WO2015012271A1 - 複素環化合物の製造方法 - Google Patents

複素環化合物の製造方法 Download PDF

Info

Publication number
WO2015012271A1
WO2015012271A1 PCT/JP2014/069351 JP2014069351W WO2015012271A1 WO 2015012271 A1 WO2015012271 A1 WO 2015012271A1 JP 2014069351 W JP2014069351 W JP 2014069351W WO 2015012271 A1 WO2015012271 A1 WO 2015012271A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
quinoline
pyrano
tetramethyl
Prior art date
Application number
PCT/JP2014/069351
Other languages
English (en)
French (fr)
Inventor
昭裕 長屋
円香 吉野
弘展 吉野
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to EP14829555.3A priority Critical patent/EP3026047A4/en
Priority to JP2015528292A priority patent/JPWO2015012271A1/ja
Priority to US14/907,798 priority patent/US20160168161A1/en
Priority to CN201480040642.2A priority patent/CN105377826A/zh
Publication of WO2015012271A1 publication Critical patent/WO2015012271A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/42Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/70Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6

Definitions

  • the present invention relates to a method for producing a heterocyclic compound, particularly 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline represented by the following formula (6).
  • the above compound (6) can be produced, for example, by the following procedure: First, as shown below, 1-fluoro-4-nitrobenzene (compound (10)) and 2-methyl-3-butyn-2-ol ( The compound (11)) is reacted to produce 1-((2-methyl-3-butyn-2-yl) oxy) -4-nitrobenzene (compound (12)) (see, for example, Patent Document 2). Subsequently, the compound (12) is heated to be induced to 2,2-dimethyl-6-nitro-2H-chromene (compound (13)) (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the nitro group of the obtained compound (13) is reduced in the presence of a catalyst to obtain 2,2-dimethyl-2H-chromen-6-amine (compound (5)) (see, for example, Patent Document 3). Further, the compound (5) and 3-penten-2-one (compound (8)) are reacted (quinoline cyclization) to obtain the compound (6) (see, for example, Patent Document 1 and Non-Patent Document 3).
  • an object of the present invention is to provide a method for producing 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline, which is a heterocyclic compound.
  • the present inventors have intensively studied and firstly 2,2-dimethyl-, which is an intermediate for the production of 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline (compound (6)).
  • a highly efficient new synthesis method of 2H-chromen-6-amine (compound (5)) was found.
  • the present inventors have found a production method capable of obtaining a compound (6) with high efficiency and high purity with respect to the step of obtaining the compound (6) from the compound (5), and completed the present invention.
  • the present invention is characterized by the following (I) to (VIII).
  • (I) A process for producing 2,2-dimethyl-2H-chromen-6-amine comprising the following steps (a) to (d) (in the following formulas (1) to (4), R 1 means a C 1-6 alkyl group):
  • (A) Formula (1) A compound represented by the formula (2) is reacted with acetone.
  • a step of obtaining a chromanone ring derivative represented by: (B) The obtained chromanone ring derivative is reduced to give the formula (3)
  • a step of obtaining an alcohol derivative represented by: (C) The alcohol derivative obtained is dehydrated to obtain the formula (4)
  • a step of obtaining a chromene ring derivative represented by: (D) The obtained chromene ring derivative is hydrolyzed to obtain the formula (5):
  • To obtain 2,2-dimethyl-2H-chromen-6-amine represented by the formula: (II) The production method according to (I), wherein R 1 is an n-propyl group.
  • step (f) the following formula (7) is obtained by salification with maleic acid:
  • (V) A method for producing 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline composed of the following steps (a) to (f) (however, the following formula ( In 1) to (4), R 1 represents a C 1-6 alkyl group.
  • (A) Formula (1) A compound represented by the formula (2) is reacted with acetone.
  • a step of obtaining a chromanone ring derivative represented by: (B) The obtained chromanone ring derivative is reduced to give the formula (3)
  • a step of obtaining an alcohol derivative represented by: (C) The alcohol derivative obtained is dehydrated to obtain the formula (4)
  • a step of obtaining a chromene ring derivative represented by: (D) The obtained chromene ring derivative is hydrolyzed to obtain the formula (5)
  • the resulting 2,2-dimethyl-2H-chromen-6-amine is cyclized by reaction with 3-penten-2-one to give a compound of formula (6)
  • a step of obtaining 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline represented by: (F) The obtained 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline is salified to give 2,2,7,9-tetramethyl-2H-pyr
  • n- means normal, “i-” means iso, “s-” means secondary, and “t-” means tertiary.
  • the C 1-6 alkyl group means an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may be linear or branched. Examples thereof are methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group.
  • the C 1-6 alkyl group in R 1 is preferably a C 2-4 alkyl group (an alkyl group having 2 to 4 carbon atoms), more preferably an ethyl group, an n-propyl group, an n-butyl group, or i -Propyl group, more preferably n-propyl group.
  • the step (i) is the “chromanone cyclization step”
  • the step (ii) is the “reduction step”
  • the step (iii) is the “dehydration step”
  • the step (iv) is the step
  • the “hydrolysis step”, the step (v) are referred to as a “quinoline cyclization step”, the step (vi) is referred to as a “chlorination step”, and the step (vii) is referred to as a “neutralization step”.
  • step (i) is “chromanone cyclization reaction”
  • the reaction of step (ii) is “reduction reaction”
  • the reaction of step (iii) is “dehydration reaction”
  • the reaction of step (iv) is The “hydrolysis reaction”
  • the reaction in step (v) are referred to as “quinoline cyclization reaction”
  • the reaction in step (vi) is referred to as “salt reaction”
  • the reaction in step (vii) is referred to as “neutralization reaction”.
  • the solvent that can be used in the chromanone cyclization step is not limited as long as the objective effect of the present invention is realized, but the use of an alcohol solvent (eg, methanol, ethanol, n-propanol, i-propanol) is effective. It is preferable in that it is performed automatically. Of these, methanol, ethanol, and n-propanol are more preferable.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 100 times, preferably 0.5 to 50 times, more preferably 0.5 to 100 times the amount of compound (1). The amount is 1 to 20 times the mass.
  • the amount of acetone to be reacted with the compound (1) is not particularly limited, but is 0.1 to 20 molar equivalents, more preferably 0.5 to 10 molar equivalents with respect to the compound (1). More preferably, it is 1 to 5 molar equivalents.
  • the base is preferably an organic base, more preferably a 5- or 6-membered nitrogen-containing cyclic organic base, and even more preferably pyrrolidine.
  • the amount of the base used is not particularly limited, but is 0.1 molar equivalent to 10 molar equivalents, more preferably 0.5 molar equivalents to 5 molar equivalents, still more preferably 1 molar equivalents to the compound (1). 3 molar equivalents.
  • the reaction temperature in the chromanone cyclization step is not particularly limited, but is preferably any temperature in the range of 0 ° C. to the boiling point of the solvent used. It is preferable to carry out the reaction at an arbitrary temperature in the range of 50 ° C. to the boiling point of the solvent from the viewpoint of efficiently performing the reaction.
  • the reaction time in the chromanone cyclization step is not particularly limited as long as it is a time sufficient for the reaction substrate to be consumed, but it is preferably 10 minutes to 24 hours, more preferably 30 minutes to 6 hours.
  • the compound (2) obtained can be isolated and purified by a conventional method. For example, it can be performed by a known method such as extraction with a solvent, silica gel column chromatography, high performance liquid chromatography, or crystallization. Moreover, the solution of the obtained compound (2) can also be used for the following process as it is after reaction.
  • the solvent that can be used in the reduction step is not limited as long as the object effect of the present invention is realized, but an alcohol solvent (for example, methanol, ethanol, n-propanol, i-propanol), tetrahydrofuran, and a mixed solvent thereof may be used. It is preferable to use it because the reaction is effectively performed. Among these, methanol, ethanol, a mixed solvent of methanol and tetrahydrofuran, and a mixed solvent of ethanol and tetrahydrofuran are preferably used, and a mixed solvent of methanol and tetrahydrofuran is particularly preferably used.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 100 times by mass, more preferably 0.5 to 20 times by mass, and still more preferably to compound (2). The amount is 1 to 10 times the mass.
  • the reducing agent used in this step is not particularly limited as long as it is a reducing agent that promotes the target reaction, but is preferably an aluminum hydride metal salt or a borohydride metal salt, more preferably a borohydride metal salt, Sodium boron is more preferred.
  • the amount of the reducing agent to be used is not particularly limited, but is 0.1 molar equivalent to 5 molar equivalents, more preferably 0.5 molar equivalents to 3 molar equivalents, and further preferably 0.5 molar equivalents with respect to compound (2). Molar equivalent to 1.5 molar equivalent.
  • the reaction temperature in the reduction step is not particularly limited, but is preferably any temperature in the range of 0 ° C. to the boiling point of the solvent used, more preferably any temperature in the range of 1 ° C. to 60 ° C.
  • the reaction time in the reduction step is not particularly limited as long as it is sufficient for the reaction substrate to be consumed, but is preferably 10 minutes to 24 hours, more preferably 30 minutes to 6 hours.
  • the compound (3) obtained can be isolated and purified by a conventional method.
  • compound (3) can be isolated and purified by a known method such as extraction with a solvent, silica gel column chromatography, or high performance liquid chromatography.
  • the reaction solution can be cooled and neutralized by adding an acid and a base to precipitate a crystal of the compound (3), and then the compound can be isolated and purified.
  • the solution of the obtained compound (3) can also be used for the following process as it is after reaction.
  • the temperature of the reaction solution at the time of isolation and purification is not particularly limited, but is preferably -20 ° C. to the boiling point of the solvent used, More preferred is an arbitrary temperature in the range of ⁇ 10 ° C. to 40 ° C., and further preferred is an arbitrary temperature in the range of ⁇ 5 ° C. to 20 ° C.
  • the type of acid used in the method using an acid and a base is not particularly limited, but hydrochloric acid is preferably used.
  • the base to be used is not particularly limited, but sodium bicarbonate is preferably used. These acids and bases can be appropriately used in amounts necessary for neutralizing the liquidity.
  • the stirring time after adding the base at the time of isolation and purification is not particularly limited, but from the viewpoint of production efficiency, it is preferable to stir at any time between 24 hours immediately after the addition of the base. More preferably, it is 1 hour to 10 hours.
  • the isolated crystals of the compound (3) may be dried, or may be subjected to the next step without being dried (while being wet).
  • the isolated compound (3) obtained after the reduction step may be used, or the reaction solution may be used as it is.
  • the solvent used for dissolving the compound (3) is not limited as long as the effect of the object of the present invention is realized, but an alcohol solvent (for example, methanol, ethanol, n-propanol, i-propanol), an aromatic hydrocarbon solvent (for example, use of benzene, toluene, xylene) is preferable in that the reaction is effectively performed.
  • an alcohol solvent for example, methanol, ethanol, n-propanol, i-propanol
  • an aromatic hydrocarbon solvent for example, use of benzene, toluene, xylene
  • methanol, ethanol, n-propanol, and toluene are preferably used, and toluene is particularly preferably used.
  • an alcohol solvent eg, methanol, ethanol, n-propanol, i-propanol
  • methanol, ethanol, and n-propanol are preferably used, and ethanol is particularly preferably used.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 100 times by mass, more preferably 0.5 to 50 times by mass, and still more preferably, relative to compound (3). The amount is 1 to 30 times the mass.
  • This step is preferably performed in the presence of an acid in terms of improving the reactivity.
  • the acid that can be used when the dehydration step is performed alone is not limited as long as it achieves the intended effect of the present invention, but hydrochloric acid and methanesulfonic acid are preferable in that the reaction is effectively performed.
  • hydrochloric acid when performing a dehydration process and the (iv) hydrolysis process mentioned later simultaneously, it is preferable to use hydrochloric acid as an acid.
  • the amount of acid used is not particularly limited, but is 0.01 to 100 molar equivalents, more preferably 0.03 to 20 molar equivalents, and still more preferably 0.05 molar equivalents relative to compound (3). To 10 molar equivalents.
  • the reaction temperature in this step is not particularly limited, but is preferably any temperature within the range of 0 ° C. to the boiling point of the solvent used, more preferably any temperature within the range of 1 ° C. to the boiling point of the solvent, and even more preferably. Is any temperature ranging from 60 ° C. to the boiling point of the solvent.
  • the reaction time in this step is not particularly limited as long as it is a time sufficient for the reaction substrate to be consumed, but is preferably 10 minutes to 72 hours, more preferably 0.5 hours to 48 hours.
  • the compound (4) obtained can be isolated and purified by a conventional method. For example, it can be performed by a known method such as extraction with a solvent, silica gel column chromatography, high performance liquid chromatography, or crystallization. Moreover, the solution of the obtained compound (4) can also be used for the following process as it is after reaction.
  • the solvent used for dissolving the compound (4) is not limited as long as it achieves the object effect of the present invention, but an alcohol solvent (for example, methanol, ethanol, n-propanol, i-propanol) effectively performs the reaction. This is preferable. Of these, methanol, ethanol, and n-propanol are preferably used.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 100 times by mass, more preferably 0.5 to 50 times by mass, and still more preferably the compound (4). The amount is 1 to 30 times the mass.
  • This step is preferably performed in the presence of an acid in terms of improving the reactivity.
  • an acid which can be used when performing a hydrolysis process independently is not limited as long as the effect of the objective of this invention is implement
  • hydrochloric acid is suitable also as an acid in the above-mentioned (iii) dehydration process, when performing a dehydration process and a hydrolysis process simultaneously, it is suitable to use hydrochloric acid as an acid.
  • the amount of the acid to be used is not particularly limited, but is 0.1 molar equivalent times to 100 molar equivalent times, more preferably 0.5 molar equivalent times to 50 molar equivalent times, still more preferably 1 with respect to compound (4).
  • the molar equivalent is 20 to 20 molar equivalents.
  • the reaction temperature in this step is not particularly limited, but is preferably any temperature within the range of 0 ° C. to the boiling point of the solvent used, more preferably any temperature within the range of 1 ° C. to the boiling point of the solvent, and even more preferably. Is any temperature ranging from 60 ° C. to the boiling point of the solvent.
  • the reaction time in this step is not particularly limited as long as it is a time sufficient for the reaction substrate to be consumed, but is preferably 10 minutes to 48 hours, more preferably 0.5 hours to 24 hours.
  • Isolation and purification of the resulting compound (5) can be performed by conventional methods. For example, it can be performed by a known method such as extraction with a solvent, silica gel column chromatography, high performance liquid chromatography, or crystallization. Moreover, the solution of the obtained compound (5) can also be used for the following process as it is after reaction.
  • the solvent that can be used in the quinoline cyclization step is not limited as long as the objective effect of the present invention is realized, but the use of an alcohol solvent (eg, methanol, ethanol, n-propanol, i-propanol) is effective. It is preferable in that it is performed automatically. Of these, ethanol and n-propanol are preferably used.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 100 times by mass, more preferably 0.5 to 50 times by mass, and still more preferably, relative to compound (5). The amount is 1 to 20 times the mass.
  • the amount of 3-penten-2-one to be reacted with the compound (5) is not particularly limited, but is 0.1 to 10 molar equivalents, more preferably 1 to 4 molar equivalents with respect to the compound (5). It is 5 molar equivalents, more preferably 1 molar equivalent to 3 molar equivalents.
  • the reaction can be carried out in the presence of an acid or in the absence of an acid, but the reaction is preferably carried out in the presence of an acid in terms of improving the reactivity.
  • the acid that can be used in the quinoline cyclization step is not limited as long as it achieves the intended effect of the present invention, but hydrochloric acid is preferred.
  • the amount of the acid to be used is not particularly limited, but is 0.1 to 20 molar equivalents, more preferably 0.5 to 10 molar equivalents, still more preferably 1 to 1 molar equivalents relative to compound (5). 7 molar equivalents.
  • the reaction in the presence of an oxidizing agent is preferable in terms of improving the reactivity.
  • the oxidizing agent that can be used in the quinoline cyclization step is not particularly limited as long as it achieves the object effect of the present invention, but copper salts, iron salts, and quinones are preferable, and iron (II) chloride, iron (III) chloride, Anthraquinone is more preferable, and iron (III) chloride is more preferable in terms of performing the reaction effectively.
  • the amount of the oxidizing agent to be used is not particularly limited, but is 0.1 to 20 molar equivalents, more preferably 1 to 10 molar equivalents, still more preferably 1 to 5 molar equivalents relative to compound (5). Molar equivalent.
  • the reaction temperature in the quinoline cyclization step is not particularly limited, but is preferably any temperature in the range of 0 ° C. to the boiling point of the solvent used, more preferably any temperature in the range of 1 ° C. to the boiling point of the solvent, More preferably, it is an arbitrary temperature in the range of 60 ° C. to the boiling point of the solvent.
  • the reaction time in the quinoline cyclization step is not particularly limited as long as it is a time sufficient for the reaction substrate to be consumed, but is preferably 10 minutes to 24 hours, more preferably 1 hour to 15 hours.
  • Isolation and purification of the resulting compound (6) can be performed by conventional methods.
  • the compound (6) can be isolated and purified by a known method such as extraction with a solvent, silica gel column chromatography, high performance liquid chromatography, or crystallization.
  • the solution of the obtained compound (6) can also be used for the following process as it is after reaction.
  • the solvent that can be used in the chlorination step is not limited as long as the effect of the object of the present invention is realized, but the use of an aromatic hydrocarbon solvent (for example, benzene, toluene, xylene) effectively performs the post-treatment. Is preferable. Of these, it is more preferable to use toluene.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 20 times by mass, more preferably 1 to 10 times by mass, still more preferably 1 by mass with respect to compound (6). The amount is double to 5 times mass.
  • the acid that can be used in the chlorination step is not limited as long as the objective effect of the present invention is realized, but maleic acid is preferably used.
  • the amount of the acid used is not particularly limited, it is 0.1 to 10 molar equivalents, more preferably 0.5 to 5 molar equivalents, and even more preferably 0.5 molar to Compound (6). Equivalent to 3 molar equivalents.
  • the acid used in the chlorination step is used as a solution.
  • the solvent to be dissolved is not limited as long as the object effect of the present invention is realized, but an alcohol solvent (for example, methanol, ethanol, n-propanol, i-propanol) is preferably used from the viewpoint of effective chlorination. Of these, methanol, ethanol, and n-propanol are preferably used, and ethanol is particularly preferably used.
  • the amount of the solvent that dissolves the acid is not particularly limited, but is 0.1 to 100 times by mass, more preferably 0.5 to 20 times by mass with respect to compound (6). More preferably, the amount is 1 to 10 times by mass.
  • the temperature at which the compound (6) is reacted with the acid is not particularly limited, but is preferably any temperature in the range of 0 ° C. to the boiling point of the solvent used, more preferably 1 ° C. to the boiling point of the solvent. More preferably, it is in the range of 1 ° C to 60 ° C.
  • the reaction time in the chlorination step is not particularly limited as long as it is a time sufficient for the reaction substrate to be consumed, but is preferably any time between 12 hours immediately after the addition of the acid, more preferably 1 minute to 3 minutes. It's time.
  • the reaction solution is then cooled.
  • the cooling temperature is not particularly limited, but is preferably in the range of ⁇ 20 ° C. to 10 ° C., more preferably in the range of ⁇ 15 ° C. to 5 ° C.
  • the time for cooling the reaction solution is not particularly limited, but is any time between 0.5 hours and 24 hours.
  • the solvent that can be used in the neutralization step is not limited as long as the effect of the object of the present invention is realized, but the use of an aromatic hydrocarbon solvent (for example, benzene, toluene, xylene) effectively performs the post-treatment. This is preferable. Of these, it is more preferable to use toluene.
  • the amount of the solvent to be used is not particularly limited, but is 0.1 to 50 times, preferably 1 to 20 times, more preferably 1 to the compound (7). The amount is double to 10 mass times.
  • the base that can be used in the neutralization step is not limited as long as the effect of the object of the present invention is realized, but the use of an inorganic base is preferable in terms of efficiently performing the post-treatment. Among these, it is more preferable to use sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate, and it is particularly preferable to use sodium hydrogen carbonate.
  • the amount of the base used is not particularly limited, but is 0.1 molar equivalent to 20 molar equivalents, more preferably 1 molar equivalent to 10 molar equivalents, still more preferably 2 molar equivalents to 5 molar relative to compound (7). Is equivalent.
  • the base used in the neutralization step is used as a solution.
  • the solvent to be dissolved is not limited as long as the effect of the object of the present invention is realized, but the use of an alcohol solvent (for example, methanol, ethanol, n-propanol, i-propanol) or water effectively neutralizes. Among these, it is preferable to use water.
  • the amount of the solvent that dissolves the base is not particularly limited, but is 0.1 to 100 times, more preferably 0.5 to 50 times the amount of the compound (7). More preferably, the amount is 1 to 20 times by mass.
  • the temperature at which the compound (7) and the base are reacted is not particularly limited, but is preferably any temperature in the range of 0 ° C. to the boiling point of the solvent used, more preferably in the range of 10 ° C. to 60 ° C. And more preferably in the range of 20 ° C to 40 ° C.
  • the reaction time in the neutralization step is not particularly limited as long as it is a time sufficient for the reaction substrate to be consumed, but is preferably any time between 12 hours immediately after the addition of the base, more preferably 1 minute to 3 hours.
  • Isolation and purification of the resulting compound (6) can be performed by conventional methods.
  • the compound (6) can be isolated and purified by a known method such as extraction with a solvent or silica gel column chromatography.
  • the compound (6) obtained in the neutralization step (vii) is the 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline (compound (6)) obtained in the step (v). ) And higher purity.
  • the silica gel pad filtration is a treatment for removing solids and components adsorbed on silica gel from a reaction solution by passing the reaction solution (or suspension) through a filter provided with a silica gel layer.
  • NMR nuclear magnetic resonance
  • HPLC high performance liquid chromatography
  • V / V volume to volume
  • ESI electrospray ionization
  • ESI + is ESI positive ion mode
  • ESI ⁇ means ESI negative ion mode.
  • NMR analysis was performed using ECP300 manufactured by JEOL Ltd.
  • mass spectrometry was performed using MICROMASS ZQ manufactured by WATERS
  • melting point measurement was performed using B-545 manufactured by Shibata Kagaku Co., Ltd.
  • the HPLC analysis was carried out using LC-20A manufactured by Shimadzu Corporation under the following conditions.
  • the purity (content ratio in the case of impurities) of each compound in the HPLC analysis is represented by an area percentage method in which the ratio of the target peak area in the total peak area is expressed as a percentage.
  • Example 1 Compound (2 ′): Method for Producing N- (2,2-Dimethyl-4-oxochroman-6-yl) butyramide N- (3-acetyl-4-hydroxyphenyl) butyramide (Compound (1 ′)) (2. 01 g, 9.08 mmol), n-propanol (20.0 g), acetone (1.60 g, 27.6 mmol) and pyrrolidine (1.30 g, 18.3 mmol) were mixed, and the mixture was used in a temperature range of 97 ° C. to 100 ° C. Heat and stir for 2 hours. Thereafter, hydrochloric acid and ethyl acetate were added for liquid separation, and the obtained organic layer was separated with water.
  • Example 2 Compound (3 ′): Method for producing N- (4-hydroxy-2,2-dimethylchroman-6-yl) butyramide Compound (2 ′) (1.20 g, 4.59 mmol) obtained in Example 1, tetrahydrofuran (5.26 g) and methanol (0.71 g) were mixed, cooled to 2 ° C., sodium borohydride (0.195 g, 5.15 mmol) was added, and the mixture was stirred at a temperature range of 11 ° C. to 17 ° C. for 1 hour. did.
  • Example 3 Compound (4 ′): Method for producing N- (2,2-dimethyl-2H-chromen-6-yl) butyramide Compound (3 ′) (0.95 g, 3.61 mmol) obtained in Example 2, toluene ( 20.0 g) and methanesulfonic acid (0.10 g, 0.30 mmol) were mixed, heated to 110 ° C. and stirred for 1 hour. Thereafter, water (80 mL) and ethyl acetate (80 mL) were added to separate the organic layer, and the obtained aqueous layer was further separated with ethyl acetate. The obtained organic layer was combined with the previously obtained organic layer, concentrated, and purified by column chromatography to obtain 0.75 g of compound (4 ′).
  • Example 4 Compound (5): Method for producing 2,2-dimethyl-2H-chromen-6-amine Compound (4 ′) (0.22 g, 0.88 mmol) obtained in Example 3, ethanol (5.00 g) and concentrated Hydrochloric acid (1.02 g, 9.8 mmol) was mixed, heated to 80 ° C., and stirred for 13 hours and 30 minutes. Thereafter, ethyl acetate, water and an aqueous sodium hydroxide solution were added to separate the organic layer, and the obtained aqueous layer was further separated twice with ethyl acetate, and the organic layer was collected respectively. All the obtained organic layers were combined and concentrated to obtain 0.19 g of the compound (5) as a crude product.
  • Example 5 Compound (6): Method for producing 2,2,7,9-tetramethyl-2H-pyrano [2,3-g] quinoline
  • Compound (5) obtained in Example 5 (0.18 g, 1.00 mmol), n-propanol (1.80 g), concentrated hydrochloric acid (0.38 g, 3.65 mmol) and iron (III) chloride (0.50 g, 3.08 mmol) were mixed and heated to 76 ° C. Further, 3-penten-2-one (0.19 g, 1.83 mmol) was added, and the mixture was stirred at a temperature range of 80 ° C. to 95 ° C. for 3 hours.
  • Example 6 Compound (3 ′): Method for producing N- (4-hydroxy-2,2-dimethylchroman-6-yl) butyramide N- (3-acetyl-4-hydroxyphenyl) butyramide (Compound (1 ′)) (160 g) , 0.72 mol), methanol (480 g) and pyrrolidine (77.3 g, 1.08 mol), heated to 43 ° C., added acetone (84.7 g, 1.45 mol), and heated to 44 ° C. to 45 ° C. Stir for 3 hours in the temperature range.
  • Example 7 Compound (7): 2,2,7,9-Tetramethyl-2H-pyrano [2,3-g] quinoline Production method of malate Compound (3 ′) obtained in Example 6 (140 g, 0.53 mol; ( Amount of dry crystals, 177 g added as wet crystals of compound (3 ′))) and ethanol (662 g) were mixed, heated to 77 ° C., concentrated hydrochloric acid (277 g, 2.66 mol) was added, and 80 ° C. The mixture was stirred for 13 hours in a temperature range of ⁇ 81 ° C and then cooled to 30 ° C.
  • Iron (III) chloride (259 g, 1.60 mol) was added to the obtained reaction solution, heated to 82 ° C., and 3-penten-2-one (76.0 g, 0.90 mol) was further added. The mixture was stirred for 4 hours in the temperature range of 85 ° C. Thereafter, the mixture was cooled, toluene (700 g) and water (420 g) were added, and the mixture was stirred and separated. A 17% aqueous potassium carbonate solution (1343 g) was added to the obtained organic layer, and the organic layer was further separated after stirring. Toluene (700 g) was added to the obtained aqueous layer, and the organic layer was separated after stirring.
  • Example 8 Compound (6): 2,2,7,9-Tetramethyl-2H-pyrano [2,3-g] quinoline production method
  • Compound (7) obtained in Example 7 (5.01 g, 14.1 mmol, purity) 96.81% (excluding the maleic acid peak)) and toluene (25.10 g) were mixed, and sodium bicarbonate (3.00 g, 35.2 mmol) and water (50.00 g) were mixed at 25 ° C. The mixture was added, stirred at 25 ° C. for 1 hour, and separated. Water (25.02 g) was added to the obtained organic layer, and the mixture was stirred and separated. Anhydrous magnesium sulfate was added to the obtained organic layer, dried, and filtered. The filtrate after filtration was concentrated to obtain 3.20 g of compound (6) (purity 96.26%).
  • the present invention provides a method for producing a heterocyclic compound.

Abstract

【課題】医薬品原料として有用な複素環化合物の高効率な製造法を提供する。 【解決手段】医薬品原料として市販されているN-(3-アセチル-4-ヒドロキシフェニル)ブチルアミド(化合物(1'))などを出発原料とし、キノリン環およびクロメン環を有する2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))を製造する新規な製造法、及び塩化により精製することを特徴とする化合物(6)の精製法に関する。

Description

複素環化合物の製造方法
 本発明は複素環化合物、特に下記式(6)で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法に関する。
Figure JPOXMLDOC01-appb-C000018
 (3R,4S)-7-ヒドロキシメチル-2,2,9-トリメチル-4-(フェネチルアミノ)-3,4-ジヒドロ-2H-ピラノ[2,3-g]キノリン-3-オール(化合物(9))は抗不整脈作用を示し、医薬品としての使用の可能性が知られている(例えば特許文献1参照)。
Figure JPOXMLDOC01-appb-C000019
 化合物(9)の製造方法として、例えば下記に示す2,2-ジメチル-2H-クロメン-6-アミン(化合物(5))及び2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))を製造中間体として製造する方法が知られている。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記化合物(6)は例えば以下の手順にて製造可能である:まず下記に示すように、1-フルオロ-4-ニトロベンゼン(化合物(10))と2-メチル-3-ブチン-2-オール(化合物(11))とを反応させ1-((2-メチル-3-ブチン-2-イル)オキシ)-4-ニトロベンゼン(化合物(12))を製造する(例えば特許文献2参照)。続いて該化合物(12)を加熱することで2,2-ジメチル-6-ニトロ-2H-クロメン(化合物(13))へ誘導する(例えば非特許文献1、非特許文献2参照)。得られた化合物(13)のニトロ基を触媒存在下で還元して、2,2-ジメチル-2H-クロメン-6-アミン(化合物(5))を得る(例えば特許文献3参照)。さらに該化合物(5)と3-ペンテン-2-オン(化合物(8))とを反応(キノリン環化)させ、化合物(6)を得る(例えば特許文献1、非特許文献3参照)。
Figure JPOXMLDOC01-appb-C000022
国際公開第2005/090357号パンフレット 国際公開第2004/035520号パンフレット 国際公開第2004/020428号パンフレット
Journal of Med.chem.,34(5),1570,1991. Synthesis,(6),707,1995. Tetrahedron,53(17),6001,1997.
 しかしながら、上述の製造方法は化合物(10)と化合物(11)を反応させて化合物(13)を得るまでの反応に長時間を要すること、化合物(13)のニトロ基を還元する際に、白金やパラジウムなどの高価な貴金属触媒を用いるため製造コストの点で不利であることなど、工業化には多くの問題点を抱えており、これら問題を解決できる複素環化合物の新たな製造方法が求められていた。
 すなわち本発明の目的は、複素環化合物である2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法を提供することである。
 本発明者らは鋭意研究し、まず2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))の製造中間体である2,2-ジメチル-2H-クロメン-6-アミン(化合物(5))の高効率な新規合成方法を見出した。さらに、本発明者らは化合物(5)から化合物(6)を得る工程に関し、高効率で高純度な化合物(6)を得ることが可能な製造方法を見出し、本発明を完成させた。
 すなわち、本発明は以下の(I)乃至(VIII)を特徴とするものである。
(I)以下の(a)~(d)の工程で構成される2,2-ジメチル-2H-クロメン-6-アミンの製造方法(ただし、以下の式(1)~(4)において、RはC1-6アルキル基を意味する。):
(a)式(1)
Figure JPOXMLDOC01-appb-C000023
で表される化合物をアセトンと反応させて、式(2)
Figure JPOXMLDOC01-appb-C000024
で表されるクロマノン環誘導体を得る工程、
(b)得られたクロマノン環誘導体を還元して、式(3)
Figure JPOXMLDOC01-appb-C000025
で表されるアルコール誘導体を得る工程、
(c)得られたアルコール誘導体を脱水して、式(4)
Figure JPOXMLDOC01-appb-C000026
で表されるクロメン環誘導体を得る工程、
(d)得られたクロメン環誘導体を加水分解して、式(5):
Figure JPOXMLDOC01-appb-C000027
で表される2,2-ジメチル-2H-クロメン-6-アミンを得る工程。
(II)Rがn-プロピル基である(I)に記載の製造方法。
(III)以下の(e)~(f)の工程で構成される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法:
(e)式(5)
Figure JPOXMLDOC01-appb-C000028
で表される2,2-ジメチル-2H-クロメン-6-アミンを、3-ペンテン-2-オンとの反応により環化させて、式(6)
Figure JPOXMLDOC01-appb-C000029
で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程、
(f)得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを塩化して、2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶とし、この塩の結晶を中和して、より高純度な2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程。
(IV)工程(f)において、マレイン酸を用いた塩化により、下記式(7):
Figure JPOXMLDOC01-appb-C000030
で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン マレートを生成することを特徴とする、(III)に記載の製造方法。
(V)以下の(a)~(f)の工程で構成される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法(ただし、以下の式(1)~(4)において、RはC1-6アルキル基を意味する。):
(a)式(1)
Figure JPOXMLDOC01-appb-C000031
で表される化合物をアセトンと反応させて、式(2)
Figure JPOXMLDOC01-appb-C000032
で表されるクロマノン環誘導体を得る工程、
(b)得られたクロマノン環誘導体を還元して、式(3)
Figure JPOXMLDOC01-appb-C000033
で表されるアルコール誘導体を得る工程、
(c)得られたアルコール誘導体を脱水して、式(4)
Figure JPOXMLDOC01-appb-C000034
で表されるクロメン環誘導体を得る工程、
(d)得られたクロメン環誘導体を加水分解して、式(5)
Figure JPOXMLDOC01-appb-C000035
で表される2,2-ジメチル-2H-クロメン-6-アミンを得る工程、
(e)得られた2,2-ジメチル-2H-クロメン-6-アミンを、3-ペンテン-2-オンとの反応により環化させて、式(6)
Figure JPOXMLDOC01-appb-C000036
で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程、
(f)得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを塩化して、2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶とし、この塩の結晶を中和して、より高純度な2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程。
(VI)式(2’)
Figure JPOXMLDOC01-appb-C000037
で表される化合物。
(VII)式(3’)
Figure JPOXMLDOC01-appb-C000038
で表される化合物。
(VIII)式(4’)
Figure JPOXMLDOC01-appb-C000039
で表される化合物。
 本発明により、従来の製造方法に比べて短い時間でありまた低コストとなり、工業的スケールでの製造に適合した複素環化合物の製造方法を提供することができる。
 以下、さらに本発明を説明する。なお本発明は以下の実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々変形して実施することが出来る。
 本明細書において「n-」はノルマル、「i-」はイソ、「s-」はセカンダリー、「t-」はターシャリーを意味する。
 本明細書においてC1-6アルキル基とは、炭素原子数1乃至6のアルキル基を意味する。前記アルキル基は直鎖状でも分枝状であってもよい。その例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。
 RにおけるC1-6アルキル基は、好ましくはC2-4アルキル基(炭素原子数2乃至4のアルキル基)であり、より好ましくはエチル基、n-プロピル基、n-ブチル基又はi-プロピル基であり、さらに好ましくはn-プロピル基である。
 本発明の製造方法に含まれる各製造工程の概略を以下のスキームに示す。ただし下記スキームにおいては、化合物(1)~化合物(4)の具体例として、式(1)~(4)におけるRがn-プロピル基である化合物(1’)~化合物(4’)を記載し、また化合物(6)の塩としてマレイン酸を用いた例を記載した。
Figure JPOXMLDOC01-appb-C000040
 以下、本明細書では、必要に応じ工程(i)を「クロマノン環化工程」と、工程(ii)を「還元工程」と、工程(iii)を「脱水工程」と、工程(iv)を「加水分解工程」と、工程(v)を「キノリン環化工程」と、工程(vi)を「塩化工程」と、工程(vii)を「中和工程」とそれぞれ称する。また、工程(i)の反応を「クロマノン環化反応」と、工程(ii)の反応を「還元反応」と、工程(iii)の反応を「脱水反応」と、工程(iv)の反応を「加水分解反応」と、工程(v)の反応を「キノリン環化反応」と、工程(vi)の反応を「塩化反応」と、工程(vii)の反応を「中和反応」とそれぞれ称する。
 以下に各工程について順番に説明する。なお以下に示す溶媒、反応試剤の添加順序及び操作順序については、限定されず順序を変更して行うことが出来る。
(i)クロマノン環化工程
 まず、化合物(1)をアセトンと反応させてクロマノン環誘導体(化合物(2))を得るクロマノン環化工程について説明する。はじめに、化合物(1)を、溶媒に溶解させた後、アセトンと反応させることが好ましい。
 クロマノン環化工程に用いることが出来る溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)を用いることが反応を効果的に行う点で好ましい。これらの中でもメタノール、エタノール、n-プロパノールを用いることがより好ましい。
 溶媒の使用量は特に制限されないが、化合物(1)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至50質量倍の量、さらに好ましくは1質量倍乃至20質量倍の量である。
 化合物(1)と反応させるアセトンの使用量は特に制限されないが、化合物(1)に対して、0.1モル当量乃至20モル当量であり、より好ましくは0.5モル当量乃至10モル当量、さらに好ましくは1モル当量乃至5モル当量である。
 本工程は、塩基の存在下で反応させることが反応性を向上させる点で好ましい。塩基としては有機塩基が好ましく、5もしくは6員環の含窒素環状有機塩基がより好ましく、ピロリジンがさらに好ましい。
 塩基の使用量は特に制限されないが、化合物(1)に対して、0.1モル当量乃至10モル当量であり、より好ましくは0.5モル当量乃至5モル当量、さらに好ましくは1モル当量乃至3モル当量である。
 クロマノン環化工程における反応温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度である。反応を効率的に行う点で、50℃乃至溶媒の沸点の範囲の任意の温度で行うことが好ましい。
 またクロマノン環化工程における反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは10分間乃至24時間、さらに好ましくは30分間乃至6時間である。
 反応後、得られる化合物(2)の単離、精製は常法により行うことができる。例えば、溶媒による抽出、シリカゲルカラムクロマトグラフィー、高速液体クロマトグラフィー、結晶化など公知の方法によって行うことができる。また、反応後、得られた化合物(2)の溶液を、そのまま次の工程に使用することもできる。
(ii)還元工程
 次に、前工程で得られたクロマノン誘導体(化合物(2))のカルボニル基を還元してアルコール誘導体(化合物(3))を得る還元工程について説明する。はじめに、化合物(2)を、溶媒に溶解させた後、還元反応を実施することが好ましい。
 還元工程に用いることが出来る溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)、テトラヒドロフラン、並びにこれらの混合溶媒を用いることが反応を効果的に行う点で好ましい。これらの中でもメタノール、エタノール、メタノールとテトラヒドロフランの混合溶媒、エタノールとテトラヒドロフランの混合溶媒を用いることが好ましく、特にメタノールとテトラヒドロフランの混合溶媒を用いることが好ましい。
 溶媒の使用量は特に制限されないが、化合物(2)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至20質量倍の量、さらに好ましくは1質量倍乃至10質量倍の量である。
 本工程で使用する還元剤は、目的の反応を進行させる還元剤であれば特に限定されないが、水素化アルミニウム金属塩か水素化ホウ素金属塩が好ましく、水素化ホウ素金属塩がより好ましく、水素化ホウ素ナトリウムがさらに好ましい。
 還元剤の使用量は特に制限されないが、化合物(2)に対して、0.1モル当量乃至5モル当量であり、より好ましくは0.5モル当量乃至3モル当量、さらに好ましくは0.5モル当量乃至1.5モル当量である。
 還元工程における反応温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは1℃乃至60℃の範囲の任意の温度である。
 また還元工程における反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは10分間乃至24時間、さらに好ましくは30分間乃至6時間である。
 反応後、得られる化合物(3)の単離、精製は常法により行うことが出来る。例えば、溶媒による抽出、シリカゲルカラムクロマトグラフィー、高速液体クロマトグラフィーなど公知の方法によって、化合物(3)を単離、精製することができる。また特に、反応溶液を冷却し、酸と塩基を加えて液性を中性とし、化合物(3)の結晶を析出させた後、該化合物を単離、精製することもできる。また反応後、得られた化合物(3)の溶液を、そのまま次の工程に使用することもできる。
 前述の酸と塩基を用いる単離・精製方法において、単離、精製時の反応溶液の温度は特に制限されないが、好ましくは-20℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは-10℃乃至40℃の範囲の任意の温度であり、さらに好ましくは-5℃乃至20℃の範囲の任意の温度である。
 酸と塩基を用いる方法において使用する酸の種類は特に制限されないが、好ましくは塩酸を用いる。また使用する塩基についても特に制限されないが、好ましくは炭酸水素ナトリウムを用いる。これら酸と塩基は、液性を中性とするに要する量を適宜使用することができる。
 また単離、精製時の塩基を加えた後の撹拌時間は特に制限されないが、製造の効率の観点からは塩基を加えた直後から24時間の間の任意の時間にて撹拌することが好ましい。より好ましくは1時間乃至10時間である。
 単離した化合物(3)の結晶は、乾燥させてもよいし、乾燥せずにそのまま(湿ったまま)次の工程に供することもできる。
(iii)脱水工程
 次に、前工程で得られたアルコール誘導体(化合物(3))を脱水してクロメン環誘導体(化合物(4))を得る脱水工程について説明する。なお本工程は、後述する(iv)加水分解工程と同時に実施することもできる。
 本工程において、還元工程後に得られる化合物(3)は、単離したものを用いてもよいし、反応液をそのまま用いてもよい。
 なお、単離、精製したものを用いる場合、化合物(3)を、溶媒に溶解させた後、脱水反応を実施することが好ましい。
 化合物(3)の溶解に使用する溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)、芳香族炭化水素溶媒(例えば、ベンゼン、トルエン、キシレン)を用いることが反応を効果的に行う点で好ましい。これらの中でもメタノール、エタノール、n-プロパノール、トルエンを用いることが好ましく、特にトルエンを用いることが好ましい。また、脱水工程と後述する(iv)加水分解工程とを同時に行う場合、溶媒としてアルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)を用いることが反応を効果的に行う点で好ましい。これらの中でもメタノール、エタノール、n-プロパノールを用いることが好ましく、特にエタノールを用いることが好ましい。
 溶媒の使用量は特に制限されないが、化合物(3)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至50質量倍の量、さらに好ましくは1質量倍乃至30質量倍の量である。
 本工程は、酸の存在下で実施することが反応性を向上させる点で好ましい。脱水工程を単独で行う際に用いることが出来る酸は本発明の目的の効果を実現する限り限定されないが、反応を効果的に行う点で塩酸、メタンスルホン酸が好ましい。また、脱水工程と後述する(iv)加水分解工程とを同時に行う場合、酸として塩酸を用いることが好ましい。
 酸の使用量は特に制限されないが、化合物(3)に対して0.01モル当量乃至100モル当量であり、より好ましくは0.03モル当量乃至20モル当量、さらに好ましくは0.05モル当量乃至10モル当量である。
 本工程の反応温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは1℃乃至溶媒の沸点の範囲の任意の温度であり、さらに好ましくは60℃乃至溶媒の沸点の範囲の任意の温度である。
 また本工程の反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは10分間乃至72時間、さらに好ましくは0.5時間乃至48時間である。
 反応後、得られる化合物(4)の単離、精製は常法により行うことができる。例えば、溶媒による抽出、シリカゲルカラムクロマトグラフィー、高速液体クロマトグラフィー、結晶化など公知の方法によって行うことができる。また、反応後、得られた化合物(4)の溶液を、そのまま次の工程に使用することもできる。
(iv)加水分解工程
 次に、前工程で得られたクロメン環誘導体(化合物(4))を加水分解して2,2-ジメチル-2H-クロメン-6-アミン(化合物(5))を得る加水分解工程について説明する。脱水工程後に得られる化合物(4)を、溶媒に溶解させた後、加水分解反応を実施することが好ましい。
 化合物(4)の溶解に使用する溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)が反応を効果的に行う点で好ましい。これらの中でもメタノール、エタノール、n-プロパノールを用いることが好ましい。
 溶媒の使用量は特に制限されないが、化合物(4)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至50質量倍の量、さらに好ましくは1質量倍乃至30質量倍の量である。
 本工程は、酸の存在下で実施することが反応性を向上させる点で好ましい。加水分解工程を単独で行う際に用いることが出来る酸は本発明の目的の効果を実現する限り限定されないが、反応を効果的に行う点で塩酸が好ましい。なお塩酸は、前述の(iii)脱水工程における酸としても好適であることから、脱水工程と加水分解工程を同時に行う場合には酸として塩酸を用いることが好適である。
 酸の使用量は特に制限されないが、化合物(4)に対して0.1モル当量倍乃至100モル当量倍であり、より好ましくは0.5モル当量倍乃至50モル当量倍、さらに好ましくは1モル当量倍乃至20モル当量倍である。
 本工程の反応温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは1℃乃至溶媒の沸点の範囲の任意の温度であり、さらに好ましくは60℃乃至溶媒の沸点の範囲の任意の温度である。
 また本工程の反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは10分間乃至48時間、更に好ましくは0.5時間乃至24時間である。
 得られる化合物(5)の単離、精製は常法により行うことが出来る。例えば、溶媒による抽出、シリカゲルカラムクロマトグラフィー、高速液体クロマトグラフィー、結晶化など公知の方法によって行うことができる。また、反応後、得られた化合物(5)の溶液を、そのまま次の工程に使用することもできる。
(v)キノリン環化工程
 次に、前工程で得られた2,2-ジメチル-2H-クロメン-6-アミン(化合物(5))を3-ペンテン-2-オンとの反応により環化させて2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))を得るキノリン環化工程について説明する。はじめに、前述の(iv)加水分解工程で得られる化合物(5)を、溶媒に溶解させた後、キノリン環化反応を実施することが好ましい。
 キノリン環化工程に用いることが出来る溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)を用いることが反応を効果的に行う点で好ましい。これらの中でもエタノール、n-プロパノールを用いることが好ましい。
 溶媒の使用量は特に制限されないが、化合物(5)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至50質量倍の量、さらに好ましくは1質量倍乃至20質量倍の量である。
 化合物(5)と反応させる3-ペンテン-2-オンの使用量は特に制限されないが、化合物(5)に対して、0.1モル当量乃至10モル当量であり、より好ましくは1モル当量乃至5モル当量、さらに好ましくは1モル当量乃至3モル当量である。
 本工程では、酸の存在下又は酸の非存在下で反応させることができるが、酸の存在下で反応させることが反応性を向上させる点で好ましい。キノリン環化工程に用いることが出来る酸は本発明の目的の効果を実現する限り限定されないが、塩酸が好ましい。
 酸の使用量は特に制限されないが、化合物(5)に対して、0.1モル当量乃至20モル当量であり、より好ましくは0.5モル当量乃至10モル当量、さらに好ましくは1モル当量乃至7モル当量である。
 本工程では、酸化剤の存在下で反応させることが反応性を向上させる点で好ましい。キノリン環化工程に用いることが出来る酸化剤は本発明の目的の効果を実現する限り特に制限されないが、銅塩、鉄塩、キノン類が好ましく、塩化鉄(II)、塩化鉄(III)、アントラキノンがより好ましく、反応を効果的に行う点で塩化鉄(III)がさらに好ましい。
 酸化剤の使用量は特に制限されないが、化合物(5)に対して、0.1モル当量乃至20モル当量であり、より好ましくは1モル当量乃至10モル当量、さらに好ましくは1モル当量乃至5モル当量である。
 キノリン環化工程における反応温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは1℃乃至溶媒の沸点の範囲の任意の温度であり、さらに好ましくは60℃乃至溶媒の沸点の範囲の任意の温度である。
 またキノリン環化工程における反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは10分間乃至24時間、更に好ましくは1時間乃至15時間である。
 得られる化合物(6)の単離、精製は常法により行うことが出来る。例えば、溶媒による抽出、シリカゲルカラムクロマトグラフィー、高速液体クロマトグラフィー、結晶化など公知の方法によって、化合物(6)を単離、精製することができる。また、反応後、得られた化合物(6)の溶液を、そのまま次の工程に使用することもできる。
(vi)塩化工程
 次に、前工程で得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))に酸を反応させて2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶を生成する塩化工程について説明する。なお、生成した塩の結晶を中和することにより、より高純度な2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))が得られる。
 はじめに、化合物(6)を、溶媒に溶解させた後、塩化を実施することが好ましい。
 塩化工程に用いることが出来る溶媒は、本発明の目的の効果を実現する限り限定されないが、芳香族炭化水素溶媒(例えば、ベンゼン、トルエン、キシレン)を用いることが後処理を効果的に行う点で好ましい。中でもトルエンを用いることがより好ましい。
 溶媒の使用量は特に制限されないが、化合物(6)に対して、0.1質量倍乃至20質量倍の量であり、より好ましくは1質量倍乃至10質量倍の量、さらに好ましくは1質量倍乃至5質量倍の量である。
 塩化工程に用いることが出来る酸は、本発明の目的の効果を実現する限り限定されないが、好ましくはマレイン酸を用いる。
 酸の使用量は特に制限されないが、化合物(6)に対して、0.1モル当量乃至10モル当量であり、より好ましくは0.5モル当量乃至5モル当量、さらに好ましくは0.5モル当量乃至3モル当量である。
 塩化工程に用いる上記酸は溶液として使用する。溶解させる溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)を用いることが塩化を効果的に行う点で好ましい。これらの中でもメタノール、エタノール、n-プロパノールを用いることが好ましく、特にエタノールを用いることが好ましい。
 酸を溶解する溶媒の使用量は特に制限されないが、化合物(6)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至20質量倍の量、さらに好ましくは1質量倍乃至10質量倍の量である。
 化合物(6)と上記酸とを反応させる際の温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは1℃乃至溶媒の沸点の範囲であり、さらに好ましくは1℃乃至60℃の範囲である。
 また塩化工程における反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは酸を加えた直後から12時間の間の任意の時間、更に好ましくは1分間乃至3時間である。
 次に反応溶液を冷却する。冷却の温度は特に制限されないが、好ましくは-20℃乃至10℃の範囲であり、より好ましくは-15℃乃至5℃の範囲である。
 反応溶液の冷却の時間は特に制限されないが、0.5時間乃至24時間の間の任意の時間である。
 冷却後、生成した2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶(酸としてマレイン酸を用いた場合、化合物(7)の結晶)は、ろ過し、乾燥させることにより、精製された塩の結晶を生成することができる。
(vii)中和工程
 次に、前工程で得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶(化合物7)に塩基を反応させて2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))を生成する中和工程について説明する。
 はじめに、化合物(7)を、溶媒と混合させた後、中和を実施することが好ましい。
 中和工程に用いることが出来る溶媒は、本発明の目的の効果を実現する限り限定されないが、芳香族炭化水素溶媒(例えば、ベンゼン、トルエン、キシレン)を用いることが後処理を効果的に行う点で好ましい。中でもトルエンを用いることがより好ましい。
 溶媒の使用量は特に制限されないが、化合物(7)に対して、0.1質量倍乃至50質量倍の量であり、より好ましくは1質量倍乃至20質量倍の量、さらに好ましくは1質量倍乃至10質量倍の量である。
 中和工程に用いることが出来る塩基は、本発明の目的の効果を実現する限り限定されないが、無機塩基を用いることが、後処理を効率的に行う点で好ましい。中でも、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムを用いることがより好ましく、特に炭酸水素ナトリウムを用いることが好ましい。
 塩基の使用量は特に制限されないが、化合物(7)に対して、0.1モル当量乃至20モル当量であり、より好ましくは1モル当量乃至10モル当量、さらに好ましくは2モル当量乃至5モル当量である。
 中和工程に用いる上記塩基は溶液として使用する。溶解させる溶媒は、本発明の目的の効果を実現する限り限定されないが、アルコール溶媒(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール)又は水を用いることが中和を効果的に行う点で好ましく、これらの中でも水を用いることが好ましい。
 塩基を溶解する溶媒の使用量は特に制限されないが、化合物(7)に対して、0.1質量倍乃至100質量倍の量であり、より好ましくは0.5質量倍乃至50質量倍の量、さらに好ましくは1質量倍乃至20質量倍の量である。
 化合物(7)と上記塩基とを反応させる際の温度は特に制限されないが、好ましくは0℃乃至使用する溶媒の沸点の範囲の任意の温度であり、より好ましくは10℃乃至60℃の範囲であり、さらに好ましくは20℃乃至40℃の範囲である。
 また中和工程における反応時間は、反応基質が消費されるに十分な時間であれば特に制限されないが、好ましくは塩基を加えた直後から12時間の間の任意の時間、更に好ましくは1分間乃至3時間である。
 得られる化合物(6)の単離、精製は、常法により行うことが出来る。例えば、溶媒による抽出、シリカゲルカラムクロマトグラフィー、など公知の方法によって、化合物(6)を単離、精製することができる。中和工程(vii)で得られる化合物(6)は、(v)工程で得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン(化合物(6))と比べ、より高純度とすることができる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明の範囲はこれらに限定されるものではない。
 本明細書において、シリカゲルパッドろ過とは、反応溶液(又は懸濁液)をシリカゲルの層が設けられたろ過器を通過させることにより、反応溶液から固形物とシリカゲルに吸着する成分を除去する処理手法をいう。
 実施例で得られた各化合物について、NMR分析、質量分析等を適宜組み合わせてその構造を特定し、HPLCを用いて化合物の純度を算出し、また化合物の融点を測定した。
 なお実施例中、NMRとは核磁気共鳴を、HPLCとは高速液体クロマトグラフィーを、V/Vとは体積対体積を、ESIとはエレクトロスプレーイオン化を、「ESI」はESI正イオンモード、「ESI」はESI負イオンモードをそれぞれ意味する。
 NMR分析は日本電子(株)製ECP300を、質量分析はWATERS社製MICROMASS ZQを、融点測定は柴田科学(株)製B-545を、それぞれ用いて実施した。
 H-NMRデータが記載してある場合には、これはテトラメチルシランを内部標準としたシグナルの化学シフトδ(単位:ppm)(***パターン、積分値)を表すものである。「s」はシングレット、「d」はダブレット、「t」はトリプレット、「q」はカルテット、「dd」はダブレット オブ ダブレット、「qt」はカルテット オブ トリプレット、「m」はマルチプレット、「br」はブロード、「J」はカップリング定数、「CDCl」は重クロロホルムを意味する。
 またHPLC分析は島津製作所製LC-20Aを用い、以下の条件で実施した。
 なおHPLC分析における各化合物の純度(不純物の場合は含有比率)は、全ピーク面積中の対象ピーク面積の比を百分率で表す面積百分率法で表したものである。
[実施例1乃至実施例5]
L-column ODS(財団法人化学物質評価研究機構製、直径4.6mm×長さ250mm、粒径5μm)
溶離液:アセトニトリル/0.01M酢酸アンモニウム水溶液=22/78-45/55(0-12分)、45/55(12-22分)、45/55-95/5(22-45分)、95/5(45-65分)、V/V。
流速:1.0mL/分
カラム温度:40℃
紫外可視吸光光度計検出器波長:238nm
[実施例6及び実施例7]
L-column ODS(財団法人化学物質評価研究機構製、直径4.6mm×長さ250mm、粒径5μm)
溶離液:アセトニトリル400mLと0.01M酢酸緩衝液(pH3.8)600mLを混合し、ドデシル硫酸ナトリウム0.29gを溶解したもの。
0.01M酢酸緩衝液は0.01M酢酸水溶液800mLと0.01M酢酸ナトリウム溶液100mLを混合したものを使用した。
流速:1.0mL/分
カラム温度:40℃
紫外可視吸光光度計検出器波長:254nm
実施例1
化合物(2’):N-(2,2-ジメチル-4-オキソクロマン-6-イル)ブチルアミドの製造方法
 N-(3-アセチル-4-ヒドロキシフェニル)ブチルアミド(化合物(1’))(2.01g,9.08mmol)、n-プロパノール(20.0g)、アセトン(1.60g,27.6mmol)及びピロリジン(1.30g,18.3mmol)を混合し、97℃乃至100℃の温度範囲で加熱し、2時間撹拌した。その後塩酸および酢酸エチルを加えて分液し、得られた有機層を水で分液した。得られた水層に酢酸エチルを加え分液し、得られた有機層を先ほど得た有機層と合わせて濃縮し、シリカゲルパッドろ過を行い、酢酸エチル/ヘキサン=1/1の溶液で洗浄し再度濃縮し、化合物(2’)を粗物として2.40g得た。
化合物(2’)
MASS(ESI)m/z;262(M+1)
H-NMR(CDCl,TMS):
δ(ppm):1.01(3H,t,J=7.2Hz),1.45(6H,s),1.76(2H,qt,J=7.5,7.2Hz),2.33(2H,t,J=7.5Hz),2.71(2H,s),6.91(1H,d,J=8.9Hz),7.35(1H,br-s),7.67(1H,d,J=2.7Hz),7.94(1H,dd,J=8.9,2.7Hz)
実施例2
化合物(3’):N-(4-ヒドロキシ-2,2-ジメチルクロマン-6-イル)ブチルアミドの製造方法
 実施例1で得た化合物(2’)(1.20g,4.59mmol)、テトラヒドロフラン(5.26g)及びメタノール(0.71g)を混合し、2℃まで冷却し、水素化ホウ素ナトリウム(0.195g,5.15mmol)を加え、11℃乃至17℃の温度範囲で1時間撹拌した。その後酢酸エチル(20mL)と塩酸(20mL)を加え有機層を分液し、得られた水層に酢酸エチルを加えさらに有機層を分液し、これを先ほど得た有機層と合わせて水で分液し、最終的に得られた有機層を濃縮し、化合物(3’)を粗物として1.40g得た。
化合物(3’)
MASS(ESI)m/z;264(M+1)
H-NMR(CDCl,TMS):
δ(ppm):0.89(3H,t,J=7.4Hz),1.20(3H,s),1.33(3H,s),1.58(2H,qt,J=7.4,7.2Hz),1.71-1.63(1H,m),2.02(1H,dd,J=13.2,6.1Hz),2.21(2H,t,J=7.2Hz),4.60(1H,t,J=9.1Hz),5.28(1H,br-s),6.59(1H,d,J=8.4Hz),7.29(1H,dd,J=8.8,2.5Hz),7.63(1H,d,J=2.5Hz),9.61(1H,s)
実施例3
化合物(4’):N-(2,2-ジメチル-2H-クロメン-6-イル)ブチルアミドの製造方法
 実施例2で得た化合物(3’)(0.95g,3.61mmol)、トルエン(20.0g)及びメタンスルホン酸(0.10g,0.30mmol)を混合し、110℃まで加熱し1時間撹拌した。その後、水(80mL)および酢酸エチル(80mL)を加えて有機層を分液し、得られた水層を酢酸エチルでさらに分液した。得られた有機層を先ほど得た有機層と合わせて濃縮し、カラムクロマトグラフィーにより精製し、化合物(4’)0.75gを得た。
化合物(4’)
MASS(ESI)m/z;246(M+1)
H-NMR(CDCl,TMS):
δ(ppm):1.00(3H,t,J=7.4Hz),1.41(6H,s),1.75(2H,qt,J=7.4,7.2Hz),2.30(2H,t,J=7.2Hz),5.62(1H,d,J=9.9Hz),6.28(1H,d,J=9.6Hz),6.71(1H,d,J=8.5Hz),7.06(1H,dd,J=8.5,2.2Hz),7.07(1H,br-s),7.30(1H,d,J=2.2Hz)
実施例4
化合物(5):2,2-ジメチル-2H-クロメン-6-アミンの製造方法
 実施例3で得た化合物(4’)(0.22g,0.88mmol)、エタノール(5.00g)及び濃塩酸(1.02g,9.8mmol)を混合し、80℃まで加熱し、13時間30分撹拌した。その後、酢酸エチル、水、水酸化ナトリウム水溶液を加えて有機層を分液し、得られた水層を酢酸エチルでさらに2回分液し、それぞれ有機層を回収した。得られたすべての有機層を合わせて濃縮し、化合物(5)を粗物として0.19g得た。
化合物(5)
MASS(ESI)m/z;176(M+1)
H-NMR(CDCl,TMS):
δ(ppm):1.39(6H,s),3.35(2H,br-s),5.60(1H,d,J=9.9Hz),6.23(1H,d,J=9.9Hz),6.37(1H,d,J=2.8Hz),6.47(1H,dd,J=8.5,2.8Hz),6.61(1H,d,J=8.3Hz)
実施例5
化合物(6):2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法
 実施例5で得た化合物(5)(0.18g,1.00mmol)、n-プロパノール(1.80g)、濃塩酸(0.38g,3.65mmol)及び塩化鉄(III)(0.50g、3.08mmol)を混合し、76℃まで加熱した。さらに3-ペンテン-2-オン(0.19g,1.83mmol)を加え、80℃乃至95℃の温度範囲で3時間撹拌した。その後炭酸ナトリウム水溶液と酢酸エチルを加えて有機層を分液後、得られた水層を酢酸エチルでさらに分液して有機層を得、得られたすべての有機層を合わせて濃縮した後、カラムクロマトグラフィーで精製し、0.13gの化合物(6)を得た。
化合物(6)
MASS:240(M+1)
H-NMR(CDCl,TMS):
δ(ppm):1.49(6H,s),2.54(3H,s),2.62(3H,s),5.86(1H,d,J=9.9Hz),6.56(1H,d,J=9.9Hz),7.01(1H,s),7.20(1H,s),7.60(1H,s)
融点:64℃
実施例6
化合物(3’):N-(4-ヒドロキシ-2,2-ジメチルクロマン-6-イル)ブチルアミドの製造方法
 N-(3-アセチル-4-ヒドロキシフェニル)ブチルアミド(化合物(1’))(160g,0.72mol)、メタノール(480g)及びピロリジン(77.3g,1.08mol)を混合し、43℃まで加熱し、アセトン(84.7g,1.45mol)を加え、44℃乃至45℃の温度範囲で3時間撹拌した。
 撹拌後、冷却し、テトラヒドロフラン(320g)を加え、反応液温度を33℃とした後、水素化ホウ素ナトリウム(27.4g,0.72mol)を10回に分けて加え、36℃乃至37℃の温度範囲で3時間撹拌した。その後6℃まで冷却し、10%塩酸(634g)を加え1時間撹拌し、その後5%炭酸水素ナトリウム水溶液(365g)を加え2時間撹拌し、析出している結晶をろ過した。ろ過後の結晶をエタノール(161g)と水(161g)の混合液で洗浄し、再度同量の液で洗浄した。化合物(3’)の湿結晶を白色結晶として、313g(純度99.97%)得た。湿結晶の一部を採取し乾燥させて算出した乾燥重量は、165gであった。
実施例7
化合物(7):2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン マレートの製造方法
 実施例6で得た化合物(3’)(140g,0.53mol;(乾燥結晶としての量、化合物(3’)の湿結晶として177gを加えた))およびエタノール(662g)を混合し、77℃まで加熱し、濃塩酸(277g,2.66mol)を加え、80℃乃至81℃の温度範囲で13時間撹拌した後、30℃まで冷却した。
 得られた反応溶液に塩化鉄(III)(259g、1.60mol)を加え、82℃まで加熱し、さらに3-ペンテン-2-オン(76.0g,0.90mol)を加え、84℃乃至85℃の温度範囲で4時間撹拌した。その後冷却し、トルエン(700g)と水(420g)を加え、撹拌後、分液した。得られた有機層に17%炭酸カリウム水溶液(1343g)を加え、撹拌後、さらに有機層を分液した。得られた水層にトルエン(700g)を加え、撹拌後、有機層を分液した。こうして得られたすべての有機層を合わせ、ここに水(700g)を加え、撹拌後、分液した。得られた有機層に活性炭(7.00g)を加え1時間撹拌したのち、ろ過助剤としてセライトを用いてこれをろ過し、さらにセライトをトルエン(140g)で洗浄し、ろ液を得た。ろ過後のろ液を濃縮し、560gの化合物(6)のトルエン溶液(純度85.07%)を得た。(但し、トルエンのピークを除いて純度計算を行った。)
 続いてマレイン酸(49.4g,0.43mol)にエタノール(280g)を加え溶解させたものを、前述の化合物(6)のトルエン溶液を50℃としたものへ加え、50℃から2℃へ冷却後、2℃で1時間撹拌した。撹拌後、析出した結晶をろ過した。ろ過後の結晶をトルエン(98g)とエタノール(42g)の混合液で洗浄し、再度同量の混合液で洗浄した。洗浄後の結晶を乾燥させ、褐色結晶として化合物(7)を111g(純度96.81%)得た。(但し、マレイン酸のピークを除いて計算を行った。)
化合物(7)
MASS(ESI)m/z;240(M+1)
H-NMR(CDCl,TMS):
δ(ppm):1.46(6H,s),2.63(3H,s),2.65(3H,s),6.16(2H,s),6.17(1H,d,J=9.6Hz),6.75(1H,d,J=9.9Hz),7.35(1H,s),7.39(1H,s),7.67(1H,s)
融点:188℃
実施例8
化合物(6):2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法
 実施例7で得た化合物(7)(5.01g,14.1mmol、純度96.81%(但し、マレイン酸のピークを除いた))およびトルエン(25.10g)を混合し、25℃で炭酸水素ナトリウム(3.00g,35.2mmol)と水(50.00g)の混合液を加え、25℃で1時間撹拌し、分液した。
 得られた有機層に水(25.02g)を加え、撹拌後、分液した。得られた有機層に無水硫酸マグネシウムを加え、乾燥し、これをろ過した。ろ過後のろ液を濃縮し、3.20gの化合物(6)(純度96.26%)を得た。
化合物(6)
MASS:240(M+1)
H-NMR(CDCl,TMS):
δ(ppm):1.49(6H,s),2.54(3H,s),2.62(3H,s),5.86(1H,d,J=9.9Hz),6.56(1H,d,J=9.9Hz),7.01(1H,s),7.20(1H,s),7.60(1H,s)
融点:64℃
 本発明により複素環化合物の製造方法が提供される。

Claims (8)

  1. 以下の(a)~(d)の工程で構成される2,2-ジメチル-2H-クロメン-6-アミンの製造方法(ただし、以下の式(1)~(4)において、Rは炭素原子数1乃至6のアルキル基を意味する。):
    (a)式(1)
    Figure JPOXMLDOC01-appb-C000001
    で表される化合物をアセトンと反応させて、式(2)
    Figure JPOXMLDOC01-appb-C000002
    で表されるクロマノン環誘導体を得る工程、
    (b)得られたクロマノン環誘導体を還元して、式(3)
    Figure JPOXMLDOC01-appb-C000003
    で表されるアルコール誘導体を得る工程、
    (c)得られたアルコール誘導体を脱水して、式(4)
    Figure JPOXMLDOC01-appb-C000004
    で表されるクロメン環誘導体を得る工程、
    (d)得られたクロメン環誘導体を加水分解して、式(5):
    Figure JPOXMLDOC01-appb-C000005
    で表される2,2-ジメチル-2H-クロメン-6-アミンを得る工程。
  2. がn-プロピル基である、請求項1に記載の製造方法。
  3. 以下の(e)~(f)の工程で構成される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法:
    (e)式(5)
    Figure JPOXMLDOC01-appb-C000006
    で表される2,2-ジメチル-2H-クロメン-6-アミンを、3-ペンテン-2-オンとの反応により環化させて、式(6)
    Figure JPOXMLDOC01-appb-C000007
    で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程、
    (f)得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを塩化して、2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶とし、この塩の結晶を中和して、より高純度な2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程。
  4. 工程(f)において、マレイン酸を用いた塩化により、下記式(7):
    Figure JPOXMLDOC01-appb-C000008
    で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン マレートを生成することを特徴とする、請求項3に記載の製造方法。
  5. 以下の(a)~(f)の工程で構成される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンの製造方法(ただし、以下の式(1)~(4)において、Rは炭素原子数1乃至6のアルキル基を意味する。):
    (a)式(1)
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物をアセトンと反応させて、式(2)
    Figure JPOXMLDOC01-appb-C000010
    で表されるクロマノン環誘導体を得る工程、
    (b)得られたクロマノン環誘導体を還元して、式(3)
    Figure JPOXMLDOC01-appb-C000011
    で表されるアルコール誘導体を得る工程、
    (c)得られたアルコール誘導体を脱水して、式(4)
    Figure JPOXMLDOC01-appb-C000012
    で表されるクロメン環誘導体を得る工程、
    (d)得られたクロメン環誘導体を加水分解して、式(5)
    Figure JPOXMLDOC01-appb-C000013
    で表される2,2-ジメチル-2H-クロメン-6-アミンを得る工程、
    (e)得られた2,2-ジメチル-2H-クロメン-6-アミンを、3-ペンテン-2-オンとの反応により環化させて、式(6)
    Figure JPOXMLDOC01-appb-C000014
    で表される2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程、
    (f)得られた2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを塩化して、2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリン塩の結晶とし、この塩の結晶を中和して、より高純度な2,2,7,9-テトラメチル-2H-ピラノ[2,3-g]キノリンを得る工程。
  6. 式(2’)
    Figure JPOXMLDOC01-appb-C000015
    で表される化合物。
  7. 式(3’)
    Figure JPOXMLDOC01-appb-C000016
    で表される化合物。
  8. 式(4’)
    Figure JPOXMLDOC01-appb-C000017
    で表される化合物。
PCT/JP2014/069351 2013-07-25 2014-07-22 複素環化合物の製造方法 WO2015012271A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14829555.3A EP3026047A4 (en) 2013-07-25 2014-07-22 Method for producing heterocyclic compound
JP2015528292A JPWO2015012271A1 (ja) 2013-07-25 2014-07-22 複素環化合物の製造方法
US14/907,798 US20160168161A1 (en) 2013-07-25 2014-07-22 Method for producing heterocyclic compound
CN201480040642.2A CN105377826A (zh) 2013-07-25 2014-07-22 杂环化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-154943 2013-07-25
JP2013154943 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012271A1 true WO2015012271A1 (ja) 2015-01-29

Family

ID=52393306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069351 WO2015012271A1 (ja) 2013-07-25 2014-07-22 複素環化合物の製造方法

Country Status (5)

Country Link
US (1) US20160168161A1 (ja)
EP (1) EP3026047A4 (ja)
JP (1) JPWO2015012271A1 (ja)
CN (1) CN105377826A (ja)
WO (1) WO2015012271A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138428A1 (ja) 2018-12-28 2020-07-02 国立大学法人大阪大学 遺伝性徐脈性不整脈治療薬
WO2021261598A1 (ja) 2020-06-26 2021-12-30 国立大学法人大阪大学 薬剤誘発性徐脈および徐脈性不整脈治療薬

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013854A1 (fr) * 1991-01-30 1992-08-20 Central Glass Company, Limited Compose de phtalimide et sa production
WO2004020428A1 (ja) 2002-08-29 2004-03-11 Nissan Chemical Industries, Ltd. アミノベンゾピラン化合物の製造方法
WO2004035520A1 (ja) 2002-10-18 2004-04-29 Nissan Chemical Industries, Ltd. アセチレン化合物の製造方法
WO2005090357A1 (en) 2004-03-23 2005-09-29 Nissan Chemical Industries, Ltd. Tricyclic benzopyran compound as anti-arrhythmic agents
JP2009513578A (ja) * 2005-10-17 2009-04-02 ジェネリクス・(ユーケー)・リミテッド 新規な方法
JP2010059146A (ja) * 2008-08-08 2010-03-18 Kaneka Corp エポキシトリアゾール誘導体の製造法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013854A1 (fr) * 1991-01-30 1992-08-20 Central Glass Company, Limited Compose de phtalimide et sa production
WO2004020428A1 (ja) 2002-08-29 2004-03-11 Nissan Chemical Industries, Ltd. アミノベンゾピラン化合物の製造方法
WO2004035520A1 (ja) 2002-10-18 2004-04-29 Nissan Chemical Industries, Ltd. アセチレン化合物の製造方法
WO2005090357A1 (en) 2004-03-23 2005-09-29 Nissan Chemical Industries, Ltd. Tricyclic benzopyran compound as anti-arrhythmic agents
JP2007530436A (ja) * 2004-03-23 2007-11-01 日産化学工業株式会社 抗不整脈薬としての3環性ベンゾピラン化合物
JP2009513578A (ja) * 2005-10-17 2009-04-02 ジェネリクス・(ユーケー)・リミテッド 新規な方法
JP2010059146A (ja) * 2008-08-08 2010-03-18 Kaneka Corp エポキシトリアゾール誘導体の製造法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MED. CHEM., vol. 34, no. 5, 1991, pages 1570
See also references of EP3026047A4 *
SUN, H. ET AL.: "SYNTHESIS OF 7,8-DIHYDRO-6,6-DIMETHYL-7,8-EPOXY-6H-PYRANO[2,3-F]BENZO-2,1,3 -OXADIAZOLE", YOUJI HUAXUE, vol. 17, no. 6, 1997, pages 547 - 550, XP008181967 *
SYNTHESIS, 1995, pages 707
TETRAHEDRON, vol. 53, no. 17, 1997, pages 6001

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138428A1 (ja) 2018-12-28 2020-07-02 国立大学法人大阪大学 遺伝性徐脈性不整脈治療薬
WO2021261598A1 (ja) 2020-06-26 2021-12-30 国立大学法人大阪大学 薬剤誘発性徐脈および徐脈性不整脈治療薬

Also Published As

Publication number Publication date
JPWO2015012271A1 (ja) 2017-03-02
CN105377826A (zh) 2016-03-02
EP3026047A1 (en) 2016-06-01
US20160168161A1 (en) 2016-06-16
EP3026047A4 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CN102627573B (zh) 5-氨基酮戊酸盐酸盐的合成方法
JP4788343B2 (ja) ニトリル化合物、カルボン酸化合物又はカルボン酸エステル化合物の製法
JP2022508494A (ja) モルホリノキナゾリン化合物の製造方法及びその中間体
AU2007324322A1 (en) Novel method for producing 4,4'-(1-Methyl-1,2-ethanediyl)-bis-(2,6-piperazinedione)
JP4240146B2 (ja) 4(3h)−キナゾリノン誘導体の製造方法
CN101704796B (zh) 3-吗啉酮制备方法
CN104311485B (zh) 一种治疗白血病的药物博舒替尼的制备方法
WO2015012271A1 (ja) 複素環化合物の製造方法
CN101565428B (zh) 普卢利沙星的制备方法
WO2016037588A2 (zh) 用于合成抗艾滋病药物增强剂cobicistat的新中间体
CN114213424B (zh) 一种呋喃[3,2-b]并吡啶衍生物的合成方法
JPWO2014051077A1 (ja) 高純度の含窒素複素環化合物の製造方法
JP2001233870A (ja) 3−(1−ヒドロキシ−ペンチリデン)−5−ニトロ−3h−ベンゾフラン−2−オン、その製造方法及びその用途
JP2017502009A (ja) シロドシン及びその中間体の製造方法
CN109988108A (zh) 一种卡博替尼的制备方法
CN104703967A (zh) 氟伏沙明游离碱的精制方法及利用其的高纯度马来酸氟伏沙明的制备方法
WO2021020998A1 (ru) Способ получения роксадустата
JPWO2010027060A1 (ja) 3,5−ジヒドロキシ−6−ヘプテン酸アミン塩類の製造方法
JP2003201281A (ja) 4−(2−メチル−1−イミダゾリル)−2,2−ジフェニルブタンアミドの製造方法
CN104592222A (zh) 抗血小板药物azd6482的制备方法
CN111320622A (zh) 一种莫西沙星盐酸盐的合成方法
KR101686087B1 (ko) 광학 활성을 갖는 인돌린 유도체 또는 이의 염의 신규 제조 방법
JPH0631249B2 (ja) チオフアン誘導体の製造法
HU195659B (en) Process for producing cotarnine
JP4587139B2 (ja) アミノアルコキシカルボスチリル誘導体の製造方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14907798

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014829555

Country of ref document: EP