JP7238954B2 - 蛇行電極を有するmemsデバイス - Google Patents

蛇行電極を有するmemsデバイス Download PDF

Info

Publication number
JP7238954B2
JP7238954B2 JP2021207068A JP2021207068A JP7238954B2 JP 7238954 B2 JP7238954 B2 JP 7238954B2 JP 2021207068 A JP2021207068 A JP 2021207068A JP 2021207068 A JP2021207068 A JP 2021207068A JP 7238954 B2 JP7238954 B2 JP 7238954B2
Authority
JP
Japan
Prior art keywords
lateral
rotor
gap
stator
baseline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021207068A
Other languages
English (en)
Other versions
JP2022108717A (ja
Inventor
ハンヌ・ヴェステリネン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JP2022108717A publication Critical patent/JP2022108717A/ja
Application granted granted Critical
Publication of JP7238954B2 publication Critical patent/JP7238954B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/019Suspended structures, i.e. structures allowing a movement characterized by their profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0369Static structures characterized by their profile
    • B81B2203/0392Static structures characterized by their profile profiles not provided for in B81B2203/0376 - B81B2203/0384
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Description

本開示は、微小電気機械デバイスに関し、特に、周囲の固定構造に対して動くことができる可動質量要素を備えるデバイスに関する。本開示はさらに、この動きを測定するために可動質量要素上および固定構造上に作製することができる電極に関する。
微小電気機械(MEMS)デバイスは、多くの場合、ロータと呼ばれ得る可動質量要素を備える。ロータは、典型的には、ロータが固定構造に対して動くことを可能にする可撓性懸架装置によって固定構造から懸架される。固定構造は、ステータと呼ばれ得る。ロータの動きは、ステータ上の対応する細長い電極構造のセットと噛み合うロータ上の細長い電極構造のセットを含む容量性トランスデューサを用いて測定することができる。
図1aおよび図1bは、細長い電極を有する容量性トランスデューサを実装する2つの方法を示す。図は、ロータ電極111~113のセットを有するロータ11と、ステータ電極121~123のセットを有するステータ12とを示している。ロータ111の隣の矢印は、その運動方向(x方向)を示す。図1aでは、ロータ電極およびステータ電極は、ロータ11が動く方向に垂直な方向(y方向)に延在する。各ロータ電極/ステータ電極間の距離は、ロータが動くにつれてx方向に増減する。この測定では、容量性応答はロータの変位に高感度であるが、応答と変位との間の関係は線形ではない。
図1bでは、ロータ電極およびステータ電極は、ロータ11が動く方向(x方向)に延在する。図1cは、ロータがその静止位置にあるときの第1のロータ電極111および第1のステータ電極121の位置を示す。図1dは、ロータがその静止位置から左に距離Δxだけ動いたときの同じ電極の位置を示す。2つの電極間の静電容量は、x方向におけるそれらの重なりが増大すると増大する。この測定では、容量性応答と変位との間の関係は線形であるが、図1dで得られる静電容量の増大は、静止位置において測定される静電容量に対して非常に小さいことが多い。したがって、測定信号はあまり感受性ではない。
本開示の目的は、上記の不都合を軽減する装置を提供することである。
本開示の目的は、独立請求項に述べられている事項を特徴とする構成によって達成される。本開示の好ましい実施形態が、従属請求項に開示されている。
本開示は、蛇行形状を有するロータおよびステータおよびステータ電極を利用するという着想に基づく。適切な配置では、そのような電極を使用して、ロータの変位に対する感受性が高く、その変位に対する線形依存性も呈する容量性応答を測定することができる。
以下において、添付の図面を参照しながら、好ましい実施形態によって、本開示をより詳細に説明する。
細長い電極を用いて実装された容量性トランスデューサを示す図である。 細長い電極を用いて実装された容量性トランスデューサを示す図である。 ロータが動くときに静電容量がどのように変化するかを示す図である。 ロータが動くときに静電容量がどのように変化するかを示す図である。 ロータ電極およびステータ電極を示す図である。 ロータ電極およびステータ電極を示す図である。 ロータ電極およびステータ電極を示す図である。 ロータ電極およびステータ電極の蛇行が初期位置において部分的に位置整合している測定における主静電容量の変化を示す図である。 ロータ電極およびステータ電極の蛇行が初期位置において部分的に位置整合している測定における主静電容量の変化を示す図である。 ロータ電極およびステータ電極の蛇行が初期位置において完全に位置整合している測定における主静電容量の変化を示す図である。 ロータ電極およびステータ電極の蛇行が初期位置において完全に位置整合している測定における主静電容量の変化を示す図である。 浮遊容量成分を示す図である。 蛇行電極の設計オプションを示す図である。 蛇行電極の設計オプションを示す図である。 蛇行電極の設計オプションを示す図である。 蛇行ロータ電極が両側で蛇行ステータ電極に隣接している装置を示す図である。 蛇行ロータ電極が両側で蛇行ステータ電極に隣接している装置を示す図である。
本開示は、横軸および交差軸によって画定されるデバイス平面内にある可動ロータおよび固定ステータを備える微小電気機械デバイスについて説明する。交差軸は横軸に直交し、デバイスは、ロータの縁部とステータの縁部とがロータ-ステータ間隙によって互いに分離されている少なくとも1つの測定領域を備える。ロータ電極が、ロータ-ステータ間隙内でロータの縁部からステータに向かって延在する。第1のステータ電極が、ロータ-ステータ間隙内でステータの縁部からロータに向かって延在する。ロータ-ステータ間隙において、ロータ電極と第1のステータ電極とは隣接し、実質的に互いに平行である。
ロータ電極は、第1の横方向ベースライン上にある2つ以上の第1の横方向区画を含む蛇行電極であり、各第1の横方向区画は、第1の横方向間隙によって第1の横方向ベースライン上の隣接する第1の横方向区画から分離されている。
第1のステータ電極は、第2の横方向ベースライン上にある2つ以上の第2の横方向区画を含む蛇行電極であり、各第2の横方向区画は、第2の横方向間隙によって第2の横方向ベースライン上の隣接する第2の横方向区画から分離されている。少なくとも1つの第1の横方向間隙は、少なくとも1つの第2の横方向間隙に隣接し、交差方向において上記少なくとも1つの第2の横方向間隙と少なくとも部分的に位置整合される。
ロータ電極およびステータ電極は、曲がりくねった形状を有する折り畳まれた梁である。言い換えれば、これらの蛇行電極の各々は、連続する折り返しのセットを有する梁である。梁の折り畳みは、例えば、複数の相互に垂直な区画、すなわち交差方向区画によって互いに接続された横方向区画を含むことができる。この場合、第1の横方向ベースライン上にある横方向区画は、交差方向区画によって、異なる横方向ベースライン上にある横方向区画に接続される。それにより、第1のベースライン上の2つの横方向区画を互いに接合する接続構造は、それらの間に追加の横方向区画を有する2つの交差方向区画を含む。それによって、折り畳まれた梁の互いに垂直な部分は、矩形パターンを有する狭い蛇行電極を形成する。
しかしながら、梁の折り目および結果として生じる蛇行電極の折り返しは、必ずしも垂直である必要はない。正方形または長方形の折り畳みによって互いに接続される代わりに、同じ軸上にある横方向区画は、代替的に、下記により詳細に説明および例示されるように、他の何らかの幾何学的形状を有する接続構造と接続されてもよい。
一般的な測定および設計原理は、ロータ電極およびステータ電極の各セットにおける1つまたは2つの細長い電極のみを示す図を参照して下記に説明されるが、セットは、任意の数の電極を含むように拡張することができる。図示のロータ電極-ステータ電極対に適用される任意の原理は、同じ幾何学的形状で互いに隣接して配置される追加のロータ電極-ステータ電極対にも適用される。
図2aは、ロータ21およびステータ22を示す。ロータ電極211は、ロータ21の縁部219からステータ22に向かって延在しており、第1のステータ電極221は、ステータ22の縁部229からロータ21に向かって延在している。ロータ電極およびステータ電極は、蛇行形状を有する。横方向はx方向であり、交差方向はy方向である。ロータの縁部219は、ロータ-ステータ間隙25によってステータの縁部229から分離されている。
ロータ電極211は、第1の横方向ベースライン291上にある第1の横方向区画2111aおよび2111bを備える。2つの第1の横方向区画が示されているが、より多くの第1の横方向区画が使用されてもよい。第1の横方向区画の各対(2111a+2111b)は、第1の横方向間隙281によって第1の横方向ベースライン291上で互いに分離されている。各第1の横方向区画2111aは、第1の横方向区画2111aと第1の横方向区画2111bとの間に第1の横方向間隙281を残して、第1の横方向ベースライン291から外方に延在する第1の接続構造213によって、後続の第1の横方向区画2111bに接続される。これらの第1の接続構造213は、所望の第1の横方向間隙281によって第1の横方向区画を互いに分離するのに適した任意の形状およびサイズとすることができる。
第1のステータ電極221は、第2の横方向ベースライン292上にある第2の横方向区画2211aおよび2211bを備える。第2の横方向区画の各対(2211a+2211b)は、第2の横方向間隙282によって第2の横方向ベースライン292上で互いに分離されている。各第2の横方向区画2211aは、第2の横方向ベースライン292から外方に延在する第2の接続構造223によって後続する第2の横方向区画2211bに接続されている。これらの第2の接続構造223の形状も、所望の第2の横方向間隙282によって第2の横方向区画を互いに分離する限り、自由に選択することができる。
図2aは、ロータ211が初期位置にある状況を示す。本開示の任意の実施形態では、初期位置は、例えば、加速度計がx軸の方向にいかなる加速度も受けないときにロータが加速度計においてとる静止位置であってもよい。代替的に、ロータおよびステータがジャイロスコープにおいて使用される場合、ロータは、例えば、y軸の方向に線形主振動で駆動されてもよい。ロータは、ジャイロスコープがxy平面に垂直なz軸を中心とした回転を受けると、x軸の方向に振動し得る。この場合、初期位置は、ジャイロスコープがz軸を中心としたいかなる回転も受けないときのロータのx座標によって定義され得る。いずれの場合も、ロータ電極とステータ電極との間で静電容量測定を行うことができる。測定された静電容量は、x軸の方向、すなわち横方向におけるロータの初期位置からの変位を示す。「左」および「右」という用語は、本開示において、図の左側および右側に対応する2つの対向する横方向を指す。
図2aは、ロータ21がその初期位置にあるときに、少なくとも1つの第1の横方向間隙281が少なくとも1つの第2の横方向間隙282と交差方向に部分的に位置整合される配置を示す。これは、間隙の少なくとも1つの側(左側もしくは右側、または両側)の間に横方向のオフセットがあることを意味する。図2aは、間隙281および282の幅が等しく、第2の横方向間隙282の各側が第1の横方向間隙281の対応する側から同じ横方向オフセット距離Oだけオフセットされている配置を示す。
横方向間隙が部分的に位置整合される本開示の任意の実施形態では、部分的に位置整合された横方向間隙の各対は、第1の横方向間隙281の左側から第2の横方向間隙282の左側までの横方向距離(図2aのオフセット距離Oに対応する距離)が、第1の横方向間隙281の左側から第2の横方向間隙282の右側までの横方向距離(図2aにおいてDとして示される距離)よりも小さくなるように配置されてもよい。代替的または相補的に、第2の横方向間隙282の右側から第1の横方向間隙281の右側までの横方向距離(図2aには示さず)は、第2の横方向間隙282の右側から第1の横方向間隙281の左側までの横方向距離(図2aにDとして示される)よりも小さくてもよい。しかしながら、これらの距離間の関係は、代替的に反対であってもよい(図2aにおいてDがO未満であってもよい)。
第1の横方向間隙281および第2の横方向間隙282は、これらの間隙が部分的に位置整合されている場合、必ずしも同じ幅である必要はない。図2bは、幅が互いに異なり、第2の横方向間隙282の右側のみが第1の横方向間隙281の右側から横方向にオフセットされている代替的な構成を示す。2つの間隙の左側は互いに位置整合している。
ロータ21がその初期位置にあるときに、少なくとも1つの第1の横方向間隙281が、代替的に、少なくとも1つの第2の横方向間隙282と交差方向に完全に位置整合されてもよい。このオプションは図2cに示されている。この場合、第1の横方向間隙および第2の横方向間隙は同じ横方向幅を有し、2つの間隙の間に横方向のオフセットはない。間隙の左側および右側の両方が、互いに位置整合している。
静電容量測定の原理は、図3a~図3cを参照して説明され、参照符号31、32、311および321は、それぞれ図2a~図2cの参照符号21、22、211および221に対応する。
図3aは、ロータが初期位置にあるときのロータ電極311およびステータ電極321を示す。ロータ電極内の蛇行部は、ステータ電極上の対応する蛇行部から横方向オフセット距離Oだけオフセットされている。図3aのロータ電極とステータ電極との間の静電容量の主な成分は、互いに最も近い領域から生じる。これらの成分を矢印で示し、それらの総和が主静電容量として参照される。互いに直接隣接していない領域には、追加であるがより小さいが静電容量成分が生じる。これらの成分の総和は浮遊容量として参照される場合がある。
図3bは、ロータ31が初期位置から距離Δxだけ左に変位した状況を示す。ロータ電極311の蛇行とステータ電極312の蛇行とが、図3aに示される初期位置においてオフセット距離Oだけ互いにオフセットされていたという事実に起因して、主静電容量は、図3aよりも図3bの方が大きい。ロータ31のx方向への動きが、蛇行部をy軸の方向にほぼ位置整合させている。したがって、互いに最も近くに位置する横方向区画間の重なりが増大している。
蛇行部内のすべての横方向区画が主静電容量のさらなる増大に寄与することは重要である。これは、図1dに示す動きと概略的に比較することができ、図1cと比較して2つの追加の矢印のみで静電容量の増大が示されている。対照的に、図3bでは、蛇行電極内の各横方向区画は、図3aと比較して2つの追加の矢印で主静電容量の増大に寄与する。これにより、図3aの初期位置の元の12個の矢印は、図3bでは20個の矢印になっている。したがって、蛇行形状を有する電極は、図1dのように電極の先端だけでなく、図3bの蛇行の各折り返しにおいて容量面積が増大するため、線形であるとともに高感度でもある容量性応答を生成することができる。
感受性は、各電極内の横方向区画の数を増大させることによって、すなわち蛇行部の折り返し数を増大させることによって増大させることができる。しかしながら、いくつかの実際的な制約が観察されなければならない。図3a~図3bに示す配置構成では、蛇行形状およびそれらのオフセットは、予測される最大変位Δxmax(ここでは図3bに示すΔxにほぼ等しいと仮定する)が図3aのオフセット距離O以下になるように設計されている。これが当てはまらず、ロータ31がオフセット距離を超える距離だけ左に動く場合、隣接する蛇行部折り返し間の重なり(ひいては主静電容量)は、ロータ電極311が図3bに示されている位置よりもステータ電極321を過ぎてさらに動くときに、変位の関数として減少し始める。その場合、測定される静電容量値は変位に対する線形依存性を示さず、いくつかの静電容量値は複数の変位値に対応する。したがって、オフセットは、図2aおよび図2bならびに下記の図5aおよび図5bに示される実施形態において予測される最大変位を超えるべきである。
図3c~図3dは、図2cのように、第1の横方向間隙および第2の横方向間隙が初期位置において完全に位置整合しているときに実行することができる測定を示す。図3cは、ロータ電極およびステータ電極の蛇行曲線が交差方向(y方向)において互いに完全に位置整合している初期位置を示す。主静電容量は、図示の初期位置(20個の矢印で示す)において最大である。図3dは、ロータが初期位置から右へと動いた状況を示す。主静電容量は、12個の矢印しか残らないように減少している。ロータが左に動くと、対応する静電容量の減少が得られる。ロータ31の動きは、この実施形態では、初期位置からの右方向の動きまたは左方向の動きのいずれかに制限され得るが、これは、これらの2つの動きを容量測定において互いに区別することができないためである。
図3dでは、予測最大変位Δxmaxは、第1の横方向区画および第2の横方向区画の幅ならびに第1の横方向間隙および第2の横方向間隙の幅よりも小さくなければならない。これが当てはまらない場合、隣接する蛇行部間の重なり(ひいては主静電容量)は、変位の一次関数として減少しない。
図3eは、図3aと同じ初期位置にあるロータを示す。参照符号313および323は、それぞれ図2aの参照符号213および223に対応する。参照符号3111は、図2a~図2cの参照符号2111aおよび2111bに対応し、参照符号3211は、2211aおよび2211bに対応する。ここで、ロータ電極と第1のステータ電極との間の矢印は、浮遊容量に寄与する成分を示している。これらは、任意の第1の横方向区画3111または第2の横方向区画3211と、対向する接続区画313/323との間の静電容量、互いに隣接していない第1の横方向区画と第2の横方向区画との間の静電容量、ならびに対向する接続区画313/323間の静電容量を含み得る。浮遊容量の大きさは、ロータ電極とステータ電極との間の距離、ならびにそれらの幾何学的形状および寸法に依存する。
測定される静電容量は、常に主静電容量と浮遊容量との総和であり、浮遊容量は、一般に、変位に対する完全に線形な依存性を示さない。しかしながら、電極が互いに最も近い領域が間の静電容量に最も寄与するため、主静電容量は浮遊容量よりもはるかに大きくなり得る。浮遊容量が、測定される静電容量に及ぼす影響も、適切な電極設計によって最小限に抑えることができる。
図4a~図4cは、電極設計のためのいくつかのオプションを示す。参照符号41、42、411、419、421、413、423、429、481、482、491および492は、それぞれ図2a~図2cの参照符号21、22、211、219、221、213、223、229、281、282、291および292に対応する。参照符号4111は、図2a~図2cの参照符号2111aおよび2111bに対応し、参照符号4211は、2211aおよび2211bに対応する。
図4aは、4つの第1の横方向区画4111と、4つの第2の横方向区画4211と、3つの第1の横方向間隙481と、3つの第2の横方向間隙482とを有するロータ電極を示す。図は、その初期位置にあるロータを示す。各第1の横方向間隙481は、図4aでは、同じ横方向オフセット距離だけ隣接する第2の横方向間隙482から横方向にオフセットされている。しかしながら、横方向オフセット距離は、ロータの予測される最大変位が運動方向の最小横方向オフセット未満である限り、第1の横方向間隙および第2の横方向間隙の各対について必ずしも等しい必要はない。
各第1の横方向間隙および各第2の横方向間隙は、図4aが示すように、同じ横方向幅を有してもよい。代替的に、図4bが示すように、いくつかの第1の横方向間隙または第2の横方向間隙の幅は異なっていてもよい。各第1の横方向区画および各第2の横方向区画は、図4bが示すように、同じ横方向幅を有してもよい。代替的に、図4aが示すように、いくつかの第1の横方向区画は、他の第1の横方向区画の幅およびいくつかの第2の横方向区画の幅の両方と異なる幅を有してもよい。
ロータ電極は、ロータの縁部419に取り付けられた別個の基部区画を有してもよく、第1の横方向区画4111および第1の接続構造413は、この基部区画に交互に直列に接続されてもよい。第1のステータ電極は、第2の横方向区画4211および第2の接続構造423が交互に直列に接続される対応する基部区画を有することができる。これらの基部区画の形状およびサイズは、第1の横方向区画および第2の横方向区画の形状およびサイズとは異なってもよい。基部区画は、図4aには示されていない。
第1の横方向間隙および第2の横方向間隙の数は、必ずしも等しくなくてもよく、各第1の横方向間隙481は、対応する第2の横方向間隙482と位置整合していなくてもよい。これは、第1のステータ電極上の第2の横方向間隙がロータ電極上の第1の横方向間隙481bに隣接していない図4cに示されている。第1の横方向区画4111a~4111dの数は4つであるが、第2の横方向区画4111a~4111cの数は3つである。それにもかかわらず、ロータが左に動き、対4111a+4211a、4111b+4211bおよび4111c+4211cの間の重なりが増大すると、ロータ電極411と第1のステータ電極421との間の静電容量が増大する。追加の第1の横方向区画4111dおよび追加の第1の横方向間隙481bは、ロータが左に動くときに長い第2の横方向区画4211と完全に整列したままであり、したがって、それらは静電容量の変化に寄与しない。図4cはまた、対応する第1の横方向間隙481aおよび481cからの2つの第2の横方向間隙482aおよび482bの横方向オフセットOおよびOが初期位置において等しくないデバイスを示す。
図5aは、ロータ電極が、第3の横方向ベースライン593上にある2つ以上の第3の横方向区画5112をさらに備えるデバイスを示す。各第3の横方向区画5112は、第3の横方向ベースライン593上で第3の横方向間隙583によって、隣接する第3の横方向区画5112から分離されている。
第2のステータ電極522が、ロータ-ステータ間隙内でステータ52の縁部からロータ51に向かって延在する。ロータ-ステータ間隙において、ロータ電極511と第2のステータ電極522とは隣接し、実質的に互いに平行である。
第2のステータ電極522は、第4の横方向ベースライン594上にある2つ以上の第4の横方向区画5221を備える蛇行電極である。各第4の横方向区画5221は、第4の横方向ベースライン594上で第4の横方向間隙584によって、隣接する第4の横方向区画5221から分離されている。第2のステータ電極は、曲がりくねった形状を有する折り畳まれた梁である。
第1の横方向ベースライン591は、第2の横方向ベースライン592と第3の横方向ベースライン593との間にある。第3の横方向ベースライン593は、第1の横方向ベースライン591と第4の横方向ベースライン594との間にある。
各第3の横方向間隙583は、第4の横方向間隙584のうちの1つに隣接している。各第3の横方向間隙583は、交差方向において上記第4の横方向間隙584と少なくとも部分的に位置整合される。すべての第3の横方向間隙583および第4の横方向間隙584の横方向幅は、第1の横方向間隙581および第2の横方向間隙582の横方向幅と等しい。2つ以上の第1の横方向区画5111、第2の横方向区画5211、第3の横方向区画5112および第4の第2の横方向区画5221のすべての幅も等しい。
図5aのロータ電極上の各接続構造は、隣接する第1の横方向区画5111の端部に取り付けられた5131などの2つの交差方向区画を含む。ロータ電極上の各接続構造はまた、2つの交差方向区画5131の間に延在する第3の横方向区画5112を備える。第1のステータ電極521上の接続構造は、図2aと同じとすることができ、同様の接続構造を第2のステータ電極522に利用することができる。しかしながら、図5aは、第1のステータ電極および第2のステータ電極上の接続構造が、追加の横方向区画(5212および5222など)によって互いに接合された2つの交差方向区画(5231および5232など)を含む電極を示す。
これらの追加の横方向区画の横方向幅は、第1の横方向区画、第2の横方向区画、第3の横方向区画、および第4の横方向区画の横方向幅に等しくてもよい。さらに、交差方向区画5131、5231、および5232の交差方向長は、すべての横方向区画の横方向幅に等しくてもよい。これにより、図5aに示す正方形の蛇行部が得られ、すべての横方向区画間の間隙は同じ幅を有する。
図2aのように、図5aの各第1の横方向間隙581は、初期位置において第2の横方向間隙582と少なくとも部分的に位置整合される。さらに、各第3の横方向間隙583は、初期位置において第4の横方向間隙584と少なくとも部分的に位置整合される。これらの位置整合の各々は、図2cもしくは図3cのように完全であってもよく、または図2a~または図2cのように部分的であってもよい。
前述のように、部分的な位置整合において、図5aにおける各第1の横方向間隙581は、同じ横方向オフセット距離Oだけ対応する第2の横方向間隙582から横方向にオフセットされている。さらに、各第3の横方向間隙583は、対応する第4の横方向間隙584から同じ横方向オフセット距離Oだけ横方向にオフセットされてもよい。完全な位置整合では、各第3の横方向間隙583は、初期位置において各第4の横方向間隙584と完全に位置整合され、各第1の横方向間隙581は、各第2の横方向間隙582と完全に位置整合される。
上述したように、ロータ/ステータの縁部に最も近いロータ/ステータ電極の部分は、基部区画と呼ばれる場合がある。図5aは、第1の横方向区画5111、第2の横方向区画5211、第3の横方向区画5111および第4の横方向区画5221よりも長い基部区画5113、5213および5223を示す。
図5bは、第1の横方向区画5111、第2の横方向区画5211、第3の横方向区画5111および第4の横方向区画5221の横方向幅がすべて等しいが、交差方向区画5131、5231および5232の交差方向長が横方向区画の横方向幅よりも大きい代替構成を示す。これにより、図に示す矩形形状の蛇行部が生じる。例えば、ロータ電極上の交差方向区画がステータ電極上の交差方向区画よりも長くなるように、またはその逆になるように、図5aおよび図5bに示す実施形態を組み合わせることもできる。
図5aおよび図5bが示すように、第1のステータ電極521の蛇行パターンが第2のステータ電極522の蛇行パターンと交差方向に位置整合すると、蛇行ロータ電極の両側5111/5112がロータ電極とステータ電極との間の主静電容量に寄与する。さらに、これらの図に示す正方形または長方形の蛇行部では、浮遊容量の一部(図3eのy軸に平行な静電容量の矢印に対応する部分)は、変位に対する線形依存性を示す。ロータおよびステータ電極の数をさらに増やすことができ、すべての追加のロータ電極およびステータ電極の蛇行パターンは、図示のロータ電極およびステータ電極と交差方向に完全に位置整合することができる。追加のロータ電極/ステータ電極蛇行部(図示の蛇行部に関連する)における小さいオフセットも可能である。本開示の任意の実施形態では、微小電気機械デバイスは、ロータ-ステータ間隙内でロータの縁部からステータに向かって延在する蛇行ロータ電極のセットと、ロータ-ステータ間隙内でステータの縁部からロータに向かって延在する蛇行ステータ電極の対応するセットとを備えることができる。
蛇行ロータ電極のセットは、蛇行ステータ電極のセットと噛み合うことができる。各ロータ電極から2つの隣接するステータ電極までの交差方向距離は等しくてもよい。言い換えれば、ベースライン591と592との間の交差方向距離は、図5aのベースライン593と594との間の交差方向距離に等しくてもよく、ベースライン595および596は、次のロータ電極(図には示されていない)のベースラインから同じ交差方向距離だけ分離されてもよい。
代替的に、ロータ電極およびステータ電極は、各ロータ電極から一方の側のステータ電極までの第1の交差方向距離(例えば、下方の電極までの距離、すなわち図5aの591と592との間の距離)がLであり、同じロータ電極から他方の側のステータ電極までの第2の交差方向距離(上方の電極までの距離、すなわち593と594との間の距離)がLであるように、対に編成されてもよい。距離Lは、Lと異なってもよいが、各ロータ電極は、同じ第1の交差方向距離Lおよび第2の交差方向距離Lだけ隣接するステータ電極から分離されてもよい。
本開示に提示されるすべての実施形態では、蛇行ロータ電極および蛇行ステータ電極は、横方向間隙によって分離された横方向区画を含む。いくつかの実施形態では、ロータ電極の横方向区画は、初期位置においてステータ電極の横方向区画と部分的に位置整合され、それらの位置整合の程度は、ロータが変位すると増大する。ロータ電極とステータ電極との間の静電容量もまた、変位の関数として増大する。他の実施形態では、ロータ電極の横方向区画は、初期位置においてステータ電極の横方向区画と完全に位置整合され、それらの位置整合の程度は、ロータが変位すると低減する。ロータ電極とステータ電極との間の静電容量もまた、変位の関数として低減する。

Claims (6)

  1. 横軸および交差軸によって画定されるデバイス平面内にある可動ロータおよび固定ステータを備える微小電気機械デバイスであって、以て、前記交差軸は前記横軸に直交し、前記デバイスは、前記ロータの縁部と前記ステータの縁部とがロータ-ステータ間隙によって互いに分離されている少なくとも1つの測定領域を備え、ロータ電極が、前記ロータ-ステータ間隙内で前記ロータの縁部から前記ステータに向かって延在しており、第1のステータ電極が、前記ロータ-ステータ間隙内で前記ステータの縁部から前記ロータに向かって延在しており、前記ロータ-ステータ間隙において、前記ロータ電極と前記第1のステータ電極とは隣接し、実質的に互いに平行である微小電気機械デバイスにおいて、
    前記ロータ電極は、第1の横方向ベースライン上にある2つ以上の第1の横方向区画を含む蛇行電極であり、各第1の横方向区画は、第1の横方向間隙によって前記第1の横方向ベースライン上の隣接する前記第1の横方向区画から分離されており、前記ロータ電極は曲がりくねった形状を有する折り畳まれた梁であり、
    前記第1のステータ電極は、第2の横方向ベースライン上にある2つ以上の第2の横方向区画を含む蛇行電極であり、各第2の横方向区画は、第2の横方向間隙によって前記第2の横方向ベースライン上の隣接する前記第2の横方向区画から分離されており、前記ステータ電極は曲がりくねった形状を有する折り畳まれた梁であり、
    少なくとも1つの第1の横方向間隙は、少なくとも1つの第2の横方向間隙に隣接し、前記交差方向において前記少なくとも1つの第2の横方向間隙と少なくとも部分的に位置整合されていることを特徴とする、微小電気機械デバイス。
  2. 前記ロータが初期位置にあるときに、前記少なくとも1つの第1の横方向間隙が前記少なくとも1つの第2の横方向間隙と前記交差方向に部分的に位置整合されることを特徴とする、請求項1に記載の微小電気機械デバイス。
  3. 前記ロータが初期位置にあるときに、前記少なくとも1つの第1の横方向間隙が前記少なくとも1つの第2の横方向間隙と前記交差方向に完全に位置整合されることを特徴とする、請求項1に記載の微小電気機械デバイス。
  4. 各第1の横方向間隙および各第2の横方向間隙が同じ横方向幅を有することを特徴とする、請求項1~3のいずれか一項に記載の微小電気機械デバイス。
  5. 各第1の横方向区画および各第2の横方向区画が同じ横方向幅を有することを特徴とする、請求項1~4のいずれか一項に記載の微小電気機械デバイス。
  6. 前記ロータ電極は、第3の横方向ベースライン上にある2つ以上の第3の横方向区画をさらに備え、各第3の横方向区画は、前記第3の横方向ベースライン上で第3の横方向間隙によって、隣接する前記第3の横方向区画から分離されており、
    第2のステータ電極が、前記ロータ-ステータ間隙内で前記ステータの縁部から前記ロータに向かって延在しており、結果、前記ロータ-ステータ間隙において、前記ロータ電極と前記第2のステータ電極とは隣接し、実質的に互いに平行であり、
    前記第2のステータ電極は、第4の横方向ベースライン上にある2つ以上の第4の横方向区画を備える蛇行電極であり、各第4の横方向区画は、前記第4の横方向ベースライン上で第4の横方向間隙によって、隣接する前記第4の横方向区画から分離されており、前記第2のステータ電極は、曲がりくねった形状を有する折り畳まれた梁であり、
    前記第1の横方向ベースラインは、前記第2の横方向ベースラインと前記第3の横方向ベースラインとの間にあり、前記第3の横方向ベースラインは、前記第1の横方向ベースラインと前記第4の横方向ベースラインとの間にあり、
    各第3の横方向間隙は、前記第4の横方向間隙のうちの1つに隣接しており、各第3の横方向間隙は、前記交差方向において前記第4の横方向間隙と少なくとも部分的に位置整合されており、すべての第3の横方向間隙および第4の横方向間隙の横方向幅は、前記第1の横方向間隙および前記第2の横方向間隙の横方向幅と等しく、2つ以上の前記第1の横方向区画、前記第2の横方向区画、前記第3の横方向区画および前記第4の第2の横方向区画のすべての横方向幅も等しいことを特徴とする、請求項5に記載の微小電気機械デバイス。
JP2021207068A 2021-01-13 2021-12-21 蛇行電極を有するmemsデバイス Active JP7238954B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20215029 2021-01-13
FI20215029 2021-01-13

Publications (2)

Publication Number Publication Date
JP2022108717A JP2022108717A (ja) 2022-07-26
JP7238954B2 true JP7238954B2 (ja) 2023-03-14

Family

ID=82116649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021207068A Active JP7238954B2 (ja) 2021-01-13 2021-12-21 蛇行電極を有するmemsデバイス

Country Status (3)

Country Link
US (1) US20220219969A1 (ja)
JP (1) JP7238954B2 (ja)
DE (1) DE102022200188A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266777A (ja) 1999-03-16 2000-09-29 Ritsumeikan 静電容量型センサ
JP2004170260A (ja) 2002-11-20 2004-06-17 Denso Corp 容量式加速度センサ
WO2014203903A1 (ja) 2013-06-19 2014-12-24 ヤマハ株式会社 共振周波数調整モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069852A (ja) * 2003-08-25 2005-03-17 Seiko Instruments Inc 容量型力学量センサ
FR2889371A1 (fr) * 2005-07-29 2007-02-02 Commissariat Energie Atomique Dispositif de conversion de l'energie mecanique en energie electrique par cycle de charges et de decharges electriques sur les peignes d'un condensateur
JP5772873B2 (ja) * 2012-06-13 2015-09-02 株式会社デンソー 静電容量式物理量センサ
WO2014092060A1 (ja) * 2012-12-10 2014-06-19 株式会社村田製作所 センサ素子、および複合センサ
US10234477B2 (en) * 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266777A (ja) 1999-03-16 2000-09-29 Ritsumeikan 静電容量型センサ
JP2004170260A (ja) 2002-11-20 2004-06-17 Denso Corp 容量式加速度センサ
WO2014203903A1 (ja) 2013-06-19 2014-12-24 ヤマハ株式会社 共振周波数調整モジュール

Also Published As

Publication number Publication date
JP2022108717A (ja) 2022-07-26
US20220219969A1 (en) 2022-07-14
DE102022200188A1 (de) 2022-07-14

Similar Documents

Publication Publication Date Title
US6282960B1 (en) Micromachined device with enhanced dimensional control
US8333113B2 (en) Triaxial acceleration sensor
JP6366170B2 (ja) 多軸速度センサ
CN107406250B (zh) 微机电电容式传感器结构和装置
EP1263123A2 (en) Mems block with flexure coupling
JP2018146330A (ja) 加速度センサ
WO2013179647A2 (ja) 物理量センサ
US20140144232A1 (en) Spring for microelectromechanical systems (mems) device
CN110426534B (zh) 具有单个检验质量块和多感测轴能力的惯性传感器
US20140230549A1 (en) Spring system for mems device
WO2014083843A1 (ja) ジャイロセンサおよびジャイロセンサを有する複合センサ
CN110426533B (zh) 具有增强的扭转刚度的弯曲部和并有其的mems装置
JP4905574B2 (ja) 可動部分を備えている積層構造体
US8459115B2 (en) MEMS accelerometer with enhanced structural strength
CN112703406A (zh) 灵敏度提高的z-轴加速度计
JP2007298385A (ja) 静電容量式センサ
JP7238954B2 (ja) 蛇行電極を有するmemsデバイス
JP6070113B2 (ja) 加速度センサ
US10520526B2 (en) Folded tether structure for MEMS sensor devices
JP5898571B2 (ja) Memsセンサ
CN107963606B (zh) 用于传感器元件的微机械弹簧
JP5799942B2 (ja) 加速度センサ
JP2005098891A (ja) 静電容量式センサ
JP6070112B2 (ja) 加速度センサ
JP6070111B2 (ja) 加速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150