WO2014194788A1 - P 型可逆相变高性能热电材料及其制备方法 - Google Patents

P 型可逆相变高性能热电材料及其制备方法 Download PDF

Info

Publication number
WO2014194788A1
WO2014194788A1 PCT/CN2014/078764 CN2014078764W WO2014194788A1 WO 2014194788 A1 WO2014194788 A1 WO 2014194788A1 CN 2014078764 W CN2014078764 W CN 2014078764W WO 2014194788 A1 WO2014194788 A1 WO 2014194788A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thermoelectric material
phase change
thermoelectric
reversible phase
Prior art date
Application number
PCT/CN2014/078764
Other languages
English (en)
French (fr)
Inventor
史迅
刘灰礼
陈立东
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to EP14807559.1A priority Critical patent/EP3006397B1/en
Priority to US14/895,882 priority patent/US10177295B2/en
Priority to JP2016517142A priority patent/JP6266099B2/ja
Publication of WO2014194788A1 publication Critical patent/WO2014194788A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/06Iodides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention relates to the field of thermoelectric materials, in particular to a novel reversible phase change high performance thermoelectric material, in particular to a P type copper selenide based thermoelectric material and a preparation method thereof.
  • Thermoelectric conversion technology is a technology that directly converts thermal energy and electrical energy using semiconductor materials.
  • the principle is based on the material of Seebeck (Seebeck) Effect and Peltier The effect is to achieve thermoelectric power generation and thermoelectric cooling.
  • the technology has the advantages of no pollution, no mechanical transmission, no noise, high reliability, etc., and can be widely applied in the fields of recycling of industrial waste heat, space special power supply, micro refrigeration device and the like. In recent years, due to the increasingly serious energy shortage and environmental pollution problems, research on thermoelectric materials has received more and more attention.
  • thermoelectric materials The optimal energy efficiency of thermoelectric materials is related to the high and low temperature of the work and the intrinsic properties of the material.
  • thermoelectric materials in the field of refrigeration is mainly micro device refrigeration.
  • the performance parameters describing the thermoelectric cooler mainly include cooling efficiency, maximum cooling capacity and maximum temperature difference.
  • the cooling efficiency is the ratio of the cooling capacity to the input electrical energy.
  • the maximum cooling efficiency is: Where T c and T h are the temperatures of the hot and cold ends, respectively. For the average temperature of both, Z ⁇ is the average thermoelectric figure of the thermoelectric cooler.
  • the maximum cooling capacity is the amount of cooling when the device is operating at peak current and the temperature difference across the device is zero:
  • S P, S n is the Seebeck coefficient refrigerator P type and N-type material, R is the resistance of the cooling device.
  • the temperature difference between the hot and cold ends is: I is the input current and k is the total thermal conductivity of the two arms of the device.
  • thermoelectric cooler operates at the corresponding optimum current, the temperature difference that can be established between the hot and cold ends of the device is the maximum temperature difference:
  • the maximum temperature difference is only related to the device's thermoelectric figure of merit ZT.
  • thermoelectric materials Finding and pursuing new thermoelectric materials with high ZT values is one of the most important goals of science and technology workers.
  • researchers have proposed and discovered a series of new materials, including the cage compound skutterudite, clathrate system based on the concept of phonon glass-electron crystal, oxide with layered structure. System, rock salt structure lead telluride material, wide band gap diamond-like structure system, liquid-like Cu 2 Se material, and low-dimensional structural materials including nanowires, superlattices, thin films, and nanostructured bulk materials Wait.
  • researchers have also explored new methods and means to improve the performance of thermoelectric materials in recent years.
  • the structure realizes two-dimensional plane electron waves in the bulk material, and the thermoelectric figure of merit can be greatly improved by filling the single element or multi-element in the cage structure compound and reducing the phonon mode according to the liquid-like effect.
  • the realization of these new materials and new methods has led to a significant increase in the ZT value of the current bulk materials, with a maximum of more than 1.5 and an energy conversion efficiency of more than 10%.
  • these new materials are all single structural systems, and there will be no structural changes in the application temperature range, which limits the development of a wider range of material systems to some extent.
  • thermoelectric figure of merit near room temperature is relatively simple, and the current commercial application is mainly bismuth-based bismuth-based materials, for example, see CN101273474A.
  • the preparation cost of the material is high, and the preparation method is difficult.
  • the thermoelectric value near room temperature is about 1.0, and the refrigeration efficiency is about 5%, which limits the wide application of the thermoelectric conversion technology.
  • a multi-component thermoelectric alloy has been researched and developed as a novel thermoelectric material.
  • CN101823702A discloses a Cu 2 CdSnSe 4 semiconductor nanocrystal.
  • CN102674270A discloses a method for preparing a Cu 2 Se thermoelectric material by a low temperature solid phase reaction.
  • the chemical composition of the Cu 2 Se compound is simple, and there is a reversible phase transition around 400K.
  • the high temperature phase is a cubic anti-fluorite structure, and the copper ions move in the main lattice octahedron and tetrahedral space to have fast ion-conducting properties.
  • Cu 2 Se is also a widely used fast ion conductor.
  • the room temperature phase structure is complex, with a complex monoclinic structure with twice or three times the period along the [010] direction.
  • the copper atoms are compressed between the primary lattice selenium atoms, and the selenium atoms are combined with the selenium atoms by Van der Waals forces, so that the room temperature phase material exhibits a layered structure.
  • part of the copper ions between the selenium atoms are transferred to the vacuum layer, and the structure is transformed into a stable cubic structure.
  • the transfer of copper ions brings structural fluctuations, which affect the changes of the electronic structure.
  • the phase change process brings about additional scattering of carriers, greatly increasing the Seebeck coefficient of the material and reducing the heat.
  • the conductivity further improves the thermal power figure ZT of the material and has a good industrial application prospect.
  • the introduction of phase change material systems into thermoelectric materials has increased the material system of thermoelectric research objects, and also provided a higher performance material realization possibility, which is of great significance for the research of thermoelectric materials.
  • thermoelectric material is a doped I-series copper-based thermoelectric material, and its chemical composition is Cu 2 Se 1-x I x , wherein 0 ⁇ x ⁇ 0.08 , preferably 0.04 ⁇ x ⁇ 0.08 .
  • thermoelectric material provided by the present invention has a phase transition temperature of 300 to 390 K, for example, 350 to 380 K.
  • thermoelectric material provided by the invention has a ZT value of 0.1 or more at room temperature and a ZT value of 0.8 in the phase transition temperature region thereof. Above, it shows excellent thermoelectric figure of merit.
  • thermoelectric material compound provided by the present invention can also form a sandwich layer structure having a thickness of 20 to 50 nm. Its low-dimensional structure also contributes to ZT The value is increased.
  • the present invention provides a method of preparing the above P-type reversible phase change high performance thermoelectric material, comprising: by molar ratio (2-x): (1-x): x Weigh copper elemental substance, selenium metal element and cuprous iodide and vacuum-package it; heat the section to 1150 to 1170 °C for 12 to 24 hours; The temperature is gradually reduced to 600 to 700 °C for annealing for 5 to 7 days, then cooled to room temperature with the furnace; and pressure sintering is performed at 400 to 450 °C.
  • the stepwise heating comprises: first raising the temperature to a temperature of 650 to 700 ° C at a heating rate of 2.5 to 5 ° C /min. , constant temperature for 1 ⁇ 2 hours; then at a heating rate of 0.8 ⁇ 2 °C / min, the temperature is raised to 1150 ⁇ 1170 °C.
  • the step of cooling comprises: first slowly cooling to 1000 to 1120 ° C at a rate of 5 to 10 ° C / hour. , constant temperature 12 ⁇ 24 hours; then slowly reduce the temperature to 600 ⁇ 700 °C at a cooling rate of 5 ⁇ 10 °C / hour.
  • the vacuum encapsulation is preferably carried out under an inert gas such as argon.
  • the vacuum package can be packaged in plasma or flame gun.
  • the pressure sintering may be performed by a spark plasma sintering method.
  • Pressurizing pressure can be 50 ⁇ 65Mpa, sintering time can be 5 ⁇ 10 minutes.
  • the preparation method of the invention has the advantages of simple raw materials, low cost, simple process flow, high controllability and good repeatability, and is suitable for scale production.
  • the thermoelectric material Cu 2 Se 1-x I x compound prepared by the method of the invention has a high Seebeck coefficient, high electrical conductivity and low thermal conductivity, and has high thermoelectric figure of merit and energy conversion efficiency, for example, P type provided by the invention
  • the cooling performance of Cu 2 Se 1-x I x and N type Yb filled skutterudite thermoelectric materials, the temperature difference of the phase change zone between the same current is increased by more than 20% than that of the normal phase.
  • thermoelectric material compound provided by the invention has a phase transition between 300 and 390K in a lower temperature range, and is a reversible phase change, and has a high thermoelectric value in the phase change region, and the micro device is cooled near the room temperature, especially an electronic industrial device. , CPU cooling and other aspects have excellent industrial application prospects.
  • FIG. 1 is a schematic view showing the preparation flow of an exemplary thermoelectric material of the present invention.
  • thermoelectric device 2 is a schematic view showing a P-type Cu 2 Se 1-x I x and N-type Yb 0.3 Co 3 Sb 12 single pair thermoelectric device of the present invention.
  • Fig. 3A shows a scanning electron micrograph of a Cu 2 Se compound in Example 1.
  • 3B shows a high resolution scanning electron microscope image of the Cu 2 Se compound in Example 1.
  • Figure 3C shows a scanning electron microscope image of an example 2 thermoelectric material of the present invention.
  • Figure 3D shows a high resolution scanning electron microscope image of an example 2 thermoelectric material of the present invention.
  • Fig. 4 is a graph showing the change in the thermoelectric figure of merit ZT of the Cu 2 Se compound in the phase change region with temperature in Example 1.
  • Fig. 5 is a graph showing the change in the thermoelectric figure of merit ZT of the Cu 2 Se 0.96 I 0.04 compound in the phase change region as a function of temperature in Example 2.
  • Fig. 6 is a graph showing the change in the thermoelectric figure of merit ZT of the Cu 2 Se 0.92 I 0.08 compound in the phase change region with respect to temperature in Example 3.
  • Figure 7 is a graph showing the refrigeration performance of the P-type Cu 2 Se and N-type Yb 0.3 Co 3 Sb 12 single-pair thermoelectric devices of the present invention.
  • Fig. 8 is a graph showing the refrigeration performance of the P-type Cu 2 Se 1-x I x and N-type Yb 0.3 Co 3 Sb 12 single-pair thermoelectric devices of the present invention.
  • thermoelectric material compound Cu 2 Se 1-x I x ( 0 ⁇ x ⁇ 0.08 ).
  • the compound synthesized by the present invention is Cu 2 Se 1-x I x and is composed of copper, selenium and iodine elements, 0 ⁇ x ⁇ 0.08 .
  • the preparation process of the invention is realized by vacuum encapsulation, melting, slow cooling and annealing processes, see FIG. It shows a schematic diagram of the preparation process of the thermoelectric material of the present invention.
  • the invention adopts copper and selenium pure metal element and iodine compound (for example, cuprous iodide) as starting materials, respectively adopting pure element copper (99.999%) and selenium ( 99.999%) Elemental and copper iodide compound (99.98%) are prepared with abundant raw materials and easy to obtain.
  • First, according to the specified molar ratio (2-x): (1-x): x The copper metal element, the selenium metal element and the cuprous iodide were weighed and vacuum-packed.
  • the vacuum package can be vacuumed in a glove box or externally under the protection of an inert gas such as argon. It can be packaged by plasma or flame gun.
  • the quartz tube is vacuumed during packaging to maintain the internal pressure. 1-10000Pa. Copper and selenium can be directly vacuum-packed in a quartz tube, or copper and selenium can be first placed in a pyrolytic boron nitride crucible (PBN) and then encapsulated in a quartz tube.
  • PBN pyrolytic boron nitride crucible
  • the high temperature melting treatment can then be carried out, and the melting process employed in the preparation of the present invention is carried out in a box type melting furnace.
  • the heating rate is raised to 650 °C -700 °C, constant temperature for 1-2 hours; then at a heating rate of 0.8 - 2 °C /min, the temperature is raised to 1150 °C -1170 °C , constant temperature melting for 12-24 hours; then slowly cool down to 1000 °C -1120 °C at a rate of 5-10 ° C / hour, constant temperature 12-24 hours; then 5-10 ° C /
  • the hourly cooling rate is slowly cooled to 600 °C -700 °C, and the temperature is annealed for 5-7 days; finally, it is naturally cooled to room temperature with the furnace temperature.
  • the annealed block is ground to a powder and then pressure sintered.
  • Sintering mode selective discharge plasma sintering SPS
  • Sintering temperature is 450 °C -500 °C
  • sintering pressure is 50-65MPa
  • sintering time 5-10 Minutes.
  • Sintering results in a dense block.
  • the compound prepared at room temperature by scanning electron microscopy showed a thickness of about several tens of nanometers (20 to 50 nm).
  • the sandwich layer structure which is mainly small nanocrystals and nano defects in this material under high-resolution electron microscopy, such as dislocations, twins, etc. (see Figures 3C and 3D).
  • the single-pair refrigeration test device prepared by the invention selects P-type Cu 2 Se 1-x I x and N-type Yb-filled skutterudite thermoelectric materials (Yb 0.3 Co 3 Sb 12 ), and is connected by ⁇ -type design (Fig. 2). Form a single pair of refrigeration test devices.
  • a nickel piece with a thickness of 0.2 mm was selected as the baffle, and a copper block of 10 mm ⁇ 10 mm ⁇ 6 mm was selected as the hot end heat absorbing electrode.
  • Cooling device for a single test of the P-type thermoelectric material prepared according to the present invention Cu 2 Se 1-x I x dimension of 3mm ⁇ 3mm ⁇ 1mm, size of the N-type thermoelectric material Yb 0.3 Co 3 Sb 12 is 1mm ⁇ 1mm ⁇ 1mm.
  • the single-pair refrigeration test device prepared by the invention selects the method of electroplating nickel on the surface of the P-type Cu 2 Se 1-x I x and N-type Yb 0.3 Co 3 Sb 12 samples, and is connected to the baffle and the hot end heat absorption by soldering. electrode. Referring to FIG.
  • thermoelectric devices of the present invention there is shown a graph showing the refrigeration performance of the P-type Cu 2 Se 1-x I x and N-type Yb 0.3 Co 3 Sb 12 single-pair thermoelectric devices of the present invention, and the phase difference zone cooling temperature difference is compared with the phase change and the room temperature is cooled. The temperature difference increases.
  • the raw materials used in the invention are cheap, the preparation cost is low, the process flow is simple, the controllability is high, and the repeatability is good.
  • the material provided by the invention has a high Seebeck coefficient, high electrical conductivity and very low thermal conductivity.
  • the pure metal materials Cu and Se were charged into a pyrolytic boron nitride (PBN) crucible in a molar ratio of 2:1, and then loaded into a quartz tube.
  • the quartz tube was evacuated and passed through a protective Ar gas for 3 times, and then packaged in a glove box with a plasma flame or with a gas flame. A small amount of Ar gas was introduced into the quartz tube as an inert atmosphere to protect the raw material.
  • the raw material is heated to 650 °C -700 °C at a heating rate of 2.5 - 5 °C /min, and the temperature is 1-2 hours; then, at a heating rate of 0.8 - 2 °C /min, the temperature is raised to 1150 °C - 1170 °C, and the temperature is melted 12 -24 hours; then slowly cool down to 1000 °C -1120 °C at a rate of 5-10 °C / hour, constant temperature 12-24 hours; then slowly cool down to 600 °C -700 °C at a cooling rate of 5-10 °C / hour, constant temperature 5-7 days; finally cooled to room temperature with the furnace temperature.
  • the finally obtained bulk product is ground into a powder, and then subjected to spark plasma sintering at a sintering temperature of 400-450 ° C, a sintering pressure of 50-65 MPa, and a sintering time of 5-10 minutes to prepare a dense block with a density of 97%.
  • the field emission electron micrograph shows that Cu 2 Se is a sandwich layer structure with a thickness of several tens of nanometers at room temperature.
  • the TEM photo shows that there are no large crystal grains, and there are many nanocrystals and nano defects in the material, such as dislocations and defects.
  • Such a complex structure can further enhance the thermoelectric properties, such as crystals (Figs. 3A and 3B).
  • Thermoelectric performance measurements indicate that the material has a phase change at 400K attachment and is a reversible phase change.
  • the material In the phase change interval, the material has a high Seebeck coefficient and excellent electrical conductivity, and the material has a good power factor.
  • the material has a very low thermal conductivity in the phase change interval.
  • the ZT value of the material is about 0.2 at room temperature and 2.3 when it is near the phase change zone (Fig. 4).
  • the pure metal raw material copper, selenium and compound cuprous selenide are charged into pyrolytic boron nitride (PBN) at a molar ratio of 1.96:0.96:0.04. ) ⁇ , then load the quartz tube. Vacuum the quartz tube and pass it through to protect the Ar gas. Repeat 3 times, then use a plasma flame or a gas flame in the glove box. A small amount of Ar is introduced into the quartz tube. The gas acts as an inert atmosphere to protect the raw materials.
  • PBN pyrolytic boron nitride
  • the raw material is heated to 650 °C -700 °C at a heating rate of 2.5 - 5 °C /min, and the temperature is 1-2 hours; then 0.8 - 2 °C
  • the heating rate of /min is raised to 1150 °C -1170 °C, and the temperature is melted for 12-24 hours; then slowly cooled to 1000 °C at a rate of 5-10 °C / hour. °C, constant temperature 12-24 hours; then slowly reduce the temperature to 600 °C -700 °C at a cooling rate of 5-10 °C / hour, constant temperature 5-7 Day; finally cooled to room temperature with the furnace temperature.
  • the finally obtained bulk product is ground into a powder, and then subjected to spark plasma sintering at a sintering temperature of 400-450 ° C, a sintering pressure of 50-65 MPa, and a sintering time. For 5-10 minutes, a dense block is prepared with a density of over 97%.
  • Field emission electron micrograph shows that Cu2Se is a sandwich layer structure with a thickness of several tens of nanometers at room temperature, TEM The photo shows the absence of large grains, and there are numerous nanocrystals and nano defects in the material, such as dislocations, twins, etc. ( Figures 3C and 3D).
  • Thermoelectric performance measurements indicate at 380K Attachment
  • This material has a phase change and is a reversible phase change.
  • the material In the phase change interval, the material has a high Seebeck coefficient and excellent electrical conductivity, and has a superior power factor.
  • the material has a very low thermal conductivity in the phase change interval. Calculated based on measured performance The ZT value is about 0.2 at room temperature and 1.1 at the phase change zone of 380K ( Figure 5).
  • the pure metal raw material copper, selenium and compound cuprous selenide are charged into pyrolytic boron nitride (PBN) at a molar ratio of 1.92:0.92:0.08. ) ⁇ , then load the quartz tube. Vacuum the quartz tube and pass it through to protect the Ar gas. Repeat 3 times, then use a plasma flame or a gas flame in the glove box. A small amount of Ar is introduced into the quartz tube. The gas acts as an inert atmosphere to protect the raw materials.
  • PBN pyrolytic boron nitride
  • the raw material is heated to 650 °C -700 °C at a heating rate of 2.5 - 5 °C /min, and the temperature is 1-2 hours; then 0.8 - 2 °C
  • the heating rate of /min is raised to 1150 °C -1170 °C, and the temperature is melted for 12-24 hours; then slowly cooled to 1000 °C at a rate of 5-10 °C / hour. °C, constant temperature 12-24 hours; then slowly reduce the temperature to 600 °C -700 °C at a cooling rate of 5-10 °C / hour, constant temperature 5-7 Day; finally cooled to room temperature with the furnace temperature.
  • the finally obtained bulk product is ground into a powder, and then subjected to spark plasma sintering at a sintering temperature of 400-450 ° C, a sintering pressure of 50-65 MPa, and a sintering time. For 5-10 minutes, a dense block is prepared with a density of over 97%.
  • Thermoelectric performance measurements indicate at 360K Attachment
  • This material has a phase change and is a reversible phase change. In the phase change interval, the material has a high Seebeck coefficient and excellent electrical conductivity, and has a superior power factor. At the same time, the material has a very low thermal conductivity in the phase change interval. Calculated based on measured performance The ZT value is about 0.2 at room temperature and 0.8 at the phase change zone of 360K ( Figure 6).
  • Example 4 Preparation and performance testing of P-type Cu 2 Se and N-type Yb 0.3 Co 3 Sb 12 single-pair devices
  • P-type Cu 2 Se and N-type Yb 0.3 Co 3 Sb 12 were selected for single-pair device preparation.
  • HNO 3 nitric acid and hydrofluoric acid
  • the electroplating process selects a current of 0.05-0.08A, pre-plating in a 1mol/L nickel chloride solution for 1-3 minutes, and then electroplating in a 200g/L nickel sulfamate solution at 40 °C for 3-5 minutes. Polish the surrounding nickel plating and wash it in deionized water for a while. The sample is then soldered between the copper electrode and the thermally conductive sheet. The vacuum was maintained at 1-20 Pa during the test and the test current was 0.25-4 A. The relationship between the maximum cooling temperature difference and current before the phase change (300K, 370K), phase change region (about 395K) and phase change (420K) was tested. According to the test results, the maximum cooling temperature difference of the phase change zone device is higher than the normal phase cooling temperature difference of 24.3% after the current is 4A, which is higher than the room temperature refrigeration temperature difference of 79.0% (Fig. 7).
  • Example 5 Preparation and performance testing of P-type Cu 2 Se 0.96 I 0.04 and N-type Yb 0.3 Co 3 Sb 12 single-pair devices
  • P-type Cu 2 Se 0.96 I 0.04 and N-type Yb 0.3 Co 3 Sb 12 were selected for single-pair device preparation.
  • the electroplating process selects a current of 0.05-0.08A, pre-plating in a 1mol/L nickel chloride solution for 1-3 minutes, and then electroplating in a 200g/L nickel sulfamate solution at 40 °C for 3-5 minutes. Polish the surrounding nickel plating and wash it in deionized water for a while. The sample is then soldered between the copper electrode and the thermally conductive sheet. The vacuum was maintained at 1-20 Pa during the test and the test current was 0.25-4 A. The relationship between the maximum cooling temperature difference and current before the phase change (300K, 340K), phase change region (about 380K) and phase change (400K) was tested. According to the test results, the maximum cooling temperature difference of the phase change region device is higher than the normal phase cooling temperature difference of 25.7% after the current is 4A, which is higher than the room temperature cooling temperature difference of 83.3% (Fig. 8).
  • thermoelectric material compound of the present invention has a simple chemical composition, a low-dimensional layered structure, and a ZT High value, suitable for development as a new type of thermoelectric material.
  • the preparation method of the invention has the advantages of simple preparation process, low cost and suitable for scale production.

Abstract

本发明涉及 P 型可逆相变高性能热电材料及其制备方法。所述热电材料的化学组成为 Cu2Se1-xIx ,其中, 0<x ≦ 0.08 。所述方法包括:按摩尔比 (2-x) : (1-x) : x 称取铜金属单质、硒金属单质和碘化亚铜并对其进行真空封装;分段升温至 1150 ~ 1170 ℃熔融处理 12 ~ 24 小时;分段降温至 600 ~ 700 ℃下退火处理 5 ~ 7 天后随炉冷却至室温;以及在 400 ~ 450 ℃下进行加压烧结。

Description

P 型可逆相变高性能热电材料及其制备方法 技术领域
本发明涉及热电材料领域,具体涉及一种新型可逆相变高性能热电材料,尤其是 P 型硒化铜基热电材料及其制备方法。
背景技术
热电转换技术是利用半导体材料直接进行热能和电能相互转换的技术,其原理是根据材料的赛贝克( Seebeck )效应和帕尔帖( Peltier )效应实现热电发电和热电制冷。该技术在应用上具有无污染、无机械传动、无噪音、可靠性高等优点,可广泛应用在工业余废热的回收利用、空间特殊电源、微型制冷器件等领域。近年来,由于日益严重的能源短缺和环境污染问题,热电材料的研究越来越受到重视。
热电材料最佳能量效率与工作的高低端温度和材料本质性能相关,其中材料的热电性能由无量纲的 ZT 值决定,具体定义为: ZT=S2 σ T/ κ,其中 S 表示塞贝克系数,σ表示电导率, T 是绝对温度,κ为材料的热导率。材料的 ZT 值越高,热电能量的转换效率也越高。
热电材料在制冷领域的应用主要是微器件制冷。依据帕尔贴效应,在 P 、 N 两类不同类型热电材料经导流片连接成的π型器件中,当有电流通过时,器件一侧吸热制冷,而另一侧放热。描述热电制冷器的性能参数主要包括制冷效率、最大制冷量和最大温差。制冷效率为制冷量和输入电能的比值,取最佳输入电流工作状态时,最大制冷效率为:
Figure 14PCT0105142-appb-M000001
其中 Tc、Th分别为冷热端温度,
Figure 14PCT0105142-appb-M000002
为两者平均温度,Z 为热电制冷器的平均热电优值。
最大制冷量是在器件处于最佳电流工作状态,并且器件两端的温差为零时的制冷量:
Figure 14PCT0105142-appb-M000003
其中SP 、Sn为制冷器P型和N型材料的塞贝克系数,R为制冷器件的电阻。
器件工作时,在无外加热负载的情况下,冷热端所产生的温差为 :
Figure 14PCT0105142-appb-M000004
I为输入的电流,k为器件两臂的总导热系数。
若热电制冷器在相应最佳电流工作时,器件冷热端所能建立的温差为最大温差:
Figure 14PCT0105142-appb-M000005
其最大温差只与器件的热电优值 ZT 相关。
寻找和追求高 ZT 值的新型热电材料是科技工作者的最重要的目标之一。在现阶段的热电材料研究中,研究者们相继提出和发现了一系列新材料,其中主要包括根据声子玻璃-电子晶体概念提出的笼状化合物 skutterudite 、 clathrate 体系,具有层状结构的氧化物体系,岩盐矿结构碲化铅材料,宽禁带类金刚石结构体系,具有类液体性质的 Cu2Se 材料,以及低维结构材料包括纳米线、超晶格、薄膜以及纳米结构化的块体材料等。同时近些年研究者们也探寻了一些新方法和手段提高热电材料的性能,例如在费米能级附近引入共振能级以增加塞贝克系数,在决定性能传输的能级附近引入复杂能带结构,在块体材料中实现二维平面电子波,通过在笼状结构化合物中单元素或者多元素填充,以及根据类液体效应减少声子模等方法可以大大提升热电优值。这些新材料和新方法的实现使目前块体材料的 ZT 值获得了明显的提升,最大值已达到 1.5 以上,能量转换效率大于 10% 。然而,这些新材料都为单一结构体系,应用温度范围内不会有结构上的变化,一定程度上限制了更广泛的材料体系的开发。在微器件制冷应用方面,室温附近具有优异热电优值的材料体系相对比较单一,目前商业应用较广的主要为碲化铋基材料,例如参见 CN101273474A 。这种材料的制备成本高,制备方法较困难,室温附近的热电优值约为 1.0 ,制冷效率约为 5% 左右,限制了热电转换技术的广泛应用。另外,目前还研究开发出多元热电合金作为新型热电材料,例如 CN101823702A 公开一种 Cu2CdSnSe4 半导体纳米晶。
CN102674270A 公开一种低温固相反应制备 Cu2Se 热电材料的方法。 Cu2Se 化合物化学组成简单,在 400K 附近存在一可逆相变。相变后高温相为立方反萤石结构,铜离子在主晶格八面体和四面体空隙的移动而具有快离子导电的性质, Cu2Se 也是应用较广的快离子导体。室温相结构复杂,沿着 [010] 方向具有两倍或者三倍周期的复杂单斜结构。在这两倍或者三倍周期内,铜原子被压缩在主晶格硒原子之间,硒原子与硒原子间通过范德华力结合,从而室温相材料表现出层状结构。从室温相到高温相的转变过程中,硒原子间的铜离子一部分转移到真空层,结构相应转变为稳定的立方结构。在此过程中,铜离子的转移带来结构上的波动,从而影响到电子结构的变化,相变过程带来了对载流子的额外散射,大大增加了材料的塞贝克系数,降低了热导率,进一步提高了材料的热电优值 ZT ,具有很好的工业应用前景。将相变材料体系引入热电材料研究,增大了热电研究对象的材料体系,也提供了一种更高性能的材料实现可能,对热电材料研究具有极其重要的意义。
发明内容
本发明提供一种 P 型可逆相变高性能热电材料 ,其特征在于,所述热电材料为掺杂 I 的硒化铜基热电材料,其化学组成为 Cu2Se1-xIx ,其中, 0<x ≦ 0.08 ,优选 0.04 ≦ x ≦ 0.08 。
本发明提供的热电材料化合物为半导体,相比于室温附近传统的碲化铋基热电材料,此化合物组成简单,原料廉价,成本低,在相变区域具较高的塞贝克系数和优异的电导率,同时具有低的热导率,热电优值( ZT 值)在相变温度区附近可以达到 1 左右。同时通过碘掺杂可以将相变温度降低到 300 ~ 390K ,例如当 x=0.04 、 0.08 时,相变温度可以分别降低至 380K 和 360K 附近,其相变区热电优值( ZT 值)可以分别达到 1.1 和 0.8 ,在室温附近微器件制冷,尤其是电子工业器件、 CPU 制冷等方面具有极好的工业应用前景。
本发明提供的热电材料的相变温度为 300 ~ 390K ,例如 350 ~ 380K 。
本发明提供的热电材料化室温下的 ZT 值为 0.1 以上,在其相变温度区的 ZT 值为 0.8 以上,显示出优异的热电优值。
本发明提供的热电材料化合物还可形成厚度为 20 ~ 50nm 的三明治层状结构。其低维结构也有助于 ZT 值的提高。
另一方面,本发明还提供一种制备上述 P 型可逆相变高性能热电材料 的方法,包括: 按摩尔比 (2-x):(1-x):x 称取铜金属单质、硒金属单质和碘化亚铜并对其进行真空封装;分段升温至 1150 ~ 1170 ℃熔融处理 12 ~ 24 小时; 分段降温至 600 ~ 700 ℃下退火处理 5 ~ 7 天后随炉冷却至室温;以及 在 400 ~ 450 ℃下进行加压烧结。
较佳地,所述分段升温包括:先以 2.5 ~ 5 ℃ /min 的升温速率升温到 650 ~ 700 ℃ ,恒温 1 ~ 2 小时;再以 0.8 ~ 2 ℃ /min 的升温速率,升温到 1150 ~ 1170 ℃ 。
较佳地,所述分段降温包括:先以 5 ~ 10 ℃ / 小时的速率缓慢降温到 1000 ~ 1120 ℃ ,恒温 12 ~ 24 小时;再以 5 ~ 10 ℃ / 小时的降温速率缓慢降温到 600 ~ 700 ℃ 。
在发明中,真空封装优选在惰性气体,例如氩气保护下进行。真空封装可采用等离子体或火焰枪封装方式。
在本发明中,加压烧结可采用放电等离子烧结方式。加压烧的压力可为 50 ~ 65Mpa ,烧结时间可为 5 ~ 10 分钟。
本发明的制备方法原料简单、成本低、且工艺流程简单,可控性高,重复性好,适合规模生产。本发明的方法制备的热电材料 Cu2Se1-xIx 化合物具有高塞贝克系数,高电导率以及低的热导率,其热电优值和能量转换效率高,例如用发明提供的 P 型 Cu2Se1-xIx 和 N 型 Yb 填充方钴矿热电材料制冷性能,相同电流下相变区制冷温差比正常相制冷温差增大约 20% 以上。本发明提供的热电材料化合物在较低的温度范围内 300 - 390K 之间有一相变,并且为可逆相变,在相变区热电优值高,在室温附近微器件制冷,尤其是电子工业器件、 CPU 制冷等方面具有极好的工业应用前景。
附图说明
图 1 示出本发明的示例热电材料的制备流程示意图。
图 2 示出本发明的 P 型 Cu2Se1-xIx 和 N 型 Yb0.3Co3Sb12 单对热电器件示意图。
图 3A 示出实施例 1 中 Cu2Se 化合物的扫描电子显微镜图片图。
图3B 示出实施例 1 中 Cu2Se 化合物的高分辨率扫描电子显微镜图片。
图 3C 示出本发明的示例 2 热电材料的扫描电子显微镜图片。
图 3D 示出本发明的示例 2 热电材料的高分辨率扫描电子显微镜图片。
图 4 示出实施例 1 中 Cu2Se 化合物热电优值 ZT 在相变区随温度变化图。
图 5 示出实施例 2 中 Cu2Se0.96I0.04 化合物热电优值 ZT 在相变区随温度变化图。
图 6 示出实施例 3 中 Cu2Se0.92I0.08 化合物热电优值 ZT 在相变区随温度变化图。
图 7 示出本发明的 P 型 Cu2Se 和 N 型 Yb0.3Co3Sb12 单对热电器件制冷性能图。
图 8 示出本发明的 P 型 Cu2Se1-xIx 和 N 型 Yb0.3Co3Sb12 单对热电器件制冷性能图。
具体实施方式
参照说明书附图,并结合下述实施方式进一步说明本发明,应理解,说明书附图及下述实施方式仅用于说明本发明,而非限制本发明。
下面以制备新型可逆相变热电材料化合物 Cu2Se1-xIx ( 0<x ≦ 0.08 )为例进行说明。
本发明所合成的化合物为 Cu2Se1-xIx ,由铜、硒和碘元素组成, 0<x ≦ 0.08 。
本发明的制备过程是通过真空封装、熔融、缓冷、退火工艺实现,参见图 1 ,其示出本发明热电材料的制备流程的示意图。本发明采用铜和硒纯金属单质和碘化合物(例如碘化亚铜)为起始原料,分别采用纯元素铜( 99.999% )和硒( 99.999% )单质以及碘化亚铜化合物( 99.98% )制备,原料来源丰富,简便易得。首先,按规定摩尔比 (2-x):(1-x):x 称取铜金属单质、硒金属单质和碘化亚铜并对其进行真空封装。真空封装可在氩气等惰性气体保护下在手套箱中或者外部抽真空下进行,可采用等离子体或者火焰枪封装方式,封装时石英管抽真空,保持内部压力为 1-10000Pa 。可将铜和硒直接真空封装于石英管中,也可先将铜和硒置于热解氮化硼坩埚( PBN ),再封装于石英管中。
然后可进行高温熔融处理,本发明制备所采用熔融过程是在箱式熔融炉中进行。先以 2.5 - 5 ℃ /min 的升温速率升温到 650 ℃ -700 ℃ ,恒温 1-2 小时;再以 0.8 - 2 ℃ /min 的升温速率,升温到 1150 ℃ -1170 ℃ ,恒温熔融 12-24 小时;然后以 5-10℃/ 小时的速率缓慢降温到 1000 ℃ -1120 ℃ ,恒温 12-24 小时;再以 5-10℃/ 小时的降温速率缓慢降温到 600 ℃ -700 ℃ ,恒温退火 5-7 天;最后随炉温自然冷却到室温。
最后,将退火后的块体研磨成粉,然后加压烧结。烧结方式选择放电等离子烧结( SPS ),采用尺寸Φ 10mm 的石墨模具,内壁和压头喷 BN 以绝缘;烧结温度为 450 ℃ -500 ℃ ,烧结压力为 50-65MPa ,烧结时间 5-10 分钟。烧结可获得致密的块体。通过扫描电子显微镜显示室温下制得的化合物显示为厚度在几十纳米左右( 20 ~ 50nm )的三明治层状结构,高分辨电子显微镜下此材料中主要为小的纳米晶和纳米缺陷,如位错、孪晶等(参见图 3C 和 3D )。
本发明制备的单对制冷测试器件选择 P 型 Cu2Se1-xIx 和 N 型 Yb 填充方钴矿热电材料( Yb0.3Co3Sb12 ),以π型设计方式连接(如图 2 )组成单对制冷测试器件。单对制冷测试器件选择厚度 0.2mm 的镍片作为导流片,选择 10mm × 10mm × 6mm 的铜块为热端吸热电极。本发明制备的单对制冷测试器件 P 型热电材料 Cu2Se1-xIx 的尺寸为 3mm × 3mm × 1mm , N 型热电材料 Yb0.3Co3Sb12 的尺寸为 1mm × 1mm × 1mm 。本发明制备的单对制冷测试器件选择在 P 型 Cu2Se1-xIx 和 N 型 Yb0.3Co3Sb12 样品表面电镀镍的方式,通过锡焊连接到导流片和热端吸热电极。参见图 8 ,其示出本发明的 P 型 Cu2Se1-xIx 和 N 型 Yb0.3Co3Sb12 单对热电器件制冷性能图,相变区制冷温差比相变后及室温下制冷温差均增大。
本发明所采用原料廉价,制备成本低,工艺流程简单,可控性高,重复性好。本发明提供的材料具有高塞贝克系数,高电导率以及极低的热导率。
本发明进一步例如以下实施例以更好地说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的温度、时间等也仅是合适范围中的一个示例,即、本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值 。
实施例 1 : Cu2Se 的制备和热电性能
将纯金属原料 Cu 和 Se 以 2:1 的摩尔配比,装入热解氮化硼( PBN )坩埚中,然后装入石英管。将石英管抽真空后通入保护 Ar 气,重复 3 次,然后在手套箱中用等离子火焰或者用气体火焰进行封装,石英管中通入少量 Ar 气作为惰性气氛以保护原料。将原料先以 2.5 - 5 ℃ /min 的升温速率升温到 650 ℃ -700 ℃ ,恒温 1-2 小时;再以 0.8 - 2 ℃ /min 的升温速率,升温到 1150 ℃ -1170 ℃ ,恒温熔融 12-24 小时;然后以 5-10℃/ 小时的速率缓慢降温到 1000 ℃ -1120 ℃ ,恒温 12-24 小时;再以 5-10℃/ 小时的降温速率缓慢降温到 600 ℃ -700 ℃ ,恒温 5-7 天;最后随炉温自然冷却到室温。将最终得到的块状产物研磨成粉末,之后进行放电等离子烧结,烧结温度为 400-450℃,烧结压力为50-65MPa ,烧结时间 5-10 分钟,制备致密的块体,致密度达到 97% 以上。场发射电镜照片显示室温下 Cu2Se 显示为厚度在几十纳米左右的三明治层状结构, TEM 照片显示无大晶粒存在,在材料里面存在众多的纳米晶和纳米缺陷,如位错、孪晶等(如图 3A 和 3B ),这种复杂结构可以进一步增强热电性能。热电性能测量表明在 400K 附件该材料有一相变,并且为可逆相变。在相变区间该材料具有很高的塞贝克系数和优异的电导率,材料的功率因子较好。同时该材料在相变区间具有极低的热导率。根据测量的性能计算表明材料的 ZT 值在室温时为 0.2 左右,在相变区 400K 附近时可以达到 2.3 (如图 4 )。
实施例 2 : Cu2Se0.96I0.04 的制备和热电性能
将纯金属原料铜、硒和化合物硒化亚铜以 1.96:0.96:0.04 的摩尔配比,装入热解氮化硼( PBN )坩埚中,然后装入石英管。将石英管抽真空后通入保护 Ar 气,重复 3 次,然后在手套箱中用等离子火焰或者用气体火焰进行封装,石英管中通入少量 Ar 气作为惰性气氛以保护原料。将原料先以 2.5 - 5 ℃ /min 的升温速率升温到 650 ℃ -700 ℃ ,恒温 1-2 小时;再以 0.8 - 2 ℃ /min 的升温速率,升温到 1150 ℃ -1170 ℃ ,恒温熔融 12-24 小时;然后以 5-10℃/ 小时的速率缓慢降温到 1000 ℃ -1120 ℃ ,恒温 12-24 小时;再以 5-10℃/ 小时的降温速率缓慢降温到 600 ℃ -700 ℃ ,恒温 5-7 天;最后随炉温自然冷却到室温。将最终得到的块状产物研磨成粉末,之后进行放电等离子烧结,烧结温度为 400-450℃,烧结压力为50-65MPa ,烧结时间 5-10 分钟,制备致密的块体,致密度达到 97% 以上。场发射电镜照片显示室温下 Cu2Se 显示为厚度在几十纳米左右的三明治层状结构, TEM 照片显示无大晶粒存在,在材料里面存在众多的纳米晶和纳米缺陷,如位错、孪晶等(如图 3C 和 3D )。热电性能测量表明在 380K 附件该材料有一相变,并且为可逆相变。在相变区间该材料具有很高的塞贝克系数和优异的电导率,具有较优异的功率因子。同时该材料在相变区间具有极低的热导率。根据测量的性能计算表明材料的 ZT 值在室温时为 0.2 左右,在相变区 380K 附近时可以达到 1.1 (如图 5 )。
实施例 3 : Cu2Se0.92I0.08 的制备和热电性能
将纯金属原料铜、硒和化合物硒化亚铜以 1.92:0.92:0.08 的摩尔配比,装入热解氮化硼( PBN )坩埚中,然后装入石英管。将石英管抽真空后通入保护 Ar 气,重复 3 次,然后在手套箱中用等离子火焰或者用气体火焰进行封装,石英管中通入少量 Ar 气作为惰性气氛以保护原料。将原料先以 2.5 - 5 ℃ /min 的升温速率升温到 650 ℃ -700 ℃ ,恒温 1-2 小时;再以 0.8 - 2 ℃ /min 的升温速率,升温到 1150 ℃ -1170 ℃ ,恒温熔融 12-24 小时;然后以 5-10℃/ 小时的速率缓慢降温到 1000 ℃ -1120 ℃ ,恒温 12-24 小时;再以 5-10℃/ 小时的降温速率缓慢降温到 600 ℃ -700 ℃ ,恒温 5-7 天;最后随炉温自然冷却到室温。将最终得到的块状产物研磨成粉末,之后进行放电等离子烧结,烧结温度为 400-450℃,烧结压力为50-65MPa ,烧结时间 5-10 分钟,制备致密的块体,致密度达到 97% 以上。热电性能测量表明在 360K 附件该材料有一相变,并且为可逆相变。在相变区间该材料具有很高的塞贝克系数和优异的电导率,具有较优异的功率因子。同时该材料在相变区间具有极低的热导率。根据测量的性能计算表明材料的 ZT 值在室温时为 0.2 左右,在相变区 360K 附近时可以达到 0.8 (如图 6 )。
实施例 4 : P 型 Cu2Se 和 N 型 Yb0.3Co3Sb12 单对器件的制备和性能测试
单对器件制备选择 P 型 Cu2Se 和 N 型 Yb0.3Co3Sb12 。分别切割尺寸为 3mm × 3mm × 1mm 的 Cu2Se 和尺寸为 1mm × 1mm × 1mm 的 Yb0.3Co3Sb12 样品。表面打磨后,在硝酸和氢氟酸混合液( HNO3:HF:H2O=3:1:6 )中浸泡 1-3 分钟,去离子水中超声清洗。电镀过程选择电流为 0.05-0.08A ,先于 1mol/L 氯化镍溶液中预电镀 1-3 分钟,之后在 200g /L 氨基磺酸镍溶液中 40 ℃ 电镀 3-5 分钟。打磨掉周边电镀镍,在去离子水中清洗片刻。然后用焊锡将样品焊接在铜电极和导热片之间。测试过程中保持真空 1-20Pa ,测试电流为 0.25-4A 。分别测试相变前( 300K 、 370K )、相变区(约 395K )和相变后( 420K )的最大制冷温差和电流的关系。根据测试结果表明,电流为 4A 时相变区器件的最大制冷温差高于相变后正常相制冷温差的 24.3% ,高于室温相制冷温差的 79.0% (如图 7 )。
实施例 5 : P 型 Cu2Se0.96I0.04 和 N 型 Yb0.3Co3Sb12 单对器件的制备和性能测试
单对器件制备选择 P 型 Cu2Se0.96I0.04 和 N 型 Yb0.3Co3Sb12 。分别切割尺寸为 3mm × 3mm × 1mm 的 Cu2Se0.96I0.04 和尺寸为 1mm × 1mm × 1mm 的 Yb0.3Co3Sb12 样品。表面打磨后,在硝酸和氢氟酸混合液( HNO3:HF:H2O=3:1:6 )中浸泡 1-3 分钟,去离子水中超声清洗。电镀过程选择电流为 0.05-0.08A ,先于 1mol/L 氯化镍溶液中预电镀 1-3 分钟,之后在 200g /L 氨基磺酸镍溶液中 40 ℃ 电镀 3-5 分钟。打磨掉周边电镀镍,在去离子水中清洗片刻。然后用焊锡将样品焊接在铜电极和导热片之间。测试过程中保持真空 1-20Pa ,测试电流为 0.25-4A 。分别测试相变前( 300K 、 340K )、相变区(约 380K )和相变后( 400K )的最大制冷温差和电流的关系。根据测试结果表明,电流为 4A 时相变区器件的最大制冷温差高于相变后正常相制冷温差的 25.7% ,高于室温相制冷温差的 83.3% (如图 8 )。
产业应用性:本发明的热电材料化合物化学组成简单,具有低维的层状结构、 ZT 值高,适合作为一种新型的热电材料进行开发。本发明的方法制备工艺简单易行、成本低、适合规模生产。

Claims (10)

  1. 一种 P 型可逆相变高性能热电材料,其特征在于,所述热电材料的化学组成为 Cu2Se1-xIx ,其中, 0<x ≦ 0.08 。
  2. 根据权利要求 1 所述的 P 型可逆相变高性能热电材料,其特征在于, 0.04 ≦ x ≦ 0.08 。
  3. 根据权利要求 1 或 2 所述的 P 型可逆相变高性能热电材料,其特征在于,所述热电材料的相变温度为 300 ~ 390K 。
  4. 根据权利要求 3 所述的 P 型可逆相变高性能热电材料,其特征在于,所述热电材料化室温下的 ZT 值为 0.1 以上,在其相变温度区的 ZT 值为 0.8 以上。
  5. 根据权利要求 1 ~ 4 中任一项所述的 P 型可逆相变高性能热电材料,其特征在于,所述热电材料形成厚度为 20 ~ 50nm 的三明治层状结构。
  6. 一种制备权利要求 1 ~ 5 中任一项所述的 P 型可逆相变高性能热电材料的方法,其特征在于,包括:
    按摩尔比 (2-x) : (1-x) : x 称取铜金属单质、硒金属单质和碘化亚铜并对其进行真空封装;
    分段升温至 1150 ~ 1170 ℃熔融处理 12 ~ 24 小时;
    分段降温至 600 ~ 700 ℃下退火处理 5 ~ 7 天后随炉冷却至室温;以及
    在 400 ~ 450 ℃下进行加压烧结。
  7. 根据权利要求 6 所述的方法,其特征在于,所述分段升温包括:先以 2.5 ~ 5 ℃ /min 的升温速率升温到 650 ~ 700 ℃ ,恒温 1 ~ 2 小时;再以 0.8 ~ 2 ℃ /min 的升温速率,升温到 1150 ~ 1170 ℃ 。
  8. 根据权利要求 6 或 7 所述的方法,其特征在于,所述分段降温包括:先以 5 ~ 10 ℃ / 小时的速率缓慢降温到 1000 ~ 1120 ℃ ,恒温 12 ~ 24 小时;再以 5 ~ 10 ℃ /小时的降温速率缓慢降温到 600 ~ 700 ℃ 。
  9. 根据权利要求 6 ~ 8 中任一项所述的方法,其特征在于,所述真空封装在惰性气体保护下用等离子体或火焰枪封装方式进行。
  10. 根据权利要求 6 ~ 9 中任一项所述的方法,其特征在于,所述加压烧结采用放电等离子烧结方式,所述加压烧的压力为 50 ~ 65Mpa ,烧结时间为 5 ~ 10 分钟。
PCT/CN2014/078764 2013-06-04 2014-05-29 P 型可逆相变高性能热电材料及其制备方法 WO2014194788A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14807559.1A EP3006397B1 (en) 2013-06-04 2014-05-29 P-type high-performance thermoelectric material with reversible phase change, and preparation method therefor
US14/895,882 US10177295B2 (en) 2013-06-04 2014-05-29 P-type high-performance thermoelectric material with reversible phase change, and preparation method therefor
JP2016517142A JP6266099B2 (ja) 2013-06-04 2014-05-29 可逆的相転移を有する高性能p型熱電材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310220037.0A CN104211024B (zh) 2013-06-04 2013-06-04 P型可逆相变高性能热电材料及其制备方法
CN201310220037.0 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014194788A1 true WO2014194788A1 (zh) 2014-12-11

Family

ID=52007551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078764 WO2014194788A1 (zh) 2013-06-04 2014-05-29 P 型可逆相变高性能热电材料及其制备方法

Country Status (5)

Country Link
US (1) US10177295B2 (zh)
EP (1) EP3006397B1 (zh)
JP (1) JP6266099B2 (zh)
CN (1) CN104211024B (zh)
WO (1) WO2014194788A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523527A (zh) * 2015-12-21 2016-04-27 华北电力大学 一种黄铜矿结构的稀磁半导体材料及其制备方法
CN115101653A (zh) * 2022-07-08 2022-09-23 中南大学 一种锰硒双掺的铜硫基热电材料及其制备方法
CN115894024A (zh) * 2022-09-27 2023-04-04 清华大学 LaAgSeO热电材料及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518890B (zh) * 2013-09-09 2018-02-09 株式会社Lg化学 热电材料及其制造方法
KR101635638B1 (ko) * 2013-10-17 2016-07-01 주식회사 엘지화학 열전 재료 및 그 제조 방법
CN104555950B (zh) * 2015-01-30 2017-02-22 中国科学院上海硅酸盐研究所 一种中温区具有优异热电性能的碲化铋材料及其制备方法
CN105992454B (zh) * 2015-02-10 2019-04-05 欣兴电子股份有限公司 电路板与其制作方法
US9491865B1 (en) 2015-04-24 2016-11-08 Unimicron Technology Corp. Circuit board and method for manufacturing the same
WO2019171915A1 (ja) * 2018-03-08 2019-09-12 住友電気工業株式会社 熱電材料素子、発電装置、光センサおよび熱電材料の製造方法
CN108400192A (zh) * 2018-04-28 2018-08-14 贵州中益能新材料科技有限公司 一种提高光伏发电效率的方法
CN109371468B (zh) * 2018-10-20 2020-05-05 南京大学 一种高质量Cu2Se(1-x)Ax晶体的生长方法
CN113437208B (zh) * 2020-03-23 2023-12-26 中国科学院上海硅酸盐研究所 一种制备热电厚膜的方法
US20230166970A1 (en) 2020-03-27 2023-06-01 Mitsubishi Materials Corporation Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
CN111807333B (zh) * 2020-07-28 2023-06-23 安徽大学 一种三维硒化亚铜纳米晶超晶格的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163422A (ja) * 1997-11-27 1999-06-18 Yamaha Corp 熱電材料の製造方法
CN1718811A (zh) * 2005-08-19 2006-01-11 宁波工程学院 一种具有高热电优值(ZT)的中低温p-型多元热电合金
CN101273474A (zh) 2005-09-22 2008-09-24 宇部兴产株式会社 热电转换材料及其制造方法
CN101823702A (zh) 2010-05-14 2010-09-08 中国科学院上海技术物理研究所 Cu2CdSnSe4纳米晶的制备方法
CN102194989A (zh) * 2010-03-18 2011-09-21 中国科学院上海硅酸盐研究所 一种三元类金刚石结构的热电材料的制备方法
CN102674270A (zh) 2012-05-25 2012-09-19 武汉理工大学 一种低温固相反应制备Cu2Se热电材料的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL258761A (zh) * 1959-12-07
JP3543650B2 (ja) * 1997-11-28 2004-07-14 ヤマハ株式会社 熱電材料の製造方法及び熱電モジュールの製造方法
US6307143B1 (en) * 1998-10-22 2001-10-23 Yamaha Corporation Thermoelectric materials and thermoelectric conversion element
DE19955788A1 (de) * 1999-11-19 2001-05-23 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
US6613457B2 (en) 2001-08-28 2003-09-02 Eastman Kodak Company Electroluminescent devices having diarylanthracene ladder polymers in emissive layers
JP2004040068A (ja) * 2001-08-31 2004-02-05 Basf Ag 熱電活性材料ならびにこれを含む熱変換器およびペルチェ装置
AU2003283973B2 (en) * 2002-09-30 2008-10-30 Oned Material Llc Large-area nanoenabled macroelectronic substrates and uses therefor
KR20100009455A (ko) * 2008-07-18 2010-01-27 삼성전자주식회사 열전재료 및 칼코게나이드 화합물
CN101837960A (zh) * 2009-03-21 2010-09-22 中国科学院安徽光学精密机械研究所 乙二醇还原制备硒(碲)卤化亚铜
CN102031416B (zh) * 2009-09-28 2012-08-29 中国科学院上海硅酸盐研究所 一种填充方钴矿基复合材料及其制备方法
JP5696988B2 (ja) * 2011-06-08 2015-04-08 独立行政法人物質・材料研究機構 シナプス動作素子
CN102234843B (zh) * 2011-06-24 2012-11-28 宁波工程学院 具有超结构的Ga-Te基热电半导体及制备方法
US20140345663A1 (en) * 2011-12-21 2014-11-27 Jun Hayakawa Thermoelectric device and thermoelectric module using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163422A (ja) * 1997-11-27 1999-06-18 Yamaha Corp 熱電材料の製造方法
CN1718811A (zh) * 2005-08-19 2006-01-11 宁波工程学院 一种具有高热电优值(ZT)的中低温p-型多元热电合金
CN101273474A (zh) 2005-09-22 2008-09-24 宇部兴产株式会社 热电转换材料及其制造方法
CN102194989A (zh) * 2010-03-18 2011-09-21 中国科学院上海硅酸盐研究所 一种三元类金刚石结构的热电材料的制备方法
CN101823702A (zh) 2010-05-14 2010-09-08 中国科学院上海技术物理研究所 Cu2CdSnSe4纳米晶的制备方法
CN102674270A (zh) 2012-05-25 2012-09-19 武汉理工大学 一种低温固相反应制备Cu2Se热电材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, HUILI ET AL.: "Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1-xIx", ADV. MATER, vol. 25, no. 45, 10 September 2013 (2013-09-10), pages 6607 - 6612, XP055127462, DOI: doi:10.1002/adma.201302660 *
See also references of EP3006397A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523527A (zh) * 2015-12-21 2016-04-27 华北电力大学 一种黄铜矿结构的稀磁半导体材料及其制备方法
CN115101653A (zh) * 2022-07-08 2022-09-23 中南大学 一种锰硒双掺的铜硫基热电材料及其制备方法
CN115101653B (zh) * 2022-07-08 2023-05-09 中南大学 一种锰硒双掺的铜硫基热电材料及其制备方法
CN115894024A (zh) * 2022-09-27 2023-04-04 清华大学 LaAgSeO热电材料及其制备方法和应用
CN115894024B (zh) * 2022-09-27 2023-11-21 清华大学 LaAgSeO热电材料及其制备方法和应用

Also Published As

Publication number Publication date
EP3006397A1 (en) 2016-04-13
CN104211024A (zh) 2014-12-17
EP3006397B1 (en) 2018-01-31
JP2016526302A (ja) 2016-09-01
CN104211024B (zh) 2016-02-10
JP6266099B2 (ja) 2018-01-24
US10177295B2 (en) 2019-01-08
EP3006397A4 (en) 2016-11-23
US20160126439A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
WO2014194788A1 (zh) P 型可逆相变高性能热电材料及其制备方法
Mi et al. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3
Wang et al. High performance n-type (Bi, Sb) 2 (Te, Se) 3 for low temperature thermoelectric generator
Zheng et al. High thermoelectric performance of mechanically robust n-type Bi 2 Te 3− x Se x prepared by combustion synthesis
Tang et al. Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4− xSb12
US9130066B2 (en) Power factor enhanced thermoelectric material and method of producing same
CN108238796B (zh) 铜硒基固溶体热电材料及其制备方法
CN103130200B (zh) 热电材料化合物及其制备方法
CN106986315B (zh) 一种适用于低温发电的p型碲化铋热电材料及制备方法
Chen et al. Microstructure and thermoelectric properties of n-and p-type doped Mg 2 Sn compounds prepared by the modified bridgman method
CN109671840B (zh) 一种用于热电材料的锑碲硒基体合金的构建方法、锑碲硒基热电材料
Amin Bhuiyan et al. A review on performance evaluation of Bi2Te3-based and some other thermoelectric nanostructured materials
US20140174494A1 (en) Thermoelectric material, thermoelectric element and apparatus including the same, and preparation method thereof
Basu et al. Improved thermoelectric properties of Se-doped n-type PbTe 1− x Se x (0≤ x≤ 1)
CN113421959B (zh) 一种n型碲化铋基室温热电材料及其制备方法
Wang et al. Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting
McGuire et al. Effects of high-pressure high-temperature treatment on the thermoelectric properties of PbTe
Singsoog et al. Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation
Wang et al. Thermoelectric performance of Si80Ge20− xSbx based multiphase alloys with inhomogeneous dopant distribution
US11107963B2 (en) Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel
CN108265189B (zh) 一种Bi掺杂立方相锗钙热电材料及其微波固相制备方法
Chuang et al. Magnetron deposition of in situ thermoelectric Mg 2 Ge thin films
KR102241257B1 (ko) 열전소재 및 이의 제조방법
Choi et al. Thermoelectric properties of n-type (Pb/sub 1-x/Ge/sub x/) Te fabricated by hot pressing method
CN110407580B (zh) 一种钾铜硫基热电材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517142

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014807559

Country of ref document: EP