WO2015022967A1 - 温度測定方法、及び、温度測定装置 - Google Patents

温度測定方法、及び、温度測定装置 Download PDF

Info

Publication number
WO2015022967A1
WO2015022967A1 PCT/JP2014/071334 JP2014071334W WO2015022967A1 WO 2015022967 A1 WO2015022967 A1 WO 2015022967A1 JP 2014071334 W JP2014071334 W JP 2014071334W WO 2015022967 A1 WO2015022967 A1 WO 2015022967A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature measuring
temperature
tool
unit
tool holder
Prior art date
Application number
PCT/JP2014/071334
Other languages
English (en)
French (fr)
Inventor
雅史 荒木
憲吾 山本
Original Assignee
株式会社山本金属製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本金属製作所 filed Critical 株式会社山本金属製作所
Priority to EP14836301.3A priority Critical patent/EP3034236B1/en
Priority to KR1020187030914A priority patent/KR102055518B1/ko
Priority to CN201480032405.1A priority patent/CN105339134B/zh
Priority to KR1020157035235A priority patent/KR20160006786A/ko
Publication of WO2015022967A1 publication Critical patent/WO2015022967A1/ja
Priority to US14/967,365 priority patent/US10024737B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0985Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Definitions

  • the present invention relates to a temperature measurement method and a temperature measurement device for a rotary tool itself used for processing.
  • the present invention relates to a temperature measuring method and a temperature measuring device during processing of a cutting tool for cutting a workpiece, a temperature measuring method of a rotary tool such as a welding torch, and a temperature measuring device.
  • the performance evaluation of cutting fluids used for machining of workpieces has been conducted to determine how much tool wear can be suppressed (long tool life) and how much the surface quality can be improved. (Is the finished surface finished beautifully)?
  • the performance evaluation of cutting fluids is realized by measuring the wear of cutting tools used for cutting with NC lathes and machining centers and measuring the surface roughness of workpieces. Takes time and effort. Therefore, there is a problem that these measuring methods are difficult to apply to the selection and development of cutting fluids.
  • the individual simple and accurate temperature evaluation is not performed for the performance evaluation of the parts themselves used in various rotary tools and the performance evaluation of the oil and cooling water to be used as described above.
  • the temperature evaluation of a welding torch is important for verifying the welding force and base metal state of the cladding layer, but by looking at the temperature curve of the weld pool or other base material, There is a current state of temperature evaluation.
  • the conventional method for evaluating the cooling performance described above is based on real-time grasping of the temperature of the cutting tool during cutting and the temperature of the welding torch during welding, and using the grasped temperature. It does not evaluate whether the cooling performance is good or bad. For this reason, there are cases where the temperature of the rotary tool used in the conventional cooling performance evaluation method differs from the temperature of the rotary tool (cutting tool, welding torch, etc.) during actual processing (cutting, welding). Therefore, it cannot be said that the conventional method for evaluating the cooling performance described above is accurate.
  • the present invention provides the temperature at the time of actual rotation tool operation, that is, the cutting tool during cutting.
  • An object of the present invention is to provide a temperature measuring method and a temperature measuring apparatus capable of grasping in real time the temperature, the temperature of a welding torch during welding, and the like.
  • the temperature measurement method of the present invention provided to solve the above-described problem is a rotation that is rotatable about a rotation axis and that has a hollow hole extending from the front end toward the rear end along the rotation axis.
  • the temperature measurement method includes a step of mounting a temperature measurement unit in the vicinity of the through hole of the rotary tool, a step of measuring the temperature of the rotary tool that rotates coaxially with the rotary holder using the temperature measurement unit, and And the step of receiving the measurement result of the temperature measurement unit with an electronic substrate in order.
  • the present invention also provides a temperature measuring device used for the temperature measuring method described above.
  • the temperature measuring device is rotatable about a rotation axis, and has a rotation holding body formed with a hollow hole extending from the front end toward the rear end along the rotation axis, and connected to the rotation holding body.
  • a temperature measurement unit that measures the temperature of the sensor and an electronic substrate that receives the measurement result of the temperature measurement unit with the electronic substrate.
  • the rotating holder and the rotating tool are connected in the direction of the rotation axis and rotate coaxially, and the inside thereof is connected by a through hole.
  • the temperature measuring method and the temperature measuring device adopt a cutting tool as a rotating tool, and can grasp the temperature of the cutting tool in real time, thereby easily and accurately evaluating the cooling performance of the cutting fluid.
  • the rotating tool include a cutting tool and a welding torch.
  • the rotary holding body is a cylindrical tool holder capable of holding the cutting tool at the tip.
  • the cooling performance of the cutting fluid can be evaluated using the temperature of the cutting tool grasped in real time. More specifically, with reference to the temperature of the cutting tool ascertained in real time, it is possible to determine that a cutting fluid with a small temperature rise is a cutting fluid with high cooling performance. Therefore, the evaluation of the cooling performance of the cutting fluid can be realized more accurately than before. As a result, a cutting fluid excellent in cooling performance can be easily selected, and it becomes a great merit in the development of a cutting fluid.
  • the rotary holding body is a cylindrical tool holder that is connected to the welding torch at its tip.
  • the cooling performance of the cooling water can be evaluated using the temperature of the welding torch grasped in real time. It is also possible to evaluate the selection and development of molten materials and base materials. Specifically, referring to the temperature of the welding torch grasped in real time, the cooling water supply (adjustment of water channel and water volume) to obtain the desired temperature change, the control of the discharge area of the cooling water and solvent, the appropriateness of the welding torch It is possible to evaluate a proper moving speed and appropriately execute control.
  • the electronic substrate is provided on the outer periphery of the tool holder.
  • the electronic board includes a transmission unit capable of transmitting the measurement result of the temperature measurement unit to an external unit.
  • the transmission unit may transmit the measurement result of the temperature measurement unit to the external unit by a wireless method.
  • a power supply unit provided on an outer peripheral portion of the tool holder and capable of supplying power to the electronic substrate may be provided.
  • the tool holder includes a communication hole that communicates from the outer periphery of the tool holder to the hollow hole, and the electronic substrate and the temperature measurement unit can be electrically connected via the communication hole and the hollow hole. Wiring may be provided.
  • a cover member provided at an outer peripheral portion of the tool holder and covering at least the electronic substrate may be provided.
  • the tool holder includes an accommodation space communicating with the hollow hole inside, The electronic substrate may be accommodated in the accommodation space.
  • a power supply unit capable of supplying power to the electronic board is accommodated in the accommodation space.
  • the tool holder includes a communication hole that communicates from the outer peripheral portion of the tool holder to the hollow hole, and the electronic substrate and the transmission unit can be electrically connected via the communication hole and the hollow hole. Electrical wiring can also be provided.
  • the electronic board includes a stress receiving unit capable of receiving a measurement result of the stress measuring unit.
  • the tool holder includes a communication hole that communicates with the hollow hole from an outer peripheral part of the tool holder, and the electronic substrate and the transmission unit can be electrically connected via the communication hole and the hollow hole. It is also preferable to provide electrical wiring.
  • the temperature of a rotating tool (such as a cutting tool or a welding torch) that is actually being processed can be grasped in real time, so that the evaluation of the rotating tool itself, the cooling performance of the cutting fluid and cooling water can be performed. Evaluation can be realized more accurately than before.
  • the temperature measuring device 1 includes a cylindrical tool holder 2, a collet nut 3, a cutting tool 4, a temperature measuring unit 5, an electronic substrate 6, a power supply unit 7, and an electronic device. And a cover member 8 that covers the substrate 6 and the power supply unit 7.
  • the tool holder 2 is rotatable about a rotation axis (not shown), and a hollow hole 20 extending from the front end toward the rear end along the rotation axis is formed.
  • the tool holder 2 is configured to hold the cutting tool 4 at its tip.
  • the tool holder 2 is formed with a communication hole 22 that communicates from the outer peripheral portion 21 to the hollow hole 20. As shown in FIG. 1, the communication hole 22 is formed so as to extend in a direction substantially orthogonal to the axial length direction of the tool holder 2.
  • collet nut 3 (Configuration of collet nut 3)
  • the collet nut 3 is incorporated near the tip of the tool holder 2 and is provided as a holding member that can hold the cutting tool 4 at the tip of the tool holder 2.
  • the cutting tool 4 can be configured by a drill, an end mill, a tap, or the like, and is a tool used for cutting a workpiece.
  • the through-hole 40 is formed in the cutting tool 4 shown in FIG. 1 by drilling.
  • the through hole 40 is a hole coaxial with the hollow hole 20 of the tool holder 2 and functions as a hole into which the temperature measuring unit 5 can be attached.
  • the through hole 40 is penetrated from the upper end to the lower end, but in this specification, the through hole includes a state of a semi-through hole that is drilled halfway from the upper end to the lower end.
  • the temperature measuring unit 5 can be composed of a temperature measuring element such as a thermocouple, a thermistor, and a platinum resistance thermometer, and can be mounted in the through hole 40 of the cutting tool 4.
  • the temperature measuring unit 5 can measure the temperature of the cutting tool 4 rotating coaxially with the tool holder 2 in real time while being mounted in the through hole 40.
  • the temperature measurement part 5 is comprised so that a measurement result can be transmitted to the electronic board
  • the electronic substrate 6 is provided on the outer peripheral portion 21 of the tool holder 2 while being covered with the cover member 8.
  • the electronic board 6 includes a temperature receiver 60 and a transmitter 61.
  • the temperature receiving unit 60 is configured to be able to receive the temperature of the cutting tool 4 from the temperature measuring unit 5 in real time via an electrical wiring (not shown).
  • the transmitting unit 61 is configured to be able to transmit the temperature of the cutting tool 4 received by the temperature receiving unit 60 to an external unit in a wireless manner.
  • the power supply unit 7 is provided on the outer peripheral portion 21 of the tool holder 2 while being covered with the cover member 8.
  • the power supply unit 7 can be configured using a rechargeable or non-rechargeable battery and is configured to be able to supply power to the electronic board 6.
  • FIG. 2 is a block diagram illustrating an example of a flow of an electric signal indicating the temperature of the cutting tool measured by the temperature measuring unit.
  • the flow of an electrical signal when the temperature measuring unit 5 is configured by a thermocouple is shown.
  • Each arrow in FIG. 2 is a flow of an electric signal indicating the temperature of the cutting tool 4 measured by a thermocouple, and the wired method is indicated by a solid line and the wireless method is indicated by a broken line depending on the format of the signal transmission path. .
  • an external unit is configured by a wireless reception / recording output device.
  • the wireless reception / recording output device has a wireless reception device, a serial / USB (Universal Serial Bus) converter, a recording / computing device such as a personal computer, a display, An output device such as a printer is provided.
  • wireless communication standards between wireless receiving devices indicated by broken lines in FIG. 2 include Wi-Fi (Wireless Fidelity), Blue-tooth (Bluetooth), wireless LAN (Local Area Network), and ZigBee (ZigBee). It can be used.
  • the cooling performance of the cutting fluid can be evaluated more accurately than before.
  • a cutting fluid excellent in cooling performance can be easily selected, and it becomes a great merit in the development of a cutting fluid.
  • the temperature measurement device 1 of the present embodiment is the same as the temperature measurement device of the first embodiment (see FIG. 1) in that the tool holder 2 includes an accommodation space 23 communicating with the hollow hole 20. ) Is different.
  • the diameter of the horizontal cross section of the accommodation space 23 is larger than the diameter of the horizontal cross section of the hollow hole 20, and the electronic substrate 6 and the power supply unit 7 can be accommodated in the accommodation space 23.
  • the temperature measuring apparatus 1 of this embodiment is provided in the outer peripheral part 21 of the tool holder 2, and is also provided with the transmission part 61 which can transmit the measurement result of the temperature measuring part 5 to an external unit of 1st Embodiment. This is different from the temperature measuring device (see FIG. 1).
  • the tool holder 2 is formed with a communication hole 22 that communicates from the outer peripheral portion 21 to the hollow hole 20, and the transmitter 61 is wound inside the communication hole 22 and the hollow hole 20. It is electrically connected to the temperature receiving unit 60 of the electronic board 6 through the power supply unit 7 by electrical wiring.
  • FIG. 5 is a block diagram illustrating an example of a flow of an electric signal indicating the temperature of the cutting tool measured by the temperature measuring unit.
  • the flow of an electrical signal when the temperature measuring unit 5 is configured by a thermistor is shown.
  • the temperature receiving unit 60 is configured by a detection circuit, an A / D converter, and a controller.
  • the transmission unit 61 is configured by a wireless communication device such as a wireless transmission antenna.
  • an external unit is configured by a wireless reception / recording output device. Since the flow of electrical signals in the wireless reception / recording output device is the same as the flow of electrical signals shown in the first embodiment (see FIG. 2), detailed description thereof is omitted.
  • the electronic substrate 6 and the power supply unit 7 can be accommodated in the accommodation space 23 inside the tool holder 2, the electronic substrate 6 and the power supply unit 7 are provided on the outer peripheral portion 21 of the tool holder 2. In this case, since the necessary cover member 8 can be omitted, the number of parts can be reduced.
  • the temperature measuring device 1 of the present embodiment includes a stress measuring unit 9 attached to the outer peripheral portion 21 of the tool holder 2, and the temperature measuring device of the second embodiment (see FIG. 4). Is different.
  • the stress measurement unit 9 is arranged at a position higher than the accommodation space 23.
  • the electronic substrate 6 further includes a stress receiving unit 10, and the transmission unit 61 transmits the measurement result of the stress measuring unit 9 in a wireless manner. Also in the point which is not transmitted to an external unit, it differs from the temperature measuring device (refer to Drawing 4) of a 2nd embodiment.
  • the stress receiving unit 10 is mounted on the electronic board 6 and configured to receive the measurement result of the stress measuring unit 9 in real time via the electrical wiring.
  • the electrical signal indicating the stress measured by the stress measurement unit sequentially flows through the crystal piezoelectric element, the charge amplifier, the A / D converter, and the controller from the upstream side toward the downstream side.
  • the flow of an electric signal when the stress measuring unit 9 is configured by a quartz piezoelectric element is shown.
  • the stress receiving unit 10 includes a charge amplifier and an A / D converter.
  • the transmission unit 61 is configured by a wireless communication device such as a controller and a wireless transmission antenna.
  • an external unit is configured by a wireless reception / recording output device. Since the flow of electrical signals in the wireless reception / recording output device is the same as the flow of electrical signals shown in the first embodiment (see FIG. 2), detailed description thereof is omitted.
  • the stress measurement unit 9 can be attached to the outer peripheral portion 21 of the tool holder 2 that can rotate around a rotation axis (not shown), the measurement result of the stress measurement unit 9 is used as the measurement result.
  • the stress receiving unit 10 of the electronic substrate 6 By receiving by the stress receiving unit 10 of the electronic substrate 6, the stress received from the outside by the cutting tool 4 during actual machining (actually machining the workpiece) that rotates coaxially with the tool holder 2 is grasped in real time. be able to.
  • a temperature measurement method and a temperature measurement device according to a fourth embodiment of the present invention will be described with reference to FIG. Since the temperature measuring device 1 of the present embodiment has the same configuration as the temperature measuring device of the third embodiment (see FIG. 6), detailed description and illustration thereof are omitted. Moreover, in this embodiment, the flow of the electrical signal indicating the temperature of the cutting tool measured by the temperature measuring unit (see FIG. 8) is the same as the flow of the electrical signal shown in the second embodiment (see FIG. 5). Therefore, detailed description is omitted.
  • an external unit is configured by a wireless reception / recording output device. Since the flow of the electrical signal in the wireless reception / recording output device is the same as the flow of the electrical signal shown in the second embodiment (see FIG. 5), detailed description is omitted.
  • the temperature measuring apparatus 100 includes a tool holder 102 as a rotating holder, a welding torch 104 as a rotating tool, a temperature measuring unit 142, an electronic substrate 106, a power supply unit 107, and an electronic device. And a cover member 108 that covers the substrate 106 and the power supply unit 107.
  • a cladding method (a build-up welding method), particularly here, a basic configuration of laser cladding will be outlined.
  • FIG. 9 shows an outline representing the laser cladding method.
  • the temperature measuring device 100 includes a tool holder 102 along a rotation axis X and a welding torch 104 connected below the tool holder 102.
  • the temperature measuring apparatus 100 has through holes 120 and 105 connected to the tool holder 102 and the welding torch 104, and the through holes 120 and 105 form a hollow laser beam path.
  • Laser light is incident from an incident port 110 that connects the through-hole 120 and the outside, is reflected vertically downward by the mirror 112, and reaches the convex lens 114.
  • the laser beam that has reached the convex lens 114 is condensed and irradiated from the irradiation port 116 at the lower end of the through hole 105 in the welding torch 104. Then, the laser beam is irradiated on the surface of the base material (base material) 130 on the optical axis X, with the focusing point immediately below the lower end of the welding torch 104 or defocused. At this time, the base material 130 forms a molten pool 130a in which the laser light irradiation surface is melted and liquefied. However, this molten pool 130a is a small range.
  • the welding torch 104 has a cladding material powder supply pipe 133 that sends a cladding material powder (also simply referred to as “cladding material”) 132 downward in order from the center axis side coaxially with the laser optical path X, and a cooling water 134. Is provided with a cooling water supply pipe 135 for sending the gas downward, and a shield gas supply pipe 137 for sending the inert gas 136 downward.
  • a cladding material powder supply tube 133 is disposed concentrically inside the laser beam path X in a horizontal plane, and converges on the optical axis X following the collection of the laser beam from the upper end. It communicates to the vicinity of the irradiation port 116 at the lower end.
  • the cladding material powder supply pipe 133 may be one or more pipes arranged at predetermined angles on a horizontal plane, or may be an annular pipe connected to the entire circumference. Therefore, the cladding material powder supply pipe 133 flows in the cladding material powder 132 from its upper end, and emits it to the molten pool 130a on the surface of the base material 130, that is, the position where the laser light is irradiated on the surface of the base material 130. The released cladding material powder 132 is heated by the laser beam and the molten pool 130a of the base material 130, and the cladding layer 144 is formed on the surface of the base material 130 on the rear side of the welding torch 104 in the moving direction (see arrow Y). Form.
  • a shield gas supply pipe 136 is disposed concentrically outside (coaxially outside) the cladding material powder supply pipe 132 with respect to the laser optical path X in the horizontal plane, and follows the condensing of the laser light from the upper end thereof. It converges on the optical axis X side and communicates to the vicinity of the irradiation port 116. Therefore, the shield gas supply pipe 135 discharges the inert gas 136 such as argon gas flowing in from the upper end thereof at the lower end. Since the released inert gas 18 is sprayed onto the cladding material powder 132 (and thus the clad layer 144), the anti-oxidation treatment is immediately performed while the clad layer 134 is deposited on the surface of the substrate 130.
  • a cooling water supply pipe 137 is disposed on the concentric outer side of the shield gas supply pipe 135 and communicates from its upper end to a position above a predetermined distance from the lower end of the welding torch 104.
  • the clad layer 134 is rapidly cooled within a range in which the molten pool 13a of the base material 130b made of laser light does not become large, which may be a factor for promoting the formation of the uniformly dispersed clad layer 144.
  • the tool holder 102 is rotatable about the rotation axis X, and a hollow through-hole 120 extending from the upper end toward the lower end along the rotation axis is formed.
  • the tool holder 102 integrally connects the welding torch 102 at its lower end.
  • the tool holder 102 is formed with a communication hole 141 that communicates with the through hole 120 from the outer peripheral portion thereof. As shown in FIG. 10, the communication hole 141 is formed so as to extend in a direction substantially orthogonal to the axial direction of the tool holder 102.
  • the temperature measuring unit 142 can be constituted by a temperature measuring element such as a thermocouple, a thermistor, and a platinum resistance thermometer, and is a position where temperature measurement is desired in the through hole (hollow hole) 105 of the welding torch 104. It is configured to be attachable to. Since the through hole 105 includes the optical axis of the laser beam, the through hole 105 is attached to the inner wall of the through port 105 so that the temperature measuring unit 142 does not get in the way.
  • the temperature measuring unit 142 can measure the temperature at a desired position of the welding torch 104 rotating coaxially with the tool holder 102 in a state of being mounted in the through hole 105 in real time. And the temperature measurement part 142 is comprised so that a measurement result can be transmitted to the electronic board
  • the electronic substrate 106 is provided on the outer peripheral portion of the tool holder 102 while being covered with the cover member 108.
  • the electronic board 106 includes a temperature receiving unit (reference number 60 in FIG. 2 and the like) and a transmission unit (reference number 61 and the like in FIG. 2).
  • the temperature receiving unit is configured to receive the temperature of the welding torch 104 from the temperature measuring unit 142 via the electric wiring 141 in real time.
  • the transmitting unit is configured to be able to transmit the temperature of the welding torch 104 received by the temperature receiving unit to the external unit in a wireless manner.
  • the power supply unit 107 is provided on the outer periphery of the tool holder 102 while being covered with the cover member 108.
  • the power supply unit 107 can be configured using a rechargeable or non-rechargeable battery and is configured to be able to supply power to the electronic board 106.
  • the temperature measurement unit 142, the electronic substrate 106, and the power supply unit 107 of the temperature measurement device 100 of FIG. 9 are modified examples referring to the second to fourth embodiments of the temperature measurement device 1 for the cutting tool 5 described above. Is also possible.
  • a housing portion such as the electronic substrate 106 is provided inside the tool holder 102.
  • a piezoelectric element may be separately provided in the tool holder 102 and the stress applied to the welding torch 104 may be measured.
  • the temperature measuring device 100 of FIG. 9 (About the flow of electrical signals indicating the temperature of the cutting tool measured by the temperature measurement unit)
  • the temperature measuring device 100 of FIG. 9 reference is made to the block diagram of FIG. In this example, the flow of an electrical signal when the temperature measuring unit 5 is configured by a thermocouple is shown. Each arrow in FIG. 2 is a flow of an electric signal indicating the temperature of the cutting tool 4 measured by a thermocouple, and the wired method is indicated by a solid line and the wireless method is indicated by a broken line depending on the format of the signal transmission path.
  • the temperature receiving unit 60 includes a zero contact compensation circuit, a potential difference amplification unit, an A / D (analog / digital) converter, and an in-device control circuit.
  • the transmission unit 61 includes the controller and the wireless communication device.
  • an external unit is configured by a wireless reception / recording output device.
  • the wireless reception / recording output device has a wireless reception device, a serial / USB (Universal Serial Bus) converter, a recording / computing device such as a personal computer, a display, An output device such as a printer is provided.
  • wireless communication standards between wireless receiving devices indicated by broken lines in FIG. 2 include Wi-Fi (Wireless Fidelity), Blue-tooth (Bluetooth), wireless LAN (Local Area Network), and ZigBee (ZigBee). It can be used.
  • the temperature measurement unit 142 is mounted in the hollow region (through hole 105) inside the welding torch 102 integrally connected to the lower end of the tool holder 102 that can rotate around the rotation axis.
  • the temperature of the welding torch 104 during actual processing (during actual welding) rotating coaxially with the tool holder 102 can be grasped in real time.
  • the cooling performance of the cooling water 134 and the cladding material 136 can be evaluated using the temperature of the welding torch grasped in real time.
  • the temperature measuring method and the temperature measuring device of the present invention can be suitably used in the temperature measurement of various industrial rotary tools such as the temperature measurement of a cutting tool for cutting a workpiece and the temperature measurement of a welding torch. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】切削油剤や冷却水等の冷却性能を従来よりも正確に評価するために、実際に切削加工中の切削工具や溶接中の溶接トーチ等の回転ツールの温度をリアルタイムで把握することのできる温度測定方法、及び、温度測定装置の提供を目的とした。 【解決手段】温度測定方法は、回転軸を中心に回転可能であり、前記回転軸に沿って先端から後端に向かって延びる中空孔が形成される回転保持体と、該回転保持体に連結されて前記中空孔と同軸状の貫通孔が形成される回転ツールとを用いた温度測定方法を提供する。この温度測定方法では、前記回転ツールの前記貫通孔近傍に温度測定部を装着する工程と、該温度測定部を用いて、前記回転保持体と同軸回転する前記回転ツールの温度を測定する工程と、前記温度測定部の測定結果を電子基板で受信する工程と、を順に行う。

Description

温度測定方法、及び、温度測定装置
 本発明は、加工に用いる回転ツール自体の温度測定方法及び温度測定装置に関する。特に、加工対象物を切削加工する切削工具の加工中の温度測定方法、及び温度測定装置や、溶接トーチ等の回転ツールの温度測定方法、及び温度測定装置に関するものである。
 従来、加工対象物の切削加工に使用される切削油剤の性能評価は、「工具摩耗をどれだけ抑制できるか(工具の寿命が長いか)」、及び、「加工面の品質をどれだけ向上できるか(加工面の仕上がりが綺麗か)」という観点で行われる。具体的に、切削油剤の性能評価は、NC旋盤やマシニングセンタで切削加工に使用した切削工具の摩耗測定や、加工対象物の表面粗さを測定することによって実現されており、これら測定には多大な手間と時間が掛かっている。それ故、これらの測定方法は、切削油剤の選定や開発に適用し難いという問題がある。
 加工性を良くする切削油剤の3要素は、潤滑性能、冷却性能、及び、抗溶着性能である(例えば、特許文献1参照)。これらの3要素を個別に簡易的且つ正確に評価できれば、切削油剤の選定や開発に対して大きな近道になる。これら3要素のうち、冷却性能の評価方法は、例えば、熱電対を組み付けた熱せられた切削工具を切削油剤に入れて、切削工具の温度曲線を見ることで行われているのが現状である。
 また、切削工具以外でも種々の回転ツールで使用される部品それ自体の性能評価や使用する油剤や冷却水等の性能評価についても上述同様に個別の簡易的且つ正確な温度評価はなされていない。例えば、溶接トーチの温度評価は、そのクラッド層の溶着力や母材状態を検証するのに重要であるが、溶融池近傍又はそれ以外の母材の温度曲線を見ることで溶接トーチ及び溶材の温度評価をしている現状がある。
特開2012-92205号公報
 しかしながら、上述した従来の冷却性能の評価方法は、実際に回転ツール作動中、例えば、切削加工中の切削工具の温度や溶接中の溶接トーチの温度をリアルタイムで把握し、把握した温度を用いて冷却性能の善し悪しを評価するものではない。このため、従来の冷却性能の評価方法で使用される回転ツールの温度は、実際の加工時(切削加工、溶接時)の回転ツール(切削工具や溶接トーチなど)の温度と異なるケースがある。それ故、上述した従来の冷却性能の評価方法は正確であるとは言えない。
 そこで、本発明は、切削油剤の冷却性能や、溶接時の冷却水などの冷却性能を従来よりも正確に評価するために、実際の回転ツール作動時の温度、すなわち切削加工中の切削工具の温度や溶接時の溶接トーチの温度等をリアルタイムで把握することのできる温度測定方法、及び、温度測定装置の提供することを目的とした。
 上述した課題を解決すべく提供される本発明の温度測定方法は、回転軸を中心に回転可能であって、前記回転軸に沿って先端から後端に向かって延びる中空孔が形成される回転保持体と、該回転保持体に連結されて前記中空孔と同軸状の貫通孔が形成される回転ツールとを用いた温度測定方法を提供する。この温度測定法は、前記回転ツールの前記貫通孔近傍に温度測定部を装着する工程と、該温度測定部を用いて、前記回転保持体と同軸回転する前記回転ツールの温度を測定する工程と、前記温度測定部の測定結果を電子基板で受信する工程と、を順に行うことを特徴とする。
 また、本発明は上述する温度測定方法に利用する温度測定装置をも提供する。本温度測定装置は、回転軸を中心に回転可能であって、前記回転軸に沿って先端から後端に向かって延びる中空孔が形成される回転保持体と、該回転保持体に連結されて前記中空孔と同軸状の貫通孔が形成される回転ツールと、前記回転ツールの前記貫通孔近傍に温度測定部と、該温度測定部を用いて、前記回転保持体と同軸回転する前記回転ツールの温度を測定する温度測定部と、前記温度測定部の測定結果を電子基板で受信する電子基板と、を備えることを特徴とする。
 本発明の温度測定方法及び温度測定装置においては、回転保持体と回転ツールとが回転軸方向に連結されて同軸回転し、その中が貫通孔で繋がっているので、この貫通孔に熱電対等の温度測定部を装着してその測定結果を受信することで、回転ツールそれ自体の実加工中(切削や溶接中)の温度をリアルタイムで把握することができる。
 これにより、リアルタイムで把握した回転ツールの温度を用いて、実加工(実作動中)の回転ツールの冷却剤の冷却性能を評価することができる。その結果、冷却性能に優れた回転ツールの冷却剤やその量を容易に選定できると共に、熱源の温度制御を適正に行うことが可能となる点でも大きなメリットになる。
 また、上記温度測定方法および温度測定装置は、回転ツールとして切削工具を採用し、切削工具の温度をリアルタイムで把握することで、切削油剤の冷却性能を簡単、正確に評価することができる。
 具体的な、回転ツールとしては切削工具や溶接トーチが例示される。
例えば、前記回転ツールは切削工具の場合、前記回転保持体は、該切削工具を先端で保持可能な筒状のツールホルダである。
この場合、リアルタイムで把握した切削工具の温度を用いて、切削油剤の冷却性能を評価することができる。より具体的には、リアルタイムで把握した切削工具の温度を参照して、温度上昇が少ない切削油剤を、冷却性能が高い切削油剤であると判定することができる。従って、切削油剤の冷却性能の評価を従来よりも正確に実現することができる。その結果、冷却性能に優れた切削油剤を容易に選定できると共に、切削油剤の開発においても大きなメリットになる。
一方、前記回転ツールは溶接トーチである場合、前記回転保持体は、その先端で溶接トーチと連結する筒状のツールホルダである。
この場合、リアルタイムで把握した溶接トーチの温度を用いて、冷却水の冷却性能を評価することができる。また、溶材や母材の選定・開発の評価も可能となる。具体的には、リアルタイムで把握した溶接トーチの温度を参照して、所望の温度変化を得る冷却水供給(水路や水量の調整)や冷却水と溶剤との放出領域の制御、溶接トーチの適正な移動速度等を評価し、適宜制御実行することができる。
 また、上記温度測定装置の構成例は具体的に下記に示される。
 前記電子基板が、前記ツールホルダの外周部に設けられている。
また、前記電子基板が、前記温度測定部の測定結果を外部ユニットに送信可能な送信部を備える。
また、前記送信部が、前記温度測定部の測定結果を無線方式で外部ユニットに送信しても良い。
 前記ツールホルダの外周部に設けられ、前記電子基板に電源供給可能な電源供給部を備えることもできる。
 前記ツールホルダが、前記ツールホルダの外周部から前記中空孔に連通する連通孔を備え、前記連通孔及び前記中空孔を介して、前記電子基板及び前記温度測定部を電気的に接続可能な電気配線を備えても良い。
 また、前記ツールホルダの外周部に設けられ、少なくとも前記電子基板を覆うカバー部材を備えることもできる。
 また、前記ツールホルダが、前記中空孔と連通する収容空間を内部に備え、
 前記電子基板が、前記収容空間に収容されても良い。
 また、前記電子基板に電源供給可能な電源供給部が、前記収容空間に収容されていることが好ましい。そして、
 前記ツールホルダの外周部に設けられ、前記温度測定部の測定結果を無線方式で外部ユニットに送信可能な送信部を備えるとさらに好ましい。
 また、前記ツールホルダが、前記ツールホルダの外周部から前記中空孔に連通する連通孔を備え、前記連通孔及び前記中空孔を介して、前記電子基板及び前記送信部を電気的に接続可能な電気配線を備えることもできる。
又は、前記ツールホルダの外周部に取り付けられ、前記ツールホルダと同軸で回転する前記切削工具又は前記溶接トーチが外部から受ける応力を測定可能な応力測定部を備え、
 前記電子基板が、前記応力測定部の測定結果を受信可能な応力受信部を備える。
また、前記ツールホルダの外周部に設けられ、前記応力測定部の測定結果を無線方式で外部ユニットに送信可能な送信部を備えても良い。
 さらに、前記ツールホルダが、前記ツールホルダの外周部から前記中空孔に連通する連通孔を備え、前記連通孔及び前記中空孔を介して、前記電子基板及び前記送信部を電気的に接続可能な電気配線を備えることも好ましい。
 本発明によれば、実際に実加工中の回転ツール(切削工具や溶接トーチなど)の温度をリアルタイムで把握することができるので、その回転ツール自体の評価、切削油剤や冷却水の冷却性能の評価を従来よりも正確に実現することができる。
本発明の第1実施形態に係る温度測定装置の内部構造を示す側断面図である。 温度測定部で測定された切削工具の温度を示す電気信号の流れの一例を示すブロック図である。 本発明の第1実施形態に係る温度測定方法の各工程を示すフローチャートである。 本発明の第2実施形態に係る温度測定装置の内部構造を示す側断面図である。 温度測定部で測定された切削工具の温度を示す電気信号の流れの一例を示すブロック図である。 本発明の第3実施形態に係る温度測定装置の内部構造を示す側断面図である。 温度測定部で測定された切削工具の温度、及び、応力測定部で測定された応力を示す各電気信号の流れの一例を示すブロック図である。 温度測定部で測定された切削工具の温度、及び、応力測定部で測定された応力を示す各電気信号の流れの一例を示すブロック図である。 本発明の第5実施形態に係る温度測定装置の内部構造を示す側断面図である。
<第1実施形態>
 以下では、図1~図3を参照しつつ、本発明の第1実施形態に係る温度測定方法、及び、温度測定装置について説明する。
(温度測定装置1の全体構成)
 図1に示すように、温度測定装置1は、筒状のツールホルダ2と、コレット・ナット3と、切削工具4と、温度測定部5と、電子基板6と、電源供給部7と、電子基板6及び電源供給部7を覆うカバー部材8と、を備えて構成される。
(ツールホルダ2の構成)
 ツールホルダ2は、回転軸(図示せず)を中心に回転可能であって、回転軸に沿って先端から後端に向かって延びる中空孔20が形成される。ツールホルダ2は、その先端で切削工具4を保持可能に構成されている。また、ツールホルダ2には、その外周部21から中空孔20に連通する連通孔22が形成されている。この連通孔22は、図1に示すように、ツールホルダ2の軸長方向に対して略直交する方向に延びるようにして形成されている。
(コレット・ナット3の構成)
 コレット・ナット3は、ツールホルダ2の先端付近に組み込まれており、切削工具4をツールホルダ2の先端で保持可能な保持部材として設けられている。
(切削工具4の構成)
 切削工具4は、ドリル、エンドミル、及び、タップ等で構成可能であって、加工対象物の切削加工に用いる工具である。図1に示す切削工具4には、穴あけ加工を施すことによって貫通孔40が形成されている。この貫通孔40は、ツールホルダ2の中空孔20と同軸状の孔であって、温度測定部5を装着可能な孔として機能する。なお、ここでは、貫通孔40は上端から下端まで貫通させているが、本明細書で貫通孔とは上端から下端に至る途中まで穴あけした半貫通孔の状態をも含んでいる。
(温度測定部5の構成)
 温度測定部5は、熱電対、サーミスタ、及び、白金測温抵抗体等の温度測定素子で構成可能であって、切削工具4の貫通孔40に装着可能に構成されている。温度測定部5は、貫通孔40に装着された状態で、ツールホルダ2と同軸で回転する切削工具4の温度をリアルタイムで測定可能となっている。そして、温度測定部5は、電気配線(図示せず)を介して測定結果を電子基板6へ送信可能に構成されている。
(電子基板6の構成)
 電子基板6は、カバー部材8に覆われた状態で、ツールホルダ2の外周部21に設けられている。電子基板6は、温度受信部60及び送信部61を備えている。温度受信部60は、電気配線(図示せず)を介して温度測定部5から切削工具4の温度をリアルタイムで受信可能に構成されている。送信部61は、温度受信部60で受信された切削工具4の温度を外部ユニットへ無線方式で送信可能に構成されている。
(電源供給部7の構成)
 電源供給部7は、カバー部材8に覆われた状態で、ツールホルダ2の外周部21に設けられている。電源供給部7は、充電型又は非充電型の電池を用いて構成可能であって、電子基板6に電源供給可能に構成されている。
(温度測定部で測定された切削工具の温度を示す電気信号の流れについて)
 図2は、温度測定部で測定された切削工具の温度を示す電気信号の流れの一例を示すブロック図である。この例では、熱電対で温度測定部5を構成した場合の電気信号の流れを示している。図2中の各矢印は、熱電対で測定された切削工具4の温度を示す電気信号の流れであって、信号伝送路の形式によって有線方式を実線で示し、無線方式を破線で示している。この例では、零接点補償回路、電位差増幅部、A/D(アナログ/デジタル)変換器、及び、デバイス内制御回路で、温度受信部60が構成されている。また、この例では、コントローラ及び無線通信デバイスで、送信部61が構成されている。
 また、図2に示すように、この例では、無線受信・記録出力装置で外部ユニットが構成されている。無線受信・記録出力装置は、電気信号の流れに沿って上流側から下流側に、無線受信デバイス、シリアル・USB(Universal Serial Bus)変換器、パーソナルコンピュータ等の記録・演算装置、及び、ディスプレイやプリンタ等の出力装置を備えている。また、図2中の破線で示す無線受信デバイス間の無線通信規格は、Wi-Fi(Wireless Fidelity)、Blue-tooth(ブルートゥース)、無線LAN(Local Area Network)、及び、ZigBee(ジグビー)等を使用可能である。
(温度測定方法について)
 次いで、図3を参照しながら、本実施形態における切削工具4の温度測定方法の一例について説明する。温度測定方法の一例としては、ツールホルダ2を準備する工程S1、コレット・ナット3を介してツールホルダ2の先端に切削工具4を装着する工程S2、切削工具4の貫通孔40に温度測定部5を装着する工程S3、温度測定部5を用いて、ツールホルダ2と同軸で回転する切削工具4の温度を測定する工程S4、温度測定部5の測定結果を電子基板6で受信する工程S5、を順に行うことによる温度測定方法を挙げることができる。
(第1実施形態に係る温度測定方法及び温度測定装置の特徴)
 上記第1実施形態では、回転軸(図示せず)を中心に回転可能なツールホルダ2の先端で保持された切削工具4に温度測定部5を装着可能な貫通孔40が形成されるので、この温度測定部5の測定結果を電子基板6で受信することで、ツールホルダ2と同軸で回転する実加工中(実際に加工対象物を切削加工中)の切削工具4の温度をリアルタイムで把握することができる。
 これにより、リアルタイムで把握した切削工具の温度を用いて、切削油剤の冷却性能を評価することができる。より具体的には、リアルタイムで把握した切削工具の温度を参照して、温度上昇が少ない切削油剤を、冷却性能が高い切削油剤であると判定することができる。
 従って、切削油剤の冷却性能の評価を従来よりも正確に実現することができる。その結果、冷却性能に優れた切削油剤を容易に選定できると共に、切削油剤の開発においても大きなメリットになる。
<第2実施形態>
 以下では、図4及び図5を参照しつつ、本発明の第2実施形態に係る温度測定方法、及び、温度測定装置について説明する。図4に示すように、本実施形態の温度測定装置1は、ツールホルダ2が、中空孔20と連通する収容空間23を内部に備える点で、第1実施形態の温度測定装置(図1参照)と相違する。図4に示すように、収容空間23の水平断面の径は、中空孔20の水平断面の径よりも大きく、収容空間23には、電子基板6及び電源供給部7を収容可能である。また、本実施形態の温度測定装置1は、ツールホルダ2の外周部21に設けられ、温度測定部5の測定結果を外部ユニットに送信可能な送信部61を備える点でも、第1実施形態の温度測定装置(図1参照)と相違する。図4に示すように、ツールホルダ2には、外周部21から中空孔20に連通する連通孔22が形成されており、送信部61は、連通孔22及び中空孔20の内部を這わされた電気配線によって、電源供給部7を介して電子基板6の温度受信部60と電気的に接続されている。
 更に、本実施形態では、温度測定部で測定された切削工具の温度を示す電気信号の流れが、第1実施形態(図2参照)で示した電気信号の流れと相違している。
(温度測定部で測定された切削工具の温度を示す電気信号の流れについて)
 図5は、温度測定部で測定された切削工具の温度を示す電気信号の流れの一例を示すブロック図である。この例では、サーミスタで温度測定部5を構成した場合の電気信号の流れを示している。この例では、検出回路、A/D変換器、及び、コントローラで、温度受信部60が構成されている。また、この例では、無線送信アンテナなどの無線通信デバイスで送信部61が構成されている。
 図5に示すように、この例では、図2と同様に、無線受信・記録出力装置で外部ユニットが構成されている。無線受信・記録出力装置内の電気信号の流れは、第1実施形態(図2参照)で示した電気信号の流れと同じであるため、詳細な説明を省略する。
(第2実施形態に係る温度測定方法及び温度測定装置の特徴)
 上記第2実施形態では、第1実施形態と同様の効果を得ることができる。
 更に、本実施形態では、電子基板6及び電源供給部7が、ツールホルダ2内部の収容空間23に収容可能であるので、電子基板6及び電源供給部7をツールホルダ2の外周部21に設けた場合に必要なカバー部材8を省略できるので、部品点数を減らすことができる。
<第3実施形態>
 以下では、図6及び図7を参照しつつ、本発明の第3実施形態に係る温度測定方法、及び、温度測定装置について説明する。図6に示すように、本実施形態の温度測定装置1は、ツールホルダ2の外周部21に取り付けられた応力測定部9を備える点で、第2実施形態の温度測定装置(図4参照)と相違する。図6に示すように、応力測定部9は、収容空間23よりも高い位置に配置されている。また、図6に示すように、本実施形態の温度測定装置1は、電子基板6が応力受信部10を更に備える点、及び、送信部61が、応力測定部9の測定結果を無線方式で外部ユニットに送信な点でも、第2実施形態の温度測定装置(図4参照)と相違する。
 なお、温度測定部で測定された切削工具の温度を示す電気信号の流れ(図7参照)は、第1実施形態(図2参照)で示した電気信号の流れと同じであるため、詳細な説明を省略する。
 応力測定部9は、水晶圧電素子や圧電素子等で構成可能であって、切削工具4が外部から受ける応力を測定可能に構成されている。応力測定部9は、ツールホルダ2の外周部21に取り付けられた状態で、ツールホルダ2と同軸で回転する切削工具4が外部から受ける応力をリアルタイムで測定可能となっている。そして、応力測定部9は、電気配線を介して測定結果を電子基板6の応力受信部10へ送信可能に構成されている。
 応力受信部10は、電子基板6に搭載されており、電気配線を介して応力測定部9の測定結果をリアルタイムで受信可能に構成されている。
(応力測定部で測定された応力を示す電気信号の流れについて)
 図7に示すように、応力測定部で測定された応力を示す電気信号は、上流側から下流側に向かって、水晶圧電素子、チャージアンプ、A/D変換器、及び、コントローラを順次流れる。この例では、水晶圧電素子で応力測定部9を構成した場合の電気信号の流れを示している。この例では、チャージアンプ、及び、A/D変換器で、応力受信部10が構成されている。また、この例では、コントローラ、及び、無線送信アンテナなどの無線通信デバイスで、送信部61が構成されている。
 図7に示すように、この例では、図2と同様に、無線受信・記録出力装置で外部ユニットが構成されている。無線受信・記録出力装置内の電気信号の流れは、第1実施形態(図2参照)で示した電気信号の流れと同じであるため、詳細な説明を省略する。
(第3実施形態に係る温度測定方法及び温度測定装置の特徴)
 上記第3実施形態では、第2実施形態と同様の効果を得ることができる。
 更に、上記第3実施形態では、回転軸(図示せず)を中心に回転可能なツールホルダ2の外周部21に応力測定部9を取り付け可能であるので、この応力測定部9の測定結果を電子基板6の応力受信部10で受信することで、ツールホルダ2と同軸で回転する実加工中(実際に加工対象物を切削加工中)の切削工具4が外部から受ける応力をリアルタイムで把握することができる。
<第4実施形態>
 以下では、図8を参照しつつ、本発明の第4実施形態に係る温度測定方法、及び、温度測定装置について説明する。本実施形態の温度測定装置1は、第3実施形態の温度測定装置(図6参照)と同じ構成であるため、詳細な説明及び図示を省略する。また、本実施形態では、温度測定部で測定された切削工具の温度を示す電気信号の流れ(図8参照)が、第2実施形態(図5参照)で示した電気信号の流れと同じであるため、詳細な説明を省略する。
(応力測定部で測定された応力を示す電気信号の流れについて)
 図8に示すように、応力測定部で測定された応力を示す電気信号は、上流側から下流側に向かって、圧電素子、検出回路、A/D変換器、及び、コントローラを順次流れる。この例では、圧電素子で応力測定部9を構成した場合の電気信号の流れを示している。この例では、検出回路、A/D変換器、及び、コントローラで、応力受信部10が構成されている。また、この例では、無線送信アンテナなどの無線通信デバイスで送信部61が構成されている。
 図8に示すように、この例では、図5と同様に、無線受信・記録出力装置で外部ユニットが構成されている。無線受信・記録出力装置内の電気信号の流れは、第2実施形態(図5参照)で示した電気信号の流れと同じであるため、詳細な説明を省略する。
(第4実施形態に係る温度測定方法及び温度測定装置の特徴)
 上記第4実施形態では、第3実施形態と同様の効果を得ることができる。
<第5実施形態>
(温度測定装置100の全体構成)
 図9に示すように、温度測定装置100は、回転保持体としてのツールホルダ102と、回転ツールとしての溶接トーチ104と、温度測定部142と、電子基板106と、電源供給部107と、電子基板106及び電源供給部107を覆うカバー部材108と、を備えて構成される。
まず、本温度測定装置100を説明する前提としてクラッディング方法(肉盛溶接方法)、とりわけここではレーザクラッディングの基本構成について概説する。
図9はレーザクラッディング方法を表す概略を示している。図9に示すように、本温度測定装置100は、回転軸Xに沿ってツールホルダ102とこれの下方に連結される溶接トーチ104とを備える。本温度測定装置100はツールホルダ102と溶接トーチ104とに互いに接続する貫通孔120、105を有し、この貫通孔120、105は中空のレーザ光路を形成している。レーザ光は貫通孔120と外部とを接続する入射口110から入射し、ミラー112により鉛直下方に反射して凸レンズ114まで到達する。凸レンズ114に到達したレーザ光は集光されて溶接トーチ104内の貫通孔105の下端の照射口116から照射される。そして、レーザ光は光軸X上で溶接トーチ104の下端直下が集光点となって又はディフォーカスされて基材(母材)130の表面上に照射される。このとき基材130は、レーザ光の照射面が溶かされて液体化した溶融池130aを形成する。但し、この溶融池130aは小範囲である。
一方、溶接トーチ104は、レーザ光路Xと同軸に中心軸側から順に、クラッディング材料粉末(単に「クラッディング材料」とも称する)132を下方に送り出すクラッディング材料粉末供給管133と、冷却水134を下方に送り出す冷却水供給管135と、不活性ガス136を下方に送り出すシールドガス供給管137と、が設けられている。詳細には、まず水平平面においてレーザ光路Xの同心円状内側にクラッディング材料粉末供給管133が配置されており、上端からレーザ光の集光に倣って光軸Xに収束し、溶接トーチ104の下端の照射口116近傍まで連通している。
図示しないが、このクラッディング材料粉末供給管133は、水平平面において所定の角度ごとに配置された1以上の管であっても良く、周全体につながった環状の管であっても良い。したがって、クラッディング原材料粉末供給管133は、その上端からクラッディング材料粉末132を流入し、レーザ光が基材130の表面上に照射される位置すなわち基材130表面の溶融池130aに放出する。放出されたクラッディング材料粉末132はレーザ光と基材130の溶融池130aとで入熱され、溶接トーチ104の移動方向(矢印Y参照)の後側の基材130の表面にクラッド層144を形成する。
なお、水平平面におけるレーザ光路Xに対してクラッディング材料粉末供給管132より同心円状外側(同軸外側)にはシールドガス供給管136が配置されており、その上端からレーザ光の集光に倣って光軸X側に収束し、照射口116近傍まで連通している。したがって、シールドガス供給管135はその上端から流入したアルゴンガス等の不活性ガス136を下端で放出する。放出された不活性ガス18はクラッディング材料粉末132(ひいてはクラッド層144)に吹き付けられるため、クラッド層134が基材130の表面に堆積されながら即に酸化防止処理を施すこととなる。
さらに、シールドガス供給管135の同心円状外側には冷却水供給管137が配置されており、その上端から溶接トーチ104の下端から所定距離上方に位置まで連通している。レーザ光で作られた基材130bの溶融池13aが大きくならない範囲でクラッド層134が急冷され、均一分散したクラッド層144の形成を促す要因となり得る。
(ツールホルダ102の構成)
 ツールホルダ102は、回転軸Xを中心に回転可能であって、回転軸に沿って上端から下端に向かって延びる中空の貫通孔120が形成される。ツールホルダ102は、その下端で溶接トーチ102を一体に連結している。また、ツールホルダ102には、その外周部から貫通孔120に連通する連通孔141が形成されている。この連通孔141は、図10に示すように、ツールホルダ102の軸長方向に対して略直交する方向に延びるようにして形成されている。
(温度測定部142の構成)
 温度測定部142は、熱電対、サーミスタ、及び、白金測温抵抗体等の温度測定素子で構成可能であって、溶接トーチ104の貫通孔(中空孔)105の中で温度測定を所望する位置に装着可能に構成されている。貫通孔105はレーザ光の光軸を含んでいるので温度測定部142が邪魔にならないように貫通港105の内壁等に装着されている。温度測定部142は、貫通孔105内に装着された状態で、ツールホルダ102と同軸で回転する溶接トーチ104の所望位置の温度をリアルタイムで測定可能となっている。そして、温度測定部142は、電気配線141を介して測定結果を電子基板106へ送信可能に構成されている。
(電子基板106の構成)
 電子基板106は、カバー部材108に覆われた状態で、ツールホルダ102の外周部に設けられている。電子基板106は、温度受信部(図2の参照番号60等)及び送信部(図2の参照番号61等)を備えている。温度受信部は、電気配線141を介して温度測定部142から溶接トーチ104の温度をリアルタイムで受信可能に構成されている。送信部は、温度受信部で受信された溶接トーチ104の温度を外部ユニットへ無線方式で送信可能に構成されている。
(電源供給部107の構成)
 電源供給部107は、カバー部材108に覆われた状態で、ツールホルダ102の外周部に設けられている。電源供給部107は、充電型又は非充電型の電池を用いて構成可能であって、電子基板106に電源供給可能に構成されている。
 なお、図9の温度測定装置100の温度測定部142、電子基板106および電源供給部107は、前述する切削工具5用の温度測定装置1における第2~第4の実施形態を参照した変形例も可能である。例えば、第2実施形態のように電子基板106等の収容部をツールホルダ102の内部に設けるがごときである。また、図6に示す第5実施形態のように別途、ツールホルダ102の中に圧電素子を設け、溶接トーチ104に負荷する応力を測定しても良い。
(温度測定部で測定された切削工具の温度を示す電気信号の流れについて)
 図9の温度測定装置100の場合、前述した温度測定装置1の切削工具5の温度を示す電気信号の流れを例示した図2のブロック図を参照する。この例では、熱電対で温度測定部5を構成した場合の電気信号の流れを示している。図2中の各矢印は、熱電対で測定された切削工具4の温度を示す電気信号の流れであって、信号伝送路の形式によって有線方式を実線で示し、無線方式を破線で示している。この例では、零接点補償回路、電位差増幅部、A/D(アナログ/デジタル)変換器、及び、デバイス内制御回路で、温度受信部60が構成されている。また、この例では、コントローラ及び無線通信デバイスで、送信部61が構成されている。
 また、図2に示すように、この例では、無線受信・記録出力装置で外部ユニットが構成されている。無線受信・記録出力装置は、電気信号の流れに沿って上流側から下流側に、無線受信デバイス、シリアル・USB(Universal Serial Bus)変換器、パーソナルコンピュータ等の記録・演算装置、及び、ディスプレイやプリンタ等の出力装置を備えている。また、図2中の破線で示す無線受信デバイス間の無線通信規格は、Wi-Fi(Wireless Fidelity)、Blue-tooth(ブルートゥース)、無線LAN(Local Area Network)、及び、ZigBee(ジグビー)等を使用可能である。
なお、図9の温度測定装置100の電気信号の流れは、上述する切削工具5用の温度測定装置1の変形例(第2~第4実施形態)も適用可能である(図5、図7~図8参照)。
(第5実施形態に係る温度測定方法及び温度測定装置の特徴)
 上記第5実施形態では、回転軸を中心に回転可能なツールホルダ102の下端に一体連結された溶接トーチ102の内部の中空領域(貫通孔105)に温度測定部142を装着しているので、この温度測定部142の測定結果を電子基板106で受信することで、ツールホルダ102と同軸で回転する実加工中(実際の溶接中)の溶接トーチ104の温度をリアルタイムで把握することができる。これにより、リアルタイムで把握した溶接トーチの温度を用いて、冷却水134やクラッディング材料136の冷却性能を評価することができる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものではない。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、更に特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 本発明の温度測定方法及び温度測定装置は、加工対象物を切削加工する切削工具の温度測定や溶接トーチの温度測定等、種々の工業用の回転ツールの温度測定において好適に利用することができる。
  1  温度測定装置
  2  ツールホルダ
  4  切削工具
  5  温度測定部
  6  電子基板
  7  電源供給部
  8  カバー部材
  9  応力測定部
  10  応力受信部
  20  中空孔
  21  外周部
  22  連通孔
  40  貫通孔
  60  温度受信部
  61  送信部
  S1~S5  工程
 
 

Claims (19)

  1.  回転軸を中心に回転可能であり、前記回転軸に沿って先端から後端に向かって延びる中空孔が形成される回転保持体と、該回転保持体に連結されて前記中空孔と同軸状の貫通孔が形成される回転ツールとを用いた温度測定方法であって、
     前記回転ツールの前記貫通孔近傍に温度測定部を装着する工程と、
     該温度測定部を用いて、前記回転保持体と同軸回転する前記回転ツールの温度を測定する工程と、
     前記温度測定部の測定結果を電子基板で受信する工程と、
    を順に行うことを特徴とする温度測定方法。
  2.  回転軸を中心に回転可能であり、前記回転軸に沿って先端から後端に向かって延びる中空孔が形成される回転保持体と、
    該回転保持体に連結されて前記中空孔と同軸状の貫通孔が形成される回転ツールと、
    前記回転ツールの前記貫通孔近傍に温度測定部と、
     該温度測定部を用いて、前記回転保持体と同軸回転する前記回転ツールの温度を測定する温度測定部と、
     前記温度測定部の測定結果を電子基板で受信する電子基板と、
    を備えることを特徴とする温度測定装置。
  3.  前記回転ツールは切削工具であり、
    前記回転保持体は、該切削工具を先端で保持可能な筒状のツールホルダであることを特徴とする請求項1に記載の温度測定方法。
  4.  前記回転ツールは切削工具であり、
    前記回転保持体は、該切削工具を先端で保持可能な筒状のツールホルダであることを特徴とする請求項2に記載の温度測定装置。
  5.  前記回転ツールは溶接トーチであり、
    前記回転保持体は、その先端で溶接トーチと連結する筒状のツールホルダであることを特徴とする請求項1に記載の温度測定方法。
  6.  前記回転ツールは溶接トーチであり、
    前記回転保持体は、その先端で溶接トーチと連結する筒状のツールホルダであることを特徴とする請求項2に記載の温度測定装置。
  7.  前記電子基板が、
     前記ツールホルダの外周部に設けられていることを特徴とする請求項4又6はに記載の温度測定装置。
  8.  前記電子基板が、
     前記温度測定部の測定結果を外部ユニットに送信可能な送信部を備えることを特徴とする請求項4、6又は7に記載の温度測定装置。
  9.  前記送信部が、
     前記温度測定部の測定結果を無線方式で外部ユニットに送信することを特徴とする請求項8に記載の温度測定装置。
  10.  前記ツールホルダの外周部に設けられ、前記電子基板に電源供給可能な電源供給部を備えることを特徴とする請求項4、又は6~9のいずれか一項に記載の温度測定装置。
  11.  前記ツールホルダが、
     前記ツールホルダの外周部から前記中空孔に連通する連通孔を備え、
     前記連通孔及び前記中空孔を介して、前記電子基板及び前記温度測定部を電気的に接続可能な電気配線を備えることを特徴とする請求項4、又は6~10のいずれか一項に記載の温度測定装置。
  12.  前記ツールホルダの外周部に設けられ、少なくとも前記電子基板を覆うカバー部材を備えることを特徴とする請求項4、又は6~11のいずれか一項に記載の温度測定装置。
  13.  前記ツールホルダが、
     前記中空孔と連通する収容空間を内部に備え、
     前記電子基板が、
     前記収容空間に収容されていることを特徴とする請求項4又は6に記載の温度測定装置。
  14.  前記電子基板に電源供給可能な電源供給部が、
     前記収容空間に収容されていることを特徴とする請求項13に記載の温度測定装置。
  15.  前記ツールホルダの外周部に設けられ、前記温度測定部の測定結果を無線方式で外部ユニットに送信可能な送信部を備えることを特徴とする請求項13又は14に記載の温度測定装置。
  16.  前記ツールホルダが、
     前記ツールホルダの外周部から前記中空孔に連通する連通孔を備え、
     前記連通孔及び前記中空孔を介して、前記電子基板及び前記送信部を電気的に接続可能な電気配線を備えることを特徴とする請求項13~15のいずれか一項に記載の温度測定装置。
  17.  前記ツールホルダの外周部に取り付けられ、前記ツールホルダと同軸で回転する前記切削工具又は前記溶接トーチが外部から受ける応力を測定可能な応力測定部を備え、
     前記電子基板が、
     前記応力測定部の測定結果を受信可能な応力受信部を備えることを特徴とする請求項24、又は6~16のいずれか一項に記載の温度測定装置。
  18.  前記ツールホルダの外周部に設けられ、前記応力測定部の測定結果を無線方式で外部ユニットに送信可能な送信部を備えることを特徴とする請求項17に記載の温度測定装置。
  19.  前記ツールホルダが、
     前記ツールホルダの外周部から前記中空孔に連通する連通孔を備え、
     前記連通孔及び前記中空孔を介して、前記電子基板及び前記送信部を電気的に接続可能な電気配線を備えることを特徴とする請求項17又は18に記載の温度測定装置。
     
PCT/JP2014/071334 2013-08-13 2014-08-12 温度測定方法、及び、温度測定装置 WO2015022967A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14836301.3A EP3034236B1 (en) 2013-08-13 2014-08-12 Temperature measurement method, and temperature measurement device
KR1020187030914A KR102055518B1 (ko) 2013-08-13 2014-08-12 실시간 온도 측정 방법 및 실시간 온도 측정 장치
CN201480032405.1A CN105339134B (zh) 2013-08-13 2014-08-12 温度测定方法及温度测定装置
KR1020157035235A KR20160006786A (ko) 2013-08-13 2014-08-12 온도 측정 방법 및 온도 측정 장치
US14/967,365 US10024737B2 (en) 2013-08-13 2015-12-14 Temperature measurement method, and temperature measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-168372 2013-08-13
JP2013168372A JP6168695B2 (ja) 2013-08-13 2013-08-13 リアルタイム温度測定方法、及びリアルタイム温度測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/967,365 Continuation-In-Part US10024737B2 (en) 2013-08-13 2015-12-14 Temperature measurement method, and temperature measurement device

Publications (1)

Publication Number Publication Date
WO2015022967A1 true WO2015022967A1 (ja) 2015-02-19

Family

ID=52468352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071334 WO2015022967A1 (ja) 2013-08-13 2014-08-12 温度測定方法、及び、温度測定装置

Country Status (6)

Country Link
US (1) US10024737B2 (ja)
EP (1) EP3034236B1 (ja)
JP (1) JP6168695B2 (ja)
KR (2) KR102055518B1 (ja)
CN (1) CN105339134B (ja)
WO (1) WO2015022967A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002762A1 (ja) * 2015-06-27 2017-01-05 株式会社山本金属製作所 リアルタイム状況検知用のセンサ付き回転加工工具
WO2017146245A1 (ja) * 2016-02-24 2017-08-31 株式会社山本金属製作所 疲労試験装置
JP2018054611A (ja) * 2016-09-27 2018-04-05 株式会社山本金属製作所 振動測定装置
WO2020149280A1 (ja) * 2019-01-15 2020-07-23 株式会社山本金属製作所 リアルタイム加工状態表示装置
WO2021033671A1 (ja) * 2019-08-19 2021-02-25 株式会社山本金属製作所 ツールホルダユニット
JP7120478B1 (ja) * 2021-04-28 2022-08-17 住友電気工業株式会社 切削工具

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005315B3 (de) * 2014-04-10 2015-06-11 Grenzebach Maschinenbau Gmbh Verfahren und Vorrichtung zur Erfassung der mechanischen Kräfte an der Schweißpin - Spitze bei dem Vorgang des Rührreibschweißens sowie Computerprogramm und maschinenlesbarer Träger mit einem Programmcode zur Durchführung des Verfahrens
EP3243597B1 (en) * 2015-01-07 2019-07-17 Yamamoto Metal Technos Co. Ltd. Friction stir welding device, and rotary tool used for friction stir welding
JP5883978B1 (ja) * 2015-08-06 2016-03-15 株式会社日立パワーソリューションズ 摩擦攪拌接合装置および摩擦攪拌接合制御方法
CN106271880B (zh) * 2016-09-20 2018-07-31 天津大学 一种同时测量铣削过程铣刀及工件温度的测量***
CN106595060A (zh) * 2016-11-17 2017-04-26 中车长春轨道客车股份有限公司 热风枪的监控***
CN107083550A (zh) * 2017-02-21 2017-08-22 机械科学研究总院先进制造技术研究中心 一种温度、送粉量可自动调试智能激光熔覆头
CN106975984B (zh) * 2017-05-05 2023-06-16 大连交通大学 一种基于薄膜热电偶的智能瞬态铣削测温刀具
CN107030370A (zh) * 2017-05-08 2017-08-11 宁波金凤焊割机械制造有限公司 金属新型焊接方法
DE102017110647A1 (de) 2017-05-16 2018-11-22 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Schneidwerkzeug zum zerspanenden Bearbeiten eines Festkörpers
JP2019042831A (ja) * 2017-08-31 2019-03-22 株式会社山本金属製作所 研切削加工装置用の測定・管理装置
CN109202262B (zh) * 2017-09-07 2020-12-25 中国航空制造技术研究院 一种搅拌摩擦焊接的搅拌头水冷却结构及冷却方法
CN107779865B (zh) * 2017-11-28 2019-11-15 西藏中轨科技有限责任公司 一种钢轨熔覆合金带火焰加热方法
DE102019203118B4 (de) * 2019-03-07 2024-02-22 Premium Aerotec Gmbh Messwerkzeug zum Vermessen von Bohrungsdurchmessern sowie Werkzeugmaschine
DE102019112629A1 (de) * 2019-05-14 2020-11-19 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Spanneinrichtung zum Spannen eines Bauteils, insbesondere zum Fixieren eines Werkzeugs an einer Werkzeugmaschine
EP3808503A1 (de) * 2019-10-14 2021-04-21 Albert Knebel Holding GmbH Steuerplatine, werkzeughalter, werkzeug, korrespondierende verwendung und bearbeitungsmaschine
JP7432453B2 (ja) * 2020-06-26 2024-02-16 本田技研工業株式会社 摩擦撹拌接合装置及び摩擦撹拌接合方法
CN111906693B (zh) * 2020-07-27 2022-02-08 郑州磨料磨具磨削研究所有限公司 一种磨削弧区热力集成测量装置及方法
US11630005B1 (en) * 2022-01-13 2023-04-18 Eli Yudkevich Machining monitor and a method for monitoring a machining of an object
CN114689197B (zh) * 2022-05-31 2022-10-25 成都飞机工业(集团)有限责任公司 一种用于金属表面功能再造的在线测温装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149113A (ja) * 1982-02-25 1983-09-05 Kiyoshi Hajikano センサ−付きドリル
JPS62202967U (ja) * 1986-06-13 1987-12-24
US5573335A (en) * 1994-05-25 1996-11-12 Schinazi; Robert Thin film temperature sensing device for measuring the operating temperature of a cutting tool
JPH11151637A (ja) * 1997-09-02 1999-06-08 Otto Bilz Werkzeug Fab Gmbh & Co 工具または工具ホルダ
GB2438877A (en) * 2006-06-07 2007-12-12 Anglia Polytechnic University An environment sensing power tool and control system
JP2008524006A (ja) * 2004-12-20 2008-07-10 レニショウ パブリック リミテッド カンパニー 機械及び制御システム
JP2012020359A (ja) * 2010-07-13 2012-02-02 Kowa Dennetsu Keiki:Kk 切削工具および切削加工評価装置
JP2012092205A (ja) 2010-10-26 2012-05-17 Nisshin Seiki Kk 機械加工用油剤

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1223607A (fr) * 1959-01-31 1960-06-17 Dispositif destiné à empêcher des dilatations locales dans des organes de machines dans lesquels tournent des broches porte-outils de grande capacité
DE2630047C3 (de) * 1976-07-03 1981-04-23 Gebr. Heller Maschinenfabrik GmbH, 7440 Nürtingen Fräswerkzeug zur Bearbeitung von Kurbelwellen und Kurbelwellenfräsmaschine zur Verwendung dieses Fräswerkzeuges
CN2087551U (zh) * 1991-03-13 1991-10-30 浙江大学 能显示切削刀具温度场的装置
JPH05288611A (ja) * 1992-04-13 1993-11-02 Japan Energy Corp 温度測定装置
US5449882A (en) * 1993-03-15 1995-09-12 Reliant Laser Corporation Mirror-based laser-processing system with temperature and position control of moving laser spot
KR950005451A (ko) * 1993-08-05 1995-03-20 이장무 다중센서와 비젼 장치를 복합적으로 이용한 엔.시(nc) 절삭시스템의 실시간 공구상태 감시방법
US5516285A (en) * 1993-09-27 1996-05-14 Yacker; Miles J. Temperature gauge for surgical drills and method employing same
JPH07198429A (ja) * 1993-12-28 1995-08-01 Yahata Shiyoten:Kk 波動情報変換装置
KR0174595B1 (ko) * 1995-07-01 1999-05-15 윤덕용 절삭공구의 절삭력 측정구조
JP3385473B2 (ja) * 2000-12-14 2003-03-10 島根大学長 被削材の切削時の工具刃先温度の測定方法及びその装置
JP3801862B2 (ja) * 2000-12-27 2006-07-26 株式会社日研工作所 流体通路を備えた工具ホルダ
CN2652590Y (zh) * 2003-10-10 2004-11-03 华南理工大学 刀具高速旋转时测温装置
JP5016496B2 (ja) * 2004-12-17 2012-09-05 ミルウォーキー・エレクトリック・トゥール・コーポレーション 動力工具用スマートアクセサリー
FR2978932B1 (fr) * 2011-08-08 2014-05-09 Snecma Machine d'usinage
CN103128599B (zh) * 2013-03-06 2015-03-04 上海交通大学 一种用于高速钻削加工的切削温度监测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149113A (ja) * 1982-02-25 1983-09-05 Kiyoshi Hajikano センサ−付きドリル
JPS62202967U (ja) * 1986-06-13 1987-12-24
US5573335A (en) * 1994-05-25 1996-11-12 Schinazi; Robert Thin film temperature sensing device for measuring the operating temperature of a cutting tool
JPH11151637A (ja) * 1997-09-02 1999-06-08 Otto Bilz Werkzeug Fab Gmbh & Co 工具または工具ホルダ
JP2008524006A (ja) * 2004-12-20 2008-07-10 レニショウ パブリック リミテッド カンパニー 機械及び制御システム
GB2438877A (en) * 2006-06-07 2007-12-12 Anglia Polytechnic University An environment sensing power tool and control system
JP2012020359A (ja) * 2010-07-13 2012-02-02 Kowa Dennetsu Keiki:Kk 切削工具および切削加工評価装置
JP2012092205A (ja) 2010-10-26 2012-05-17 Nisshin Seiki Kk 機械加工用油剤

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002762A1 (ja) * 2015-06-27 2017-01-05 株式会社山本金属製作所 リアルタイム状況検知用のセンサ付き回転加工工具
JPWO2017002762A1 (ja) * 2015-06-27 2018-05-24 株式会社山本金属製作所 リアルタイム状況検知用のセンサ付き回転加工工具
WO2017146245A1 (ja) * 2016-02-24 2017-08-31 株式会社山本金属製作所 疲労試験装置
JPWO2017146245A1 (ja) * 2016-02-24 2018-12-13 株式会社山本金属製作所 疲労試験装置
JP2018054611A (ja) * 2016-09-27 2018-04-05 株式会社山本金属製作所 振動測定装置
WO2020149280A1 (ja) * 2019-01-15 2020-07-23 株式会社山本金属製作所 リアルタイム加工状態表示装置
JPWO2020149280A1 (ja) * 2019-01-15 2021-11-25 株式会社山本金属製作所 リアルタイム加工状態表示装置
WO2021033671A1 (ja) * 2019-08-19 2021-02-25 株式会社山本金属製作所 ツールホルダユニット
JP7120478B1 (ja) * 2021-04-28 2022-08-17 住友電気工業株式会社 切削工具

Also Published As

Publication number Publication date
US10024737B2 (en) 2018-07-17
EP3034236A4 (en) 2017-04-19
US20160097687A1 (en) 2016-04-07
KR102055518B1 (ko) 2019-12-12
EP3034236A1 (en) 2016-06-22
JP6168695B2 (ja) 2017-07-26
CN105339134A (zh) 2016-02-17
JP2015036174A (ja) 2015-02-23
EP3034236B1 (en) 2019-09-11
CN105339134B (zh) 2018-02-27
KR20180118826A (ko) 2018-10-31
KR20160006786A (ko) 2016-01-19

Similar Documents

Publication Publication Date Title
WO2015022967A1 (ja) 温度測定方法、及び、温度測定装置
WO2017002762A1 (ja) リアルタイム状況検知用のセンサ付き回転加工工具
JP5822441B2 (ja) 切削加工評価装置
CA3008741C (en) Sensor module and tool holder for a cutting tool
JP6931150B2 (ja) 温度測定装置
JP3315987B2 (ja) センサシステム
US20180243873A1 (en) Temperature measurement device
JP2015036174A5 (ja)
EP3236195B1 (en) Contact-type position measurement method
US20220097192A1 (en) Tool State Detection System
JP2017140696A (ja) リアルタイム温度測定方法、及び、リアルタイム温度測定装置
JP2019166600A (ja) 旋削工具用ホルダ、旋削工具および旋削方法
JP2013542077A (ja) 溶接プロセスで使用するための試験ブロックおよび製造ワークピース上の溶接プロセスを認定する方法
CN102601733B (zh) 大锥孔工件的锥孔在线磨削加工测量方法
CN109676435A (zh) 一种铣削温度测试装置、***及方法
CN106768438B (zh) 一种热电偶测量端的制作方法
Moreira et al. Temperature field acquisition during gas metal arc welding using thermocouples, thermography and fibre Bragg grating sensors
JP2018051760A (ja) 手持ち式工具に用いる無線式測定ユニット
CN105387954A (zh) 适用于接触式高温温度传感器的校准装置
CN115046988A (zh) 一种基于libs技术的熔体浸入式探针及在线检测装置及检测方法
JP2023008718A (ja) 被削材観測装置とその研削制御方法
TH73922B (th) วิธีวัดอุณหภูมิและอุปกรณ์วัดอุณหภูมิ
TH162641A (th) วิธีวัดอุณหภูมิและอุปกรณ์วัดอุณหภูมิ
CN103692234B (zh) 细长薄壁挠性轴中间套筒加工方法
TH162641B (th) วิธีวัดอุณหภูมิและอุปกรณ์วัดอุณหภูมิ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032405.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035235

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014836301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE