WO2015030069A1 - 突入電流制限回路 - Google Patents

突入電流制限回路 Download PDF

Info

Publication number
WO2015030069A1
WO2015030069A1 PCT/JP2014/072471 JP2014072471W WO2015030069A1 WO 2015030069 A1 WO2015030069 A1 WO 2015030069A1 JP 2014072471 W JP2014072471 W JP 2014072471W WO 2015030069 A1 WO2015030069 A1 WO 2015030069A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
value
limiting circuit
current
connection line
Prior art date
Application number
PCT/JP2014/072471
Other languages
English (en)
French (fr)
Inventor
木村 修
八尾 勉
保宣 田中
Original Assignee
矢崎総業株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社, 独立行政法人産業技術総合研究所 filed Critical 矢崎総業株式会社
Priority to CN201480052151.XA priority Critical patent/CN105765815B/zh
Priority to DE112014003904.7T priority patent/DE112014003904T5/de
Publication of WO2015030069A1 publication Critical patent/WO2015030069A1/ja
Priority to US15/054,593 priority patent/US9806520B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/004Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off in connection with live-insertion of plug-in units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/908Inrush current limiters

Definitions

  • the present invention relates to an inrush current limiting circuit.
  • the inrush current limiting circuit includes a first connection line that connects the positive terminal of the battery and the electrical load, a second connection line that connects the negative terminal of the battery and the electrical load, and first and second connection lines.
  • Each switch includes a switch and a current limiting circuit connected in parallel with these switches.
  • the current limiting circuit includes a switching element, a precharge resistor, and a leakage current detection circuit.
  • a switch and a switching element provided on the second connection line are provided. Turn on. As a result, the smoothing capacitor is slowly charged through the precharge resistor, and the inrush current is suppressed (see Patent Document 1).
  • the present invention solves such problems, and an object of the present invention is to provide an inrush current limiting circuit capable of preventing the destruction of components due to inrush current while preventing the complication of the configuration. There is to do.
  • the inrush current limiting circuit of the present invention includes a first connection line that connects a positive terminal of a battery and an electric load, a second connection line that connects a negative terminal of the battery and an electric load, and the first connection line.
  • a capacitor having one electrode connected thereto and the other electrode connected to the second connection line, a switch provided on one connection line of the first and second connection lines, and the first and second connections.
  • a current limit circuit provided on the other connection line of the connection line wherein the current limit circuit is a current sensor provided on the other connection line, and a signal corresponding to the detection value of the current sensor is inverted and input
  • An operational amplifier in which a current command value is input to a non-inverting input terminal and a switch provided on the other connection line and to which an output signal from the operational amplifier is input to a control terminal and switched according to the output signal N
  • the current command value in a period from when the switch is turned on to when the capacitor is fully charged is greater than a value corresponding to the minimum of the rated currents of the components constituting the circuit.
  • the value is set to a small value, which is smaller than the maximum current value in the safe operation region of the switching element.
  • the current command value in the period from when the switch is turned on until the capacitor is completely charged is smaller than the value corresponding to the minimum of the rated currents of the components constituting the circuit. Value.
  • the detection value of the current sensor is adjusted by the switching element so that the current command value becomes the same, and the charging of the capacitor is completed. It is possible to prevent the component from being destroyed by the inrush current during the period.
  • the current limiting circuit is provided on the other connection line of the first and second connection lines, it is not necessary to provide a plurality of switches, and the switch is provided only on one of the first and second connection lines. Good.
  • the current command value is smaller than the value corresponding to the maximum current value in the safe operation area of the switching element, the secondary breakdown phenomenon does not occur in the switching element, and the switching element is used efficiently. can do.
  • the inrush current limiting circuit includes a first connection line that connects the positive terminal of the battery and the electrical load, a second connection line that connects the negative terminal of the battery and the electrical load, and the first connection line.
  • a capacitor having one electrode connected to a connection line and the other electrode connected to the second connection line; a switch provided on one connection line of the first and second connection lines;
  • a current limiting circuit provided on the other connection line of the second connection line, wherein the current limiting circuit provides a current sensor provided on the other connection line, and a signal corresponding to a value detected by the current sensor.
  • An operational amplifier that is input to the inverting input terminal and a current command value is input to the non-inverting input terminal, and an output signal from the operational amplifier that is provided on the other connection line is input to the control terminal, and switching is performed according to the output signal.
  • the It includes a switching element, wherein the switching element is a silicon carbide static induction transistor.
  • inrush current limiting circuit in order to use the silicon carbide static induction transistor in the active region, it is preferable to use the static induction transistor rather than the MOSFET having the gate oxide film.
  • the product of the value of the current flowing through the switching element and the voltage difference between both ends of the switching element is a constant value.
  • the current command value is a value that makes the product of the current value flowing through the switching element and the voltage difference between both ends of the switching element constant. Therefore, as in the case where the current command value is a constant value, the power of the switching element is high in the first half of the period from when the switch is turned on until the capacitor is completely charged, and small in the second half. It can be made substantially constant throughout the entire period. Therefore, there is no overspec (waste) of the rated power of the switching element, and at least one of suppressing the rated power of the switching element and shortening the period until the capacitor is completely charged can be achieved.
  • a current flowing through the switching element based on a voltage sensor that detects a voltage difference between both ends of the switching element, and a signal from the voltage sensor and a signal from the current sensor. It is preferable to further include an arithmetic unit that calculates the current command value in which the product of the value and the voltage difference between both ends of the switching element is constant and outputs the current command value to the non-inverting input terminal of the operational amplifier.
  • a current command value in which the product of the current value and the voltage value of the switching element is constant is calculated based on signals from the current sensor and the voltage sensor, and is output to the non-inverting input terminal of the operational amplifier. Therefore, it is possible to calculate the current command value by actually monitoring the voltage difference between the switching elements, for example, to change the resistance value of each component depending on the temperature environment in which the inrush current limiting circuit is used.
  • the power applied to the switching element can be made constant more accurately.
  • the inrush current limiting circuit further includes a determination unit that determines completion of charging of the capacitor based on a signal from the voltage sensor, and the computing unit determines whether the charging of the capacitor is completed by the determination unit. If determined, it is preferable that the current command value is changed to be higher than a value in a period from when the switch is turned on until the capacitor is completely charged, so that the switching element is completely turned on.
  • the determination unit for determining the completion of charging of the capacitor since the determination unit for determining the completion of charging of the capacitor is provided, it is not necessary to determine the completion of charging of the capacitor from the passage of time, and more accurate determination can be made from the voltage difference of the actual switching element.
  • the switching element can be completely turned on at a proper timing.
  • an inrush current limiting circuit capable of preventing a component from being destroyed by an inrush current while preventing a complicated configuration.
  • FIG. 1 is a circuit diagram showing an example of an inrush current limiting circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the inrush current limiting circuit according to the present embodiment, and shows a current command value input to the non-inverting input terminal of the operational amplifier.
  • FIG. 3 is a diagram for explaining the operation of the inrush current limiting circuit according to the present embodiment, showing each current value, voltage value, and the like.
  • FIG. 4 is a circuit diagram showing an inrush current limiting circuit according to a modification of the present embodiment.
  • 5A and 5B are diagrams showing power in the inrush current limiting circuit according to the present embodiment, FIG. 5A shows the drain voltage and the drain current, and FIG. Indicates power.
  • FIG. 6 (a) and 6 (b) are diagrams showing power in an inrush current limiting circuit according to a modification
  • FIG. 6 (a) shows a first example
  • FIG. 6 (b) shows a second example.
  • An example is shown.
  • FIG. 7 is a graph showing the current, voltage, and power of the switching element according to the modification.
  • FIG. 8 is a circuit diagram showing an inrush current limiting circuit according to a second modification of the present embodiment.
  • FIG. 1 is a circuit diagram showing an example of an inrush current limiting circuit according to an embodiment of the present invention.
  • the inrush current limiting circuit 1 is provided in a power supply system that supplies electric power to an electric load (for example, an inverter) such as a hybrid vehicle or an electric vehicle, and as shown in FIG.
  • an electric load for example, an inverter
  • an inverter such as a hybrid vehicle or an electric vehicle
  • FIG. 1 A first connection line L1, a second connection line L2, an inverter capacitor (capacitor) C, a relay switch (switch) SW, and a current limiting circuit 10 are provided.
  • the first connection line L1 connects the positive terminal of the battery B and the electric load
  • the second connection line L2 connects the negative terminal of the battery B and the electric load
  • the inverter capacitor C is provided on a third connection line L3 connecting the first connection line L1 and the second connection line L2, and one electrode is connected to the first connection line L1, and the second connection line L2 is connected to the second connection line L2.
  • the other electrode is connected.
  • the connection portion between the first connection line L1 and the third connection line L3 is referred to as a first intersection point a
  • the connection portion between the second connection line L2 and the third connection line L3 is referred to as a second intersection point b.
  • the relay switch SW is provided in a portion of the first connection line L1 from the battery B to the first intersection a, and is turned on when power is supplied to the electrical load and turned off when the power is shut off.
  • the current limiting circuit 10 is provided in a portion of the second connection line L2 from the battery B to the second intersection point b, and limits the inrush current when the relay switch SW is on.
  • Such a current limiting circuit 10 includes a current sensor 11, an operational amplifier OP, and a switching element Q.
  • the current sensor 11 is provided on the second connection line L2, and outputs a voltage signal corresponding to the detected value to the non-inverting input terminal of the operational amplifier OP.
  • a shunt resistor is used.
  • the operational amplifier OP inputs a voltage signal corresponding to the detection value of the current sensor 11 to the inverting input terminal, and inputs a current command value to the non-inverting input terminal.
  • the switching element Q is specifically a silicon carbide static induction transistor (SiC-SIT), the gate (control terminal) of which is connected to the output of the operational amplifier OP, and the output signal of the operational amplifier OP input to the gate. Switching is performed accordingly. In such a switching element Q, the drain is connected to the second intersection b, and the source is connected to the current sensor 11 side.
  • Switching element Q is not limited to a silicon carbide electrostatic induction transistor, but may be a MOSFET, IGBT, bipolar transistor, or the like.
  • the current command value input to the non-inverting input terminal of the operational amplifier OP constitutes the inrush current limiting circuit 1 in the period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed.
  • the voltage value is smaller than the voltage value corresponding to the smallest of the rated currents of the parts to be performed (relay switch SW, inverter capacitor C, etc.).
  • the detection value of the current sensor 11 is adjusted by the switching element Q so that the current command value becomes the same. For this reason, in the period until the charging of the inverter capacitor C is completed, the current flowing through the second connection line L2 is adjusted, and the destruction of the component due to the inrush current is prevented.
  • FIG. 2 is a diagram for explaining the operation of the inrush current limiting circuit 1 according to the present embodiment, and shows a current command value input to the non-inverting input terminal of the operational amplifier OP.
  • the current command value is set to V1.
  • the current command value is set to V2 (> V1) at time t1 after the predetermined time has elapsed. Thereafter, the current command value is maintained at V2.
  • the current command value V1 is set to a voltage value smaller than the voltage value corresponding to the minimum of the rated currents of the components constituting the inrush current limiting circuit 1. More specifically, the current command value V1 is a value smaller than the voltage value corresponding to the maximum current value in the safe operation area (SOA) of the switching element Q. Specifically, the current command value V1 is set to 0.1V. Thereby, the switching element Q is controlled so that a current of 0.1 V flows in the current sensor 11.
  • SOA safe operation area
  • the current command value V2 is a value relative to a current value flowing through the second connection line L2 at a normal time (when the inrush current limiting period ends and a desired power is supplied to the electrical load). Therefore, the value is set to a sufficiently large value so that the switching element Q is completely turned on.
  • the predetermined time from the time t0 to the time t1 is set to a time until the inrush current is eliminated, or a time longer than the time, and specifically, about 0.2 seconds.
  • FIG. 3 is a diagram for explaining the operation of the inrush current limiting circuit 1 according to the present embodiment, and shows each current value, voltage value, and the like.
  • the relay switch SW is turned on at Time 0 sec.
  • the current command value is V1 (0.1 V), and the switching element Q is controlled so that a current of 0.1 V flows in the current sensor 11.
  • a drain current of about 1.5 A flows immediately after the relay switch SW is turned on, and a drain voltage of about 70 V is applied.
  • the power is drain current ⁇ drain voltage, and instantaneously becomes about 110 W.
  • the gate voltage is about 6V.
  • the drain voltage decreases, and when it reaches 0.2 seconds before, the drain voltage becomes 0 V and the power becomes 0 W. At this time, the charging of the inverter capacitor C is completed, and the inrush current generation period ends.
  • the current command value in the period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed is the same as that of the inrush current limiting circuit 1.
  • the value is smaller than the value corresponding to the minimum of the rated currents of the constituent parts. For this reason, from the characteristic that the values of both terminals of the operational amplifier OP are adjusted in the same way, the detection value of the current sensor 11 is adjusted by the switching element Q so as to be the same as the current command value, and charging of the inverter capacitor C is performed. It is possible to prevent the component from being destroyed by the inrush current during the period until the process is completed.
  • the current limiting circuit 10 is provided on the second connection line L2, it is not necessary to provide a plurality of relay switches SW, and the relay switch SW may be provided only on the second connection line L2. Therefore, it is possible to prevent the component from being destroyed by the inrush current while preventing the configuration from becoming complicated. Furthermore, since the current command value V1 is smaller than the value corresponding to the maximum current value in the safe operation region of the switching element Q, the secondary breakdown phenomenon does not occur in the switching element Q, and the switching is performed efficiently. Element Q can be used.
  • the switching element Q is a silicon carbide static induction transistor, it is preferable to use a static induction transistor rather than a MOSFET having a gate oxide film in order to use the silicon carbide static induction transistor in the active region.
  • the relay switch SW is provided on the first connection line L1
  • the current limiting circuit 10 is provided on the second connection line L2.
  • the present invention is not limited to this, and the relay switch SW is connected to the second connection line L2.
  • the current limiting circuit 10 may be provided on the first connection line L1.
  • the inrush current limiting circuit 1 may be configured as follows. First, the inrush current limiting circuit 1 according to the above embodiment has a second half of a period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed (specifically, Time 0.1 sec to 0. 0 in FIG. 3). In 2 sec), the rated power of the switching element Q becomes overspec. That is, the maximum power of the SOA of the switching element Q must be set to a value (110 W in FIG. 3) at which the switching element Q is most at the start of the inrush current.
  • the switching element Q having the maximum rated power adjusted at the start of the inrush current must be incorporated on the inrush current limiting circuit 1, but in the latter half of the period until the charging of the inverter capacitor C is completed, Such a maximum power of the SOA is not required, resulting in overspec.
  • FIG. 4 is a circuit diagram showing an inrush current limiting circuit 2 according to a modification of the present embodiment. As shown in FIG. 4, the inrush current limiting circuit 2 includes a voltage sensor 13 and a calculator 14.
  • the voltage sensor 13 outputs a signal corresponding to the voltage difference between both ends of the switching element Q to the calculator 14.
  • the computing unit 14 generates a current command value according to the signal of the voltage difference between both ends of the switching element Q detected by the voltage sensor 13, and outputs it to the non-inverting input terminal of the operational amplifier OP. That is, the computing unit 14 is a current command that makes the product of the current value flowing through the switching element Q and the voltage difference between both ends of the switching element Q constant based on the signal from the voltage sensor 13 and the signal from the current sensor 11. The value is calculated and output to the non-inverting input terminal of the operational amplifier OP.
  • such a current command value is higher than a voltage value corresponding to a value not exceeding the SOA of the switching element Q in the period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed. It is a small voltage value.
  • the current command value is a value that makes the product of the current value flowing through the switching element Q and the voltage difference between both ends of the switching element Q constant as described above. For this reason, the electric power applied to the switching element Q becomes constant, and the electric power applied to the switching element Q can be made constant throughout the period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed. Thereby, the following effects are produced.
  • FIG. 5A and 5B are diagrams showing power in the inrush current limiting circuit 1 according to this embodiment
  • FIG. 5A shows the drain voltage and the drain current
  • the drain current is substantially constant over the entire period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed.
  • the drain voltage is high in the initial stage and decreases as the inverter capacitor C is charged.
  • the power which is the product of the drain voltage and the drain current, similarly becomes a high value W1 in the initial stage, and becomes smaller as the inverter capacitor C is charged.
  • FIGS. 6A and 6B are diagrams showing power in the inrush current limiting circuit 2 according to the modification, FIG. 6A shows a first example, and FIG. The example of 2 is shown.
  • the power applied to the switching element Q becomes a substantially constant value W2 in the entire period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed, and becomes smaller as the inverter capacitor C is charged in the initial stage.
  • the switching element Q it is only necessary to incorporate a SOA whose maximum power is W2 in the inrush current limiting circuit 2, and the problem of overspec is solved.
  • a current command value such that the power becomes a substantially constant value W1 over the entire period may be input to the operational amplifier OP.
  • FIG. 7 is a graph showing the current, voltage, and power of the switching element Q according to the modification.
  • a current command value for maintaining the power 1800 W of the switching element Q is input to the operational amplifier OP.
  • a current command value that causes the drain current to be about 2.5 A and the drain voltage to be over 700 V is input to the operational amplifier OP.
  • the power of the switching element Q at this time is about 1800W.
  • the drain current becomes about 3.5 A and the drain voltage becomes slightly over 500 V
  • the drain current becomes just over 5 A and the drain voltage becomes about 350 V.
  • the drain current becomes approximately 1 A, and the drain voltage becomes approximately 1800 V.
  • the computing unit 14 is configured to calculate current command value data for realizing such current, voltage, and power. Therefore, as in the case where the current command value is a constant value, the power of the switching element Q is higher in the first half of the period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed. It does not become small and can be made substantially constant throughout the entire period. Therefore, there is no overspec (wasting) of the maximum power of the SOA of the switching element Q, at least suppressing the maximum power of the SOA of the switching element Q, and shortening the period until the charging of the inverter capacitor C is completed. One will be achieved.
  • the current command value can be calculated by actually monitoring the voltage difference of the switching element Q. For example, each component depending on the temperature environment in which the inrush current limiting circuit 2 is used. It is possible to cope with a change in the resistance value, and to make the power related to the switching element Q more accurate.
  • FIG. 8 is a circuit diagram showing an inrush current limiting circuit 3 according to a second modification of the present embodiment.
  • the inrush current limiting circuit 3 according to the second modification shown in FIG. 8 includes a determination unit 15 in addition to the modification in the inrush current limiting circuit 3 according to the second modification shown in FIG.
  • the determination unit 15 determines completion of charging of the inverter capacitor C based on a signal from the voltage sensor 13. When determining that the charging of the inverter capacitor C is completed, the determining unit 15 transmits a signal to that effect to the computing unit 14.
  • the computing unit 14 when the determination unit 15 determines that the charging of the inverter capacitor C is completed, the computing unit 14 is a value in a period from when the relay switch SW is turned on until the charging of the inverter capacitor C is completed.
  • the current command value is changed to be higher than the switching element Q so that the switching element Q is completely turned on.
  • the switching element Q can be completely turned on with more accurate timing.
  • the inrush current limiting circuit 1 may incorporate the technologies of the modified example and the second modified example, or may incorporate a part of these technologies.
  • the current command value in a period from when the switch is turned on to when the capacitor is fully charged is smaller than a value corresponding to the minimum of the rated currents of the components constituting the circuit, and the switching Inrush current limiting circuit that is smaller than the maximum current value in the safe operation area of the element.
  • the inrush current limit according to any one of [1] or [2], wherein a product of a current value flowing through the switching element and a voltage difference between both ends of the switching element is constant. circuit.
  • a voltage sensor (13) for detecting a voltage difference between both ends of the switching element; Based on the signal from the voltage sensor and the signal from the current sensor, to calculate the current command value that the product of the current value flowing through the switching element and the voltage difference between both ends of the switching element is constant, An arithmetic unit (14) for outputting to the non-inverting input terminal of the operational amplifier;
  • the present invention it is possible to prevent the component from being destroyed by the inrush current while preventing the configuration from becoming complicated.
  • the present invention having this effect is useful for an inrush current limiting circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)

Abstract

 リレースイッチ(SW)をオンしてからインバータコンデンサ(C)の充電が完了するまでの期間における電流指令値は、回路(1)を構成する部品の定格電流のうち最小のものに相当する値よりも小さな値とされ、スイッチング素子(Q)の安全動作領域における最大電流値よりも小さな値とされている。

Description

突入電流制限回路
 本発明は、突入電流制限回路に関する。
 従来、電気的負荷に大容量の平滑コンデンサが並列接続される場合において、バッテリから電気的負荷に電力供給する際に、バッテリから平滑コンデンサに流れる突入電流を小さくするための突入電流制限回路が提案されている。この突入電流制限回路は、バッテリの正端子と電気的負荷とを接続する第1接続線と、バッテリの負端子と電気的負荷とを接続する第2接続線と、第1及び第2接続線のそれぞれに設けられたスイッチと、これらスイッチと並列接続される電流制限回路とから構成されている。
 電流制限回路は、スイッチング素子と、プリチャージ抵抗と、漏れ電流検出回路とを備えており、電気的負荷への給電を開始する場合、まず、第2接続線上に設けられたスイッチとスイッチング素子とをオンする。これにより、平滑コンデンサはプリチャージ抵抗を介してゆっくりと充電されることとなり、突入電流が抑えられることとなる(特許文献1参照)。
日本国特許第4123441号公報
 しかし、特許文献1に記載の突入電流制限回路は、第1及び第2接続線上にそれぞれスイッチを設けると共にスイッチング素子及びプリチャージ抵抗を備える必要があり、構成の複雑化を招いてしまう。
 本発明は、このような課題を解決するものであり、その目的とするところは、構成の複雑化を防止しつつも突入電流による部品の破壊を防止することが可能な突入電流制限回路を提供することにある。
 本発明の突入電流制限回路は、バッテリの正端子と電気的負荷とを接続する第1接続線と、バッテリの負端子と電気的負荷とを接続する第2接続線と、前記第1接続線に一方の電極が接続され、前記第2接続線に他方の電極が接続されたコンデンサと、前記第1及び第2接続線の一方の接続線上に設けられたスイッチと、前記第1及び第2接続線の他方の接続線上に設けられた電流制限回路と、を備え、前記電流制限回路は、前記他方の接続線上に設けられる電流センサと、前記電流センサの検出値に応じた信号が反転入力端子に入力されると共に非反転入力端子に電流指令値が入力されるオペアンプと、前記他方の接続線上に設けられ制御端子に前記オペアンプからの出力信号が入力され、出力信号に応じてスイッチングするスイッチング素子と、を有し、前記スイッチをオンしてから前記コンデンサの充電が完了するまでの期間における前記電流指令値は、回路を構成する部品の定格電流のうち最小のものに相当する値よりも小さな値とされ、前記スイッチング素子の安全動作領域における最大電流値よりも小さな値とされている。
 この突入電流制限回路によれば、スイッチをオンしてからコンデンサの充電が完了するまでの期間における電流指令値は、回路を構成する部品の定格電流のうち最小のものに相当する値よりも小さな値とされている。このため、オペアンプの両端子の値を同じように調整する特性から、電流センサの検出値は電流指令値を同じとなるようにスイッチング素子によって調整されることとなり、コンデンサの充電が完了するまでの期間において突入電流による部品の破壊を防止することができる。しかも、電流制限回路は第1及び第2接続線の他方の接続線上に設けられていることから、スイッチを複数備える必要がなく、スイッチは第1及び第2接続線の一方にだけ設ければよい。従って、構成の複雑化を防止しつつも突入電流による部品の破壊を防止することができる。さらに、電流指令値は、スイッチング素子の安全動作領域における最大電流値に相当する値よりも小さな値とされているため、スイッチング素子において二次降伏現象が発生せず、効率的にスイッチング素子を使用することができる。
 また、本発明の突入電流制限回路は、バッテリの正端子と電気的負荷とを接続する第1接続線と、バッテリの負端子と電気的負荷とを接続する第2接続線と、前記第1接続線に一方の電極が接続され、前記第2接続線に他方の電極が接続されたコンデンサと、前記第1及び第2接続線の一方の接続線上に設けられたスイッチと、前記第1及び第2接続線の他方の接続線上に設けられた電流制限回路と、を備え、前記電流制限回路は、前記他方の接続線上に設けられる電流センサと、前記電流センサによる検出値に応じた信号を反転入力端子に入力すると共に非反転入力端子に電流指令値が入力されるオペアンプと、前記他方の接続線上に設けられ制御端子に前記オペアンプからの出力信号が入力され、出力信号に応じてスイッチングするスイッチング素子と、を有し、前記スイッチング素子は、炭化珪素静電誘導型トランジスタである。
 この突入電流制限回路によれば、炭化珪素静電誘導型トランジスタを能動領域で使うには、ゲート酸化膜を有するMOSFETより静電誘導型トランジスタを使う方が好ましい。
 また、本発明の突入電流制限回路において、前記スイッチング素子に流れる電流値と前記スイッチング素子の両端の電圧差との積が一定となる値とされていることが好ましい。
 この突入電流制限回路によれば、電流指令値は、スイッチング素子に流れる電流値とスイッチング素子の両端の電圧差との積が一定となる値とされている。このため、電流指令値が一定値である場合のように、スイッチング素子の電力が、スイッチがオンしてからコンデンサの充電が完了するまでの期間の前半部分において高く後半部分において小さくなるようなことがなく、全期間を通じて略一定とすることができる。故に、スイッチング素子の定格電力のオーバースペック(無駄)がなく、スイッチング素子の定格電力を抑えること、及び、コンデンサの充電が完了するまでの期間を短くすることの少なくとも一方を達成することができる。
 また、本発明の突入電流制限回路において、前記スイッチング素子の両端の電圧差を検出する電圧センサと、前記電圧センサからの信号と前記電流センサからの信号とに基づいて、前記スイッチング素子に流れる電流値と前記スイッチング素子の両端の電圧差との積が一定となる前記電流指令値を算出して、前記オペアンプの非反転入力端子に出力する演算器と、をさらに備えることが好ましい。
 この突入電流制限回路によれば、電流センサと電圧センサとの信号に基づいてスイッチング素子の電流値と電圧値との積が一定となる電流指令値を算出してオペアンプの非反転入力端子に出力する演算器とを備えるため、実際にスイッチング素子の電圧差を監視して電流指令値を算出することができ、例えば突入電流制限回路が使用される温度環境による各部品の抵抗値の変化等にも対応でき、より正確にスイッチング素子に掛かる電力を一定とすることができる。
 また、本発明の突入電流制限回路において、前記電圧センサからの信号に基づいて、前記コンデンサの充電完了を判断する判断部をさらに備え、前記演算器は、前記判断部により前記コンデンサの充電完了が判断された場合、前記スイッチをオンしてから前記コンデンサの充電が完了するまでの期間における値よりも前記電流指令値を高く変更して前記スイッチング素子を完全オン状態とすることが好ましい。
 この突入電流制限回路によれば、コンデンサの充電完了を判断する判断部を備えるため、コンデンサの充電完了を時間経過から判断する必要が無く、実際のスイッチング素子の電圧差から判断して、より正確なタイミングでスイッチング素子を完全オン状態とすることができる。
 本発明によれば、構成の複雑化を防止しつつも突入電流による部品の破壊を防止することが可能な突入電流制限回路を提供することができる。
図1は、本発明の実施形態に係る突入電流制限回路の一例を示す回路図である。 図2は、本実施形態に係る突入電流制限回路の動作を説明する図であって、オペアンプの非反転入力端子に入力される電流指令値を示している。 図3は、本実施形態に係る突入電流制限回路の動作を説明する図であって、各電流値及び電圧値等を示している。 図4は、本実施形態の変形例に係る突入電流制限回路を示す回路図である。 図5(a)及び図5(b)は、本実施形態に係る突入電流制限回路において電力を示す図であり、図5(a)はドレイン電圧及びドレイン電流を示し、図5(b)は電力を示している。 図6(a)及び図6(b)は、変形例に係る突入電流制限回路において電力を示す図であり、図6(a)は第1の例を示し、図6(b)は第2の例を示している。 図7は、変形例に係るスイッチング素子の電流、電圧及び電力を示すグラフである。 図8は、本実施形態の第2変形例に係る突入電流制限回路を示す回路図である。
 以下、本発明の好適な実施形態を図面に基づいて説明するが、本発明は以下の実施形態に限定されるものではない。図1は、本発明の実施形態に係る突入電流制限回路の一例を示す回路図である。
 本実施形態に係る突入電流制限回路1は、ハイブリッド車や電気自動車などの電気的負荷(例えばインバータ)に対して電力を供給する電源系統に設けられるものであって、図1に示すように、第1接続線L1と、第2接続線L2と、インバータコンデンサ(コンデンサ)Cと、リレースイッチ(スイッチ)SWと、電流制限回路10とを備えている。
 第1接続線L1は、バッテリBの正端子と電気的負荷とを接続するものであり、第2接続線L2は、バッテリBの負端子と電気的負荷とを接続するものである。インバータコンデンサCは、第1接続線L1と第2接続線L2とを結ぶ第3接続線L3上に設けられており、第1接続線L1に一方の電極が接続され、第2接続線L2に他方の電極が接続されている。以下、第1接続線L1と第3接続線L3との接続部を第1交点aと称し、第2接続線L2と第3接続線L3との接続部を第2交点bと称する。
 リレースイッチSWは、第1接続線L1のうちバッテリBから第1交点aまでの部位に設けられており、電気的負荷への電力供給時にオンし、電力遮断時にオフするものである。電流制限回路10は、第2接続線L2のうちバッテリBから第2交点bまでの部位に設けられており、リレースイッチSWのオン時における突入電流を制限するものである。
 このような電流制限回路10は、電流センサ11と、オペアンプOPと、スイッチング素子Qとを備えている。電流センサ11は、第2接続線L2上に設けられ、検出値に応じた電圧信号をオペアンプOPの非反転入力端子に出力するものであって、例えばシャント抵抗が用いられる。オペアンプOPは、電流センサ11の検出値に応じた電圧信号を反転入力端子に入力し、電流指令値を非反転入力端子に入力するものである。
 スイッチング素子Qは、具体的には炭化珪素静電誘導型トランジスタ(SiC-SIT)であって、ゲート(制御端子)がオペアンプOPの出力に接続され、ゲートに入力されるオペアンプOPの出力信号に応じてスイッチングするものである。このようなスイッチング素子Qは、ドレインが第2交点bに接続され、ソースが電流センサ11側に接続されている。なお、スイッチング素子Qは、炭化珪素静電誘導型トランジスタに限らず、MOSFET、IGBTやバイポーラトランジスタ等であってもよい。
 さらに、本実施形態においてオペアンプOPの非反転入力端子に入力される電流指令値は、リレースイッチSWをオンしてからインバータコンデンサCの充電が完了するまでの期間において、突入電流制限回路1を構成する部品(リレースイッチSWやインバータコンデンサCなど)の定格電流のうち最小のものに相当する電圧値よりも小さな電圧値とされている。
 ここで、オペアンプOPの両端子の値を同じように調整する特性から、電流センサ11の検出値は電流指令値を同じとなるようにスイッチング素子Qによって調整されることとなる。このため、インバータコンデンサCの充電が完了するまでの期間において、第2接続線L2を流れる電流が調整されることとなり、突入電流による部品の破壊を防止されることとなる。
 次に、本実施形態に係る突入電流制限回路1の動作を説明する。図2は、本実施形態に係る突入電流制限回路1の動作を説明する図であって、オペアンプOPの非反転入力端子に入力される電流指令値を示している。
 まず、時刻t0においてリレースイッチSWがオンすると電流指令値はV1とされる。そして、所定時間経過後の時刻t1において電流指令値はV2(>V1)とされる。以後、電流指令値はV2で維持されることとなる。
 ここで、電流指令値V1は、上記したように、突入電流制限回路1を構成する部品の定格電流のうち、最小のものに相当する電圧値よりも小さな電圧値とされている。より詳細に電流指令値V1は、スイッチング素子Qの安全動作領域(SOA)における最大電流値に相当する電圧値よりも小さな値とされている。具体的に電流指令値V1は、0.1Vとされる。これにより、電流センサ11にて0.1Vとなる電流が流れるようにスイッチング素子Qが制御される。
 また、電流指令値V2は、通常時(突入電流の制限期間が終了した時であって、電気的負荷に所望の電力を供給している段階)に第2接続線L2に流れる電流値に対して、充分大きな値とされており、スイッチング素子Qが完全にオンとなる値とされている。
 さらに、時刻t0から時刻t1までの所定時間は、突入電流が解消されるまでの時間、又は当該時間よりも長い時間に設定されており、具体的には0.2秒程度とされている。
 次に、図3を参照して本実施形態に係る突入電流制限回路1の動作をより詳細に説明する。図3は、本実施形態に係る突入電流制限回路1の動作を説明する図であって、各電流値及び電圧値等を示している。
 まず、Time0secにおいてリレースイッチSWがオンしたとする。電流指令値はV1(0.1V)となり、電流センサ11にて0.1Vとなる電流が流れるようにスイッチング素子Qが制御される。この結果、リレースイッチSWのオン直後に約1.5Aのドレイン電流が流れ、約70Vのドレイン電圧が印加される。また、電力は、ドレイン電流×ドレイン電圧となり、瞬時的に約110Wとなる。なお、このときのゲート電圧は約6Vとなっている。
 次いで、Time0.05secに達したとすると、ドレイン電圧が低下し約50Vとなる。このため、電力も約75Wに低下する。
 その後もドレイン電圧は低下し、Time0.2sec前に到達すると、ドレイン電圧は0Vとなり、電力も0Wとなる。この時点においてインバータコンデンサCの充電が完了しており、突入電流の発生期間は終了している。
 以後、図示を省略するが、電流指令値はV2となり、スイッチング素子Qが完全オン状態となる。
 このようにして、本実施形態に係る突入電流制限回路1によれば、リレースイッチSWをオンしてからインバータコンデンサCの充電が完了するまでの期間における電流指令値は、突入電流制限回路1を構成する部品の定格電流のうち最小のものに相当する値よりも小さな値とされている。このため、オペアンプOPの両端子の値を同じように調整する特性から、電流センサ11の検出値は電流指令値と同じとなるようにスイッチング素子Qによって調整されることとなり、インバータコンデンサCの充電が完了するまでの期間において突入電流による部品の破壊を防止することができる。しかも、電流制限回路10は第2接続線L2上に設けられていることから、リレースイッチSWを複数備える必要がなく、リレースイッチSWは第2接続線L2にだけ設ければよい。従って、構成の複雑化を防止しつつも突入電流による部品の破壊を防止することができる。さらに、電流指令値V1は、スイッチング素子Qの安全動作領域における最大電流値に相当する値よりも小さな値とされているため、スイッチング素子Qにおいて二次降伏現象が発生せず、効率的にスイッチング素子Qを使用することができる。
 また、スイッチング素子Qが炭化珪素静電誘導型トランジスタであるため、炭化珪素静電誘導型トランジスタを能動領域で使うには、ゲート酸化膜を有するMOSFETより静電誘導型トランジスタを使う方が好ましい。
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。例えば、本実施形態においてリレースイッチSWは第1接続線L1上に設けられ、電流制限回路10が第2接続線L2上に設けられているが、これに限らず、リレースイッチSWが第2接続線L2上に設けられ、電流制限回路10が第1接続線L1上に設けられていてもよい。
 また、本実施形態に係る突入電流制限回路1は、以下のように構成されていてもよい。まず、上記実施形態に係る突入電流制限回路1は、リレースイッチSWがオンしてからインバータコンデンサCの充電が完了するまでの期間の後半部分(具体的には図3のTime0.1sec~0.2sec)においてはスイッチング素子Qの定格電力がオーバースペックとなってしまう。すなわち、スイッチング素子QのSOAの最大電力は突入電流開始時にスイッチング素子Qに最も電力が掛かるときの値(図3では110W)としなければならない。このため、突入電流開始時に合わせた最大定格電力を有するスイッチング素子Qを突入電流制限回路1上に組み込まなければならなくなるが、インバータコンデンサCの充電が完了するまでの期間の後半部分においては、そのようなSOAの最大電力を必要とせずオーバースペックとなってしまう。
 一方、スイッチング素子QのSOAの最大電力を小さくすると、インバータコンデンサCの充電が完了するまでの期間が長くなってしまうという問題が発生してしまう。そこで、以下の構成を採用するようにしてもよい。
 図4は、本実施形態の変形例に係る突入電流制限回路2を示す回路図である。図4に示すように、突入電流制限回路2は、電圧センサ13と、演算器14とを備えている。
 電圧センサ13は、スイッチング素子Qの両端の電圧差に応じた信号を演算器14に出力するものである。演算器14は、電圧センサ13により検出されたスイッチング素子Qの両端電圧差の信号に応じて、電流指令値を生成し、オペアンプOPの非反転入力端子に出力するものである。すなわち、演算器14は、電圧センサ13からの信号と電流センサ11からの信号とに基づいて、スイッチング素子Qに流れる電流値とスイッチング素子Qの両端の電圧差との積が一定となる電流指令値を算出して、オペアンプOPの非反転入力端子に出力するものである。
 このような電流指令値は、上記と同様に、リレースイッチSWをオンしてからインバータコンデンサCの充電が完了するまでの期間において、スイッチング素子QのSOAを超えない値に相当する電圧値よりも小さな電圧値とされている。さらに、変形例において、電流指令値は、上記の如くスイッチング素子Qに流れる電流値とスイッチング素子Qの両端の電圧差との積が一定となる値とされている。このため、スイッチング素子Qに掛かる電力が一定となり、リレースイッチSWがオンしてからインバータコンデンサCの充電が完了するまでの全期間においてスイッチング素子Qに掛かる電力を一定とすることができる。これにより、以下の効果を奏する。
 図5(a)及び図5(b)は、本実施形態に係る突入電流制限回路1において電力を示す図であり、図5(a)はドレイン電圧及びドレイン電流を示し、図5(b)は電力を示している。図5(a)に示すように、ドレイン電流はリレースイッチSWがオンしてからインバータコンデンサCの充電が完了するまでの全期間において略一定である。これに対して、ドレイン電圧は、初期において高く、インバータコンデンサCが充電されていくにつれて小さくなる。このため、図5(b)に示すように、ドレイン電圧とドレイン電流との積である電力も同様に、初期において高い値W1となり、インバータコンデンサCが充電されていくにつれて小さくなる。
 図6(a)及び図6(b)は、変形例に係る突入電流制限回路2において電力を示す図であり、図6(a)は第1の例を示し、図6(b)は第2の例を示している。スイッチング素子Qに流れる電流値とスイッチング素子Qの両端の電圧差との積が一定となるように電流指令値をオペアンプOPに入力した場合、電力は例えば図6(a)に示すようになる。すなわち、リレースイッチSWがオンしてからインバータコンデンサCの充電が完了するまでの全期間においてスイッチング素子Qに掛かる電力は略一定の値W2となり、初期において高くインバータコンデンサCが充電されていくにつれて小さくなることがない。このため、スイッチング素子Qについては、SOAの最大電力がW2となるものを突入電流制限回路2に組み込めばよく、オーバースペックの問題が解消される。
 また、図6(b)に示すように、電力が全期間において略一定の値W1となるような電流指令値をオペアンプOPに入力してもよい。これにより、期間後半部分においてスイッチング素子Qがオーバースペックになる問題は解消され、且つ、インバータコンデンサCが充電されるまでの時間を短くすることもできる。
 図7は、変形例に係るスイッチング素子Qの電流、電圧及び電力を示すグラフである。図7に示すように、オペアンプOPには、スイッチング素子Qの電力1800Wを維持する電流指令値が入力される。具体的にリレースイッチSWのオン時においてドレイン電流が約2.5Aとなりドレイン電圧が700V強となるような電流指令値がオペアンプOPに入力される。このときのスイッチング素子Qの電力は約1800Wとなる。
 また、時間0.10sec(リレーオン時0.01sec)においてドレイン電流が約3.5Aとなりドレイン電圧が500V強となり、時間0.15secにおいてドレイン電流が5A強となりドレイン電圧が約350Vとなる。そして、時間0.19sec(充電完了時)の直前においてドレイン電流が略1Aとなりドレイン電圧が約1800Vとなる。
 演算器14は、このような電流、電圧及び電力を実現するための電流指令値データを算出する構成となっている。このため、電流指令値が一定値である場合のように、スイッチング素子Qの電力が、リレースイッチSWがオンしてからインバータコンデンサCの充電が完了するまでの期間の前半部分において高く後半部分において小さくなるようなことがなく、全期間を通じて略一定とすることができる。故に、スイッチング素子QのSOAの最大電力のオーバースペック(無駄)がなく、スイッチング素子QのSOAの最大電力を抑えること、及び、インバータコンデンサCの充電が完了するまでの期間を短くすることの少なくとも一方を達成することとなる。
 さらに、上記のような演算器14を備えるため、実際にスイッチング素子Qの電圧差を監視して電流指令値を算出することができ、例えば突入電流制限回路2が使用される温度環境による各部品の抵抗値の変化等にも対応でき、より正確にスイッチング素子Qに係る電力を一定とすることができる。
 図8は、本実施形態の第2変形例に係る突入電流制限回路3を示す回路図である。図8に示す第2変形例に係る突入電流制限回路3は、図8に示す第2変形例に係る突入電流制限回路3は、変形例のものに加えて、判断部15を備えている。
 判断部15は、電圧センサ13からの信号に基づいて、インバータコンデンサCの充電完了を判断するものである。また、判断部15は、インバータコンデンサCの充電が完了したと判断した場合、その旨の信号を演算器14に送信する。
 また、第3変形例において演算器14は、判断部15にてインバータコンデンサCの充電完了が判断された場合、リレースイッチSWをオンしてからインバータコンデンサCの充電が完了するまでの期間における値よりも電流指令値を高く変更してスイッチング素子Qを完全オン状態とする。
 これにより、上記実施形態、及び変形例のように、インバータコンデンサCの充電完了を時間(例えば0.2sec弱)経過から判断する必要が無く、実際のスイッチング素子Qの電圧差から判断して、より正確なタイミングでスイッチング素子Qを完全オン状態とすることができる。
 なお、本実施形態に係る突入電流制限回路1は、変形例、及び第2変形例の技術が組み込まれてもよいし、それら技術の一部が組み込まれてもよい。
 ここで、上述した本発明に係る突入電流制限回路の実施形態の特徴をそれぞれ以下[1]~[5]に簡潔に纏めて列記する。
[1] バッテリ(B)の正端子と電気的負荷とを接続する第1接続線(L1)と、
 バッテリの負端子と電気的負荷とを接続する第2接続線(L2)と、
 前記第1接続線に一方の電極が接続され、前記第2接続線に他方の電極が接続されたコンデンサ(インバータコンデンサC)と、
 前記第1及び第2接続線の一方の接続線上に設けられたスイッチ(リレースイッチSW)と、
 前記第1及び第2接続線の他方の接続線上に設けられた電流制限回路(10)と、を備え、
 前記電流制限回路は、前記他方の接続線上に設けられる電流センサ(11)と、前記電流センサによる検出値に応じた信号を反転入力端子に入力すると共に非反転入力端子に電流指令値が入力されるオペアンプ(OP)と、前記他方の接続線上に設けられ制御端子に前記オペアンプからの出力信号が入力され、出力信号に応じてスイッチングするスイッチング素子(Q)と、を有し、
 前記スイッチをオンしてから前記コンデンサの充電が完了するまでの期間における前記電流指令値は、回路を構成する部品の定格電流のうち最小のものに相当する値よりも小さな値とされ、前記スイッチング素子の安全動作領域における最大電流値よりも小さな値とされている
 突入電流制限回路。
[2] 前記スイッチング素子は、炭化珪素静電誘導型トランジスタである
 上記[1]に記載の突入電流制限回路。
[3] 前記スイッチング素子に流れる電流値と前記スイッチング素子の両端の電圧差との積が一定となる値とされている
 上記[1]又は[2]のいずれか1項に記載の突入電流制限回路。
[4] 前記スイッチング素子の両端の電圧差を検出する電圧センサ(13)と、
 前記電圧センサからの信号と前記電流センサからの信号とに基づいて、前記スイッチング素子に流れる電流値と前記スイッチング素子の両端の電圧差との積が一定となる前記電流指令値を算出して、前記オペアンプの非反転入力端子に出力する演算器(14)と、
 をさらに備える上記[3]に記載の突入電流制限回路。
[5] 前記電圧センサからの信号に基づいて、前記コンデンサの充電完了を判断する判断部(15)をさらに備え、
 前記演算器は、前記判断部により前記コンデンサの充電完了が判断された場合、前記スイッチをオンしてから前記コンデンサの充電が完了するまでの期間における値よりも前記電流指令値を高く変更して前記スイッチング素子を完全オン状態とする
 上記[4]に記載の突入電流制限回路。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年8月27日出願の日本特許出願(特願2013-175257)、2014年6月12日出願の日本特許出願(特願2014-121496)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、構成の複雑化を防止しつつも突入電流による部品の破壊を防止することができる。この効果を奏する本発明は、突入電流制限回路に関して有用である。
1~3…突入電流制限回路
10…電流制限回路
11…電流センサ
13…電圧センサ
14…演算器
15…判断部
B…バッテリ
C…インバータコンデンサ(コンデンサ)
L1…第1接続線
L2…第2接続線
L3…第3接続線
OP…オペアンプ
Q…スイッチング素子
SW…リレースイッチ(スイッチ)

Claims (5)

  1.  バッテリの正端子と電気的負荷とを接続する第1接続線と、
     バッテリの負端子と電気的負荷とを接続する第2接続線と、
     前記第1接続線に一方の電極が接続され、前記第2接続線に他方の電極が接続されたコンデンサと、
     前記第1及び第2接続線の一方の接続線上に設けられたスイッチと、
     前記第1及び第2接続線の他方の接続線上に設けられた電流制限回路と、を備え、
     前記電流制限回路は、前記他方の接続線上に設けられる電流センサと、前記電流センサによる検出値に応じた信号を反転入力端子に入力すると共に非反転入力端子に電流指令値が入力されるオペアンプと、前記他方の接続線上に設けられ制御端子に前記オペアンプからの出力信号が入力され、出力信号に応じてスイッチングするスイッチング素子と、を有し、
     前記スイッチをオンしてから前記コンデンサの充電が完了するまでの期間における前記電流指令値は、回路を構成する部品の定格電流のうち最小のものに相当する値よりも小さな値とされ、前記スイッチング素子の安全動作領域における最大電流値よりも小さな値とされている
     突入電流制限回路。
  2.  前記スイッチング素子は、炭化珪素静電誘導型トランジスタである
     請求項1に記載の突入電流制限回路。
  3.  前記スイッチング素子に流れる電流値と前記スイッチング素子の両端の電圧差との積が一定となる値とされている
     請求項1又は請求項2のいずれか1項に記載の突入電流制限回路。
  4.  前記スイッチング素子の両端の電圧差を検出する電圧センサと、
     前記電圧センサからの信号と前記電流センサからの信号とに基づいて、前記スイッチング素子に流れる電流値と前記スイッチング素子の両端の電圧差との積が一定となる前記電流指令値を算出して、前記オペアンプの非反転入力端子に出力する演算器と、
     をさらに備える請求項3に記載の突入電流制限回路。
  5.  前記電圧センサからの信号に基づいて、前記コンデンサの充電完了を判断する判断部をさらに備え、
     前記演算器は、前記判断部により前記コンデンサの充電完了が判断された場合、前記スイッチをオンしてから前記コンデンサの充電が完了するまでの期間における値よりも前記電流指令値を高く変更して前記スイッチング素子を完全オン状態とする
     請求項4に記載の突入電流制限回路。
PCT/JP2014/072471 2013-08-27 2014-08-27 突入電流制限回路 WO2015030069A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480052151.XA CN105765815B (zh) 2013-08-27 2014-08-27 浪涌电流限制电路
DE112014003904.7T DE112014003904T5 (de) 2013-08-27 2014-08-27 Einschaltstrom-Begrenzungsschaltung
US15/054,593 US9806520B2 (en) 2013-08-27 2016-02-26 Inrush current limiting circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013175257 2013-08-27
JP2013-175257 2013-08-27
JP2014121496A JP6381023B2 (ja) 2013-08-27 2014-06-12 突入電流制限回路
JP2014-121496 2014-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/054,593 Continuation US9806520B2 (en) 2013-08-27 2016-02-26 Inrush current limiting circuit

Publications (1)

Publication Number Publication Date
WO2015030069A1 true WO2015030069A1 (ja) 2015-03-05

Family

ID=52586619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072471 WO2015030069A1 (ja) 2013-08-27 2014-08-27 突入電流制限回路

Country Status (5)

Country Link
US (1) US9806520B2 (ja)
JP (1) JP6381023B2 (ja)
CN (1) CN105765815B (ja)
DE (1) DE112014003904T5 (ja)
WO (1) WO2015030069A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011482A (ja) * 2016-07-15 2018-01-18 矢崎総業株式会社 半導体スイッチ制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226152A (ja) * 2015-05-29 2016-12-28 矢崎総業株式会社 電源制御装置
DE102017208187A1 (de) * 2017-05-16 2018-11-22 Continental Automotive Gmbh Elektronisches Modul sowie Kraftfahrzeug und Verfahren zum Begrenzen eines Eingangsstroms während eines Einschaltvorgangs des Moduls
CN108964433B (zh) * 2018-06-28 2020-09-18 北京航天自动控制研究所 一种基于pwm闭环控制的全过程浪涌电流抑制通用化装置及控制方法
JP7091975B2 (ja) * 2018-09-27 2022-06-28 株式会社デンソー ラインフィルタ
DE112019005495T5 (de) * 2018-11-02 2021-09-02 Rohm Co., Ltd. Halbleiterbauteil, halbleitermodul, relay-einheit, batterieeinheit und fahrzeug
CN117039796A (zh) 2018-11-02 2023-11-10 罗姆股份有限公司 半导体单元、半导体装置、电池单元以及车辆
FR3089916B1 (fr) * 2018-12-14 2020-11-27 Renault Dispositif de pré-charge d’un réseau électrique de puissance
KR102555498B1 (ko) * 2020-05-28 2023-07-12 삼성에스디아이 주식회사 돌입 전류 제한 장치 및 이를 포함하는 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102471A (ja) * 2003-08-18 2005-04-14 Denso Corp 車両用突入電流制限型電源スイッチ回路
JP2010220325A (ja) * 2009-03-13 2010-09-30 Ntt Facilities Inc トランジスタ駆動回路、半導体遮断器及びトランジスタ駆動方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289620A (ja) * 2002-03-27 2003-10-10 Fujitsu Ltd 突入電流抑制装置
JP4158112B2 (ja) * 2004-05-31 2008-10-01 株式会社デンソー 車両用突入電流制限型電源スイッチ回路
CN201369560Y (zh) * 2007-12-05 2009-12-23 中国科学院空间科学与应用研究中心 一种航天器供配电***中使用的继电器保护装置
JP2010074874A (ja) * 2008-09-16 2010-04-02 Fujitsu Telecom Networks Ltd 突入電流抑制回路
EP2562896A3 (de) * 2011-08-23 2013-11-06 Magna E-Car Systems GmbH & Co OG Steuerschaltung zur Begrenzung eines Laststroms, Ladeschaltung und Kraftfahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102471A (ja) * 2003-08-18 2005-04-14 Denso Corp 車両用突入電流制限型電源スイッチ回路
JP2010220325A (ja) * 2009-03-13 2010-09-30 Ntt Facilities Inc トランジスタ駆動回路、半導体遮断器及びトランジスタ駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011482A (ja) * 2016-07-15 2018-01-18 矢崎総業株式会社 半導体スイッチ制御装置
US10431973B2 (en) 2016-07-15 2019-10-01 Yazaki Corporation Semiconductor switch control device

Also Published As

Publication number Publication date
JP6381023B2 (ja) 2018-08-29
US9806520B2 (en) 2017-10-31
CN105765815B (zh) 2019-04-26
US20160181794A1 (en) 2016-06-23
CN105765815A (zh) 2016-07-13
JP2015065802A (ja) 2015-04-09
DE112014003904T5 (de) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015030069A1 (ja) 突入電流制限回路
JP6632794B2 (ja) 入力ノードから出力ノードに結合される負荷に電力を供給するためのシステム
JP5477407B2 (ja) ゲート駆動回路
TWI652490B (zh) 用於檢測在熱插拔應用中的故障的系統、電路及方法
JP6030849B2 (ja) 半導体スイッチの制御装置
US9748789B2 (en) Charging/discharging control circuit, charging/discharging control device, and battery device
JP4420012B2 (ja) 過電流保護回路
US20160134221A1 (en) Inverter apparatus
JP2010263726A (ja) 電源装置、制御回路、電源装置の制御方法
JP6385310B2 (ja) バッテリ装置
JP6476061B2 (ja) バッテリ装置及びバッテリ装置の製造方法
JP2016226152A (ja) 電源制御装置
US20220029526A1 (en) Device and method for discharging a dc link capacitor
TWI514762B (zh) System connected to inverter device and its control method
JP2016090366A (ja) 異常検出回路
JP6322123B2 (ja) 電流制限回路
WO2019155890A1 (ja) 給電制御装置、給電制御方法及びコンピュータプログラム
JP2018074525A (ja) 電力供給装置
JP5881664B2 (ja) 電源装置、制御回路、電源装置の制御方法
JP2006325286A (ja) 過電圧保護機能付き電源装置および過電圧保護回路
JP6642074B2 (ja) スイッチング素子の駆動装置
JP2019186880A (ja) 負荷駆動装置
JP6568019B2 (ja) 電力変換装置
JP6133580B2 (ja) トランジスタ駆動制御回路、トランジスタ駆動制御システム、及び、トランジスタ駆動制御方法
JP2016211421A (ja) 内燃機関用点火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003904

Country of ref document: DE

Ref document number: 1120140039047

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840628

Country of ref document: EP

Kind code of ref document: A1