WO2015029727A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2015029727A1
WO2015029727A1 PCT/JP2014/070711 JP2014070711W WO2015029727A1 WO 2015029727 A1 WO2015029727 A1 WO 2015029727A1 JP 2014070711 W JP2014070711 W JP 2014070711W WO 2015029727 A1 WO2015029727 A1 WO 2015029727A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
type semiconductor
semiconductor layer
insulating layer
Prior art date
Application number
PCT/JP2014/070711
Other languages
English (en)
French (fr)
Inventor
杉山 徹
月原 政志
晃平 三好
紗織 南部
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to CN201480047832.7A priority Critical patent/CN105518880A/zh
Priority to KR1020167002853A priority patent/KR20160027168A/ko
Publication of WO2015029727A1 publication Critical patent/WO2015029727A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a semiconductor light emitting device having an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting layer formed therebetween on a support substrate.
  • GaN is mainly used in light emitting devices using nitride semiconductors.
  • a GaN film having few defects is formed by epitaxial growth on a sapphire substrate to form a light emitting element made of a nitride semiconductor.
  • the sapphire substrate is an insulating material, for feeding power to the GaN-based light-emitting element, a part of the p-type semiconductor layer is removed to expose the n-type semiconductor layer, and the p-type semiconductor layer and the n-type semiconductor are exposed.
  • a power feeding electrode is formed on each semiconductor layer.
  • a light emitting element having a structure in which power feeding electrodes are arranged in the same direction is referred to as a “lateral structure”.
  • Patent Document 1 discloses such a technique.
  • a so-called “vertical structure” light-emitting element in which a p-type semiconductor layer and an n-type semiconductor layer are arranged on the front and back surfaces to supply power It is being advanced.
  • an n-type semiconductor layer, a light-emitting layer (also referred to as an “active layer”), and a p-type semiconductor layer are arranged on a sapphire substrate from the bottom, and the p-type semiconductor is arranged.
  • the sapphire substrate is removed.
  • the element surface is an n-type semiconductor layer, and an electrode (n-side electrode) is provided on the n-type semiconductor side, and a voltage as a power supply line is connected to the n-side electrode.
  • the n-side electrode when a voltage is applied between an electrode on the p-type semiconductor layer side (hereinafter referred to as a “p-side electrode”) and the n-side electrode, the n-side electrode is connected to the n-side electrode via the light-emitting layer. Current flows through the side electrode. When a current flows in the light emitting layer, the light emitting layer emits light.
  • the p-side electrode and the n-side electrode are arranged in a positional relationship facing each other in the vertical direction. For this reason, when a voltage is applied between both electrodes, a current path in the vertical direction is formed that travels from the p-side electrode to the n-side electrode at a substantially shortest distance. At this time, most of the current flows in the light emitting layer located directly under the n-side electrode, and the current does not flow much in the other light emitting layers, so that there is a problem that the light emitting region is limited and the light emitting efficiency is lowered. .
  • Patent Document 2 discloses a configuration in which an insulating layer is provided immediately below the n-side electrode for the purpose of spreading the current in a direction parallel to the substrate surface of the support substrate. .
  • FIG. 9 schematically shows a cross-sectional view of the semiconductor light-emitting element disclosed in Patent Document 2.
  • the conventional semiconductor light emitting device 90 includes a conductive layer 92, a reflective film 93, an insulating layer 94, a reflective electrode 95, a semiconductor layer 99, and an n-side electrode 100 on a support substrate 91.
  • the semiconductor layer 99 is formed by stacking a p-type semiconductor layer 96, a light emitting layer 97, and an n-type semiconductor layer 98 in this order from the bottom.
  • the reflective electrode 95 is an electrode corresponding to the aforementioned “p-side electrode”.
  • the insulating layer 94 is formed in a region including a position immediately below the position where the n-side electrode 100 is formed.
  • a reflective film 93 made of a metal material is formed below the insulating layer 94.
  • the reflective film 93 does not have ohmic properties and does not function as an electrode.
  • the reflective electrode 95 is made of a metal material and functions as an electrode (p-side electrode) by realizing ohmic contact between the p-type semiconductor layers 96.
  • the light emitting layer 97 is provided at a position immediately below the n-side electrode 100. Most of the current is prevented from flowing in the vertical direction. That is, after passing through the reflective electrode 95, the current flows toward the n-side electrode 100 while spreading in a direction parallel to the substrate surface of the support substrate 91 (horizontal direction). Thereby, the effect of expanding the current flowing in the light emitting layer 97 in the horizontal direction is obtained, and the light emitting region in the light emitting layer 97 is expanded in the horizontal direction.
  • the reflective electrode 95 reflects the light emitted in the direction toward the support substrate 91 (downward in the drawing) out of the light emitted from the light emitting layer 97 and extracts the light toward the n-side semiconductor layer 98 (upward in the drawing). It also serves the purpose of increasing the take-out efficiency.
  • the reflective film 93 is also formed for the same purpose, and reflects light that travels downward through a portion where the reflective electrode 95 is not formed, and changes the traveling direction to the n-side semiconductor layer 98 side. The take-out efficiency is increased.
  • Patent Document 2 lists materials such as SiO 2 , Al 2 O 3 , ZrO 2 , and TiO 2 as materials for the insulating film 94.
  • the insulating film 94 is formed of these materials, although the insulating film 94 is configured as a transparent film, several percent of light is absorbed by the insulating film 94 when light passes through the insulating film 94.
  • an object of the present invention is to provide a semiconductor light-emitting device that further improves the light extraction efficiency while ensuring the horizontal spread of the current flowing through the light-emitting layer.
  • the present invention is a semiconductor light emitting device having an n-type semiconductor layer, a p-type semiconductor layer, and a light-emitting layer formed between the n-type semiconductor layer and the p-type semiconductor layer on a support substrate, An n-side electrode formed by contacting the bottom surface with the top surface of the n-type semiconductor layer; A reflective electrode formed in a region that includes a position directly below the formation position of the n-side electrode, the upper surface being in contact with the bottom surface of the p-type semiconductor layer; A first insulating layer formed by contacting an upper surface with a bottom surface of the reflective electrode at a position immediately below the formation position of the n-side electrode is provided.
  • the reflective electrode is formed up to a position immediately below the n-side electrode, the first insulating layer is formed on the bottom surface at that location, so that the reflective electrode is reflected at a position directly below the n-side electrode. No current flows below the bottom surface of the electrode. Since the current path is formed in a region where the first insulating layer is not formed, according to the above configuration, even if the reflective electrode and the n-side electrode face each other in the vertical direction, the reflective electrode and the n-side Most of the current does not flow only in the light emitting layer in the region sandwiched between the electrodes. That is, also in the above configuration, an effect of spreading the current flowing in the light emitting layer in a direction (horizontal direction) parallel to the substrate surface of the support substrate can be obtained.
  • the effect of spreading the current flowing in the light emitting layer 97 in the horizontal direction is realized by the insulating layer 94 formed in the upper layer of the reflective film 93. Since the insulating layer 94 is provided above the reflective film 93, the light emitted from the light emitting layer 97 is reflected twice by the reflective film 93 and extracted twice in the insulating layer 94. The light was forced to pass through, and several percent of light was absorbed in the insulating layer 94.
  • the effect of spreading the current flowing in the light emitting layer in the horizontal direction by the first insulating layer provided below the reflective electrode is realized. For this reason, it is not always necessary to provide an insulating layer above the reflective electrode. As a result, the light radiated from the light emitting layer to the support substrate side is not absorbed by the insulating layer until it is reflected by the reflective electrode and taken out to the outside of the n-type semiconductor layer side. Enhanced.
  • the insulating layer 94 is formed so as to be in contact with a part of the bottom surface of the reflective electrode 95, and the p-type nitride layer 96 is formed on the top surface of the reflective electrode 95. Is formed. For this reason, of the light emitted downward (from the support substrate 91 side) from the light emitting layer 97, the light reflected by the reflective electrode 95 is not absorbed by the insulating layer 94. However, in the configuration of FIG. 9, the reflective electrode 95 is not formed at a position immediately below the n-side electrode 100, and the insulating layer 94 is formed.
  • the reflective film 93 is provided on the surface. However, as described above, a portion of the light reflected by the reflective film 93 is absorbed by the insulating layer 94 before being extracted to the outside.
  • the configuration in which the reflective electrode 95 is not formed immediately below the n-side electrode 100 is that when the n-side electrode 100 and the reflective electrode 95 are opposed to each other in the vertical direction, It is assumed that the current flows mainly only in the region of the light emitting layer 97 to be limited, and that the light emitting region in the light emitting layer 97 is limited.
  • the inventors have intensively studied. It was found that the effect of spreading the current flowing in the light emitting layer in the horizontal direction can be realized by forming an insulating layer (first insulating layer) on the bottom surface of the reflective electrode at the position. The present invention has been made based on this fact.
  • the reflective electrode may be configured such that the entire top surface is in contact with the bottom surface of the p-type semiconductor layer.
  • the light emitted downward from the light emitting layer is not absorbed by the insulating layer until it is reflected by the reflective electrode and taken out above the n-type semiconductor layer. Therefore, the light extraction efficiency can be greatly improved as compared with the conventional configuration.
  • the second insulating layer may have a narrower width in a direction parallel to the substrate surface of the support substrate than the n-side electrode located immediately above the second insulating layer.
  • the second insulating layer is formed on the upper surface of the reflective electrode, part of the light that has passed through the second insulating layer is absorbed by the second insulating layer.
  • the effect of spreading the current flowing in the light emitting layer in the horizontal direction can be realized by the first insulating layer formed on the bottom surface of the reflective electrode. For this reason, when an insulating layer (second insulating layer) is formed on the upper surface of the reflective electrode, the width of the second insulating layer can be reduced.
  • the width of the second insulating layer is narrower than that of the n-side electrode, the current flowing in the light emitting layer is expanded in the horizontal direction by the first insulating layer.
  • variety of a 2nd insulating layer can be made thin in this way, even if this 2nd insulating layer is formed in the upper surface of a reflective electrode, among the lights radiated
  • the reflective electrode may be configured such that the entire top surface is in contact with the bottom surface of the p-type semiconductor layer except for the region where the second insulating layer is formed on the top surface.
  • the semiconductor light emitting device of the present invention can be realized as a nitride semiconductor light emitting device in which all of the n-type semiconductor layer, the p-type semiconductor layer, and the light emitting layer are formed of a nitride semiconductor layer.
  • the semiconductor light emitting device of the present invention it is possible to further improve the light extraction efficiency as compared with the conventional configuration while ensuring the horizontal spread of the current flowing through the light emitting layer.
  • the semiconductor light emitting device of the present invention will be described with reference to the drawings.
  • the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
  • “the first layer is located immediately below the second layer” means that the second layer is located below the first layer in the direction perpendicular to the substrate surface of the support substrate. It means to do.
  • FIG. 1A is a cross-sectional view schematically showing the configuration of the semiconductor light emitting device of the first embodiment.
  • the semiconductor light emitting device 1 includes a support substrate 11, a conductive layer 20, an insulating layer 21, a semiconductor layer 30, and n-side electrodes (42, 43).
  • the semiconductor layer 30 is formed by stacking a p-type semiconductor layer (32, 31), a light emitting layer 33, and an n-type semiconductor layer 35 in this order from the bottom.
  • 1B is a schematic plan view of the semiconductor light emitting element 1 as viewed from above, and FIG. 1A corresponds to a cross-sectional view taken along line AA in FIG. 1B.
  • the support substrate 11 is composed of a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si.
  • a conductive layer 20 having a multilayer structure is formed on the support substrate 11.
  • the conductive layer 20 includes a solder layer 13, a solder layer 15, a protective layer 17, and a reflective electrode 19.
  • the solder layer 13 and the solder layer 15 are made of, for example, Au—Sn, Au—In, Au—Cu—Sn, Cu—Sn, Pd—Sn, Sn, or the like. As will be described later, the solder layer 13 and the solder layer 15 make the solder layer 13 formed on the support substrate 11 and the solder layer 15 formed on another substrate (a sapphire substrate 61 described later) face each other. Then, the two are bonded together.
  • the protective layer 17 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni, or the like. As will be described later, when bonding is performed via the solder layer, the material constituting the solder is diffused to the reflective electrode 19 side described later, and the function of preventing a decrease in luminous efficiency due to a drop in reflectance is achieved.
  • the reflective electrode 19 is made of, for example, an Ag-based metal (an alloy of Ni and Ag), Al, Rh, or the like. It is assumed that the semiconductor light emitting element 1 takes out the light emitted from the light emitting layer 33 upward (on the n-type semiconductor layer 35 side) in FIG. 1A, and the reflective electrode 19 emits downward from the light emitting layer 33. The function of improving the luminous efficiency is achieved by reflecting the emitted light upward. In addition, the upward arrow in FIG. 1A represents the light extraction direction.
  • the reflective electrode 19 is formed in the lower layer of the p-type semiconductor layer (31, 32) including the position immediately below the n-side electrode (42, 43).
  • the upper surface of the reflective electrode 19 is formed so as to be in contact with the p-type semiconductor layer 32.
  • Insulating layer 21 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3.
  • the insulating layer 21 corresponds to a “first insulating layer”.
  • the insulating layer 21 is formed immediately below the n-side electrodes (42, 43), and the upper surface of the insulating layer 21 is in contact with the bottom surface of the reflective electrode 19.
  • the insulating layer 21 serves to expand the current flowing through the light emitting layer 33 in a direction (horizontal direction) parallel to the substrate surface of the support substrate 11.
  • the insulating layer 21 is also formed at a position outside the semiconductor layer 30 and functions as an etching stopper layer at the time of element isolation, as will be described later in the section of the process.
  • the semiconductor layer 30 is formed by stacking the p-type semiconductor layer 32, the p-type semiconductor layer 31, the light emitting layer 33, and the n-type semiconductor layer 35 in this order from the bottom.
  • the p-type semiconductor layer 32 is made of, for example, GaN.
  • the p-type semiconductor layer 31 is made of, for example, Al m Ga 1-m N (0 ⁇ m ⁇ 1). All layers are doped with p-type impurities such as Mg, Be, Zn, or C. Note that the p-type semiconductor layer 32 has a higher impurity concentration than the p-type semiconductor layer 31 and forms a contact layer.
  • the light emitting layer 33 is formed of a semiconductor layer having a multiple quantum well structure in which, for example, a well layer made of InGaN and a barrier layer made of AlGaN are repeated. These layers may be undoped or p-type or n-type doped.
  • the n-type semiconductor layer 35 has a multilayer structure including, for example, a layer (electron supply layer) made of Al n Ga 1-n N (0 ⁇ n ⁇ 1) and a layer (protective layer) made of GaN.
  • the At least the protective layer is doped with an n-type impurity such as Si, Ge, S, Se, Sn, or Te.
  • n-side electrode 42, n-side electrode 43 The n-side electrodes (42, 43) are the upper layers of the n-type semiconductor layer 35, and are formed in the region near the end and the region near the center of the n-type semiconductor layer 35 in the cross-sectional view shown in FIG. Composed. What is formed in the region near the end corresponds to the n-side electrode 43, and what is formed in the region near the center corresponds to the n-side electrode 42.
  • a wire 45 made of Au, Cu or the like is connected to the n-side electrode 43, for example, in the regions 43a and 43b, and the other of the wires 45 is a substrate on which the semiconductor light emitting element 1 is disposed ( It is connected to a power supply pattern of the support substrate 11) (not shown). That is, the n-side electrode 43 functions as a power supply terminal of the semiconductor light emitting element 1. 1A and 1B, the n-side electrode 42 is formed at one location near the center. However, a plurality of n-side electrodes 42 may be formed and arranged in a lattice pattern. . Furthermore, the n-side electrodes 42 may be crossed and arranged in a mesh shape.
  • the n-side electrode 42 and the n-side electrode 43 are connected on the upper surface of the semiconductor layer 30 and serve to expand the current path on the plane of the semiconductor layer 30. That is, by contacting the upper surface of the n-type semiconductor layer 35 at a location different from the n-side electrode 43 constituting the power supply terminal in the upper surface of the n-type semiconductor layer 35, the n-type semiconductor layer 35 in the horizontal direction when energized. It is formed for the purpose of flowing a current over a wide range of the light-emitting layer 33, thereby causing a current to flow over a wide range of the light emitting layer 33.
  • an insulating layer as a protective film may be formed on the side surface of the semiconductor layer 30.
  • the insulating layer as the protective film is preferably made of a light-transmitting material (eg, SiO 2 ).
  • one material constituting the p-type semiconductor layer 31 is described as Al m Ga 1-m N (0 ⁇ m ⁇ 1), and one material constituting the n-type semiconductor layer 35 is Al n n.
  • Ga 1-n N (0 ⁇ n ⁇ 1) these may be the same material.
  • minute irregularities may be formed on the upper surface of the n-type semiconductor layer 35.
  • the reflective electrode 19 is formed in a region including a position directly below the n-side electrode (42, 43), but is reflected at a position immediately below the n-side electrode (42, 43). Since the insulating layer 21 is formed on the bottom surface of the electrode 19, no current flows below the bottom surface of the reflective electrode 19 at a position immediately below the n-side electrodes (42, 43).
  • the current path is formed in a region where the insulating layer 21 is not formed, according to the above configuration, even if the reflective electrode 19 and the n-side electrode (42, 43) are in a positional relationship facing each other in the vertical direction, Most of the current does not flow only in the light emitting layer 33 in the region sandwiched between the reflective electrode 19 and the n-side electrode (42, 43). That is, according to the semiconductor light emitting device 1 shown in FIG. 1A, the current flowing in the light emitting layer 33 is parallel to the substrate surface of the support substrate 11 (horizontal direction) without providing an insulating layer on the reflective electrode 19. The effect can be obtained.
  • the light radiated from the light emitting layer 33 to the support substrate 11 side is not absorbed by the insulating layer until it is reflected by the reflective electrode 19 and taken out to the n-type semiconductor layer 35 side. Efficiency is increased.
  • the configuration of the second embodiment will be described with respect to the fact that the light extraction efficiency is higher than the conventional configuration while realizing the low voltage driving equivalent to the conventional configuration. After that, it will be shown with reference to the results of the elements of the examples and comparative examples.
  • Step S1 As shown in FIG. 2A, the epi layer 40 is formed on the sapphire substrate 61.
  • This step S1 is performed by the following procedure, for example.
  • the c-plane sapphire substrate 61 is cleaned. More specifically, for this cleaning, for example, a c-plane sapphire substrate 61 is placed in a processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen having a flow rate of 10 slm is placed in the processing furnace. While flowing the gas, the temperature in the furnace is raised to, for example, 1150 ° C.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a low-temperature buffer layer made of GaN is formed on the surface of the c-plane sapphire substrate 61, and a base layer made of GaN is further formed thereon. These low-temperature buffer layer and underlayer correspond to the undoped layer 36.
  • a more specific method for forming the undoped layer 36 is as follows. First, the furnace pressure of the ⁇ CVD apparatus is 100 kPa, and the furnace temperature is 480 ° C. Then, while flowing nitrogen gas and hydrogen gas with a flow rate of 5 slm respectively as carrier gas into the processing furnace, trimethylgallium (TMG) with a flow rate of 50 ⁇ mol / min and ammonia with a flow rate of 250,000 ⁇ mol / min are used as the raw material gas in the processing furnace. For 68 seconds. As a result, a low-temperature buffer layer made of GaN having a thickness of 20 nm is formed on the surface of the c-plane sapphire substrate 61.
  • TMG trimethylgallium
  • the furnace temperature of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 ⁇ mol / min and ammonia having a flow rate of 250,000 ⁇ mol / min are introduced into the processing furnace as source gases. Feed for 30 minutes. As a result, a base layer made of GaN having a thickness of 1.7 ⁇ m is formed on the surface of the low-temperature buffer layer.
  • n-type semiconductor layer 35 having a composition of Al n Ga 1-n N (0 ⁇ n ⁇ 1) is formed on the undoped layer 36.
  • a more specific method for forming the n-type semiconductor layer 35 is, for example, as follows. First, with the furnace temperature kept at 1150 ° C., the furnace pressure of the MOCVD apparatus is set to 30 kPa. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas into the processing furnace, TMG having a flow rate of 94 ⁇ mol / min, trimethylaluminum (TMA) having a flow rate of 6 ⁇ mol / min, Ammonia with a flow rate of 250,000 ⁇ mol / min and tetraethylsilane with a flow rate of 0.025 ⁇ mol / min are supplied into the treatment furnace for 60 minutes.
  • TMG trimethylaluminum
  • tetraethylsilane with a flow rate of 0.025 ⁇ mol / min are supplied into the treatment
  • an n-type semiconductor layer 35 having a composition of Al 0.06 Ga 0.94 N, a Si concentration of 3 ⁇ 10 19 / cm 3 , and a thickness of 2 ⁇ m is formed in the upper layer of the undoped layer 36. .
  • n-type semiconductor layer having a protective layer made of n-type GaN having a thickness of 5 nm on the n-AlGaN layer. 35 may be realized.
  • Si is used as the n-type impurity contained in the n-type semiconductor layer 35 .
  • Ge, S, Se, Sn, Te, or the like can be used as the n-type impurity in addition to Si. .
  • a light emitting layer 33 having a multiple quantum well structure in which a well layer made of InGaN and a barrier layer made of n-type AlGaN are periodically repeated is formed on the n-type semiconductor layer 35.
  • the furnace pressure of the MOCVD apparatus is set to 100 kPa, and the furnace temperature is set to 830 ° C. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as a carrier gas in the processing furnace, TMG having a flow rate of 10 ⁇ mol / min, trimethylindium (TMI) having a flow rate of 12 ⁇ mol / min, and A step of supplying ammonia at a flow rate of 300,000 ⁇ mol / min into the processing furnace for 48 seconds is performed.
  • TMG having a flow rate of 10 ⁇ mol / min
  • TMA having a flow rate of 1.6 ⁇ mol / min
  • tetraethylsilane having a flow rate of 0.002 ⁇ mol / min
  • ammonia having a flow rate of 300,000 ⁇ mol / min
  • the light-emitting layer 33 having a multi-quantum well structure of 15 periods with a well layer made of InGaN having a thickness of 2 nm and a barrier layer made of n-type AlGaN having a thickness of 7 nm is formed into an n-type. It is formed in the upper layer of the semiconductor layer 35.
  • a p-type semiconductor layer 31 composed of Al m Ga 1-m N (0 ⁇ m ⁇ 1) is formed on the light emitting layer 33.
  • the furnace pressure of the MOCVD apparatus is maintained at 100 kPa, and the furnace temperature is raised to 1025 ° C. while nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are supplied as carrier gases in the processing furnace.
  • nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are supplied as carrier gases in the processing furnace.
  • TMG with a flow rate of 35 ⁇ mol / min
  • TMA with a flow rate of 20 ⁇ mol / min
  • ammonia with a flow rate of 250,000 ⁇ mol / min
  • biscyclopentadiene with a flow rate of 0.1 ⁇ mol / min for doping p-type impurities.
  • Enilmagnesium (CP 2 Mg) is fed into the processing furnace for 60 seconds.
  • a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the light emitting layer 33.
  • a hole supply layer having a composition of Al 0.13 Ga 0.87 N having a thickness of 120 nm is formed on the surface of the light emitting layer 33.
  • a p-type semiconductor layer 31 is formed by these hole supply layers.
  • the p-type impurity concentration of the p-type semiconductor layer 31 is, for example, about 3 ⁇ 10 19 / cm 3 .
  • ⁇ Formation of p-type semiconductor layer 32> Thereafter, the supply of TMA is stopped, the flow rate of CP 2 Mg is changed to 0.2 ⁇ mol / min, and the raw material gas is supplied for 20 seconds, whereby the thickness is about 5 nm and the p-type impurity concentration is 1 ⁇ 10.
  • a p-type semiconductor layer 32 made of p + GaN of about 20 / cm 3 is formed.
  • the epi layer 40 including the undoped layer 36, the n-type semiconductor layer 35, the light emitting layer 33, the p-type semiconductor layer 31, and the p-type semiconductor layer 32 is formed on the sapphire substrate 61.
  • Step S2 an activation process is performed on the wafer obtained in step S1. More specifically, activation is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal) device.
  • RTA Rapid Thermal Anneal
  • Step S3 the reflective electrode 19 is formed at a predetermined location on the upper surface of the p-type semiconductor layer 32.
  • the reflective electrode 19 is formed in almost the entire region of the p-type semiconductor layer 32 inside the region where the p-type semiconductor layer 32 is formed. More specifically, the reflective electrode 19 is formed so as to include a portion located immediately below a region where the n-side electrode 42 as a power supply terminal is formed in a later step.
  • the reflective electrode 19 is formed by depositing 0.7 nm-thickness Ni and 150 nm-thick Ag on the upper surface of the p-type semiconductor layer 32 by a sputtering apparatus, and then using an RTA apparatus in a dry air atmosphere at 400 ° C. It is formed by performing contact annealing for 2 minutes.
  • the alloy of Ni and Ag is adopted as the material of the reflective electrode 19, the reflective electrode 19 can also be formed of Al or Rh.
  • Step S4 Next, as shown in FIG. 2C, an insulating layer 21 is formed at a predetermined position on the upper layer of the reflective electrode 19.
  • the insulating layer 21 is formed at a location located below a region where the n-side electrode (42, 43) is formed in a later step.
  • a part of the insulating layer 21 can be formed so as to cover the side surface of the reflective electrode 19.
  • the upper layer of the reflective electrode 19 in the region where the insulating layer 21 is not formed is masked, and, for example, SiO 2 is formed to a thickness of about 200 nm by sputtering.
  • the material for forming the film may be an insulating material, such as SiN or Al 2 O 3 .
  • Step S5 As shown in FIG. 2D, the protective layer 17 and the solder layer 15 are formed so as to cover the upper surfaces of the metal electrode 19 and the insulating layer 21.
  • the protective film is formed by depositing 100-nm-thick Ti and 200-nm-thick Pt for three periods so as to cover the upper surfaces of the metal electrode 19 and the insulating layer 21 with an electron beam evaporation apparatus (EB apparatus).
  • Layer 17 is formed. Further, after depositing Ti with a thickness of 10 nm on the upper surface (Pt surface) of the protective layer 17, Au—Sn solder composed of Au 80% Sn 20% is deposited with a thickness of 3 ⁇ m. Form.
  • the solder layer 13 may be formed on the upper surface of the support substrate 11 prepared separately from the sapphire substrate 61 (see FIG. 2E).
  • the solder layer 13 may be made of the same material as the solder layer 15, and is bonded to the solder layer 13 in the next step, whereby the sapphire substrate 61 and the support substrate 11 are bonded together.
  • CuW is used as the support substrate 11 as described above in the section of the structure.
  • a protective layer for preventing diffusion of the material of the solder layer 13 is formed on the support substrate 11 with the same material as the protective layer 17, and the solder layer 13 is formed on the protective layer. It does n’t matter.
  • Step S6 Next, as shown in FIG. 2F, the sapphire substrate 61 and the support substrate 11 are bonded together. More specifically, the solder layer 15 and the solder layer 13 formed on the support substrate 11 are bonded together at a temperature of 280 ° C. and a pressure of 0.2 MPa.
  • Step S7 Next, as shown in FIG. 2G, the sapphire substrate 61 is peeled off. More specifically, the interface between the sapphire substrate 61 and the epi layer 40 is decomposed by irradiating a KrF excimer laser from the sapphire substrate 61 side with the sapphire substrate 61 facing upward and the support substrate 11 facing downward. Then, the sapphire substrate 61 is peeled off. While the laser passes through the sapphire 61, the underlying GaN (undoped layer 36) absorbs the laser, so that this interface is heated to decompose GaN. As a result, the sapphire substrate 61 is peeled off.
  • GaN (undoped layer 36) remaining on the wafer is removed by wet etching using hydrochloric acid or the like, or dry etching using an ICP apparatus, and the n-type semiconductor layer 35 is removed. Expose.
  • the undoped layer 36 is removed, and the semiconductor layer 30 in which the p-type semiconductor layer 32, the p-type semiconductor layer 31, the light emitting layer 33, and the n-type semiconductor layer 35 are stacked in this order from the bottom remains. To do.
  • Step S8 Next, as shown in FIG. 2I, adjacent elements are separated from each other. Specifically, the semiconductor layer 30 is etched using an ICP device until the upper surface of the insulating layer 21 is exposed in a boundary region with an adjacent element. As described above, at this time, the insulating layer 21 also functions as a stopper during etching.
  • n-side electrodes (42, 43) are formed on the upper surface of the n-type semiconductor layer 35 at a position immediately above the location where the insulating layer 21 is formed. Specifically, after forming an electrode made of Cr having a thickness of 100 nm and Au having a thickness of 3 ⁇ m, sintering is performed at 250 ° C. for 1 minute in a nitrogen atmosphere.
  • the elements are separated from each other by, for example, a laser dicing apparatus, the back surface of the support substrate 11 is joined to the package by, for example, Ag paste, and wire bonding is performed on the n-side electrode 43 as a power supply terminal.
  • wire bonding is performed by connecting a wire 45 made of Au to a bonding region of ⁇ 100 ⁇ m with a load of 50 g. Thereby, the nitride semiconductor light emitting device 1 shown in FIG. 1A is formed.
  • unevenness may be formed on the surface of the n-type semiconductor layer 35 by immersing an alkaline solution such as KOH between Step S8 and Step S9.
  • an insulating layer may be formed so as to cover the side surface of the semiconductor layer 30.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the semiconductor light emitting device of the second embodiment.
  • the semiconductor light emitting device 1a further includes an insulating layer 22 (corresponding to “second insulating layer”) as compared with the semiconductor light emitting device 1 of the first embodiment.
  • the insulating layer 22 is composed of SiO 2, SiN, Zr 2 O 3 , AlN, Al 2 O 3, etc., like the insulating layer 21.
  • the insulating layer 22 is formed at a position between the reflective electrode 19 and the p-type semiconductor layer 32 at a position immediately below the formation position of the n-side electrode (42, 43). Further, the insulating layer 22 preferably has a narrower width in the direction parallel to the substrate surface of the support substrate 11 than the n-side electrodes (42, 43).
  • each reflective electrode 19 is in contact with the p-type semiconductor layer 32.
  • a part of the upper surface of the reflective electrode 19 is in contact with the insulating layer 22 and the other part is in contact with the p-type semiconductor layer 32.
  • this insulating layer 22 is formed in the position just under the formation location of the n side electrode (42, 43).
  • the insulating layer 22 is formed in a part of the upper surface of the reflective electrode 19, a part of the light emitted downward from the light emitting layer 33 passes through the insulating layer 22.
  • the light passes through and reaches the reflective electrode 19, is further reflected by the reflective electrode 19, passes through the insulating layer 22, and is guided to the n-type semiconductor layer 35 side.
  • the light extraction efficiency is slightly lowered as compared with the semiconductor light emitting device 1 described in the first embodiment.
  • the effect of spreading the current flowing in the light emitting layer 33 in the horizontal direction by the insulating layer 21 formed on the bottom surface of the reflective electrode 19 can be realized.
  • variety of the insulating layer 22 formed in the upper surface of the reflective electrode 19 is realizable narrower than a conventional structure. Therefore, although the semiconductor light emitting device 1a of the present embodiment has the insulating layer 22 on the upper surface of the reflective electrode 19, the light emitted downward from the light emitting layer 33 and reflected by the reflective electrode 19 is within the insulating layer 22 The light passing through can be significantly limited as compared with the prior art. Therefore, the light extraction efficiency can be improved as compared with the conventional configuration.
  • Steps S1 and S2 are executed by the same method as in the first embodiment.
  • Step S3A Next, as illustrated in FIG. 4A, the insulating layer 22 is formed at a predetermined position on the upper layer of the p-type semiconductor layer 32.
  • the insulating layer 22 is formed by making the width in the horizontal direction smaller than that of the n-side electrode (42, 43) at a position located below a region where the n-side electrode (42, 43) is formed in a later step. .
  • Step S3B Next, as illustrated in FIG. 4B, the reflective electrode 19 is formed at a predetermined position on the upper surface of the p-type semiconductor layer 32. At this time, the reflective electrode 19 is formed so as to cover the upper layer of the insulating layer 22.
  • Example 1 The semiconductor light emitting device 1 of the first embodiment manufactured by the method described above is taken as Example 1, the semiconductor light emitting device 1a of the second embodiment is taken as Example 2, and the semiconductor light emitting device 50 shown in FIG. The voltage characteristics and the light emission characteristics were compared.
  • FIG. 5 is a cross-sectional view schematically showing the structure of a semiconductor light emitting device formed as a comparative example.
  • an insulating layer 23 provided on the top surface of the reflective electrode 19 is provided instead of the insulating layer 21 formed on the bottom surface of the reflective electrode 19.
  • the insulating layer 23 is formed for the purpose of spreading the current flowing through the light emitting layer 33 in the horizontal direction by being formed at a position immediately below the n-side electrodes (42, 43).
  • the materials and dimensions constituting the other layers are the same.
  • FIG. 6 is a graph showing the relationship between the flowing current value and the voltage value (IV characteristics) when a voltage is applied to each element of Example 1, Example 2, and Comparative Example. According to FIG. 6, when each element of Example 1 and Example 2 is compared with the comparative example, the voltage values required to flow the same current value are substantially equal, and the low voltage equivalent to the configuration of the comparative example. It can be seen that driving can be realized.
  • FIG. 7 is a graph showing the relationship between the light emission output and the current value obtained when current is supplied to each element of Example 1, Example 2, and Comparative Example. According to FIG. 7, it can be seen that the light emission output is improved in both the elements of Example 1 and Example 2 as compared with the element of the comparative example. It can also be seen that the light emission output of the element of Example 1 is further improved than that of Example 2.
  • the horizontal width of the insulating layer 23 cannot be made narrower than the n-side electrodes (42, 43). If the horizontal width of the insulating layer 23 is narrower than that of the n-side electrodes (42, 43), the reflective electrode 19 is located directly under the n-side electrode 42, and the conductive protective layer 19 and solder are directly underneath. Since the layers (13, 15) are formed, a current path extends in the vertical direction between the n-side electrodes (42, 43) and the reflective electrode 19 located immediately below in the region where the insulating layer 23 is not formed. Will be formed. As a result, a large amount of current flows through the light emitting layer 33 in the region, and the effect of causing the light emitting layer 33 to shine in the entire horizontal direction cannot be obtained, resulting in a reduction in light emission efficiency.
  • the light emitting element made of a nitride semiconductor has been described as the semiconductor light emitting element (1, 1a).
  • the structure of the present invention can also be applied to light emitting elements made of other semiconductors.
  • FIG. 8 is a cross-sectional view schematically showing an example of the configuration of another embodiment of the semiconductor light emitting device.
  • the light emitting layer 33 is formed of a semiconductor layer having a multiple quantum well structure in which an InGaP well layer and an AlGaInP barrier layer are repeated.
  • the semiconductor light emitting device 1b shown in FIG. 8 a p-type semiconductor layer 31, a light emitting layer 33, and an n-side semiconductor layer 35 are stacked in this order on the support substrate 11 in the same manner as the configuration of the first embodiment described above. Is formed.
  • the semiconductor light emitting device 1b includes an n-side electrode (42, 43) formed with the bottom surface in contact with the top surface of the n-type semiconductor layer 35, and the top surface in contact with the bottom surface of the p-type semiconductor layer 31.
  • the reflective electrode 19 formed in a region including the position immediately below the formation position of (42, 43) and the upper surface in contact with the bottom surface of the reflective electrode 19 at a position immediately below the formation position of the n-side electrode (42, 43).
  • the insulating layer 21 is formed.
  • a conductive layer 20 including a bonding layer 14 made of Ni / Au, a protective layer 17 made of TaN / TiW / TaN, and a reflective electrode 19 made of AuSn is formed on the support substrate 11. It is formed.
  • the p-type semiconductor layer 31 has a lower p-type impurity concentration than the diffusion layer 61 and the diffusion layer 62 made of GaP having a high p-type impurity concentration (eg, about 3 ⁇ 10 18 / cm 3 ).
  • the intermediate layer 62 made of AlGaInP made of AlGaInP of about 1 ⁇ 10 18 / cm 3 , and made of AlGaInP having a p-type impurity concentration lower than the intermediate layer 62 (for example, about 3 ⁇ 10 17 / cm 3 ).
  • a p-cladding layer 63 is provided.
  • the n-type semiconductor layer 35 includes a relaxation layer 64 having a multilayer structure in which n-type InGaP and n-type AlInP are repeatedly stacked, and an n-cladding layer 65 made of AlGaInP.
  • the insulating layer 21 is formed at a position immediately below the n-side electrodes (42, 43) for the purpose of extending in a direction parallel to the substrate surface (horizontal direction).
  • the insulating layer 21 is formed not between the reflective electrode 19 and the p-type semiconductor layer 31 but between the reflective electrode 19 and the protective layer 17, that is, so that the top surface is in contact with the bottom surface of the reflective electrode 19.
  • the light traveling toward the support substrate 11 out of the light emitted from the light emitting layer 33 is reflected by the reflective electrode 19 and then travels in the traveling direction. Changes upward (on the n-type semiconductor layer 35 side) and is taken out to the outside. At this time, the light does not pass through the insulating layer 21 until it reaches the reflective electrode 19 and after it reaches the reflective electrode 19 until it is reflected and extracted outside. Therefore, similarly to the elements of the first embodiment and the second embodiment described above, light is not absorbed by the insulating layer 21, and an effect of improving the light extraction efficiency as compared with the related art can be obtained.
  • an n-side electrode (between the reflective electrode 19 and the p-type semiconductor layer 31 is provided immediately below the location where the n-side electrode (42, 43) is formed.
  • the second insulating layer formed with a width thinner than the width of 42, 43) may be formed. In this case, although the light extraction efficiency is lower than that of the element 1b in FIG. 8, the extraction efficiency can be improved as compared with the conventional element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 発光層を流れる電流の水平方向への拡がりを確保しながら、光の取り出し効率を更に向上させた半導体発光素子を提供する。 半導体発光素子は、支持基板上に、n型半導体層と、p型半導体層と、n型半導体層及びp型半導体層の間に形成された発光層を有する構成であって、底面をn型半導体層の上面に接触して形成されたn側電極と、上面をp型半導体層の底面に接触し、n側電極の形成箇所の直下の位置を含む領域に形成された反射電極と、n側電極の形成箇所の直下の位置において、上面を反射電極の底面に接触して形成された第1絶縁層を備える。

Description

半導体発光素子
 本発明は、支持基板上に、n型半導体層、p型半導体層、及びこれらの間に形成された発光層を有する半導体発光素子に関する。
 従来、窒化物半導体を用いた発光素子においては、主としてGaNが利用されている。この場合、格子整合の観点からサファイア基板上にエピタキシャル成長させて欠陥の少ないGaN膜を形成することで、窒化物半導体からなる発光素子を形成していた。ここで、サファイア基板は絶縁材であることから、GaN系の発光素子への給電には、p型半導体層の一部を削ってn型半導体層を露出させ、p型半導体層及びn型半導体層の各半導体層に給電用の電極を形成していた。このように、給電用の電極が同じ向きに配置されている構造の発光素子を「横型構造」と呼び、例えば下記特許文献1にこのような技術が開示されている。
 一方で、発光素子の発光効率の改善や光取り出し効率の向上を目的として、p型半導体層とn型半導体層を表裏面に配置し給電する、いわゆる「縦型構造」の発光素子の開発が進められている。この縦型構造の発光素子を製造する際には、サファイア基板上に下から順にn型半導体層、発光層(「活性層」とも呼ばれる。)、p型半導体層を配置し、当該p型半導体層側にSiやCuWからなる支持基板を接合した後、サファイア基板が除去される。この場合、素子表面はn型半導体層となり、このn型半導体側に電極(n側電極)を設け、このn側電極に給電線であるワイヤを繋ぐことで電圧供給を行っている。
 縦型の構造においては、p型半導体層側の電極(以下、「p側電極」と呼ぶ。)とn側電極の間に電圧が印加されると、p側電極から発光層を介してn側電極に電流が流れる。発光層内を電流が流れることで、発光層が発光する。
 p側電極とn側電極は鉛直方向に対向する位置関係に配置される。このため、両電極間に電圧が印加された場合、p側電極からn側電極に向かってほぼ最短距離で向かう鉛直方向の電流経路が形成される。このとき、n側電極の直下に位置する発光層内を大部分の電流が流れ、他の発光層内にはあまり電流が流れず、発光領域が限定的となり発光効率が低くなるという問題がある。
 上記の課題を受け、下記特許文献2には、電流を支持基板の基板面に対して平行な方向に拡げることを目的としてn側電極の直下の位置に絶縁層を設ける構成が開示されている。
特許第2976951号明細書 特許第4207781号明細書
 図9は、特許文献2に開示された半導体発光素子の断面図を模式的に示したものである。従来の半導体発光素子90は、支持基板91上に導電層92、反射膜93、絶縁層94、反射電極95、半導体層99、及びn側電極100を備えて構成される。半導体層99は、p型半導体層96、発光層97、及びn型半導体層98が下からこの順に積層されて構成される。反射電極95は前述の「p側電極」に対応する電極である。
 絶縁層94は、n側電極100が形成されている位置の直下の位置を含む領域に形成される。絶縁層94の下層には金属材料からなる反射膜93が形成されているが、この反射膜93はオーミック性を有さず電極としての機能を奏さない。一方、反射電極95は金属材料からなり、p型半導体層96の間でオーミック接触が実現されることで電極(p側電極)として機能している。
 支持基板91とn側電極100の間に電圧が印加されると、n側電極100の直下の位置には絶縁層94が設けられているため、n側電極100の直下の位置において発光層97内を鉛直方向に大部分の電流が流れることが防止される。すなわち、電流は反射電極95を通過した後、支持基板91の基板面に対して平行な方向(水平方向)に拡がりながらn側電極100に向かって流れる。これにより、発光層97内を流れる電流を水平方向に拡げる効果が得られ、発光層97内の発光領域が水平方向に拡げられる。
 反射電極95は、発光層97で発光した光のうち、支持基板91に向かう方向(図面下向き)に放射された光を反射させてn側半導体層98側(図面上向き)に取り出すことで、光の取り出し効率を高める目的を兼ねている。反射膜93も同様の目的で形成されており、反射電極95が形成されていない箇所を通過して下向きに進行した光を反射させてn側半導体層98側に進行方向を変えることで、光の取り出し効率が高められる。
 しかし、発光層97から下向きに放射された光が反射膜93によって反射されて上向きに取り出されるに際し、この光は、反射膜93で反射される前と反射した後の2回にわたって、絶縁膜94内を通過することになる。特許文献2には、絶縁膜94の材料として、SiO、Al、ZrO、TiOなどの材料が挙げられている。これらの材料によって絶縁膜94を形成した場合、絶縁膜94は透明膜として構成されるものの、この絶縁膜94内を光が通過する際に数%の光が絶縁膜94によって吸収されてしまう。より詳細には、発光層97から絶縁膜94を通過して反射膜93に達するまでに3-4%程度の光が吸収され、更に反射膜93で反射された光が絶縁膜94を通過してn型半導体層98側の外部に取り出されるまでに更に3-4%の光が吸収される。
 つまり、従来の構成では、発光層97から放射された光のうち、下向きに放射された光を反射させて取り出し効率を高めてはいるものの、一部の光が絶縁膜94内に吸収されてしまっているため、取り出し効率を十分に高められているとはいえない。
 本発明は、上記の課題に鑑み、発光層を流れる電流の水平方向への拡がりを確保しながら、光の取り出し効率を更に向上させた半導体発光素子を提供することを目的とする。
 本発明は、支持基板上に、n型半導体層と、p型半導体層と、前記n型半導体層及び前記p型半導体層の間に形成された発光層とを有する半導体発光素子であって、
 底面を前記n型半導体層の上面に接触して形成されたn側電極と、
 上面を前記p型半導体層の底面に接触し、前記n側電極の形成箇所の直下の位置を含む領域に形成された反射電極と、
 前記n側電極の形成箇所の直下の位置において、上面を前記反射電極の底面に接触して形成された第1絶縁層を備えたことを特徴とする。
 この構成によれば、反射電極はn側電極の直下の位置にまで形成されているものの、その箇所においては底面に第1絶縁層が形成されているため、n側電極の直下の位置において反射電極の底面より下方に電流が流れることがない。電流経路は第1絶縁層が形成されていない領域に形成されることから、上記構成によれば、反射電極とn側電極が鉛直方向に対向する位置関係であっても、反射電極とn側電極に挟まれた領域における発光層内にのみ大部分の電流が流れるということはない。つまり、上記構成においても、発光層内を流れる電流を支持基板の基板面に平行な方向(水平方向)に拡げる効果が得られる。
 図9を参照して説明した従来の構成であれば、反射膜93の上層に形成されていた絶縁層94によって、発光層97内を流れる電流を水平方向に拡げる効果を実現していた。そして、この反射膜93の上層に絶縁層94が設けられていることで、発光層97から放射された光が反射膜93で反射されて取り出されるまでの間に、絶縁層94内を2回通過することを余儀なくされ、この絶縁層94内で数%の光が吸収されてしまっていた。
 これに対し、上記の構成であれば、反射電極の下層に設けられた第1絶縁層によって発光層内を流れる電流を水平方向に拡げる効果が実現される。このため、反射電極の上層には必ずしも絶縁層を設ける必要がない。この結果、発光層から支持基板側に放射された光が反射電極で反射されてn型半導体層側の外部に取り出されるまでに、絶縁層によって吸収されることがなく、従来よりも取り出し効率が高められる。
 なお、図9に示す従来の半導体発光素子90においても、絶縁層94は反射電極95の底面の一部に接触するように形成されており、反射電極95の上面にはp型窒化物層96が形成されている。このため、発光層97から下向き(支持基板91側)に放射された光のうち、反射電極95で反射される光については、絶縁層94で吸収されるということはない。しかし、図9の構成では、n側電極100の直下の位置には反射電極95が形成されておらず、絶縁層94が形成されている。このため、発光層97から放射された光のうち、n側電極100の直下に位置する領域内を下向きに通過する光については、反射電極95によって反射させることができないため、絶縁層94の底面に反射膜93を設ける構成としている。ただし、この反射膜93で反射された光が外部に取り出されるまでに絶縁層94において一部が吸収されてしまう点は上述した通りである。
 図9に示す半導体発光素子90において、n側電極100の直下の位置に反射電極95を形成しない構成としているのは、n側電極100と反射電極95を鉛直方向に対向させると、この間に位置する発光層97の領域にのみ重点的に電流が流れてしまい、発光層97内の発光領域が限定的になることを想定したものであると考えられる。しかし、「発明を説明するための形態」の項で後述されるように、本発明者の鋭意研究によって、n側電極の直下の位置に反射電極を形成しても、n側電極の直下の位置において反射電極の底面に絶縁層(第1絶縁層)を形成しておくことで、発光層に流れる電流を水平方向に拡げる効果が実現できることを見出した。本発明は、この事実に基づいてなされたものである。
 特に、上記の構成において、前記反射電極は、上面の全てが前記p型半導体層の底面と接触する構成とすることができる。
 このような構成とすることで、発光層から下向きに放射された光が反射電極によって反射されてn型半導体層の上方へ取り出されるまでに、絶縁層によって吸収されることがなくなる。よって、従来構成と比べて光取り出し効率を大きく向上させることができる。
 また、別の構成として、
 前記n側電極の形成箇所の直下の位置において、前記反射電極と前記p型半導体層に挟まれる位置に形成された第2絶縁層を備え、
 前記第2絶縁層が、当該第2絶縁層の直上に位置する前記n側電極よりも前記支持基板の基板面に平行な方向の幅が狭い構成とすることができる。
 上記構成の場合、反射電極の上面に第2絶縁層が形成されるため、第2絶縁層内を通過した光については、当該第2絶縁層にて一部の光が吸収されてしまう。しかし、上述したように、本発明の構成では、反射電極の底面に形成された第1絶縁層によって発光層内を流れる電流を水平方向に拡げる効果が実現できている。このため、反射電極の上面に絶縁層(第2絶縁層)を形成する場合には、この第2絶縁層の幅を細くすることが可能である。つまり、第2絶縁層の幅をn側電極よりも細くしても、発光層内を流れる電流は第1絶縁層によって水平方向に拡げられる。そして、このように第2絶縁層の幅が細くできるため、反射電極の上面にこの第2絶縁層を形成したとしても、発光層から下向きに放射されて反射電極によって反射される光のうち、当該第2絶縁層内を通過する光を限定的にすることができる。従って、この構成においても、従来よりも光の取り出し効率を向上させることができる。
 また、上記構成において、
 前記反射電極は、上面に前記第2絶縁層が形成されている領域を除いて、上面の全てが前記p型半導体層の底面と接触している構成とすることができる。
 また、本発明の半導体発光素子は、前記n型半導体層、前記p型半導体層、及び前記発光層の全てを窒化物半導体層で形成した、窒化物半導体発光素子として実現することができる。
 本発明の半導体発光素子によれば、発光層を流れる電流の水平方向への拡がりを確保しながら、従来構成よりも光の取り出し効率を更に向上させることができる。
半導体発光素子の第1実施形態の構成を模式的に示す断面図である。 半導体発光素子の第1実施形態の構成を模式的に示す平面図である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第1実施形態の工程断面図の一部である。 半導体発光素子の第2実施形態の構成を模式的に示す断面図である。 半導体発光素子の第2実施形態の工程断面図の一部である。 半導体発光素子の第2実施形態の工程断面図の一部である。 比較例として形成した半導体発光素子の構造を模式的に示す断面図である。 実施例1、実施例2、及び比較例の各素子に対して電圧を印加したときの、流れる電流値と電圧値の関係(I-V特性)を示すグラフである。 実施例1、実施例2、及び比較例の各素子に対して電流を供給したときに得られる発光出力と電流値の関係を示すグラフである。 半導体発光素子の別実施形態の構成を模式的に示す断面図である。 従来の半導体発光素子の構成を模式的に示す断面図である。
 本発明の半導体発光素子につき、図面を参照して説明する。なお、各図において図面の寸法比と実際の寸法比は必ずしも一致しない。また、本明細書において、「第1の層が第2の層の直下に位置する」とは、支持基板の基板面に垂直な方向に関して、第1の層の下方に第2の層が位置することを意味する。
 [第1実施形態]
 本発明の半導体発光素子の第1実施形態の構成について説明する。
 〈構造〉
 図1Aは、第1実施形態の半導体発光素子の構成を模式的に示す断面図である。半導体発光素子1は、支持基板11、導電層20、絶縁層21、半導体層30及びn側電極(42,43)を含んで構成される。半導体層30は、p型半導体層(32,31)、発光層33、及びn型半導体層35が下からこの順に積層されて形成されている。なお、図1Bは、半導体発光素子1を上面から見たときの模式的な平面図であり、図1Aは、図1BにおけるA-A線断面図に対応している。
  (支持基板11)
 支持基板11は、例えばCuW、W、Moなどの導電性基板、又はSiなどの半導体基板で構成される。
  (導電層20)
 支持基板11の上層には、多層構造からなる導電層20が形成されている。この導電層20は、本実施形態では、ハンダ層13、ハンダ層15、保護層17及び反射電極19を含む。
 ハンダ層13及びハンダ層15は、例えばAu-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどで構成される。後述するように、これらのハンダ層13とハンダ層15は、支持基板11上に形成されたハンダ層13と、別の基板(後述するサファイア基板61)上に形成されたハンダ層15を対向させた後に、両者を貼り合わせることで形成されたものである。
 保護層17は、例えばPt系の金属(TiとPtの合金)、W、Mo、Niなどで構成される。後述するように、ハンダ層を介した貼り合わせの際、ハンダを構成する材料が後述する反射電極19側に拡散し、反射率が落ちることによる発光効率の低下を防止する機能を果たしている。
 反射電極19は、例えばAg系の金属(NiとAgの合金)、Al、Rhなどで構成される。半導体発光素子1は、発光層33から放射された光を、図1Aの上方向(n型半導体層35側)に取り出すことを想定しており、反射電極19は、発光層33から下向きに放射された光を上向きに反射させることで発光効率を高める機能を果たしている。なお、図1A内における上向きの矢印は、光の取り出し方向を表している。
 反射電極19は、n側電極(42,43)の直下の位置を含むp型半導体層(31,32)の下層に形成されている。特に、図1Aに示すように、本実施形態では反射電極19の上面は全てp型半導体層32と接触するように形成されている。そして、支持基板11とn側電極(42,43)の間に電圧が印加されると、支持基板11、ハンダ層(13,15)、保護層17、反射電極19、半導体層30を介してn側電極(42,43)へと流れる電流経路が形成される。
  (絶縁層21)
 絶縁層21は、例えばSiO2、SiN、Zr、AlN、Alなどで構成される。この絶縁層21は、「第1絶縁層」に対応する。
 絶縁層21は、n側電極(42,43)の直下の位置に形成されており、絶縁層21の上面は反射電極19の底面に接触している。この絶縁層21は、発光層33を流れる電流を支持基板11の基板面に平行な方向(水平方向)に拡げる役割を果たしている。更に、絶縁層21は半導体層30の外側の位置にも形成されており、プロセスの項で後述するように、素子分離時におけるエッチングストッパー層としても機能する。
  (半導体層30)
 上述したように、半導体層30は、p型半導体層32、p型半導体層31、発光層33、及びn型半導体層35が下からこの順に積層されて形成される。
 p型半導体層32は、例えばGaNで構成される。また、p型半導体層31は、例えばAlGa1-mN(0≦m<1)で構成される。いずれの層も、Mg、Be、Zn、又はCなどのp型不純物がドープされている。なお、p型半導体層32は、p型半導体層31よりも不純物濃度が高濃度であり、コンタクト層を形成している。
 発光層33は、例えばInGaNからなる井戸層とAlGaNからなる障壁層が繰り返されてなる多重量子井戸構造を有する半導体層で形成される。これらの層はアンドープでもp型又はn型にドープされていても構わない。
 n型半導体層35は、例えばAlGa1-nN(0≦n<1)で構成される層(電子供給層)とGaNで構成される層(保護層)を含む多層構造で構成される。少なくとも保護層には、Si、Ge、S、Se、Sn、又はTeなどのn型不純物がドープされている。
  (n側電極42,n側電極43)
 n側電極(42,43)はn型半導体層35の上層であって、図1Aに示す断面図においてn型半導体層35の端部近傍領域と中央近傍領域に形成され、例えばCr-Auで構成される。端部近傍領域に形成されたものがn側電極43、中央近傍領域に形成されたものがn側電極42に対応する。また、n側電極43には、例えば領域43a及び43bにおいて、Au、Cuなどで構成されるワイヤ45が連絡されており、このワイヤ45の他方は、半導体発光素子1が配置されている基板(支持基板11)の給電パターンなどに接続される(不図示)。つまり、n側電極43は、半導体発光素子1の給電端子として機能している。なお、図1A及び図1Bでは、n側電極42が中央近傍の1箇所に形成される構成としているが、このn側電極42を複数形成することで、格子状に配置するものとしても構わない。更に、n側電極42同士を交差させて網目状に配置しても構わない。
 また、図1Bにも示すように、n側電極42とn側電極43は半導体層30の上面において連結されており、半導体層30の平面上に電流経路を拡げる役目を果たしている。つまり、n型半導体層35の上面のうち、給電端子を構成するn側電極43とは異なる箇所においてn型半導体層35の上面と接触することで、通電時において水平方向に関してn型半導体層35の広い範囲に電流を流し、これによって発光層33内の広い範囲に電流を流すことを目的として形成されている。
 なお、図示していないが、半導体層30の側面に保護膜としての絶縁層を形成しても構わない。なお、この保護膜としての絶縁層は、透光性を有する材料(例えばSiOなど)で構成するのが好ましい。また、上述の実施形態では、p型半導体層31を構成する一材料をAlGa1-mN(0≦m<1)と記載し、n型半導体層35を構成する一材料をAlGa1-nN(0≦n<1)と記載したが、これらは同一の材料であっても構わない。
 また、光取り出し効率を更に高める目的で、n型半導体層35の上面に微小の凹凸(メサ構造)を形成しても構わない。
 図1Aに示す構成によれば、反射電極19はn側電極(42,43)の直下の位置を含む領域に形成されているものの、n側電極(42,43)の直下の位置においては反射電極19の底面に絶縁層21が形成されているため、n側電極(42,43)の直下の位置において反射電極19の底面より下方に電流が流れることがない。電流経路は絶縁層21が形成されていない領域に形成されることから、上記構成によれば、反射電極19とn側電極(42,43)が鉛直方向に対向する位置関係であっても、反射電極19とn側電極(42,43)に挟まれた領域における発光層33内にのみ大部分の電流が流れるということはない。つまり、図1Aに示す半導体発光素子1によれば、反射電極19の上層に絶縁層を設けなくても、発光層33内を流れる電流を支持基板11の基板面に平行な方向(水平方向)に拡げる効果が得られる。
 この結果、発光層33から支持基板11側に放射された光が反射電極19で反射されてn型半導体層35側に取り出されるまでに、絶縁層によって吸収されることがなく、従来よりも取り出し効率が高められる。
 本実施形態の半導体発光素子1によれば、従来構成と同等の低電圧駆動を実現しながら、従来構成よりも光の取り出し効率が高められていることに関しては、第2実施形態の構成を説明した後、実施例及び比較例の素子による結果を参照して示される。
 〈製造方法〉
 次に、半導体発光素子1の製造方法の一例につき、図2A~図2Jに示す工程断面図を参照して説明する。なお、以下で説明する製造条件や膜厚などの寸法は、あくまで一例であって、これらの数値に限定されるものではない。
  (ステップS1)
 図2Aに示すように、サファイア基板61上にエピ層40を形成する。このステップS1は例えば以下の手順により行われる。
   (サファイア基板61の準備)
 まず、c面サファイア基板61のクリーニングを行う。このクリーニングは、より具体的には、例えばMOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内にc面サファイア基板61を配置し、処理炉内に流量が10slmの水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。
   (アンドープ層36の形成)
 次に、c面サファイア基板61の表面に、GaNよりなる低温バッファ層を形成し、更にその上層にGaNよりなる下地層を形成する。これらの低温バッファ層及び下地層がアンドープ層36に対応する。
 アンドープ層36のより具体的な形成方法は例えば以下の通りである。まず、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃とする。そして、処理炉内にキャリアガスとして流量がそれぞれ5slmの窒素ガス及び水素ガスを流しながら、原料ガスとして、流量が50μmol/minのトリメチルガリウム(TMG)及び流量が250000μmol/minのアンモニアを処理炉内に68秒間供給する。これにより、c面サファイア基板61の表面に、厚みが20nmのGaNよりなる低温バッファ層を形成する。
 次に、MOCVD装置の炉内温度を1150℃に昇温する。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が100μmol/minのTMG及び流量が250000μmol/minのアンモニアを処理炉内に30分間供給する。これにより、低温バッファ層の表面に、厚みが1.7μmのGaNよりなる下地層を形成する。
  〈n型半導体層35の形成〉
 次に、アンドープ層36の上層にAlGa1-nN(0≦n≦1)の組成からなるn型半導体層35を形成する。
 n型半導体層35のより具体的な形成方法は、例えば以下の通りである。まず、引き続き炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのトリメチルアルミニウム(TMA)、流量が250000μmol/minのアンモニア及び流量が0.025μmol/minのテトラエチルシランを処理炉内に60分間供給する。これにより、例えばAl0.06Ga0.94Nの組成を有し、Si濃度が3×1019/cmで、厚みが2μmのn型半導体層35がアンドープ層36の上層に形成される。
 なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを6秒間供給することにより、n-AlGaN層の上層に厚みが5nmのn型GaNよりなる保護層を有するn型半導体層35を実現してもよい。
 上記の説明では、n型半導体層35に含まれるn型不純物をSiとする場合について説明したが、n型不純物としては、Si以外にGe、S、Se、Sn又はTe等を用いることができる。
  〈発光層33の形成〉
 次に、n型半導体層35の上層にInGaNで構成される井戸層及びn型AlGaNで構成される障壁層が周期的に繰り返される多重量子井戸構造を有する発光層33を形成する。
 具体的には、まずMOCVD装置の炉内圧力を100kPa、炉内温度を830℃とする。そして、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が1slmの水素ガスを流しながら、原料ガスとして、流量が10μmol/minのTMG、流量が12μmol/minのトリメチルインジウム(TMI)及び流量が300000μmol/minのアンモニアを処理炉内に48秒間供給するステップを行う。その後、流量が10μmol/minのTMG、流量が1.6μmol/minのTMA、0.002μmol/minのテトラエチルシラン及び流量が300000μmol/minのアンモニアを処理炉内に120秒間供給するステップを行う。以下、これらの2つのステップを繰り返すことにより、厚みが2nmのInGaNよりなる井戸層及び厚みが7nmのn型AlGaNよりなる障壁層による15周期の多重量子井戸構造を有する発光層33が、n型半導体層35の上層に形成される。
  〈p型半導体層31の形成〉
 次に、発光層33の上層に、AlGa1-mN(0≦m≦1)で構成されるp型半導体層31を形成する。
 具体的には、MOCVD装置の炉内圧力を100kPaに維持し、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が25slmの水素ガスを流しながら、炉内温度を1025℃に昇温する。その後、原料ガスとして、流量が35μmol/minのTMG、流量が20μmol/minのTMA、流量が250000μmol/minのアンモニア及びp型不純物をドープするための流量が0.1μmol/minのビスシクロペンタジエニルマグネシウム(CPMg)を処理炉内に60秒間供給する。これにより、発光層33の表面に、厚みが20nmのAl0.3Ga0.7Nの組成を有する正孔供給層を形成する。その後、TMAの流量を4μmol/minに変更して原料ガスを360秒間供給することにより、厚みが120nmのAl0.13Ga0.87Nの組成を有する正孔供給層を形成する。これらの正孔供給層によりp型半導体層31が形成される。このp型半導体層31のp型不純物濃度は、例えば3×1019/cm程度である。
  〈p型半導体層32の形成〉
 更にその後、TMAの供給を停止すると共に、CPMgの流量を0.2μmol/minに変更して原料ガスを20秒間供給することにより、厚みが5nm程度で、p型不純物濃度が1×1020/cm程度のpGaNよりなるp型半導体層32を形成する。
 このようにしてサファイア基板61上に、アンドープ層36、n型半導体層35、発光層33、p型半導体層31、及びp型半導体層32からなるエピ層40が形成される。
  (ステップS2)
 次に、ステップS1で得られたウェハに対して活性化処理を行う。より具体的には、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
  (ステップS3)
 次に、図2Bに示すように、p型半導体層32の上面の所定箇所に反射電極19を形成する。ここでは、p型半導体層32の形成領域よりも内側において、p型半導体層32のほぼ全域に反射電極19を形成する場合を示している。より具体的には、後の工程で給電端子としてのn側電極42を形成する領域の直下に位置する箇所を含むように反射電極19を形成する。
 反射電極19は、一例として、スパッタ装置にてp型半導体層32の上面に膜厚0.7nmのNi及び膜厚150nmのAgを成膜した後、RTA装置を用いてドライエア雰囲気中で400℃、2分間のコンタクトアニールを行うことで形成される。なお、ここでは、反射電極19の材料としてNiとAgの合金を採用しているが、AlやRhによって反射電極19を形成することもできる。
  (ステップS4)
 次に、図2Cに示すように、反射電極19の上層の所定箇所に絶縁層21を形成する。特に、後の工程でn側電極(42,43)を形成する領域の下方に位置する箇所に絶縁層21を形成する。このとき、図2Cに示すように、絶縁層21の一部が反射電極19の側面を覆うように形成することができる。
 より具体的には、絶縁層21の非形成領域に係る反射電極19の上層をマスクしておき、例えばSiOをスパッタリング法によって膜厚200nm程度成膜する。なお成膜する材料は絶縁性材料であればよく、例えばSiN、Alでも良い。
  (ステップS5)
 図2Dに示すように、金属電極19及び絶縁層21の上面を覆うように保護層17及びハンダ層15を形成する。
 より詳細には、電子線蒸着装置(EB装置)にて金属電極19及び絶縁層21の上面を覆うように、膜厚100nmのTiと膜厚200nmのPtを3周期成膜することで、保護層17を形成する。更にその後、保護層17の上面(Pt表面)に、膜厚10nmのTiを蒸着させた後、Au80%Sn20%で構成されるAu-Snハンダを膜厚3μm蒸着させることで、ハンダ層15を形成する。
 なお、このハンダ層15の形成ステップにおいて、サファイア基板61とは別に準備された支持基板11の上面にもハンダ層13を形成するものとして構わない(図2E参照)。このハンダ層13は、ハンダ層15と同一の材料で構成されるものとしてよく、次のステップにおいてハンダ層13と接合されることで、サファイア基板61と支持基板11が貼り合わせられる。この支持基板11としては、構造の項で前述したように、例えばCuWが用いられる。
 更に、この図2Eにおいて、支持基板11上にハンダ層13の材料の拡散を防止するための保護層を保護層17と同様の材料で形成し、この保護層の上層にハンダ層13を形成するものとしても構わない。
  (ステップS6)
 次に、図2Fに示すように、サファイア基板61と支持基板11とを貼り合わせる。より具体的には、280℃の温度、0.2MPaの圧力下で、ハンダ層15と支持基板11の上層に形成されたハンダ層13とを貼り合わせる。
  (ステップS7)
 次に、図2Gに示すように、サファイア基板61を剥離する。より具体的には、サファイア基板61を上に、支持基板11を下に向けた状態で、サファイア基板61側からKrFエキシマレーザを照射して、サファイア基板61とエピ層40の界面を分解させることでサファイア基板61の剥離を行う。サファイア61はレーザが通過する一方、その下層のGaN(アンドープ層36)はレーザを吸収するため、この界面が高温化してGaNが分解される。これによってサファイア基板61が剥離される。
 その後、図2Hに示すように、ウェハ上に残存しているGaN(アンドープ層36)を、塩酸等を用いたウェットエッチング、又はICP装置を用いたドライエッチングによって除去し、n型半導体層35を露出させる。なお、本ステップS7においてアンドープ層36が除去されて、p型半導体層32、p型半導体層31、発光層33、及びn型半導体層35が下からこの順に積層されてなる半導体層30が残存する。
  (ステップS8)
 次に、図2Iに示すように、隣接する素子同士を分離する。具体的には、隣接素子との境界領域に対し、ICP装置を用いて絶縁層21の上面が露出するまで半導体層30をエッチングする。上述したように、このとき絶縁層21はエッチング時のストッパーとしても機能する。
  (ステップS9)
 次に、図2Jに示すように、n型半導体層35の上面のうち、絶縁層21が形成されている箇所の直上の位置にn側電極(42,43)を形成する。具体的には、膜厚100nmのCrと膜厚3μmのAuからなる電極を形成した後、窒素雰囲気中で250℃、1分間のシンタリングを行う。
 そして、各素子同士を例えばレーザダイシング装置によって分離し、支持基板11の裏面を例えばAgペーストにてパッケージと接合し、給電端子としてのn側電極43に対してワイヤボンディングを行う。例えば、50gの荷重でΦ100μmのボンディング領域にAuからなるワイヤ45を連結させることで、ワイヤボンディングを行う。これにより、図1Aに示す窒化物半導体発光素子1が形成される。
 なお、ステップS8とステップS9の間に、KOH等のアルカリ溶液を浸すことでn型半導体層35の表面に凹凸(メサ構造)を形成しても構わない。また、n型半導体層35の上面にn側電極(42,43)を形成した後、半導体層30の側面を覆うように絶縁層を形成しても構わない。
 [第2実施形態]
 本発明の半導体発光素子の第2実施形態の構成について説明する。なお、第1実施形態と同一の構成については同一の符号を付してその説明を省略する。
 〈構造〉
 図3は、第2実施形態の半導体発光素子の構成を模式的に示す断面図である。半導体発光素子1aは、第1実施形態の半導体発光素子1と比較して、絶縁層22(「第2絶縁層」に対応)を更に備えている。この絶縁層22は、絶縁層21と同様にSiO2、SiN、Zr、AlN、Alなどで構成される。
 より詳細には、この絶縁層22は、n側電極(42,43)の形成箇所の直下の位置において、反射電極19とp型半導体層32に挟まれる位置に形成されている。更に、この絶縁層22は、n側電極(42,43)よりも支持基板11の基板面に平行な方向の幅が狭いことが好ましい。
 第1実施形態では、反射電極19の上面は全てp型半導体層32に接触していた。これに対し、第2実施形態では、反射電極19の上面のうち、一部が絶縁層22と接触し、それ以外の箇所はp型半導体層32に接触する構成である。そして、この絶縁層22は、n側電極(42,43)の形成箇所の直下の位置に形成されている。
 この構成によれば、反射電極19の上面の一部の箇所に絶縁層22が形成されるため、発光層33から下向きに放射された光のうち、一部の光はこの絶縁層22内を通過して反射電極19に達し、更に反射電極19によって反射された後に絶縁層22内を通過してn型半導体層35側に導かれることになる。このとき、絶縁層22にて光の一部が吸収されてしまうため、確かに第1実施形態で説明した半導体発光素子1と比べると、光の取り出し効率が少し低下する。
 しかし、第1実施形態において上述したように、本実施形態においても反射電極19の底面に形成された絶縁層21によって発光層33内を流れる電流を水平方向に拡げる効果が実現できている。このため、反射電極19の上面に形成される絶縁層22の幅を従来構成よりも細く実現できる。よって、本実施形態の半導体発光素子1aは、反射電極19の上面に絶縁層22を有するものの、発光層33から下向きに放射されて反射電極19によって反射される光のうち、当該絶縁層22内を通過する光を従来よりも著しく限定的にすることができる。従って、従来構成と比べると光の取り出し効率を向上させることができる。
 〈製造方法〉
 以下、本実施形態の半導体発光素子1aの製造方法につき、第1実施形態と異なる箇所のみを説明する。
 第1実施形態と同様の方法によってステップS1及びS2を実行する。
  (ステップS3A)
 次に、図4Aに示すように、p型半導体層32の上層の所定箇所に絶縁層22を形成する。特に、後の工程でn側電極(42,43)を形成する領域の下方に位置する箇所において、n側電極(42,43)よりも水平方向の幅を薄くして絶縁層22を形成する。
  (ステップS3B)
 次に、図4Bに示すように、p型半導体層32の上面の所定箇所に反射電極19を形成する。このとき、絶縁層22の上層を覆うように反射電極19を形成する。
 以後は、第1実施形態と同様に、ステップS4~S9を実行することで、図3に示す半導体発光素子1aが形成される。
 [実施例]
 上述した方法によって製造された第1実施形態の半導体発光素子1を実施例1、第2実施形態の半導体発光素子1aを実施例2とし、図5に示す半導体発光素子50を比較例として、電流電圧特性と発光特性を対比した。
 図5は、比較例として形成した半導体発光素子の構造を模式的に示す断面図である。半導体発光素子1と比較して、反射電極19の底面に形成された絶縁層21に代えて、反射電極19の上面に設けられた絶縁層23を有している。この絶縁層23は、n側電極(42,43)の直下の位置に形成されることで、発光層33を流れる電流を水平方向に拡げる目的で形成されている。なお、その他の層を構成する材料や寸法は共通としている。
 図6は、実施例1、実施例2、及び比較例の各素子に対して電圧を印加したときの、流れる電流値と電圧値の関係(I-V特性)を示すグラフである。図6によれば、実施例1、実施例2の各素子と比較例を対比すると、同一の電流値を流すのに必要な電圧値はほぼ同等であり、比較例の構成と同等の低電圧駆動が実現できていることが分かる。
 図7は、実施例1、実施例2、及び比較例の各素子に対して電流を供給したときに得られる発光出力と電流値の関係を示すグラフである。図7によれば、比較例の素子と比べて実施例1及び実施例2の両素子ともに発光出力が向上していることが分かる。また、実施例2よりも実施例1の素子の方が、更に発光出力が向上していることが分かる。
 この結果より、比較例の構成では、反射電極19の上層に形成された絶縁層23によって一部の光が吸収されていたが、実施例1の素子では、反射電極19の上層に絶縁層を設けない構成としたことで、この光の吸収がなくなったことで光の取り出し効率が向上していることが分かる。また、実施例2の素子では、反射電極19の上層に絶縁層22を設けているため、実施例1と比べると光の取り出し効率が低下しているものの、絶縁層22をn側電極(42,43)の幅より薄く形成できるため、比較例よりは光の取り出し効率が向上していることが分かる。
 なお、比較例の構成では絶縁層23によって水平方向に電流を拡げる効果を実現しているため、絶縁層23をn側電極(42,43)よりも水平方向の幅を狭くすることはできない。仮に絶縁層23をn側電極(42,43)よりも水平方向の幅を狭くした場合、n側電極42の直下に反射電極19が位置し、その直下には導電性の保護層19、ハンダ層(13,15)が形成されているため、絶縁層23が形成されていない領域において、n側電極(42,43)とその直下に位置する反射電極19の間に、鉛直方向に電流経路が形成されてしまう。この結果、当該領域の発光層33に多くの電流が流れることになり、発光層33を水平方向全体に光らせる効果が得られず、発光効率が低下してしまう。
 [別実施形態]
 上述の実施形態では、半導体発光素子(1,1a)として、窒化物半導体からなる発光素子を採り上げて説明した。しかし、本発明の構成は、他の半導体からなる発光素子にも適用が可能である。
 図8は、半導体発光素子の別実施形態の構成の一例を模式的に示す断面図である。この図8に示す半導体発光素子1bでは、発光層33がInGaPの井戸層とAlGaInPの障壁層とが繰り返されてなる多重量子井戸構造を有する半導体層で形成される。
 図8に示す半導体発光素子1bは、上述した第1実施形態の構成と同様に、支持基板11上に、p型半導体層31、発光層33及びn側半導体層35がこの順に下から積層されて形成されている。そして、半導体発光素子1bは、底面をn型半導体層35の上面に接触して形成されたn側電極(42,43)と、上面をp型半導体層31の底面に接触し、n側電極(42,43)の形成箇所の直下の位置を含む領域に形成された反射電極19と、n側電極(42,43)の形成箇所の直下の位置において、上面を反射電極19の底面に接触して形成された絶縁層21を備えている。
 より詳細には、支持基板11上に、Ni/Auで構成された接合層14、TaN/TiW/TaNで構成された保護層17、及びAuSnで構成された反射電極19を含む導電層20が形成される。また、p型半導体層31は、p型不純物濃度が高濃度(例えば3×1018/cm程度)のGaPで構成された拡散層61、拡散層62よりもp型不純物濃度が低濃度(例えば1×1018/cm程度)のAlGaInPで構成された中間層62、及び中間層62よりもp型不純物濃度が低濃度(例えば3×1017/cm程度)のAlGaInPで構成されたp-クラッド層63を備える。
 そして、n型半導体層35は、n型InGaPとn型AlInPが繰り返し積層されてなる多層構造で構成された緩和層64と、AlGaInPで構成されたn-クラッド層65を備える。
 図8に示す半導体発光素子1bにおいても、n側電極(42,43)の直下の位置において、発光層33内を延長方向に大部分の電流が流れることのないよう、すなわち、電流を支持基板11の基板面に平行な方向(水平方向)に拡げる目的で、n側電極(42,43)の直下の位置に絶縁層21が形成されている。そして、この絶縁層21は、反射電極19とp型半導体層31の間ではなく、反射電極19と保護層17の間、すなわち上面が反射電極19の底面に接触するように形成されている。
 このような構成において、上述した第1実施形態の構成と同様、発光層33から放射された光のうち、支持基板11に向かって進行する光は、反射電極19によって反射された後、進行方向を上向き(n型半導体層35側)へと変化して、外部に取り出される。このとき、前記の光は、反射電極19に到達するまで、及び到達後反射されて外部に取り出されるまでの間に、絶縁層21内を通過することがない。従って、上述した第1実施形態及び第2実施形態の素子と同様に、絶縁層21によって光が吸収されずに、従来よりも光取り出し効率が向上する効果が得られる。
 なお、図8において、第2実施形態の構成と同様に、n側電極(42,43)の形成箇所の直下の位置において、反射電極19とp型半導体層31の間に、n側電極(42,43)の幅よりも薄い幅で形成された第2絶縁層を形成しても構わない。この場合、図8の素子1bよりは光取り出し効率が低下するものの、従来の素子よりは取り出し効率を向上させることができる。
    1   :  第1実施形態の半導体発光素子
    1a  :  第2実施形態の半導体発光素子
    1b  :  別実施形態の半導体発光素子
   11   :  支持基板
   13   :  ハンダ層
   14   :  接合層
   15   :  ハンダ層
   17   :  保護層
   19   :  反射電極
   20   :  導電層
   21   :  絶縁層(第1絶縁層)
   22   :  絶縁層(第2絶縁層)
   23   :  絶縁層
   30   :  半導体層
   31   :  p型半導体層
   32   :  p型半導体層
   33   :  発光層
   35   :  n型半導体層
   36   :  アンドープ層
   40   :  エピ層
   42   :  n側電極
   43   :  n側電極(給電端子)
   43a,43b   :  n側電極上のワイヤ連絡領域
   45   :  ワイヤ
   61   :  拡散層
   62   :  中間層
   63   :  p-クラッド層
   64   :  緩和層
   65   :  n-クラッド層
   90   :  従来の半導体発光素子
   91   :  支持基板
   92   :  導電層
   93   :  反射膜
   94   :  絶縁層
   95   :  反射電極
   96   :  p型半導体層
   97   :  発光層
   98   :  n型半導体層
   99   :  半導体層
  100   :  n側電極
 

Claims (5)

  1.  支持基板上に、n型半導体層と、p型半導体層と、前記n型半導体層及び前記p型半導体層の間に形成された発光層とを有する半導体発光素子であって、
     底面を前記n型半導体層の上面に接触して形成されたn側電極と、
     上面を前記p型半導体層の底面に接触し、前記n側電極の形成箇所の直下の位置を含む領域に形成された反射電極と、
     前記n側電極の形成箇所の直下の位置において、上面を前記反射電極の底面に接触して形成された第1絶縁層を備えたことを特徴とする半導体発光素子。
  2.  前記反射電極は、上面の全てが前記p型半導体層の底面と接触していることを特徴とする請求項1に記載の半導体発光素子。
  3.  前記n側電極の形成箇所の直下の位置において、前記反射電極と前記p型半導体層に挟まれる位置に形成された第2絶縁層を備え、
     前記第2絶縁層が、当該第2絶縁層の直上に位置する前記n側電極よりも前記支持基板の基板面に平行な方向の幅が狭いことを特徴とする請求項1に記載の半導体発光素子。
  4.  前記反射電極は、上面に前記第2絶縁層が形成されている領域を除いて、上面の全てが前記p型半導体層の底面と接触していることを特徴とする請求項3に記載の半導体発光素子。
  5.  前記n型半導体層、前記p型半導体層、及び前記発光層の全てが窒化物半導体層で形成されていることを特徴とする請求項1~4のいずれか1項に記載の半導体発光素子。
     
PCT/JP2014/070711 2013-08-30 2014-08-06 半導体発光素子 WO2015029727A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480047832.7A CN105518880A (zh) 2013-08-30 2014-08-06 半导体发光元件
KR1020167002853A KR20160027168A (ko) 2013-08-30 2014-08-06 반도체 발광소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-180451 2013-08-30
JP2013180451A JP2015050293A (ja) 2013-08-30 2013-08-30 半導体発光素子

Publications (1)

Publication Number Publication Date
WO2015029727A1 true WO2015029727A1 (ja) 2015-03-05

Family

ID=52586298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070711 WO2015029727A1 (ja) 2013-08-30 2014-08-06 半導体発光素子

Country Status (5)

Country Link
JP (1) JP2015050293A (ja)
KR (1) KR20160027168A (ja)
CN (1) CN105518880A (ja)
TW (1) TW201517311A (ja)
WO (1) WO2015029727A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006535A (ja) * 2016-06-30 2018-01-11 ウシオ電機株式会社 半導体発光素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010215A (ja) * 2007-06-28 2009-01-15 Nichia Corp 半導体発光素子
JP2010027643A (ja) * 2008-07-15 2010-02-04 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP2011243956A (ja) * 2010-05-18 2011-12-01 Seoul Opto Devices Co Ltd 高効率発光ダイオード及びその製造方法
JP2012175040A (ja) * 2011-02-24 2012-09-10 Toshiba Corp 半導体発光素子及び発光装置
JP2013125929A (ja) * 2011-12-16 2013-06-24 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207781A (ja) 1990-11-30 1992-07-29 Hitachi Plant Eng & Constr Co Ltd 監視装置
JP2976951B2 (ja) 1994-12-02 1999-11-10 日亜化学工業株式会社 窒化物半導体発光ダイオードを備えた表示装置
CN101459209B (zh) * 2007-12-14 2012-04-18 台达电子工业股份有限公司 发光二极管装置及其制造方法
JP5057398B2 (ja) * 2008-08-05 2012-10-24 シャープ株式会社 窒化物半導体発光素子およびその製造方法
EP2660882B1 (en) * 2010-12-28 2018-10-03 Nichia Corporation Semiconductor light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010215A (ja) * 2007-06-28 2009-01-15 Nichia Corp 半導体発光素子
JP2010027643A (ja) * 2008-07-15 2010-02-04 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP2011243956A (ja) * 2010-05-18 2011-12-01 Seoul Opto Devices Co Ltd 高効率発光ダイオード及びその製造方法
JP2012175040A (ja) * 2011-02-24 2012-09-10 Toshiba Corp 半導体発光素子及び発光装置
JP2013125929A (ja) * 2011-12-16 2013-06-24 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子

Also Published As

Publication number Publication date
TW201517311A (zh) 2015-05-01
CN105518880A (zh) 2016-04-20
KR20160027168A (ko) 2016-03-09
JP2015050293A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
WO2015141517A1 (ja) 半導体発光素子及びその製造方法
US9437778B2 (en) Semiconductor light-emitting element and method for producing the same
US11114588B2 (en) Semiconductor light emitting element
JP5880633B2 (ja) 半導体発光素子
US20150280073A1 (en) Semiconductor light-emitting element and production method therefor
JP5818031B2 (ja) Led素子
JP5839293B2 (ja) 窒化物発光素子及びその製造方法
JP2006024913A (ja) 窒化ガリウム系化合物半導体発光素子用透光性正極および発光素子
JP2017069282A (ja) 半導体発光素子及びその製造方法
WO2015029727A1 (ja) 半導体発光素子
WO2016072326A1 (ja) 半導体発光素子
JP2017103439A (ja) 半導体発光素子及びその製造方法
JP2016195187A (ja) 半導体発光素子
JP2017139298A (ja) 半導体発光素子及びその製造方法
JP6004203B2 (ja) 半導体発光素子及びその製造方法
JP2014170815A (ja) Led素子
JP2015050381A (ja) 半導体発光素子及びその製造方法
JP2017005156A (ja) 半導体発光素子及びその製造方法
WO2015151542A1 (ja) 半導体発光素子、発光デバイス
JP2016195168A (ja) 半導体発光素子及びその製造方法
JP6468459B2 (ja) 半導体発光素子
JP6103268B2 (ja) 窒化物発光素子及びその製造方法
JP5880880B2 (ja) 窒化物発光素子
JP6004265B2 (ja) Led素子及びその製造方法
JP2017117966A (ja) 半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002853

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839263

Country of ref document: EP

Kind code of ref document: A1