WO2015011964A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2015011964A1
WO2015011964A1 PCT/JP2014/062256 JP2014062256W WO2015011964A1 WO 2015011964 A1 WO2015011964 A1 WO 2015011964A1 JP 2014062256 W JP2014062256 W JP 2014062256W WO 2015011964 A1 WO2015011964 A1 WO 2015011964A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
vehicle mounting
region
circumferential
vehicle
Prior art date
Application number
PCT/JP2014/062256
Other languages
English (en)
French (fr)
Inventor
尚久 村田
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2014524208A priority Critical patent/JP5696817B1/ja
Priority to US14/907,104 priority patent/US10214054B2/en
Priority to CN201480003277.8A priority patent/CN104822545B/zh
Publication of WO2015011964A1 publication Critical patent/WO2015011964A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1384Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0393Narrow ribs, i.e. having a rib width of less than 8 mm
    • B60C2011/0395Narrow ribs, i.e. having a rib width of less than 8 mm for linking shoulder blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C2011/129Sipe density, i.e. the distance between the sipes within the pattern
    • B60C2011/1295Sipe density, i.e. the distance between the sipes within the pattern variable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • B60C2011/1361Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom with protrusions extending from the groove bottom

Definitions

  • the present invention relates to a pneumatic tire with improved steering stability performance on various road surfaces.
  • Patent Document 1 A technique for improving the steering stability performance on various road surfaces is disclosed (for example, see Patent Document 1).
  • the technique disclosed in Patent Document 1 defines a predetermined block and ribs on each side of the vehicle, and adjusts the groove area ratio, thereby controlling driving stability on dry road surfaces and driving stability on snowy road surfaces. This is a technology that improves performance.
  • This invention is made
  • the pneumatic tire according to the present invention is configured such that a vehicle mounting direction is specified, and a rib including a tire equatorial plane is formed by at least four circumferential grooves and a plurality of inclined grooves communicating with the circumferential grooves;
  • This is a pneumatic tire in which an outer block row positioned on the vehicle mounting outer side and an inner block row positioned on the inner side of the rib mounting on the vehicle are partitioned.
  • the block pitch length of the outer block row is larger than the block pitch length of the inner block row.
  • the tire width direction dimension of the region sandwiched between the two circumferential grooves is small.
  • the inclined groove that defines the rib opens only in the circumferential groove in the vehicle-mounted inner region that defines the rib.
  • the block pitch length on both sides mounted on the vehicle is improved, the relationship with respect to the tire width direction dimension of the land portion aligned in the tire width direction, and the extending aspect of the inclined groove forming the rib are added. ing.
  • the pneumatic tire according to the present invention can exhibit excellent handling stability on any of the dry road surface, the snowy road surface, and the wet road surface.
  • FIG. 1 is a plan view showing an example of a tread portion of a pneumatic tire according to an embodiment of the present invention.
  • the tire radial direction means a direction orthogonal to the rotational axis of the pneumatic tire
  • the tire radial inner side is the side toward the rotational axis in the tire radial direction
  • the tire radial outer side is in the tire radial direction.
  • the tire circumferential direction refers to a circumferential direction with the rotation axis as a central axis.
  • the tire width direction means a direction parallel to the rotation axis
  • the inner side in the tire width direction means the side toward the tire equatorial plane CL (tire equator line) in the tire width direction
  • the outer side in the tire width direction means the tire width direction. Is the side away from the tire equatorial plane CL.
  • the tire equatorial plane CL is a plane that is orthogonal to the rotational axis of the pneumatic tire and passes through the center of the tire width of the pneumatic tire.
  • the ground contact area of a pneumatic tire refers to a tire surface in a state in which a pneumatic tire is assembled on an applicable rim, an air pressure of 200 to 250 kPa is applied, and a load of 70 to 90% of a normal load is applied. This means the contact area with the road surface.
  • the contact end means the outermost position in the tire width direction in the contact area.
  • the applicable rim means “standard rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the regular load means “maximum load capacity” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” prescribed by TRA, or “LOAD CAPACITY” prescribed by ETRTO.
  • FIG. 1 is a plan view showing an example of a tread portion of a pneumatic tire 1 according to an embodiment of the present invention.
  • the example shown in FIG. 1 shows a state in which the air pressure is 220 kPa and a load of 80% of the normal load is applied.
  • the tread portion shown in the figure is made of a rubber material (tread rubber), exposed at the outermost side in the tire radial direction of the pneumatic tire 1, and the surface thereof is the contour of the pneumatic tire 1.
  • the surface of the tread portion is formed as a tread surface 10 that becomes a surface that comes into contact with the road surface when a vehicle (not shown) on which the pneumatic tire 1 is mounted travels.
  • the pneumatic tire 1 having the tread surface 10 shown in FIG. 1 has an asymmetric tread pattern on both sides of the tire equatorial plane CL in the tire width direction, and the vehicle mounting direction is designated.
  • the right side of the paper surface is the vehicle mounting outer side
  • the left side of the paper surface is the vehicle mounting inner side.
  • a region from the tire equatorial plane CL to the vehicle mounting outside (inside) is referred to as a vehicle mounting outside (inside) region.
  • circumferential grooves 12 In the tread surface 10, at least four, in the example shown in FIG. 1, four grooves extending in the tire circumferential direction (hereinafter may be referred to as “circumferential grooves”) 12 (12a, 12b, 12c). , 12d).
  • the circumferential groove means a groove having a groove width of 2.0 mm or more and a groove depth of 5.0 mm or more.
  • the circumferential groove 12a extends linearly in the tire circumferential direction in the vehicle mounting outer region, and the entire tire circumferential direction inside the tire width direction and the tire circumferential direction predetermined region outside the tire width direction are respectively.
  • the chamfered portions 14a and 14b are formed.
  • the circumferential groove 12b extends in a zigzag shape in the tire circumferential direction in the vehicle mounting inner region.
  • the circumferential groove 12c extends linearly in the tire circumferential direction in a region outside the vehicle mounting area and outside the circumferential groove 12a in the tire width direction, and in the tire circumferential direction predetermined region on both sides of the tire width direction.
  • Chamfered portions 14c and 14d are formed, respectively.
  • the circumferential groove 12d extends linearly in the tire circumferential direction in an area on the vehicle mounting inner side and outside the circumferential groove 12b in the tire width direction, and in the tire circumferential predetermined region on both sides of the tire width direction.
  • Chamfered portions 14e and 14f are respectively formed. In the basic configuration, whether the circumferential grooves 12a to 12d extend linearly or zigzag in the tire circumferential direction is an optional design matter.
  • the tread surface 10 has a plurality of grooves (tire widths) that are in communication with the circumferential grooves 12 (12a, 12b, 12c, 12d) and that are inclined in the tire circumferential direction in the example shown in FIG. 16 (16a, 16b, 16c, 16d, 16e, 16f, 16g, 16h, 16i) is formed, which includes a groove extending in the direction and may hereinafter be referred to as an “inclined groove”.
  • the inclined groove means a groove having a groove width of 2.0 mm or more and a groove depth of 5.0 mm or more.
  • the bottom raised portion (the bottom raised portion 16b2 and the like) in the inclined groove described later has a groove depth of 1.5 mm or more.
  • the inclined groove 16a extends from the inner side in the tire width direction of the circumferential groove 12b toward the outer side of the vehicle and terminates in the land portion.
  • the inclined groove 16b is located between the circumferential grooves 12a and 12c, and includes a deep groove portion 16b1 and bottom raised portions (shallow groove portions) 16b2 and 16b3 adjacent to each side in the tire width direction.
  • the inclined groove 16b communicates with the circumferential grooves 12a and 12c through the bottom raised portions 16b2 and 16b3, respectively.
  • the inclined groove 16c is located between the circumferential grooves 12a and 12c and is located between the inclined grooves 16b adjacent in the tire circumferential direction, and the bottom raised portion (shallow groove portion) adjacent to the deep groove portion 16c1 and the outer side in the tire width direction. ) 16c2.
  • the inclined groove 16c communicates with the circumferential groove 12c by a bottom raised portion 16c2.
  • the inclined groove 16d is located between the circumferential grooves 12b and 12d, and includes a deep groove portion 16d1 and bottom raised portions (shallow groove portions) 16d2 and 16d3 adjacent to each side in the tire width direction.
  • the inclined groove 16d communicates with the circumferential grooves 12b and 12d through the bottom raised portions 16d2 and 16d3, respectively.
  • a chamfered portion 14g is formed adjacent to the deep groove portion 16d1 of the inclined groove 16d.
  • the inclined groove 16e extends from the outer side in the tire width direction of the circumferential groove 12c on the extended line of either of the inclined grooves 16b and 16c to the outer side in the tire width direction and terminates in the land portion.
  • the inclined groove 16f is a rake-like groove having a width between adjacent inclined grooves 16e, and the outer end in the tire width direction extends to at least the ground contact end E1.
  • the inclined groove 16g includes three components 16g1, 16g2, and 16g3 that are continuously aligned in the tire width direction, and ends at both ends in the land portion on the outer side in the tire width direction than the circumferential groove 12c.
  • the inclined groove 16h is located on the outer side in the tire width direction with respect to the circumferential groove 12d, and includes a deep groove portion 16h1 and a bottom raised portion (shallow groove portion) 16h2 adjacent to the inner side in the tire width direction.
  • the inclined groove 16h communicates with the circumferential groove 12d through a bottom raised portion 16h2.
  • the inclined groove 16i terminates at both ends in the land portion on the outer side in the tire width direction than the circumferential groove 12d.
  • bottom raised portions 16b2, 16b3, 16c2, 16d2, 16d3, and 16h2 and the components that exist on the outer side in the tire width direction than the circumferential grooves 12c and 12d located on the outermost side in the tire width direction are merely examples and are optional components, not essential components in the basic form.
  • a tread pattern shown in FIG. 1 is formed on the pneumatic tire 1 by the circumferential groove 12, the chamfered portion 14, and the inclined groove 16.
  • the rib 20 including the tire equatorial plane CL, the outer block row 22 positioned on the outer side of the rib 20 mounted on the vehicle, and the inner block row 24 positioned on the inner side of the rib 20 mounted on the vehicle,
  • the outer shoulder ribs 26 located on the outer side in the tire width direction of the outer block row 22 and the inner shoulder block rows 28 located on the outer side in the tire width direction of the inner block row 24 are partitioned. As shown in FIG.
  • each of the rib 20, the outer block row 22, the inner block row 24, the outer shoulder rib 26, and the inner shoulder block row 28 includes a plurality of sipes 30 (30a, 30b, 30c, 30d, 30e) is formed.
  • sipe means a groove having a groove width of 0.5 mm or more and less than 1.5 mm and a groove depth of 1.0 mm or more and less than 10.0 mm.
  • the block pitch length Po of the outer block row 22 is larger than the block pitch length Pi of the inner block row 24 as shown in FIG.
  • the region sandwiched between two adjacent grooves among the circumferential grooves 12 a to 12 d in the order of the rib 20, the outer block row 22, and the inner block row 24, the region sandwiched between two adjacent grooves among the circumferential grooves 12 a to 12 d.
  • the tire width direction dimension (hereinafter sometimes referred to as “circumferential groove region dimension”) is small.
  • the circumferential groove-to-groove dimension Sr of the rib 20, the circumferential groove-to-groove dimension So of the outer block row 22, and the circumferential groove-to-groove region size Si of the inner block row 24 are in a relationship of Sr ⁇ So ⁇ Si. Meet.
  • the circumferential inter-groove region dimensions Sr, So, Si are the maximum dimensions in the tire width direction between two adjacent circumferential grooves and do not include the chamfered portion 14.
  • the inclined grooves 16a that define and form the ribs 20 are opened only in the circumferential grooves 12b that define the ribs 20 on the inner side of the vehicle.
  • the block pitch length Po of the outer block row 22 is made larger than the block pitch length Pi of the inner block row 24.
  • the circumferential groove-to-groove region dimensions Sr, So, Si are made smaller in the order of the rib 20, the outer block row 22, and the inner block row 24. Accordingly, the circumferential groove-to-groove dimension Sr of the rib 20 is minimized, in other words, the two circumferential grooves 12a and 12b that define and form the rib 20 are easily affected by drainage performance. By collecting it in the section, drainage performance can be enhanced. As a result, the water film existing on the road surface can be quickly cut, and the tire can be reliably and stably grounded on the road surface. Can exhibit excellent steering stability performance.
  • the circumferential inter-groove region dimension Si of the inner block row 24 the largest, it is possible to sufficiently ensure the edge components, particularly in the tire width direction, of the blocks constituting the inner block row 24. As a result, driving performance and braking performance on the snowy road surface can be improved, and excellent steering stability performance can be exhibited on the snowy road surface.
  • the inclined groove 16a that partitions the rib 20 is opened only in the circumferential groove 12b in the vehicle mounting inner region that partitions the rib 20.
  • the tire width direction dimension of the inclined groove 16a can be reduced (or not at all) to sufficiently secure the rigidity of the land portion.
  • excellent steering stability performance can be exhibited on the dry road surface.
  • the block pitch length on both sides of the vehicle is improved, the relationship with respect to the tire width direction dimension of the land portion aligned in the tire width direction, and the extending manner of the inclined groove forming the rib are added. ing.
  • the improvement of steering stability performance on various road surfaces can be efficiently borne in at least one of the vehicle mounting outer region and the vehicle mounting inner region, and the steering stability performance on various road surfaces as a whole is high. It can be demonstrated.
  • the pneumatic tire of the basic form shown above has a meridional cross-sectional shape similar to that of a conventional pneumatic tire, although not shown.
  • the meridional cross-sectional shape of the pneumatic tire refers to a cross-sectional shape of the pneumatic tire that appears on a plane perpendicular to the tire equatorial plane.
  • the pneumatic tire of the basic form has a bead portion, a sidewall portion, a shoulder portion, and a tread portion from the inner side in the tire radial direction toward the outer side in a tire meridional sectional view.
  • the pneumatic tire includes, for example, a carcass layer extending from a tread portion to bead portions on both sides and wound around a pair of bead cores in a tire meridional section, and an outer side in the tire radial direction of the carcass layer.
  • the belt layer and the belt reinforcing layer are sequentially formed.
  • the pneumatic tire of the basic form is obtained through normal manufacturing processes, that is, a tire material mixing process, a tire material processing process, a green tire molding process, a vulcanization process, and an inspection process after vulcanization. It is what When manufacturing pneumatic tires in basic form, in particular, in the vulcanization process, the relationship between the block pitch length on both sides of the vehicle, the relationship with the tire width direction dimension of the land portion aligned in the tire width direction, and the formation of ribs The tread pattern is controlled using a mold such that the extending mode of the inclined groove satisfies the predetermined condition.
  • the ratio Po / Pi between the block pitch length Po of the outer block row 22 and the block pitch length Pi of the inner block row 24 is preferably 1.3 or more and 8.0 or less.
  • the ratio Po / Pi is preferably 1.3 or more and 8.0 or less.
  • the ratio So / Sr between the circumferential groove region dimension So of the outer block row 22 and the circumferential groove region dimension Sr of the rib 20 is preferably 1.1 or more and 3.0 or less.
  • the ratio So / Sr is 3.0 or less, the area dimension So between the circumferential grooves in the outer block row 22 is not excessive, and the area outside the circumferential groove 12c in the tire width direction, that is, the outer shoulder rib. 26 tire width direction dimensions can be sufficiently secured. As a result, the edge component in the tire width direction of the outer shoulder rib 26 can be sufficiently secured, and the driving performance and braking performance on the snowy road surface are efficiently improved, and the steering stability performance on the snowy road surface is further improved. be able to.
  • the ratio Si / Sr between the circumferential groove region dimension Si of the inner block row 24 and the circumferential groove region dimension Sr of the rib 20 is preferably 1.1 or more and 4.0 or less.
  • the ratio Si / Sr is 1.1 or more, the rigidity of the land portion is sufficiently increased in the tire width direction region sandwiched between the circumferential grooves 12b and 12d, and the steering stability performance is further improved as a whole tire. Can do. As a result, the steering stability performance on the dry road surface can be further improved.
  • the circumferential groove-to-groove region dimension Si of the inner block row 24 is not excessive, and in particular, the region on the outer side in the tire width direction from the circumferential groove 12d, that is, the inner shoulder.
  • a sufficient dimension in the tire width direction of the block row 28 can be secured.
  • a sufficient edge component in the tire width direction of the inner shoulder block row 28 can be ensured, driving performance and braking performance on the snow road surface can be improved, and steering stability performance on the snow road surface can be further improved. it can.
  • the inclined groove 16a that defines the rib 20 is preferably extended not only in the vehicle mounting inner region but also in the vehicle mounting outer region beyond the tire equator plane CL.
  • the edge component of the rib 20 in particular in the tire width direction can be secured longer.
  • the driving performance and braking performance on the snowy road surface can be further improved, and the steering stability performance on the snowy road surface can be further improved.
  • the inclined grooves 16b, 16c, and 16d that define the so-called second block row are all directed toward the outer side in the tire width direction, which is the downstream side when water flow is assumed. By widening, drainage performance can be further improved.
  • the total peripheral length L1 of the inclined grooves in the vehicle mounting inner region is from the tire equatorial plane CL to the outer circumferential circumferential groove 12d in the vehicle mounting inner region.
  • the extension length of the groove (sipe) refers to the length of the center line in the width direction of the groove (sipe).
  • the total length L2 of the peripheral lengths of the inclined grooves in the vehicle mounting outer region is from the tire equatorial plane CL to the outermost circumferential groove 12c in the tire width direction of the vehicle mounting outer region.
  • the peripheral length of the vehicle is likely to affect the steering stability performance without excessively increasing the total length L2 of the peripherals by making the total length L1 of the peripherals larger than the total length L2 of the peripherals.
  • the rigidity can be further increased.
  • the steering stability performance on a dry road surface can be improved further efficiently.
  • the edge component in the tire width direction of each land portion constituting the rib 20 and the inner block row 24 is sufficiently secured in the vehicle mounting inner region without excessively reducing the total peripheral length L1. Further, the steering stability performance on the road surface on snow can be further improved.
  • the ratio L2 / L1 between the total length L2 of the peripheral lengths of the inclined grooves in the vehicle mounting outer region and the total length L1 of the peripheral lengths of the inclined grooves in the vehicle mounting inner region is 0.3 to 0.9. Good.
  • the ratio L2 / L1 is 0.3 or more, the rigidity of the ribs 20 and the inner block row 24 is sufficiently ensured without excessively forming inclined grooves in the vehicle-mounted inner region, and maneuvering on the dry road surface is achieved. Stability performance can be further improved.
  • the ratio L2 / L1 is 0.3 or more, a sufficient edge component in the tire width direction of the outer block row 22 can be sufficiently secured without forming too few inclined grooves in the vehicle-mounted outer region.
  • the steering stability performance on the road surface on snow can be further improved.
  • the ratio L2 / L1 can be 0.9 or less, as described above, the improvement in the steering stability performance on the dry road surface in the vehicle mounting outer region and the steering stability performance on the snow road surface in the vehicle mounting inner region can be achieved. Improvements can be achieved at a higher level.
  • each of the inclined grooves 16d has at least one bent portion, and the number of bent portions in the inner block row 24 is the outer side. It is preferable that the number is larger than the number of bent portions in the block row 22 (additional form 3).
  • the number of bent portions in the inner block row 24 is made larger than the number of bent portions in the outer block row 22, more bent portions in the inner block row 24 having a relatively long tire width dimension. In other words, it can be included without excessively reducing the rigidity of the land portion. As a result, the edge component in the tire width direction of the land portion and the edge component in the tire circumferential direction can be sufficiently secured, and the steering stability performance on the road surface on snow can be further improved.
  • the bending angle of the bent portion is preferably 50 ° or more and 150 ° or less.
  • the bending angle is preferably 50 ° or more and 150 ° or less.
  • the bent portion is formed on the inner side in the tire width direction with respect to the center position in the tire width direction of the block rows 24 and 22, both in the case of forming in the inner block row 24 and in the case of forming in the outer block row 22. It is good to form.
  • forming the bent portion on the inner side in the tire width direction with respect to the center position in the tire width direction means that the apex of the bent portion is positioned on the inner side in the tire width direction with respect to the center line in the tire width direction of each of the block rows 24 and 22. Thus, it means forming a bent portion.
  • the inclined grooves 16b and 16d include the bottom raised portions 16b2 and 16d2, the water overflowing from the circumferential grooves 12a and 12b to the outer sides in the tire width direction through the bottom raised portions 16b2 and 16d2, respectively, is forced to the deep groove portions 16b1 and 16d1. Can flow well. As a result, the flow of water from the upstream circumferential grooves 12a and 12b to the downstream deep grooves 16b1 and 16d1 through the bottom raised portions 16b2 and 16d2 can be stabilized, and drainage performance can be improved.
  • the groove depths of the bottom raised portions 16b2 and 16d2 are preferably 10% to 50% of the groove depth of the deep groove portions 16b1 and 16d1, respectively.
  • the deep groove portions 16b1 reliably exceed the raised portions 16b2 and 16d2 from the circumferential grooves 12a and 12b, respectively.
  • 16d1 can be made to stably flow water. As a result, the communication effect between the circumferential grooves 12a and 12b and the deep grooves 16b1 and 16d1 can be made effective.
  • the groove depth of the bottom raised portions 16b2 and 16d2 is set to 50% or less of the groove depth of the deep groove portions 16b1 and 16d1, a sufficient difference in height between the deep groove portions 16b1 and 16d1 and the bottom raised portions 16b2 and 16d2 is secured.
  • At least one circumferential groove in the vehicle mounting inner region in the example shown in FIG.
  • the directional groove 12b preferably has at least one bend (additional form 5).
  • At least one circumferential groove (circumferential groove 12b in the example shown in FIG. 1) in the vehicle-mounted inner region has at least one bent portion, so that the land is defined by the circumferential groove 12b having the bent portion.
  • the portion has not only the edge component in the tire circumferential direction but also the edge component in the tire width direction.
  • the total length L3 of the sipe periphery in the vehicle mounting inner region is present in the region from the tire equatorial plane CL shown in FIG. 1 to the outermost circumferential groove 12d in the tire width direction of the vehicle mounting inner region.
  • the total length L4 of the sipe periphery in the vehicle mounting outer region exists in the region from the tire equatorial plane CL shown in FIG. 1 to the outermost circumferential groove 12c in the tire width direction of the vehicle mounting outer region. , Means the sum of the extended lengths of sipes (a part of sipes 30a and the entire sipes 30b).
  • the rigidity of the land part is increased without excessively forming a sipe in the outer region where the vehicle is likely to affect the steering stability performance, thereby further improving the steering stability performance on the dry road surface. It can be improved efficiently. Further, in the vehicle mounting inner region, it is possible to further improve the steering stability performance on the road surface on snow by securing more edge components in the tire width direction of each land portion constituting the rib 20 and the inner block row 24 in particular. .
  • the ratio L4 / L3 of the total length L4 of the sipe peripherals in the vehicle-mounted outer region and the total length L3 of the sipe peripherals in the vehicle-mounted inner region is preferably 0.2 to 0.9.
  • the ratio L4 / L3 is 0.2 or more, the rigidity of the land portion (the rib 20 and the inner block row 24) where the sipes 30a and 30c are formed is increased without excessively forming sipes inside the vehicle.
  • the ratio L4 / L3 is 0.2 or more, it is possible to sufficiently secure edge components in the tire width direction of each land portion without excessively forming sipes in the vehicle mounting outer region.
  • the steering stability performance on the road surface on snow can be further improved.
  • the ratio L4 / L3 is set to 0.9 or less, as described above, the improvement in the steering stability performance on the dry road surface in the vehicle mounting outer region and the steering stability performance on the snow road surface in the vehicle mounting inner region can be achieved. Improvement can be realized more efficiently.
  • the specific inclined groove 16h is formed over the entire region in the tire width direction, so that the land formed by the inclined groove 16h is formed. It is possible to give a lot of edge components in the tire width direction to the portion. As a result, the grip force on the snowy road surface can be obtained efficiently, and the steering stability performance on the snowy road surface can be further improved.
  • the land portion interposed in the tire width direction region between the specific inclined groove 16e shown in FIG. 1 and another inclined groove 16f formed on the extended line is the tire width from the circumferential groove 12c to the ground contact E1.
  • the center position in the tire width direction of the land portion is the outermost position in the tire width direction of the inclined groove 16e, the innermost position in the tire width direction of the portion of the inclined groove 16f located on the extension line of the inclined groove 16e, The center position in the tire width direction between.
  • the center position in the tire width direction of the land portion is present on the outer side in the tire width direction from the position 10% on the circumferential groove 12c side, so that the vicinity of the circumferential groove 12c.
  • An inclined groove 16e extending in the tire width direction can also be formed to some extent in the portion.
  • the center position in the tire width direction of the land portion is present in the tire width direction inner side from the position of 60% on the circumferential groove 12c side in the region from the circumferential groove 12c to the grounding end E1, so that the vicinity of the grounding end E1 It is possible to sufficiently secure the length of the inclined groove 16f in the tire width direction in the region. Thereby, by ensuring a sufficient length of the inclined groove 16f in the tire width direction in the region near the ground contact edge E1, a decrease in drainage performance due to the formation of a land portion between the inclined groove 16e and the inclined groove 16f. Can be suppressed.
  • At least one of the outer shoulder rib 26 and the inner shoulder block row 28 may be further formed with inclined grooves 16g and 16i that terminate in the land portion without communicating with the circumferential grooves 12c and 12d.
  • the land portion can have more edge components in the tire width direction, and the driving stability performance on the road surface on snow. Can be further improved.
  • the total area A1 of the circumferential grooves in the vehicle-mounted outer area is the total area of the circumferential grooves in the vehicle-mounted inner area. It is preferably larger than A2 (additional form 8).
  • the area of the groove refers to an area in a plan view in a no-load state in which a pneumatic tire is assembled on an applicable rim and a normal internal pressure is applied, and does not include the chamfered portion 14. .
  • the pitch length Po of the outer block row 22 is made larger than the pitch length Pi of the inner block row 24, and the circumferential groove interval dimension So of the outer block row 22 is set between the circumferential grooves of the inner block row 24. It is smaller than the region dimension Si, and the inclined groove 16a is opened only in the circumferential groove 12b in the vehicle mounting inner region. That is, in the basic configuration, the sum of the areas of the inclined grooves 16a, 16b, 16c, and 16d formed in the tire width direction region from the circumferential groove 12c to the circumferential groove 12d is larger than the vehicle wearing outer region. It is likely that it is growing in the area.
  • the sum A1 is made larger than the sum A2, and for the circumferential groove, the size relationship between the sum of the areas in the vehicle-mounted outer region and the sum of the areas in the vehicle-mounted inner region. Is reversed from the magnitude relationship for the inclined grooves.
  • the tire as a whole has a more uniform groove area ratio (ratio between the groove area and the sum of the land area and the groove area) on both sides of the vehicle, which in turn improves uniformity performance and uneven wear resistance. it can.
  • Ratio of difference between total area A1 of the circumferential grooves in the outer area of the vehicle mounting area and total sum A2 of the circumferential grooves in the inner area of the vehicle mounting area to the total area A2 of the circumferential grooves in the inner area of the vehicle mounting area [(A1 -A2) / A2] ⁇ 100 is preferably 1% or more and 15% or less.
  • the ratio By setting the ratio to 1% or more, the sum A1 of the circumferential groove area on the outer side of the vehicle mounting with the relatively small density of the inclined grooves is set on the inner side of the vehicle mounting with the relatively high density of the inclined grooves.
  • the total area A2 of the circumferential grooves can be made sufficiently larger. Accordingly, a sufficient groove area can be ensured even on the outside of the vehicle mounting where the ground contact area is relatively large during turning, so that drainage performance can be enhanced particularly during turning.
  • the ratio is set to 15% or less, it is possible to prevent the total sums A1 and A2 of the circumferential main grooves from being excessively different on both sides of the vehicle. Thereby, as a whole tire, it can be set as a more uniform groove area ratio on both vehicle mounting sides, and the performance regarding uniformity and uneven wear resistance can be further improved.
  • the ratio of the groove area (groove area ratio) to the sum of the land area and the groove area in the tire width direction region from the contact end E1 to the contact end E2 is preferably 30% or more and 40% or less.
  • the groove surface ratio By setting the groove surface ratio to 30% or more, the area of the groove can be sufficiently secured to further improve the drainage performance, and the land portion has many edges to improve the driving performance and braking performance on the road surface on snow. As a result, the steering stability performance on the road surface on snow can be further improved.
  • the groove surface ratio to 40% or less, it is possible to sufficiently secure the rigidity of the land portion without excessively increasing the groove area and further improve the steering stability performance on the dry road surface. it can.
  • the sum of the areas of the inclined grooves 16a, 16b, 16c, and 16d formed in the tire width direction region from the circumferential groove 12c to the circumferential groove 12d is larger than that of the vehicle-mounted outer region.
  • the area of the inclined grooves 16a to 16i formed in the region further enlarged in the tire width direction that is, the region in the tire width direction from the ground contact edge E1 to the ground contact edge E2.
  • the sum is larger in the vehicle mounting inner region than in the vehicle mounting outer region.
  • the total sum A4 of the inclined grooves is relatively small in the vehicle-mounted outer region that easily affects the steering stability performance, thereby increasing the rigidity of the land portion, and thus on the dry road surface.
  • the steering stability performance can be improved more efficiently.
  • the total sum A3 of the inclined grooves is made relatively large to ensure a sufficient groove area, so that the land area has many edges to further improve steering stability performance on snowy road surfaces. can do.
  • Ratio of the difference between the sum A3 of the area of the inclined grooves in the inner area of the vehicle mounting area and the total area A4 of the inclined grooves in the outer area of the vehicle mounting area [A3 to A4] / A4] ⁇ 100 is preferably 1% or more and 15% or less.
  • the inclined groove is sufficiently formed on the inner side of the vehicle installation throughout the ground contact area to ensure sufficient groove area, further improving drainage performance, and the tire width on the land.
  • the steering stability performance on the road surface on snow can be further improved by providing a large amount of edge components in the direction.
  • the performance and uniformity wear resistance regarding the uniformity can be further improved without causing the total sum of the areas of the inclined grooves to differ excessively on both sides of the vehicle.
  • the difference in the groove area ratio with the formed groove is preferably ⁇ 5%.
  • the difference in the groove area ratio is set to ⁇ 5%, thereby further improving the performance related to uniformity and uneven wear resistance without making the sum of the areas of the circumferential grooves and the inclined grooves excessively different on both sides of the vehicle. be able to.
  • the ratio of the groove area (groove area ratio) to the sum of the land area and the groove area in the tire width direction region from the contact end E1 to the contact end E2 is 30% or more and 40 % Or less.
  • groove surface ratio By setting the groove surface ratio to 30% or more, as described above, drainage performance and steering stability performance on the road surface on snow can be further improved, and by setting the groove surface ratio to 40% or less, As described above, the steering stability performance on the dry road surface can be further improved.
  • the inclined groove 16 a disposed in the rib 20 is a circumferential groove on the vehicle mounting inner side. It is preferable that it extends beyond the tire equatorial plane CL from 12b to the vehicle mounting outer direction and terminates in the land (additional form 10).
  • the inclined groove 16a shown in FIG. 1 extends beyond the tire equator plane CL from the circumferential groove 12b on the vehicle mounting inner side to the vehicle mounting outer side, and is terminated in the land portion so that the entire length of the inclined groove 16a is further increased. Can be bigger. Thereby, since both the tire circumferential direction edge component and the tire width direction edge component of the land portion partitioned by the inclined groove 16a can be made larger, the steering stability performance on the road surface on snow can be further improved. it can.
  • the circumferential grooves 12b are formed on both sides of the circumferential groove 12b on the vehicle mounting inner side in the tire width direction by extending the communication portion from the vehicle mounting inner side to the vehicle mounting outer side on the same side in the tire circumferential direction. Since the drainage performance between these communicating parts straddled can be enhanced, the steering stability performance on the wet road surface can be further improved.
  • the longest extending portion of the inclined groove 16d disposed in the inner block row 24 is on the same side in the tire circumferential direction from the vehicle mounting inner side to the vehicle mounting outer side (the lower side of the page in FIG. 1). It is preferred that it is extended (additional form 12).
  • the longest extending portion has the largest tire width direction dimension among the portions extending on the same side in the tire circumferential direction from the vehicle mounting inner side to the outer side in each of the inclined grooves 16b and 16d.
  • the inclined grooves 16d and 16b By extending the longest extending portions of the inclined grooves 16d and 16b from the vehicle mounting inner side toward the outer side on the same side in the tire circumferential direction, before and after the change of the mounting mode in a tire with no designation of the rotation direction In this case, the inclined grooves 16d and 16b extend in the same direction. For this reason, in particular, in a tire for which the rotation direction is not specified, it is possible to suppress excessively different drainage performance before and after the change of the mounting mode, and further improve the steering stability performance on a wet road surface. it can.
  • the said extension aspect of the longest extension parts of the inclined grooves 16d and 16b it can suppress changing the direction of a grip edge too much before and behind the change of the mounting aspect, and on the road surface on snow The steering stability performance can be further improved.
  • the outer circumferential circumferential groove 12c is disposed on the outer side in the tire width direction of the vehicle.
  • the ground contact portions of the inclined grooves 16f and 16g and the ground contact portions of the inclined grooves 16h and 16i disposed on the outer side in the tire width direction of the circumferential groove 12d on the innermost side of the vehicle are both in the tire circumferential direction. It is preferable to extend at an angle of 50 ° or more and less than 90 ° counterclockwise (additional form 13).
  • the ground contact portion of the three claw portions of the rake-like inclined groove 16f and the ground contact portion of the portion 16g1 of the inclined groove 16g are in the tire circumferential direction. Thus, it extends counterclockwise at an angle of 50 ° or more and less than 90 ° (from the upper left to the lower right in the figure).
  • the ground contact portions of the inclined grooves 16h and 16i are both at an angle of 50 ° or more and less than 90 ° counterclockwise with respect to the tire circumferential direction (the upper left side of the figure). To the lower right).
  • the pneumatic tire having the inclined grooves 16f, 16g, 16h, and 16i rotates counterclockwise in plan view when rolling, so that the vehicle itself shifts to the left in the traveling direction. .
  • the road surface has a gentle slope from the center in the width direction toward the shoulder, and the drainage of rainwater etc. is promoted by lowering the shoulder than the center.
  • the road shoulder exists on the right side of the vehicle traveling direction, the vehicle tends to shift to the right as it travels.
  • the inclined grooves 16f, 16g, 16h, and 16i are employed, the deviation of the vehicle to the right side when the vehicle travels on the right-handed road surface is as described above. It can be canceled by intentionally shifting the vehicle itself to the left in the direction of travel.
  • the pneumatic tire of the present embodiment it is possible to further improve the steering stability performance on various road surfaces (dry road surface, snowy road surface, wet road surface), particularly on the right-hand traffic road surface.
  • the said effect is acquired by making the angle which the anticlockwise rotation with respect to the tire circumferential direction of the contact part of said specific inclined groove
  • the angle formed is preferably 87 ° or less, and more preferably 85 ° or less.
  • the angle formed is preferably 60 ° or more, and more preferably 70 ° or more.
  • the tire size is 215 / 45R17 87W, and the following conditions shown in Table 1-1 to Table 1-3 for each of the components 12 to 30 shown in FIG. (1-1) Relationship between block pitch length Po of outer block row 22 and block pitch length Pi of inner block row 24 (block pitch length relationship), (1-2) Relationship between the circumferential direction groove region dimensions Sr, So, Si of the rib 20, the outer block row 22 and the inner block row 24 (circumferential groove region dimension relationship), (1-3) Forming aspect of the inclined groove 16a that forms the rib 20 (formation form of the inclined groove 16a), (2) Changes in the groove width when the inclined grooves 16b and 16c defining the outer block row 22 and the inclined grooves 16d defining the inner block row 24 extend outward in the tire width direction (inclined grooves 16b).
  • Each test tire produced in this way is assembled to a regular rim (rim size 17x7J), an internal pressure of 230 kPa is applied, and it is mounted on a vehicle (front engine / front drive system) with a displacement of 1800 cc.
  • a vehicle front engine / front drive system
  • the steering stability performance on dry road surfaces, the steering stability performance on snowy road surfaces, and the steering stability performance on wet road surfaces were evaluated. These results are also shown in Table 1-1 to Table 1-3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 本発明は、乾燥路面、雪上路面及びウェット路面のいずれの路面においても優れた操縦安定性能を発揮し得る空気入りタイヤを提供することを目的としている。外側ブロック列(22)のブロックピッチ長(Po)は、内側ブロック列(24)のブロックピッチ長(Pi)よりも大きい。リブ(20)、外側ブロック列(22)、及び内側ブロック列(24)の順に、2本の周方向溝に挟まれた領域のタイヤ幅方向寸法が小さい。リブ(20)を区画形成する傾斜溝(16a)は、リブ(20)を区画形成する車両装着内側領域の周方向溝(12b)にのみ開口している。

Description

空気入りタイヤ
 本発明は、各種路面における操縦安定性能を改善した空気入りタイヤに関する。
 各種路面における操縦安定性能を改善した技術が開示されている(例えば、特許文献1参照)。特許文献1に開示された技術は、車両装着各側において所定のブロック及びリブを区画形成するとともに、溝面積比を調整することにより、乾燥路面での操縦安定性能と、雪上路面での操縦安定性能と、を改善した技術である。
特許第4929466号公報
 近年では、乾燥路面及び雪上路面のみならず、ウェット路面においても優れた操縦安定性能が同時に要求されている。特許文献1に開示された技術のように、陸部形状と溝面積比のみを制御することでは、乾燥路面、雪上路面及びウェット路面のいずれの路面においても優れた操縦安定性能が発揮されるか不明である。
 本発明は、上記事情に鑑みてなされたものであって、乾燥路面、雪上路面及びウェット路面のいずれの路面においても優れた操縦安定能を発揮し得る空気入りタイヤを提供することを目的とする。
 本発明に係る空気入りタイヤは、車両装着方向が指定され、少なくとも4本の周方向溝と、上記周方向溝に連通する複数本の傾斜溝とにより、タイヤ赤道面を含むリブと、上記リブの車両装着外側に位置する外側ブロック列と、上記リブの車両装着内側に位置する内側ブロック列とが区画形成されている空気入りタイヤである。上記外側ブロック列のブロックピッチ長は、上記内側ブロック列のブロックピッチ長よりも大きい。上記リブ、上記外側ブロック列、及び上記内側ブロック列の順に、2本の上記周方向溝に挟まれた領域のタイヤ幅方向寸法は小さい。上記リブを区画形成する傾斜溝は、上記リブを区画形成する車両装着内側領域の周方向溝にのみ開口する。
 本発明に係る空気入りタイヤでは、車両装着両側のブロックピッチ長について関係、タイヤ幅方向に整列した陸部のタイヤ幅方向寸法についての関係及びリブを形成する傾斜溝の延在態様について改良を加えている。その結果、本発明に係る空気入りタイヤは、乾燥路面、雪上路面及びウェット路面のいずれの路面においても優れた操縦安定能を発揮することができる。
図1は、本発明の実施の形態に係る空気入りタイヤのトレッド部の一例を示す平面図である。
 以下に、本発明に係る空気入りタイヤの実施の形態(以下に示す、基本形態及び付加的形態1から9)を、図面に基づいて詳細に説明する。なお、これらの実施の形態は、本発明を限定するものではない。また、上記実施の形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施の形態に含まれる各種形態は、当業者が自明の範囲内で任意に組み合わせることができる。
<基本形態>
 以下に、本実施の形態の空気入りタイヤについて、その基本形態を説明する。以下の説明において、タイヤ径方向とは、空気入りタイヤの回転軸と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、上記回転軸を中心軸とする周り方向をいう。さらに、タイヤ幅方向とは、上記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面CL(タイヤ赤道線)に向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。なお、タイヤ赤道面CLとは、空気入りタイヤの回転軸に直交するとともに、空気入りタイヤのタイヤ幅の中心を通る平面である。
 また、以下の説明において、空気入りタイヤの接地領域とは、空気入りタイヤを適用リムに組んで空気圧200~250kPaを付与し、正規荷重の70~90%の荷重を加えた状態における、タイヤ表面の路面との接触領域を意味する。接地端とは、上記接地領域におけるタイヤ幅方向最外位置を意味する。
 ここで、適用リムとは、JATMAに規定される「標準リム」、TRAに規定される「Design Rim」、又はETRTOに規定される「Measuring Rim」をいう。正規荷重とはJATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、又はETRTOで規定する「LOAD CAPACITY」をいう。
 図1は、本発明の実施の形態に係る空気入りタイヤ1のトレッド部の一例を示す平面図である。なお、図1に示す例は、空気圧が220kPaであり、かつ、正規荷重の80%の荷重を加えた状態を示す。同図に示すトレッド部は、ゴム材(トレッドゴム)からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ1の輪郭となる。このトレッド部の表面は、空気入りタイヤ1を装着する車両(図示せず)が走行した際に路面と接触する面となるトレッド表面10として形成されている。
 図1に示すトレッド表面10を有する空気入りタイヤ1は、タイヤ赤道面CLのタイヤ幅方向両側に非対称のトレッドパターンを有し、車両装着方向が指定されている。同図に示す空気入りタイヤ1では、紙面の右側が車両装着外側であり、紙面の左側が車両装着内側である。以下、図1において、タイヤ赤道面CLから車両装着外側(内側)の領域を車両装着外側(内側)領域という。
 トレッド表面10には、少なくとも4本の、図1に示す例では4本の、タイヤ周方向に延在する溝(以下、「周方向溝」と称する場合がある)12(12a、12b、12c、12d)が形成されている。ここで、周方向溝とは、溝幅が2.0mm以上であって溝深さが5.0mm以上の溝をいう。
 周方向溝12aは、車両装着外側領域においてタイヤ周方向に直線状に延在し、そのタイヤ幅方向内側のタイヤ周方向全域と、そのタイヤ幅方向外側のタイヤ周方向所定領域とには、それぞれ、面取り部14a、14bが形成されている。周方向溝12bは、車両装着内側領域においてタイヤ周方向にジグザグ状に延在している。周方向溝12cは、車両装着外側領域であって周方向溝12aよりもタイヤ幅方向外側の領域においてタイヤ周方向に直線状に延在し、そのタイヤ幅方向両側のタイヤ周方向所定領域には、それぞれ、面取り部14c、14dが形成されている。周方向溝12dは、車両装着内側領域であって周方向溝12bよりもタイヤ幅方向外側の領域においてタイヤ周方向に直線状に延在し、そのタイヤ幅方向両側のタイヤ周方向所定領域には、それぞれ、面取り部14e、14fが形成されている。なお、基本形態において、周方向溝12aから12dがタイヤ周方向に直線状に延在しているかジグザグ状に延在しているかは、任意選択的な設計事項である。
 また、トレッド表面10には、周方向溝12(12a、12b、12c、12d)に連通する複数本の、同図に示す例では9種類の、タイヤ周方向に対して傾斜する溝(タイヤ幅方向に延在する溝を含み、以下、「傾斜溝」と称する場合がある)16(16a、16b、16c、16d、16e、16f、16g、16h、16i)が形成されている。 ここで、傾斜溝とは、溝幅が2.0mm以上であって溝深さが5.0mm以上の溝をいう。但し、後述する傾斜溝内の底上げ部(底上げ部16b2等)は、溝深さが1.5mm以上である。
 傾斜溝16aは、周方向溝12bのタイヤ幅方向内側から車両装着外側に向かって延在し、陸部内で終端している。傾斜溝16bは、周方向溝12a、12c間に位置し、深溝部16b1とそのタイヤ幅方向の各側に隣接する底上げ部(浅溝部)16b2、16b3とから構成されている。傾斜溝16bは、底上げ部16b2、16b3のそれぞれによって周方向溝12a、12cに連通している。傾斜溝16cは、周方向溝12a、12c間に位置するとともに、タイヤ周方向で隣り合う傾斜溝16b同士の間に位置し、深溝部16c1とそのタイヤ幅方向外側に隣接する底上げ部(浅溝部)16c2とから構成されている。傾斜溝16cは、底上げ部16c2によって周方向溝12cに連通している。
 傾斜溝16dは、周方向溝12b、12d間に位置し、深溝部16d1とそのタイヤ幅方向の各側に隣接する底上げ部(浅溝部)16d2、16d3とから構成されている。傾斜溝16dは、底上げ部16d2、16d3のそれぞれによって周方向溝12b、12dに連通している。図1に示す例では、傾斜溝16dの深溝部16d1に隣接して、面取り部14gが形成されている。
 傾斜溝16eは、周方向溝12cのタイヤ幅方向外側から、傾斜溝16b、16cのいずれかの延長線上をタイヤ幅方向外側に延在し、陸部内で終端している。傾斜溝16fは、隣り合う傾斜溝16e同士の間の幅を有するレーキ状の溝であり、そのタイヤ幅方向外端は少なくとも接地端E1まで延在している。傾斜溝16gは、タイヤ幅方向に連続的に整列する3つの構成要素16g1、16g2、16g3からなり、周方向溝12cよりもタイヤ幅方向外側の陸部内で両端ともに終端している。
 傾斜溝16hは、周方向溝12dよりもタイヤ幅方向外側に位置するとともに、深溝部16h1とそのタイヤ幅方向内側に隣接する底上げ部(浅溝部)16h2とから構成されている。傾斜溝16hは、底上げ部16h2によって周方向溝12dに連通している。傾斜溝16iは周方向溝12dよりもタイヤ幅方向外側の陸部内で両端ともに終端している。
 なお、以上に示す底上げ部16b2、16b3、16c2、16d2、16d3、16h2、並びに最もタイヤ幅方向外側に位置する周方向溝12c、12dよりもタイヤ幅方向外側に存在する構成要素(例えば、傾斜溝16eから16i)は、単なる例示であって、基本形態における必須構成要件ではなく、任意選択的な構成要素である。
 これらの周方向溝12、面取り部14、傾斜溝16により、空気入りタイヤ1には、図1に示すトレッドパターンが形成されている。具体的には、これらの溝等により、タイヤ赤道面CLを含むリブ20と、リブ20の車両装着外側に位置する外側ブロック列22と、リブ20の車両装着内側に位置する内側ブロック列24と、外側ブロック列22のタイヤ幅方向外側に位置する外側ショルダーリブ26と、内側ブロック列24のタイヤ幅方向外側に位置する内側ショルダーブロック列28とが区画形成されている。なお、リブ20、外側ブロック列22、内側ブロック列24、外側ショルダーリブ26、内側ショルダーブロック列28には、それぞれ、図1に示すように、複数のサイプ30(30a、30b、30c、30d、30e)が形成されている。ここで、サイプとは、溝幅が0.5mm以上1.5mm未満であって溝深さが1.0mm以上10.0 mm未満の溝をいう。
 以上のような前提の下、基本形態においては、図1に示すように、外側ブロック列22のブロックピッチ長Poが、内側ブロック列24のブロックピッチ長Piよりも大きい。
 また、基本形態においては、図1に示すように、リブ20、外側ブロック列22、及び内側ブロック列24の順に、周方向溝12aから12dのうち隣り合う2本の溝に挟まれた領域のタイヤ幅方向寸法(以下、「周方向溝間領域寸法」と称する場合がある)が小さい。換言すれば、リブ20の周方向溝間領域寸法Sr、外側ブロック列22の周方向溝間領域寸法So、及び内側ブロック列24の周方向溝間領域寸法Siは、Sr<So<Siの関係を満たす。ここで、周方向溝間領域寸法Sr、So、Siとは、隣り合う2本の周方向溝間のタイヤ幅方向最大寸法であって、面取り部14を含まない寸法をいう。
 さらに、基本形態においては、図1に示すように、リブ20を区画形成する傾斜溝16aが、リブ20を区画形成する車両装着内側の周方向溝12bにのみ開口している。
(作用等)
 基本形態では、図1に示すように、外側ブロック列22のブロックピッチ長Poを、内側ブロック列24のブロックピッチ長Piよりも大きくしている。これにより、操縦安定性能に影響を及ぼし易い車両装着外側領域の陸部剛性を高めて、タイヤ全体として効率的に操縦安定性能を高めることができる。その結果、乾燥路面において優れた操縦安定性能を発揮することができる。
 また、基本形態では、図1に示すように、リブ20、外側ブロック列22、及び内側ブロック列24の順に、周方向溝間領域寸法Sr、So、Siを小さくしている。これにより、リブ20の周方向溝間領域寸法Srを最も小さくすることで、換言すればリブ20を区画形成する2本の周方向溝12a、12bを排水性能に影響を及ぼし易いタイヤ幅方向中心部に集めることで、排水性能を高めることができる。その結果、路面上に存在する水膜を素早く切ることができ、タイヤを路面に確実かつ安定して接地させることができるため、上述した車両装着外側領域の陸部剛性の向上と相まって、ウェット路面において優れた操縦安定性能を発揮することができる。
 一方、内側ブロック列24の周方向溝間領域寸法Siを最も大きくすることで、内側ブロック列24を構成する各ブロックの特にタイヤ幅方向のエッジ成分を十分に確保することができる。その結果、雪上路面での駆動性能及び制動性能を高めて、雪上路面において優れた操縦安定性能を発揮することができる。
 さらに、基本形態においては、図1に示すように、リブ20を区画形成する傾斜溝16aを、リブ20を区画形成する車両装着内側領域の周方向溝12bにのみ開口させている。これにより、タイヤ赤道面CLよりも車両装着内側においては、傾斜溝16aのタイヤ幅方向寸法を十分に確保することで、傾斜溝16aにより区画形成される陸部の特にタイヤ幅方向のエッジ成分を十分に確保することができる。その結果、雪上路面での駆動性能及び制動性能を高めて、雪上路面において優れた操縦安定性能を発揮することができる。
 一方、タイヤ赤道面CLよりも車両装着外側においては、傾斜溝16aのタイヤ幅方向寸法を、小さくして(或いは全くなくして)、陸部の剛性を十分に確保することができる。これにより、操縦安定性能に影響を及ぼし易い車両装着外側領域の陸部剛性を高めて、タイヤ全体として効率的に操縦安定性能を高めることができる。その結果、乾燥路面において優れた操縦安定性能を発揮することができる。
 以上のように、基本形態では、車両装着両側のブロックピッチ長について関係、タイヤ幅方向に整列した陸部のタイヤ幅方向寸法についての関係及びリブを形成する傾斜溝の延在態様について改良を加えている。これにより、各種路面における操縦安定性能の改善を、車両装着外側領域及び車両装着内側領域の少なくともいずれかにおいて効率的に負担させて、トレッド部全体として各種路面における操縦安定性能をいずれも高いレベルで発揮することができる。
 なお、以上に示す、基本形態の空気入りタイヤは、図示しないが、従来の空気入りタイヤと同様の子午断面形状を有する。ここで、空気入りタイヤの子午断面形状とは、タイヤ赤道面と垂直な平面上に現れる空気入りタイヤの断面形状をいう。基本形態の空気入りタイヤは、タイヤ子午断面視で、タイヤ径方向内側から外側に向かって、ビード部、サイドウォール部、ショルダー部及びトレッド部を有する。そして、この空気入りタイヤは、例えば、タイヤ子午断面視で、トレッド部から両側のビード部まで延在して一対のビードコアの周りで巻回されたカーカス層と、上記カーカス層のタイヤ径方向外側に順次形成された、ベルト層及びベルト補強層とを備える。
 また、基本形態の空気入りタイヤは、通常の各製造工程、即ち、タイヤ材料の混合工程、タイヤ材料の加工工程、グリーンタイヤの成型工程、加硫工程及び加硫後の検査工程等を経て得られるものである。基本形態の空気入りタイヤを製造する場合には、特に、加硫工程において、車両装着両側のブロックピッチ長について関係、タイヤ幅方向に整列した陸部のタイヤ幅方向寸法についての関係及びリブを形成する傾斜溝の延在態様が上記所定の条件を満たすような、金型を用いて、トレッドパターンを制御する。
(基本形態における好適例)
 外側ブロック列22のブロックピッチ長Poと、内側ブロック列24のブロックピッチ長Piとの比Po/Piは、1.3以上8.0以下とするのがよい。比Po/Piを1.3以上とすることで、操縦安定性能に影響を及ぼし易い車両装着外側領域の陸部剛性を十分に高めて、タイヤ全体としてより効率的に操縦安定性能を高めることができる。その結果、乾燥路面における操縦安定性能をさらに改善することができる。また、比Po/Piを8.0以下とすることで、車両装着両側における陸部剛性の差を過大にすることなく、ユニフォミティに関する性能及び耐偏摩耗性能の低下を抑制することができる。なお、比Po/Piを4.0以下とすることで、上記効果をより高いレベルで奏することができる。
 また、外側ブロック列22の周方向溝間領域寸法Soとリブ20の周方向溝間領域寸法Srとの比So/Srは、1.1以上3.0以下とするのがよい。比So/Srを1.1以上とすることで、操縦安定性能に影響を及ぼし易い車両装着外側の領域、具体的には周方向溝12a、12c間に挟まれたタイヤ幅方向領域、において、陸部剛性を十分に高めて、タイヤ全体としてより効率的に操縦安定性能を高めることができる。その結果、乾燥路面における操縦安定性能をさらに改善することができる。また、比So/Srを3.0以下とすることで、外側ブロック列22の周方向溝間領域寸法Soを過大にせず、周方向溝12cよりもタイヤ幅方向外側の領域、即ち外側ショルダーリブ26のタイヤ幅方向寸法を十分に確保することができる。その結果、外側ショルダーリブ26のタイヤ幅方向のエッジ成分を十分に確保することができ、雪上路面での駆動性能及び制動性能を効率的に高めて、雪上路面での操縦安定性能をさらに改善することができる。
 さらに、内側ブロック列24の周方向溝間領域寸法Siとリブ20の周方向溝間領域寸法Srとの比Si/Srは、1.1以上4.0以下とするのがよい。比Si/Srを1.1以上とすることで、周方向溝12b、12d間に挟まれたタイヤ幅方向領域、において陸部剛性を十分に高めて、タイヤ全体としてさらに操縦安定性能を高めることができる。その結果、乾燥路面における操縦安定性能をさらに一層改善することができる。また、比Si/Srを4.0以下とすることで、内側ブロック列24の周方向溝間領域寸法Siを過大にせず、特に周方向溝12dよりもタイヤ幅方向外側の領域、即ち内側ショルダーブロック列28のタイヤ幅方向寸法を十分に確保することができる。その結果、内側ショルダーブロック列28のタイヤ幅方向のエッジ成分を十分に確保することができ、雪上路面での駆動性能及び制動性能を高めて、雪上路面での操縦安定性能をさらに改善することができる。
 加えて、リブ20を区画形成する傾斜溝16aは、車両装着内側領域だけでなくタイヤ赤道面CLを超えて車両装着外側領域においても延在させるのがよい。傾斜溝16aの延在領域を車両装着外側にまで及ぼすことで、リブ20の特にタイヤ幅方向のエッジ成分をより長く確保することができる。その結果、雪上路面での駆動性能及び制動性能をさらに高めて、雪上路面での操縦安定性能をさらに改善することができる。
<付加的形態>
 次に、本発明に係る空気入りタイヤの上記基本形態に対して、任意選択的に実施可能な、付加的形態1から9を説明する。
[付加的形態1]
 基本形態においては、図1に示すように、外側ブロック列22を区画形成する傾斜溝16b、16c、及び内側ブロック列24を区画形成する傾斜溝16dが、いずれも、タイヤ幅方向外側に向かって幅広となっていること(付加的形態1)が好ましい。
 いわゆるセカンドブロック列(外側ブロック列22、内側ブロック列24)を区画形成する傾斜溝16b、16c、16dを、いずれも、水の流れを想定した際に下流側となるタイヤ幅方向外側に向かって幅広化することで、排水性能をさらに改善することができる。
[付加的形態2]
 基本形態及び基本形態に付加的形態1を組み合わせた形態においては、図1において、最も車両装着外側の周方向溝12cから、最も車両装着内側の周方向溝12dまでの領域において、車両装着内側領域の傾斜溝のペリフェリ長さの総和L1が、車両装着外側領域の傾斜溝のペリフェリ長さの総和L2よりも大きいこと(付加的形態2)が好ましい。
 ここで、車両装着内側領域の傾斜溝のペリフェリ長さの総和L1とは、図1に示す例においては、タイヤ赤道面CLから、車両装着内側領域のタイヤ幅方向最外側の周方向溝12dまで、の領域に存在する、傾斜溝(傾斜溝16aの一部、傾斜溝16dの全部)の延在長さの総和を意味する。また、以下の説明において、溝(サイプ)の延在長さとは、溝(サイプ)の幅方向中心線の長さをいう。
 また、車両装着外側領域の傾斜溝のペリフェリ長さの総和L2とは、図1に示す例においては、タイヤ赤道面CLから、車両装着外側領域のタイヤ幅方向最外側の周方向溝12cまで、の領域に存在する、傾斜溝(傾斜溝16aの一部、傾斜溝16bの全部、16cの全部)の延在長さの総和を意味する。
 ペリフェリ長さの総和L1を、ペリフェリ長さの総和L2よりも大きくすることにより、ペリフェリ長さの総和L2を過度に大きくせずに、操縦安定性能に影響を及ぼし易い車両装着外側領域では陸部剛性をさらに高めることができる。これにより、乾燥路面での操縦安定性能をさらに効率的に改善することができる。また、ペリフェリ長さの総和L1を過度に小さくせずに、車両装着内側領域ではリブ20と内側ブロック列24とを構成する各陸部の特にタイヤ幅方向のエッジ成分を十分に確保することで、雪上路面における操縦安定性能をさらに改善することができる。
(付加的形態2における好適例)
 車両装着外側領域の傾斜溝のペリフェリ長さの総和L2と、車両装着内側領域の傾斜溝のペリフェリ長さの総和L1との比L2/L1は、0.3以上0.9以下とするのがよい。比L2/L1を0.3以上とすることで、車両装着内側領域において傾斜溝を過度に多く形成することなく、リブ20及び内側ブロック列24の剛性を十分に確保して、乾燥路面における操縦安定性能をさらに改善することができる。また、比L2/L1を0.3以上とすることで、車両装着外側領域において傾斜溝を過度に少なく形成することなく、外側ブロック列22の特にタイヤ幅方向のエッジ成分を十分に確保することで、雪上路面における操縦安定性能をさらに改善することができる。
 また、比L2/L1を0.9以下とすることで、上述したような、車両装着外側領域における乾燥路面での操縦安定性能の改善と、車両装着内側領域における雪上路面での操縦安定性能の改善とをさらに高いレベルで実現することができる。
[付加的形態3]
 基本形態及び基本形態に付加的形態1、2の少なくともいずれかを組み合わせた形態においては、外側ブロック列22を区画形成する傾斜溝の少なくとも1本、図1に示す例では傾斜溝16b、及び内側ブロック列24を区画形成する傾斜溝の少なくとも1本、同図に示す例では傾斜溝16dが、それぞれ、少なくとも1つの屈曲部を有し、内側ブロック列24内での屈曲部の数が、外側ブロック列22内での屈曲部の数より多いこと(付加的形態3)が好ましい。
 図1に示すように、傾斜溝16b、16dに少なくとも1つの屈曲部を含ませることで、外側ブロック列22及び内側ブロック列24を構成する陸部に、タイヤ幅方向のエッジ成分のみならずタイヤ周方向のエッジ成分も持たせることができる。その結果、タイヤ幅方向のエッジ成分により雪上路面での駆動性能及び制動性能を十分に確保できるだけでなく、タイヤ周方向のエッジ成分により雪上路面での旋回性能を改善でき、ひいては雪上路面における操縦安定性能をさらに高めることができる。
 そして、内側ブロック列24内での屈曲部の数を、外側ブロック列22内での屈曲部の数より多くすることで、タイヤ幅方向寸法が比較的長い内側ブロック列24においてより多くの屈曲部を効率的に、換言すれば陸部の剛性を過度に低下させることなく、含ませることができる。その結果、陸部のタイヤ幅方向エッジ成分及びタイヤ周方向のエッジ成分を十分に確保することができ、雪上路面における操縦安定性能をさらに改善することができる。
(付加的形態3における好適例)
 上記屈曲部の屈曲角度は50°以上150°以下とするのがよい。上記屈曲角を50°以上とすることで、陸部のタイヤ幅方向のエッジ成分を十分に確保して、雪上路面での駆動性能及び制動性能を高めることができる。また、上記屈曲角を150°以下とすることで、陸部のタイヤ周方向のエッジ成分を十分に確保して、雪上路面での旋回性能を高めることができる。
 また、上記屈曲部は、内側ブロック列24内に形成する場合、及び外側ブロック列22内に形成する場合のいずれにおいても、ブロック列24、22のタイヤ幅方向中心位置よりもタイヤ幅方向内側に形成するのがよい。ここで、屈曲部を上記のタイヤ幅方向中心位置よりもタイヤ幅方向内側に形成するとは、屈曲部の頂点が各ブロック列24、22のタイヤ幅方向中心線よりもタイヤ幅方向内側に位置するように、屈曲部を形成することをいう。
 上記屈曲部を、各ブロック列24、22のタイヤ幅方向中心位置よりもタイヤ幅方向内側に形成することで、各ブロック列24、22のタイヤ幅方向領域のうち、タイヤ幅方向外側部には、直線状の傾斜溝が存在する可能性が高まる。このため、車両装着外側領域及び車両装着内側領域のいずれにおいても、水の流れを想定した際に下流側となるタイヤ幅方向外側部で、傾斜溝が直線状となる可能性が高まり、排水性能をさらに改善することができる。上記屈曲部の頂点を、ブロック列24、22のそれぞれのタイヤ幅方向領域のうちタイヤ幅方向内側1/3の部分に形成することで、上記効果をさらに高いレベルで奏することができる。
[付加的形態4]
 基本形態及び基本形態に付加的形態1から3の少なくともいずれかを組み合わせた形態においては、外側ブロック列22を区画形成する傾斜溝の少なくとも1本、図1に示す例では傾斜溝16b、及び内側ブロック列24を区画形成する傾斜溝の少なくとも1本、同図に示す例では傾斜溝16dが、それぞれ、タイヤ幅方向内側の周方向溝12a、12bと隣接する部分に底上げ部16b2、16d2を含むこと(付加的形態4)が好ましい。
 傾斜溝16b、16dが底上げ部16b2、16d2を含むことで、周方向溝12a、12bからそれぞれ底上げ部16b2、16d2を超えてタイヤ幅方向外側に溢れた水を、深溝部16b1、16d1にそれぞれ勢いよく流れ込ませることができる。その結果、上流側の周方向溝12a、12bから底上げ部16b2、16d2を介して下流側の深溝部16b1、16d1への水の流れを安定させることができ、排水性能を改善することができる。
(付加的形態4における好適例)
 底上げ部16b2、16d2の溝深さは、それぞれ、深溝部16b1、16d1の溝深さの10%以上50%以下とするのがよい。底上げ部16b2、16d2の溝深さを、深溝部16b1、16d1の溝深さの10%以上とすることで、周方向溝12a、12bからそれぞれ底上げ部16b2、16d2を確実に超えて深溝部16b1、16d1に安定的に水を流れ込ませることができる。その結果、周方向溝12a、12bと、深溝部16b1、16d1との連通効果を実効あるものとすることができる。
 また、底上げ部16b2、16d2の溝深さを、深溝部16b1、16d1の溝深さの50%以下とすることで、深溝部16b1、16d1と底上げ部16b2、16d2との高低差を十分に確保し、底上げ部16b2、16d2から深溝部16b1、16d1に流れ込む水流速度を高めて、排水性能をさらに改善することができる。
[付加的形態5]
 基本形態及び基本形態に付加的形態1から4の少なくともいずれかを組み合わせた形態においては、図1に示すように、車両装着内側領域の周方向溝の少なくとも1本(図1に示す例では周方向溝12b)が、少なくとも1つの屈曲部を有すること(付加的形態5)が好ましい。
 車両装着内側領域の周方向溝の少なくとも1本(図1に示す例では周方向溝12b)が、少なくとも1つの屈曲部を有することで、屈曲部を有する周方向溝12bによって区画形成された陸部がタイヤ周方向のエッジ成分だけでなく、タイヤ幅方向のエッジ成分を有することとなる。これにより、屈曲部を有さない場合に比べて雪上路面での駆動性能、制動性能を高めることができ、ひいては雪上路面における操縦安定性能をさらに改善することができる。
[付加的形態6]
 基本形態及び基本形態に付加的形態1から5の少なくともいずれかを組み合わせた形態においては、図1において、最も車両装着外側の周方向溝12cから、最も車両装着内側の周方向溝12dまでの領域において、車両装着内側領域のサイプのペリフェリ長さの総和L3は、車両装着外側領域のサイプのペリフェリ長さの総和L4よりも大きいこと(付加的形態6)が好ましい。
 ここで、車両装着内側領域のサイプのペリフェリ長さの総和L3とは、図1に示すタイヤ赤道面CLから、車両装着内側領域のタイヤ幅方向最外側の周方向溝12dまで、の領域に存在する、サイプ(サイプ30aの一部、サイプ30cの全部)の延在長さの総和を意味する。
 また、車両装着外側領域のサイプのペリフェリ長さの総和L4とは、図1に示すタイヤ赤道面CLから、車両装着外側領域のタイヤ幅方向最外側の周方向溝12cまで、の領域に存在する、サイプ(サイプ30aの一部、サイプ30bの全部)の延在長さの総和を意味する。
 総和L3を、総和L4よりも大きくすることにより、操縦安定性能に影響を及ぼし易い車両装着外側領域ではサイプを過度に形成せずに陸部剛性を高めて、乾燥路面での操縦安定性能をさらに効率的に改善することができる。また、車両装着内側領域ではリブ20と内側ブロック列24とを構成する各陸部の特にタイヤ幅方向のエッジ成分をより多く確保することで、雪上路面における操縦安定性能をさらに改善することができる。
(付加的形態6における好適例)
 車両装着外側領域のサイプのペリフェリ長さの総和L4と、車両装着内側領域のサイプのペリフェリ長さの総和L3との比L4/L3は、0.2以上0.9以下とするのがよい。比L4/L3を0.2以上とすることで、車両装着内側においてサイプを過度に形成せずに、サイプ30a、30cが形成される陸部(リブ20及び内側ブロック列24)の剛性を高めて、乾燥路面での操縦安定性能の低下を抑制することができる。また、比L4/L3を0.2以上とすることで、車両装着外側領域においてサイプを過度に少なく形成することなく、各陸部の特にタイヤ幅方向のエッジ成分を十分に確保することで、雪上路面における操縦安定性能をさらに改善することができる。
 また、比L4/L3を0.9以下とすることで、上述したような、車両装着外側領域における乾燥路面での操縦安定性能の改善と、車両装着内側領域における雪上路面での操縦安定性能の改善とをさらに効率的に実現することができる。
[付加的形態7]
 基本形態及び基本形態に付加的形態1から6の少なくともいずれかを組み合わせた形態においては、図1において、最も車両装着外側の周方向溝12cから車両装着外側の接地端E1までの領域においては、特定の傾斜溝16eの延長線上に陸部を介して他の傾斜溝16fが形成され、最も車両装着内側の周方向溝12dから車両装着内側の接地端E2までの領域においては、特定の傾斜溝16hがタイヤ幅方向の全域にわたって形成されていること(付加的形態7)が好ましい。
 最も車両装着外側の周方向溝12cから車両装着外側の接地端E1までの領域において、特定の傾斜溝16eの延長線上に陸部を介して他の傾斜溝16fを形成することで、周方向溝12cよりもタイヤ幅方向外側にリブ基調の陸部を区画形成することができる。その結果、操縦安定性能に影響を及ぼし易い車両装着外側領域の陸部剛性を効率的に高めて、乾燥路面での操縦安定性能をさらに改善することができる。
 また、最も車両装着内側の周方向溝12dから車両装着内側の接地端E2まで領域において、特定の傾斜溝16hをタイヤ幅方向の全領域にわたって形成することで、傾斜溝16hにより区画形成される陸部にタイヤ幅方向のエッジ成分を多く持たせることができる。その結果、雪上路面でのグリップ力を効率的に得て、雪上路面での操縦安定性能をさらに改善することができる。
(付加的形態7における好適例)
 図1に示す特定の傾斜溝16eと、その延長線上に形成される他の傾斜溝16fとの間のタイヤ幅方向領域に介在する陸部は、周方向溝12cから接地端E1までのタイヤ幅方向領域中、周方向溝12c側10%から60%の位置に存在させるのがよい。ここで、上記陸部のタイヤ幅方向中心位置とは、傾斜溝16eのタイヤ幅方向最外側位置と、傾斜溝16eの延長線上に位置する傾斜溝16fの部分のタイヤ幅方向最内側位置と、の間のタイヤ幅方向中心位置をいう。
 上記陸部のタイヤ幅方向中心位置を、周方向溝12cから接地端E1までの領域中、周方向溝12c側10%の位置からタイヤ幅方向外側に存在させることで、周方向溝12cの近傍部分にもタイヤ幅方向に延在する傾斜溝16eをある程度形成することができる。これにより、周方向溝12cのみでは発揮できない、タイヤ幅方向のエッジ成分による効果(雪上路面での駆動性能、制動性能の改善)を、周方向溝12cの近傍においても発揮させることで、雪上路面での操縦安定性能をさらに改善することができる。
 また、上記陸部のタイヤ幅方向中心位置を、周方向溝12cから接地端E1までの領域中、周方向溝12c側60%の位置からタイヤ幅方向内側に存在させることで、接地端E1近傍領域で傾斜溝16fのタイヤ幅方向長さを十分に確保できる。これにより、傾斜溝16eと傾斜溝16fとの間に陸部を形成したことによる排水性能の低下を、接地端E1近傍領域で傾斜溝16fのタイヤ幅方向長さを十分に確保することにより、抑制することができる。
 さらに、外側ショルダーリブ26及び内側ショルダーブロック列28の少なくともいずれかに、周方向溝12c、12dに連通せずに陸部内で終端する傾斜溝16g、16iをさらに形成するのがよい。傾斜溝16g、16iの形成により、外側ショルダーリブ26及び内側ショルダーブロック列28の少なくともいずれかにおいて、陸部にタイヤ幅方向のエッジ成分をさらに多く持たせることができ、雪上路面での操縦安定性能をさらに改善することができる。
[付加的形態8]
 基本形態及び基本形態に付加的形態1から7の少なくともいずれかを組み合わせた形態においては、車両装着外側領域の周方向溝の面積の総和A1が、車両装着内側領域の周方向溝の面積の総和A2よりも大きいこと(付加的形態8)が好ましい。なお、以下の説明において、溝の面積とは、空気入りタイヤを適用リムに組んで正規内圧を付与した無負荷状態における、平面視での面積であって、面取り部14は含まない面積をいう。
 基本形態においては、外側ブロック列22のピッチ長Poを内側ブロック列24のピッチ長Piよりも大きくするとともに、外側ブロック列22の周方向溝間領域寸法Soを内側ブロック列24の周方向溝間領域寸法Siよりも小さくし、さらには、傾斜溝16aを車両装着内側領域の周方向溝12bにのみ開口させている。即ち、基本形態においては、周方向溝12cから周方向溝12dまでのタイヤ幅方向領域に形成された傾斜溝16a、16b、16c、16dの面積の総和は、車両装着外側領域よりも車両装着内側領域において大きくなっている可能性が高い。
 そこで、付加的形態8では、周方向溝について、総和A1を総和A2よりも大きくし、周方向溝については、車両装着外側領域における面積の総和と車両装着内側領域における面積の総和との大小関係を、傾斜溝についての大小関係と逆転させている。これにより、タイヤ全体として、車両装着両側でより均一な溝面積比(溝面積と、陸部面積及び溝面積の総和との比)とし、ひいてはユニフォミティに関する性能及び耐偏摩耗性能を改善することができる。
(付加的形態8における好適例)
 車両装着内側領域の周方向溝の面積の総和A2に対する、車両装着外側領域の周方向溝の面積の総和A1と車両装着内側領域の周方向溝の面積の総和A2との差の比率[(A1-A2)/A2]×100は、1%以上15%以下とするのがよい。
 上記比率を1%以上とすることで、傾斜溝の配設密度が比較的小さい車両装着外側での周方向溝の面積の総和A1を、傾斜溝の配設密度が比較的大きい車両装着内側での周方向溝の面積の総和A2よりも十分に大きくすることができる。これにより、旋回時に接地領域が比較的多くなる車両装着外側においても溝面積を十分に確保することができるため、特に旋回時の排水性能を高めることができる。
 また、上記比率を15%以下とすることで、周方向主溝の面積の総和A1、A2を、車両装着両側で過度に異ならせることを防止することができる。これにより、タイヤ全体として、車両装着両側でより均一な溝面積比とし、ひいてはユニフォミティに関する性能及び耐偏摩耗性能をさらに改善することができる。
 また、接地端E1から接地端E2までのタイヤ幅方向領域における陸部の面積と溝面積との総和に対する溝面積の比率(溝面積比率)は、30%以上40%以下とするのがよい。
 上記溝面比率を30%以上とすることで、溝の面積を十分に確保して排水性能をさらに改善できるとともに、陸部に多くのエッジを持たせて雪上路面での駆動性能、制動性能を高め、ひいては雪上路面での操縦安定性能をさらに改善することができる。
 また、上記溝面比率を40%以下とすることで、溝の面積を過度に大きくすることなく、陸部の剛性を十分に確保して、乾燥路面での操縦安定性能をさらに改善することができる。
[付加的形態9]
 基本形態及び基本形態に付加的形態1から8の少なくともいずれかを組み合わせた形態においては、車両装着内側の傾斜溝の面積の総和A3が、車両装着外側の傾斜溝の面積の総和A4よりも大きいこと(付加的形態9)が好ましい。
 上述のとおり、基本形態においては、周方向溝12cから周方向溝12dまでのタイヤ幅方向領域に形成された傾斜溝16a、16b、16c、16dの面積の総和は、車両装着外側領域よりも車両装着内側領域において大きくなっている可能性が高い。これに対して、付加的形態9においては、タイヤ幅方向においてさらに拡大された領域、即ち、接地端E1から接地端E2までのタイヤ幅方向領域、に形成された傾斜溝16aから16iの面積の総和が、車両装着外側領域よりも車両装着内側領域において大きくなっている。
 このように、接地端E1、E2間の全体において、操縦安定性能に影響を及ぼし易い車両装着外側領域では傾斜溝の面積の総和A4を比較的小さくして陸部剛性を高め、ひいては乾燥路面における操縦安定性能をさらに効率的に改善することができる。
 また、車両装着内側領域では傾斜溝の面積の総和A3を比較的大きくして溝面積を十分に確保することで、陸部に多数のエッジを持たせて雪上路面での操縦安定性能をさらに改善することができる。
(付加的形態9における好適例)
 車両装着外側領域の傾斜溝の面積の総和A4に対する、車両装着内側領域の傾斜溝の面積の総和A3と車両装着外側領域の傾斜溝の面積の総和A4との差の比率[(A3-A4)/A4]×100は、1%以上15%以下とするのがよい。
 上記比率を1%以上とすることで、接地領域の全域にわたり、車両装着内側において傾斜溝を十分に形成して溝面積を十分に確保し、排水性能をさらに改善するとともに、陸部にタイヤ幅方向のエッジ成分を多く持たせて雪上路面での操縦安定性能をさらに改善することができる。
 また、上記比率を15%以下とすることで、傾斜溝の面積の総和を、車両装着両側で過度に異ならせることなく、ユニフォミティに関する性能及び耐偏摩耗性をさらに改善することができる。
 また、図1に示す接地端E1と接地端E2との間のタイヤ幅方向領域に形成されている全ての溝(サイプは除く)について、車両装着外側に形成されている溝と車両装着内側に形成されている溝との、溝面積比率の差は、±5%とするのがよい。
 上記溝面積比率の差を±5%とすることで、周方向溝及び傾斜溝の面積の総和を、車両装着両側で過度に異ならせることなく、ユニフォミティに関する性能や耐偏摩耗性をさらに改善することができる。
 さらに、付加的形態8と同様に、接地端E1から接地端E2までのタイヤ幅方向領域における陸部の面積と溝面積との総和に対する溝面積の比率(溝面積比率)は、30%以上40%以下とするのがよい。
 上記溝面比率を30%以上とすることで、上述のとおり、排水性能と雪上路面での操縦安定性能とをさらに改善することができ、上記溝面比率を40%以下とすることで、上述のとおり、乾燥路面での操縦安定性能をさらに改善することができる。
[付加的形態10]
 基本形態及び基本形態に付加的形態1から9の少なくともいずれかを組み合わせた形態においては、図1に示すように、リブ20に配設されている傾斜溝16aは、車両装着内側の周方向溝12bから車両装着外側方向にタイヤ赤道面CLを超えて延在して陸部内で終端していること(付加的形態10)が好ましい。
 図1に示す傾斜溝16aを、車両装着内側の周方向溝12bから車両装着外側方向にタイヤ赤道面CLを超えて延在させるとともに、陸部内で終端させることで、傾斜溝16aの全長をより大きくすることができる。これにより、傾斜溝16aにより区画形成される陸部のタイヤ周方向エッジ成分とタイヤ幅方向エッジ成分とをいずれもより大きくすることができることから、雪上路面での操縦安定性能をさらに改善することができる。
 [付加的形態11]
 基本形態及び基本形態に付加的形態1から10の少なくともいずれかを組み合わせた形態においては、図1に示すように、リブ20を区画形成する車両装着内側の周方向溝12bのタイヤ幅方向両側において、周方向溝12bに連通する傾斜溝16a、16dの少なくとも連通部分は、車両装着内側から車両装着外側に向かってタイヤ周方向の同じ側(図1に示すところでは紙面の上側)に延在していること(付加的形態11)が好ましい。ここで、上記連通部分とは、傾斜溝16a、16dのそれぞれにおける、周方向溝12bから最も近い部分であって、かつ、その車両装着内側から外側に向けてタイヤ周方向の同じ側に延在している部分をいう。
 車両装着内側の周方向溝12bのタイヤ幅方向両側において、上記連通部分を、車両装着内側から車両装着外側に向かってタイヤ周方向の同じ側に延在させることで、特に、周方向溝12bを跨いだこれら連通部分間における排水性を高めることができることから、ウェット路面での操縦安定性能をさらに改善することができる。
 [付加的形態12]
 基本形態及び基本形態に付加的形態1から11の少なくともいずれかを組み合わせた形態においては、図1に示すように、内側ブロック列24に配設されている傾斜溝16dの最長延在部分と、外側ブロック列22に配設されている傾斜溝16bの最長延在部分とは、車両装着内側から車両装着外側に向かってタイヤ周方向の同じ側(図1に示すところでは紙面の下側)に延在していること(付加的形態12)が好ましい。ここで、上記最長延在部分は、傾斜溝16b、16dのそれぞれにおける、車両装着内側から外側に向けてタイヤ周方向の同じ側に延在している部分のうち、タイヤ幅方向寸法が最大の部分をいう。
 傾斜溝16d、16bの最長延在部分同士を、車両装着内側から外側に向けてタイヤ周方向の同じ側に延在させることで、回転方向の指定がないタイヤにおいては、その装着態様の変更前後において、傾斜溝16d、16bが同じ方向に延在することとなる。このため、特に、回転方向の指定がないタイヤにおいて、その装着態様の変更前後において、排水性能を過度に異ならせることを抑制することができ、ウェット路面での操縦安定性能をさらに改善することができる。また、傾斜溝16d、16bの最長延在部分同士の上記延在態様によれば、その装着態様の変更前後において、グリップエッジの方向を過度に異ならせることを抑制することができ、雪上路面での操縦安定性能をさらに改善することができる。
[付加的形態13]
 基本形態及び基本形態に付加的形態1から12の少なくともいずれかを組み合わせた形態においては、図1に示すように、車両装着最外側の周方向溝12cのタイヤ幅方向外側に配設されている傾斜溝16f、16gの接地部分と、車両装着最内側の周方向溝12dのタイヤ幅方向外側に配設されている傾斜溝16h、16iの接地部分とが、いずれも、タイヤ周方向に対して、反時計回りに50°以上90°未満の角度をなして延在していること(付加的形態13)が好ましい。
 即ち、図1に示す例では、車両装着外側においては、レーキ状の傾斜溝16fの3本の爪の部分の接地部分と傾斜溝16gの一部16g1の接地部分とが、タイヤ周方向に対して、反時計回りに50°以上90°未満の角度をなして(同図の左上側から右下側に)延在している。同様に、車両装着内側においては、傾斜溝16h、16iの接地部分が、いずれも、タイヤ周方向に対して、反時計回りに50°以上90°未満の角度をなして(同図の左上側から右下側に)延在している。
 傾斜溝16f、16g、16h、16iの上記構造によれば、タイヤの転動時(直進時)には、まず、タイヤにタイヤ幅方向に沿った横力が作用する。次いで、この横力が、トレッド部を構成する陸部の形状に依存して、タイヤ周方向に沿った前後力を発生させる。そして、上記横力と上記前後力とが相まって、図1に示す例では、タイヤに反時計回りの回転モーメントが生じる。従って、本実施形態の傾斜溝16f、16g、16h、16iを有する空気入りタイヤは、その転動時には、平面視で反時計回りに回転することから、車両自体は進行方向の左側にずれていく。
 通常、路面にはその幅方向中央側から路肩側に向けて緩やかな傾斜が付けられており、中央側に比べて路肩側を低くすることで、雨水等の排水処理を促すようにしている。例えば、アメリカ合衆国のように、右側通行を採用している場合には、路肩が車両進行方向の右側に存在するため、車両は進行するうちに、右側にずれていく傾向にある。
 しかしながら、本実施の形態では、上記の傾斜溝16f、16g、16h、16iを採用していることから、右側通行の路面において、車両の進行時における、車両の右側へのずれを、上記のとおり車両自体を意図的に進行方向の左側にずらすことによって相殺することができる。その結果、本実施の形態の空気入りタイヤによれば、特に、右側通行の路面おいて、各種路面(乾燥路面、雪上路面、ウェット路面)における操縦安定性能をさらに高めることができる。
 なお、上記の特定の傾斜溝の接地部分の、タイヤ周方向に対する反時計回りのなす角度を90°未満とすることで、上記効果が得られるが、この効果をより高いレベルで得るためには、上記なす角度を87°以下とすることが好ましく、85°以下とすることがより好ましい。
 また、上記の特定の傾斜溝の接地部分の、タイヤ周方向に対する反時計回りのなす角度を50°以上とすることで、上記傾斜溝のタイヤ幅方向全域において、タイヤ周方向領域が過度に大きくなることを抑制することができる。これにより、タイヤ周方向における偏摩耗を抑制することができる。なお、この効果をより高いレベルで得るためには、上記なす角度を60°以上とすることが好ましく、70°以上とすることがより好ましい。
 タイヤサイズを215/45R17 87Wとし、図1に示す各構成要素12から30について、表1-1から表1-3に示す以下の諸条件:
 (1-1)外側ブロック列22のブロックピッチ長Poと内側ブロック列24のブロックピッチ長Piとの関係(ブロックピッチ長関係)、
 (1-2)リブ20、外側ブロック列22及び内側ブロック列24のそれぞれの周方向溝間領域寸法Sr、So、Siの関係(周方向溝間領域寸法関係)、
 (1-3)リブ20を区画形成する傾斜溝16aの形成態様(傾斜溝16aの形成態様)、
 (2)外側ブロック列22を区画形成する傾斜溝16b、16c、及び内側ブロック列24を区画形成する傾斜溝16dが、タイヤ幅方向外側に延在する際の溝幅の変化状況(傾斜溝16b、16c、16dの溝幅変化状況)、
 (3)車両装着内側領域の傾斜溝のペリフェリ長さの総和L1と、車両装着外側領域の傾斜溝のペリフェリ長さの総和L2との関係(傾斜溝のペリフェリ長さの総和の関係)、
 (4-1)傾斜溝16b、16cの少なくとも1本と、傾斜溝16dとが、それぞれ、少なくとも1つの屈曲部を有するか(傾斜溝における屈曲部の存在)
 (4-2)内側ブロック列24内での屈曲部の数と、外側ブロック列22内での屈曲部の数との関係(屈曲部の数の関係)、
 (5)傾斜溝16b及び傾斜溝16dのそれぞれについて、タイヤ幅方向内側の周方向溝12a、12bと隣接する部分が底上げされているか否か(底上げ部の存在)、
 (6)車両装着内側領域の周方向溝12b、12dの少なくとも1本(図1に示す例では周方向溝12b)が、少なくとも1つの屈曲部を有するか否か(屈曲部の存在)、
 (7)車両装着内側領域のサイプのペリフェリ長さの総和L3と、車両装着外側領域のサイプのペリフェリ長さの総和L4との関係(サイプのペリフェリ長さの総和の関係)、
 (8-1)傾斜溝16eの延長線上に陸部を介して他の傾斜溝16fが形成されているか否か(車両装着外側における傾斜溝の断続的な形成の有無)、
 (8-2)傾斜溝16hが周方向溝12dから接地端E2まで(タイヤ幅方向全域に)形成されているか否か(車両装着内側における傾斜溝の連続的な形成の有無)、
 (9)車両装着外側領域の周方向溝の面積の総和A1と、車両装着内側領域の周方向溝の面積の総和A2との関係(周方向溝の面積の総和の関係)、
 (10)車両装着内側領域の傾斜溝の面積の総和A3と、車両装着外側領域の傾斜溝の面積の総和A4との関係(傾斜溝の面積の総和の関係)、
 (11)車両装着内側の周方向溝からタイヤ幅方向内側に延在している、リブに配設されている傾斜溝が、タイヤ赤道面を超えて陸部内で終端しているか否か(リブ内における傾斜溝の配設態様)
 (12)リブを区画形成する車両装着内側の周方向溝のタイヤ幅方向両側において、周方向溝に連通する傾斜溝の少なくとも連通部分が、車両装着内側から車両装着外側に向かってタイヤ周方向の同じ側に延在しているか否か(リブ区画形成周方向溝の両側における傾斜溝の連通部同士の関係)、及び
 (13)内側ブロック列に配設されている傾斜溝の最長延在部分と、外側ブロック列に配設されている傾斜溝の最長延在部分とが、タイヤ周方向に対して、反時計回りに50°以上90°未満の角度をなして延在しているか否か(内側傾斜溝の最長延在部分のなす角度と、外側傾斜溝の最長延在部分のなす角度(タイヤ周方向に対して反時計回りで))
 に従い、実施例1から13の空気入りタイヤ、及び従来例の空気入りタイヤをそれぞれ作製した。
 このように作製した、各試験タイヤを正規リム(リムサイズ17x7J)に組み付けて230kPaの内圧を付与し、排気量1800ccの車両(フロントエンジン・フロントドライブ方式)に装着して、正規荷重の75%の荷重を付与した状態で、乾燥路面での操縦安定性能、雪上路面での操縦安定性能、及びウェット路面での操縦安定性能を、それぞれ評価した。これらの結果を表1-1から表1-3に併記する。
(乾燥路面での操縦安定性能)
 乾燥路面を100km/hで走行した際の、パネラーによる官能性評価を実施した。そして、この測定結果に基づいて従来例を基準(100)とした指数評価を行った。この評価は、指数が大きいほど、乾燥路面での操縦安定性能が高いことを示す。
(雪上路面での操縦安定性能)
 雪上路面を40km/hで走行した際の、パネラーによる官能性評価を実施した。そして、この測定結果に基づいて従来例を基準(100)とした指数評価を行った。この評価は、指数が大きいほど、雪上路面での操縦安定性能が高いことを示す。
(ウェット路面での操縦安定性能)
ウェット路面を80km/hで走行した際の、パネラーによる官能性評価を実施した。そして、この測定結果に基づいて従来例を基準(100)とした指数評価を行った。この評価は、指数が大きいほど、ウェット操縦安定性能が高いことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1-1から表1-3によれば、本発明の技術的範囲に属する(車両装着両側のブロックピッチ長Po、Piについて関係、タイヤ幅方向に整列した陸部のタイヤ幅方向寸法Sr、So、Siについての関係及びリブ20を形成する傾斜溝16aの延在態様、の全てについて所定の条件を満たす)実施例1から実施例13の空気入りタイヤについては、いずれも、本発明の技術的範囲に属しない従来例の空気入りタイヤよりも、各種路面での操縦安定性能が高いことが判る。
 1  空気入りタイヤ
 10  トレッド表面
 12、12a、12b、12c、12d  周方向溝
 14、14a、14b、14c、14d、14e、14f、14g  面取り部
 16、16a、16b、16c、16d、16e、16f、16g、16h、16i  傾斜溝
 16b1、16c1、16d1、16g1、16g2、16g3、16h1  深溝部
 16b2、16b3、16c2、16d2、16d3、16h2底上げ部  (浅溝部)
 18  模様
 20  リブ
 22  外側ブロック列
 24  内側ブロック列
 26  外側ショルダーリブ
 28  内側ショルダーブロック列
 30、30a、30b、30c、30d、30e  サイプ
 E1、E2  接地端
 CL  タイヤ赤道面
 Pi  内側ブロック列24のブロックピッチ長
 Po  外側ブロック列22のブロックピッチ長
 Si  内側ブロック列24の周方向溝間領域寸法
 So  外側ブロック列22の周方向溝間領域寸法
 Sr  リブ20の周方向溝間領域寸法

Claims (14)

  1.  車両装着方向が指定され、
     少なくとも4本の周方向溝と、前記周方向溝に連通する複数本の傾斜溝とにより、タイヤ赤道面を含むリブと、前記リブの車両装着外側に位置する外側ブロック列と、前記リブの車両装着内側に位置する内側ブロック列とが区画形成されている空気入りタイヤにおいて、
     前記外側ブロック列のブロックピッチ長は、前記内側ブロック列のブロックピッチ長よりも大きく、
     前記リブ、前記外側ブロック列、及び前記内側ブロック列の順に、2本の前記周方向溝に挟まれた領域のタイヤ幅方向寸法が小さく、
     前記リブを区画形成する傾斜溝は、前記リブを区画形成する車両装着内側領域の周方向溝にのみ開口している、
     空気入りタイヤ。
  2.  前記外側ブロック列を区画形成する傾斜溝、及び前記内側ブロック列を区画形成する傾斜溝は、いずれも、タイヤ幅方向外側に向かって幅広となっている、請求項1に記載の空気入りタイヤ。
  3.  最も車両装着外側の周方向溝から、最も車両装着内側の周方向溝までの領域において、車両装着内側領域の傾斜溝のペリフェリ長さの総和は、車両装着外側領域の傾斜溝のペリフェリ長さの総和よりも大きい、請求項1又は2に記載の空気入りタイヤ。
  4.  前記外側ブロック列を区画形成する傾斜溝の少なくとも1本、及び前記内側ブロック列を区画形成する傾斜溝の少なくとも1本は、それぞれ、少なくとも1つの屈曲部を有し、前記内側ブロック列内での前記屈曲部の数は、前記外側ブロック列内での前記屈曲部の数より多い、請求項1から3のいずれか1項に記載の空気入りタイヤ。
  5.  前記外側ブロック列を区画形成する傾斜溝の少なくとも1本、及び前記内側ブロック列を区画形成する傾斜溝の少なくとも1本は、それぞれ、タイヤ幅方向内側の前記周方向溝と隣接する部分に底上げ部を含む、請求項1から4のいずれか1項に記載の空気入りタイヤ。
  6.  車両装着内側領域の周方向溝の少なくとも1本が、少なくとも1つの屈曲部を有する、請求項1から5のいずれか1項に記載の空気入りタイヤ。
  7.  最も車両装着外側の周方向溝から、最も車両装着内側の周方向溝までの領域において、車両装着内側領域のサイプのペリフェリ長さの総和は、車両装着外側領域のサイプのペリフェリ長さの総和よりも大きい、請求項1から6のいずれか1項に記載の空気入りタイヤ。
  8.  最も車両装着外側の周方向溝から車両装着外側の接地端までの領域においては、特定の傾斜溝の延長線上に陸部を介して他の傾斜溝が形成され、最も車両装着内側の周方向溝から車両装着内側の接地端までの領域においては、特定の傾斜溝がタイヤ幅方向の全域にわたって形成されている、請求項1から7のいずれか1項に記載の空気入りタイヤ。
  9.  車両装着外側領域の周方向溝の面積の総和が、車両装着内側領域の周方向溝の面積の総和よりも大きい、請求項1から8のいずれか1項に記載の空気入りタイヤ。
  10.  車両装着内側領域の傾斜溝の面積の総和が、車両装着外側領域の傾斜溝の面積の総和よりも大きい、請求項1から9のいずれか1項に記載の空気入りタイヤ。
  11.  前記リブに配設されている前記傾斜溝は、車両装着内側の周方向溝から車両装着外側にタイヤ赤道面を超えて延在して陸部内で終端している、請求項1から10のいずれか1項に記載の空気入りタイヤ。
  12.  前記リブを区画形成する車両装着内側の周方向溝のタイヤ幅方向両側において、前記周方向溝に連通する傾斜溝の少なくとも連通部分は、車両装着内側から車両装着外側に向かってタイヤ周方向の同じ側に延在している、請求項1から11のいずれか1項に記載の空気入りタイヤ。
  13.  前記内側ブロック列に配設されている傾斜溝の最長延在部分と、前記外側ブロック列に配設されている傾斜溝の最長延在部分とは、車両装着内側から車両装着外側に向かってタイヤ周方向の同じ側に延在している、請求項1から12のいずれか1項に記載の空気入りタイヤ。
  14.  車両装着最外側の周方向溝のタイヤ幅方向外側に配設されている傾斜溝の接地部分と、車両装着最内側の周方向溝のタイヤ幅方向外側に配設されている傾斜溝の接地部分とが、いずれも、タイヤ周方向に対して、反時計回りに50°以上90°未満の角度をなして延在している、
    請求項1から13のいずれか1項に記載の空気入りタイヤ。
PCT/JP2014/062256 2013-07-23 2014-05-07 空気入りタイヤ WO2015011964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014524208A JP5696817B1 (ja) 2013-07-23 2014-05-07 空気入りタイヤ
US14/907,104 US10214054B2 (en) 2013-07-23 2014-05-07 Pneumatic tire
CN201480003277.8A CN104822545B (zh) 2013-07-23 2014-05-07 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-152766 2013-07-23
JP2013152766 2013-07-23

Publications (1)

Publication Number Publication Date
WO2015011964A1 true WO2015011964A1 (ja) 2015-01-29

Family

ID=52393021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062256 WO2015011964A1 (ja) 2013-07-23 2014-05-07 空気入りタイヤ

Country Status (4)

Country Link
US (1) US10214054B2 (ja)
JP (1) JP5696817B1 (ja)
CN (1) CN104822545B (ja)
WO (1) WO2015011964A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3025879A1 (en) * 2014-11-28 2016-06-01 Sumitomo Rubber Industries Limited Pneumatic tire
JP2016210342A (ja) * 2015-05-12 2016-12-15 住友ゴム工業株式会社 空気入りタイヤ
WO2017013901A1 (ja) * 2015-07-22 2017-01-26 横浜ゴム株式会社 空気入りタイヤ
JP2017105364A (ja) * 2015-12-10 2017-06-15 東洋ゴム工業株式会社 空気入りタイヤ
CN108025598A (zh) * 2015-07-22 2018-05-11 横滨橡胶株式会社 充气轮胎
JP2019137339A (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
JP2020157902A (ja) * 2019-03-26 2020-10-01 横浜ゴム株式会社 空気入りタイヤ
JP2021079903A (ja) * 2019-11-22 2021-05-27 Toyo Tire株式会社 タイヤ
WO2022107777A1 (ja) * 2020-11-20 2022-05-27 横浜ゴム株式会社 タイヤ
WO2022145182A1 (ja) * 2020-12-28 2022-07-07 横浜ゴム株式会社 空気入りタイヤ
US11524528B2 (en) 2017-03-06 2022-12-13 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971280B2 (ja) * 2014-06-02 2016-08-17 横浜ゴム株式会社 空気入りタイヤ
JP6405284B2 (ja) * 2015-04-17 2018-10-17 住友ゴム工業株式会社 空気入りタイヤ
JP6490542B2 (ja) * 2015-08-26 2019-03-27 住友ゴム工業株式会社 重荷重用タイヤ
JP6668782B2 (ja) * 2016-01-26 2020-03-18 住友ゴム工業株式会社 タイヤ
JP6627554B2 (ja) * 2016-02-15 2020-01-08 住友ゴム工業株式会社 空気入りタイヤ
WO2018017035A1 (en) * 2016-07-17 2018-01-25 Hewlett-Packard Development Company, L.P. Dual rail circuitry using fet pairs
JP6428799B2 (ja) * 2017-01-17 2018-11-28 横浜ゴム株式会社 空気入りタイヤ
DE112019000697T5 (de) * 2018-02-07 2020-10-15 The Yokohama Rubber Co., Ltd. Luftreifen
JP7066515B2 (ja) * 2018-05-17 2022-05-13 Toyo Tire株式会社 空気入りタイヤ
DE102018216560A1 (de) * 2018-09-27 2020-04-02 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP7422582B2 (ja) * 2020-03-26 2024-01-26 Toyo Tire株式会社 空気入りタイヤ
JP2022173900A (ja) * 2021-05-10 2022-11-22 住友ゴム工業株式会社 タイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220004A (ja) * 1990-01-25 1991-09-27 Bridgestone Corp 空気入りラジアルタイヤ
JPH10278514A (ja) * 1997-04-04 1998-10-20 Bridgestone Corp 空気入りタイヤ
JP2013071633A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013112294A (ja) * 2011-11-30 2013-06-10 Bridgestone Corp 空気入りタイヤ
JP2013139240A (ja) * 2012-01-06 2013-07-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840332B2 (ja) * 1998-06-03 2006-11-01 横浜ゴム株式会社 氷雪路用空気入りタイヤ
WO2007058162A1 (ja) * 2005-11-16 2007-05-24 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
JP4929466B2 (ja) 2007-04-11 2012-05-09 東洋ゴム工業株式会社 空気入りタイヤ
JP4213197B1 (ja) * 2008-01-15 2009-01-21 横浜ゴム株式会社 空気入りタイヤ
JP4582153B2 (ja) * 2008-01-28 2010-11-17 横浜ゴム株式会社 空気入りタイヤ
JP4469399B2 (ja) * 2008-03-12 2010-05-26 住友ゴム工業株式会社 スタッドレスタイヤ
JP4631932B2 (ja) * 2008-05-23 2011-02-16 横浜ゴム株式会社 空気入りタイヤ
JP5181927B2 (ja) * 2008-08-22 2013-04-10 横浜ゴム株式会社 空気入りタイヤ
JP4548534B2 (ja) * 2008-09-01 2010-09-22 横浜ゴム株式会社 空気入りタイヤ
JP4697336B2 (ja) * 2009-02-20 2011-06-08 横浜ゴム株式会社 空気入りタイヤ
JP4394161B1 (ja) * 2009-04-17 2010-01-06 横浜ゴム株式会社 空気入りタイヤ
JP5438719B2 (ja) * 2011-04-20 2014-03-12 住友ゴム工業株式会社 空気入りタイヤ
JP5764026B2 (ja) * 2011-09-28 2015-08-12 株式会社ブリヂストン 空気入りタイヤ
WO2013046717A1 (ja) 2011-09-28 2013-04-04 株式会社ブリヂストン 空気入りタイヤ
CN202896194U (zh) * 2012-11-22 2013-04-24 安徽佳通轮胎有限公司 非对称花纹的越野车轮胎

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220004A (ja) * 1990-01-25 1991-09-27 Bridgestone Corp 空気入りラジアルタイヤ
JPH10278514A (ja) * 1997-04-04 1998-10-20 Bridgestone Corp 空気入りタイヤ
JP2013071633A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013112294A (ja) * 2011-11-30 2013-06-10 Bridgestone Corp 空気入りタイヤ
JP2013139240A (ja) * 2012-01-06 2013-07-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266012B2 (en) 2014-11-28 2019-04-23 Sumitomo Rubber Industries, Ltd. Pneumatic tire
EP3025879A1 (en) * 2014-11-28 2016-06-01 Sumitomo Rubber Industries Limited Pneumatic tire
JP2016210342A (ja) * 2015-05-12 2016-12-15 住友ゴム工業株式会社 空気入りタイヤ
US10696099B2 (en) 2015-07-22 2020-06-30 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11040575B2 (en) 2015-07-22 2021-06-22 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN107709045A (zh) * 2015-07-22 2018-02-16 横滨橡胶株式会社 充气轮胎
CN108025598A (zh) * 2015-07-22 2018-05-11 横滨橡胶株式会社 充气轮胎
KR101955947B1 (ko) * 2015-07-22 2019-03-08 요코하마 고무 가부시키가이샤 공기입 타이어
WO2017013901A1 (ja) * 2015-07-22 2017-01-26 横浜ゴム株式会社 空気入りタイヤ
KR20170108132A (ko) * 2015-07-22 2017-09-26 요코하마 고무 가부시키가이샤 공기입 타이어
JP2017105364A (ja) * 2015-12-10 2017-06-15 東洋ゴム工業株式会社 空気入りタイヤ
US11524528B2 (en) 2017-03-06 2022-12-13 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2019137339A (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
JP7069792B2 (ja) 2018-02-14 2022-05-18 横浜ゴム株式会社 空気入りタイヤ
WO2020196415A1 (ja) * 2019-03-26 2020-10-01 横浜ゴム株式会社 空気入りタイヤ
JP2020157902A (ja) * 2019-03-26 2020-10-01 横浜ゴム株式会社 空気入りタイヤ
JP2021079903A (ja) * 2019-11-22 2021-05-27 Toyo Tire株式会社 タイヤ
JP7365870B2 (ja) 2019-11-22 2023-10-20 Toyo Tire株式会社 タイヤ
WO2022107777A1 (ja) * 2020-11-20 2022-05-27 横浜ゴム株式会社 タイヤ
JP2022082309A (ja) * 2020-11-20 2022-06-01 横浜ゴム株式会社 タイヤ
JP7136169B2 (ja) 2020-11-20 2022-09-13 横浜ゴム株式会社 タイヤ
WO2022145182A1 (ja) * 2020-12-28 2022-07-07 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
CN104822545B (zh) 2016-11-16
CN104822545A (zh) 2015-08-05
JP5696817B1 (ja) 2015-04-08
US20160152084A1 (en) 2016-06-02
JPWO2015011964A1 (ja) 2017-03-02
US10214054B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
JP5696817B1 (ja) 空気入りタイヤ
JP5971280B2 (ja) 空気入りタイヤ
US7347238B2 (en) Pneumatic tire with tread including chamfer portions
US10899178B2 (en) Pneumatic tire
JP5590267B1 (ja) 空気入りタイヤ
US11407255B2 (en) Pneumatic tire
WO2010007996A1 (ja) 空気入りタイヤ
KR20110020176A (ko) 공기 타이어
US11027579B2 (en) Pneumatic tire
JP5975004B2 (ja) 空気入りタイヤ
CN106515316B (zh) 充气轮胎
JP5119601B2 (ja) 空気入りタイヤ
JP6394594B2 (ja) 空気入りタイヤ
JP5344064B2 (ja) 空気入りタイヤ
WO2015053024A1 (ja) 空気入りタイヤ
JP6714985B2 (ja) タイヤ
JP6946658B2 (ja) 空気入りタイヤ
JP2016168911A (ja) 空気入りタイヤ
JP6798620B2 (ja) 空気入りタイヤ
JP2006347346A (ja) 空気入りタイヤ
WO2016143477A1 (ja) 空気入りタイヤ
JP6607708B2 (ja) 空気入りタイヤ
JP2006143040A (ja) 空気入りタイヤ
JP2007161057A (ja) 空気入りタイヤ
JP7205390B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014524208

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14907104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829814

Country of ref document: EP

Kind code of ref document: A1