WO2014203903A1 - 共振周波数調整モジュール - Google Patents

共振周波数調整モジュール Download PDF

Info

Publication number
WO2014203903A1
WO2014203903A1 PCT/JP2014/066052 JP2014066052W WO2014203903A1 WO 2014203903 A1 WO2014203903 A1 WO 2014203903A1 JP 2014066052 W JP2014066052 W JP 2014066052W WO 2014203903 A1 WO2014203903 A1 WO 2014203903A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable electrode
electrode
resonance frequency
fixed electrode
adjustment module
Prior art date
Application number
PCT/JP2014/066052
Other languages
English (en)
French (fr)
Inventor
秀和 小野
威 岡見
信昭 ▲辻▼
夕輝 植屋
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to JP2015522941A priority Critical patent/JPWO2014203903A1/ja
Publication of WO2014203903A1 publication Critical patent/WO2014203903A1/ja
Priority to US14/972,237 priority patent/US20160101975A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/004Angular deflection
    • B81B3/0045Improve properties related to angular swinging, e.g. control resonance frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0056Adjusting the distance between two elements, at least one of them being movable, e.g. air-gap tuning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0163Spring holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/019Suspended structures, i.e. structures allowing a movement characterized by their profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0307Anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/053Translation according to an axis perpendicular to the substrate

Definitions

  • the present invention relates to a resonance frequency adjustment module constituting a MEMS sensor.
  • MEMS Micro Electro Mechanical Systems
  • the above-described gyro sensor includes a vibration driving module supported on a substrate extending in the XY direction so as to vibrate in the X direction, a moving body connected to the vibration driving module, and the moving body in the Y direction.
  • a capacitance change detection module that is supported so as to be elastically displaceable and detects a displacement amount in the Y direction is provided.
  • the movable body and the movable electrode of the capacitance change detection module supported by the movable body are always reciprocated in the X direction, and the gyro sensor is perpendicular to the XY plane.
  • a Coriolis force that acts on the movable electrode when it rotates about an axis in the Z direction is detected as a displacement in the Y direction of the movable electrode.
  • the movable electrode of the capacitance change detection module is displaced not only by the Coriolis force acting by the angular velocity (or rotational speed) of the gyro sensor but also by the acceleration in the Y direction of the gyro sensor.
  • the gyro sensor includes an elastic body that supports the movable body so as to be movable in the X direction. And the vibration of the X direction of a mobile body and an electrostatic capacitance change detection module is controlled by the resonant frequency decided by the spring constant and mass of this elastic body.
  • a resonance frequency adjustment module having an electrical spring structure has been proposed so that the resonance frequency can be controlled by adjusting the spring constant of the elastic body.
  • a resonance frequency adjustment module as shown in FIG. 6, a resonance frequency adjustment module 51 having a pair of opposed electrodes 52 and 54 capable of adjusting a voltage difference has been proposed (conventional example 1).
  • a resonance frequency adjusting module 61 in which a pair of comb-like electrodes 62 and 64 are arranged so as to be fitted to each other has also been proposed (conventional example 2).
  • the resonance frequency adjustment module 51 of the conventional example 1 when the pair of electrodes 52 and 54 are displaced in the approaching direction, the air in the space between the electrodes 52 and 54 (capacitor forming space) is compressed. There is a disadvantage that the air resistance (damping) due to the compression of air is large, the Q value (Quality Factor) is decreased, and the amplitude is decreased. Further, the resonance frequency adjusting module 51 has a disadvantage that when the displacement is increased, the distance between the electrodes 52 and 54 becomes too close, so-called pull-in. In particular, in the resonance frequency adjustment module 51 of the conventional example 1, it is necessary to increase the capacitance in order to increase the adjustment range of the spring constant. For this purpose, the electrodes 52 and 54 must be increased or the number thereof must be increased. In this case, however, the reduction in the Q value due to the air resistance as described above becomes significant.
  • one comb-like electrode 64 is provided in a step shape so as to obtain a predetermined spring constant without affecting the displacement of the movable electrode 62, and the Pull-in Inconvenience is unlikely to occur.
  • the resonance frequency adjusting module 61 in order to increase the spring constant and the capacitance, it is necessary to increase the electrodes 62 and 64 or increase the number of the electrodes 62 and 64. This increases the size of the resonance frequency adjustment module 61, resulting in poor area efficiency.
  • the present invention has been made based on the above-described circumstances, and an object thereof is to provide a resonance frequency adjustment module that can easily and surely reduce air resistance while meeting the demand for miniaturization.
  • a resonance frequency adjusting module of the present invention that constitutes a MEMS sensor that detects angular velocity includes a movable electrode having a first facing surface, and a first facing surface of the movable electrode facing the first facing surface.
  • a fixed electrode having a second opposing surface that forms a capacitor with the one opposing surface; and an elastic body that supports the movable electrode so as to be displaceable in one direction, the first opposing surface of the movable electrode And the second opposing surface of the fixed electrode is inclined with respect to the displacement direction of the movable electrode, is sandwiched between the movable electrode and the fixed electrode, and the volume is constant regardless of the displacement of the movable electrode Has a region.
  • the opposing surfaces forming the capacitor of the movable electrode and the fixed electrode are inclined with respect to the displacement direction, respectively, and a tensile force due to a potential difference is applied to the movable electrode and the fixed electrode on the inclined opposing surface.
  • a desired spring constant By acting and adjusting the potential difference, a desired spring constant can be obtained.
  • the resonance frequency adjustment module has a region in which the opposed surface between the movable electrode and the fixed electrode is inclined and the volume is not reduced by the movement of the movable electrode in the region sandwiched between the movable electrode and the fixed electrode (hereinafter, a constant volume region). Therefore, when the movable electrode is displaced, the air between the opposed surfaces can flow out to the constant volume region along the inclined opposed surface. Therefore, this resonance frequency adjustment module can reduce air compression easily and reliably by reducing the compression and flow of air.
  • a highly accurate gyro sensor can be obtained at low cost.
  • a resonance frequency adjustment module 1 in FIG. 1 is a resonance frequency adjustment module that constitutes a MEMS sensor that detects angular velocity.
  • the resonance frequency adjusting module 1 includes a movable electrode 2, an elastic body 3 that supports the movable electrode 2 so as to be displaceable in one direction, and a fixed electrode 4 that forms a capacitor opposite to the movable electrode 2. Yes. For this reason, since a tensile force (Coulomb force) acts between the opposing surfaces forming the capacitor between the movable electrode 2 and the fixed electrode 4 by applying a potential difference between the movable electrode 2 and the fixed electrode 4, this potential difference is adjusted. Thus, the spring constant of the resonance frequency adjusting module 1 can be adjusted.
  • the fixed electrode 4 is fixed on a substrate (not shown) of the MEMS sensor, and the movable electrode 2 is fixed on a moving body (not shown).
  • the movable electrode 2 is fixed to the moving body via the elastic body 3 and the weight 5.
  • the elastic body 3 supports the movable electrode 2 so as to be displaceable in a direction facing the fixed electrode 4 (X direction).
  • the weight 5 conceptually represents the mass of the displacement portion of the resonance frequency adjustment module 1.
  • the material of the fixed electrode 4 and the movable electrode 2 is not particularly limited, for example, silicon can be used.
  • the opposing surfaces of the movable electrode 2 and the fixed electrode 4 are inclined with respect to the displacement direction (X direction), respectively, and the volume is reduced by the movement of the movable electrode 2 in a region sandwiched between the movable electrode 2 and the fixed electrode 4.
  • a region S that is not to be used hereinafter also referred to as a constant volume region).
  • the movable electrode 2 and the fixed electrode 4 are disposed so as to face each other in the displacement direction (X direction).
  • the movable electrode 2 includes a base 2a and the base 2a toward the fixed electrode 4 side.
  • a plurality (two in the illustrated example) of the projecting portions 2b and a plurality of first convex portions 2c having a triangular shape in plan view projecting from the platform 2b toward the fixed electrode 4 are provided.
  • the fixed electrode 4 includes a base 4a, a plurality of bases 4b (three in the illustrated example) projecting from the base 4a to the movable electrode 2 side, and the base 4b to the movable electrode 2 side.
  • a plurality of second convex portions 4c having a triangular shape in a plan view and projecting so that the vertices are positioned between the vertices of the plurality of first convex portions 2c.
  • the opposing surfaces inclined with respect to the X direction of the first convex portion 2c and the second convex portion 4c form a capacitor, and the capacitance of the capacitor changes due to the displacement of the movable electrode 2 in the X direction.
  • a region between the plurality of base portions 2 b of the movable electrode 2 and a region between the plurality of base portions 4 b of the fixed electrode 4 function as the volume constant region S.
  • the opposing surfaces of the first convex portion 2c and the second convex portion 4c are inclined with respect to the displacement direction (X direction) as described above, and are disposed substantially parallel to each other.
  • the lower limit of the inclination angle ⁇ with respect to the displacement direction (X direction) of the facing surface is preferably 5 degrees, and more preferably 10 degrees.
  • the upper limit of the inclination angle ⁇ is preferably 30 degrees, and more preferably 20 degrees.
  • the tilt angle ⁇ When the tilt angle ⁇ is less than the lower limit, the tensile force acting in the displacement direction (X direction) between the movable electrode 2 and the fixed electrode 4 becomes small, and in order to obtain a desired spring constant, the movable electrode Therefore, it is necessary to increase the number and size of 2 and there is a possibility that it is against the request for downsizing of the apparatus. On the contrary, if the inclination angle ⁇ exceeds the upper limit, the air between the opposed surfaces may not easily flow into the constant volume region S when the movable electrode 2 is displaced.
  • the inclination angle with respect to the displacement direction of the opposing surface is preferably 5 degrees or more and 30 degrees or less.
  • a desired spring constant can be obtained easily and reliably, and the compression and flow of air in the resonance frequency adjusting module can be easily and reliably reduced.
  • the distance between the opposing surfaces of the first convex portion 2c of the movable electrode 2 and the second convex portion 4c of the fixed electrode 4 can be appropriately designed in accordance with the capacitance required for adjusting the spring constant. It can be set to 5 ⁇ m or more and 5 ⁇ m or less.
  • A1 is a planar view area of a region between the one surface of the first convex portion 2c forming the capacitor and the opposing surface of the second convex portion 4c facing this one surface (hereinafter also referred to as a region between the opposing surfaces),
  • the lower limit of the ratio of A2 to A1 is preferably 1 time and more preferably 2 times.
  • the upper limit of the ratio is preferably 10 times, more preferably 8 times.
  • the resonance frequency adjustment module 1 is used for a gyro sensor (MEMS sensor) as described above.
  • This gyro sensor is, for example, a movable body that is supported on a substrate extending in the XY direction so as to be movable in the X direction and arranged in the X direction, and a movable body that can move the detection movable electrode in the Y direction.
  • the two electrostatic capacity change detection modules supported by the sensor and a vibration drive module that reciprocates the moving body in the X direction can be used.
  • the fixed electrode 4 is fixed to the substrate, and the movable electrode 2 is fixed to the moving body.
  • the opposing surfaces of the movable electrode 2 and the fixed electrode 4 are inclined with respect to the displacement direction, and a tensile force acts on the movable electrode 2 and the fixed electrode 4 on the inclined opposing surfaces.
  • the desired spring constant can be obtained by adjusting the potential difference. For this reason, it is possible to control the resonance frequency of the moving body and the capacitance change detecting module.
  • the resonance frequency adjusting module 1 functions as the constant volume region between the base portions 2b and 4b, when the movable electrode 2 approaches the fixed electrode 4, the air between the opposing surfaces is It is possible to flow out to the constant volume region along the inclined facing surface. Therefore, the resonance frequency adjustment module 1 can easily and surely reduce the air resistance by reducing the compression and flow of air in the capacitance change detection unit, and thus accurately suppress the generation of noise. be able to.
  • the resonance frequency adjusting module 1 can be reduced in size as compared with the conventional one having comb-like electrodes (conventional example 2), and can appropriately meet the demand for downsizing of the apparatus. .
  • the movable electrode and the fixed electrode are arranged so as to face each other in the displacement direction, and the movable electrode has a plurality of base portions on the fixed electrode side and the base portions to the fixed electrode side.
  • One or a plurality of second convex portions having a triangular shape in a plan view projecting so that the vertices are positioned between the vertices.
  • the resonance frequency adjusting module can easily and surely obtain a desired spring constant on the surface facing the first convex portion and the second convex portion, and has a volume between the base portions. It is possible to easily and surely form a certain region to reduce air compression and flow.
  • the resonance frequency adjustment module 11 of the second embodiment will be described with reference to FIG.
  • symbol may be used and description may be abbreviate
  • the movable electrode 12 is supported by the elastic body 3 so as to be displaceable in the X direction, and a base 12a and a plurality of (see FIG. 2) extending from the base 12a in one of the displacement directions.
  • this extension part 12b has the opposing surface formed so that it might bend in the opposite direction (zigzag) by a fixed space
  • the extending portion 12b extends from the base 12a toward the fixed electrode 14 and is bent into a substantially V shape a plurality of times (twice in the illustrated example). It is comprised from the shaped member.
  • the movable electrode 12 has an opposing surface formed by a mountain fold portion and a valley fold portion that are arranged in parallel in the extending direction of the extending portion 12b at regular intervals.
  • the fixed electrode 14 is fixed to a substrate of the MEMS sensor.
  • the fixed electrode 14 has a surface facing the facing surface of the movable electrode 12 at a constant interval.
  • the fixed electrode 14 includes a base 14a and a plurality (two in the illustrated example) of extending portions 14b extending from the base 14a to the other in the displacement direction.
  • the extended portion 14b has substantially the same shape as the extended portion 12b of the movable electrode 12, and the surfaces of the extended portion 12b of the movable electrode 12 and the extended portion 14b of the fixed electrode 14 face each other to form a capacitor. is doing. These opposing surfaces are inclined with respect to the displacement direction.
  • the volume between the extending portion 12b of the movable electrode 12 and the extending portion 14b of the fixed electrode 14 does not change even when the movable electrode 12 is displaced, and therefore, between the extending portions 12b and 14b.
  • the region functions as a constant volume region. That is, for example, when the movable electrode 12 is close to the fixed electrode 14, the movable electrode 12 and the fixed electrode 14 are close to each other in the V-shaped region s1, and the volume decreases. In the region s2 on the other surface side of the shape, the movable electrode 12 and the fixed electrode 14 are separated from each other and the volume is increased, and the volume between the electrodes is not changed as a whole between the extending portions 12b and 14b. For this reason, when the movable electrode 12 is displaced, the air in the region s1 where the extending portions 12b and 14b are close to each other can flow out to the region s2 where the extending portions 12b and 14b are separated from each other.
  • the inclination angle with respect to the displacement direction (X direction) of the opposing surface of the said extension part 12b, 14b 5 degree is preferable as a lower limit like 1st embodiment, 10 degrees is more preferable, 30 degrees is preferable and 20 degrees is more preferable.
  • the inclination angle is 5 degrees or more and 30 degrees or less, a desired spring constant can be obtained easily and reliably, and the compression and flow of air in the resonance frequency adjustment module can be easily and reliably reduced. can do.
  • the movable electrode has an extending portion extending in one of the displacement directions, and the extending portion is bent in the opposite direction at a constant interval in plan view in the extending direction.
  • the fixed electrode has a formed opposing surface, and the fixed electrode has a surface facing the opposing surface at a constant interval.
  • the resonance frequency adjusting module 21 of the third embodiment will be described with reference to FIG.
  • the resonant frequency adjustment module 21 of 3rd embodiment about the point which has the same function or structure as the resonant frequency adjustment module 1 and 11 of 1st or 2nd embodiment, it uses the same code
  • the movable electrode 22 is supported so as to be displaceable by the elastic body 3 in the X direction, and the base 22a and the base 22a in the displacement direction are supported.
  • a plurality of (four in the illustrated example) extending portions 22b extending in one direction, and the extending portions 22b are bent in the opposite direction (zigzag) at regular intervals in plan view in the extending direction. It has a formed opposing surface. That is, the movable electrode 22 has a facing surface formed by a mountain fold portion and a valley fold portion that are arranged in parallel in the extending direction of the extending portion 22b at regular intervals.
  • the fixed electrode 24 has a surface facing the facing surface of the movable electrode 22 at a constant interval. A capacitor is formed by the facing surfaces inclined with respect to these displacement directions.
  • the fixed electrode 24 is fixed to the substrate of the MEMS sensor by a via.
  • the fixed electrode 24 has a plurality (three in the illustrated example) of polygonal bodies disposed between the plurality of extending portions 22 b of the movable electrode 22.
  • the polygonal body has a shape in which a plurality of rhombus shapes or a part of rhombus shapes are connected in plan view so as to face the facing surface of the movable electrode 22.
  • the volume between the polygonal body and the extension 22b of the movable electrode 22 does not change even when the movable electrode 22 is displaced.
  • the extension 22b function as a constant volume region.
  • times is preferable as a lower limit similarly to 1st embodiment, 10 degree
  • a desired spring constant can be obtained easily and reliably, and the compression and flow of air in the resonance frequency adjustment module can be easily and reliably reduced. can do.
  • the resonance frequency adjusting module can easily and surely obtain a desired spring constant on the facing surface between the extending portions of the movable electrode and the fixed electrode, and can be extended. It is possible to easily and surely form a constant volume region between the outlets to reduce air compression and flow.
  • the resonance frequency adjustment module 31 of the fourth embodiment will be described with reference to FIG.
  • symbol is used about the point which has the same function or structure as the resonant frequency adjustment module 1, 11, 21 of 1st, 2nd or 3rd embodiment, and is demonstrated. May be omitted.
  • the movable electrode 32 is supported by the elastic body 3 so as to be displaceable in the X direction, as in the second and third embodiments.
  • These extending portions 32b and 32c have opposing surfaces formed so as to be bent in the opposite direction (zigzag) at regular intervals in plan view in the extending direction. That is, the movable electrode 32 has an opposing surface formed by a mountain fold portion and a valley fold portion that are arranged in parallel in the extending direction of the extending portion 32b at a constant interval.
  • the fixed electrode 34 has a surface that is opposed to the opposed surface of the movable electrode 32 at a constant interval to form a capacitor. These opposing surfaces are inclined with respect to the displacement direction.
  • the fixed electrode 34 is fixed to the substrate of the MEMS sensor or the like by a via.
  • the fixed electrode 34 is a plurality (two in the illustrated example) disposed between the plurality of extending portions 32b and 32c of the movable electrode 32, as in the third embodiment. ).
  • the extending portions 32 b and 32 c of the movable electrode 32 have a polygonal shape in plan view so as to face the facing surface of the fixed electrode 34.
  • one surface for example, the upper surface of the upper extension part
  • the other surface is the polygonal shape. It is formed in a polygonal shape along the opposing surface of the body.
  • the extending part 32c located in the center has a polygonal shape such that each surface is along the opposing surface of the polygonal body.
  • the volume between the polygonal body of the fixed electrode 34 and the extending portions 32b and 32c of the movable electrode 32 is unchanged even when the movable electrode 32 is displaced. For this reason, a space between the polygonal body and the extending portions 32b and 32c functions as a constant volume region.
  • the lower limit is preferably 5 degrees, and more preferably 10 degrees, as in the first embodiment.
  • the upper limit is preferably 30 degrees and more preferably 20 degrees.
  • the resonance frequency adjusting module can easily and surely obtain a desired spring constant on the facing surface between the extending portions of the movable electrode and the fixed electrode, and can be extended. It is possible to easily and surely form a constant volume region between the outlets to reduce air compression and flow.
  • the resonance frequency adjustment module 41 of the fifth embodiment is the same in that it has the same function or structure as the resonance frequency adjustment module 1, 11, 21, or 31 of the first, second, third, or fourth embodiment. Descriptions may be omitted using reference numerals.
  • the movable electrode 42 is supported so as to be displaceable by the elastic body 3 in the X direction, and is displaced from the base 42a and the base 42a.
  • a plurality (three in the illustrated example) of extending portions 42b and 42c extending in one direction are provided. These extending portions 42 b and 42 c have a plurality of convex teeth 42 r and 42 l that are formed at regular intervals in the extending direction and face the fixed electrode 44.
  • the fixed electrode 44 has convex teeth 44r and 44l at regular intervals on a surface facing the surface on which the convex teeth of the movable electrode 42 are formed, and a capacitor is formed between the fixed electrode 44 and the movable electrode 42. is doing.
  • the opposing surfaces of the convex teeth 42r-44r and 421-441 formed on the movable electrode 42 and the fixed electrode 44 are parallel to each other and inclined with respect to the displacement direction of the movable electrode 42.
  • Each convex tooth 42r-44r and 42l-441 is arranged symmetrically with respect to the center line C.
  • the fixed electrode 44 is fixed to the substrate or the like of the MEMS sensor by a via 45.
  • the widths of the convex teeth 44r and 44l of the fixed electrode 44 and the convex teeth 42r and 44l of the movable electrode 42 in the displacement direction are substantially equal. Further, the formation interval of the convex teeth 44 r and 44 l of the fixed electrode 44 is narrower than the formation interval of the convex teeth 42 r and 42 l of the movable electrode 42.
  • the left end of the convex tooth 42r faces approximately the center of the convex tooth 44r in the displacement direction
  • the right end of the convex tooth 42l faces approximately the center of the convex tooth 44l in the displacement direction. . That is, the phase of the opposing position in the displacement direction of the convex teeth 44r and 42r and the opposing position in the displacement direction of the convex teeth 44l and 42l are out of phase.
  • the sum of the opposing areas of the convex teeth 44r and 42r and the opposing areas of the convex teeth 44l and 42l is substantially constant. That is, when the movable electrode 42 is displaced to the right in FIG. 5, the opposing area of the convex teeth 44r and 42r decreases, while the opposing area of the convex teeth 44l and 42l increases accordingly. Conversely, when the movable electrode 42 is displaced to the left in FIG. 5, the opposing area of the convex teeth 44r and 42r increases, whereas the opposing area of the convex teeth 44l and 42l decreases accordingly.
  • the facing area between the convex teeth of the movable electrode 42 and the convex teeth of the fixed electrode 44, that is, the volume between the electrodes is constant as a whole.
  • the inclination angle of the opposing surfaces of the convex teeth of the movable electrode 42 and the convex teeth of the fixed electrode 44 with respect to the displacement direction (X direction) is preferably 5 degrees as a lower limit, more preferably 10 degrees, and 30 degrees as an upper limit. Is preferable, and 20 degrees is more preferable. As described above, when the inclination angle is 5 degrees or more and 30 degrees or less, a desired spring constant can be obtained easily and reliably, and the compression and flow of air in the resonance frequency adjustment module can be easily and reliably reduced. can do.
  • the resonance frequency adjusting module can easily and surely obtain a desired spring constant on the facing surface between the extending portions of the movable electrode and the fixed electrode, and can be extended. It is possible to easily and surely form a constant volume region between the outlets to reduce air compression and flow.
  • the resonance frequency adjustment module of the present invention is not limited to the above embodiment. That is, the present invention is not particularly limited as long as the opposing surfaces of the movable electrode and the fixed electrode are inclined with respect to the displacement direction, and the first convex portion and the second convex portion as in the above embodiment are not limited. A convex part, an extension part, etc. are not indispensable structural requirements of this invention.
  • the number of the first convex portion, the second convex portion, the extending portion, and the like is not limited to the number of the above embodiment, and can be an arbitrary number.
  • the configuration is not limited to the configuration of the first embodiment, but the first convex portion and the second convex shape having various shapes. Part can be adopted. Furthermore, even when the movable electrode has the extending portion, the configuration is not limited to the configurations of the second to fourth embodiments, and movable electrodes having various shapes can be used.
  • the resonance frequency adjusting module of the present invention can easily and surely reduce the air resistance while meeting the demand for miniaturization, it can be suitably used as a gyro sensor component for a portable terminal or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

 本発明は、角速度を検出するMEMSセンサを構成する共振周波数調整モジュールであって、可動電極と、この可動電極と対向しキャパシタを形成する固定電極と、上記可動電極を一方向に変位可能に支持する弾性体とを備え、上記可動電極及び固定電極のキャパシタを形成する対向面がそれぞれ変位方向に対して傾斜しており、可動電極と固定電極とに挟まれる領域において可動電極の移動によって体積が減少しない体積一定領域を有する。

Description

共振周波数調整モジュール
 本発明は、MEMSセンサを構成する共振周波数調整モジュールに関する。
 本願は、2013年6月19日に、日本に出願された特願2013-128999号に基づき優先権を主張し、その内容をここに援用する。
 近年、MEMS(Micro Electro Mechanical Systems)と呼ばれる半導体製造技術を利用して形成した微細な機械要素を有する装置が開発されており、被測定体の角速度を検出するジャイロセンサや加速度センサとして実現されている。
 例えば、上述のジャイロセンサは、X-Y方向に延在する基板上にX方向に振動可能に支持される振動駆動モジュール、この振動駆動モジュールに接続される移動体、この移動体にY方向に弾性変位可能に支持されY方向の変位量を検出する静電容量変化検出モジュール等を備えている。
 このようなジャイロセンサは、振動駆動モジュールによって移動体及び移動体に支持されている静電容量変化検出モジュールの可動電極をX方向に常時往復移動させておき、ジャイロセンサがX-Y平面に垂直なZ方向の軸を中心に回転したときに可動電極に作用するコリオリ力を可動電極のY方向の変位として検出する。静電容量変化検出モジュールの可動電極は、ジャイロセンサの角速度(又は回転速度)により作用するコリオリ力だけでなく、ジャイロセンサのY方向の加速度によっても変位する。そこで、2つの静電容量変化検出モジュールの可動電極の変位の差分をとることでジャイロセンサに加えられたY方向の加速度を相殺し、ジャイロセンサのX-Y平面上の向きの変化のみを検出する(例えば特開2013-96952号公報参照)。
 また、ジャイロセンサは、移動体をX方向に移動可能に支持する弾性体を備えている。そして、移動体及び静電容量変化検出モジュールのX方向の振動は、この弾性体のばね定数と質量とによって決まる共振周波数によって規制される。このため、弾性体のばね定数を調整し、共振周波数をコントロールできるように、電気的ばね構造を有する共振周波数調整モジュールが提案されている。
 このような共振周波数調整モジュールとしては、図6に示すように、電圧差を調整可能な対向する一対の電極52、54を有する共振周波数調整モジュール51が提案されている(従来例1)。また、図7に示すように、一対の櫛歯状の電極62、64が互いに嵌り込むよう配設された共振周波数調整モジュール61も提案されている(従来例2)。
 しかし、従来例1の共振周波数調整モジュール51では、一対の電極52、54が近接する方向に変位した際に、電極52、54間の空間(キャパシタ形成空間)の空気が圧縮されるが、この空気の圧縮による空気抵抗(damping)が大きく、Q値(Quality Factor)が減少して振幅が低下するという不都合がある。さらに、この共振周波数調整モジュール51には、変位が大きくなると電極52、54同士の距離が近くなり過ぎ、所謂Pull-inするという不都合がある。特に、従来例1の共振周波数調整モジュール51において、ばね定数の調整範囲を大きくするには静電容量を大きくする必要があり、このためには電極52、54を大きくする又は数を増やすことを要するが、この場合、上述のような空気抵抗によるQ値の減少が顕著となる。
 また、従来例2の共振周波数調整モジュール61では、可動電極62の変位に影響せず所定のばね定数を得るべく、一方の櫛歯状の電極64が階段状に設けられており、Pull-inの不都合が生じ難い。しかしながら、この共振周波数調整モジュール61において、ばね定数及び静電容量を大きくするためには、電極62、64を大きくする、もしくは電極62、64の個数を増やすことを必要とする。これにより共振周波数調整モジュール61のサイズが大きくなってしまい、面積効率が悪い。
特開2013-96952号公報
 本発明は、上述のような事情に基づいてなされたものであり、小型化の要請に沿いつつ容易かつ確実に空気抵抗を低減できる共振周波数調整モジュールを提供することを目的とする。
 上記課題を解決するために、角速度を検出するMEMSセンサを構成する本発明の共振周波数調整モジュールは、第一の対向面を有する可動電極と、この可動電極の第一の対向面と対向し第一の対向面との間でキャパシタを形成する第二の対向面を有する固定電極と、上記可動電極を一方向に変位可能に支持する弾性体とを備え、上記可動電極の第一の対向面及び固定電極の第二の対向面がそれぞれ前記可動電極の変位方向に対して傾斜しており、可動電極と固定電極とに挟まれ、かつ可動電極の変位にかかわらず体積が一定である体積一定領域を有する。
 この共振周波数調整モジュールにおいては、可動電極と固定電極のキャパシタを形成する対向面がそれぞれ変位方向に対して傾斜しており、この傾斜した対向面で可動電極と固定電極とに電位差による引張力が作用し、電位差を調整することで、所望のばね定数を得ることができる。また、この共振周波数調整モジュールは、可動電極と固定電極との対向面が傾斜し、さらに可動電極と固定電極とに挟まれる領域において可動電極の移動によって体積が減少しない領域(以下、体積一定領域ということがある)を有するので、可動電極が変位した際に対向面の間の空気は、上記傾斜した対向面に沿って上記体積一定領域へと流出することができる。そのため、この共振周波数調整モジュールは、空気の圧縮及び流動を小さくして空気抵抗を容易かつ確実に低減することができる。
 以上説明したように、本発明の共振周波数調整モジュールによれば、低コストで高精度のジャイロセンサを得ることができる。
本発明の第一実施形態に係る共振周波数調整モジュールの模式的説明図である。 本発明の第二実施形態に係る共振周波数調整モジュールの模式的説明図である。 本発明の第三実施形態に係る共振周波数調整モジュールの模式的説明図である。 本発明の第四実施形態に係る共振周波数調整モジュールの模式的説明図である。 本発明の第五実施形態に係る共振周波数調整モジュールの模式的説明図である。 従来例1の共振周波数調整モジュールの模式的説明図である。 従来例2の共振周波数調整モジュールの模式的説明図である。
[第一実施形態]
 以下、適宜図面を参照しつつ、本発明の共振周波数調整モジュールの実施形態を詳説する。
<共振周波数調整モジュール>
 図1の共振周波数調整モジュール1は、角速度を検出するMEMSセンサを構成する共振周波数調整モジュールである。この共振周波数調整モジュール1は、可動電極2と、この可動電極2を一方向に変位可能に支持する弾性体3と、上記可動電極2と対向してキャパシタを形成する固定電極4とを備えている。このため、可動電極2と固定電極4とに電位差を与えることで可動電極2と固定電極4とのキャパシタを形成する対向面間に引張力(クーロン力)が作用するため、この電位差を調節することでこの共振周波数調整モジュール1のばね定数を調節することができる。
 この共振周波数調整モジュール1は、MEMSセンサの基板(不図示)に固定電極4が不動に固定され、移動体(不図示)に可動電極2が固定される。また、上記可動電極2は、弾性体3及び錘5を介して移動体に固定される。この弾性体3は可動電極2を固定電極4と対向する方向(X方向)に変位可能に支持する。上記錘5は、共振周波数調整モジュール1の変位部分の質量を概念的に表したものである。
 固定電極4及び可動電極2の材質は特に限定されないが、例えばシリコンを用いることができる。
 上記可動電極2及び固定電極4の対向面は、それぞれ変位方向(X方向)に対して傾斜しており、可動電極2と固定電極4とに挟まれる領域において可動電極2の移動によって体積が減少しない領域S(以下、体積一定領域ということがある)を有している。
 具体的には、上記可動電極2と固定電極4とは変位方向(X方向)に対向するように配置され、上記可動電極2は、基台2aと、この基台2aから固定電極4側に突設された複数(図示例では2つ)の台部2bと、この台部2bから固定電極4側に突設された平面視三角形状の複数の第一凸部2cとを有している。また、上記固定電極4は、基台4aと、この基台4aから可動電極2側に突設された複数の台部4b(図示例では3つ)と、この台部4bから可動電極2側に上記複数の第一凸部2cの頂点間にその頂点が位置するように突設された平面視三角形状の複数の第二凸部4cとを有している。この第一凸部2c及び第二凸部4cのX方向に対して傾斜した対向面はキャパシタを形成し、可動電極2のX方向の変位によってこのキャパシタの容量が変化する。また、可動電極2の複数の台部2b間の領域、及び固定電極4の複数の台部4b間の領域が、上記体積一定領域Sとして機能する。これにより、可動電極2が変位した際に第一凸部2c及び第二凸部4cの対向面の間の空気は、上記傾斜した対向面に沿って上記体積一定領域Sへと流出することができる。
 上記第一凸部2c及び第二凸部4cの対向面は、上述のように変位方向(X方向)に対して傾斜し、互いに略平行に配設されている。ここで、この対向面の変位方向(X方向)に対する傾斜角αの下限としては、5度が好ましく、10度がより好ましい。一方、上記傾斜角αの上限としては、30度が好ましく、20度がより好ましい。上記傾斜角αが上記下限未満であると、可動電極2と固定電極4との間で変位方向(X方向)に作用する引張力が小さくなり、所望のばね定数を得るためには、可動電極2の個数や大きさを増加させることを要し、装置の小型化の要請に反するおそれがある。逆に、上記傾斜角αが上記上限を超えると、可動電極2が変位した際に対向面の間の空気が体積一定領域Sに流れ込み難くなるおそれがある。
 上記のように、対向面の変位方向に対する傾斜角としては5度以上30度以下が好ましい。傾斜角が上記範囲内にあることで、所望のばね定数を容易かつ確実に得ることができるとともに、この共振周波数調整モジュールの空気の圧縮及び流動を容易かつ確実に小さくすることができる。
 可動電極2の第一凸部2cと固定電極4の第二凸部4cとの対向面間距離は、ばね定数の調整に必要な静電容量に合わせて適宜設計することができるが、例えば0.5μm以上5μm以下とすることができる。
 また、キャパシタを形成する第一凸部2cの一面とこの一面に対向する第二凸部4cの対向面との間の領域(以下、対向面間領域ともいう)の平面視面積をA1とし、この対向面間領域に隣接する1の体積一定領域Sの平面視面積をA2とした場合、A1に対するA2の比の下限としては、1倍が好ましく、2倍がより好ましい。上記比が上記下限未満の場合、可動電極2が変位した際に対向面の間の空気が体積一定領域Sに流れ込み難くなるおそれがある。一方、上記比の上限としては、10倍が好ましく、8倍がより好ましい。上記比が上記上限を超える場合、装置の小型化の要請に反するおそれがある。
<ジャイロセンサ>
 共振周波数調整モジュール1は、上述のようにジャイロセンサ(MEMSセンサ)に用いられる。このジャイロセンサは、例えばX-Y方向に延在する基板上にX方向に移動可能に支持されX方向に並ぶ2つの移動体と、Y方向に検出用可動電極が変位可能なように移動体に支持された2つの静電容量変化検出モジュールと、移動体をX方向に往復移動させる振動駆動モジュールとを備える構成とすることができる。この共振周波数調整モジュール1においては、固定電極4が上記基板に固定され、可動電極2が上記移動体に固定される。
 この共振周波数調整モジュール1においては、可動電極2及び固定電極4の対向面がそれぞれ変位方向に対して傾斜しており、この傾斜した対向面で可動電極2と固定電極4とに引張力が作用し、電位差を調整することで、所望のばね定数を得ることができる。このため、移動体及び静電容量変化検出モジュールの共振周波数をコントロールすることができる。
 また、この共振周波数調整モジュール1は、台部2b、4bの間が上記体積一定領域として機能するので、可動電極2が固定電極4に近接した際に、この対向面の間の空気は、上記傾斜した対向面に沿って上記体積一定領域へと流出することができる。そのため、この共振周波数調整モジュール1は、静電容量変化検出ユニットにおいて、空気の圧縮及び流動を小さくして空気抵抗を容易かつ確実に低減することができ、このため的確にノイズの発生を抑制することができる。
 さらに、この共振周波数調整モジュール1は、従来の櫛歯状の電極を有するもの(従来例2)に比べて小型化を図ることができ、装置の小型化の要請にも的確に沿うことができる。
 本実施形態の共振周波数調整モジュールにおいては、可動電極と固定電極とが変位方向に対向するように配置され、上記可動電極が、固定電極側に複数の台部及びこの台部から固定電極側に突設された平面視三角形状の複数の第一凸部を有し、上記固定電極が、可動電極側に1又は複数の台部及びこの台部から可動電極側に上記複数の第一凸部の頂点間にその頂点が位置するように突設された平面視三角形状の1又は複数の第二凸部を有する。
 このような構成とすることで、この共振周波数調整モジュールは、第一凸部及び第二凸部との対向面で所望のばね定数を容易かつ確実に得ることができるとともに、台部間に体積一定領域を容易かつ確実に形成して空気の圧縮及び流動を小さくすることができる。
[第二実施形態]
 次に、図2を参酌しつつ第二実施形態の共振周波数調整モジュール11について説明する。なお、第二実施形態の共振周波数調整モジュール11において、第一実施形態の共振周波数調整モジュール1と同一機能又は構造を有する点については同一符号を用い、説明を省略することがある。
 図2の共振周波数調整モジュール11においては、可動電極12は、X方向に弾性体3によって変位可能に支持され、基台12aと、この基台12aから変位方向の一方に延出する複数(図示例では2つ)の延出部12bとを有している。そして、この延出部12bは、延出方向に平面視一定間隔で反対方向に(ジグザグに)折り曲がるように形成された対向面を有している。具体的には、上記延出部12bは、図2に示すように、基台12aから固定電極14側に延出し、略V字状に複数回(図示例では二回)屈曲した形状の平板状部材から構成されている。すなわち、可動電極12は、延出部12bの延出方向に一定間隔で並設された山折り部および谷折り部から形成された対向面を有する。なお、固定電極14は、MEMSセンサの基板等に固定されている。
 また、固定電極14は、可動電極12の対向面と一定間隔で対向する面を有している。具体的には、固定電極14は、基台14aと、この基台14aから変位方向の他方に延出する複数(図示例では2つ)の延出部14bとを有し、この固定電極14の延出部14bは、上記可動電極12の延出部12bと略同形を有し、可動電極12の延出部12bと固定電極14の延出部14bとの各面が対向しキャパシタを形成している。これらの対向面は変位方向に対して傾斜している。ここで、上記可動電極12の延出部12bと固定電極14の延出部14bとの間の体積は、可動電極12が変位しても不変であり、このため延出部12b、14b間の領域が体積一定領域として機能する。つまり、例えば可動電極12が固定電極14側に近接した場合には、V字状の一方の面側の領域s1では可動電極12と固定電極14とが近接して体積が減少するものの、V字状の他方の面側の領域s2では可動電極12と固定電極14とが離反することになり体積が増加し、延出部12b、14b間全体として電極間の体積が不変となる。このため、可動電極12が変位した際に延出部12b、14b同士が近接する領域s1における空気は、延出部12b、14b同士が離反する領域s2に流出することができる。
 なお、上記延出部12b、14bの対向面の変位方向(X方向)に対する傾斜角については、第一実施形態と同様に、下限としては5度が好ましく、10度がより好ましく、上限としては30度が好ましく、20度がより好ましい。
 上記のように、傾斜角が5度以上30度以下にあることで、所望のばね定数を容易かつ確実に得ることができるとともに、共振周波数調整モジュールの空気の圧縮及び流動を容易かつ確実に小さくすることができる。
 本実施形態における共振周波数調整モジュールにおいては、可動電極が変位方向の一方に延出する延出部を有し、この延出部が延出方向に平面視一定間隔で反対方向に折り曲がるように形成された対向面を有し、上記固定電極がこの対向面と一定間隔で対向する面を有している。
 このような構成とすることで、この共振周波数調整モジュールは、可動電極と固定電極との延出部間の対向面で所望のばね定数を容易かつ確実に得ることができるとともに、延出部間に体積一定領域を容易かつ確実に形成して空気の圧縮及び流動を小さくすることができる。
[第三実施形態]
 次に、図3を参酌しつつ第三実施形態の共振周波数調整モジュール21について説明する。なお、第三実施形態の共振周波数調整モジュール21において、第一又は第二実施形態の共振周波数調整モジュール1、11と同一機能又は構造を有する点については同一符号を用い、説明を省略することがある。
 図3の共振周波数調整モジュール21においては、第二実施形態と同様に、可動電極22は、X方向に弾性体3によって変位可能に支持され、基台22aと、この基台22aから変位方向の一方に延出する複数(図示例では4つ)の延出部22bとを有し、この延出部22bは、延出方向に平面視一定間隔で反対方向に(ジグザグに)折り曲がるように形成された対向面を有する。すなわち、可動電極22は、延出部22bの延出方向に一定間隔で並設された山折り部および谷折り部から形成された対向面を有する。また、固定電極24は、可動電極22の対向面と一定間隔で対向する面を有している。これらの変位方向に対して傾斜した対向面によってキャパシタが形成されている。なお、固定電極24は、MEMSセンサの基板等にビアによって固定されている。
 図3の共振周波数調整モジュール21においては、固定電極24は、上記可動電極22の複数の延出部22bの間に配設される複数(図示例では3つ)の多角形状体を有し、この多角形状体は、可動電極22の対向面と対向するよう平面視で複数の菱形状又は菱形状の一部が連接された形状を有している。なお、図3の共振周波数調整モジュール1においては、この多角形状体と可動電極22の延出部22bとの間の体積は、可動電極22が変位しても不変であり、このため多角形状体と延出部22bとの間が体積一定領域として機能する。
 なお、上記延出部22b及び固定電極24の対向面の変位方向(X方向)に対する傾斜角については、第一実施形態と同様に、下限としては5度が好ましく、10度がより好ましく、上限としては30度が好ましく、20度がより好ましい。
 上記のように、傾斜角が5度以上30度以下にあることで、所望のばね定数を容易かつ確実に得ることができるとともに、共振周波数調整モジュールの空気の圧縮及び流動を容易かつ確実に小さくすることができる。
 さらに、上記のような構成とすることで、この共振周波数調整モジュールは、可動電極と固定電極との延出部間の対向面で所望のばね定数を容易かつ確実に得ることができるとともに、延出部間に体積一定領域を容易かつ確実に形成して空気の圧縮及び流動を小さくすることができる。
[第四実施形態]
 次に、図4を参酌しつつ第四実施形態の共振周波数調整モジュール31について説明する。なお、第四実施形態の共振周波数調整モジュール31において、第一、第二又は第三実施形態の共振周波数調整モジュール1、11、21と同一機能又は構造を有する点については同一符号を用い、説明を省略することがある。
 図4の共振周波数調整モジュール31においては、第二及び第三実施形態と同様に、可動電極32は、X方向に弾性体3によって変位可能に支持され、基台32aと、この基台32aから変位方向の一方に延出する複数(図示例では合計3つ)の延出部32b、32cとを有する。これらの延出部32b、32cは、延出方向に平面視一定間隔で反対方向に(ジグザグに)折り曲がるように形成された対向面を有する。すなわち、可動電極32は、延出部32bの延出方向に一定間隔で並設された山折り部および谷折り部から形成された対向面を有する。また、固定電極34は、可動電極32の対向面と一定間隔で対向する面を有しキャパシタを形成している。これらの対向面は変位方向に対して傾斜している。なお、固定電極34は、MEMSセンサの基板等にビアによって固定されている。
 図4の共振周波数調整モジュール31においては、固定電極34は、第三実施形態と同様に、上記可動電極32の複数の延出部32b、32c間に配設される複数(図示例では2つ)の多角形状体を有している。
 上記可動電極32の延出部32b、32cは、上記固定電極34の対向面に対向するような平面視多角形状を有している。具体的には、端部(図4の上方及び下方)に位置する延出部32bは、一方の面(例えば上方の延出部の上面)が平滑面であり、他方の面が上記多角形状体の対向面に沿うよう多角形状に形成されている。また、中央に位置する延出部32cは、各面が上記多角形状体の対向面に沿うよう多角形状を有している。なお、図4の共振周波数調整モジュール31においては、固定電極34の多角形状体と可動電極32の延出部32b、32cとの間の体積は、可動電極32が変位しても不変であり、このため多角形状体と延出部32b、32cとの間が体積一定領域として機能する。
 なお、上記延出部32b、32c及び固定電極34の対向面の変位方向(X方向)に対する傾斜角については、第一実施形態と同様に、下限としては5度が好ましく、10度がより好ましく、上限としては30度が好ましく、20度がより好ましい。
 上記のように、傾斜角が5度以上30度以下にあることで、所望のばね定数を容易かつ確実に得ることができるとともに、共振周波数調整モジュールの空気の圧縮及び流動を容易かつ確実に小さくすることができる。
 さらに、上記のような構成とすることで、この共振周波数調整モジュールは、可動電極と固定電極との延出部間の対向面で所望のばね定数を容易かつ確実に得ることができるとともに、延出部間に体積一定領域を容易かつ確実に形成して空気の圧縮及び流動を小さくすることができる。
[第五実施形態]
 次に、図5を参酌しつつ第五実施形態の共振周波数調整モジュール41について説明する。なお、第五実施形態の共振周波数調整モジュール41において、第一、第二、第三または第四実施形態の共振周波数調整モジュール1、11、21、31と同一機能又は構造を有する点については同一符号を用い、説明を省略することがある。
 図5の共振周波数調整モジュール41において、第二~第四実施形態と同様に、可動電極42は、X方向に弾性体3によって変位可能に支持され、基台42aと、この基台42aから変位方向の一方に延出する複数(図示例では合計3つ)の延出部42b、42cとを有する。これらの延出部42b、42cは、延出方向に一定間隔で形成され固定電極44と対向する複数の凸状歯42rおよび42lを有する。固定電極44は、可動電極42の凸状歯が形成された面と対向する対向面に一定間隔で凸状歯44rおよび44lを有し、固定電極44と可動電極42との間でキャパシタを形成している。可動電極42および固定電極44に形成された凸状歯42r-44rおよび42l-44lの対向面は、互いに平行でありかつ可動電極42の変位方向に対して傾斜している。各凸状歯42r-44rおよび42l-44lは、中心線Cに関して対称に配置されている。したがって、同一対向面における凸状歯42r-44rの傾斜は、凸状歯42l-44lの傾斜と対称線Cに関して対称である。固定電極44は、MEMSセンサの基板等にビア45によって固定されている。
 図5の共振周波数調整モジュール41において、固定電極44の凸状歯44rおよび44lと、可動電極42の凸状歯42rおよび44lの変位方向における幅はほぼ等しい。また、固定電極44の凸状歯44rおよび44lの形成間隔は、可動電極42の凸状歯42rおよび42lの形成間隔よりも狭い。静止状態において、凸状歯44rの変位方向のほぼ中央に凸状歯42rの左端部が対向するのに対し、凸状歯44lの変位方向のほぼ中央に凸状歯42lの右端部が対向する。すなわち、凸状歯44rおよび42rの変位方向における対向位置と、凸状歯44lおよび42lの変位方向における対向位置とは位相がずれている。
 可動電極42がX方向に変位した場合に、凸状歯44rおよび42rの対向面積および凸状歯44lおよび42lの対向面積の合計はほぼ一定である。すなわち、可動電極42が図5の右側に変位した場合には、凸状歯44rおよび42rの対向面積は減少するのに対して、凸状歯44lおよび42lの対向面積はその分増加する。逆に、可動電極42が図5の左側に変位した場合には、凸状歯44rおよび42rの対向面積は増加するのに対して、凸状歯44lおよび42lの対向面積はその分減少する。したがって、可動電極42がX方向に変位した場合にも、可動電極42の凸状歯と固定電極44の凸状歯との対向面積、すなわち電極間の体積は全体として一定となる。これにより、可動電極42と固定電極44との間の電極間は、体積不変(一定)領域を有することになる。
 可動電極42の凸状歯と固定電極44の凸状歯との対向面の変位方向(X方向)に対する傾斜角は、下限としては5度が好ましく、10度がより好ましく、上限としては30度が好ましく、20度がより好ましい。
 上記のように、傾斜角が5度以上30度以下にあることで、所望のばね定数を容易かつ確実に得ることができるとともに、共振周波数調整モジュールの空気の圧縮及び流動を容易かつ確実に小さくすることができる。
 さらに、上記のような構成とすることで、この共振周波数調整モジュールは、可動電極と固定電極との延出部間の対向面で所望のばね定数を容易かつ確実に得ることができるとともに、延出部間に体積一定領域を容易かつ確実に形成して空気の圧縮及び流動を小さくすることができる。
<その他の実施形態>
 本発明の共振周波数調整モジュールは、上記実施形態に限定されるものではない。つまり、可動電極及び固定電極の対向面がそれぞれ変位方向に対して傾斜しているものであれば、本発明は特に限定されるものではなく、上記実施形態のような第一凸部、第二凸部、延出部等は本発明の必須の構成要件ではない。
 また、第一凸部、第二凸部、延出部等の数は上記実施形態の数に限定されず、任意の数とすることができる。
 さらに、可動電極及び固定電極が第一凸部及び第二凸部を有する場合においても、上記第一実施形態の構成に限定されるものではなく、種々の形状の第一凸部及び第二凸部を採用することができる。さらに、可動電極が上記延出部を有する場合においても、上記第二乃至第四実施形態の構成に限定されるものではなく、種々の形状の可動電極を作用可能である。
 以上説明したように、本発明の共振周波数調整モジュールは、小型化の要請に沿いつつ容易かつ確実に空気抵抗を低減できるため、ジャイロセンサの構成要素として携帯端末等に好適に用いることができる。
 1、11、21、31、41 共振周波数調整モジュール
 2、12、22、32、42 可動電極
 2a、12a、22a、32a、42a 基台
 2b 台部
 2c 第一凸部
 3 弾性体
 4、14、24、34,44 固定電極
 4a、14a 基台
 4b 台部
 4c 第二凸部
 5 錘
 12b、14b、22b、32b、32c,42c 延出部

Claims (5)

  1.  角速度を検出するMEMS(Micro Electro Mechanical Systems)センサを構成する共振周波数調整モジュールであって、
     第一の対向面を有する可動電極と、
     前記可動電極の第一の対向面と対向し前記第一の対向面との間でキャパシタを形成する第二の対向面を有する固定電極と、
     前記可動電極を一方向に変位可能に支持する弾性体とを備え、
     前記可動電極の第一の対向面及び前記固定電極の第二の対向面がそれぞれ前記可動電極の変位方向に対して傾斜しており、前記可動電極と前記固定電極とに挟まれ前記可動電極の変位にかかわらず体積が一定である体積一定領域を有する共振周波数調整モジュール。
  2.  前記第一および第二の対向面の傾斜角が5度以上30度以下である請求項1に記載の共振周波数調整モジュール。
  3.  前記可動電極と前記固定電極とが前記変位方向において対向するように配置され、
     前記可動電極が、前記固定電極側に複数の第一台部及び前記第一台部から前記固定電極側に突設された平面視三角形状の複数の第一凸部を有し、
     前記固定電極が、前記可動電極側に1又は複数の第二台部及び前記第二台部から前記可動電極側に前記複数の第一凸部の頂点間に頂点が位置するように突設された平面視三角形状の1又は複数の第二凸部を有する請求項1又は請求項2に記載の共振周波数調整モジュール。
  4.  前記可動電極が前記変位方向の一方に延出する延出部を有し、前記第一の対向面が前記延出部の延出方向に一定間隔で並設された山折り部および谷折り部から形成され、前記固定電極の前記第二の対向面は、前記第一の対向面と一定間隔で対向する形状の面を有する請求項1又は請求項2に記載の共振周波数調整モジュール。
  5.  前記可動電極が前記変位方向の一方に延出する延出部を有し、前記第一の対向面が前記延出部の延出方向に一定間隔で並設された複数の第一の凸状歯から形成され、前記固定電極の前記第二の対向面は、前記第一の対向面の前記第一の凸状歯と一定間隔で対向する複数の第二の凸状歯を有する請求項1又は請求項2に記載の共振周波数調整モジュール。
PCT/JP2014/066052 2013-06-19 2014-06-17 共振周波数調整モジュール WO2014203903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015522941A JPWO2014203903A1 (ja) 2013-06-19 2014-06-17 共振周波数調整モジュール
US14/972,237 US20160101975A1 (en) 2013-06-19 2015-12-17 Resonance Frequency Adjustment Module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013128999 2013-06-19
JP2013-128999 2013-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/972,237 Continuation US20160101975A1 (en) 2013-06-19 2015-12-17 Resonance Frequency Adjustment Module

Publications (1)

Publication Number Publication Date
WO2014203903A1 true WO2014203903A1 (ja) 2014-12-24

Family

ID=52104635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066052 WO2014203903A1 (ja) 2013-06-19 2014-06-17 共振周波数調整モジュール

Country Status (3)

Country Link
US (1) US20160101975A1 (ja)
JP (1) JPWO2014203903A1 (ja)
WO (1) WO2014203903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022108717A (ja) * 2021-01-13 2022-07-26 株式会社村田製作所 蛇行電極を有するmemsデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210487A1 (de) * 2018-06-27 2020-01-02 Robert Bosch Gmbh Elektrodenanordnung für ein mikroelektromechanisches System, mikroelektromechanisches System, Verfahren zum Betrieb eines mikroelektromechanischen Systems
DE102020204767A1 (de) * 2020-04-15 2021-10-21 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanische Vorrichtung mit Anschlagsfederstruktur
CN113543001B (zh) * 2021-07-19 2023-04-25 歌尔微电子股份有限公司 电容式传感器、麦克风以及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178494A (ja) * 1995-10-28 1997-07-11 Samsung Electron Co Ltd 振動構造物及び振動構造物を備えるアクチュエータと振動構造物の固有振動数の制御方法
JPH09243374A (ja) * 1996-03-11 1997-09-19 Murata Mfg Co Ltd 角速度センサ
JPH11257970A (ja) * 1998-03-16 1999-09-24 Murata Mfg Co Ltd 角速度センサ
JP2000097710A (ja) * 1998-09-21 2000-04-07 Murata Mfg Co Ltd 角速度センサおよびその周波数調整方法
JP2001027529A (ja) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd 角速度センサ
JP2004233088A (ja) * 2003-01-28 2004-08-19 Murata Mfg Co Ltd 静電可動機構、共振型装置および角速度センサ
JP2004347475A (ja) * 2003-05-22 2004-12-09 Denso Corp 容量式力学量センサ
JP2007501939A (ja) * 2003-08-13 2007-02-01 セルセル 改良復帰移動式外来振動抑制形加速度計
JP2007139505A (ja) * 2005-11-16 2007-06-07 Denso Corp 容量式力学量センサ
JP2009271052A (ja) * 2008-04-30 2009-11-19 Honeywell Internatl Inc キャパシタンス変調によるmemsジャイロスコープのパラメトリック増幅

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418316B2 (ja) * 2010-03-11 2014-02-19 富士通株式会社 Memsデバイス

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178494A (ja) * 1995-10-28 1997-07-11 Samsung Electron Co Ltd 振動構造物及び振動構造物を備えるアクチュエータと振動構造物の固有振動数の制御方法
JPH09243374A (ja) * 1996-03-11 1997-09-19 Murata Mfg Co Ltd 角速度センサ
JPH11257970A (ja) * 1998-03-16 1999-09-24 Murata Mfg Co Ltd 角速度センサ
JP2000097710A (ja) * 1998-09-21 2000-04-07 Murata Mfg Co Ltd 角速度センサおよびその周波数調整方法
JP2001027529A (ja) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd 角速度センサ
JP2004233088A (ja) * 2003-01-28 2004-08-19 Murata Mfg Co Ltd 静電可動機構、共振型装置および角速度センサ
JP2004347475A (ja) * 2003-05-22 2004-12-09 Denso Corp 容量式力学量センサ
JP2007501939A (ja) * 2003-08-13 2007-02-01 セルセル 改良復帰移動式外来振動抑制形加速度計
JP2007139505A (ja) * 2005-11-16 2007-06-07 Denso Corp 容量式力学量センサ
JP2009271052A (ja) * 2008-04-30 2009-11-19 Honeywell Internatl Inc キャパシタンス変調によるmemsジャイロスコープのパラメトリック増幅

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022108717A (ja) * 2021-01-13 2022-07-26 株式会社村田製作所 蛇行電極を有するmemsデバイス
JP7238954B2 (ja) 2021-01-13 2023-03-14 株式会社村田製作所 蛇行電極を有するmemsデバイス

Also Published As

Publication number Publication date
US20160101975A1 (en) 2016-04-14
JPWO2014203903A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5822177B2 (ja) ジャイロセンサー、電子機器
US7513155B2 (en) Inertial sensor
JP4687577B2 (ja) 慣性センサ
JP3924026B2 (ja) 振動構造物及び振動構造物の固有振動数の制御方法
CN100523821C (zh) 加速度计以及在加速度计中减小偏移的方法
US6796178B2 (en) Rotation-type decoupled MEMS gyroscope
TWI656346B (zh) 功能性元件、加速度感測器及開關
US20140144232A1 (en) Spring for microelectromechanical systems (mems) device
WO2014203896A1 (ja) Memsセンサ用モジュール、振動駆動モジュール及びmemsセンサ
WO2014203903A1 (ja) 共振周波数調整モジュール
KR20030049313A (ko) 수직 진동 질량체를 갖는 멤스 자이로스코프
US10900785B2 (en) Micromechanical rotational rate sensor system and corresponding production method
KR102095475B1 (ko) 가속도계
US11002543B2 (en) Mems gyroscope with regulation of the mismatch between the driving and sensing frequencies
JP2012163507A (ja) 加速度センサ
JP7003076B2 (ja) センサ
EP1798195A2 (en) Comb-type electrode structure capable of large linear-displacement motion
JP4654667B2 (ja) ジャイロセンサおよび角速度検出方法
JP4983107B2 (ja) 慣性センサおよび慣性センサの製造方法
CN114518471A (zh) 物理量传感器、物理量传感器器件以及惯性测量装置
JP4466283B2 (ja) ジャイロセンサ
JP2015004546A (ja) 静電容量変化検出モジュール及びmemsセンサ
CN107082405B (zh) 一种mems器件结构
JP2014021188A (ja) 回転型アクチュエータ
WO2015194479A1 (ja) 共振周波数調整モジュール及びmemsセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814248

Country of ref document: EP

Kind code of ref document: A1