WO2014194525A1 - 传输导频信号的方法、基站和用户设备 - Google Patents

传输导频信号的方法、基站和用户设备 Download PDF

Info

Publication number
WO2014194525A1
WO2014194525A1 PCT/CN2013/076986 CN2013076986W WO2014194525A1 WO 2014194525 A1 WO2014194525 A1 WO 2014194525A1 CN 2013076986 W CN2013076986 W CN 2013076986W WO 2014194525 A1 WO2014194525 A1 WO 2014194525A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
beams
pilot signal
base station
ports
Prior art date
Application number
PCT/CN2013/076986
Other languages
English (en)
French (fr)
Inventor
杨晶
张劲林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000695.7A priority Critical patent/CN103547341B/zh
Priority to KR1020157037145A priority patent/KR101795645B1/ko
Priority to ES18198530T priority patent/ES2846761T3/es
Priority to PCT/CN2013/076986 priority patent/WO2014194525A1/zh
Priority to EP13886619.9A priority patent/EP2999133B1/en
Priority to JP2016517118A priority patent/JP6388348B2/ja
Priority to EP18198530.0A priority patent/EP3493454B1/en
Publication of WO2014194525A1 publication Critical patent/WO2014194525A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications and, in particular, to a method of transmitting a pilot signal, a base station, and a user equipment. Background technique
  • MIMO Multiple-Input and Multiple-Output
  • the reference signal i.e., the pilot signal
  • the reference signal is a known signal that is provided by the transmitting end to the receiving end and used by the receiving end for channel estimation or channel measurement.
  • the basic idea of pilot signal design is that each port corresponds to one pilot signal. For this one-to-one mapping method, each antenna transmits a pilot signal omnidirectionally.
  • the embodiments of the present invention provide a method for transmitting a pilot signal, a base station, and a user equipment, which can save the overhead of the pilot signal.
  • a method for transmitting a pilot signal including: determining m beams, and determining p ports corresponding to the m beams, where m and p are positive integers greater than 1;
  • the port of the group sends n pilot signals to the user equipment UE, where the q group is obtained by dividing the p ports according to each group including n ports, and both n and q are greater than 1
  • the ith port of each of the n pilot signals is used to transmit the ith pilot signal of the n pilot signals, l ⁇ i ⁇ n, and i is a positive integer.
  • the method further includes: dividing the p ports into q groups according to the directions of the m beams.
  • the determining the m beams includes: forming the m beams by using antenna weighting.
  • the performing, by using an antenna weighting manner, forming the m beams including: using m weighting values, respectively The same polarization antenna is weighted to form the m beams.
  • the performing, by using an antenna weighting manner, forming the m beams including: using k weighting values, respectively The same-polarized antenna is weighted, k is a positive integer greater than 1; using the first weighting value, any two adjacent beams of the k beams are weighted to form m/2 beams; using the second weighting value And weighting any two adjacent beams of the k beams to form m/2 beams.
  • the performing, by using an antenna weighting manner, forming the m beams including: using m/2 weighting values, respectively
  • the first set of co-polarized antennas are weighted to form m/2 beams; and the second set of co-polarized antennas are respectively weighted by the m/2 weighting values to form m/2 beams;
  • the method further includes: determining X types of pilot signal configurations corresponding to the ports of the q group, where each group of the q groups is divided into X subgroups, each The sub-group includes y ports, and the j-th sub-group in each group corresponds to the j-th pilot signal configuration in the X-type pilot signal configuration, and the pilot signal is configured to indicate that the pilot signal is occupied.
  • a time-frequency resource, X and y are both positive integers greater than or equal to 1, l ⁇ j ⁇ x, j is a positive integer; signaling is sent to the UE, and the signaling is used to indicate the X pilot signals. Configuration.
  • the method further includes: receiving, by the UE, measurement information, where the measurement information includes the X pilot signals of the UE Configuring the X measurement results obtained by measuring the time-frequency resources indicated separately; determining the data transmission beam of the UE according to the measurement information and the uplink received power of the port of the q group; using data of the UE Transmitting a beam to transmit data to the UE.
  • the measurement information and the uplink received power of the port of the q group are determined, and the data transmission beam of the UE is determined. , including: selecting an optimal measurement result from the X measurement results, and determining The candidate subgroup corresponding to the optimal measurement result, the candidate subgroup includes at least one subgroup; and selecting one of the candidate subgroups with the largest uplink receiving power according to the uplink receiving power of the port of the q group Subgroup; ⁇ determining a data transmission beam of the UE according to the optimal measurement result and the selected one of the subgroups.
  • each of the X measurement results includes a channel quality indicator CQI; or
  • Each of the measurement results includes the CQI, and at least one of the following: a rank, a precoding matrix indicating a PMI.
  • the pilot signal is a channel state information reference.
  • Signal CSI-RS Signal
  • a method for transmitting a pilot signal including: receiving n pilot signals sent by a base station through a port of a group q, wherein the q group is a p corresponding to the m beams of the base station
  • the ports are obtained by dividing each group including n ports, m and p are positive integers greater than 1, and n and q are positive integers greater than 1; the i-th port in each group is used for Transmitting an ith pilot signal of the n pilot signals, l ⁇ i ⁇ n, i is a positive integer; and measuring the n pilot signals.
  • the method before the receiving, by the receiving, the n pilot signals sent by the port of the q group, the method further includes: receiving signaling sent by the base station, where the signaling An X-type pilot signal configuration corresponding to the port of the q group, where each group of the q group is divided into X sub-groups, each sub-group includes y ports, in each group The j-th sub-group corresponds to the j-th pilot signal configuration in the X-type pilot signal configuration, where the pilot signal is configured to indicate a time-frequency resource occupied by the pilot signal, and both X and y are greater than or equal to A positive integer of 1, l ⁇ j ⁇ x, j is a positive integer.
  • the measuring, by using the n pilot signals includes: indicating, respectively, the X pilot signal configurations The n pilot signals are measured on a time-frequency resource, and X measurement results are obtained;
  • the method further includes: transmitting measurement information to the base station, the measurement information including the X measurement results.
  • the method further includes: receiving, by using a data transmission beam, data sent by the base station, where the data transmission The beam is determined by the base station according to the measurement information and an uplink received power of the port of the q group.
  • each of the X measurement results includes a channel quality indicator CQI; or
  • Each of the measurement results includes the CQI, and at least one of the following: a rank, a precoding matrix indicating a PMI.
  • the pilot signal is a channel state information reference Signal CSI-RS.
  • a base station including: a determining unit, configured to determine m beams, and determine p ports corresponding to the m beams, where m and p are positive integers greater than 1; And transmitting n pilot signals to the user equipment UE by using the port of the q group, where the q group is obtained by dividing the p ports according to each group including n ports, n and q are both a positive integer greater than one; the i-th port in each group is used to transmit the i-th pilot signal of the n pilot signals, l ⁇ i ⁇ n, and i is a positive integer.
  • the method further includes: a grouping unit, configured to divide the p ports into q groups according to directions of the m beams.
  • the determining unit is specifically configured to form the m beams by using antenna weighting.
  • the determining unit is specifically configured to perform weighting on a group of co-polarized antennas by using m weighting values to form the m beams.
  • the determining unit by using the k weighting values, respectively weights a group of co-polarized antennas to form k beams, k a positive integer greater than 1; using the first weighting value, weighting any two adjacent beams of the k beams to form m/2 beams; using the second weighting value, among the k beams Any two adjacent beams are weighted to form m/2 beams.
  • the determining unit is specifically configured to perform weighting on the first group of co-polarized antennas by using m/2 weighting values respectively. Forming m/2 beams; using the m/2 weighting values, respectively weighting the second set of co-polarized antennas to form m/2 beams; wherein the first set of co-polarized antennas and the Second group of the same pole There is a gap between the antennas.
  • the determining unit is further configured to pass the q in the sending unit Before the group of ports sends n pilot signals to the UE, determining X types of pilot signal configurations corresponding to the ports of the q group, wherein each group of the q groups is divided into X subgroups, each sub The group includes y ports, and the jth subgroup in each group corresponds to the jth pilot signal configuration in the X pilot signal configurations, and the pilot signal is configured to indicate when the pilot signal is occupied.
  • the frequency resource, X and y are both positive integers greater than or equal to 1, l ⁇ j ⁇ x, j is a positive integer; the sending unit is further configured to send signaling to the UE, where the signaling is used to indicate The X kinds of pilot signal configurations.
  • the method further includes: a receiving unit, where the receiving unit is configured to receive measurement information from the UE, where the measurement information includes the The UE measures the obtained X measurement results on the time-frequency resources respectively indicated by the X types of pilot signal configurations; the determining unit is further configured to use the measurement information received by the receiving unit and the port of the q group The uplink receiving power is used to determine a data transmission beam of the UE.
  • the sending unit is further configured to send data to the UE by using a data transmission beam of the UE.
  • the determining unit is specifically configured to: select an optimal measurement result from the X measurement results, and determine the a candidate subgroup corresponding to the optimal measurement result, the candidate subgroup includes at least one subgroup; and selecting a subgroup with the highest uplink receiving power from the candidate subgroup according to the uplink receiving power of the port of the q group And determining a data transmission beam of the UE according to the optimal measurement result and the selected one of the subgroups.
  • a fourth aspect provides a user equipment, including: a receiving unit, configured to receive n pilot signals sent by a base station through a port of the q group, where the q group is corresponding to the m beams of the base station
  • the p ports are obtained by dividing each group including n ports, m and p are positive integers greater than 1, and n and q are positive integers greater than 1; the i-th port in each group is used Transmitting an ith pilot signal of the n pilot signals, l ⁇ i ⁇ n, i is a positive integer;
  • a measuring unit configured to measure the n pilot signals received by the receiving unit .
  • the receiving unit is further configured to: before receiving, by the base station, the n pilot signals sent by the port of the q group, receive the signaling sent by the base station, where The signaling is used to indicate X pilot signal configurations corresponding to the ports of the q group, wherein each group of the q groups is divided into X subgroups, each subgroup includes y ports, each In the group
  • the j-th sub-group corresponds to the j-th pilot signal configuration in the X-type pilot signal configuration, where the pilot signal is configured to indicate a time-frequency resource occupied by the pilot signal, and both X and y are greater than or A positive integer equal to 1, l ⁇ j ⁇ x, j is a positive integer.
  • the method further includes: a sending unit, where the measuring unit is configured to configure a time frequency respectively indicated by the X types of pilot signals The N pilot signals are measured on the resource to obtain X measurement results.
  • the sending unit is configured to send measurement information to the base station, where the measurement information includes the X measurement results.
  • the receiving unit is further configured to receive, by using a data transmission beam, data sent by the base station, where the data transmission beam The base station is determined according to the measurement information and an uplink received power of the port of the q group.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • 1 is a schematic flow chart of a method of transmitting a pilot signal according to an embodiment of the present invention.
  • 2 is a schematic diagram of an example of a scenario in which an embodiment of the present invention is applicable.
  • FIG. 3 is a schematic diagram of another example of a scenario in which an embodiment of the present invention may be applied.
  • FIG. 4 is a schematic diagram of another example of a scenario in which an embodiment of the present invention may be applied.
  • FIG. 5 is a schematic flowchart of a method of transmitting a pilot signal according to another embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a base station in accordance with one embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a UE in accordance with one embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a UE according to another embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UE User Equipment
  • MT Mobile Terminal
  • RAN Radio Access Network
  • the user device can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket, handheld, computer built, or in-vehicle.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved Node B (eNB or e-NodeB) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved Node B
  • e-NodeB evolved Node B
  • FIG. 1 is a schematic flow chart of a method of transmitting a pilot signal according to an embodiment of the present invention. The method of Figure 1 is performed by a base station.
  • the base station can form m beams by weighting.
  • the m beams can each have different orientations.
  • ASS Active Antenna System
  • a base station can form m differently directed beams by antenna weighting.
  • Each beam can correspond to one or more ports.
  • each beam can correspond to one port, and then m beams can correspond to m ports.
  • each beam can correspond to two ports, then m beams can correspond to mx2 ports.
  • n pilot signals Send, by using a port of the q group, n pilot signals to the UE, where the q group is p.
  • the port is obtained by dividing each group including n ports, and n and q are positive integers greater than 1; the i-th port in each group is used to transmit the ith pilot signal of n pilot signals.
  • l ⁇ i ⁇ n, i is a positive integer.
  • the base station can group p ports according to the direction of the m beams so that the groups are spatially staggered.
  • the base station can divide each n adjacent ports into one group.
  • the base station here p-ports p ports is also substantially grouping m beams. For example, if there are 16 beams, each beam corresponds to 2 ports, then 16 beams correspond to 32 ports.
  • the base station can divide each of the eight adjacent ports into one group, so that four sets of ports can be obtained. That is, since each beam can correspond to two ports, it can be understood that the base station divides every four adjacent beams into one group.
  • the first port is used to transmit the first pilot signal; the second port is used to transmit the second pilot signal, and so on.
  • the base station may group the ⁇ ports to obtain the q group port, where each group port includes n ports.
  • n and q are both positive integers greater than 1, so n is less than p.
  • the base station can send n pilot signals to the UE through the q group port, and the i th port in each group of ports is used to transmit the ith pilot signal in the n pilot signals, so that the number of pilot signals is reduced. Therefore, the time-frequency resources occupied by the pilot signals are reduced, so that the overhead of the pilot signals can be saved.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • the pilot signal may include a Channel State Information-Reference Signal (CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the pilot signal may also include other pilot signals that are only used for channel measurements. Since such pilot signals are only used for channel measurements, such as CSI-RS, the base station does not need to transmit omnidirectionally. Moreover, since there is a spatial separation between the m beams, the base station can transmit a pilot signal to the UE by means of space division multiplexing.
  • the base station may divide the p ports into q groups according to the directions of the m beams.
  • the base station can divide the p ports into groups of q such that the spatial separation between the groups is sufficiently far apart.
  • the spatial separation between groups can be determined according to actual needs, for example, according to transmission performance and overhead of pilot signals.
  • the base station may form m beams by using antenna weighting.
  • the base station may separately weight a set of co-polarized antennas by using m weighting values to form m beams.
  • m weighting values may be separately weighted by using m weighting values to form m beams.
  • the base station may weight a set of the same-polarized antennas by using k weighting values to form k beams, where k is a positive integer greater than 1.
  • the base station can use the first weighting value to weight any two adjacent beams of the k beams to form m/2 beams.
  • the base station can use the second weighting value to weight any two adjacent beams of the k beams to form m/2 beams.
  • the base station uses antenna weighting to form five beams.
  • the base station can weight each of the five adjacent beams by using the weighted value W1 to form four beams.
  • the base station can use weighting value W2 to weight each of the two adjacent beams to form another four beams. In this way, the base station can determine 8 beams.
  • the base station may weight the first set of co-polarized antennas by using m/2 weighting values to form m/2 beams.
  • the base station can use the m/2 weighting values described above to weight the second set of co-polarized antennas to form m/2 beams.
  • the base station can divide the 8 ⁇ antennas in the horizontal polarization direction into two groups: The first 4 ⁇ antennas are grouped into one group, that is, the first group of co-polarized antennas, and the last four antennas are grouped into one group, that is, the second group is the same Polarized antenna. Then the spacing between the first set of co-polarized antennas and the second set of co-polarized antennas is 2 times the wavelength.
  • the base station can weight the first set of co-polarized antennas by using four weighting values W1, W2, W3, and W4, respectively, to form four beams.
  • the base station may weight the second set of co-polarized antennas for the four weighting values W1, W2, W3, and W4 described above, thereby forming another four beams.
  • the base station can determine 8 beams. Since the interval between the first set of co-polarized antennas and the second set of co-polarized antennas is 2 times of wavelength, then 4 beams formed by weighting the first set of co-polarized antennas and weighting the second set of co-polarized antennas Form The spacing between the four beams is also twice the wavelength.
  • the base station may determine X pilot signal configurations corresponding to the ports of the q group, where each group in the q group is divided into X subgroups, each sub The group includes y ports, and the jth subgroup in each group corresponds to the jth pilot signal configuration in the X pilot signal configurations, and the pilot signal is configured to indicate the time-frequency resource occupied by the pilot signal, X And y are positive integers greater than or equal to 1, l ⁇ j ⁇ x, j is a positive integer.
  • the base station can send signaling to the UE, which can be used to indicate X pilot signal configurations.
  • each of the above q groups may be further divided into X subgroups. That is, n ports in each group can be divided into X subgroups. Each subgroup includes y ports. Since each group is divided into X subgroups, the base station can determine that the q group port corresponds to the X pilot signal configurations. The value of X may be less than the total number of pilot signal configurations in the protocol.
  • the jth subgroup in each group may correspond to the jth pilot signal configuration in the X pilot signal configurations. That is, in each group of ports, the first subgroup corresponds to the first pilot signal configuration; the second subgroup corresponds to the second pilot signal configuration; and so on. Therefore, in each group of ports, the ports of the different sub-groups respectively correspond to different pilot signal configurations, so that the pilot signals transmitted on the ports of the different sub-groups occupy different time-frequency resources, which facilitates the UE to the pilot signals. Make measurements.
  • the base station determines 16 beams, each beam corresponding to 2 ports.
  • the base station can divide 32 ports into 4 groups, each group having 8 ports. Further, the base station can divide the 8 ports of each group into 4 subgroups. Each subgroup consists of 2 ports. Since the eight ports of each group are divided into four sub-groups, the base station can determine that the four sub-group ports correspond to four types of pilot signal configurations. Wherein, in each group of ports, the first sub-group corresponds to the first type of pilot signal arrangement, the second sub-group corresponds to the second type of pilot signal configuration, and the third sub-group corresponds to the third type of pilot signal. Signal configuration, the fourth subgroup corresponds to the fourth pilot signal configuration.
  • the base station may receive measurement information from the UE, where the measurement information includes the X measurement results measured by the UE on the time-frequency resources respectively indicated by the X types of pilot signal configurations.
  • the base station can determine the data transmission beam of the UE according to the measurement information and the uplink received power of the port of the q group.
  • the base station can transmit to the UE by using the data transmission beam of the UE. Data.
  • the UE may measure the pilot signal on the time-frequency resource indicated by each pilot signal configuration, thereby obtaining X measurement results.
  • the base station can determine the data transmission beam of the UE based on these measurements.
  • the base station may select an optimal measurement result from the X measurement results, and determine a candidate subgroup corresponding to the optimal measurement result.
  • the base station can select the group with the highest received power from the q group.
  • the base station may determine the data transmission beam of the UE according to the optimal measurement result, the candidate subgroup, and the group with the highest received power of the uplink.
  • the base station may select an optimal measurement result from the X measurement results, and determine a candidate subgroup corresponding to the optimal measurement result, where the candidate subgroup includes at least one subgroup.
  • the base station can select a subgroup with the largest uplink receiving power from the candidate subgroups according to the uplink received power of the port of the q group.
  • the base station can determine the data transmission beam of the UE according to the optimal measurement result and a selected subgroup of the above.
  • each of the X measurement results includes a Channel Quality Indication (CQI).
  • CQI Channel Quality Indication
  • each measurement result may include a CQI, and at least one of the following: a rank, a Precoding Matrix Indicator (PMI).
  • PMI Precoding Matrix Indicator
  • the UE may determine whether to include a rank or a PMI in the measurement result according to the transmission mode.
  • the base station can select an optimal measurement result from the X measurement results. For example, the base station can compare the CQI in each measurement result to determine an optimal CQI, thereby determining an optimal measurement result.
  • the base station can determine the candidate pilot signal configuration corresponding to the optimal measurement result in the X pilot signal configurations according to the optimal measurement result, so that the candidate subgroup corresponding to the optimal measurement result can be determined. Since each pilot signal configuration can correspond to multiple subgroups, the candidate subgroups herein can include multiple subgroups.
  • the base station may select one group in the q group according to the uplink received power of each group of ports in the q group.
  • the base station can compare the uplink receiving power of the ports of each group in the q group, thereby selecting one group with the largest uplink receiving power among the q groups. Then, the base station can be based on the most The optimal measurement result, the candidate subgroup, and the corresponding beam of the group with the highest uplink received power are determined, and the data transmission beam is determined. For example, the base station may determine a subset of the set of candidate subgroups that belong to the group with the highest uplink received power. Then, the base station can use the PMI in the optimal measurement result to weight the beam corresponding to the determined one of the subgroups to determine the data transmission beam. The base station may also select a subgroup with the highest uplink received power from the candidate subgroups. The base station can then use the PMI in the optimal measurement result to weight the beam corresponding to the selected one of the subsets to determine the data transmission beam.
  • the PMI corresponding to the subgroup is weighted by the PMI in the optimal measurement result, and the PMI is changed, so that it can be formed more abundantly Data transmission beam.
  • the base station After determining the data transmission beam of the UE, the base station can use the data transmission beam to send data to the UE.
  • the UE can receive data through the data transmission beam, and can demodulate data through a UE-specific Reference Signal (UE-specific RS).
  • UE-specific RS UE-specific Reference Signal
  • FIG. 2 is a schematic diagram of an example of a scenario in which an embodiment of the present invention is applicable.
  • each beam corresponds to 2 ports. Therefore, 16 beams correspond to 32 ports.
  • the base station can divide 32 ports into 4 groups, and each 8 adjacent ports are grouped into one group. That is, the base station can divide 16 beams into 4 groups, and each of 4 adjacent beams is a group. That is, as shown in Fig. 2, the four groups can be represented as group 0, group 1, group 2, and group 3, respectively.
  • Ports of each group may be denoted by the same reference numerals for convenience of the following description. Specifically, as shown in FIG. 2, in group 0, the ports corresponding to beam 0 to beam 3 can be numbered 0 to 7. In group 1, the ports corresponding to beams 4 through 7 can also be numbered 0 to 7. In group 2, the beam
  • the ports corresponding to 8 to beam 11 can also be numbered 0 to 7.
  • the ports corresponding to beam 12 to beam 15 can also be numbered 0 to 7.
  • each port can be used to transmit different pilot signals.
  • ports with the same number can be used to transmit the same pilot signal.
  • port 0 in group 0, Port 0 in Group 1, Port 0 in Group 2, and Port 0 in Group 3 are used to transmit the first pilot signal;
  • Port 1 in Group 0, Port 1 in Group 1, Ports in Group 2 Port 1 in 1 and Group 3 are used to transmit the 2nd pilot signal; and so on.
  • the base station can send 8 pilot signals to the UE through 4 groups of ports.
  • each group of ports may be further divided. That is, each group can also be divided into 4 subgroups, and each subgroup can include 2 ports. Then the four groups of ports can be further divided into 16 subgroups.
  • subgroups can be individually numbered, that is, each subgroup in a different group can be represented by the same number. As shown in Figure 1, the four subgroups in group 0 can be numbered 0 to 3, that is, subgroup 0 to subgroup 3. The 4 subgroups in Group 1 can also be numbered as Subgroup 0 to Subgroup 3. The 4 subgroups in Group 2 can also be numbered as Subgroup 0 to Subgroup 3.
  • the 4 subgroups in Group 3 can also be numbered as Subgroup 0 to Subgroup 3.
  • the subgroups numbered 0 in each group may include ports numbered 0 and 1 in the group, and the subgroups numbered 1 in each group may include ports numbered 2 and 3 in the group, number 2 in each group.
  • the subgroups may include ports numbered 4 and 5 in the group, and the subgroups numbered 3 in each group may include ports numbered 6 and 7 in the group.
  • subgroup 0 may include port 0 and port 1 in group
  • subgroup 1 may include port 2 and port 3 in group
  • subgroup 2 may include port 4 and port in group 0 5
  • Subgroup 3 may include ports 6 and 7 in group 0.
  • Other groups are similar to group 0 and will not be described again.
  • Each group is divided into 4 subgroups, then 16 subgroups can correspond to 4 pilot signal configurations.
  • the pilot signal configuration can indicate the time-frequency resources occupied by the pilot signals.
  • subgroup 0 in group 0, subgroup 0 in group 1, subgroup 0 in group 2, and subgroup 0 in group 3 may all correspond to the first pilot signal configuration;
  • Subgroup 1, subgroup 1 in group 1, subgroup 1 in group 2, and subgroup 1 in group 3 may each correspond to a second type of pilot signal configuration; and so on.
  • the UE may measure the 8 pilot signals sent by the base station on the time-frequency resources indicated by the four types of pilot signal configurations. As shown in FIG. 2, on each time-frequency resource indicated by the pilot signal configuration, the UE may measure the pilot signals transmitted by the base station on the ports in the same numbered subgroup. Specifically, the UE may measure the pilot signal transmitted on the port in the subgroup of number 0 on the time-frequency resource indicated by the first type of pilot signal configuration. That is, the UE may measure two pilot signals on the time-frequency resource indicated by the first type of pilot signal configuration, that is, two pilot signals respectively transmitted by the base station on port 0 and port 1.
  • the UE may measure the pilot signal transmitted on the port in the subgroup of number 1 on the time-frequency resource indicated by the second type of pilot signal configuration.
  • the UE may measure the pilot signal transmitted on the port in the subgroup of number 2 on the time-frequency resource indicated by the third type of pilot signal configuration.
  • UE can be at The pilot signal transmitted on the port in the subgroup of number 3 is measured on the time-frequency resource indicated by the fourth type of pilot signal configuration.
  • the UE may measure two pilot signals on the time-frequency resource indicated by each pilot signal configuration, and each pilot signal is substantially a pilot transmitted on a port with the same number between groups. A signal that is superimposed on a signal.
  • the UE measures two pilot signals transmitted on two ports in the sub-group 0, wherein one pilot signal is substantially in four groups of ports. The pilot signal transmitted on the port numbered 0 is superimposed, and the other pilot signal is substantially a signal superimposed on the pilot signals transmitted on the port number 1 of the four groups of ports.
  • Each measurement can include a CQI.
  • Each measurement can also include at least one of the following: rank, PMI.
  • the UE may send measurement information to the base station, and the measurement information may include the four measurement results.
  • the base station can determine the data transmission beam according to the measurement information, and use the data transmission beam direction
  • the UE sends data. Specifically, the base station can select an optimal measurement result from the four measurement results, and determine four subgroups corresponding to the optimal measurement result. Then, the base station can select the group with the largest uplink received power from the group 0 to the group 3 according to the respective uplink received powers of the groups 0 to 3. For example, the optimal measurement result selected by the base station is measured on the time-frequency resource indicated by the first pilot signal configuration.
  • the first pilot signal configuration may correspond to 4 subgroups numbered 0 in groups 0 through 3. Since the 32 ports can receive the uplink sounding reference signal, the base station can compare the respective uplink receiving powers of the group 0 to the group 3 to determine the group with the largest uplink receiving power.
  • the uplink receiving power of the port of the group 1 can be the largest. Then, the base station can determine the beam 4 as the data transmission beam according to the 4 subgroups numbered 0 and the group 1. The base station can then use the PMI to weight the beam 4 to determine the data transmission beam.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • FIG. 3 is a schematic diagram of another example of a scenario in which an embodiment of the present invention may be applied.
  • the base station can form five beams by means of antenna weighting. As shown in FIG. 3, the five beams can be represented as beam 00 to beam 04.
  • the base station can use weighting value W1 to weight each of the five adjacent beams to obtain four beams. Specifically, the base station may weight the beam 00 and the beam 01 by using the weighting value W1 to obtain the beam 10, and weight the beam 01 and the beam 02 by using the weighting value W1 to obtain the beam 12, and so on. This gives four beams, beams 10, 12, 14 and 16, respectively.
  • the base station can use weighting value W2 to weight each of the five adjacent beams to obtain another four beams. Specifically, the base station can weight the beam 00 and the beam 01 by using the weighting value W2 to obtain the beam 11, and use the weighting value W2 to weight the beam 01 and the beam 02 to obtain the beam 13, and so on. This will result in four additional beams, beams 11, 13, 15, and 17.
  • each beam corresponds to 2 ports. Therefore, 8 beams can correspond to 16 ports.
  • the base station can divide 16 ports into 2 groups, and each 8 adjacent ports are grouped into one group. That is, the base station divides 8 beams into 2 groups, each group having 4 beams. As shown in Figure 3, these two groups can be represented as group 0 and group 1, respectively.
  • the ports of each group may be denoted by the same reference numerals for convenience of description. Specifically, as shown in FIG. 3, in group 0, the ports corresponding to the beams 10 to 13 may be numbered 0 to 7. In group 1, the ports corresponding to beams 14 through 17 can also be numbered 0 through 7.
  • Each port can be used to send different pilot signals. Between the groups, ports with the same number can be used to transmit the same pilot signal. Specifically, port 0 in group 0 and port 0 in group 1 are both used to transmit the first pilot signal; port 1 in group 0 and port 1 in group 1 are used to transmit the second pilot signal. And so on. It can be seen that the base station can send 8 pilot signals to the UE through two groups of ports.
  • each group of ports can be further divided. That is, each group can also be divided into 1 sub-group, and each sub-group can include 4 ports. Then the 2 groups of ports can be further divided into 4 subgroups.
  • group 0 and group 1 the same numbering can be used between the respective subgroups.
  • two subgroups in group 0 can be numbered 0 and 1, that is, subgroup 0 and subgroup 1.
  • the 2 subgroups in Group 1 can also be numbered as Subgroup 0 and Subgroup 1.
  • Subgroups numbered 0 in each group may include ports numbered 0 through 3 in the group, each group
  • the subgroup numbered 1 may include ports numbered 4 through 7 in the group.
  • subgroup 0 may include port 0, port 1, port 2, and port 3 in group
  • subgroup 1 may include port 4, port 5, port 6, and port 7 in group 0.
  • Group 1 is similar to group 0 and will not be described again.
  • Each group is divided into 1 subgroup, then 4 subgroups can correspond to 1 pilot signal configuration.
  • the pilot signal configuration can indicate the time-frequency resources occupied by the pilot signals.
  • subgroup 0 in group 0 and subgroup 0 in group 1 may correspond to the first type of pilot signal configuration; subgroup 1 in group 0 and subgroup 1 in group 1 may correspond to the first Two kinds of pilot signal configurations.
  • the UE may measure the 8 pilot signals sent by the base station on the time-frequency resources indicated by the two types of pilot signals, thereby obtaining two measurement results.
  • the measurement information can then be sent to the base station, and the measurement information can include the two measurement results.
  • the base station can select the optimal measurement result from the two measurement results and determine the two subgroups corresponding to the optimal measurement result. Then, the base station can select the group with the largest uplink received power from the two groups according to the respective uplink received powers of the group 0 and the group 1. The base station may determine a subgroup of the group of the two subgroups corresponding to the optimal measurement result that belongs to the largest uplink receiving power. For example, the measurement result that H is not optimal is measured on the time-frequency resource indicated by the second pilot signal configuration.
  • the second pilot signal configuration corresponds to 2 subgroups numbered 1.
  • the base station can determine the candidate data transmission beam, that is, the two beams corresponding to the subgroup 1 in the group 1, that is, the beam 16 and the beam 17.
  • the base station can weight the beam 16 and the beam 17 using the PMI in the optimal measurement result to determine the data transmission beam.
  • the data transmission beam formed by the base station based on the PMI weighting is also changed, so that a richer data transmission beam can be formed.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • FIG. 4 is a schematic diagram of another example of a scenario in which an embodiment of the present invention may be applied.
  • Fig. 4 it is assumed that there are 16 cross-polarized antennas, and there are 8 antennas in each polarization direction. As shown in Fig. 4, 16 antennas can be numbered 0 to 15, respectively. There is a certain spacing between adjacent two co-polarized antennas, such as a half wavelength, i.e., 0.5 ⁇ , where ⁇ can represent the wavelength.
  • the base station can divide the co-polarized antenna into two groups, and the first group of co-polarized antennas can include the antennas 0, 2. 4 and 6, the second set of co-polarized antennas may include antennas 8, 10, 12 and 14.
  • the base station can weight the first set of co-polarized antennas by using four weighting values respectively, that is, weighting the antennas 0, 2, 4, and 6 by weighting values W1, W2, W3, and W4, respectively, to form four beams, respectively Beam A,
  • the base station can weight the second set of co-polarized antennas by using the above four weighting values respectively, that is, weighting the antennas 8, 10, 12, and 14 by weighting values W1, W2, W3, and W4, respectively, to form another four beams. They are beams E, F, 0 and 11, respectively. It can be seen that since the distance between the first set of co-polarized antennas and the second set of co-polarized antennas is 2 ⁇ , the distance between the beams ⁇ to D and the beams E to H is 2 ⁇ .
  • each beam corresponds to 2 ports, so 8 beams can correspond to 16 ports.
  • the base station can divide 16 ports into two groups, which are represented as group 0 and group 1, respectively.
  • Group 0 includes 8 ports corresponding to beam A, beam B, beam E and beam F, respectively.
  • Group 1 includes beam
  • the ports of each group may be denoted by the same reference numerals for convenience of description.
  • the port number corresponding to beam A is 0 and 1
  • the ports corresponding to beam E can be numbered 2 and 3
  • the ports corresponding to beam B can be numbered 4 and 5
  • the ports corresponding to F can be numbered 6 and 7.
  • the ports corresponding to beam C can be numbered 0 and 1
  • the ports corresponding to beam G can be numbered 2 and 3
  • the ports corresponding to beam D can be numbered 4 and 5
  • the ports corresponding to beam H can be numbered 6 And 7.
  • Each port can be used to send different pilot signals. Between the groups, ports with the same number can be used to send the same pilot signal. Therefore, the base station can transmit 8 pilot signals to the UE through 2 sets of ports.
  • each group of ports can be further divided. That is, each group can also be divided into 1 sub-group, and each sub-group can include 4 ports. Then the 2 groups of ports can be further divided into 4 subgroups.
  • group 0 and group 1 the same numbering can be used between the respective subgroups. As shown in FIG. 4, two subgroups in group 0 can be numbered 0 and 1, that is, subgroup 0 and subgroup 1.
  • the 2 subgroups in Group 1 can also be numbered as Subgroup 0 and Subgroup 1.
  • the subgroups numbered 0 in each group may include ports numbered 0 through 3 in the group, and the subgroups numbered 1 in each group may include ports numbered 4 through 7 in the group.
  • subgroup 0 may include port 0, port 1, port 2, and port 3 in group 0, and subgroup 1 may include port 4, port 5, port 6, and port 7 in group 0.
  • Group 1 is similar to group 0 and will not be described again.
  • Each group is divided into 2 subgroups, then 4 subgroups can correspond to 2 pilot signal configurations.
  • the pilot signal configuration can indicate the time-frequency resources occupied by the pilot signals.
  • subgroup 0 in group 0 and subgroup 0 in group 1 may correspond to the first type of pilot signal configuration; subgroup 1 in group 0 and subgroup 1 in group 1 may correspond to the first Two kinds of pilot signal configurations.
  • the UE may measure the 8 pilot signals sent by the base station on the time-frequency resources indicated by the two types of pilot signal configurations, thereby obtaining two measurement results. Measurement information can then be sent to the base station, and the measurement information can include the two measurements.
  • the base station can select the optimal measurement result from the two measurement results and determine the two subgroups corresponding to the optimal measurement result. Then, the base station can select the group with the largest uplink received power from the two groups according to the respective uplink received powers of the group 0 and the group 1. The base station may determine a subgroup of the group of the two subgroups corresponding to the optimal measurement result that belongs to the largest uplink receiving power. . For example, the measurement result that H is not optimal is measured on the time-frequency resource indicated by the second pilot signal configuration. The second pilot signal configuration corresponds to 2 subgroups numbered 1.
  • the uplink receiving power of the port of the group 1 is the largest, and the base station can determine the candidate data transmission beam, that is, the two beams corresponding to the subgroup 1 in the group 1, that is, the beam D and the beam H.
  • the base station can weight the beam D and the beam H by using the PMI in the optimal measurement result, so that the data transmission beam can be determined.
  • the data transmission beam formed by the base station based on the PMI weighting is also changed, so that a richer data transmission beam can be formed.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • FIG. 5 is a schematic flowchart of a method of transmitting a pilot signal according to another embodiment of the present invention. The method of Figure 5 is performed by the UE.
  • n pilot signals sent by the base station through the port of the q group where the q group is obtained by the base station dividing the p ports corresponding to the m beams according to each group including n ports, and m and p are respectively obtained.
  • the ith port in each group is used to transmit the ith pilot signal of n pilot signals, l ⁇ i ⁇ n, i is a positive integer.
  • the n pilot signals sent by the base station through the port of the q group are received, where the i th port in each group is used to send the i th pilot signal in the n pilot signals, so that The number of pilot signals obtained is reduced, so that the overhead of the pilot signal can be saved.
  • the UE may receive signaling sent by the base station, where the signaling is used to indicate X pilot signal configurations corresponding to the ports of the q group, where each of the q groups A group is divided into X subgroups, each subgroup includes y ports, and the jth subgroup in each group corresponds to the jth pilot signal configuration in the X pilot signal configurations, and the pilot signals are configured for Indicates the time-frequency resource occupied by the pilot signal, X and y are positive integers greater than or equal to 1, l ⁇ j ⁇ x , j is a positive integer.
  • the UE may measure n pilot signals on the time-frequency resources indicated by the X types of pilot signal configurations to obtain X measurement results.
  • the UE may send measurement information to the base station, the measurement information including X measurement results.
  • the UE may receive data sent by the base station by using a data transmission beam, where the data transmission beam is determined by the base station according to the measurement information and the uplink received power of the port of the q group.
  • each of the X measurement results may include a CQI.
  • each measurement may include a CQI, and at least one of the following: rank, PMI.
  • the pilot signal may be a CSI-RS.
  • FIG. 6 is a schematic block diagram of a base station in accordance with one embodiment of the present invention.
  • the base station 600 of FIG. 6 includes a determining unit 610 and a transmitting unit 620.
  • the determining unit 610 determines m beams and determines p ports corresponding to the m beams, where m and p are positive integers greater than one.
  • the sending unit 620 sends n pilot signals to the UE through the ports of the q group, where the q group is obtained by dividing p ports according to each group including n ports, and n and q are positive integers greater than 1.
  • the i-th port in each group is used to transmit the i-th pilot signal among the n pilot signals, l ⁇ i ⁇ n, and i is a positive integer.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • the base station 600 may further include a grouping unit 630.
  • the grouping unit 630 can be oriented in the direction of m beams, and the p ports are divided into groups of q.
  • the determining unit 610 may form, by using antenna weighting, m beams.
  • the determining unit 610 may separately weight a set of co-polarized antennas by using m weighting values to form m beams.
  • the determining unit 610 may separately weight a set of co-polarized antennas by using k weighting values to form k beams, where k is a positive integer greater than 1, and the first weighting value may be utilized. And weighting any two adjacent beams of the k beams to form m/2 beams, and using the second weighting value, weighting any two adjacent beams of the k beams to form m/2 Beams.
  • the determining unit 610 may separately weight the first group of co-polarized antennas by using m/2 weighting values to form m/2 beams; using m/2 weighting values, respectively
  • the second set of co-polarized antennas are weighted to form m/2 beams; wherein there is a spacing between the first set of co-polarized antennas and the second set of co-polarized antennas.
  • the determining unit 610 may further determine the X pilot signal configurations corresponding to the ports of the q group before the sending unit 620 sends the n pilot signals to the UE through the port of the q group.
  • Each group in the q group is divided into X subgroups, each subgroup includes y ports, and the jth subgroup in each group corresponds to the jth pilot signal configuration in the X pilot signal configurations.
  • the pilot signal is configured to indicate a time-frequency resource occupied by the pilot signal, and both X and y are positive integers greater than or equal to 1, l ⁇ j ⁇ x, j is a positive integer.
  • the sending unit 620 can also send signaling to the UE, where the signaling is used to indicate X pilot signal configurations.
  • the base station 600 may further include a receiving unit 640.
  • the receiving unit 640 can receive measurement information from the UE, where the measurement information includes the X measurement results obtained by the UE on the time-frequency resources indicated by the X types of pilot signal configurations.
  • the determining unit 610 can also determine the data transmission beam according to the measurement information received by the receiving unit 640 and the uplink received power of the port of the q group.
  • the transmitting unit 620 can also transmit data to the UE by using the data transmission beam.
  • the determining unit 610 may select an optimal measurement result from the X measurement results, and determine a candidate subgroup corresponding to the optimal measurement result, where the candidate subgroup includes at least one subgroup, According to the uplink receiving power of the port of the q group, a sub-group with the largest uplink receiving power is selected from the candidate sub-groups, and the data transmission beam of the UE can be determined according to the optimal measurement result and the selected sub-group.
  • each of the foregoing X measurement results may include a CQI.
  • each measurement may include a CQI, and at least one of the following: rank, PMI.
  • the pilot signal may be a CSI-RS.
  • the base station 600 reference may be made to the process related to the base station in the method embodiment of FIG. 1 to FIG. 4 above, and details are not described herein again to avoid repetition.
  • FIG. 7 is a schematic block diagram of a UE in accordance with one embodiment of the present invention.
  • the UE 700 of FIG. 7 includes a receiving unit 710 and a measuring unit 720.
  • the receiving unit 710 receives n pilot signals sent by the base station through the port of the q group, where the q group is obtained by the base station dividing the p ports corresponding to the m beams according to each group including n ports, m and p. Both are positive integers greater than 1, and n and q are positive integers greater than one; the ith port in each group is used to transmit the ith pilot signal in n pilot signals, l ⁇ i ⁇ n , i is a positive integer.
  • Measurement unit 720 measures the n pilot signals received by receiving unit 710.
  • the n pilot signals sent by the base station through the port of the q group are received, where the i th port in each group is used to send the i th pilot signal in the n pilot signals, so that The number of pilot signals is reduced, thereby saving the overhead of pilot signals.
  • the receiving unit 710 may further receive signaling sent by the base station before receiving the n pilot signals sent by the base station through the port of the q group, where the signaling is used to indicate the port corresponding to the q group.
  • X pilot signal configurations wherein each group of q groups is divided into X subgroups, each subgroup includes y ports, and the jth subgroup in each group corresponds to X pilot signal configurations
  • the j-th pilot signal is configured, the pilot signal is configured to indicate a time-frequency resource occupied by the pilot signal, and both X and y are positive integers greater than or equal to 1, l ⁇ j ⁇ x, and j is a positive integer.
  • the UE 700 may further include a sending unit 730.
  • the measuring unit 720 can measure the n pilot signals on the time-frequency resources indicated by the X kinds of pilot signal configurations to obtain X measurement results.
  • the transmitting unit 730 can transmit measurement information to the base station, and the measurement information includes X measurement results.
  • the receiving unit 710 may further receive data sent by the base station by using a data transmission beam, where the data transmission beam is determined by the base station according to the measurement information and the uplink received power of the port of the q group.
  • each of the foregoing X measurement results may include a CQI.
  • each measurement may include a CQI, and at least one of the following: rank, PMI.
  • the pilot signal may be a CSI-RS.
  • FIG. 8 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • the base station 800 of Figure 8 includes Processor 810 and transmitter 820.
  • the processor 810 determines m beams and determines p ports corresponding to the m beams, where m and p are both positive integers greater than one.
  • the transmitter 820 sends n pilot signals to the UE through the port of the q group, where the q group is obtained by dividing p ports according to each group including n ports, and n and q are positive integers greater than 1.
  • the i-th port in each group is used to transmit the i-th pilot signal among the n pilot signals, l ⁇ i ⁇ n, and i is a positive integer.
  • the p ports corresponding to the m beams are divided into q groups, and n pilot signals are sent to the UE through the ports of the q group, wherein the i th port in each group is used to send n
  • the i-th pilot signal in the pilot signals reduces the number of transmitted pilot signals, thereby saving the overhead of the pilot signals.
  • the processor 810 may further divide the p ports into q groups according to the orientation of the m beams.
  • the processor 810 may form m beams by using antenna weighting.
  • the processor 810 may separately weight a set of co-polarized antennas by using m weighting values to form m beams.
  • the processor 810 may separately weight a set of co-polarized antennas by using k weighting values to form k beams, where k is a positive integer greater than 1 by using the first weighting value, Any two adjacent beams of the k beams are weighted to form m/2 beams; using the second weighting value, any two adjacent beams of the k beams are weighted to form m/2 beams.
  • the processor 810 may separately weight the first group of co-polarized antennas by using m/2 weighting values to form m/2 beams; using m/2 weighting values, respectively
  • the second set of co-polarized antennas are weighted to form m/2 beams; wherein there is a spacing between the first set of co-polarized antennas and the second set of co-polarized antennas.
  • the processor 810 may further determine the X pilot signal configurations corresponding to the ports of the q group before the transmitter 820 sends the n pilot signals to the UE through the port of the q group.
  • Each group in the q group is divided into X subgroups, each subgroup includes y ports, and the jth subgroup in each group corresponds to the jth pilot signal configuration in the X pilot signal configurations.
  • the pilot signal is configured to indicate a time-frequency resource occupied by the pilot signal, and both X and y are positive integers greater than or equal to 1, l ⁇ j ⁇ x, and j is a positive integer.
  • the transmitter 820 can also send signaling to the UE, where the signaling is used to indicate X pilot signal configurations.
  • the base station 800 may further include a receiver 830.
  • the receiver 830 may receive measurement information from the UE, where the measurement information includes the X measurement results obtained by the UE on the time-frequency resources respectively indicated by the X types of pilot signal configurations.
  • the processor 810 can also determine the data transmission beam of the UE according to the measurement information received by the receiver 830 and the uplink received power of the port of the q group.
  • the transmitter 820 can also transmit data to the UE using the data transmission beam of the UE.
  • the processor 810 may select an optimal measurement result from the X measurement results, and determine a candidate subgroup corresponding to the optimal measurement result, where the candidate subgroup includes at least one subgroup, According to the uplink receiving power of the port of the q group, a sub-group with the largest uplink receiving power is selected from the candidate sub-groups, and the data transmission beam of the UE can be determined according to the optimal measurement result and the selected sub-group.
  • each of the foregoing X measurement results may include a CQI.
  • each measurement may include a CQI, and at least one of the following: rank, PMI.
  • the pilot signal may be a CSI-RS.
  • FIG. 9 is a schematic block diagram of a UE according to another embodiment of the present invention.
  • the UE 900 of FIG. 9 includes a receiver 910 and a processor 920.
  • the receiver 910 receives n pilot signals sent by the base station through the ports of the q group, where the q group is obtained by the base station dividing the p ports corresponding to the m beams according to each group including n ports, m and p. Both are positive integers greater than 1, and n and q are positive integers greater than one; the ith port in each group is used to transmit the ith pilot signal in n pilot signals, l ⁇ i ⁇ n , i is a positive integer.
  • Processor 920 measures the n pilot signals received by receiver 910.
  • the n pilot signals sent by the base station through the port of the q group are received, where the i th port in each group is used to send the i th pilot signal in the n pilot signals, so that The number of pilot signals is reduced, thereby saving the overhead of pilot signals.
  • the receiver 910 may further receive signaling sent by the base station before receiving the n pilot signals sent by the base station through the port of the q group, where the signaling is used to indicate the port corresponding to the q group.
  • X pilot signal configurations wherein each group in the q group is divided into X subgroups, each subgroup includes y ports, and the jth subgroup in each group corresponds to X pilot signal configurations The j-th pilot signal is configured, the pilot signal is configured to indicate a time-frequency resource occupied by the pilot signal, and both X and y are positive integers greater than or equal to 1, l ⁇ j ⁇ x, and j is a positive integer.
  • the UE 900 may further include a transmitter 930.
  • the processor 920 can measure the n pilot signals on the time-frequency resources indicated by the X pilot signal configurations to obtain X measurement results.
  • Transmitter 930 can send measurement information to the base station, the measurement information including X measurements.
  • the receiver 910 may further receive data sent by the base station by using a data transmission beam, where the data transmission beam is determined by the base station according to the measurement information and the uplink received power of the port of the q group.
  • each of the foregoing X measurement results may include a CQI.
  • each measurement may include a CQI, and at least one of the following: rank, PMI.
  • the pilot signal may be a CSI-RS.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供了传输导频信号的方法、基站和用户设备。该方法包括:确定m个波束,并确定m个波束所对应的p个端口,其中m和p均为大于1的正整数;通过q组的端口,向用户设备UE发送n个导频信号,其中,q组是将p个端口按照每一组包括n个端口进行划分获得的,n和q均为大于1的正整数;每一组中的第i个端口用于发送n个导频信号中的第i 个导频信号,1≤i≤n,i为正整数。本发明实施例中,通过将m个波束对应的p个端口分为q组,并通过q组的端口向UE发送n个导频信号,其中每一组中的第i个端口用于发送n个导频信号中的第i个导频信号,使得所发送的导频信号的数目减少,从而能够节省导频信号的开销。

Description

传输导频信号的方法、 基站和用户设备 技术领域
本发明涉及通信领域, 并且具体地, 涉及传输导频信号的方法、 基站和 用户设备。 背景技术
理论分析表明, 天线数目增多, 信道容量也会随之增大, 同时增加发送 端天线数目也能获得更好的波束赋形效果, 所以采用更多天线发送和接收的 无线传输技术,即多输入多输出( Multiple-Input and Multiple-Output, MIMO ) 技术, 一直是移动通信领域研究的主流技术之一。
参考信号, 也就是导频信号, 是由发送端提供给接收端, 由接收端用于 信道估计或信道测量的一种已知信号。 目前导频信号设计的基本思想是每个 端口对应一个导频信号, 对于这种一对一的映射方式来说, 就是每个天线全 向发射一个导频信号。
在 MIMO技术中, 由于天线数目的增多, 端口数目也会随之增多, 如 果按照现有的导频信号设计方式, 为每个端口分配独立的导频信号, 那么导 频信号的开销将会非常大。 发明内容
本发明实施例提供传输导频信号的方法、 基站和用户设备, 能够节省导 频信号的开销。
第一方面, 提供了一种传输导频信号的方法, 包括: 确定 m个波束, 并 确定所述 m个波束所对应的 p个端口, 其中 m和 p均为大于 1的正整数; 通过 q组的端口, 向用户设备 UE发送 n个导频信号, 其中, 所述 q组是将 所述 p个端口按照每一组包括 n个端口进行划分获得的, n和 q均为大于 1 的正整数; 所述每一组中的第 i个端口用于发送所述 n个导频信号中的第 i 个导频信号, l≤i≤n, i为正整数。
结合第一方面, 在第一种可能的实现方式中, 还包括: 根据所述 m个波 束的指向, 将所述 p个端口分为 q组。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实 现方式中, 所述确定 m个波束, 包括: 利用天线加权的方式, 形成所述 m 个波束。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述利用天线加权的方式, 形成所述 m个波束, 包括: 利用 m个加权值, 分别对一组同极化天线进行加权, 形成所述 m个波束。
结合第一方面的第二种可能的实现方式, 在第四种可能的实现方式中, 所述利用天线加权的方式, 形成所述 m个波束, 包括: 利用 k个加权值, 分 别对一组同极化天线进行加权, k为大于 1的正整数; 利用第一加权值, 对 所述 k个波束中任意两个相邻的波束进行加权, 形成 m/2个波束; 利用第二 加权值,对所述 k个波束中任意两个相邻的波束进行加权,形成 m/2个波束。
结合第一方面的第二种可能的实现方式, 在第五种可能的实现方式中, 所述利用天线加权的方式, 形成所述 m个波束, 包括: 利用 m/2个加权值, 分别对第一组同极化天线进行加权, 形成 m/2个波束; 利用所述 m/2个加权 值, 分别对第二组同极化天线进行加权, 形成 m/2个波束; 其中, 所述第一 组同极化天线与所述第二组同极化天线之间存在间距。
结合第一方面或第一方面的第一种可能的实现方式至第五种可能的实 现方式中任一实现方式, 在第六种可能的实现方式中, 在所述通过所述 q组 的端口, 向 UE发送 n个导频信号之前, 还包括: 确定所述 q组的端口所对 应的 X种导频信号配置, 其中, 所述 q组中的每一组被划分为 X个子组, 每 个子组包括 y个端口, 每一组中的第 j个子组对应于所述 X种导频信号配置 中的第 j种导频信号配置, 所述导频信号配置用于指示导频信号占用的时频 资源, X和 y均为大于或等于 1的正整数, l<j<x, j为正整数; 向所述 UE 发送信令, 所述信令用于指示所述 X种导频信号配置。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 还包括: 从所述 UE接收测量信息, 所述测量信息包括所述 UE在所述 X种 导频信号配置分别指示的时频资源上测量所得到的 X个测量结果; ^据所述 测量信息和所述 q组的端口的上行接收功率,确定所述 UE的数据传输波束; 利用所述 UE的数据传输波束, 向所述 UE发送数据。
结合第一方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述 居所述测量信息和所述 q组的端口的上行接收功率, 确定所述 UE的 数据传输波束, 包括: 从所述 X个测量结果中选择最优的测量结果, 并确定 所述最优的测量结果对应的候选子组, 所述候选子组包含至少一个子组; 根 据所述 q组的端口的上行接收功率,从所述候选子组中选择上行接收功率最 大的一个子组; ^据所述最优的测量结果和所述选择的一个子组, 确定所述 UE的数据传输波束。
结合第一方面的第七种可能的实现方式或第八种可能的实现方式,在第 九种可能的实现方式中, 所述 X个测量结果中的每个测量结果包括信道质量 指示 CQI; 或者, 所述每个测量结果包括所述 CQI, 以及以下至少一种: 秩, 预编码矩阵指示 PMI。
结合第一方面或第一方面的第一种可能的实现方式至第九种可能的实 现方式中任一实现方式, 在第十种可能的实现方式中, 所述导频信号为信道 状态信息参考信号 CSI-RS。
第二方面, 提供了一种传输导频信号的方法, 包括: 接收基站通过 q组 的端口发送的 n个导频信号,其中,所述 q组是所述基站将 m个波束所对应 的 p个端口按照每一组包括 n个端口进行划分获得的, m和 p均为大于 1的 正整数, n和 q均为大于 1的正整数; 所述每一组中的第 i个端口用于发送 所述 n个导频信号中的第 i个导频信号, l≤i≤n, i为正整数; 对所述 n个导 频信号进行测量。
结合第二方面, 在第一种可能的实现方式中, 在所述接收基站通过 q组 的端口发送的 n个导频信号之前, 还包括: 接收所述基站发送的信令, 所述 信令用于指示所述 q组的端口所对应的 X种导频信号配置, 其中, 所述 q组 中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的第 j个 子组对应于所述 X种导频信号配置中的第 j种导频信号配置, 所述导频信号 配置用于指示导频信号占用的时频资源, X和 y均为大于或等于 1的正整数, l<j<x, j为正整数。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述对所述 n个导频信号进行测量, 包括: 在所述 X种导频信号配置分别指 示的时频资源上对所述 n个导频信号进行测量, 得到 X个测量结果;
所述方法还包括: 向所述基站发送测量信息, 所述测量信息包括所述 X 个测量结果。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 还包括: 通过数据传输波束, 接收所述基站发送的数据, 其中所述数据传输 波束是所述基站根据所述测量信息以及所述 q组的端口的上行接收功率确定 的。
结合第二方面的第二种可能的实现方式或第三种可能的实现方式,在第 四种可能的实现方式中, 所述 X个测量结果中的每个测量结果包括信道质量 指示 CQI; 或者, 所述每个测量结果包括所述 CQI, 以及以下至少一种: 秩, 预编码矩阵指示 PMI。
结合第二方面或第二方面的第一种可能的实现方式至第四种可能的实 现方式中任一实现方式, 在第五种可能的实现方式中, 所述导频信号为信道 状态信息参考信号 CSI-RS。
第三方面, 提供了一种基站, 包括: 确定单元, 用于确定 m个波束, 并 确定所述 m个波束所对应的 p个端口, 其中 m和 p均为大于 1的正整数; 发送单元, 用于通过 q组的端口, 向用户设备 UE发送 n个导频信号, 其中, 所述 q组是将所述 p个端口按照每一组包括 n个端口进行划分获得的, n和 q均为大于 1的正整数; 所述每一组中的第 i个端口用于发送所述 n个导频 信号中的第 i个导频信号, l≤i≤n, i为正整数。
结合第三方面, 在第一种可能的实现方式中, 还包括: 分组单元, 用于 才艮据所述 m个波束的指向, 将所述 p个端口分为 q组。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实 现方式中,所述确定单元具体用于利用天线加权的方式,形成所述 m个波束。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述确定单元具体用于利用 m个加权值, 分别对一组同极化天线进行加权, 形成所述 m个波束。
结合第三方面的第二种可能的实现方式, 在第四种可能的实现方式中, 所述确定单元利用 k个加权值, 分别对一组同极化天线进行加权, 形成 k个 波束, k为大于 1的正整数; 利用第一加权值, 对所述 k个波束中任意两个 相邻的波束进行加权, 形成 m/2个波束; 利用第二加权值, 对所述 k个波束 中任意两个相邻的波束进行加权, 形成 m/2个波束。
结合第三方面的第二种可能的实现方式, 在第五种可能的实现方式中, 所述确定单元具体用于利用 m/2个加权值,分别对第一组同极化天线进行加 权, 形成 m/2个波束; 利用所述 m/2个加权值, 分别对第二组同极化天线进 行加权, 形成 m/2个波束; 其中, 所述第一组同极化天线与所述第二组同极 化天线之间存在间距。
结合第三方面或第三方面的第一种可能的实现方式至第五种可能的实 现方式, 在第六种可能的实现方式中, 所述确定单元, 还用于在所述发送单 元通过 q组的端口向 UE发送 n个导频信号之前, 确定所述 q组的端口所对 应的 X种导频信号配置, 其中, 所述 q组中的每一组被划分为 X个子组, 每 个子组包括 y个端口, 每一组中的第 j个子组对应于所述 X种导频信号配置 中的第 j种导频信号配置, 所述导频信号配置用于指示导频信号占用的时频 资源, X和 y均为大于或等于 1的正整数, l<j<x , j为正整数; 所述发送单 元,还用于向所述 UE发送信令,所述信令用于指示所述 X种导频信号配置。
结合第三方面的第六种可能的实现方式, 在第七种可能的实现方式中, 还包括接收单元; 所述接收单元, 用于从所述 UE接收测量信息, 所述测量 信息包括所述 UE在所述 X种导频信号配置分别指示的时频资源上测量所得 到的 X个测量结果; 所述确定单元, 还用于根据所述接收单元接收的测量信 息和所述 q组的端口的上行接收功率, 确定所述 UE的数据传输波束; 所述 发送单元, 还用于利用所述 UE的数据传输波束, 向所述 UE发送数据。
结合第三方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述确定单元具体用于: 从所述 X个测量结果中选择最优的测量结果, 并确 定所述最优的测量结果对应的候选子组, 所述候选子组包含至少一个子组; 根据所述 q组的端口的上行接收功率,从所述候选子组中选择上行接收功率 最大的一个子组; 根据所述最优的测量结果和所述选择的一个子组, 确定所 述 UE的数据传输波束。
第四方面, 提供了一种用户设备, 包括: 接收单元, 用于接收基站通过 q组的端口发送的 n个导频信号, 其中, 所述 q组是所述基站将 m个波束所 对应的 p个端口按照每一组包括 n个端口进行划分获得的, m和 p均为大于 1的正整数, n和 q均为大于 1的正整数;所述每一组中的第 i个端口用于发 送所述 n个导频信号中的第 i个导频信号, l≤i≤n, i为正整数; 测量单元, 用于对所述接收单元接收的所述 n个导频信号进行测量。
结合第四方面, 在第一种可能的实现方式中, 所述接收单元, 还用于在 接收基站通过 q组的端口发送的 n个导频信号之前,接收所述基站发送的信 令, 所述信令用于指示所述 q组的端口所对应的 X种导频信号配置, 其中, 所述 q组中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中 的第 j个子组对应于所述 X种导频信号配置中的第 j种导频信号配置, 所述 导频信号配置用于指示导频信号占用的时频资源, X和 y均为大于或等于 1 的正整数, l<j<x, j为正整数。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 还包括发送单元; 所述测量单元, 具体用于在所述 X种导频信号配置分别指 示的时频资源上对所述 n个导频信号进行测量, 得到 X个测量结果; 所述发 送单元, 用于向所述基站发送测量信息, 所述测量信息包括所述 X个测量结 果。
结合第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述接收单元, 还用于通过数据传输波束, 接收所述基站发送的数据, 其中 所述数据传输波束是所述基站根据所述测量信息以及所述 q组的端口的上行 接收功率确定的。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明一个实施例的传输导频信号的方法的示意性流程图。 图 2是可应用本发明实施例的场景的一个例子的示意图。
图 3是可应用本发明实施例的场景的另一例子的示意图。
图 4是可应用本发明实施例的场景的另一例子的示意图。
图 5是根据本发明另一实施例的传输导频信号的方法的示意性流程图。 图 6是根据本发明一个实施例的基站的示意框图。
图 7是根据本发明一个实施例的 UE的示意框图。
图 8是根据本发明另一实施例的基站的示意框图。
图 9是根据本发明另一实施例的 UE的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信***, 例如: 全球移动通信系 统 ( Global System of Mobile communication, GSM ),码分多址 ( Code Division Multiple Access , CDMA ) ***, 宽带码分多址 (Wideband Code Division Multiple Access Wireless, WCDMA ), 通用分组无线业务 ( General Packet Radio Service, GPRS ), 长期演进( Long Term Evolution, LTE )等。
用户设备( User Equipment, UE ),也可称之为移动终端( Mobile Terminal, MT )、 移动用户设备等, 可以经无线接入网 (例如, Radio Access Network, RAN )与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移动电 话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置。
基站,可以是 GSM或 CDMA中的基站( Base Transceiver Station, BTS ), 也可以是 WCDMA 中的基站 ( NodeB ), 还可以是 LTE 中的演进型基站 ( evolved Node B, eNB或 e-NodeB ), 本发明并不限定。
图 1是根据本发明一个实施例的传输导频信号的方法的示意性流程图。 图 1的方法由基站执行。
110, 确定 m个波束, 并确定 m个波束所对应的 p个端口, 其中 m和 p 均为大于 1的正整数。
例如, 基站可以通过加权的方式形成 m个波束。 m个波束可以分别具 有不同的指向。 例如, 在有源天线***( Active Antenna System , AAS ) 中, 基站可以通过天线加权方式形成 m个不同指向的波束。
每个波束可以对应一个或多个端口。 比如, 在天线为单极化天线的情况 下, 每个波束可以对应 1个端口, 那么 m个波束可以对应于 m个端口。 在 天线为交叉极化天线的情况下,每个波束可以对应 2个端口,那么 m个波束 可以对应于 mx2个端口。
120, 通过 q组的端口, 向 UE发送 n个导频信号, 其中, q组是将 p个 端口按照每一组包括 n个端口进行划分获得的,n和 q均为大于 1的正整数; 每一组中的第 i个端口用于发送 n个导频信号中的第 i个导频信号, l≤i≤n, i为正整数。
例如,基站可以根据 m个波束的指向对 p个端口进行分组,使得各组之 间在空间上错开。 比如,基站可以将每 n个相邻的端口划分为一组。应理解, 此处基站对 p个端口进行分组实质上也是对 m个波束进行分组。例如, 艮设 有 16个波束, 每个波束对应 2个端口, 那么 16个波束对应于 32个端口。 基站可以将每 8个相邻的端口划分为一组,从而可以得到 4组端口。也就是, 由于每个波束可以对应 2个端口, 因此可以理解为基站将每 4个相邻的波束 划分为一组。
在各组端口中, 第 1个端口均用于发送第 1个导频信号; 第 2个端口均 用于发送第 2个导频信号, 以此类推。
由上述可见, 如果采用现有的导频信号设计方式, 即每个端口映射一个 导频信号, 那么对于 ρ个端口来说, 基站需要向 UE发送 ρ个导频信号。 而 本发明实施例中, 基站可以对 ρ个端口进行分组后得到 q组端口, 其中每组 端口包括 n个端口。 此处 n和 q均为大于 1的正整数, 因此 n小于 p。 然后 基站可以通过 q组端口向 UE发送 n个导频信号, 每组端口中的第 i个端口 用于发送 n个导频信号中的第 i个导频信号, 使得导频信号的数目减少, 因 此使得导频信号占用的时频资源减少, 从而能够节省导频信号的开销。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。
可选地, 作为一个实施例, 导频信号可以包括信道状态信息参考信号 ( Channel State Information-Reference Signal, CSI-RS )。
导频信号还可以包括其它仅用于信道测量的导频信号。 由于这种导频信 号仅用于信道测量, 例如 CSI-RS , 因此基站无需全向发送。 而且, 由于 m 个波束之间存在空间间隔, 因此, 基站可以通过空分复用的方式, 向 UE发 送导频信号。
可选地, 作为一个实施例, 在步骤 120之前,基站可以根据 m个波束的 指向, 将 p个端口分为 q组。 例如,基站可以将 p个端口分为 q组,使得各组之间的空间间隔足够远。 各组之间的空间间隔可以根据实际需求来确定, 例如可以根据传输性能和导 频信号的开销来确定。
可选地, 作为另一实施例, 在步骤 110中, 基站可以利用天线加权的方 式, 形成 m个波束。
可选地,作为另一实施例,基站可以利用 m个加权值分别对一组同极化 天线进行加权, 形成 m个波束。 这组同极化天线之间存在一定间距, 例如 0.5倍波长。
可选地, 作为另一实施例, 基站可以利用 k个加权值, 分别对一组同极 化天线进行加权, 形成 k个波束, k为大于 1的正整数。 基站可以利用第一 加权值, 对 k个波束中任意两个相邻的波束进行加权, 形成 m/2个波束。 基 站可以利用第二加权值, 对 k个波束中任意两个相邻的波束进行加权, 形成 m/2个波束。
例如, 假设基站利用天线加权的方式, 形成 5个波束。 基站可以利用加 权值 W1 , 对 5个波束中每两个相邻的波束进行加权, 来形成 4个波束。 基 站可以利用加权值 W2, 对 5个波束中每两个相邻的波束进行加权, 来形成 另外 4个波束。 这样, 基站就可以确定出 8个波束。
可选地, 作为另一实施例, 基站可以利用 m/2个加权值, 分别对第一组 同极化天线进行加权,形成 m/2个波束。基站可以利用上述的 m/2个加权值, 分别对第二组同极化天线进行加权, 形成 m/2个波束。 其中, 第一组同极化 天线与第二组同极化天线之间存在间距。
例如,假设 m为 8, 并假设有 16根交叉极化天线, 每个极化方向上有 8 根天线。 其中同极化天线之间存在一定间距, 比如可以是半波长。 基站可以 将水平极化方向的 8 ^天线分为两组: 将前 4 ^天线分为一组, 即第一组同 极化天线, 将后 4根天线分为一组, 即第二组同极化天线。 那么第一组同极 化天线与第二组同极化天线之间的间距是 2倍波长。 这样, 基站可以利用 4 个加权值 Wl、 W2、 W3和 W4分别对第一组同极化天线加权, 从而形成 4 个波束。 基站可以对上述的 4个加权值 Wl、 W2、 W3和 W4分别对第二组 同极化天线加权, 从而形成另外 4个波束。 这样, 基站就可以确定出 8个波 束。 由于第一组同极化天线与第二组同极化天线之间的间隔是 2倍波长, 那 么对第一组同极化天线加权形成的 4个波束与对第二组同极化天线加权形成 的 4个波束之间的间隔也为 2倍波长。
本实施例中, 由于第一组同极化天线与第二组同极化天线之间存在间 距, 因此能够通过天线之间的间距来区分对第一组同极化天线加权形成的 m/2个波束与对第二组同极化天线加权形成的 m/2个波束, 使得本发明实施 例适用于更大规模天线的场景。
可选地, 作为另一实施例, 在步骤 120之前, 基站可以确定 q组的端口 所对应的 X种导频信号配置, 其中, q组中的每一组被分为 X个子组, 每个 子组包括 y个端口, 每一组中的第 j个子组对应于 X种导频信号配置中的第 j种导频信号配置, 导频信号配置用于指示导频信号占用的时频资源, X和 y 均为大于或等于 1的正整数, l<j<x, j为正整数。基站可以向 UE发送信令, 该信令可以用于指示 X种导频信号配置。
具体地, 上述 q组中的每一组还可以进一步划分为 X个子组。 也就是, 每一组中的 n个端口可以被分为 X个子组。 各个子组均包括 y个端口。 由于 每组被分为 X个子组,那么基站可以确定 q组端口对应于 X种导频信号配置。 其中 X的取值可以小于协议中导频信号配置的总数。
每一组中的第 j个子组可以对应于所述 X种导频信号配置中的第 j种导 频信号配置。 即,在各组端口中,第 1个子组均对应于第 1种导频信号配置; 第 2个子组均对应于第 2种导频信号配置; 以此类推。 因此, 在每一组端口 中, 不同子组的端口分别对应于不同的导频信号配置, 从而使得不同子组的 端口上发送的导频信号占用不同的时频资源,便于 UE对导频信号进行测量。
例如, 假设在步骤 110中基站确定 16个波束, 每个波束对应 2个端口。 基站可以将 32个端口分为 4组, 每组有 8个端口。 进一步地, 基站可以将 每组的 8个端口分为 4个子组。 每个子组包括 2个端口。 由于每组的 8个端 口分为 4个子组,那么基站可以确定 4个子组端口对应于 4种导频信号配置。 其中, 在各组端口中, 第 1个子组均对应于第 1种导频信号配置, 第 2个子 组均对应于第 2种导频信号配置,第 3个子组均对应于第 3种导频信号配置, 第 4个子组均对应于第 4种导频信号配置。
进一步地, 作为另一实施例, 在步骤 120之后, 基站可以从 UE接收测 量信息, 测量信息包括 UE在 X种导频信号配置分别指示的时频资源上测量 得到的 X个测量结果。基站可以根据测量信息和 q组的端口的上行接收功率, 确定 UE的数据传输波束。 基站可以利用 UE的数据传输波束, 向 UE发送 数据。
UE可以在每种导频信号配置所指示的时频资源上测量导频信号, 从而 得到 X个测量结果。基站可以基于这些测量结果,确定 UE的数据传输波束。
可选地, 作为另一实施例, 基站可以从 X个测量结果中选择最优的测量 结果, 并确定最优的测量结果所对应的候选子组。 基站可以从 q组中选择上 行接收功率最大的一组。 基站可以根据最优的测量结果、 候选子组和所述上 行接收功率最大的一组, 确定 UE的数据传输波束。
可选地, 作为另一实施例, 基站可以从 X个测量结果中选择最优的测量 结果, 并确定最优的测量结果所对应的候选子组, 该候选子组包含至少一个 子组。 基站可以根据 q组的端口的上行接收功率, 从候选子组中选择上行接 收功率最大的一个子组。基站可以 ^据最优的测量结果和上述选择的一个子 组, 确定 UE的数据传输波束。
可选地, 作为另一实施例, X个测量结果中的每个测量结果包括信道质 量指示 ( Channel Quality Indication, CQI )。
可选地, 作为另一实施例, 每个测量结果可以包括 CQI, 以及包括以下 至少一种: 秩(rank ), 预编码矩阵指示( Precoding Matrix Indicator, PMI )。 例如, UE可以根据传输模式, 确定是否在测量结果中包含秩或 PMI。
具体地, 基站可以从 X个测量结果中选择最优的测量结果, 例如, 基站 可以对各个测量结果中的 CQI进行比较,确定最优的 CQI,从而确定最优的 测量结果。 基站可以根据最优的测量结果, 在 X种导频信号配置中确定最优 的测量结果所对应的候选导频信号配置,从而可以确定最优的测量结果所对 应的候选子组。 由于每种导频信号配置可以对应于多个子组, 因此此处的候 选子组可以包括多个子组。
从上述可知, 多个端口会发送相同的导频信号。 例如, 各组端口中的第 1个端口均用于发送第 1个导频信号。 因此, 在一种导频信号配置所指示的 时频资源上, UE所测量的导频信号实质上是多个端口发送的导频信号叠加 在一起的信号。 因此, 在选择出最优的测量结果以及对应的候选子组后, 基 站还无法确定数据传输波束。基站可以根据 q组中的各组端口的上行接收功 率, 在 q组中选择一个组。 例如, 由于基站的上述 p个端口接收到上行探测 ( sounding )参考信号, 那么基站可以比较 q组中各组的端口的上行接收功 率, 从而在 q组中选择上行接收功率最大的一个组。 然后, 基站可以根据最 优的测量结果、 候选子组以及上述上行接收功率最大的一组所对应的波束, 确定数据传输波束。 例如, 基站可以确定候选子组中属于上行接收功率最大 的这一组的一个子组。然后基站可以利用最优的测量结果中的 PMI对上述确 定的一个子组所对应的波束进行加权, 从而确定数据传输波束。 基站还可以 从上述候选子组中选择上行接收功率最大的一个子组。 然后基站可以利用最 优的测量结果中的 PMI对上述选择的一个子组所对应的波束进行加权,从而 确定数据传输波束。
在上述确定的一个子组的端口对应于多个波束的情况下, 利用最优的测 量结果中的 PMI对该子组对应的多个波束进行加权, 而 PMI是变化的, 因 此能够形成更丰富的数据传输波束。
基站在确定 UE的数据传输波束后, 可以利用该数据传输波束向 UE发 送数据。 UE可以通过该数据传输波束接收数据, 并可以通过用户专用参考 信号 ( UE-specific Reference Signal, UE- specific RS )解调数据。
下面将结合具体例子详细描述本发明实施例。 应理解, 这些例子只是为 了帮助本领域技术人员更好地理解本发明实施例, 而非限制本发明实施例的 范围。
图 2是可应用本发明实施例的场景的一个例子的示意图。
在图 2中, 假设有 32根交叉极化天线, 每个极化方向上有 16根天线。 基站可以利用天线加权的方式, 形成 16个波束, 如图 2所示, 这 16个波束 可以表示为波束 0至波束 15。 其中, 每个波束对应于 2个端口。 因此, 16 个波束对应于 32个端口。
基站可以将 32个端口分为 4组, 每 8个相邻的端口分为一组。 也就是, 基站可以将 16个波束分为 4组, 每 4个相邻的波束为一组。 即, 如图 2所 示, 这 4个组可以分别表示为组 0、 组 1、 组 2和组 3。
为了方便下面的描述, 各组的端口可以使用相同的编号表示。 具体地, 如图 2所示, 在组 0中, 波束 0至波束 3对应的端口可以编号为 0至 7。 在 组 1中, 波束 4至波束 7对应的端口也可以编号为 0至 7。 在组 2中, 波束
8至波束 11对应的端口也可以编号为 0至 7。 在组 3中, 波束 12至波束 15 对应的端口也可以编号为 0至 7。
在每组端口中,各个端口可以用于发送不同的导频信号。在各组端口中, 编号相同的端口可以用于发送相同的导频信号。 具体地, 组 0中的端口 0、 组 1中的端口 0、 组 2中的端口 0和组 3中的端口 0均用于发送第 1个导频 信号; 组 0中的端口 1、 组 1中的端口 1、组 2中的端口 1和组 3中的端口 1 均用于发送第 2 个导频信号; 以此类推。 可见, 基站可以通过 4组端口向 UE发送 8个导频信号。
可选地, 各组端口还可以进一步进行划分。 即每组还可以被划分为 4个 子组, 每个子组中可以包括 2个端口。 那么 4组端口就可以进一步被划分为 16个子组。为了方便下面的描述,在组 0至组 3中,子组可以分别独立编号, 即不同组中的各个子组可以使用相同的编号表示。 如图 1所示, 组 0中的 4 个子组可以编号为 0至 3 , 即子组 0至子组 3。 组 1中的 4个子组也可以编 号为子组 0至子组 3。组 2中的 4个子组也可以编号为子组 0至子组 3。组 3 中的 4个子组也可以编号为子组 0至子组 3。 每组中编号为 0的子组可以包 括该组中编号为 0和 1的端口,每组中编号为 1的子组可以包括该组中编号 为 2和 3的端口,每组中编号为 2的子组可以包括该组中编号为 4和 5的端 口, 每组中编号为 3的子组可以包括该组中编号为 6和 7的端口。 例如, 在 组 0中, 子组 0可以包括组 0中的端口 0和端口 1 , 子组 1可以包括组 0中 的端口 2和端口 3 , 子组 2可以包括组 0中的端口 4和端口 5 , 子组 3可以 包括组 0中的端口 6和 7。 其它组与组 0类似, 不再赘述。
每组被划分为 4个子组,那么 16个子组可以对应于 4种导频信号配置。 导频信号配置可以指示导频信号所占用的时频资源。 具体地, 组 0中的子组 0、 组 1 中的子组 0、 组 2中的子组 0和组 3中的子组 0均可以对应于第 1 种导频信号配置; 组 0中的子组 1、组 1中的子组 1、组 2中的子组 1和组 3 中的子组 1均可以对应于第 2种导频信号配置; 以此类推。
UE可以在 4种导频信号配置分别指示的时频资源上测量基站发送的 8 个导频信号。 如图 2所示, 在每种导频信号配置指示的时频资源上, UE可 以测量基站在编号相同的子组中的端口上发送的导频信号。 具体地, UE可 以在第 1种导频信号配置指示的时频资源上测量编号为 0的子组中的端口上 发送的导频信号。 即, UE可以在第 1种导频信号配置指示的时频资源上测 量 2个导频信号, 即基站在端口 0和端口 1上分别发送的 2个导频信号。
类似地, UE可以在第 2种导频信号配置指示的时频资源上测量编号为 1 的子组中的端口上发送的导频信号。 UE可以在第 3种导频信号配置指示 的时频资源上测量编号为 2的子组中的端口上发送的导频信号。 UE可以在 第 4种导频信号配置指示的时频资源上测量编号为 3的子组中的端口上发送 的导频信号。
在图 2中, UE在每种导频信号配置所指示的时频资源上可以测量 2个 导频信号,每个导频信号实质上是各组之间编号相同的端口上所发送的导频 信号叠加在一起的信号。例如,在第 1种导频信号配置所指示的时频资源上, UE测量子组 0中的 2个端口上发送的 2个导频信号, 其中 1个导频信号实 质上是 4组端口中编号为 0的端口上所发送的导频信号叠加在一起的信号, 另 1个导频信号实质上是 4组端口中编号为 1的端口上所发送的导频信号叠 加在一起的信号。
UE分别在 4种导频信号配置所指示的时频资源上测量后, 可以得到 4 个测量结果。 每个测量结果可以包括 CQI。 每个测量结果还可以包括以下至 少一种: 秩, PMI。
然后, UE可以向基站发送测量信息, 测量信息可以包括这 4个测量结 果。
基站可以根据测量信息, 确定数据传输波束, 并利用数据传输波束向
UE发送数据。 具体地, 基站可以从 4个测量结果中选择最优的测量结果, 并确定这个最优的测量结果对应的 4个子组。 然后基站可以 ^据组 0至组 3 各自的上行接收功率,从组 0至组 3中选择上行接收功率最大的一组。例如, 基站选择的最优的测量结果是在第 1种导频信号配置所指示的时频资源上测 量得到的。 第 1种导频信号配置可以对应于组 0至组 3中编号为 0的 4个子 组。 由于 32个端口均可以接收到上行探测参考信号, 基站可以比较组 0至 组 3各自的上行接收功率, 从而确定上行接收功率最大的一组, 比如可以是 组 1的端口的上行接收功率最大。 那么, 基站根据编号为 0的 4个子组以及 组 1 , 就可以确定波束 4作为数据传输波束。 然后基站可以利用 PMI对波束 4进行加权, 从而确定数据传输波束。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。
图 3是可应用本发明实施例的场景的另一例子的示意图。
在图 3中, 假设有 16根交叉极化天线, 每个极化方向上有 8根天线。 基站可以利用天线加权的方式, 形成 5个波束, 如图 3所示, 这 5个波束可 以表示为波束 00至波束 04。
基站可以利用加权值 W1 , 对 5个波束中每两个相邻的波束进行加权, 得到 4个波束。 具体地, 基站可以利用加权值 W1对波束 00和波束 01进行 加权得到波束 10, 利用加权值 W1对波束 01和波束 02进行加权得到波束 12, 以此类推。 这样就可以得到 4个波束, 分别为波束 10、 12、 14和 16。
基站可以利用加权值 W2, 对 5个波束中每两个相邻的波束进行加权, 得到另外 4个波束。 具体地, 基站可以利用加权值 W2对波束 00和波束 01 进行加权得到波束 11 ,利用加权值 W2对波束 01和波束 02进行加权得到波 束 13 , 以此类推。 这样就可以得到另外 4个波束, 分别为波束 11、 13、 15 和 17。
其中波束 10至波束 17中, 每个波束对应于 2个端口。 因此 8个波束可 以对应于 16个端口。
基站可以将 16个端口分为 2组, 每 8个相邻的端口分为一组。 也就是 基站将 8个波束分为 2组, 每组有 4个波束。 如图 3所示, 这 2组可以分别 表示为组 0和组 1。
类似于图 2的实施例, 为了便于描述, 各组的端口可以使用相同的编号 表示。 具体地, 如图 3所示, 在组 0中, 波束 10至波束 13对应的端口可以 编号为 0至 7。 在组 1中, 波束 14至波束 17对应的端口也可以编号为 0至 7。
每组端口中, 各个端口可以用于发送不同的导频信号。 在各组之间, 编 号相同的端口可以用于发送相同的导频信号。 具体地, 组 0中的端口 0和组 1中的端口 0均用于发送第 1个导频信号; 组 0中的端口 1和组 1中的端口 1均用于发送第 2个导频信号; 以此类推。 可见, 基站可以通过 2组端口向 UE发送 8个导频信号。
仍然类似于图 2的实施例。 各组端口还可以进一步进行划分。 即每组还 可以被划分为 1个子组, 每个子组中可以包括 4个端口。 那么 2组端口就可 以进一步被划分为 4个子组。 为了方便下面的描述, 在组 0和组 1中, 各个 子组之间可以使用相同的编号表示。 如图 3所示, 组 0中的 2个子组可以编 号为 0和 1 , 即子组 0和子组 1。 组 1中的 2个子组也可以编号为子组 0和 子组 1。 每组中编号为 0的子组可以包括该组中编号为 0至 3的端口, 每组 中编号为 1的子组可以包括该组中编号为 4至 7的端口。 例如, 在组 0中, 子组 0可以包括组 0中的端口 0、 端口 1、 端口 2和端口 3 , 子组 1可以包括 组 0中的端口 4、 端口 5、 端口 6和端口 7。 组 1与组 0类似, 不再赘述。
每组被划分为 1个子组, 那么 4个子组可以对应于 1种导频信号配置。 导频信号配置可以指示导频信号所占用的时频资源。 具体地, 组 0中的子组 0和组 1中的子组 0均可以对应于第 1种导频信号配置; 组 0中的子组 1和 组 1中的子组 1均可以对应于第 2种导频信号配置。
下面将适当省略与图 2的实施例中类似过程的描述。 UE可以在 2种导 频信号配置分别指示的时频资源上测量基站发送的 8个导频信号,从而得到 2个测量结果。 然后可以向基站发送测量信息, 测量信息可以包括这 2个测 量结果。
基站可以从 2个测量结果选择最优的测量结果, 并确定最优的测量结果 所对应的 2个子组。 然后基站可以根据组 0和组 1各自的上行接收功率, 从 两组中选择上行接收功率最大的一组。基站可以确定最优的测量结果对应的 2个子组中属于上行接收功率最大的那组的一个子组。 例如, H没最优的测 量结果是在第 2种导频信号配置所指示的时频资源上测量得到的。 第 2种导 频信号配置对应于编号为 1的 2个子组。而组 1的端口的上行接收功率最大, 那么基站可以确定候选的数据传输波束,即组 1中的子组 1对应的 2个波束, 即波束 16和波束 17。 基站可以利用最优的测量结果中的 PMI对波束 16和 波束 17进行加权, 从而可以确定数据传输波束。 在本实施例中, 由于 PMI 是变化的,那么基站基于 PMI加权形成的数据传输波束也是变化的, 因此能 够形成更丰富的数据传输波束。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。
图 4是可应用本发明实施例的场景的另一例子的示意图。
在图 4中, 假设有 16根交叉极化天线, 每个极化方向上有 8根天线, 如图 4所示, 16根天线可以分别编号为 0至 15。 相邻的两根同极化天线之 间存在一定间距, 比如可以是半波长, 即 0.5λ, 其中 λ可以表示波长。
基站可以将同极化天线分为 2组,第一组同极化天线可以包括天线 0、2、 4和 6, 第二组同极化天线可以包括天线 8、 10、 12和 14。 基站可以利用 4 个加权值分别对第一组同极化天线加权, 即利用加权值 Wl、 W2、 W3 和 W4分别对天线 0、 2、 4和 6进行加权, 从而形成 4个波束, 分别为波束 A、
B、 C和 D。 基站可以分别利用上述 4个加权值对第二组同极化天线加权, 即利用加权值 Wl、 W2、 W3和 W4分别对天线 8、 10、 12和 14进行加权, 从而形成另外 4个波束, 分别为波束 E、 F、 0和11。 可见, 由于第一组同 极化天线与第二组同极化天线之间的间距为 2λ, 那么波束 Α至 D与波束 E 至 H之间的间距为 2λ。
在波束 Α至波束 H中, 每个波束对应于 2个端口, 因此 8个波束可以 对应于 16个端口。
基站可以将 16个端口分为 2组, 这 2组分别表示为组 0和组 1。 组 0 包括波束 A、 波束 B、 波束 E和波束 F分别对应的 8个端口, 组 1包括波束
C、 波束 D、 波束 G和波束 H分别对应的 8个端口。
类似于图 2和图 3的实施例, 为了便于描述, 各组的端口可以使用相同 的编号表示。 具体地, 如图 4所示, 在组 0中, 波束 A对应的端口编号为 0 和 1 , 波束 E对应的端口可以编号为 2和 3 , 波束 B对应的端口可以编号为 4和 5 , 波束 F对应的端口可以编号为 6和 7。 在组 1中, 波束 C对应的端 口可以编号为 0和 1 , 波束 G对应的端口可以编号为 2和 3 , 波束 D对应的 端口可以编号为 4和 5 , 波束 H对应的端口可以编号为 6和 7。
下面将适当省略与图 2和图 3中类似过程的描述。 每组端口中, 各个端 口可以用于发送不同的导频信号。 在各组之间, 编号相同的端口可以用于发 送相同的导频信号。 因此,基站可以通过 2组端口向 UE发送 8个导频信号。
仍然类似于图 2和图 3的实施例。 各组端口还可以进一步进行划分。 即 每组还可以被划分为 1个子组, 每个子组中可以包括 4个端口。 那么 2组端 口就可以进一步被划分为 4个子组。为了方便下面的描述,在组 0和组 1中, 各个子组之间可以使用相同的编号表示。 如图 4所示, 组 0中的 2个子组可 以编号为 0和 1 , 即子组 0和子组 1。组 1中的 2个子组也可以编号为子组 0 和子组 1。 每组中编号为 0的子组可以包括该组中编号为 0至 3的端口, 每 组中编号为 1的子组可以包括该组中编号为 4至 7的端口。例如,在组 0中, 子组 0可以包括组 0中的端口 0、 端口 1、 端口 2和端口 3 , 子组 1可以包括 组 0中的端口 4、 端口 5、 端口 6和端口 7。 组 1与组 0类似, 不再赘述。 每组被划分为 2个子组, 那么 4个子组可以对应于 2种导频信号配置。 导频信号配置可以指示导频信号所占用的时频资源。 具体地, 组 0中的子组 0和组 1中的子组 0均可以对应于第 1种导频信号配置; 组 0中的子组 1和 组 1中的子组 1均可以对应于第 2种导频信号配置。
UE可以在 2种导频信号配置分别指示的时频资源上测量基站发送的 8 个导频信号, 从而得到 2个测量结果。 然后可以向基站发送测量信息, 测量 信息可以包括这 2个测量结果。
基站可以从 2个测量结果选择最优的测量结果, 并确定最优的测量结果 所对应的 2个子组。 然后基站可以根据组 0和组 1各自的上行接收功率, 从 两组中选择上行接收功率最大的一组。基站可以确定最优的测量结果对应的 2个子组中属于上行接收功率最大的那组的一个子组。。例如, H没最优的测 量结果是在第 2种导频信号配置所指示的时频资源上测量得到的。 第 2种导 频信号配置对应于编号为 1的 2个子组。而组 1的端口的上行接收功率最大, 那么基站可以确定候选的数据传输波束,即组 1中的子组 1对应的 2个波束, 即波束 D和波束 H。 基站可以利用最优的测量结果中的 PMI对波束 D和波 束 H进行加权, 从而可以确定数据传输波束。 在本实施例中, 由于 PMI是 变化的,那么基站基于 PMI加权形成的数据传输波束也是变化的, 因此能够 形成更丰富的数据传输波束。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。
图 5是根据本发明另一实施例的传输导频信号的方法的示意性流程图。 图 5的方法由 UE执行。
510, 接收基站通过 q组的端口发送的 n个导频信号, 其中, q组是基站 将 m个波束所对应的 p个端口按照每一组包括 n个端口进行划分获得的, m 和 p均为大于 1的正整数, n和 q均为大于 1的正整数; 每一组中的第 i个 端口用于发送 n个导频信号中的第 i个导频信号, l≤i≤n, i为正整数。
520, 对 n个导频信号进行测量。
本发明实施例中, 通过接收基站通过 q组的端口发送的 n个导频信号, 其中每一组中的第 i个端口用于发送 n个导频信号中的第 i个导频信号, 使 得导频信号的数目减少, 从而能够节省导频信号的开销。
可选地, 作为一个实施例, 在步骤 510之前, UE可以接收基站发送的 信令, 该信令用于指示 q组的端口所对应的 X种导频信号配置, 其中, q组 中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的第 j个 子组对应于 X种导频信号配置中的第 j种导频信号配置, 导频信号配置用于 指示导频信号占用的时频资源, X和 y均为大于或等于 1的正整数, l<j<x , j为正整数。
可选地, 作为另一实施例, 在步骤 520中, UE可以在 X种导频信号配 置分别指示的时频资源上对 n个导频信号进行测量, 得到 X个测量结果。 在 步骤 520之后, UE可以向基站发送测量信息, 测量信息包括 X个测量结果。
可选地, 作为另一实施例, UE 可以通过数据传输波束, 接收基站发送 的数据,其中数据传输波束是基站根据测量信息以及 q组的端口的上行接收 功率确定的。
可选地, 作为另一实施例, X 个测量结果中的每个测量结果可以包括 CQI。 或者, 每个测量结果可以包括 CQI, 以及以下至少一种: 秩, PMI。
可选地, 作为另一实施例, 导频信号可以为 CSI-RS。
图 6是根据本发明一个实施例的基站的示意框图。 图 6的基站 600包括 确定单元 610和发送单元 620。
确定单元 610确定 m个波束, 并确定 m个波束所对应的 p个端口, 其 中 m和 p均为大于 1的正整数。 发送单元 620通过 q组的端口, 向 UE发送 n个导频信号, 其中, q组是将 p个端口按照每一组包括 n个端口进行划分 获得的, n和 q均为大于 1的正整数; 每一组中的第 i个端口用于发送 n个 导频信号中的第 i个导频信号, l≤i≤n, i为正整数。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。
可选地, 作为一个实施例, 基站 600还可以包括分组单元 630。 分组单 元 630可以 居 m个波束的指向, 将 p个端口分为 q组。
可选地, 作为另一实施例, 确定单元 610可以利用天线加权的方式, 形 成 m个波束。 可选地, 作为另一实施例, 确定单元 610可以利用 m个加权值, 分别对 一组同极化天线进行加权, 形成 m个波束。
可选地, 作为另一实施例, 确定单元 610可以利用 k个加权值, 分别对 一组同极化天线进行加权, 形成 k个波束, k为大于 1的正整数, 可以利用 第一加权值,对 k个波束中任意两个相邻的波束进行加权,形成 m/2个波束 , 并可以利用第二加权值, 对 k个波束中任意两个相邻的波束进行加权, 形成 m/2个波束。
可选地, 作为另一实施例, 确定单元 610可以利用 m/2个加权值, 分别 对第一组同极化天线进行加权, 形成 m/2个波束; 利用 m/2个加权值, 分别 对第二组同极化天线进行加权, 形成 m/2个波束; 其中, 第一组同极化天线 与第二组同极化天线之间存在间距。
可选地, 作为另一实施例, 确定单元 610还可以在发送单元 620通过 q 组的端口, 向 UE发送 n个导频信号之前, 确定 q组的端口所对应的 X种导 频信号配置, 其中, q组中的每一组被划分为 X个子组, 每个子组包括 y个 端口, 每一组中的第 j个子组对应于 X种导频信号配置中的第 j种导频信号 配置, 导频信号配置用于指示导频信号占用的时频资源, X和 y均为大于或 等于 1的正整数, l<j<x, j为正整数。 发送单元 620还可以向 UE发送信令, 该信令用于指示 X种导频信号配置。
可选地, 作为另一实施例, 基站 600还可以包括接收单元 640。 接收单 元 640可以从 UE接收测量信息, 测量信息包括 UE在 X种导频信号配置分 别指示的时频资源上测量所得到的 X个测量结果。确定单元 610还可以根据 接收单元 640接收的测量信息和 q组的端口的上行接收功率,确定数据传输 波束。 发送单元 620还可以利用数据传输波束, 向 UE发送数据。
可选地, 作为另一实施例, 确定单元 610可以从 X个测量结果中选择最 优的测量结果, 并确定最优的测量结果对应的候选子组, 候选子组包含至少 一个子组, 可以根据 q组的端口的上行接收功率, 从候选子组中选择上行接 收功率最大的一个子组, 并可以 ^据最优的测量结果和选择的一个子组, 确 定 UE的数据传输波束。
可选地, 作为另一实施例, 上述 X个测量结果中的每个测量结果可以包 括 CQI。 或者,每个测量结果可以包括 CQI, 以及以下至少一种: 秩, PMI。
可选地, 作为另一实施例, 导频信号可以为 CSI-RS。 基站 600的其它功能和操作可以参照上面图 1至图 4的方法实施例中涉 及基站的过程, 为了避免重复, 不再赘述。
图 7是根据本发明一个实施例的 UE的示意框图。 图 7的 UE 700包括 接收单元 710和测量单元 720。
接收单元 710接收基站通过 q组的端口发送的 n个导频信号, 其中, q 组是基站将 m个波束所对应的 p个端口按照每一组包括 n个端口进行划分获 得的, m和 p均为大于 1的正整数, n和 q均为大于 1的正整数; 每一组中 的第 i个端口用于发送 n个导频信号中的第 i个导频信号, l≤i≤n, i为正整 数。 测量单元 720对接收单元 710接收的 n个导频信号进行测量。
本发明实施例中, 通过接收基站通过 q组的端口发送的 n个导频信号, 其中每一组中的第 i个端口用于发送 n个导频信号中的第 i个导频信号, 使 得导频信号的数目减少, 从而能够节省导频信号的开销。
可选地, 作为一个实施例, 接收单元 710还可以在接收基站通过 q组的 端口发送的 n个导频信号之前, 接收基站发送的信令, 信令用于指示 q组的 端口所对应的 X种导频信号配置,其中, q组中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的第 j个子组对应于 X种导频信号配置中 的第 j种导频信号配置,导频信号配置用于指示导频信号占用的时频资源, X 和 y均为大于或等于 1的正整数, l≤j≤x, j为正整数。
可选地, 作为另一实施例, UE 700还可以包括发送单元 730。
测量单元 720可以在 X种导频信号配置分别指示的时频资源上对 n个导 频信号进行测量, 得到 X个测量结果。
发送单元 730可以向基站发送测量信息, 测量信息包括 X个测量结果。 可选地, 作为另一实施例, 接收单元 710还可以通过数据传输波束, 接 收基站发送的数据, 其中数据传输波束是基站根据测量信息以及 q组的端口 的上行接收功率确定的。
可选地, 作为另一实施例, 上述 X个测量结果中的每个测量结果可以包 括 CQI。 或者,每个测量结果可以包括 CQI, 以及以下至少一种: 秩, PMI。
可选地, 作为另一实施例, 导频信号可以为 CSI-RS。
UE 700的其它功能和操作可以参照上面图 1至图 5的方法实施例中涉 及 UE的过程, 为了避免重复, 不再赘述。
图 8是根据本发明另一实施例的基站的示意框图。 图 8的基站 800包括 处理器 810和发送器 820。
处理器 810确定 m个波束, 并确定 m个波束所对应的 p个端口, 其中 m和 p均为大于 1的正整数。 发送器 820通过 q组的端口, 向 UE发送 n个 导频信号, 其中, q组是将 p个端口按照每一组包括 n个端口进行划分获得 的, n和 q均为大于 1的正整数; 每一组中的第 i个端口用于发送 n个导频 信号中的第 i个导频信号, l≤i≤n, i为正整数。
本发明实施例中, 通过将 m个波束对应的 p个端口分为 q组, 并通过 q 组的端口向 UE发送 n个导频信号, 其中每一组中的第 i个端口用于发送 n 个导频信号中的第 i个导频信号, 使得所发送的导频信号的数目减少, 从而 能够节省导频信号的开销。
可选地, 作为一个实施例, 处理器 810还可以根据 m个波束的指向, 将 p个端口分为 q组。
可选地, 作为另一实施例, 处理器 810可以利用天线加权的方式, 形成 m个波束。
可选地, 作为另一实施例, 处理器 810可以可以利用 m个加权值, 分别 对一组同极化天线进行加权, 形成 m个波束。
可选地, 作为另一实施例, 处理器 810可以利用 k个加权值, 分别对一 组同极化天线进行加权, 形成 k个波束, k为大于 1的正整数; 利用第一加 权值, 对 k个波束中任意两个相邻的波束进行加权, 形成 m/2个波束; 利用 第二加权值,对 k个波束中任意两个相邻的波束进行加权,形成 m/2个波束。
可选地, 作为另一实施例, 处理器 810可以利用 m/2个加权值, 分别对 第一组同极化天线进行加权, 形成 m/2个波束; 利用 m/2个加权值, 分别对 第二组同极化天线进行加权, 形成 m/2个波束; 其中, 第一组同极化天线与 第二组同极化天线之间存在间距。
可选地, 作为另一实施例, 处理器 810还可以在发送器 820通过 q组的 端口, 向 UE发送 n个导频信号之前, 确定 q组的端口所对应的 X种导频信 号配置, 其中, q组中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的第 j个子组对应于 X种导频信号配置中的第 j种导频信号配置, 导频信号配置用于指示导频信号占用的时频资源, X和 y均为大于或等于 1 的正整数, l≤j≤x, j为正整数。 发送器 820还可以向 UE发送信令, 信令用 于指示 X种导频信号配置。 可选地,作为另一实施例,基站 800还可以包括接收器 830。接收器 830 可以从 UE接收测量信息, 测量信息包括 UE在 X种导频信号配置分别指示 的时频资源上测量所得到的 X个测量结果。处理器 810还可以根据接收器 830 接收的测量信息和 q组的端口的上行接收功率, 确定 UE的数据传输波束。 发送器 820还可以利用 UE的数据传输波束, 向 UE发送数据。
可选地, 作为另一实施例, 处理器 810可以从 X个测量结果中选择最优 的测量结果, 并确定最优的测量结果对应的候选子组, 候选子组包含至少一 个子组, 可以根据 q组的端口的上行接收功率, 从候选子组中选择上行接收 功率最大的一个子组, 并可以 ^据最优的测量结果和选择的一个子组, 确定 UE的数据传输波束。
可选地, 作为另一实施例, 上述 X个测量结果中的每个测量结果可以包 括 CQI。 或者,每个测量结果可以包括 CQI, 以及以下至少一种: 秩, PMI。
可选地, 作为另一实施例, 导频信号可以为 CSI-RS。
基站 800的其它功能和操作可以参照上面图 1至图 4的方法实施例中涉 及基站的过程, 为了避免重复, 不再赘述。
图 9是根据本发明另一实施例的 UE的示意框图。 图 9的 UE 900包括 接收器 910和处理器 920。
接收器 910接收基站通过 q组的端口发送的 n个导频信号, 其中, q组 是基站将 m个波束所对应的 p个端口按照每一组包括 n个端口进行划分获得 的, m和 p均为大于 1的正整数, n和 q均为大于 1的正整数; 每一组中的 第 i个端口用于发送 n个导频信号中的第 i个导频信号, l≤i≤n, i为正整数。 处理器 920对接收器 910接收的 n个导频信号进行测量。
本发明实施例中, 通过接收基站通过 q组的端口发送的 n个导频信号, 其中每一组中的第 i个端口用于发送 n个导频信号中的第 i个导频信号, 使 得导频信号的数目减少, 从而能够节省导频信号的开销。
可选地, 作为一个实施例, 接收器 910还可以在接收基站通过 q组的端 口发送的 n个导频信号之前, 接收基站发送的信令, 信令用于指示 q组的端 口所对应的 X种导频信号配置, 其中, q组中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的第 j个子组对应于 X种导频信号配置中 的第 j种导频信号配置,导频信号配置用于指示导频信号占用的时频资源, X 和 y均为大于或等于 1的正整数, l≤j≤x, j为正整数。 可选地, 作为另一实施例, UE 900还可以包括发送器 930。
处理器 920可以在 X种导频信号配置分别指示的时频资源上对 n个导频 信号进行测量, 得到 X个测量结果。
发送器 930可以向基站发送测量信息, 测量信息包括 X个测量结果。 可选地, 作为另一实施例, 接收器 910还可以通过数据传输波束, 接收 基站发送的数据, 其中数据传输波束是基站根据测量信息以及 q组的端口的 上行接收功率确定的。
可选地, 作为另一实施例, 上述 X个测量结果中的每个测量结果可以包 括 CQI。 或者,每个测量结果可以包括 CQI, 以及以下至少一种: 秩, PMI。
可选地, 作为另一实施例, 导频信号可以为 CSI-RS。
UE 900的其它功能和操作可以参照上面图 1至图 5的方法实施例中涉 及 UE的过程, 为了避免重复, 不再赘述。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1. 一种传输导频信号的方法, 其特征在于, 包括:
确定 m个波束, 并确定所述 m个波束所对应的 p个端口, 其中 m和 p 均为大于 1的正整数;
通过 q组的端口, 向用户设备 UE发送 n个导频信号, 其中, 所述 q组 是将所述 p个端口按照每一组包括 n个端口进行划分获得的, n和 q均为大 于 1的正整数; 所述每一组中的第 i个端口用于发送所述 n个导频信号中的 第 i个导频信号, l≤i≤n, i为正整数。
2. 根据权利要求 1所述的方法, 其特征在于, 还包括:
^据所述 m个波束的指向, 将所述 p个端口分为 q组。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述确定 m个波束, 包括:
利用天线加权的方式, 形成所述 m个波束。
4. 根据权利要求 3所述的方法, 其特征在于, 所述利用天线加权的方 式, 形成所述 m个波束, 包括:
利用 m个加权值, 分别对一组同极化天线进行加权, 形成所述 m个波 束。
5. 根据权利要求 3所述的方法, 其特征在于, 所述利用天线加权的方 式, 形成所述 m个波束, 包括:
利用 k个加权值, 分别对一组同极化天线进行加权, 形成 k个波束, k 为大于 1的正整数;
利用第一加权值, 对所述 k个波束中任意两个相邻的波束进行加权, 形 成 m/2个波束;
利用第二加权值, 对所述 k个波束中任意两个相邻的波束进行加权, 形 成 m/2个波束。
6. 根据权利要求 3所述的方法, 其特征在于, 所述利用天线加权的方 式, 形成所述 m个波束, 包括:
利用 m/2个加权值, 分别对第一组同极化天线进行加权, 形成 m/2个波 束;
利用所述 m/2个加权值, 分别对第二组同极化天线进行加权, 形成 m/2 个波束; 其中, 所述第一组同极化天线与所述第二组同极化天线之间存在间距。
7. 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 在所述通 过 q组的端口, 向 UE发送 n个导频信号之前, 还包括:
确定所述 q组的端口所对应的 X种导频信号配置, 其中, 所述 q组中的 每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的第 j个子组 对应于所述 X种导频信号配置中的第 j种导频信号配置, 所述导频信号配置 用于指示导频信号占用的时频资源, X和 y均为大于或等于 1 的正整数, l<j<x , j为正整数;
向所述 UE发送信令, 所述信令用于指示所述 X种导频信号配置。
8. 根据权利要求 7所述的方法, 其特征在于, 还包括:
从所述 UE接收测量信息, 所述测量信息包括所述 UE在所述 X种导频 信号配置分别指示的时频资源上测量所得到的 X个测量结果;
才艮据所述测量信息和所述 q组的端口的上行接收功率, 确定所述 UE的 数据传输波束;
利用所述 UE的数据传输波束, 向所述 UE发送数据。
9. 根据权利要求 8所述的方法, 其特征在于, 所述根据所述测量信息 和所述 q组的端口的上行接收功率, 确定所述 UE的数据传输波束, 包括: 从所述 X个测量结果中选择最优的测量结果, 并确定所述最优的测量结 果对应的候选子组, 所述候选子组包含至少一个子组;
根据所述 q组的端口的上行接收功率,从所述候选子组中选择上行接收 功率最大的一个子组;
根据所述最优的测量结果和所述选择的一个子组, 确定所述 UE的数据 传输波束。
10. 根据权利要求 8或 9所述的方法, 其特征在于, 所述 X个测量结果 中的每个测量结果包括信道质量指示 CQI;
或者, 所述每个测量结果包括所述 CQI, 以及以下至少一种: 秩, 预编 码矩阵指示 PMI。
11. 根据权利要求 1至 10中任一项所述的方法, 其特征在于, 所述导 频信号为信道状态信息参考信号 CSI-RS。
12. 一种传输导频信号的方法, 其特征在于, 包括:
接收基站通过 q组的端口发送的 n个导频信号, 其中, 所述 q组是所述 基站将 m个波束所对应的 p个端口按照每一组包括 n个端口进行划分获得 的, m和 p均为大于 1的正整数, n和 q均为大于 1的正整数; 所述每一组 中的第 i个端口用于发送所述 n个导频信号中的第 i个导频信号, l≤i≤n, i 为正整数;
对所述 n个导频信号进行测量。
13. 根据权利要求 12所述的方法, 其特征在于, 在所述接收基站通过 q 组的端口发送的 n个导频信号之前, 还包括:
接收所述基站发送的信令, 所述信令用于指示所述 q组的端口所对应的 X种导频信号配置, 其中, 所述 q组中的每一组被划分为 X个子组, 每个子 组包括 y个端口, 每一组中的第 j个子组对应于所述 X种导频信号配置中的 第 j种导频信号配置,所述导频信号配置用于指示导频信号占用的时频资源, X和 y均为大于或等于 1的正整数, l<j<x , j为正整数。
14. 根据权利要求 13所述的方法, 其特征在于, 所述对所述 n个导频 信号进行测量, 包括:
在所述 X种导频信号配置分别指示的时频资源上对所述 n个导频信号进 行测量, 得到 X个测量结果;
所述方法还包括:
向所述基站发送测量信息, 所述测量信息包括所述 X个测量结果。
15. 根据权利要求 14所述的方法, 其特征在于, 还包括:
通过数据传输波束, 接收所述基站发送的数据, 其中所述数据传输波束 是所述基站根据所述测量信息以及所述 q组的端口的上行接收功率确定的。
16. 根据权利要求 14或 15所述的方法, 其特征在于, 所述 X个测量结 果中的每个测量结果包括信道质量指示 CQI;
或者, 所述每个测量结果包括所述 CQI, 以及以下至少一种: 秩, 预编 码矩阵指示 PMI。
17. 根据权利要求 12至 16中任一项所述的方法, 其特征在于, 所述导 频信号为信道状态信息参考信号 CSI-RS。
18. 一种基站, 其特征在于, 包括:
确定单元, 用于确定 m个波束, 并确定所述 m个波束所对应的 p个端 口, 其中 m和 p均为大于 1的正整数;
发送单元, 用于通过 q组的端口, 向用户设备 UE发送 n个导频信号, 其中,所述 q组是将所述 p个端口按照每一组包括 n个端口进行划分获得的, n和 q均为大于 1的正整数; 所述每一组中的第 i个端口用于发送所述 n个 导频信号中的第 i个导频信号, l≤i≤n, i为正整数。
19. 根据权利要求 18所述的基站, 其特征在于, 还包括:
分组单元, 用于 ^据所述 m个波束的指向, 将所述 p个端口分为 q组。
20. 根据权利要求 18或 19所述的基站, 其特征在于, 所述确定单元具 体用于利用天线加权的方式, 形成所述 m个波束。
21. 根据权利要求 20所述的基站, 其特征在于, 所述确定单元具体用 于利用 m个加权值, 分别对一组同极化天线进行加权, 形成所述 m个波束。
22. 根据权利要求 20所述的基站, 其特征在于, 所述确定单元具体用 于利用 k个加权值, 分别对一组同极化天线进行加权, 形成 k个波束, k为 大于 1的正整数; 利用第一加权值, 对所述 k个波束中任意两个相邻的波束 进行加权, 形成 m/2个波束; 利用第二加权值, 对所述 k个波束中任意两个 相邻的波束进行加权, 形成 m/2个波束。
23. 根据权利要求 20所述的基站, 其特征在于, 所述确定单元具体用 于利用 m/2个加权值,分别对第一组同极化天线进行加权,形成 m/2个波束; 利用所述 m/2个加权值, 分别对第二组同极化天线进行加权, 形成 m/2个波 束; 其中, 所述第一组同极化天线与所述第二组同极化天线之间存在间距。
24. 根据权利要求 18至 23中任一项所述的基站, 其特征在于, 所述确定单元, 还用于在所述发送单元通过 q组的端口向 UE发送 n个 导频信号之前, 确定所述 q组的端口所对应的 X种导频信号配置, 其中, 所 述 q组中的每一组被划分为 X个子组, 每个子组包括 y个端口, 每一组中的 第 j个子组对应于所述 X种导频信号配置中的第 j种导频信号配置, 所述导 频信号配置用于指示导频信号占用的时频资源, X和 y均为大于或等于 1的 正整数, l<j<x, j为正整数;
所述发送单元, 还用于向所述 UE发送信令, 所述信令用于指示所述 X 种导频信号配置。
25. 根据权利要求 24所述的基站, 其特征在于, 还包括接收单元; 所述接收单元, 用于从所述 UE接收测量信息, 所述测量信息包括所述 UE在所述 X种导频信号配置分别指示的时频资源上测量所得到的 X个测量 结果; 所述确定单元,还用于根据所述接收单元接收的测量信息和所述 q组的 端口的上行接收功率, 确定所述 UE的数据传输波束;
所述发送单元, 还用于利用所述 UE的数据传输波束, 向所述 UE发送 数据。
26. 根据权利要求 25所述的基站, 其特征在于, 所述确定单元具体用 于:
从所述 X个测量结果中选择最优的测量结果, 并确定所述最优的测量结 果对应的候选子组, 所述候选子组包含至少一个子组; 根据所述 q组的端口 的上行接收功率, 从所述候选子组中选择上行接收功率最大的一个子组; 根 据所述最优的测量结果和所述选择的一个子组, 确定所述 UE的数据传输波 束。
27. 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收基站通过 q组的端口发送的 n个导频信号, 其中, 所述 q组是所述基站将 m个波束所对应的 p个端口按照每一组包括 n个端口 进行划分获得的, m和 p均为大于 1的正整数, n和 q均为大于 1的正整数; 所述每一组中的第 i个端口用于发送所述 n个导频信号中的第 i个导频信号, l<i<n, i为正整数;
测量单元, 用于对所述接收单元接收的所述 n个导频信号进行测量。
28. 根据权利要求 27所述的用户设备, 其特征在于,
所述接收单元,还用于在接收基站通过 q组的端口发送的 n个导频信号 之前, 接收所述基站发送的信令, 所述信令用于指示所述 q组的端口所对应 的 X种导频信号配置, 其中, 所述 q组中的每一组被划分为 X个子组, 每个 子组包括 y个端口, 每一组中的第 j个子组对应于所述 X种导频信号配置中 的第 j种导频信号配置, 所述导频信号配置用于指示导频信号占用的时频资 源, X和 y均为大于或等于 1的正整数, l<j<x , j为正整数。
29. 根据权利要求 28所述的用户设备, 其特征在于, 还包括发送单元; 所述测量单元, 具体用于在所述 X种导频信号配置分别指示的时频资源 上对所述 n个导频信号进行测量, 得到 X个测量结果;
所述发送单元, 用于向所述基站发送测量信息, 所述测量信息包括所述 X个测量结果。
30. 根据权利要求 29所述的用户设备, 其特征在于, 所述接收单元, 还用于通过数据传输波束, 接收所述基站发送的数据, 其中所述数据传输波束是所述基站根据所述测量信息以及所述 q组的端口的 上行接收功率确定的。
PCT/CN2013/076986 2013-06-08 2013-06-08 传输导频信号的方法、基站和用户设备 WO2014194525A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380000695.7A CN103547341B (zh) 2013-06-08 2013-06-08 传输导频信号的方法、基站和用户设备
KR1020157037145A KR101795645B1 (ko) 2013-06-08 2013-06-08 파일롯 신호 전송 방법, 기지국 및 사용자 장치
ES18198530T ES2846761T3 (es) 2013-06-08 2013-06-08 Procedimiento y sistema de transmisión de señales piloto
PCT/CN2013/076986 WO2014194525A1 (zh) 2013-06-08 2013-06-08 传输导频信号的方法、基站和用户设备
EP13886619.9A EP2999133B1 (en) 2013-06-08 2013-06-08 Pilot signal transmission method and base station
JP2016517118A JP6388348B2 (ja) 2013-06-08 2013-06-08 パイロット信号伝送方法、基地局、およびユーザ装置
EP18198530.0A EP3493454B1 (en) 2013-06-08 2013-06-08 Pilot signal transmission method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076986 WO2014194525A1 (zh) 2013-06-08 2013-06-08 传输导频信号的方法、基站和用户设备

Publications (1)

Publication Number Publication Date
WO2014194525A1 true WO2014194525A1 (zh) 2014-12-11

Family

ID=49970072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076986 WO2014194525A1 (zh) 2013-06-08 2013-06-08 传输导频信号的方法、基站和用户设备

Country Status (6)

Country Link
EP (2) EP3493454B1 (zh)
JP (1) JP6388348B2 (zh)
KR (1) KR101795645B1 (zh)
CN (1) CN103547341B (zh)
ES (1) ES2846761T3 (zh)
WO (1) WO2014194525A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524851A (ja) * 2015-05-19 2018-08-30 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナアレイ間のチャネルに関する情報をフィードバックする方法及び装置
US10707926B2 (en) * 2017-03-24 2020-07-07 Vivo Mobile Communication Co., Ltd. Beam measurement reporting method, terminal side device and network side device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634574B (zh) * 2013-06-08 2019-01-25 华为技术有限公司 传输导频信号的方法、基站和用户设备
EP3142261B1 (en) 2014-06-09 2019-04-17 Huawei Technologies Co. Ltd. Antenna port mapping method and device
CN105245265B (zh) * 2014-06-20 2021-01-01 中兴通讯股份有限公司 3d波束下的用户服务模式选择方法、导频信息发送及装置
CN105227281B (zh) * 2014-07-03 2018-05-01 华为技术有限公司 基于mimo的导频分配方法和装置
WO2016008163A1 (zh) * 2014-07-18 2016-01-21 华为技术有限公司 生成预编码矩阵的方法、基站和用户设备
CN105790807A (zh) * 2014-12-23 2016-07-20 北京信威通信技术股份有限公司 Csi-rs端口与基站发射单元的映射方法及装置
CN105991175B (zh) * 2015-01-29 2019-02-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置
WO2016152301A1 (ja) * 2015-03-24 2016-09-29 ソニー株式会社 装置
CN106656292B (zh) * 2015-10-29 2020-03-31 电信科学技术研究院 一种信道状态信息的反馈方法、基站及终端
JP2018533865A (ja) * 2015-11-05 2018-11-15 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Csi報告のためのcsi−rsポート選択のための方法及びシステム
CN106982437B (zh) * 2016-01-15 2021-11-23 中兴通讯股份有限公司 一种实现毫米波通讯的传输方法、基站及终端
WO2017142574A1 (en) * 2016-02-19 2017-08-24 Intel IP Corporation FIFTH GENERATION (5G) UPLINK CONTROL INFORMATION (xUCI) REPORT
CN107306146B (zh) * 2016-04-19 2021-07-30 中兴通讯股份有限公司 端口与波束的配置方法及装置
CN107889141B (zh) * 2016-09-30 2020-12-22 华为技术有限公司 测量和上报方法、终端及基站
CN112333760B (zh) 2016-09-30 2023-12-29 华为技术有限公司 测量和上报方法、终端及基站
CN108288985B (zh) * 2017-01-10 2021-06-08 电信科学技术研究院 一种数据传输控制方法、网络侧设备及终端
CN108092697B (zh) * 2017-05-11 2022-11-15 中兴通讯股份有限公司 信号的传输方法和装置
CN110535794B (zh) * 2018-12-29 2022-11-11 中兴通讯股份有限公司 导频传输方法、信道估计方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316130A (zh) * 2007-06-01 2008-12-03 ***通信集团公司 闭环模式下共用天线***和方法
CN101483461A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 一种通过极化天线传输数据的方法及装置
CN101779388A (zh) * 2007-08-17 2010-07-14 松下电器产业株式会社 无线通信装置及无线通信方法
WO2013025486A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Method and apparatus for multiple-input multiple-output operation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151951B2 (en) * 2002-12-23 2006-12-19 Telefonktiebolaget Lm Ericsson (Publ) Using beamforming and closed loop transmit diversity in a multi-beam antenna system
US8243850B2 (en) * 2006-10-24 2012-08-14 Samsung Electronics Co., Ltd. Method and system for generating reference signals in a wireless communication system
CN101677304B (zh) * 2008-09-19 2012-04-18 电信科学技术研究院 一种下行公共导频的配置方法
CN101686500B (zh) * 2008-09-25 2013-01-23 ***通信集团公司 确定相关参数的方法、用户终端以及信号赋形方法、基站
CN101771437A (zh) * 2008-12-31 2010-07-07 中兴通讯股份有限公司 一种专用导频的传输方法
CN101908915B (zh) * 2010-07-19 2013-08-07 华为技术有限公司 信号传输方法、装置和基站
US8559294B2 (en) * 2010-07-29 2013-10-15 Motorola Mobility Llc Method and apparatus for major group scheduling in a fixed beam communication system
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、***及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316130A (zh) * 2007-06-01 2008-12-03 ***通信集团公司 闭环模式下共用天线***和方法
CN101779388A (zh) * 2007-08-17 2010-07-14 松下电器产业株式会社 无线通信装置及无线通信方法
CN101483461A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 一种通过极化天线传输数据的方法及装置
WO2013025486A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Method and apparatus for multiple-input multiple-output operation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524851A (ja) * 2015-05-19 2018-08-30 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナアレイ間のチャネルに関する情報をフィードバックする方法及び装置
US10320452B2 (en) 2015-05-19 2019-06-11 Huawei Technologies Co., Ltd. Method and apparatus for feeding back information about channel between antenna arrays
US10715221B2 (en) 2015-05-19 2020-07-14 Huawei Technologies Co., Ltd. Method and apparatus for feeding back information about channel between antenna arrays
US10707926B2 (en) * 2017-03-24 2020-07-07 Vivo Mobile Communication Co., Ltd. Beam measurement reporting method, terminal side device and network side device
US10812153B1 (en) 2017-03-24 2020-10-20 Vivo Mobile Communication Co., Ltd. Beam measurement reporting method, terminal side device and network side device

Also Published As

Publication number Publication date
KR101795645B1 (ko) 2017-11-08
JP2016521933A (ja) 2016-07-25
EP3493454A1 (en) 2019-06-05
EP3493454B1 (en) 2020-12-02
EP2999133B1 (en) 2018-11-28
ES2846761T3 (es) 2021-07-29
KR20160016950A (ko) 2016-02-15
EP2999133A1 (en) 2016-03-23
CN103547341A (zh) 2014-01-29
CN103547341B (zh) 2016-03-09
JP6388348B2 (ja) 2018-09-12
EP2999133A4 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2014194525A1 (zh) 传输导频信号的方法、基站和用户设备
JP6306692B2 (ja) 通信方法、基地局およびユーザ機器
CN113840324B (zh) 一种测量上报方法及装置
WO2018127044A1 (zh) 通信方法、基站和终端设备
US20180234143A1 (en) Method for determining precoding matrix indicator, user equipment, and base station
WO2017166281A1 (zh) 一种预编码矩阵指示的反馈方法及装置
CN112771791A (zh) 指示用户设备(ue)极化跟踪能力
TW201838440A (zh) 一種獲取、回饋發送波束資訊的方法及裝置
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
JP2016520266A (ja) プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
KR20230034379A (ko) 향상된 nr 타입 ii csi 피드백을 지원하기 위한 시그널링
CN108322244B (zh) 预编码矩阵指示的反馈方法、接收端和发射端
US20230024879A1 (en) Indication information transmission method and communication device
CN112398520A (zh) 发送信道状态信息的方法和相关设备
WO2022060855A2 (en) Methods of csi-rs beamforming in angle-delay domains for type ii port selection codebook
JP2023546938A (ja) ポート情報のシグナリング
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备
WO2023029948A1 (zh) 一种通信方法及装置
CN117997399A (zh) 一种信道参数上报方法及通信装置
WO2022060825A1 (en) Device and method for performing beamforming in angle-delay domains

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380000695.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013886619

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157037145

Country of ref document: KR

Kind code of ref document: A