WO2020155116A1 - 一种pmi上报方法及通信装置 - Google Patents

一种pmi上报方法及通信装置 Download PDF

Info

Publication number
WO2020155116A1
WO2020155116A1 PCT/CN2019/074479 CN2019074479W WO2020155116A1 WO 2020155116 A1 WO2020155116 A1 WO 2020155116A1 CN 2019074479 W CN2019074479 W CN 2019074479W WO 2020155116 A1 WO2020155116 A1 WO 2020155116A1
Authority
WO
WIPO (PCT)
Prior art keywords
basis
vectors
basis vectors
information
vector group
Prior art date
Application number
PCT/CN2019/074479
Other languages
English (en)
French (fr)
Inventor
李雪茹
张瑞齐
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/074479 priority Critical patent/WO2020155116A1/zh
Publication of WO2020155116A1 publication Critical patent/WO2020155116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and communication device for reporting a precoding matrix indicator (PMI).
  • PMI precoding matrix indicator
  • MIMO multiple input multiple output
  • a terminal device obtains and feeds back channel state information CSI to a network device by measuring a reference signal, so that the network device obtains downlink channel state information.
  • CSI includes PMI, which is used to recommend a precoding matrix to network devices.
  • 3GPP Third Generation Partnership Project
  • 3GPP defines N ⁇ O basis vectors according to the number of antenna ports of the network device.
  • O is an oversampling factor
  • N is an integer determined according to the number of antenna ports of the network device, for example, the number of antenna ports of the network device is 2N.
  • the terminal device selects one or more base vectors from the N ⁇ O base vectors, and reports the indication information of the selected base vector and/or the indication information of the linear combination coefficient of the selected base vector to the network device.
  • the reporting overhead of the indication information of the selected base vector is determined by the number of selected base vectors L and N ⁇ O.
  • the terminal device can report the PMI by referring to the above-mentioned PMI reporting method.
  • the antenna spacing d is less than 0.5 times the wavelength, the above reporting method will cause the PMI reporting overhead to be larger than the actual required overhead, resulting in a waste of uplink time-frequency resources.
  • the embodiments of the present application provide a PMI reporting method and communication device, which can save PMI reporting overhead.
  • a method for reporting a precoding matrix indicating PMI including: a terminal device obtains first information, the first information is used to indicate N ⁇ O basis vectors, and the N ⁇ O basis vectors are composed of O first basis vectors.
  • the vector group includes the basis vector composition; among the O first basis vector groups, the i-th first basis vector group includes N orthogonal basis vectors; N is determined according to the number of ports of the reference signal, and N is greater than An integer of 1, O is a positive integer, and i is an integer greater than or equal to 1 and less than or equal to O.
  • the terminal device acquires second information, the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of the basis vectors included in the O second basis vector group, among which, O second basis vectors
  • the i-th second basis vector group in the group is composed of M basis vectors in the i-th first basis vector group; M is an integer greater than or equal to 1 and less than N.
  • the terminal device may also report the PMI.
  • the PMI includes the indication information of the L base vectors used to construct the precoding matrix, and the L base vectors are the base vectors in the M ⁇ O base vectors.
  • the terminal device determines N ⁇ O basis vectors according to the first information.
  • the antenna distance d of the network equipment is less than 0.5 times the wavelength, for example, when the antenna distance is about 0.25 times the wavelength, some of the N ⁇ O basis vectors will cause larger errors when constructing the precoding matrix, so , This part of the basis vectors cannot be used to construct the precoding matrix.
  • the terminal device can determine the M ⁇ O basis vectors that can be used to construct the precoding matrix from the N ⁇ O basis vectors according to the second information, and report the PMI based on the M ⁇ O basis vectors, where M is less than N.
  • the number of base vectors is reduced from N ⁇ O to M ⁇ O through the second information, which can greatly reduce the overhead of PMI reporting by the terminal device.
  • the second information is a bit sequence of length N, and the M bits in the bit sequence are the first value; the N bits in the bit sequence are equal to
  • the N basis vectors of each first basis vector group have a one-to-one correspondence, and the first value is used to indicate that the M basis vectors in the first basis vector group corresponding to the M bits belong to the second basis vector group.
  • the M basis vectors in the i-th first basis vector group corresponding to the M bits constitute the i-th second basis vector group.
  • the second information indicates M, and M is used to determine the M basis vectors constituting the second basis vector group from each first basis vector group.
  • the second indication information indicates M and indicates Bit indication information. Wherein, the indication information is used to indicate which of the N basis vectors of the first basis vector group belong to the second basis vector group.
  • the terminal device may determine the M basis vectors constituting the second basis vector group from each first basis vector group according to M and the indication information.
  • the terminal device may select M basis vectors from the first basis vector group according to the second information to form the second basis vector group.
  • the first information is used to indicate N ⁇ O basis vectors, including:
  • the terminal device may determine N ⁇ O basis vectors according to N 1 and N 2 indicated by the first information.
  • the N bits in the bit sequence correspond to the N basis vectors of each first basis vector group one-to-one ,include:
  • the terminal device can correspond to a basis vector in the first basis vector group according to a bit in the bit sequence of length N. There are M bits in the bit sequence as the first value, so the terminal device can be based on this M bits correspond to the selection of M basis vectors in the first basis vector group.
  • the second information indicating M includes:
  • the terminal device may determine, in the first basis vector group, M basis vectors to form the second basis vector according to M 1 and M 2 indicated by the second information.
  • the terminal device reporting PMI includes: the terminal device reporting Q Bits; Q bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and Q is a value determined according to M ⁇ O and L.
  • the L basis vectors are from M ⁇ O basis vectors.
  • the determination in the vector includes: the terminal device obtains third information, the third information is used to indicate X basis vectors in the M ⁇ O basis vectors; the L basis vectors are among the M ⁇ O basis vectors, L basis vectors among (M ⁇ OL) basis vectors other than the X basis vectors.
  • the terminal device may also obtain codebook subset restriction signaling, and determine which of the M ⁇ O basis vectors indicated by the second indication information can be used to form a precoding matrix, and which cannot be used to form a precoding matrix .
  • the use of certain basis vectors will cause interference to other cells, and network equipment can prevent terminal equipment from selecting these basis vectors to construct a precoding matrix, thereby reducing inter-cell interference.
  • a communication device including:
  • the communication unit is used to obtain first information, where the first information is used to indicate N ⁇ O basis vectors, and the N ⁇ O basis vectors are composed of the basis vectors included in the O first basis vector groups; among them, O first basis vectors
  • the i-th first basis vector group in the vector group includes N orthogonal basis vectors; N is determined according to the number of reference signal ports, N is an integer greater than 1, O is a positive integer, and i is greater than or equal to 1 and less than An integer equal to O;
  • the communication unit is also used to obtain second information, the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of basis vectors included in the O second basis vector group, where ,
  • the i-th second basis vector group in the O second basis vector groups is composed of M basis vectors in the i-th first basis vector group; M is an integer greater than or equal to 1 and less than N;
  • the communication unit It is used to report the PMI, and the PMI includes indication information of L base
  • the second information is a bit sequence of length N, and M bits in the bit sequence are the first value; the N bits in the bit sequence are equal to The N basis vectors of each first basis vector group have a one-to-one correspondence, and the first value is used to indicate that the M basis vectors in the first basis vector group corresponding to the M bits belong to the second basis vector group; or ,
  • the second information indicates M, and M is used to determine the M basis vectors constituting the second basis vector group from each first basis vector group.
  • the first information is used to indicate N ⁇ O basis vectors, including:
  • the N bits in the bit sequence correspond to the N basis vectors of each first basis vector group one-to-one ,include:
  • the communication unit is specifically configured to report Q bits; Q Bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and Q is a value determined according to M ⁇ O and L.
  • the communication unit is further configured to obtain third information, The three information is used to indicate the X basis vectors in the M ⁇ O basis vectors; the processing unit is also used to determine L from the (M ⁇ OL) basis vectors except the X basis vectors from the M ⁇ O basis vectors Basis vectors.
  • a communication device including:
  • the transceiver is used to obtain first information, the first information is used to indicate N ⁇ O basis vectors, and the N ⁇ O basis vectors are composed of the basis vectors included in the O first basis vector groups; among them, O first basis vectors
  • the i-th first basis vector group in the vector group includes N orthogonal basis vectors; N is determined according to the number of reference signal ports, N is an integer greater than 1, O is a positive integer, and i is greater than or equal to 1 and less than An integer equal to O;
  • the transceiver is also used to obtain second information, the second information is used to indicate M ⁇ O basis vectors, the M ⁇ O basis vectors are formed by the basis vectors included in the O second basis vector group, where , The i-th second basis vector group in the O second basis vector groups is composed of M basis vectors in the i-th first basis vector group; M is an integer greater than or equal to 1 and less than N; transceiver, It is used to report the PMI, and the PMI includes the indication information of
  • the second information is a bit sequence of length N, and M bits in the bit sequence are the first value; the N bits in the bit sequence are equal to Each first basis vector group has a one-to-one correspondence with the N basis vectors, and the first value is used to indicate that the M basis vectors in the first basis vector group corresponding to the M bits belong to; or, the second The information indicates M, and M is used to determine the M basis vectors constituting the second basis vector group from each first basis vector group.
  • the first information is used to indicate N ⁇ O basis vectors, including:
  • the N bits in the bit sequence correspond to the N basis vectors of each first basis vector group one-to-one ,include:
  • the transceiver is specifically used to report Q bits;
  • Q Bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and
  • Q is a value determined according to M ⁇ O and L.
  • the transceiver is also used to obtain third information, first
  • the three pieces of information are used to indicate the X basis vectors among the M ⁇ O basis vectors.
  • the L basis vectors are the L basis vectors among the (M ⁇ O-L) basis vectors in the M ⁇ O basis vectors except for the X basis vectors.
  • a method for reporting a precoding matrix indicating PMI including:
  • the network device sends first information, the first information is used to indicate N ⁇ O basis vectors, and the N ⁇ O basis vectors are composed of O basis vectors included in the first basis vector group; wherein, the O The i-th first basis vector group in the first basis vector group includes N orthogonal basis vectors; the N is determined according to the number of ports of the reference signal, the N is an integer greater than 1, and the O is Positive integer, i is an integer greater than or equal to 1 and less than or equal to 0.
  • the network device may also send second information, where the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of basis vectors included in the O second basis vector group, where the The i-th second basis vector group in the O second basis vector groups is composed of M basis vectors in the i-th first basis vector group; M is an integer greater than or equal to 1 and less than N.
  • the network device receives the PMI reported by the terminal device, where the PMI includes indication information of L basis vectors used to construct a precoding matrix, and the L basis vectors are basis vectors among the M ⁇ O basis vectors.
  • the second information is a bit sequence with a length of N, and M bits in the bit sequence are the first value;
  • the N bits have a one-to-one correspondence with the N basis vectors of each of the first basis vector groups, and the first value is used to indicate the M basis vectors in the first basis vector group corresponding to the M bits Belongs to the second basis vector group.
  • the second information indicates the M, and the M is used to determine the M basis vectors constituting the second basis vector group from each of the first basis vector groups.
  • the N bits in the bit sequence are related to the N basis vectors of each first basis vector group.
  • Vector one-to-one correspondence including:
  • the second information indicating the M includes:
  • the PMI includes Q bits; the Q Bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and the Q is a value determined according to M ⁇ O and L.
  • the method further includes: sending the first to the terminal device Three information, the third information is used to indicate the X basis vectors in the M ⁇ O basis vectors, and the L basis vectors are the M ⁇ O basis vectors except for the X basis vectors L basis vectors among the outer (M ⁇ OL) basis vectors.
  • a communication device including:
  • the communication unit is configured to send first information, where the first information is used to indicate N ⁇ O base vectors, and the N ⁇ O base vectors are composed of base vectors included in O first base vector groups; wherein, The i-th first basis vector group in the 0 first basis vector groups includes N orthogonal basis vectors; the N is determined according to the number of ports of the reference signal, and the N is an integer greater than 1, so Said O is a positive integer, and i is an integer greater than or equal to 1 and less than or equal to O.
  • the communication unit is further configured to send second information, where the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of basis vectors included in O second basis vector groups, where: The i-th second basis vector group in the 0 second basis vector groups is composed of M basis vectors in the i-th first basis vector group; M is an integer greater than or equal to 1 and less than N.
  • the network device receives the PMI reported by the terminal device, where the PMI includes indication information of L basis vectors used to construct a precoding matrix, and the L basis vectors are basis vectors among the M ⁇ O basis vectors.
  • the second information is a bit sequence with a length of N, and M bits in the bit sequence are the first value;
  • the N bits have a one-to-one correspondence with the N basis vectors of each of the first basis vector groups, and the first value is used to indicate the M basis vectors in the first basis vector group corresponding to the M bits Belongs to the second basis vector group.
  • the second information indicates the M, and the M is used to determine the M basis vectors constituting the second basis vector group from each of the first basis vector groups.
  • the N bits in the bit sequence are related to the N basis vectors of each first basis vector group.
  • Vector one-to-one correspondence including:
  • the second information indicating the M includes:
  • the PMI includes Q bits; the Q Bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and the Q is a value determined according to M ⁇ O and L.
  • the communication unit is further configured to send the first to the terminal device
  • Three information the third information is used to indicate the X basis vectors in the M ⁇ O basis vectors
  • the L basis vectors are the M ⁇ O basis vectors except for the X basis vectors L basis vectors among the outer (M ⁇ OL) basis vectors.
  • a communication device including:
  • the transceiver is configured to send first information, the first information is used to indicate N ⁇ O base vectors, and the N ⁇ O base vectors are composed of base vectors included in the O first base vector group; wherein, The i-th first basis vector group in the 0 first basis vector groups includes N orthogonal basis vectors; the N is determined according to the number of ports of the reference signal, and the N is an integer greater than 1, so Said O is a positive integer, and i is an integer greater than or equal to 1 and less than or equal to O.
  • the transceiver is further configured to send second information, where the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of basis vectors included in the O second basis vector group, wherein, The i-th second basis vector group in the 0 second basis vector groups is composed of M basis vectors in the i-th first basis vector group; M is an integer greater than or equal to 1 and less than N.
  • the network device receives the PMI reported by the terminal device, where the PMI includes indication information of L basis vectors used to construct a precoding matrix, and the L basis vectors are basis vectors among the M ⁇ O basis vectors.
  • the second information is a bit sequence with a length of N, and M bits in the bit sequence are the first value;
  • the N bits have a one-to-one correspondence with the N basis vectors of each of the first basis vector groups, and the first value is used to indicate the M basis vectors in the first basis vector group corresponding to the M bits Belongs to the second basis vector group.
  • the second information indicates the M, and the M is used to determine the M basis vectors constituting the second basis vector group from each of the first basis vector groups.
  • the N bits in the bit sequence are related to the N basis vectors of each first basis vector group.
  • Vector one-to-one correspondence including:
  • the second information indicating the M includes:
  • the PMI includes Q bits; the Q Bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and the Q is a value determined according to M ⁇ O and L.
  • the transceiver is also used to send the first to the terminal device
  • the third information is used to indicate the X basis vectors in the M ⁇ O basis vectors
  • the L basis vectors are the M ⁇ O basis vectors except for the X basis vectors L basis vectors among the outer (M ⁇ OL) basis vectors.
  • a computer-readable storage medium is disclosed, and instructions are stored in the computer-readable storage medium; the instructions are used to execute the PMI reporting method described in the first aspect and any one of the possible implementations of the first aspect , Or the PMI reporting method described in the foregoing fourth aspect and any one of the possible implementation manners of the fourth aspect.
  • a communication device including: instructions are stored in the communication device; when the communication device runs on a terminal device, the terminal device is caused to execute the first aspect and any one of the possible implementation manners of the first aspect.
  • the communication device may be a chip.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a communication device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a PMI reporting method provided by an embodiment of the present invention.
  • FIG. 4 is another structural block diagram of a communication device provided by an embodiment of the present invention.
  • Fig. 5 is another structural block diagram of a communication device provided by an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a communication system to which the technical solution provided by the present application is applicable.
  • the communication system may include one or more network devices 100 (only one is shown) and a communication system connected to each network device 100.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
  • the network device 100 may be a transmission reception point (TRP), a base station, a relay station, or an access point.
  • the network device 100 may be a network device in a 5G communication system or a network device in a future evolution network; it may also be a wearable device or a vehicle-mounted device. In addition, it can also be: global system for mobile communication (GSM) or code division multiple access (code division multiple access, CDMA) network base transceiver station (base transceiver station, BTS), or broadband
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • base transceiver station base transceiver station
  • BTS base transceiver station
  • the NB (NodeB) in wideband code division multiple access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the network device 100 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the terminal device 200 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a wireless communication device, a UE agent, or a UE Devices, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in the future evolution of public land mobile network (PLMN) networks, etc. .
  • PLMN public land mobile network
  • the network device 100 is a transmitter device and the terminal device 200 is a receiver device; in another possible implementation manner, the terminal device 200 is a transmitter device and the network device 100 is a receiver device.
  • the terminal device measures the reference signal transmitted by the transmitting end device to determine the PMI. Further, the receiving end device feeds back the PMI to the transmitting end device. Optionally, the transmitting end device determines a precoding matrix for data transmission according to the PMI fed back by the receiving end device, and sends the precoded data to the receiving end device.
  • W W 1 ⁇ W 2 .
  • W 1 is a block diagonal matrix, expressed as W 1 is composed of L base vectors selected by the terminal device from N ⁇ O base vectors, and each base vector is a column vector of length N.
  • the network equipment and terminal equipment can determine the aforementioned N ⁇ O basis vectors.
  • the first type codebook (Type I codebook)
  • the above L basis vectors are non-orthogonal basis vectors
  • Type II codebook the above L basis vectors are orthogonal Basis vector.
  • W 2 is a matrix with 2L rows and R columns, and R is a positive integer.
  • the rth column of W 2 is represented by e k is an N ⁇ 1 column vector, the k-th element is 1, and the remaining elements are 0, indicating that the k-th column vector in the B 0 matrix is selected, and cr is a complex number modulo 1.
  • the above-mentioned precoding matrix W can represent multiple meanings.
  • W represents the precoding matrix recommended by the terminal device for data transmission from a predefined codebook, at this time, R represents the number of data transmission layers recommended by the terminal device; or W represents the network device to the terminal device Channel matrix; or W represents the channel matrix of part of the receiving antenna port of the terminal device, or W represents the correlation matrix of the channel matrix of the terminal device or at least one eigenvector of the correlation matrix.
  • R represents the number of data transmission layers recommended by the terminal device
  • W represents the network device to the terminal device Channel matrix
  • W represents the channel matrix of part of the receiving antenna port of the terminal device
  • W represents the correlation matrix of the channel matrix of the terminal device or at least one eigenvector of the correlation matrix.
  • the specifics are not limited.
  • any L orthogonal or non-orthogonal (depending on the type of codebook is Both Type I and Type II) basis vectors can be used to construct the W 1 matrix.
  • the network device may restrict the basis vectors used to form W 1 through codebook subset restriction signaling.
  • the network device may send a bit sequence of length N ⁇ O to the terminal device, where each bit corresponds to a basis vector. The network device restricts which of the N ⁇ O base vectors can be used when determining W 1 by the value of each bit in the bit sequence.
  • the terminal device determines the PMI, the number of candidate effective basis vectors is less than N ⁇ O. If the PMI is still reported based on N ⁇ O basis vector vectors, the overhead for the terminal device to report the PMI is larger than the actual overhead.
  • the current codebook subset restriction signaling is N ⁇ O bits, which contains the above-mentioned invalid base vector restriction information, and this part of information is not needed, which causes the network equipment to be used for configuration
  • the signaling overhead restricted by the codebook subset is also greater than the actual demand.
  • the terminal device reports PMI for each network device that it serves, or each network device that serves it separately configures a set of codebook subset restriction signaling to the terminal device, PMI
  • the reporting overhead will be large, and the signaling overhead of the codebook subset restriction will also be large, resulting in the PMI reporting and/or codebook subset restriction signaling occupying too much time-frequency resources.
  • the embodiment of the present invention provides a PMI reporting method.
  • a terminal device can obtain first information.
  • the first information is used to indicate N ⁇ O basis vectors, and the N ⁇ O basis vectors are comprised of O first basis vector groups.
  • the terminal device may also obtain second information, where the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of basis vectors included in the O second basis vector group, where the The i-th second basis vector group in the O second basis vector groups is composed of M basis vectors in the i-th first basis vector group in the O first basis vector groups.
  • the terminal device may determine L basis vectors for constructing the precoding matrix from the M ⁇ O basis vectors, and report the PMI according to the M ⁇ O basis vectors, where the PMI includes indication information of the L basis vectors .
  • the terminal device determines N ⁇ O basis vectors according to the first information.
  • the antenna spacing d 0.5 times the wavelength
  • some of the N ⁇ O basis vectors will be included in the construction of the precoding matrix. Because of the large error, this part of the basis vectors cannot be used to construct the precoding matrix and is an invalid basis vector. Therefore, the number of basis vectors that can be used to construct the precoding matrix is less than N ⁇ O.
  • the terminal device can determine a part of the basis vectors from the N ⁇ O basis vectors according to the second information, and report the PMI based on the selected part of the basis vectors. The cost of reporting PMI is determined by the number of candidate basis vectors for constructing the precoding matrix.
  • the number of candidate basis vectors is reduced from N ⁇ O to M ⁇ O, so the cost of reporting PMI can be greatly reduced.
  • An embodiment of the present invention provides a communication device, which can receive terminal equipment, such as the terminal device 200 in the system shown in FIG. 1, and the communication device can transmit terminal equipment, such as the network device in the system shown in FIG. 100.
  • the communication device may include at least one processor 201, a memory 202, a transceiver 203, and a communication bus 204.
  • the processor 201 is the control center of the communication device, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • microprocessors digital signal processors, DSP
  • field programmable gate arrays Field Programmable Gate Array, FPGA
  • the processor 201 can execute various functions of the communication device by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device may include multiple processors, such as the processor 201 and the processor 205 shown in FIG. 2.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication device can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory, CD-ROM or other optical disk storage, Optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures. Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 202 may exist independently and is connected to the processor 201 through a communication bus 204.
  • the memory 202 may also be integrated with the processor 201.
  • the memory 202 is used to store a software program for executing the solution of the present invention, and the processor 201 controls the execution.
  • the transceiver 203 is used for communication with the second communication device.
  • the transceiver 203 may also be used to communicate with communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and so on.
  • the transceiver 203 may include a receiving unit to realize the receiving function, and a sending unit to realize the sending function.
  • the communication bus 204 may be an Industry Standard Architecture (ISA) bus, an external communication device interconnection (Peripheral Component, PCI) bus, or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only a thick line is used in FIG. 2, but it does not mean that there is only one bus or one type of bus.
  • the structure of the communication device shown in FIG. 2 does not constitute a limitation on the communication device, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement.
  • the embodiment of the present invention provides a PMI reporting method. As shown in FIG. 3, the method includes the following steps:
  • a terminal device acquires first information, where the first information is used to indicate N ⁇ O basis vectors, and the N ⁇ O basis vectors are composed of the basis vectors included in the O first basis vector groups, and the O first The i-th first basis vector group in the basis vector group includes N orthogonal basis vectors.
  • the N ⁇ O basis vectors are characterized in that the N ⁇ O basis vectors can be divided into O first basis vector groups, where each first basis vector group in the O first basis vector groups Including N orthogonal basis vectors, N and O are both integers greater than 1.
  • N is determined according to the number of ports of the reference signal.
  • the number of reference signal ports refers to the number of ports through which the terminal device receives the reference signal from the network device, which can be determined by the configuration information sent by the network device.
  • N 1 is the number of antenna ports in the same polarization direction in the horizontal direction
  • N 2 is the number of antenna ports in the same polarization direction in the vertical direction.
  • O is determined according to the configuration of the network device, or is pre-configured.
  • O is an oversampling factor.
  • O 1 is the oversampling factor in the horizontal direction
  • O 2 is the oversampling factor in the vertical direction.
  • the terminal device may receive the first information sent by the network device.
  • the first information may indicate (N 1 , N 2 ), at this time, (O 1 , O 2 ) is predefined; or the first information indicates (N 1 , N 2 ) and (O 1 , O 2 ).
  • the terminal equipment can be based on O 1 , O 2 .
  • N 1 and N 2 determine N 1 N 2 O 1 O 2 basis vectors.
  • the N 1 N 2 O 1 O 2 basis vectors are characterized in that the N 1 N 2 O 1 O 2 basis vectors can be divided into O 1 O 2 first basis vector groups, where O 1 O 2 Each of the first basis vector groups includes N 1 N 2 orthogonal basis vectors.
  • the N 2 ⁇ O 2 ⁇ l+m+1th base vector (or the N 1 ⁇ O 1 ⁇ m+l+1th base vector
  • the vector) V l,m satisfies the following formula (1):
  • formula (1) can represent the first basis vector V 0,0 among N ⁇ O basis vectors.
  • formula (1) can represent N ⁇ O basis vectors.
  • the N ⁇ O basis vectors can be divided into O first basis vector groups, where the vector Is the basis vector in the O 2 ⁇ k 1 +k 2 +1 first basis vector group.
  • k 1 0
  • k 2 0
  • the basis vector V 0,0 is the first basis vector in the first basis vector group.
  • the above N ⁇ O basis vectors can all be used to construct the precoding matrix, so the above N ⁇ O basis vectors are all Is a valid basis vector.
  • the network device may further indicate a part of the base vectors among the N ⁇ O base vectors, so that the terminal device can report the PMI according to the effective base vectors.
  • the terminal device acquires second information, where the second information is used to indicate M ⁇ O basis vectors, and the M ⁇ O basis vectors are composed of basis vectors included in the O second basis vector group, where the The i-th second basis vector group in the O second basis vector groups is composed of M basis vectors in the i-th first basis vector group.
  • M is an integer greater than or equal to 1, and less than N.
  • the second basis vector group is composed of a part of the corresponding first basis vector group. That is, the number of basis vectors in the second basis vector group is less than the number of basis vectors in the first basis vector group, and the number of basis vectors indicated by the second information is less than the number of basis vectors indicated by the first information. Furthermore, the terminal device reports the PMI based on the M ⁇ O basis vectors indicated by the second information, which can greatly reduce the reporting overhead.
  • the basis vector in the i-th second basis vector group in the O second basis vector groups is the basis vector in the i-th first basis vector group in the O first basis vector groups.
  • the network device may indicate the second information through the following two possible implementation modes, which specifically include:
  • the first and second information is a bit sequence of length N, and the M bits in the bit sequence are the first value; the N bits in the bit sequence and the N basis vectors of each first basis vector group There is a one-to-one correspondence, and the first value is used to indicate the M basis vectors constituting the second basis vector group. That is, according to the bit sequence, M basis vectors can be determined in each first basis vector group.
  • a bit in the bit sequence corresponds to a basis vector in the first basis vector group.
  • the jth bit in the bit sequence corresponds to the jth basis vector in the first basis vector group, and j is greater than or equal to 1 is an integer less than or equal to N.
  • the value of each bit is the first value or the second value.
  • a basis vector in the first basis vector group corresponding to the bit is used to form the second basis vector group, that is, the second basis vector group includes the basis vector corresponding to the bit;
  • the value is the second value, and a basis vector in the first basis vector group corresponding to the bit does not belong to the second basis vector group.
  • the first value is 1, and the second value is 0.
  • the second information can be a bit sequence of length 7, such as 0110011. 0110011 indicates the second basis vector in the i-th first basis vector group .
  • the third basis vector, the sixth basis vector and the seventh basis vector constitute the i-th second basis vector group. It can be seen that the bit sequence of length N is consistent for all the first basis vector groups, which can indicate which basis vectors in all the first basis vector groups are used to form the second basis vector group.
  • the N bits in the bit sequence have a one-to-one correspondence with the N basis vectors of the first basis vector group, including:
  • Analyzing the second terminal device may be O 2 ⁇ k 1 + k 2 +1 set of first basis vectors of N 2 ⁇ a + b + b + 1
  • the bit value of the bit sequence of N 2 ⁇ a Whether the +1 basis vector belongs to the O 2 ⁇ k 1 +k 2 +1 second basis vector group.
  • the second information indicates the M
  • the M is used to determine the M basis vectors constituting the second basis vector group from each of the first basis vector groups.
  • the second information may directly indicate M.
  • the terminal device can determine which M basis vectors in each first basis vector group belong to the second basis vector group.
  • the second information can also include instructions
  • the second information can indicate which basis vectors in the first basis vector group of the terminal device belong to the second basis vector group by carrying two-bit indication information.
  • the second information includes two bits of "01", and the terminal device considers that the basis vectors A and B in the first basis vector group constitute the second basis vector group.
  • the second information indicates M 1 and M 2
  • the terminal device may determine the M basis vectors in the second basis vector group according to M 1 and M 2 .
  • M 1 ⁇ M 2 M
  • the terminal device reports a PMI, where the PMI includes indication information of L base vectors used to construct a precoding matrix, and the L base vectors are base vectors among the M ⁇ O base vectors.
  • the PMI includes Q bits; the Q bits are used to represent L indication information used to construct the basis vectors of the precoding matrix, and the Q is a value determined according to M ⁇ O and L.
  • the W indicated by the PMI is a precoding matrix based on the Type I codebook.
  • the reporting overhead is Since M is an integer less than N, it can be seen that regardless of whether the PMI is reported based on the first type codebook or the second type codebook, the reporting overhead in the embodiment of the present invention is reduced compared with the prior art, which can effectively save time-frequency resources.
  • the network device may limit the signaling through the codebook subset, and indicate X basis vectors that can be used to construct the precoding matrix in the M ⁇ O basis vectors, where X is a positive integer less than or equal to M ⁇ O.
  • X is a positive integer less than or equal to M ⁇ O.
  • the network device uses M ⁇ O bits to indicate the codebook subset restriction.
  • the number of bits of the network device configuration codebook subset limit signaling is also determined by M ⁇ O.
  • the terminal device obtains the third information, and the third information can be used for codebook subset restriction.
  • the third information is used to indicate X basis vectors among the M ⁇ O basis vectors. It should be noted that these X basis vectors are restricted, that is, they cannot be used to construct a precoding matrix. Further, the aforementioned L basis vectors are determined from the M ⁇ O-L basis vectors except for the X basis vectors among the M ⁇ O basis vectors.
  • the information used for codebook subset restriction is a bit sequence of length N ⁇ O.
  • the third information may be a bit sequence of length M ⁇ O, because (M ⁇ O) ⁇ (N ⁇ O), therefore, the method provided in the embodiment of the present invention also reduces the signaling overhead for configuring the codebook subset restriction, and saves time-frequency resources.
  • FIG. 4 shows a possible schematic diagram of the structure of the communication device involved in the foregoing embodiment.
  • the communication device includes a processing unit 401 and a communication unit 402.
  • the processing unit 401 is configured to support the communication device to execute the technical process in the foregoing embodiment.
  • the processing unit 401 is configured to support the terminal device to generate PMI according to the instruction information of the L basis vectors used to construct the precoding matrix.
  • the processing unit 401 is configured to support the network device to generate first information, second information, and third information.
  • the communication unit 402 is used to support the interaction between the communication device and other devices.
  • the communication unit 402 is configured to support the terminal device to perform steps 301 to 302, receive the first information and the second information sent by the network device, and send PMI to the network device.
  • the communication unit 402 is used to support the network device to send the first information, the second information, and the third information to the terminal device, and to support the network device to receive the PMI sent by the terminal device.
  • the communication device includes: a processing module 501 and a communication module 502.
  • the processing module 501 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 401, and/or to perform other processes of the technology described herein.
  • the communication module 502 is configured to perform the steps performed by the above-mentioned communication unit 402, and supports interaction between the communication device and other devices, such as interaction with the second device and the communication device.
  • the communication device may further include a storage module 503, and the storage module 503 is used to store the program code and data of the communication device.
  • the processing module 501 is a processor
  • the communication module 502 is a transceiver
  • the storage module 503 is a memory
  • the communication device is the communication device shown in FIG. 2.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or The components can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了PMI上报方法及通信装置,涉及通信领域,能够节省PMI上报开销。包括:终端设备获取第一信息,第一信息用于指示N×O个基向量,N×O个基向量由O个第一基向量组包括的基向量构成;其中,O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;终端设备获取第二信息,第二信息用于指示M×O个基向量,M×O个基向量由O个第二基向量组包括的基向量构成,其中,O个第二基向量组中的第i个第二基向量组由第i个第一基向量组中的M个基向量构成;终端设备上报PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,L个基向量是M×O个基向量中的基向量,M小于N。

Description

一种PMI上报方法及通信装置 技术领域
本申请实施例涉通信领域,尤其涉及一种预编码矩阵指示(precoding matrix indicator,PMI)上报方法及通信装置。
背景技术
多入多出(multiple input multiple output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在网络设备和终端设备上部署多根天线,MIMO技术可以显著提高无线通信***的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可以大大提升传输吞吐量。MIMO预编码过程中,准确的下行信道状态信息可以使得网络设备传输下行数据的传输效率大大提升。在频分复用(frequency division duplexing,FDD)***中,终端设备通过测量参考信号,获得并向网络设备反馈信道状态信息CSI,使得网络设备获得下行信道状态信息。CSI包括PMI,用于向网络设备推荐预编码矩阵。
目前,第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)设计了基于双码本结构上报PMI的方式。在双码本结构中,根据网络设备的天线端口数,3GPP定义了N×O个基向量。其中,O为过采样因子,N是根据网络设备的天线端口数确定的整数,例如,网络设备的天线端口数为2N。终端设备从这N×O个基向量中选择一个或多个基向量,并将所选基向量的指示信息,和/或所选基向量的线性组合系数的指示信息上报给网络设备。所选基向量的指示信息的上报开销由所选基向量的个数L和N×O确定。
当网络设备的天线间距是0.5倍波长,终端设备可以参考上述PMI上报方式来上报PMI。当天线间距d<0.5倍波长时,上述上报方式将导致PMI的上报开销比实际需要的开销大,造成上行时频资源的浪费。
发明内容
本申请实施例提供一种PMI上报方法及通信装置,能够节省PMI上报开销。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,公开了一种预编码矩阵指示PMI上报方法,包括:终端设备获取第一信息,第一信息用于指示N×O个基向量,N×O个基向量由O个第一基向量组包括的基向量构成;其中,O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;N是根据参考信号的端口数确定的,N为大于1的整数,O为正整数,i为大于等于1小于等于O的整数。另外,终端设备获取第二信息,第二信息用于指示M×O个基向量,M×O个基向量由O个第二基向量组包括的基向量构成,其中,O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数。终端设备还可以上报PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,L个基向量是M×O个基向量中的基向量。
本发明实施例中,终端设备根据第一信息确定N×O个基向量。在网络设备的天线间距d<0.5倍波长时,例如,天线间距约为0.25倍波长时,N×O个基向量中的部分基 向量在构造预编码矩阵时会带来较大的误差,因此,这部分基向量无法用于构造预编码矩阵。终端设备可以根据第二信息在N×O个基向量中确定可以用于构造预编码矩阵的M×O个基向量,并基于这M×O个基向量上报PMI,M小于N。天线间距d=0.5倍波长时,有N×O个备选基向量;而在天线间距d<0.5倍波长的场景下,仍以N×O个基向量为基础来上报PMI,会导致PMI上报开销比实际需要的开销要大。本发明实施例中,通过第二信息将基向量的数量由N×O减少为M×O,可以大大降低终端设备上报PMI的开销。
结合第一方面,在第一方面的第一种可能的实现方式中,第二信息为长度为N的比特序列,比特序列中的M个比特为第一数值;比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的第一基向量组中的M个基向量属于第二基向量组。例如,所述M个比特对应的第i个所述第一基向量组中的M个基向量构成第i个第二基向量组。或者,第二信息指示M,M用于从每个第一基向量组中确定构成第二基向量组的M个基向量。或者,第二指示信息指示M和指示
Figure PCTCN2019074479-appb-000001
比特的指示信息。其中,所述指示信息用于指示第一基向量组的N个基向量中,哪些基向量属于第二基向量组。终端设备可以根据M和所述指示信息从每个第一基向量组中确定构成第二基向量组的M个基向量。
本发明实施例中,终端设备可以根据第二信息从第一基向量组中选择M个基向量构成第二基向量组。
结合第一方面的第一种可能的实现方式中,在第一方面的第二种可能的实现方式,第一信息用于指示N×O个基向量,包括:
第一信息指示N 1和N 2,其中,N 1×N 2=N;N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
Figure PCTCN2019074479-appb-000002
其中,
Figure PCTCN2019074479-appb-000003
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
本发明实施例中,终端设备可以根据第一信息指示的N 1和N 2确定N×O个基向量。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,包括:
长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
Figure PCTCN2019074479-appb-000004
其中,
Figure PCTCN2019074479-appb-000005
是第O 2×k 1+k 2+1个第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
本发明实施例中,终端设备可以根据长度为N的比特序列中的一个比特对应第一基向量组中的一个基向量,比特序列中有M个比特为第一数值,因此终端设备可以根据这M个比特对应选择第一基向量组中的M个基向量。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,第二信息指示M,包括:
第二信息指示M 1和M 2;其中,M 1×M 2=M,M 1和M 2用于确定第O 2×k 1+k 2+1个第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000006
和/或,
当M 1为奇数时,
Figure PCTCN2019074479-appb-000007
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000008
和/或,
当M 2为奇数时,
Figure PCTCN2019074479-appb-000009
本发明实施例中,终端设备可以根据第二信息指示的M 1和M 2在第一基向量组中确定M个基向量构成第二基向量。
结合第一方面或第一方面的第一至第四种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,终端设备上报PMI,包括:终端设备上报Q个比特;Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,Q是根据M×O和L确定的数值。
结合第一方面或第一方面的第一至第五种可能的实现方式中的任意一种,在第一方面的第六种可能的实现方式中,L个基向量是从M×O个基向量中确定的,包括:终端设备获取第三信息,第三信息用于指示M×O个基向量中的X个基向量;所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
本发明实施例中,终端设备还可以获取码本子集限制信令,确定第二指示信息指示的M×O个基向量中哪些能够用于构成预编码矩阵,哪些不能用于构成预编码矩阵。某些基向量的使用会对其他小区造成干扰,网络设备可以避免终端设备选择这些基向量来构造预编码矩阵,从而降低小区间干扰。
第二方面,公开了一种通信装置,包括:
通信单元,用于获取第一信息,第一信息用于指示N×O个基向量,N×O个基向量由O个第一基向量组包括的基向量构成;其中,O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;N是根据参考信号的端口数确定的,N为大于1的整数,O为正整数,i为大于等于1小于等于O的整数;通信单元还用于,获取第二信息,第二信息用于指示M×O个基向量,M×O个基向量由O个第二基向量组包括的基向量构成,其中,O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数;通信单元,用于上报PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,L个基向量是所述M×O个基向量中的基向量。
结合第二方面,在第二方面的第一种可能的实现方式中,第二信息为长度为N的比特序列,比特序列中的M个比特为第一数值;比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于第二基向量组;或者,第二信息指示M,M用于从每个第一基向量组中确定构成第二基向量组的M个基向量。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,第一信息用于指示N×O个基向量,包括:
第一信息指示N 1和N 2,其中,N 1×N 2=N;N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
Figure PCTCN2019074479-appb-000010
其中,
Figure PCTCN2019074479-appb-000011
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,包括:
长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
Figure PCTCN2019074479-appb-000012
其中,
Figure PCTCN2019074479-appb-000013
是第O 2×k 1+k 2+1个第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
结合第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,第二信息指示M,包括:第二信息指示M 1和M 2;其中,M 1×M 2=M,M 1和M 2用于确定第O 2×k 1+k 2+1个第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000014
和/或,
当M 1为奇数时,
Figure PCTCN2019074479-appb-000015
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000016
和/或,
当M 2为奇数时,
Figure PCTCN2019074479-appb-000017
结合第二方面或第二方面第一至第四种可能的实现方式中的任意一种,在第二方面的第五种可能的实现方式中,通信单元具体用于,上报Q个比特;Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,Q是根据M×O和L确定的数值。
结合第二方面或第二方面第一至第五种可能的实现方式中的任意一种,在第二方面的第六种可能的实现方式中,通信单元还用于,获取第三信息,第三信息用于指示M×O个基向量中的X个基向量;处理单元还用于,从M×O个基向量除X个基向量外的(M×O-L)个基向量中,确定L个基向量。
第三方面,公开了一种通信装置,包括:
收发器,用于获取第一信息,第一信息用于指示N×O个基向量,N×O个基向量由O个第一基向量组包括的基向量构成;其中,O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;N是根据参考信号的端口数确定的,N为大于1的整数,O为正整数,i为大于等于1小于等于O的整数;收发器还用于,获取第二信息,第二信息用于指示M×O个基向量,M×O个基向量由O个第二基向量组包括的基向量构成,其中,O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数;收发器,用于上报PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,L个基向量是从M×O个基向量中确定的。
结合第三方面,在第三方面的第一种可能的实现方式中,第二信息为长度为N的比特序列,比特序列中的M个比特为第一数值;比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于;或者,第二信息指示M,M用于从每个第一基向量组中确定构成第二基向量组的M个基向量。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,第一信息用于指示N×O个基向量,包括:
第一信息指示N 1和N 2,其中,N 1×N 2=N;N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
Figure PCTCN2019074479-appb-000018
其中,
Figure PCTCN2019074479-appb-000019
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,包括:
长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
Figure PCTCN2019074479-appb-000020
其中,
Figure PCTCN2019074479-appb-000021
是第O 2×k 1+k 2+1个第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
结合第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,第二信息指示M,包括:第二信息指示M 1和M 2;其中,M 1×M 2=M,M 1和M 2用于确定第O 2×k 1+k 2+1个第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000022
和/或,
当M 1为奇数时,
Figure PCTCN2019074479-appb-000023
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000024
和/或,
当M 2为奇数时,
Figure PCTCN2019074479-appb-000025
结合第三方面或第三方面第一至第四种可能的实现方式中的任意一种,在第三方面的第五种可能的实现方式中,收发器具体用于,上报Q个比特;Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,Q是根据M×O和L确定的数值。
结合第三方面或第三方面第一至第五种可能的实现方式中的任意一种,在第三方面的第六种可能的实现方式中,收发器还用于,获取第三信息,第三信息用于指示M×O个基向量中的X个基向量。所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
第四方面,公开了一种预编码矩阵指示PMI上报方法,包括:
网络设备发送第一信息,所述第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成;其中,所述O个第一基向量组中的第i 个第一基向量组包括N个正交的基向量;所述N是根据参考信号的端口数确定的,所述N为大于1的整数,所述O为正整数,i为大于等于1小于等于O的整数。网络设备还可以发送第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数。网络设备接收终端设备上报的PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,所述L个基向量是所述M×O个基向量中的基向量。
结合第四方面,在第四方面的第一种可能的实现方式中,第二信息为长度为N的比特序列,所述比特序列中的M个比特为第一数值;所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于所述第二基向量组。或者,所述第二信息指示所述M,所述M用于从每个所述第一基向量组中确定构成所述第二基向量组的M个基向量。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第一信息用于指示N×O个基向量,包括:所述第一信息指示N 1和N 2,其中,N 1×N 2=N;所述N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
Figure PCTCN2019074479-appb-000026
其中,
Figure PCTCN2019074479-appb-000027
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,包括:
所述长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
Figure PCTCN2019074479-appb-000028
其中,
Figure PCTCN2019074479-appb-000029
是第O 2×k 1+k 2+1个所述第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
结合第四方面的第二种可能的实现方式,在第四方面的第四种可能的实现方式中,所述第二信息指示所述M,包括:
所述第二信息指示M 1和M 2;其中,M 1×M 2=M,所述M 1和M 2用于确定第O 2×k 1+k 2+1个所述第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000030
和/或,
当M 1为奇数时,
Figure PCTCN2019074479-appb-000031
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000032
和/或,
当M 2为奇数时,
Figure PCTCN2019074479-appb-000033
结合第四方面或第四方面的第一至第四种可能的实现方式中的任意一种,在第四方面的第五种可能的实现方式中,所述PMI包括Q个比特;所述Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,所述Q是根据M×O和L确定的数值。
结合第四方面或第四方面的第一至第五种可能的实现方式中的任意一种,在第四方面的第六种可能的实现方式中,所述方法还包括:向终端设备发送第三信息,所述第三信息用于指示所述M×O个基向量中的X个基向量,所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
第五方面,公开了一种通信装置,包括:
通信单元,用于发送第一信息,所述第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成;其中,所述O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;所述N是根据参考信号的端口数确定的,所述N为大于1的整数,所述O为正整数,i为大于等于1小于等于O的整数。通信单元还用于,发送第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数。网络设备接收终端设备上报的PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,所述L个基向量是所述M×O个基向量中的基向量。
结合第五方面,在第五方面的第一种可能的实现方式中,第二信息为长度为N的比特序列,所述比特序列中的M个比特为第一数值;所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于所述第二基向量组。或者,所述第二信息指示所述M,所述M用于从每个所述第一基向量组中确定构成所述第二基向量组的M个基向量。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述第一信息用于指示N×O个基向量,包括:所述第一信息指示N 1和N 2,其中,N 1×N 2=N;所述N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
Figure PCTCN2019074479-appb-000034
其中,
Figure PCTCN2019074479-appb-000035
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,包括:
所述长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
Figure PCTCN2019074479-appb-000036
其中,
Figure PCTCN2019074479-appb-000037
是第O 2×k 1+k 2+1个所述第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
结合第五方面的第二种可能的实现方式,在第五方面的第四种可能的实现方式中,所述第二信息指示所述M,包括:
所述第二信息指示M 1和M 2;其中,M 1×M 2=M,所述M 1和M 2用于确定第O 2×k 1+k 2+1个所述第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000038
和/或,
当M 1为奇数时,
Figure PCTCN2019074479-appb-000039
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000040
和/或,
当M 2为奇数时,
Figure PCTCN2019074479-appb-000041
结合第五方面或第五方面的第一至第四种可能的实现方式中的任意一种,在第五方面的第五种可能的实现方式中,所述PMI包括Q个比特;所述Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,所述Q是根据M×O和L确定的数值。
结合第五方面或第五方面的第一至第五种可能的实现方式中的任意一种,在第五方面的第六种可能的实现方式中,通信单元还用于,向终端设备发送第三信息,所述第三信息用于指示所述M×O个基向量中的X个基向量,所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
第六方面,公开了一种通信装置,包括:
收发器,用于发送第一信息,所述第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成;其中,所述O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;所述N是根据参考信号的端口数确定的,所述N为大于1的整数,所述O为正整数,i为大于等于1小于等于O的整数。收发器还用于,发送第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数。网络设备接收终端设备上报的PMI,PMI包括用于构造预编码矩阵的L个基向量的指示信息,所述L个基向量是所述M×O个基向量中的基向量。
结合第六方面,在第六方面的第一种可能的实现方式中,第二信息为长度为N的比特序列,所述比特序列中的M个比特为第一数值;所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于所述第二基向量组。或者,所述第二信息指示所述M,所述M用于从每个所述第一基向量组中确定构成所述第二基向量组的M个基向量。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述第一信息用于指示N×O个基向量,包括:所述第一信息指示N 1和N 2,其中,N 1×N 2=N;所述N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
Figure PCTCN2019074479-appb-000042
其中,
Figure PCTCN2019074479-appb-000043
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,包括:
所述长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
Figure PCTCN2019074479-appb-000044
其中,
Figure PCTCN2019074479-appb-000045
是第O 2×k 1+k 2+1个所述第一基向量组中的向量,k 1∈{0,1,...,O 1-1}, k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
结合第六方面的第二种可能的实现方式,在第六方面的第四种可能的实现方式中,所述第二信息指示所述M,包括:
所述第二信息指示M 1和M 2;其中,M 1×M 2=M,所述M 1和M 2用于确定第O 2×k 1+k 2+1个所述第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000046
和/或,
当M 1为奇数时,
Figure PCTCN2019074479-appb-000047
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000048
和/或,
当M 2为奇数时,
Figure PCTCN2019074479-appb-000049
结合第六方面或第六方面的第一至第四种可能的实现方式中的任意一种,在第六方面的第五种可能的实现方式中,所述PMI包括Q个比特;所述Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,所述Q是根据M×O和L确定的数值。
结合第六方面或第六方面的第一至第五种可能的实现方式中的任意一种,在第六方面的第六种可能的实现方式中,收发器还用于,向终端设备发送第三信息,所述第三信息用于指示所述M×O个基向量中的X个基向量,所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
第七方面,公开了一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如上述第一方面以及第一方面任意一种可能的实现方式所述的PMI上报方法,或上述第四方面以及第四方面任意一种可能的实现方式所述的PMI上报方法。
第八方面,公开了一种通信装置,包括:通信装置中存储有指令;当通信装置在终端设备上运行时,使得终端设备执行如上述第一方面以及第一方面任意一种可能的实现方式所述的PMI上报方法,或上述第四方面以及第四方面任意一种可能的实现方式所述的PMI上报方法。通信装置可以为芯片。
附图说明
图1为本发明实施例提供的通信***的架构图;
图2为本发明实施例提供的通信装置的结构框图;
图3为本发明实施例提供的PMI上报方法的流程示意图;
图4为本发明实施例提供的通信装置的另一结构框图;
图5为本发明实施例提供的通信装置的另一结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1给出了本申请提供的技术方案所适用的一种通信***的示意图,该通信***可以包括一个或多个网络设备100(仅示出了1个)以及与每一网络设备100连接的一个或多个终端设备200。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备100可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备100可以是5G通信***中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信***(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。
终端设备200可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端等。
图1所示通信***中,网络设备100、终端设备200上可以部署多根天线,利用MIMO进行通信,显著提高无线通信***的性能。在一些实现方式中,网络设备100为发射端设备、终端设备200为接收端设备;在另一种可能的实现方式中,终端设备200为发射端设备、网络设备100为接收端设备。
参考图1,在通信过程中,终端设备测量发射端设备发射的参考信号确定PMI。进一步,接收端设备将PMI反馈给发射端设备。可选的,发射端设备根据接收端设备反馈的PMI确定用于数据传输的预编码矩阵,并将预编码后的数据发往接收端设备。
3GPP基于多级码本结构定义了预编码矩阵W的形式,即W满足W=W 1×W 2×…×W I,I是大于等于2的整数,W i为矩阵。以两级码本结构为例,W=W 1×W 2
其中,W 1为块对角矩阵,表示为
Figure PCTCN2019074479-appb-000050
Figure PCTCN2019074479-appb-000051
W 1由终端设备从N×O个基向量中选择的L个基向量构成,每个基向量是长度为N的列向量。2N是网络设备的天线端口个数,L是正整数,例如L=1或L=4。在确定了N和O后,网络设备和终端设备可以确定上述N×O个基向量。对于第一类型码本(Type I codebook),当L>1时,上述L个基向量是非正交的基向量;对于第二类型码本(Type II codebook),上述L个基向量是正交的基向量。
W 2是2L行R列的矩阵,R为正整数。对于第一类型码本,W 2的第r列表示形式为
Figure PCTCN2019074479-appb-000052
e k为N×1的列向量,其第k个元素为1,其余的元素为0,表示选择B 0矩阵中的第k个列向量,c r为模为1的复数。对于第二类型码本,W 2的第r列表示形包括了上述W 1矩阵的2L个列向量的线性组合系数,可以表示为 W 2(r)=[p 0,rc 0,r … p 2L-1,rc 2L-1,r],其中,p i,r为非负实数,c l,r为幅度是1的复数,l=0,1,…,2L-1。
上述预编码矩阵W可以表示多种含义。例如,W表示终端设备从预定义的码本中推荐的进行数据传输时采用的预编码矩阵,此时,R表示终端设备推荐的数据传输层数;或W用于表示网络设备到终端设备的信道矩阵;或W表示终端设备的部分接收天线端口的信道矩阵,或W表示终端设备的信道矩阵的相关矩阵或该相关矩阵的至少一个特征向量。具体不做限定。
以网络设备为例,当网络设备的天线阵列的天线端口的间距d约为0.5倍波长时,上述N×O个基向量中任意L个正交或非正交(取决于码本的类型是Type I还是Type II)的基向量都有可能用于构造W 1矩阵。天线端口个数越多(即N越大),用于构造预编码矩阵的备选基向量个数N×O越多,越有利于构造更加匹配信道特征的预编码矩阵,提高下行数据的传输性能。因此,大规模天线阵列(即网络设备的天线端口个数很大,如32、64甚至更多)是MIMO***的发展方向。但是,天线端口数目过多时,按照0.5倍波长来排布天线将导致会导致天线阵列的尺寸过大。受限于天线阵列的尺寸约束,天线端口间距d<0.5倍波长的密集阵列成为天线产品新的研究方向。
此外,为了降低小区间干扰,网络设备可以通过码本子集限制信令对用于构成W 1的基向量进行限制。例如,针对Type I码本,网络设备可以向终端设备发送长度为N×O的比特序列,其中每个比特对应一个基向量。网络设备通过比特序列中每个比特的取值来约束终端在确定W 1时,N×O个基向量中哪些向量是可以用的。
当天线间距d<0.5倍波长(如约等于0.25倍波长)时,上述N×O个基向量中的部分基向量在构造预编码矩阵时会带来较大的误差,因此,这部分基向量无法用于构造预编码矩阵,是无效的基向量。因此,终端设备确定PMI时,备选的有效基向量的个数小于N×O。如果仍然基于N×O个基向量向量上报PMI,终端设备上报PMI的开销比实际需要的开销要大。另外,目前的码本子集限制的信令为N×O个比特,包含了上述所说的无效的基向量的限制信息,而这部分信息是不需要的,这就导致网络设备用于配置码本子集限制的信令开销也大于实际的需求。尤其是多站联合传输时,若终端设备针对每个为其服务的网络设备都上报PMI,或者每个为其服务的网络设备都单独配置一套码本子集限制信令给终端设备,PMI上报开销将很大,码本子集限制的信令开销也很大,导致PMI上报和或码本子集限制信令占用过多的时频资源。
本发明实施例提供一种PMI上报方法,终端设备可以获取第一信息,第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成。终端设备还可以获取第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述O个第一基向量组中的第i个第一基向量组中的M个基向量构成。进一步,终端设备可以在M×O个基向量中确定L个用于构造预编码矩阵的基向量,并根据M×O个基向量基向量上报PMI,所述PMI包括L个基向量的指示信息。
本发明实施例中,终端设备根据第一信息确定N×O个基向量,在天线间距d<0.5倍波长时,这N×O个基向量中的部分基向量在构造预编码矩阵时会带来较大的误差,因此,这部分基向量无法用于构造预编码矩阵,是无效的基向量。因此,可以用于构 造预编码矩阵的基向量的个数小于N×O终端设备可以根据第二信息在N×O个基向量中确定一部分基向量,基于选定的这部分基向量上报PMI。上报PMI的开销由构造预编码矩阵的备选基向量的数量决定,备选基向量的数量越大,上报PMI的开销也就越大。如果在天线间距d<0.5倍波长的场景下,沿用天线间距d=0.5倍波长所采用的N×O个备选基向量,上报PMI的开销比实际需求要大。本发明实施例中,备选基向量的数量由N×O减少为M×O,因此可以大大降低上报PMI的开销。
本发明实施例提供一种通信装置,该通信装置可以接收端设备,如,图1所示***中的终端设备200;该通信装置可以发射端设备,如,图1所示***中的网络设备100。如图2所示,该通信装置可以包括至少一个处理器201,存储器202、收发器203以及通信总线204。
下面结合图2对该通信装置的各个构成部件进行具体的介绍:
处理器201是通信装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行通信装置的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图2中所示的处理器201和处理器205。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信装置、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信装置,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信装置,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信装置、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以是独立存在,通过通信总线204与处理器201相连接。存储器202也可以和处理器201集成在一起。
其中,所述存储器202用于存储执行本发明方案的软件程序,并由处理器201来控制执行。
收发器203,用于与第二通信装置之间的通信。当然,收发器203还可以用于与通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。收发器203可以包括接收单元实现接收 功能,以及发送单元实现发送功能。
通信总线204,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部通信装置互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的通信装置结构并不构成对通信装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明实施例提供一种PMI上报方法,如图3所示,所述方法包括以下步骤:
301、终端设备获取第一信息,第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成,所述O个第一基向量组中的第i个第一基向量组包括N个正交的基向量。
也就是说,N×O个基向量的特征在于,该N×O个基向量可以分为O个第一基向量组,其中,O个第一基向量组中的每个第一基向量组包括N个正交的基向量,N和O均为大于1的整数。
一种可能的实现方式中,N是根据参考信号的端口数确定的。其中,参考信号的端口数指的是终端设备接收来自网络设备的参考信号的端口的数量,可以由网络设备发送的配置信息来确定。当网络设备采用双极化天线阵列时,参考信号的端口数量为2N,并且N=N 1×N 2。其中,N 1是水平方向上的同一极化方向的天线端口个数,N 2是垂直方向上同一极化方向的天线端口个数。
另外,O是根据网络设备的配置确定的,或者是预配置的。可选的,O为过采样因子。网络设备采用双极化天线阵列时,O=O 1×O 2。其中,O 1是水平方向上的过采样因子,O 2是垂直方向上的过采样因子。以32端口为例,目前标准定义的一种参数配置为N 1=N 2=4,O 1=O 2=4。
一种可能的实现方式中,终端设备可以接收网络设备发送的第一信息。
具体实现中,第一信息可以指示(N 1,N 2),此时,(O 1,O 2)是预定义的;或者第一信息指示(N 1,N 2)和(O 1,O 2)。终端设备可以根据O 1、O 2。以及N 1和N 2确定N 1N 2O 1O 2个基向量。其中,这N 1N 2O 1O 2个基向量的特征在于,这N 1N 2O 1O 2个基向量可以分为O 1O 2个第一基向量组,其中,O 1O 2个第一基向量组中的每个第一基向量组包括N 1N 2个正交的基向量。
可选的,所述N 1N 2O 1O 2个基向量中,第N 2×O 2×l+m+1个基向量(或第N 1×O 1×m+l+1个基向量)V l,m满足以下公式(1):
Figure PCTCN2019074479-appb-000053
其中,
Figure PCTCN2019074479-appb-000054
m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;N 1、N 2、O 1以及O 2均为正整数。
例如,当m为0,l为0,公式(1)可以表示N×O个基向量中的第1个基向量V 0,0。根据m、l不同的取值,公式(1)可以表示N×O个基向量。这N×O个基向量可以划 分成O个第一基向量组,其中,向量
Figure PCTCN2019074479-appb-000055
是第O 2×k 1+k 2+1个第一基向量组中的基向量。例如,k 1=0、k 2=0,基向量
Figure PCTCN2019074479-appb-000056
是第1个第一基向量组中的基向量,其中a=0,1,…,N 1-1,b=0,1,…,N 2-1。示例的,a=0、b=0时,基向量V 0,0是第1个第一基向量组中的基向量。
需要说明的是,当终端设备的天线间距d=0.5倍波长时,信道状态允许的情况下,上述N×O个基向量均可以用于构造预编码矩阵,因此上述N×O个基向量均为有效的基向量。在天线间距d<0.5倍波长时,这N×O个基向量中的部分基向量在构造预编码矩阵时会带来较大的误差,因此,这部分基向量无法用于构造预编码矩阵,是无效的基向量。因此,网络设备可以进一步指示N×O个基向量中的一部分基向量,以便终端设备根据有效的基向量上报PMI。
302、终端设备获取第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成。
需要说明的是,M是大于等于1、小于N的整数,可见第二基向量组由对应的第一基向量组中部分基向量组成。也就是说,第二基向量组中的基向量的数量小于第一基向量组的基向量的数量,第二信息指示的基向量的数量小于第一信息指示的基向量的数目。进而终端设备基于第二信息指示的M×O个基向量上报PMI,可以大大减少上报开销。
具体实现中,O个第二基向量组中的第i个第二基向量组中的基向量是O个第一基向量组中的第i个第一基向量组中的基向量。
本发明实施例中,网络设备可以通过以下两种可能的实现方式指示第二信息,具体包括:
第一种、第二信息为长度为N的比特序列,该比特序列中的M个比特为第一数值;所述比特序列中的N个比特与每个第一基向量组的N个基向量一一对应,第一数值用于指示构成所述第二基向量组的M个基向量。也就是说,根据该比特序列可以在每一个第一基向量组中确定M个基向量。
具体地,该比特序列中的一个比特对应第一基向量组中的一个基向量,例如,该比特序列中的第j个比特对应第一基向量组中第j个基向量,j为大于等于1小于等于N的整数。另外,每一个比特的取值为第一数值或第二数值。当比特的取值为第一数值,该比特对应的第一基向量组中的一个基向量用于构成第二基向量组,即第二基向量组包括该比特对应的基向量;当比特的取值为第二数值,该比特对应的第一基向量组中的一个基向量不属于第二基向量组。
示例的,第一数值为1,第二数值为0。假设第i个第一基向量组中包括7个基向量,则第二信息可以是长度为7的比特序列,如,0110011。0110011指示第i个第一基向量组中的第二个基向量、第三个基向量、第六个基向量以及第七个基向量构成第i个第二基向量组。可以看到,该长度为N的比特序列对所有第一基向量组是一致的,即可指示所有第一基向量组中哪些基向量用于构成第二基向量组。
在一些实施例中,所述比特序列中的N个比特与第一基向量组的N个基向量一一对应,包括:
所述长度为N的比特序列中的第N 2×a+b+1个比特对应第一基向量组中的基向量
Figure PCTCN2019074479-appb-000057
其中,
Figure PCTCN2019074479-appb-000058
是第O 2×k 1+k 2+1个第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
也就是说,比特序列中的第N 2×a+b+1个比特对应第O 2×k 1+k 2+1个第一基向量组中的第N 2×a+b+1个基向量。终端设备可以根据比特序列中的第N 2×a+b+1个比特的取值来判断第O 2×k 1+k 2+1个第一基向量组中的第N 2×a+b+1个基向量是否属于第O 2×k 1+k 2+1个第二基向量组。
第二种、所述第二信息指示所述M,所述M用于从每个所述第一基向量组中确定构成所述第二基向量组的M个基向量。
具体实现中,第二信息可以直接指示M。第二信息也可以指示一个比例系数K,可以根据预配置的参数P得到M。示例的,M=K×P。终端设备获取第二信息后可以确定每一个第一基向量组中中哪M个基向量是属于第二基向量组的。
另外,第二信息还可以包括指示
Figure PCTCN2019074479-appb-000059
比特的指示信息,用于指示第一基向量组的N个基向量中,哪些基向量属于第二基向量组。例如,N=3,M=2,即第一基向量组包括3个正交的基向量,假设第一基向量组包括的基向量为A、B、C,可以用
Figure PCTCN2019074479-appb-000060
比特来指示A、B、C中哪2个基向量构成了第二基向量组。从A、B、C中选择2个基向量共有三种可能,分别为AB、BC、AC,AB用两比特“01”表示,BC用两比特“10”表示,AC用两比特“11”表示。第二信息通过携带两比特的指示信息,就可以指示终端设备第一基向量组中的哪些基向量属于第二基向量组。例如,第二信息包括两比特“01”,终端设备则认为第一基向量组中的基向量A、B构成第二基向量组。
或者,所述第二信息指示M 1和M 2,终端设备可以根据M 1和M 2确定第二基向量组中的M个基向量。具体地,M 1×M 2=M,所述M 1和M 2用于确定第O 2×k 1+k 2+1个第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
当M 1为偶数时,
Figure PCTCN2019074479-appb-000061
当M 1为奇数时,
Figure PCTCN2019074479-appb-000062
和/或,
当M 2为偶数时,
Figure PCTCN2019074479-appb-000063
当M 2为奇数时,
Figure PCTCN2019074479-appb-000064
终端设备可以根据第二信息指示的M 1和M 2来确定第二基向量组中的基向量。例如,当M 1和M 2为偶数,a=0,b=0,k 1=1,k 2=0时,第1个第二基向量组包括第一基向量组中的基向量V 1,0
303、终端设备上报PMI,所述PMI包括用于构造预编码矩阵的L个基向量的指示信息,所述L个基向量是所述M×O个基向量中的基向量。
具体实现中,PMI包括Q个比特;所述Q个比特用于表示L个用于构造预编码矩 阵的基向量的指示信息,所述Q是根据M×O和L确定的数值。
其中,当基于第一类(type I)码本进行PMI上报,
Figure PCTCN2019074479-appb-000065
其中,c是正整数,例如,c=1或c=2,c的取值取决于码本的配置。在此场景下,PMI指示的W是基于Type I码本的预编码矩阵。
或者,当基于第二类(type II)码本进行PMI上报,
Figure PCTCN2019074479-appb-000066
现有技术中,如果在终端设备天线间距d<0.5倍波长时,沿用天线间距d=0.5倍波长的上报方式来上报PMI。对于第一类码本,上报开销为
Figure PCTCN2019074479-appb-000067
对于第二类码本,上报开销为
Figure PCTCN2019074479-appb-000068
由于M为小于N的整数,可见,无论基于第一类码本还是第二类码本上报PMI,本发明实施例中上报开销均比现有技术有所减少,能够有效地节约时频资源。
可选的,网络设备可以通过码本子集限制信令,在M×O个基向量中指示出可用于构造预编码矩阵的X个基向量,X是小于等于M×O的正整数。某些基向量的使用会对其他小区造成干扰,网络设备可以避免终端设备选择这些基向量来构造预编码矩阵,从而降低小区间干扰。
对于第一类型码本,网络设备通过M×O个比特来指示码本子集限制。对于第二类型码本,网络设备配置码本子集限制信令的比特数也由M×O确定。
具体实现中,终端设备获取第三信息,第三信息可以用于码本子集限制。另外,第三信息用于指示所述M×O个基向量中的X个基向量。需要说明的是,这X个基向量是被限制的,即不能用于构造预编码矩阵。进一步,上述L个基向量是从所述M×O个基向量中除了所述X个基向量外的M×O-L个基向量中确定的。
现有技术中,用于码本子集限制的信息是长度为N×O的比特序列,本发明实施例中第三信息可以是长度为M×O的比特序列,由于(M×O)<(N×O),因此,本发明实施例提供的方法还降低了配置码本子集限制的信令开销,节省了时频资源。
在采用对应各个功能划分各个功能模块的情况下,图4示出上述实施例中所涉及的通信装置的一种可能的结构示意图。如图4所示,通信装置包括处理单元401以及通信单元402。
处理单元401,用于支持该通信装置执行上述实施例中的技术过程。例如,当所述通信装置为终端设备,处理单元401用于支持终端设备根据用于构造预编码矩阵的L个基向量的指示信息生成PMI。当所述通信装置为网络设备,处理单元401用于支持网络设备生成第一信息、第二信息以及第三信息。
通信单元402,用于支持该通信装置与其他设备之间的交互。例如,当所述通信装置为终端设备,通信单元402用于支持终端设备执行步骤301~302,接收网络设备发送的第一信息、第二信息,以及向网络设备发送PMI。当所述通信装置为网络设备,通信单元402用于支持网络设备向终端设备发送第一信息、第二信息、第三信息,以及支持网络设备接收终端设备发送的PMI。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示 意图如图5所示。在图5中,该通信装置包括:处理模块501和通信模块502。处理模块501用于对通信装置的动作进行控制管理,例如,执行上述处理单元401执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块502用于执行上述通信单元402执行的步骤,支持通信装置与其他设备之间的交互,如与第二设备、通信装置之间的交互。如图5所示,通信装置还可以包括存储模块503,存储模块503用于存储通信装置的程序代码和数据。
当处理模块501为处理器,通信模块502为收发器,存储模块503为存储器时,通信装置为图2所示的通信装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种预编码矩阵指示PMI上报方法,其特征在于,包括:
    终端设备获取第一信息,所述第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成;其中,所述O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;N是根据参考信号的端口数确定的,所述N为大于1的整数,O为正整数,i为大于等于1小于等于所述O的整数;
    所述终端设备获取第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数;
    所述终端设备上报PMI,所述PMI包括用于构造预编码矩阵的L个基向量的指示信息,所述L个基向量是所述M×O个基向量中的基向量。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信息为长度为N的比特序列,所述比特序列中的M个比特为第一数值;所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于所述第二基向量组;
    或者,所述第二信息指示所述M,所述M用于从每个所述第一基向量组中确定构成所述第二基向量组的M个基向量。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息用于指示N×O个基向量,包括:
    所述第一信息指示N 1和N 2,其中,N 1×N 2=N;所述N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
    Figure PCTCN2019074479-appb-100001
    其中,
    Figure PCTCN2019074479-appb-100002
    m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
  4. 根据权利要求3所述的方法,其特征在于,所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,包括:
    所述长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
    Figure PCTCN2019074479-appb-100003
    其中,
    Figure PCTCN2019074479-appb-100004
    是第O 2×k 1+k 2+1个所述第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
  5. 根据权利要求3所述的方法,其特征在于,所述第二信息指示所述M,包括:
    所述第二信息指示M 1和M 2;其中,M 1×M 2=M,所述M 1和M 2用于确定第O 2×k 1+k 2+1个所述第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
    当M 1为偶数时,
    Figure PCTCN2019074479-appb-100005
    和/或,
    当M 1为奇数时,
    Figure PCTCN2019074479-appb-100006
    和/或,
    当M 2为偶数时,
    Figure PCTCN2019074479-appb-100007
    和/或,
    当M 2为奇数时,
    Figure PCTCN2019074479-appb-100008
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述终端设备上报PMI,包括:
    所述终端设备上报Q个比特;所述Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,所述Q是根据M×O和L确定的数值。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述L个基向量是所述M×O个基向量的基向量,包括:
    所述终端设备获取第三信息,所述第三信息用于指示所述M×O个基向量中的X个基向量,所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
  8. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第一信息,所述第一信息用于指示N×O个基向量,所述N×O个基向量由O个第一基向量组包括的基向量构成;其中,所述O个第一基向量组中的第i个第一基向量组包括N个正交的基向量;N是根据参考信号的端口数确定的,所述N为大于1的整数,O为正整数,i为大于等于1小于等于所述O的整数;
    所述处理单元还用于,获取第二信息,所述第二信息用于指示M×O个基向量,所述M×O个基向量由O个第二基向量组包括的基向量构成,其中,所述O个第二基向量组中的第i个第二基向量组由所述第i个第一基向量组中的M个基向量构成;M为大于等于1小于N的整数;
    通信单元,用于上报PMI,所述PMI包括用于构造预编码矩阵的L个基向量的指示信息,所述L个基向量是所述M×O个基向量中的基向量。
  9. 根据权利要求8所述的通信装置,其特征在于,所述第二信息为长度为N的比特序列,所述比特序列中的M个比特为第一数值;所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,所述第一数值用于指示所述M个比特对应的所述第一基向量组中的M个基向量属于所述第二基向量组;
    或者,所述第二信息指示所述M,所述M用于从每个所述第一基向量组中确定构成所述第二基向量组的M个基向量。
  10. 根据权利要求9所述的通信装置,其特征在于,所述第一信息用于指示N×O个基向量,包括:
    所述第一信息指示N 1和N 2,其中,N 1×N 2=N;所述N×O个基向量中,第N 2×O 2×l+m+1个基向量V l,m满足:
    Figure PCTCN2019074479-appb-100009
    其中,
    Figure PCTCN2019074479-appb-100010
    m=0,1,…,N 2×O 2-1;l=0,1…,N 1×O 1-1;O 1×O 2=O;N 1、N 2、O 1以及O 2均为正整数。
  11. 根据权利要求10所述的通信装置,其特征在于,所述比特序列中的N个比特与每个所述第一基向量组的N个基向量一一对应,包括:
    所述长度为N的比特序列中的第N 2×a+b+1个比特对应基向量
    Figure PCTCN2019074479-appb-100011
    其中,
    Figure PCTCN2019074479-appb-100012
    是第O 2×k 1+k 2+1个所述第一基向量组中的向量,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},a=0,1,…,N 1-1,b=0,1,…,N 2-1。
  12. 根据权利要求10所述的通信装置,其特征在于,所述第二信息指示所述M,包括:
    所述第二信息指示M 1和M 2;其中,M 1×M 2=M,所述M 1和M 2用于确定第O 2×k 1+k 2+1个所述第二基向量组中的M个基向量V x,y,x=aO 1+k 1,y=bO 1+k 2;其中,k 1∈{0,1,...,O 1-1},k 2∈{0,1,...,O 2-1},
    当M 1为偶数时,
    Figure PCTCN2019074479-appb-100013
    和/或,
    当M 1为奇数时,
    Figure PCTCN2019074479-appb-100014
    和/或,
    当M 2为偶数时,
    Figure PCTCN2019074479-appb-100015
    和/或,
    当M 2为奇数时,
    Figure PCTCN2019074479-appb-100016
  13. 根据权利要求8-12任一项所述的通信装置,其特征在于,所述通信单元具体用于,上报Q个比特;所述Q个比特用于表示L个用于构造预编码矩阵的基向量的指示信息,所述Q是根据M×O和L确定的数值。
  14. 根据权利要求8-13任一项所述的通信装置,其特征在于,
    所述通信单元还用于,获取第三信息,所述第三信息用于指示所述M×O个基向量中的X个基向量;所述L个基向量是所述M×O个基向量中,除所述X个基向量外的(M×O-L)个基向量中的L个基向量。
  15. 一种通信装置,其特征在于,包括:一个或多个处理器和一个或多个存储器;
    所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述通信装置执行如权利要求1-7任一项所述的PMI上报方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令;所述指令用于执行如权利要求1-7任一项所述的PMI上报方法。
  17. 一种通信装置,其特征在于,包括:所述通信装置中存储有指令;当所述通信装置在终端设备上运行时,使得所述终端设备执行如权利要求1-7任一项所述的PMI上报方法,所述通信装置为芯片。
PCT/CN2019/074479 2019-02-01 2019-02-01 一种pmi上报方法及通信装置 WO2020155116A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074479 WO2020155116A1 (zh) 2019-02-01 2019-02-01 一种pmi上报方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074479 WO2020155116A1 (zh) 2019-02-01 2019-02-01 一种pmi上报方法及通信装置

Publications (1)

Publication Number Publication Date
WO2020155116A1 true WO2020155116A1 (zh) 2020-08-06

Family

ID=71840341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074479 WO2020155116A1 (zh) 2019-02-01 2019-02-01 一种pmi上报方法及通信装置

Country Status (1)

Country Link
WO (1) WO2020155116A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11909472B2 (en) 2021-11-16 2024-02-20 Samsung Electronics Co., Ltd Method and apparatus for selection of linear combination coefficients for precoding in frequency-selective channels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065434A (zh) * 2011-01-06 2011-05-18 中兴通讯股份有限公司 一种下行多基站多输入多输出预编码的协调方法和装置
CN104396153A (zh) * 2012-05-18 2015-03-04 三星电子株式会社 用于蜂窝无线通信***的信道状态信息码字构造的方法和装置
CN108365877A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种码本反馈方法和装置
CN108631847A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 传输信道状态信息的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065434A (zh) * 2011-01-06 2011-05-18 中兴通讯股份有限公司 一种下行多基站多输入多输出预编码的协调方法和装置
CN104396153A (zh) * 2012-05-18 2015-03-04 三星电子株式会社 用于蜂窝无线通信***的信道状态信息码字构造的方法和装置
CN108365877A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种码本反馈方法和装置
CN108631847A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 传输信道状态信息的方法、终端设备和网络设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11909472B2 (en) 2021-11-16 2024-02-20 Samsung Electronics Co., Ltd Method and apparatus for selection of linear combination coefficients for precoding in frequency-selective channels

Similar Documents

Publication Publication Date Title
WO2020156103A1 (zh) 信息反馈方法及装置
TWI692261B (zh) 資料傳輸方法、基地台和終端
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
WO2020125655A1 (zh) 一种通信方法及设备
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
WO2021008477A1 (zh) 预编码处理方法和装置
CN113746573B (zh) 一种信道测量方法及装置
WO2019062681A1 (zh) 一种上行传输、配置方法、终端及基站
WO2022002079A1 (zh) 预编码矩阵确定方法及装置
WO2018171604A1 (zh) 信息的传输方法和设备
WO2022022632A1 (zh) 一种通信方法及装置
WO2014194525A1 (zh) 传输导频信号的方法、基站和用户设备
WO2021083068A1 (zh) 上报信道状态信息的方法和通信装置
WO2021017571A1 (zh) 一种空频合并系数的指示方法及装置
WO2021168806A1 (zh) 信道状态信息测量的方法和装置
WO2021238576A1 (zh) 一种通信方法、装置及***
US20230239014A1 (en) Information indication method and apparatus
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2017193404A1 (zh) 信道状态信息的上报方法、读取方法及相关设备
CN108282204B (zh) 通信方法、装置及***
WO2019047946A1 (zh) 一种码本子集限制的方法
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2021159537A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913750

Country of ref document: EP

Kind code of ref document: A1