器TCU(Transmission Control Unit)、组合仪表,同时其自身按不同的模式策略执行相应的动力***控制方案,给发动机控制器ECM发送发动机起停命令和发动机目标扭矩信号;电池管理器BMS(Battery Management System)对接收到的EV/HEV/eco/Sport模式信号进行核实并执行能量管理策略;发动机控制器ECM执行发动机***控制方案并将发动机当前指示扭矩发送给传动控制器TCU;传动控制器ECN采集油门、刹车、车速信号,并根据变速器换挡策略执行换挡;组合仪表用于显示当前的EV/HEV/eco/Sport模式。
在本发明的一个实施例中,控制器根据混合动力汽车的运行状态和/或动力电池的工作状态,控制混合动力汽车在纯电动经济模式、纯电动运动模式、混合动力经济模式和混合动力运动模式之间进行切换。
具体而言,在本发明的一个实施例中,如图3所示,当混合动力汽车处于纯电动经济模式时,如果判断所述动力电池的SOC小于等于第一电量阈值例如20%,或者所述动力电池的最大允许放电功率小于等于第一功率阈值例如12KW,或者所述混合动力汽车检测的当前坡度信号大于等于坡度上限阈值例如15%时,控制器40控制混合动力汽车切换至混合动力经济模式。
也就是说,在本实施例中,如图3所示,驱动以EV-eco模式行驶的混合动力汽车,在不触发模式切换条件的情况下,由动力电池为电机供电以驱动车辆行驶,并且保持发动机不工作。当手动按下HEV按键,则混合动力汽车的工作模式切换至HEV-eco模式;当手动旋转按键至Sport,则混合动力汽车的工作模式切换至EV-s模式;当模式按键无手动输入时,若动力电池的荷电量SOC小于等于SOC下限阈值例如20%,或动力电池最大允许放电功率小于等于功率下限阈值例如12KW,或坡度信号大于坡度上限阈值例如15%,控制器40则自动控制混合动力汽车切换至HEV-eco模式。其中,在EV-eco模式下,为提高电能消耗效率以延长续驶里程,限制了电机的最大输出功率,同时考虑该模式下的整车加速性能,不限制电机的最大输出扭矩,即言,当混合动力汽车处于纯电动经济模式时,控制器40控制混合动力汽车限功率运行。
在本发明的另一个实施例中,如图4所示,当混合动力汽车处于纯电动运动模式 时,如果判断动力电池的SOC小于等于第一电量阈值例如20%,或者动力电池的最大允许放电功率小于等于第一功率阈值12KW,或者混合动力汽车检测的当前坡度信号大于等于坡度上限阈值例如15%时,控制器40控制混合动力汽车切换至混合动力运动模式。
也就是说,在本实施例中,如图4所示,驱动以EV-s模式行驶的混合动力汽车,在不触发模式切换条件的情况下,由动力电池为电机供电以驱动车辆行驶,并且保持发动机不工作。当手动按下HEV按键,则混合动力汽车的工作模式切换至HEV-s模式;当手动旋转按键至eco,则混合动力汽车的工作模式切换至EV-eco模式;当模式按键无手动输入时,若动力的电池荷电量SOC小于等于SOC下限阈值例如20%,或动力电池的最大允许放电功率小于等于功率下限阈值例如12KW,或坡度信号大于坡度上限阈值例如15%,控制器40则自动控制混合动力汽车切换至HEV-s模式。其中,在EV-s模式下,首要任务是获得更优的动力性,因此不对电机输出功率进行限制。
如图3和图4所示,当混合动力汽车处于纯电动经济模式或纯电动运动模式时,如果接收到用户的模式切换指令即触发模式切换条件,则控制器控制混合动力汽车切换至与用户的模式切换指令对应的目标模式。
因此,在本发明的实施例中,通过选择EV工作模式及eco/Sport运行模式,即可以使混合动力汽车处于EV-eco工作模式或EV-s工作模式。由于混合动力汽车采用了可插电式动力电池充电结构,加大了动力电池容量,选用功率和扭矩均较大的电机,故混合动力汽车在EV模式下能够获得强劲动力,能够应付所有城市工况以及绝大多数城郊工况而不进行自动模式切换,只有当坡度信号大于坡度上限阈值例如15%(EV模式最大爬坡度)时才自动切换至HEV模式,除非手动切换否则一直保持HEV模式运行。在EV-eco工作模式下限制电机的最大输出功率、不限电机的最大输出扭矩,保证低速爬坡性能以及高速经济性能。在EV-s工作模式下不限制电机的最大输出功率和最大输出扭矩,保证EV模式下的最强动力。本发明实施例的混合动力汽车的控制***保证了混合动力汽车纯电动运行的动力性和续驶里程,同时满足整车动力性需求的前提下,避免长期大功率的用电以提高用电效率。并且保证混合动力汽车在电荷量低或者电池最大允许放电功率不足或者坡度大时,整车持续正常运行的能力,避免因为某些因素而导致动力性能下降的情况。同时只进行一次自动模式切换,避免发动机频繁起停现象,对于提高起动机寿命,降低噪声,提高驾驶舒适性起到重要作用。
在本发明的又一个实施例中,如图5所示,当混合动力汽车处于混合动力经济模式时,控制器在接收到切换至纯电动经济模式的切换指令之后,如果判断动力电池的 SOC大于等于第二电量阈值例如30%且混合动力汽车的当前车速小于等于第一速度阈值例如150km/h时,控制器控制混合动力汽车切换至纯电动经济模式。
并且,当混合动力汽车处于混合动力经济模式时,其中,如果混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如5%,且动力电池的SOC大于等于第二电量阈值例如30%、动力电池的最大允许放电功率大于等于第二功率阈值例如30KW,控制器控制混合动力汽车以经济方式运行;如果混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如5%且动力电池的SOC小于等于第一电量阈值例如20%,或者混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如5%且动力电池的最大允许放电功率小于等于第一功率阈值例如12KW,控制器控制混合动力汽车以低电方式运行,其中,第二电量阈值大于第一电量阈值,第二功率阈值大于第一功率阈值。需要说明的是,在本发明的实施例中,低电方式是指发动机带动电机快速发电,从而摆脱低电状态,使电机重新具备调节发动机工作区间的能力,从而保障整车经济性。
在本实施例中,如图6所示,当混合动力汽车以经济方式运行时,如果混合动力汽车的车速小于等于第二速度阈值例如15km/h时,控制器控制混合动力汽车纯电动行驶。并且,当混合动力汽车以经济方式运行时,如果混合动力汽车的车速大于等于第三速度阈值例如30km/h时,其中,当混合动力汽车的整车扭矩需求(整车在当前状态下正常行驶所需求的扭矩大小)大于发动机的预设扭矩上限曲线时,控制器控制发动机以预设扭矩上限曲线进行扭矩输出,并控制电机进行扭矩补足;当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下限曲线时,控制器控制发动机以预设扭矩下限曲线进行扭矩输出,并控制电机进行发电;当混合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且大于等于发动机的预设扭矩下限曲线时,控制器控制发动机满足整车扭矩需求进行扭矩输出,并控制电机进行发电。在本实施例中,发动机的预设扭矩上限曲线和发动机的预设扭矩下限曲线如图7所示,当混合动力汽车的整车扭矩需求介于发动机的预设扭矩上限曲线和发动机的预设扭矩下限曲线之间时,电机的发电功率与动力电池的SOC值对应曲线关系如图8所示。
在本实施例中,如图9所示,当混合动力汽车以低电方式运行时,如果混合动力汽车的当前档位处于非P挡时,其中,当混合动力汽车的整车扭矩需求大于发动机的预设扭矩上限曲线时,控制器控制发动机以预设扭矩上限曲线进行扭矩输出,并控制电机进行扭矩补足;当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下限曲线时,控制器控制发动机以预设扭矩下限曲线进行扭矩输出,并控制电机进行发电;当混合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且大于等于发动机 的预设扭矩下限曲线时,控制器控制发动机满足整车扭矩需求进行扭矩输出,并控制电机进行发电。并且,当混合动力汽车以低电方式运行时,如果混合动力汽车的当前档位处于P挡时,控制器控制混合动力汽车进入怠速启停模式。
也就是说,在本实施例中,如图5所示,驱动以HEV-eco模式行驶的混合动力汽车时,当手动按下EV按键,只有当动力电池的荷电量SOC大于等于SOC上限阈值例如30%且当前车速小于等于第一速度阈值例如150km/h时,才允许混合动力汽车的工作模式切换至EV-eco模式,否则不进行工作模式切换;当手动旋转按键至Sport,则混合动力汽车的工作模式切换至HEV-s模式;当模式按键无手动输入时,混合动力汽车的工作模式保持HEV-eco模式不变,根据动力电池的荷电量以及动力电池最大允许放电功率的区域划分,发动机、电机分别按经济策略和低电策略进行动力匹配。如图6所示,经济策略要求混合动力汽车的当前车速小于等于15km/h时,纯电动驱动混合动力汽车,当混合动力汽车的当前车速大于等于30km/h时发动机参与驱动,直至车速降至15km/h时才重新恢复至纯电动驱动,若该阶段电机报警导致驱动能力不够时启动发动机。如图9所示,低电策略取消了低速纯电动,并增加挂P挡发动机启停功能。其中,低电策略和经济策略在发动机启动后的控制方法一致,设定了发动机的输出扭矩上限曲线和下限曲线,具体如图7所示,曲线设计的原则是上下限曲线之间的区域尽可能多的包含发动机最经济区域,由于发动机在上下限曲线之外经济性差,该区域内电机辅助发动机驱动,小负荷运行时在满足整车需求的前提下发动机按下限曲线输出,多余扭矩用于发电,大负荷运行时发动机按上限曲线输出,不足扭矩由电机补足,若电机受自身或动力电池限制导致充放电能力不足时,电机按自身和动力电池的最大允许能力充放电,同时取消发动机输出上下限值,发动机按整车需求输出;在上下限曲线之间电机主要参与发电,发电功率与当前SOC值成一定函数关系,具体如图8所示,但发动机总的输出扭矩不超出上限曲线的限值,若电机受自身或电池限制导致充电能力不足时,电机按自身和电池的最大允许能力充电;并且以上所述的HEV-eco模式驱动策略是在坡度信号不超过坡度上限阈值例如15%的情况下执行,当坡度信号超过坡度上限阈值例如15%时,为满足整车爬坡性能要求,规定此时发动机必须启动,且取消发动机上下限曲线限制以及电机的功率限制,直至坡度信号小于坡度下限阈值例如5%,重新恢复原执行策略。
在本发明的实施例中,从混合动力汽车的控制***的总成结构上来说,本发明实施例的混合动力汽车的控制***采用一个发动机一个电机通过双离合变速器并联,而相关技术中的混合动力汽车的动力***采用一个发动机、一个MG1、一个MG2通过 行星轮混联;在发动机起停上,本发明实施例的混合动力汽车的控制***不考虑整车功率需求,在一定坡度以内只考虑车速起停发动机且车速切换点相对较高,在坡度较大时发动机一直运行,而相关技术中的混合动力汽车的动力***同时考虑车速、蓄电池充电功率需求、整车驱动功率需求,车速切换点较低;从低电策略的SOC值定义上来看,本发明实施例的混合动力汽车的控制***定义20%以下进入低电策略,而相关技术中的混合动力汽车的动力***定义45%以下;从挂P挡怠速启停策略上来看,本发明实施例的混合动力汽车的控制***只要车速为0、挡位为P挡、SOC值不低于20%则发动机熄火,而相关技术中的混合动力汽车的动力***还要考虑发动机水温、SOC值处于一个较高水平;在整车运行过程中,本发明实施例的混合动力汽车的控制***会更具实际路况在经济策略、低电策略间来回切换,而不是一直保持电量平衡,而相关技术中的混合动力汽车的动力***在运行很短一段时间后动力电池的SOC即进入平衡状态;在发动机运行过程中,由于总成结构的差异决定了控制策略的较大区别,相关技术中的混合动力汽车的动力***的MG1要进行时刻调速以调节发动机转速,且发动机怠速转速高达1200rpm,而本发明实施例的混合动力汽车的控制***中发动机怠速转速为800rpm左右,且只用控制双离合6个挡位,换挡匹配相对简单;本发明实施例的混合动力汽车的控制***中的发动机的动力要么全部驱动、要么部分驱动部分发电给电池,而相关技术中的混合动力汽车的动力***在中大负荷运行时,发动机总有一部分能量先通过MG1发电再给到MG2驱动混合动力汽车。
因此说,相关技术中的混合动力汽车的动力***由于电池、电机能力有限,发动机起停的整车功率、车速切换点设置偏低,会造成发动机过早过频起停,发动机运行所占比例增加不利于城市工况降油耗排放,而本发明实施例的混合动力汽车的控制***本身具有较强的纯电动行驶能力,能满足绝大部分驱动需求,因此发动机起动点相对设置较高,能使城市工况中发动机参与驱动的比重下降,达到城市工况降低油耗排放的目的。同时用户操作油门使整车功率需求变化多而频,从而规避整车功率的判断,减少了发动机频繁起停程度,有利于延长起动电机寿命,降低噪声,提高舒适性,同时也降低了大油门加速、爬坡时发动机起动瞬间的动力冲击,提高了驾驶安全性及舒适性。相关技术中的混合动力汽车的动力***静止挂P挡怠速起停发动机时需要考虑动力电池的SOC值、发动机水温因素,不受人直接控制,不利于客户掌握运行规律,且受电池容量小的影响使得该SOC值偏大,很容易造成等红灯挂P挡发动机不熄火的情况,此时增大停车噪声,舒适感大大降低;同时受变速机构限制发动机怠速转速达1200rpm,此时发动机噪声和油耗较普通燃油车都高。而本发明实施例的混合动力汽车 的控制***在大部分情况下静止挂P挡发动机均会熄火,利于用户掌握运行规律,降低停车时的噪声,提高停车舒适性,且发动机怠速转速与传统燃油车相当。另外,本发明实施例的混合动力汽车的控制***中的电池电量并未做成平衡策略,整车运行状态会根据实际工况在经济策略和低电策略间自动切换,更能突显电机调节发动机工作区的功能,利于进一步降低排放油耗,并且本发明实施例的混合动力汽车的控制***的传动机构采用双离合变速器,结构简单,变速匹配周期短,从而大大降低成本;在混合动力驱动时发动机电机采用并联方式,控制策略较易匹配,且动力间的转化效率高。最后,本发明实施例的混合动力汽车的控制***的发电策略采用与动力电池SOC相关联的动态变化,使整车在正常中低负荷行驶时能保持较高的电量。
在本发明的再一个实施例中,如图10所示,当混合动力汽车处于混合动力运动模式时,控制器在接收到切换至纯电动运动模式的切换指令之后,如果判断动力电池的SOC大于等于第二电量阈值例如30%,且混合动力汽车的当前车速小于等于第一速度阈值例如150km/h时,控制器控制混合动力汽车切换至纯电动运动模式。
并且,当混合动力汽车处于混合动力运动模式时,如果混合动力汽车的当前档位处于P挡时,控制器控制混合动力汽车进入怠速启停模式。当混合动力汽车处于混合动力运动模式时,如果混合动力汽车的当前档位处于非P挡时,其中,当混合动力汽车的整车扭矩需求大于发动机的预设峰值扭矩时,控制器控制发动机按照预设峰值扭矩进行扭矩输出,并控制电机进行扭矩补足;当混合动力汽车的整车扭矩需求小于等于发动机的预设峰值扭矩时,控制器控制发动机满足整车扭矩需求进行扭矩输出,并控制电机进行发电。
也就是说,在本实施例中,如图10所示,驱动以HEV-s模式行驶的混合动力汽车时,当手动按下EV按键,只有当动力电池的荷电量SOC大于等于SOC上限阈值例如30%且车速小于等于第一速度阈值例如150km/h时,才允许混合动力汽车的工作模式切换至EV-s模式,否则不进行工作模式切换;当手动旋转按键至eco,则混合动力汽车的工作模式切换至HEV-eco模式;当模式按键无手动输入时,混合动力汽车的工作模式保持HEV-s模式不变,HEV-s模式策略类似于HEV-eco的低电策略,取消了低速纯电动,并增加挂P挡发动机启停功能,取消电机的功率限制,取消了发动机扭矩的上下限限制,发动机、电机均可峰值输出,该工作模式能够获得最好的动力性能。
在本发明的实施例中,当发动机起动运行时,采用双离合变速器传递发动机动力并执行换挡。当整车处于HEV-eco模式和HEV-s模式时,分别匹配两套换挡策略,HEV-eco模式侧重于降油耗,换挡策略的匹配原则是使发动机尽量工作在高效区域, 各档位换挡点会稍提前,行驶时发动机大多工作在1500~2000rpm转速区域;HEV-s模式侧重于动力性,换挡策略的匹配原则是使发动机传递到车轮端的扭矩尽可能大以获得更好的驱动性能,各档位换挡点会稍滞后,同时针对全油门急加速,换挡点定在各档位下标定的发动机固有特性的最大扭矩点,加速性能能得到最大提高。
在本发明的一个实施例中,当所述混合动力汽车处于所述纯电动经济模式时,所述动力电池的当前输出功率上限小于第一预设功率;当所述混合动力汽车处于所述纯电动运动模式时,所述动力电池的当前输出功率上限小于第二预设功率,其中,所述第二预设功率大于所述第一预设功率;当所述混合动力汽车处于所述混合动力经济模式时,所述动力电池的当前输出功率上限和所述发动机的当前输出功率上限均小于所述第一预设功率,且所述发动机的当前输出扭矩上限小于第一扭矩阈值;当所述混合动力汽车处于所述混合动力运动模式时,所述动力电池的当前输出功率上限小于所述第二预设功率,且所述发动机允许当前输出扭矩上限和当前输出功率上限进行输出。在本发明的一个示例中,所述第一预设功率可以为70KW,所述第二预设功率可以为110KW,所述第一扭矩阈值可以为185N·M。
也就是说,所述纯电动经济模式为,混合动力汽车处于纯电动能量消耗模式下,动力电池的当前的输出功率上限小于经济模式功率上限例如70KW,并且使动力电池工作于最经济区域;所述纯电动运动模式为,混合动力汽车处于纯电动能量消耗模式下,动力电池的当前的输出功率上限小于运动模式功率上限例如110KW;混合动力经济模式为,混合动力汽车处于混合动力的能量消耗模式下,动力电池的当前的输出功率上限小于经济模式功率上限例如70KW,且发动机当前的输出功率上限也小于经济模式功率上限例如70KW,以及发动机当前的输出扭矩上限小于经济模式扭矩上限例如185N·M,使发动机和动力电池工作于最经济区域;混合动力运动模式为,混合动力汽车处于混合动力的能量消耗模式下,动力电池的当前的输出功率上限小于运动模式功率上限例如110KW,发动机允许当前发动机的扭矩上限和功率上限进行输出。
需要说明的是,在本发明的实施例中,最经济区域在纯电动模式下是指,随着动力电池放电功率的增加,动力电池工作效率相应下降,所以在满足车辆动力性(操作性能和加速性能)的前提下,动力电池优先采用较低的放电功率进行工作。最经济区域在混合动力模式下是指,随着动力电池放电功率的增加,动力电池的工作效率相应下降,所以在满足车辆动力性(操作性能和加速性能)的前提下,动力电池优先采用较低的放电功率进行工作,发动机的最经济区域由发动机的转矩和转速决定,如图7所示,横坐标表示发动机转速,纵坐标表示发动机转矩,由图可知,在不同的转速下, 配合合适的转矩,就可以获得当前发动机工作最经济区域,如果此时发动机转矩过高,则降低发动机转矩,由电机提供转矩补入;如果发动机转矩过低,则相应增加发动机转矩,此时车辆并不需要增加的发动机转矩用来驱动,因此将增加的发动机的转矩产生的能量回收,用于电机发电。
并且,经济模式功率上限可以理解为动力电池或者发动机保持工作最经济区域内的输出功率上限值。运动模式功率上限属于自身特有性质,动力电池或者发动机输出按照当前最大的发动机的扭矩或功率或者动力电池的当前最大功率进行输出,此时动力***以最大能量为车辆提供功率或扭矩输出。
此外,可以理解的是,混合动力汽车启动时的工作模式仍为所述混合动力汽车上次熄火时的工作模式。并且,所述混合动力汽车还具有纯燃油模式,纯燃油模式为故障模式。
根据本发明实施例的混合动力汽车的控制***,发动机动力子***和电机动力子***采用并联方式,相比于现有的混合动力汽车的动力***采用串联方式,能有效提高能量利用率,同时并联结构相对简单,避免混联方式繁琐的ECVT匹配,降低因匹配不良造成的不平顺性风险,因此在保证整车动力性的前提下经济性能得到大幅提高。并且,保证了整车纯电动运行的动力性和续驶里程,在满足整车动力性需求的前提下避免长期大功率的用电以提高用电效率。此外还避免发动机频繁启停现象,从而提高了起动机的寿命,减少了行车噪声,提高了驾驶舒适性。最后,由于发动机起动点设置较高,能使城市工况中发动机参与驱动的比重下降,降低油耗排放,更加节能环保。
下面参照图3至图11来进一步描述根据本发明实施例提出的混合动力汽车的控制方法。其中,该混合动力汽车包括传动装置、发动机动力子***和电机动力子***,所述传动装置与所述发动机动力子***和所述电机动力子***分别相连。
图11为根据本发明实施例的混合动力汽车的控制方法的流程图。如图11所示,该混合动力汽车的控制方法包括以下步骤:
S1,混合动力汽车运行时,通过控制发动机动力子***和电机动力子***以控制混合动力汽车进入相应的工作模式,其中,工作模式包括纯电动经济模式和混合动力经济模式。
根据本发明的一个实施例,混合动力汽车的工作模式包括纯电动模式和混合动力模式,其中,纯电动模式包括纯电动经济模式和纯电动运动模式,混合动力模式包括混合动力经济模式和混合动力运动模式。
S2,检测电机动力子***中的动力电池的工作状态,并检测混合动力汽车的车速。
S3,在接收到切换至纯电动经济模式的切换指令之后,如果判断动力电池的SOC大于等于第二电量阈值且混合动力汽车的车速小于等于第一速度阈值时,控制混合动力汽车从混合动力经济模式切换至纯电动经济模式。
在本发明的一个实施例中,如图3所示,当混合动力汽车处于纯电动经济模式运行时的混合动力汽车的控制方法包括如下步骤:
S101,获取手动模式按键切换信息,可以是HEV模式按键切换操作、或Sport模式按键切换操作、或无模式按键切换操作,即判断是否进行手动切换,如果是,则进入步骤S102;如果否,则进入步骤S103。
S102,接收到有模式按键切换操作,进行工作模式的切换,切换到其他工作模式并执行相应动力***控制策略。也就是说,当混合动力汽车处于纯电动经济模式时,如果接收到用户的模式切换指令,则控制器控制混合动力汽车切换至与用户的模式切换指令对应的目标模式。
S103,接收到无模式按键切换操作,工作模式不切换,此时将当前的动力电池的SOC值、动力电池的最大允许放电功率Pb、检测的混合动力汽车的坡度信号i与三者的设定阈值分别比较,即SOC下限阈值SOCdown例如20%,动力电池的最大允许放电功率下限阈值Pbdown例如12KW,坡度上限阈值iup例如15%,并判断是否满足SOC≤SOCdown、Pb≤Pbdown、iup≤i。
S104,若至少满足步骤S103三个条件中的一个,混合动力汽车的工作模式则自动切换至HEV-eco模式,即言,如果动力电池的SOC小于等于第一电量阈值例如20%,或者动力电池的最大允许放电功率小于等于第一功率阈值例如12KW,或者混合动力汽车检测的当前坡度信号大于等于坡度上限阈值例如15%时,控制混合动力汽车自动切换至混合动力经济模式。
S105,若步骤S103三个条件均不满足,则不进行HEV-eco模式的自动切换,混合动力汽车保持EV-eco模式运行。
在EV-eco模式驱动混合动力汽车运行时,在不进行手动或自动模式切换时电机作为单动力源一直驱动。该工作模式在满足整车动力性需求的前提下首要目的是节电,要避免长期大功率的用电以提高用电效率,因此限制电机的最大输出功率到Pmmax例如70KW,同时又要满足整车的爬坡性能,因此又不对电机最大输出扭矩进行限制,即言,当混合动力汽车处于纯电动经济模式时,控制混合动力汽车限功率运行。
从混合动力汽车处于EV-eco模式时的控制方法实施例可以看出,通过判断动力电池的SOC值、动力电池的最大允许放电功率、坡度值来控制混合动力汽车自动切换至 HEV-eco模式的策略,保证了整车持续正常运行的能力,避免因为某些因素而导致动力性能下降的可能。综上可知,上述混合动力汽车处于EV-eco模式时的控制方法在满足整车动力性前提下,使电机电池始终工作在高效区,实现混合动力汽车纯电续航里程长、运行成本低、排放大幅下降。
在本发明的另一个实施例中,如图4所示,当混合动力汽车处于纯电动运动模式运行时的混合动力汽车的控制方法包括如下步骤:
S201,获取手动模式按键切换信息,可以是HEV模式按键切换操作、或eco模式按键切换操作、或无模式按键切换操作,即判断是否进行手动切换,如果是,则进入步骤S202;如果否,则进入步骤S203。
S202,接收到有模式按键切换操作,进行工作模式的切换,切换到其他工作模式并执行相应动力***控制策略。也就是说,当混合动力汽车处于纯电动运动模式时,如果接收到用户的模式切换指令,则控制混合动力汽车切换至与用户的模式切换指令对应的目标模式。
S203,接收到无模式按键切换操作,工作模式不切换,此时将当前的动力电池的SOC值、动力电池的最大允许放电功率Pb、检测的混合动力汽车的坡度信号i与三者的设定阈值分别比较,即SOC下限阈值SOCdown例如20%,动力电池的最大允许放电功率下限阈值Pbdown例如12KW,坡度上限阈值iup例如15%,并判断是否满足SOC≤SOCdown、Pb≤Pbdown、iup≤i。
S204,若至少满足步骤S203三个条件中的一个,混合动力汽车的工作模式则自动切换至HEV-s模式,即言,如果动力电池的SOC小于等于第一电量阈值例如20%,或者动力电池的最大允许放电功率小于等于第一功率阈值例如12KW,或者混合动力汽车检测的当前坡度信号大于等于坡度上限阈值例如15%时,控制混合动力汽车自动切换至混合动力运动模式。
S205,若步骤S203三个条件均不满足,则不进行HEV-s模式的自动切换,混合动力汽车保持EV-s模式运行。
在EV-s模式驱动混合动力汽车运行时,在不进行手动或自动模式切换时电机作为单动力源一直驱动。该工作模式不对电机的最大输出扭矩、功率进行限制,能获得电机的最大能力进行驱动,满足用户在EV模式下更高的动力性需求(如超车加速、快速爬坡等)。
从混合动力汽车处于EV-s模式时的控制方法实施例可以看出,通过判断动力电池的SOC值、动力电池的最大允许放电功率、坡度值来控制混合动力汽车自动切换至 HEV-s模式的策略,保证了整车持续正常运行的能力,避免因为某些因素而导致动力性能下降的可能。综上可知,上述混合动力汽车处于EV-s模式时的控制方法适用于既希望纯电动运行又希望获得更好动力感的用户,工作模式更加灵活多变,使用户能够获得更多驾乘快感。
在本发明的又一个实施例中,如图5所示,当混合动力汽车处于混合动力经济模式运行时的混合动力汽车的控制方法包括如下步骤:
S301,获取EV模式按键切换信息,判断是否进行手动切换EV模式,如果是,则进入步骤S302或者步骤S303;如果否,则进入步骤S306。
S302,接收到有EV模式按键切换操作,则将当前动力电池的SOC值与设定的SOC上限阈值SOCup例如30%进行比较,判断是否满足SOCup≤SOC,如果是,则进入步骤S303;如果否,则进入步骤S305。
S303,将当前车速与设定的车速阈值Vmax例如150km/h即允许HEV模式切换至EV模式的最高车速进行比较,判断是否满足v≤Vmax,如果是,则进入步骤S304;如果否,则进入步骤S305。
S304,控制混合动力汽车切换至EV-eco模式并执行相应动力***控制策略。
也就是说,当混合动力汽车处于混合动力经济模式时,控制器在接收到切换至纯电动经济模式的切换指令之后,如果判断动力电池的SOC大于等于第二电量阈值例如30%,且混合动力汽车的当前车速小于等于第一速度阈值例如150km/h时,控制器控制混合动力汽车切换至纯电动经济模式。
S305,混合动力汽车保持HEV-eco模式运行。
S306,接收到无EV模式按键切换操作,则获取Sport模式按键切换信息,判断是否进行手动切换Sport模式,如果是,则进入步骤S307;如果否,则进入步骤S308。
S307,接收到有Sport模式按键切换操作,则控制混合动力汽车切换至HEV-s模式并执行相应动力***控制策略。
S308,接收到无Sport模式按键切换操作,则混合动力汽车的工作模式不切换,并获取坡度信息,将当前坡度值i与设定的坡度上下限阈值iup例如15%、idown例如5%进行比较,判断i值所在区间。
S309,判定i≤idown,进入下一步骤S310。
S310,将当前动力电池的SOC值、动力电池的最大允许放电功率Pb与两者的设定阈值分别比较,即SOC上下限阈值SOCup例如30%、SOCdown例如20%,动力电池的最大允许放电功率上下限阈值Pbup例如30KW、Pbdown例如12KW,判断SOC、Pb 所在区间。
S311,判定SOCup≤SOC且Pbup≤Pb,进入步骤S312。
S312,混合动力汽车按经济策略工作流程进行控制。
也就是说,当混合动力汽车处于混合动力经济模式时,如果混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如5%,且动力电池的SOC大于等于第二电量阈值例如30%、动力电池的最大允许放电功率大于等于第二功率阈值例如30KW,控制器控制混合动力汽车以经济方式运行。
S313,判定SOCup>SOC>SOCdown且Pbup≤Pb,或者SOCup≤SOC且Pbup>Pb>Pbdown,进入步骤S314。
S314,混合动力汽车按原策略工作流程进行控制,即原来是以经济方式运行则仍按经济策略流程执行,原来是以低电方式运行则仍按低电策略流程执行。
S315,判定SOC≤SOCdown或者Pb≤Pbdown,进入步骤S316。
S316,混合动力汽车按低电策略工作流程进行控制。
也就是说,当混合动力汽车处于混合动力经济模式时,如果混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如5%且动力电池的SOC小于等于第一电量阈值例如20%,或者混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如5%且动力电池的最大允许放电功率小于等于第一功率阈值例如12KW,控制器控制混合动力汽车以低电方式运行,其中,第二电量阈值大于第一电量阈值,第二功率阈值大于第一功率阈值。
S317,判定iup>i>idown,进入步骤S318。
S318,混合动力汽车按原策略工作流程进行控制,即分别保持i≤idown或iup≤i时的控制策略。
S319,判定iup≤i,进入步骤S320。
S320,控制混合动力汽车按照在经济方式运行的基础上取消低速纯电动、取消发动机上限并取消电机上限的工作流程执行。
需要说明的是,在本发明的实施例中,低电方式是指发动机带动电机快速发电,从而摆脱低电状态,使电机重新具备调节发动机工作区间的能力,从而保障整车经济性。
在本实施例中,如图6所示,当混合动力汽车以经济方式运行时的混合动力汽车的控制方法包括如下步骤:
S401,获取混合动力汽车的当前车速信息,并将当前车速与设定的车速上下限阈 值vup例如30km/h、vdown例如15km/h进行比较,判断v值所在区间。
S402,判定vup≤v,进入步骤S403。
S403,判定整车的扭矩需求大于如图7中所示的扭矩上限曲线时,进入步骤S404。
S404,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S406;如果否,则执行步骤S405。
S405,动力***无故障,则控制发动机按扭矩上限曲线输出,剩余扭矩需求由电机补足,即言,当混合动力汽车以经济方式运行时,如果混合动力汽车的车速大于等于第三速度阈值例如30km/h时,其中,当混合动力汽车的整车扭矩需求大于发动机的预设扭矩上限曲线时,控制器控制发动机以预设扭矩上限曲线进行扭矩输出,并控制电机进行扭矩补足。
S406,动力***出现故障,则执行故障处理。
S407,判定整车扭矩需求小于如图7中所示的扭矩下限曲线时,进入步骤S408。
S408,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S410;如果否,则执行步骤S409。
S409,若动力***无故障,则发动机按扭矩下限曲线输出,多余动力用于电机发电,即言,当混合动力汽车以经济方式运行时,如果混合动力汽车的车速大于等于第三速度阈值例如30km/h时,当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下限曲线时,控制器控制发动机以预设扭矩下限曲线进行扭矩输出,并控制电机进行发电。
S410,动力***出现故障,则执行故障处理。
S411,判定整车扭矩需求界于如图7中所示的扭矩上下限曲线之间,进入步骤S412。
S412,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S414;如果否,则执行步骤S413。
S413,发动机优先满足整车扭矩需求,并多输出一部分扭矩用于发电,即言,当混合动力汽车以经济方式运行时,如果混合动力汽车的车速大于等于第三速度阈值例如30km/h时,当混合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且大于等于发动机的预设扭矩下限曲线时,控制器控制发动机满足整车扭矩需求进行扭矩输出,并控制电机进行发电。其中,发电原则遵循如图8所示的发电功率与SOC值对应曲线关系,同时要满足以下两个前提条件:①折算到电机端的发电扭矩不超过Tmmax;②发动机总输出扭矩不超过如图7所示的扭矩上限曲线,若由发电功率曲线计 算得到的发动机扭矩超出了以上两个条件中的任何一个,则按以上两个条件作为上限共同制约用于发电的那部分发动机扭矩。
S414,动力***出现故障,则执行故障处理。
S415,判定vup>v>vdown,进入步骤S416。
S416,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S418;如果否,则执行步骤S417。
S417,若动力***无故障,则动力***按原策略工作流程进行控制,即原来电机单独驱动则仍按该方式运行,若原来电机辅助发动机驱动或发电则仍按该方式运行。
S418,动力***出现故障,则执行故障处理。
S419,判定v≤vdown,进入步骤S420。
S420,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S422;如果否,则执行步骤S421。
S421,若动力***无故障,则电机单独驱动,发动机熄火,即言,当混合动力汽车以经济方式运行时,如果混合动力汽车的车速小于等于第二速度阈值例如15km/h时,控制器控制混合动力汽车纯电动行驶,即混合动力汽车纯电动运行。
S422,动力***出现故障,则执行故障处理。
在本实施例中,如图9所示,当混合动力汽车以低电方式运行时的混合动力汽车的控制方法包括如下步骤:
S501,获取换挡模式信息,判断混合动力汽车的当前执行档位。
S502,判定混合动力汽车执行非P挡时,进入步骤S503。
S503,判定整车扭矩需求大于如图7中所示的扭矩上限曲线,进入步骤S504。
S504,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S506;如果否,则执行步骤S505。
S505,若动力***无故障,则发动机按扭矩上限曲线输出,剩余扭矩需求由电机补足,即言,当混合动力汽车以低电方式运行时,如果混合动力汽车的当前档位处于非P挡时,其中,当混合动力汽车的整车扭矩需求大于发动机的预设扭矩上限曲线时,控制器控制发动机以预设扭矩上限曲线进行扭矩输出,并控制电机进行扭矩补足。
S506,若动力***出现故障,则执行故障处理。
S507,判定整车扭矩需求小于如图7中所示的扭矩下限曲线时,进入步骤S508。
S508,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S510;如果否,则执行步骤S509。
S509,若动力***无故障,则发动机按扭矩下限曲线输出,多余动力用于电机发电,即言,当混合动力汽车以低电方式运行时,如果混合动力汽车的当前档位处于非P挡时,当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下限曲线时,控制器控制发动机以预设扭矩下限曲线进行扭矩输出,并控制电机进行发电。
S510,若动力***出现故障,则执行故障处理。
S511,判定整车扭矩需求界于如图7中所示的扭矩上下限曲线之间,进入步骤S512。
S512,判断混合动力汽车的动力***是否有故障,如果是,则执行步骤S514;如果否,则执行步骤S513。
S513,发动机优先满足整车扭矩需求,并多输出一部分扭矩用于发电,即言,当混合动力汽车以低电方式运行时,如果混合动力汽车的当前档位处于非P挡时,当混合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且大于等于发动机的预设扭矩下限曲线时,控制器控制发动机满足整车扭矩需求进行扭矩输出,并控制电机进行发电。其中,发电原则遵循如图8所示的发电功率与SOC值对应曲线关系,同时要满足以下两个前提条件:①折算到电机端的发电扭矩不超过Tmmax;②发动机总输出扭矩不超过如图7所示的扭矩上限曲线,若由发电功率曲线计算得到的发动机扭矩超出了以上两个条件中的任何一个,则按以上两个条件作为上限共同制约用于发电的那部分发动机扭矩。
S514,若动力***出现故障,则执行故障处理。
S515,判定混合动力汽车执行P挡时,进入步骤S516。
S516,执行P挡怠速启停策略,即言,当混合动力汽车以低电方式运行时,如果混合动力汽车的当前档位处于P挡时,控制器控制混合动力汽车进入怠速启停模式,在该模式下,当混合动力汽车满足怠速启停条件,发动机熄火。
在HEV-eco模式驱动混合动力汽车运行时,电机与发动机相互配合以提高能量利用率,大体方向是当整车工作在发动机非经济区域内时,电机的使用比例大幅提高,而当整车工作在发动机经济区域内时,发动机又会发一部分电来给电池充电,而且电量越低发电功率会越高,同时该模式的整个策略将电机的输出功率限制为Pmmax以避免长时间大功率用电,从而保证了电池电量始终保持在一个较高的水平,促使电机时刻有电能去调节发动机使其工作在高效区,这样最终的效果是使混合动力驱动时的油耗尽可能降低,保证了经济性能和排放性能。而当整车需要大负荷输出时,电机又可辅助发动机共同驱动,动力性能较EV模式有大幅提升。当用户需要长途行驶,且希望 尽量降油耗的情况下可选用该模式。
在本发明的再一个实施例中,如图10所示,当混合动力汽车处于混合动力运动模式运行时的混合动力汽车的控制方法包括如下步骤:
S601,获取EV模式按键切换信息,判断是否进行手动切换EV模式,如果是,则进入步骤S602或者步骤S603;如果否,则进入步骤S606。
S602,接收到有EV模式按键切换操作,则将当前动力电池的SOC值与设定的SOC上限阈值SOCup例如30%进行比较,判断是否满足SOCup≤SOC,如果是,则进入步骤S603;如果否,则进入步骤S605。
S603,将当前车速与设定的车速阈值Vmax例如150km/h即允许HEV模式切换至EV模式的最高车速进行比较,判断是否满足v≤Vmax,如果是,则进入步骤S604;如果否,则进入步骤S605。
S604,控制混合动力汽车切换至EV-s模式并执行相应动力***控制策略。
也就是说,当混合动力汽车处于混合动力运动模式时,控制器在接收到切换至纯电动运动模式的切换指令之后,如果判断动力电池的SOC大于等于第二电量阈值例如30%,且混合动力汽车的当前车速小于等于第一速度阈值例如150km/h时,控制器控制混合动力汽车切换至纯电动运动模式。
S605,混合动力汽车保持HEV-s模式运行。
S606,接收到无EV模式按键切换操作,则获取eco模式按键切换信息,判断是否进行手动切换eco模式,如果是,则进入步骤S607;如果否,则进入步骤S608。
S607,接收到有eco模式按键切换操作,则控制混合动力汽车切换至HEV-eco模式并执行相应动力***控制策略。
S608,接收到无eco模式按键切换操作,则混合动力汽车的工作模式不切换,获取换挡模式信息,判断混合动力汽车的当前执行档位。
S609,判定混合动力汽车执行P挡时,进入步骤S610。
S610,执行P挡怠速启停策略,即言,当混合动力汽车处于混合动力运动模式时,如果混合动力汽车的当前档位处于P挡时,控制器控制混合动力汽车进入怠速启停模式。
S611,判定混合动力汽车执行非P挡时,进入步骤S612。
S612,将整车需求扭矩与发动机峰值扭矩进行比较,判断是否满足整车需求扭矩>发动机峰值扭矩,如果是,则执行步骤S613;如果否,则执行步骤S614。
S613,发动机按峰值扭矩输出,剩余扭矩需求由电机补足,当电机受自身或动力 电池当前能力限制时,按电机、动力电池当前的最大能力驱动。也就是说,当混合动力汽车处于混合动力运动模式时,如果混合动力汽车的当前档位处于非P挡时,其中,当混合动力汽车的整车扭矩需求大于发动机的预设峰值扭矩时,控制器控制发动机按照预设峰值扭矩进行扭矩输出,并控制电机进行扭矩补足。
S614,发动机优先满足整车扭矩需求,并多输出一部分扭矩用于发电,即言,当混合动力汽车处于混合动力运动模式时,如果混合动力汽车的当前档位处于非P挡时,当混合动力汽车的整车扭矩需求小于等于发动机的预设峰值扭矩时,控制器控制发动机满足整车扭矩需求进行扭矩输出,并控制电机进行发电。其中,发电原则遵循如图8所示的发电功率与SOC值对应曲线关系,同时要满足以下两个前提条件:①折算到电机端的发电扭矩不超过Tmmax;②发动机总输出扭矩不超过如图7所示的发动机扭矩峰值,若由发电功率曲线计算得到的发动机扭矩超出了以上两个条件中的任何一个,则按以上两个条件作为上限共同制约用于发电的那部分发动机扭矩。
在HEV-s模式驱动混合动力汽车运行时,当换挡模式为非P挡时,发动机一直处于起动状态,只有当换挡模式为P挡,且满足P挡怠速启停条件时,发动机才会熄火。该HEV-s模式的整个策略不再限制发动机、电机的最大输出扭矩、功率,能发挥动力***的最大驱动能力,是四种驱动模式中动力性能最好的一种,但由于行车过程中发动机是一直运行的,要么与电机配合驱动要么边驱动边带电机发电(动力电池的电量低于一定值时),因此油耗相对较高,经济性能无法保证。该HEV-s模式适用于对行车动力性要求较高的用户,能拥有等同于大排量豪华燃油车的充沛动力,最大程度的提高用户的加速快感。
在本发明的实施例中,通过EV、HEV、eco、Sport四个按键的切换,可获得EV-eco、EV-s、HEV-eco、HEV-s四种不同的工作模式,根据整车动力性、经济性对于四种工作模式的不同定义,动力***驱动策略的侧重点各不相同。并且,混合动力汽车的动力***采用并联方式,而不是串联或者混联。此外,在驱动策略中对发动机启动点进行了优化,车速判断点提高,增加了坡度判断,取消了需求功率的判断。在HEV-eco模式下的经济策略中将发动机工作区域限制在上下限扭矩曲线之间,发电功率采用了以SOC值为自变量的动态变化曲线。
根据本发明实施例的混合动力汽车的控制方法,多种可选择的工作模式能满足用户在不同工况下的驾驶需求,即可满足城市工况的只用电需求,又可满足郊区工况的动力性需求,真正做到整车驱动以用户的主观操作意图为导向,提高驾驶乐趣。其中,混合动力汽车的控制***采用并联方式,相较于串联方式的能量多步转换,能有效提 高能量利用率,同时并联结构相对简单,避免混联方式繁琐的ECVT匹配,降低因匹配不良造成的不平顺性风险。并且,驱动策略中对发动机启动点的优化避免了发动机过早过频启动,可有效降低起动噪声提高启动***寿命以及因频繁起动造成低压电频繁拉低的风险,保障其他低压用电设备的正常运行,同时对发动机工作区域进行了优化,保证发动机始终工作在高效区,以及对发电功率进行了优化,保证行车过程中有较高的电量均衡点,有利于整车大多数时间处于经济策略中,能有效降低油耗,减少排放。此外,该控制方法能够保证了整车纯电动运行的动力性和续驶里程,在满足整车动力性需求的前提下避免长期大功率的用电以提高用电效率,同时还避免发动机频繁启停现象,从而提高了起动机的寿命,减少了行车噪声,提高了驾驶舒适性。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑 功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (12)

  1. 一种混合动力汽车的控制***,其特征在于,包括:
    传动装置,所述传动装置用于驱动混合动力汽车的车轮;
    发动机动力子***,所述发动机动力子***与所述传动装置相连;
    电机动力子***,所述电机动力子***与所述传动装置相连;以及
    控制器,所述控制器通过控制所述发动机动力子***和电机动力子***以控制所述混合动力汽车进入相应的工作模式,其中,所述工作模式包括纯电动经济模式和混合动力经济模式,并且所述控制器在接收到切换至所述纯电动经济模式的切换指令之后,如果判断所述电机动力子***中的动力电池的SOC大于等于第二电量阈值且所述混合动力汽车的车速小于等于第一速度阈值时,控制所述混合动力汽车从所述混合动力经济模式切换至所述纯电动经济模式。
  2. 如权利要求1所述的混合动力汽车的控制***,其特征在于,当所述混合动力汽车处于所述混合动力经济模式时,其中,
    如果所述混合动力汽车检测的当前坡度信号小于等于坡度下限阈值,且所述动力电池的SOC大于等于第二电量阈值、所述动力电池的最大允许放电功率大于等于第二功率阈值,所述控制器控制所述混合动力汽车以经济方式运行;
    如果所述混合动力汽车检测的当前坡度信号小于等于所述坡度下限阈值且所述动力电池的SOC小于等于第一电量阈值,或者所述混合动力汽车检测的当前坡度信号小于等于所述坡度下限阈值且所述动力电池的最大允许放电功率小于等于第一功率阈值,所述控制器控制所述混合动力汽车以低电方式运行,其中,所述第二电量阈值大于所述第一电量阈值,所述第二功率阈值大于所述第一功率阈值。
  3. 如权利要求2所述的混合动力汽车的控制***,其特征在于,当所述混合动力汽车以所述经济方式运行时,如果所述混合动力汽车的车速小于等于第二速度阈值时,所述控制器控制所述混合动力汽车纯电动行驶。
  4. 如权利要求2所述的混合动力汽车的控制***,其特征在于,当所述混合动力汽车以所述经济方式运行时,如果所述混合动力汽车的车速大于等于第三速度阈值时,其中,
    当所述混合动力汽车的整车扭矩需求大于所述发动机子***中的发动机的预设扭矩上限曲线时,所述控制器控制所述发动机以所述预设扭矩上限曲线进行扭矩输出, 并控制所述电机子***中的电机进行扭矩补足;
    当所述混合动力汽车的整车扭矩需求小于所述发动机的预设扭矩下限曲线时,所述控制器控制所述发动机以所述预设扭矩下限曲线进行扭矩输出,并控制所述电机进行发电;
    当所述混合动力汽车的整车扭矩需求小于等于所述发动机的预设扭矩上限曲线且大于等于所述发动机的预设扭矩下限曲线时,所述控制器控制所述发动机满足整车扭矩需求进行扭矩输出,并控制所述电机进行发电。
  5. 如权利要求2所述的混合动力汽车的控制***,其特征在于,当所述混合动力汽车以所述低电方式运行时,如果所述混合动力汽车的当前档位处于非P挡时,其中,
    当所述混合动力汽车的整车扭矩需求大于所述发动机子***中的发动机的预设扭矩上限曲线时,所述控制器控制所述发动机以所述预设扭矩上限曲线进行扭矩输出,并控制所述电机子***中的电机进行扭矩补足;
    当所述混合动力汽车的整车扭矩需求小于所述发动机的预设扭矩下限曲线时,所述控制器控制所述发动机以所述预设扭矩下限曲线进行扭矩输出,并控制所述电机进行发电;
    当所述混合动力汽车的整车扭矩需求小于等于所述发动机的预设扭矩上限曲线且大于等于所述发动机的预设扭矩下限曲线时,所述控制器控制所述发动机满足整车扭矩需求进行扭矩输出,并控制所述电机进行发电。
  6. 如权利要求2所述的混合动力汽车的控制***,其特征在于,当所述混合动力汽车以所述低电方式运行时,如果所述混合动力汽车的当前档位处于P挡时,所述控制器控制所述混合动力汽车进入怠速启停模式。
  7. 一种混合动力汽车的控制方法,其特征在于,所述混合动力汽车包括传动装置、发动机动力子***和电机动力子***,所述传动装置与所述发动机动力子***和所述电机动力子***分别相连,所述控制方法包括以下步骤:
    所述混合动力汽车运行时,通过控制所述发动机动力子***和电机动力子***以控制所述混合动力汽车进入相应的工作模式,其中,所述工作模式包括纯电动经济模式和混合动力经济模式;
    检测所述电机动力子***中的动力电池的工作状态,并检测所述混合动力汽车的车速;
    在接收到切换至所述纯电动经济模式的切换指令之后,如果判断所述动力电池的SOC大于等于第二电量阈值且所述混合动力汽车的车速小于等于第一速度阈值时,控 制所述混合动力汽车从所述混合动力经济模式切换至所述纯电动经济模式。
  8. 如权利要求7所述的混合动力汽车的控制方法,其特征在于,当所述混合动力汽车处于所述混合动力经济模式时,其中,
    如果所述混合动力汽车检测的当前坡度信号小于等于坡度下限阈值,且所述动力电池的SOC大于等于第二电量阈值、所述动力电池的最大允许放电功率大于等于第二功率阈值,控制所述混合动力汽车以经济方式运行;
    如果所述混合动力汽车检测的当前坡度信号小于等于所述坡度下限阈值且所述动力电池的SOC小于等于第一电量阈值,或者所述混合动力汽车检测的当前坡度信号小于等于所述坡度下限阈值且所述动力电池的最大允许放电功率小于等于第一功率阈值,控制所述混合动力汽车以低电方式运行,其中,所述第二电量阈值大于所述第一电量阈值,所述第二功率阈值大于所述第一功率阈值。
  9. 如权利要求8所述的混合动力汽车的控制方法,其特征在于,当所述混合动力汽车以所述经济方式运行时,如果所述混合动力汽车的车速小于等于第二速度阈值时,控制所述混合动力汽车纯电动行驶。
  10. 如权利要求8所述的混合动力汽车的控制方法,其特征在于,当所述混合动力汽车以所述经济方式运行时,如果所述混合动力汽车的车速大于等于第三速度阈值时,其中,
    当所述混合动力汽车的整车扭矩需求大于所述发动机子***中的发动机的预设扭矩上限曲线时,控制所述发动机以所述预设扭矩上限曲线进行扭矩输出,并控制所述电机子***中的电机进行扭矩补足;
    当所述混合动力汽车的整车扭矩需求小于所述发动机的预设扭矩下限曲线时,控制所述发动机以所述预设扭矩下限曲线进行扭矩输出,并控制所述电机进行发电;
    当所述混合动力汽车的整车扭矩需求小于等于所述发动机的预设扭矩上限曲线且大于等于所述发动机的预设扭矩下限曲线时,控制所述发动机满足整车扭矩需求进行扭矩输出,并控制所述电机进行发电。
  11. 如权利要求8所述的混合动力汽车的控制方法,其特征在于,当所述混合动力汽车以所述低电方式运行时,如果所述混合动力汽车的当前档位处于非P挡时,其中,
    当所述混合动力汽车的整车扭矩需求大于所述发动机子***中的发动机的预设扭矩上限曲线时,控制所述发动机以所述预设扭矩上限曲线进行扭矩输出,并控制所述电机子***中的电机进行扭矩补足;
    当所述混合动力汽车的整车扭矩需求小于所述发动机的预设扭矩下限曲线时,控制所述发动机以所述预设扭矩下限曲线进行扭矩输出,并控制所述电机进行发电;
    当所述混合动力汽车的整车扭矩需求小于等于所述发动机的预设扭矩上限曲线且大于等于所述发动机的预设扭矩下限曲线时,控制所述发动机满足整车扭矩需求进行扭矩输出,并控制所述电机进行发电。
  12. 如权利要求8所述的混合动力汽车的控制方法,其特征在于,当所述混合动力汽车以所述低电方式运行时,如果所述混合动力汽车的当前档位处于P挡时,控制所述混合动力汽车进入怠速启停模式。
PCT/CN2014/085826 2013-09-09 2014-09-03 混合动力汽车的控制***和控制方法 WO2015032321A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310409911 2013-09-09
CN201310409911.5 2013-09-09
CN201310557892.0A CN104417345B (zh) 2013-09-09 2013-11-11 混合动力汽车的控制***和控制方法
CN201310557892.0 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015032321A1 true WO2015032321A1 (zh) 2015-03-12

Family

ID=52627806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085826 WO2015032321A1 (zh) 2013-09-09 2014-09-03 混合动力汽车的控制***和控制方法

Country Status (2)

Country Link
CN (1) CN104417345B (zh)
WO (1) WO2015032321A1 (zh)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106080587A (zh) * 2016-08-22 2016-11-09 中国汽车技术研究中心 一种用于多模式混合动力装置的协调控制方法
CN107097789A (zh) * 2017-05-19 2017-08-29 湖北汽车工业学院 一种纯电动汽车行驶工况判别***
CN107264513A (zh) * 2017-07-10 2017-10-20 德州富路汽车智能化研究有限公司 一种混合动力车的发电控制方法、设备及***
CN111086501A (zh) * 2019-12-12 2020-05-01 坤泰车辆***(常州)有限公司 一种纯电动汽车的能耗优化方法
CN111559256A (zh) * 2020-06-01 2020-08-21 江西清华泰豪三波电机有限公司 一种基于多任务、多工况模式的无人车载混合动力源能量控制方法
CN111894747A (zh) * 2020-07-14 2020-11-06 北京汽车股份有限公司 混动车辆发动机启动控制方法、***及混动车辆
CN112477843A (zh) * 2020-11-24 2021-03-12 上汽通用五菱汽车股份有限公司 混合动力车的扭矩分配方法、***、设备及存储介质
CN112572406A (zh) * 2019-09-27 2021-03-30 比亚迪股份有限公司 控制车辆的方法、装置、存储介质及车辆
CN112590766A (zh) * 2020-12-16 2021-04-02 北理慧动(常熟)车辆科技有限公司 一种混动汽车的模式切换方法
CN112622868A (zh) * 2020-12-25 2021-04-09 中国第一汽车股份有限公司 一种双电机车辆控制方法及装置
CN112660103A (zh) * 2020-12-31 2021-04-16 重庆金康赛力斯新能源汽车设计院有限公司 一种车辆控制模式的确定方法、装置和整车控制***
CN112896142A (zh) * 2020-12-30 2021-06-04 东风小康汽车有限公司重庆分公司 一种车辆的控制方法、装置、存储介质和整车控制器
CN112896139A (zh) * 2021-03-09 2021-06-04 上海柴油机股份有限公司 混动汽车用能量管理方法
CN113014773A (zh) * 2021-03-02 2021-06-22 山东鲁能软件技术有限公司智能电气分公司 一种架空线路视频可视化监拍***及方法
CN113320519A (zh) * 2021-06-02 2021-08-31 东风汽车集团股份有限公司 一种四驱混合动力***和多驾驶模式控制方法
CN113561980A (zh) * 2021-08-12 2021-10-29 一汽解放青岛汽车有限公司 车辆蠕行控制方法、装置、计算机设备和存储介质
CN113580939A (zh) * 2021-07-22 2021-11-02 上汽通用五菱汽车股份有限公司 车载电池的保电方法、车辆和可读存储介质
CN113635901A (zh) * 2021-08-23 2021-11-12 同济大学 一种混合动力汽车纯电起步工况下电机转矩控制方法
CN113650527A (zh) * 2021-08-26 2021-11-16 东风柳州汽车有限公司 动力电池电压均衡方法、装置、设备及存储介质
CN113665561A (zh) * 2021-08-18 2021-11-19 上海洛轲智能科技有限公司 混合动力汽车的充电控制方法、***及混合动力汽车
CN113696883A (zh) * 2020-05-21 2021-11-26 广州汽车集团股份有限公司 混合动力车辆的发动机功率控制方法、装置及存储介质
CN113715824A (zh) * 2021-09-29 2021-11-30 潍柴动力股份有限公司 一种发动机经济模式控制方法和车辆
CN113715804A (zh) * 2020-05-22 2021-11-30 广州汽车集团股份有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN113715802A (zh) * 2020-05-22 2021-11-30 广州汽车集团股份有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN114013424A (zh) * 2021-11-11 2022-02-08 安徽江淮汽车集团股份有限公司 一种混合动力汽车的上下电管理方法
CN114030457A (zh) * 2022-01-07 2022-02-11 北京航空航天大学 一种串并联混合动力***双阈值工作模式切换控制方法
CN114084121A (zh) * 2021-11-24 2022-02-25 合众新能源汽车有限公司 分体式能量管理的控制***
CN114439636A (zh) * 2020-11-05 2022-05-06 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置
CN114475565A (zh) * 2022-03-30 2022-05-13 东风汽车集团股份有限公司 混合动力车辆及起步控制方法、分配***和车载控制器
US20220169269A1 (en) * 2020-11-30 2022-06-02 Mobile Drive Netherlands B.V. Driving assistance method and vehicle-mounted device
CN114670676A (zh) * 2022-03-31 2022-06-28 江铃汽车股份有限公司 车辆扭矩控制方法、***、终端设备及存储介质
CN114683969A (zh) * 2022-04-12 2022-07-01 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备
CN114872685A (zh) * 2022-05-23 2022-08-09 一汽解放汽车有限公司 混合动力汽车控制方法、装置、混合动力汽车及存储介质
CN114954453A (zh) * 2022-07-26 2022-08-30 潍柴动力股份有限公司 一种混合动力车辆巡航控制方法、装置及车辆
CN115075962A (zh) * 2022-06-13 2022-09-20 中国第一汽车股份有限公司 车辆排放控制方法
CN115891967A (zh) * 2023-02-28 2023-04-04 中国第一汽车股份有限公司 混合动力***控制方法、装置、设备以及介质
CN117962864A (zh) * 2024-04-01 2024-05-03 吉林大学 一种基于双层优化框架的混联混合动力车辆能量管理方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106143479B (zh) * 2015-03-25 2019-04-19 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN106143474B (zh) * 2015-03-25 2019-02-26 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN106143477B (zh) * 2015-03-25 2019-03-29 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN106143478B (zh) * 2015-03-25 2019-04-19 比亚迪股份有限公司 混合动力汽车的驱动控制方法和装置
CN106143476B (zh) * 2015-03-25 2019-11-08 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN107471995A (zh) * 2016-08-23 2017-12-15 宝沃汽车(中国)有限公司 插电式混合动力汽车的动力***及其控制方法
CN108382188B (zh) * 2018-03-27 2024-03-15 中国第一汽车股份有限公司 混合动力汽车动力***及其控制方法
CN111376743A (zh) * 2018-12-28 2020-07-07 北京致行慕远科技有限公司 全地形车及全地形车控制方法
TWI726673B (zh) * 2020-04-08 2021-05-01 國立虎尾科技大學 混合動力車輛的系統及其控制方法
CN113715801B (zh) * 2020-05-22 2024-05-10 广州汽车集团股份有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN111873983B (zh) * 2020-06-28 2022-03-25 北京汽车股份有限公司 一种混合动力汽车扭矩控制的方法、装置及混合动力汽车
CN112498335A (zh) * 2020-12-15 2021-03-16 济南公共交通集团有限公司 插电式混合动力节能减排操作法
CN112959897A (zh) * 2021-04-12 2021-06-15 东风小康汽车有限公司重庆分公司 驱动控制方法、装置及混合动力汽车
CN113386732B (zh) * 2021-06-30 2023-03-17 中国第一汽车股份有限公司 一种非插电混动车辆工作模式的切换方法
CN114394083A (zh) * 2022-03-01 2022-04-26 重庆金康动力新能源有限公司 混合动力汽车扭矩分配方法和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072992A1 (ja) * 2011-11-14 2013-05-23 トヨタ自動車株式会社 ハイブリッド車両
CN103189258A (zh) * 2010-11-04 2013-07-03 丰田自动车株式会社 车辆用混合动力驱动装置
CN103201153A (zh) * 2010-11-04 2013-07-10 丰田自动车株式会社 混合动力车辆的控制装置
CN103249624A (zh) * 2011-12-13 2013-08-14 丰田自动车株式会社 混合动力***控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830968A1 (de) * 1996-09-18 1998-03-25 SMH Management Services AG Verfahren zum Betrieb eines nichtspurgebundenen Hybridfahrzeuges
CN1238213C (zh) * 2003-10-17 2006-01-25 清华大学 混合动力轿车动力总成的动力输出切换方法及其控制***
JP4362721B2 (ja) * 2004-11-12 2009-11-11 三菱自動車工業株式会社 ハイブリッド車両
JP4607222B2 (ja) * 2009-01-27 2011-01-05 本田技研工業株式会社 ハイブリッド車両
CN102658817B (zh) * 2012-05-07 2015-04-29 奇瑞汽车股份有限公司 一种混合动力汽车实现纯电动功能的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189258A (zh) * 2010-11-04 2013-07-03 丰田自动车株式会社 车辆用混合动力驱动装置
CN103201153A (zh) * 2010-11-04 2013-07-10 丰田自动车株式会社 混合动力车辆的控制装置
WO2013072992A1 (ja) * 2011-11-14 2013-05-23 トヨタ自動車株式会社 ハイブリッド車両
CN103249624A (zh) * 2011-12-13 2013-08-14 丰田自动车株式会社 混合动力***控制装置

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106080587B (zh) * 2016-08-22 2018-08-31 中国汽车技术研究中心 一种用于多模式混合动力装置的协调控制方法
CN106080587A (zh) * 2016-08-22 2016-11-09 中国汽车技术研究中心 一种用于多模式混合动力装置的协调控制方法
CN107097789A (zh) * 2017-05-19 2017-08-29 湖北汽车工业学院 一种纯电动汽车行驶工况判别***
CN107264513A (zh) * 2017-07-10 2017-10-20 德州富路汽车智能化研究有限公司 一种混合动力车的发电控制方法、设备及***
CN112572406A (zh) * 2019-09-27 2021-03-30 比亚迪股份有限公司 控制车辆的方法、装置、存储介质及车辆
CN111086501A (zh) * 2019-12-12 2020-05-01 坤泰车辆***(常州)有限公司 一种纯电动汽车的能耗优化方法
CN113696883A (zh) * 2020-05-21 2021-11-26 广州汽车集团股份有限公司 混合动力车辆的发动机功率控制方法、装置及存储介质
CN113715804B (zh) * 2020-05-22 2024-04-12 广汽埃安新能源汽车有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN113715802B (zh) * 2020-05-22 2024-05-17 广州汽车集团股份有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN113715802A (zh) * 2020-05-22 2021-11-30 广州汽车集团股份有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN113715804A (zh) * 2020-05-22 2021-11-30 广州汽车集团股份有限公司 具有混合动力耦合***的车辆的控制器、控制方法和车辆
CN111559256A (zh) * 2020-06-01 2020-08-21 江西清华泰豪三波电机有限公司 一种基于多任务、多工况模式的无人车载混合动力源能量控制方法
CN111559256B (zh) * 2020-06-01 2023-06-06 江西清华泰豪三波电机有限公司 一种基于多任务、多工况模式的无人车载混合动力源能量控制方法
CN111894747A (zh) * 2020-07-14 2020-11-06 北京汽车股份有限公司 混动车辆发动机启动控制方法、***及混动车辆
CN114439636A (zh) * 2020-11-05 2022-05-06 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置
CN112477843A (zh) * 2020-11-24 2021-03-12 上汽通用五菱汽车股份有限公司 混合动力车的扭矩分配方法、***、设备及存储介质
US20220169269A1 (en) * 2020-11-30 2022-06-02 Mobile Drive Netherlands B.V. Driving assistance method and vehicle-mounted device
CN112590766A (zh) * 2020-12-16 2021-04-02 北理慧动(常熟)车辆科技有限公司 一种混动汽车的模式切换方法
CN112622868A (zh) * 2020-12-25 2021-04-09 中国第一汽车股份有限公司 一种双电机车辆控制方法及装置
CN112896142A (zh) * 2020-12-30 2021-06-04 东风小康汽车有限公司重庆分公司 一种车辆的控制方法、装置、存储介质和整车控制器
CN112660103B (zh) * 2020-12-31 2023-04-07 重庆金康赛力斯新能源汽车设计院有限公司 一种车辆控制模式的确定方法、装置和整车控制***
CN112660103A (zh) * 2020-12-31 2021-04-16 重庆金康赛力斯新能源汽车设计院有限公司 一种车辆控制模式的确定方法、装置和整车控制***
CN113014773A (zh) * 2021-03-02 2021-06-22 山东鲁能软件技术有限公司智能电气分公司 一种架空线路视频可视化监拍***及方法
CN112896139A (zh) * 2021-03-09 2021-06-04 上海柴油机股份有限公司 混动汽车用能量管理方法
CN113320519A (zh) * 2021-06-02 2021-08-31 东风汽车集团股份有限公司 一种四驱混合动力***和多驾驶模式控制方法
CN113580939A (zh) * 2021-07-22 2021-11-02 上汽通用五菱汽车股份有限公司 车载电池的保电方法、车辆和可读存储介质
CN113561980A (zh) * 2021-08-12 2021-10-29 一汽解放青岛汽车有限公司 车辆蠕行控制方法、装置、计算机设备和存储介质
CN113561980B (zh) * 2021-08-12 2023-02-17 一汽解放青岛汽车有限公司 车辆蠕行控制方法、装置、计算机设备和存储介质
CN113665561B (zh) * 2021-08-18 2022-03-15 上海洛轲智能科技有限公司 混合动力汽车的充电控制方法、***及混合动力汽车
CN113665561A (zh) * 2021-08-18 2021-11-19 上海洛轲智能科技有限公司 混合动力汽车的充电控制方法、***及混合动力汽车
CN113635901A (zh) * 2021-08-23 2021-11-12 同济大学 一种混合动力汽车纯电起步工况下电机转矩控制方法
CN113635901B (zh) * 2021-08-23 2023-07-04 同济大学 一种混合动力汽车纯电起步工况下电机转矩控制方法
CN113650527B (zh) * 2021-08-26 2023-07-18 东风柳州汽车有限公司 动力电池电压均衡方法、装置、设备及存储介质
CN113650527A (zh) * 2021-08-26 2021-11-16 东风柳州汽车有限公司 动力电池电压均衡方法、装置、设备及存储介质
CN113715824B (zh) * 2021-09-29 2024-05-17 潍柴动力股份有限公司 一种发动机经济模式控制方法和车辆
CN113715824A (zh) * 2021-09-29 2021-11-30 潍柴动力股份有限公司 一种发动机经济模式控制方法和车辆
CN114013424A (zh) * 2021-11-11 2022-02-08 安徽江淮汽车集团股份有限公司 一种混合动力汽车的上下电管理方法
CN114013424B (zh) * 2021-11-11 2024-01-19 安徽江淮汽车集团股份有限公司 一种混合动力汽车的上下电管理方法
CN114084121A (zh) * 2021-11-24 2022-02-25 合众新能源汽车有限公司 分体式能量管理的控制***
CN114084121B (zh) * 2021-11-24 2023-01-20 合众新能源汽车有限公司 分体式能量管理的控制***
CN114030457A (zh) * 2022-01-07 2022-02-11 北京航空航天大学 一种串并联混合动力***双阈值工作模式切换控制方法
CN114030457B (zh) * 2022-01-07 2022-03-15 北京航空航天大学 一种串并联混合动力***双阈值工作模式切换控制方法
CN114475565A (zh) * 2022-03-30 2022-05-13 东风汽车集团股份有限公司 混合动力车辆及起步控制方法、分配***和车载控制器
CN114475565B (zh) * 2022-03-30 2024-03-29 东风汽车集团股份有限公司 混合动力车辆及起步控制方法、分配***和车载控制器
CN114670676A (zh) * 2022-03-31 2022-06-28 江铃汽车股份有限公司 车辆扭矩控制方法、***、终端设备及存储介质
CN114683969B (zh) * 2022-04-12 2024-04-16 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备
CN114683969A (zh) * 2022-04-12 2022-07-01 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备
CN114872685A (zh) * 2022-05-23 2022-08-09 一汽解放汽车有限公司 混合动力汽车控制方法、装置、混合动力汽车及存储介质
CN115075962A (zh) * 2022-06-13 2022-09-20 中国第一汽车股份有限公司 车辆排放控制方法
CN114954453A (zh) * 2022-07-26 2022-08-30 潍柴动力股份有限公司 一种混合动力车辆巡航控制方法、装置及车辆
CN114954453B (zh) * 2022-07-26 2022-10-11 潍柴动力股份有限公司 一种混合动力车辆巡航控制方法、装置及车辆
CN115891967B (zh) * 2023-02-28 2023-05-12 中国第一汽车股份有限公司 混合动力***控制方法、装置、设备以及介质
CN115891967A (zh) * 2023-02-28 2023-04-04 中国第一汽车股份有限公司 混合动力***控制方法、装置、设备以及介质
CN117962864A (zh) * 2024-04-01 2024-05-03 吉林大学 一种基于双层优化框架的混联混合动力车辆能量管理方法

Also Published As

Publication number Publication date
CN104417345A (zh) 2015-03-18
CN104417345B (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
WO2015032321A1 (zh) 混合动力汽车的控制***和控制方法
WO2015032322A1 (zh) 混合动力汽车的控制***和控制方法
WO2015032323A1 (zh) 混合动力汽车的控制***和控制方法
WO2015032347A1 (zh) 混合动力汽车的控制***和控制方法
WO2015032324A1 (zh) 混合动力汽车的控制***和控制方法
WO2015032320A1 (zh) 混合动力汽车的控制***和控制方法
WO2015032345A1 (en) Hybrid electrical vehicle and method for controlling the same
CN108349488B (zh) 用于控制混合动力车辆的驱动装置的方法和混合动力车辆
CN108349484B (zh) 混合动力车辆的驱动装置的运行和混合动力车辆
US10286898B2 (en) Control device for vehicle
JP2014034388A (ja) ハイブリッド電気自動車の出発制御装置及び方法
US9430887B2 (en) Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method
JP5552944B2 (ja) ハイブリッド車両の制御装置
KR20090059175A (ko) 하이브리드 차량의 보조배터리 충전제어방법
JP2013129380A (ja) ハイブリッド車両
KR20190052297A (ko) 하이브리드 차량용 파워트레인 및 그 제어방법
KR20190040622A (ko) 하이브리드 차량의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841445

Country of ref document: EP

Kind code of ref document: A1