WO2014183386A1 - 阵列基板及其制作方法、显示面板及其驱动方法 - Google Patents

阵列基板及其制作方法、显示面板及其驱动方法 Download PDF

Info

Publication number
WO2014183386A1
WO2014183386A1 PCT/CN2013/085805 CN2013085805W WO2014183386A1 WO 2014183386 A1 WO2014183386 A1 WO 2014183386A1 CN 2013085805 W CN2013085805 W CN 2013085805W WO 2014183386 A1 WO2014183386 A1 WO 2014183386A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
passivation layer
array substrate
bias
liquid crystal
Prior art date
Application number
PCT/CN2013/085805
Other languages
English (en)
French (fr)
Inventor
李云飞
石领
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014183386A1 publication Critical patent/WO2014183386A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background

Definitions

  • Embodiments of the present invention relate to the field of liquid crystal display technologies, and in particular, to an array substrate, a method for fabricating the same, a display panel, and a driving method thereof.
  • Background technique
  • liquid crystal display panels are in a normally white working mode, such as a TN mode display.
  • a normally white working mode such as a TN mode display.
  • the light transmission axes of the upper polarizer and the lower polarizer are perpendicular to each other, and the display panel uses a liquid crystal mode of a nematic liquid crystal having a twist angle of 90°.
  • the liquid crystal molecules are rotated by 90° to the polarization direction of the polarized light passing through the lower polarizing plate, so that the polarized light passing through the liquid crystal layer and the upper polarizing plate are transmitted through the axis.
  • the polarized light can pass through the upper polarizing plate, then the pixel is transparent, and the panel is displayed as a white screen; when the pixel electrode is applied with a high voltage, the liquid crystal molecules are offset and arranged vertically, at this time The liquid crystal molecules do not have optical rotation characteristics, and the polarized light passing through the lower polarizing plate cannot be rotated. Therefore, the polarized light passing through the liquid crystal layer does not coincide with the direction of the transmission axis of the upper polarizing plate, and the polarized light cannot pass through the upper polarizing plate.
  • the light is opaque and the panel is displayed as a black screen. This normally white mode display panel has a much lower contrast than the normally black mode display panel.
  • the electric field on the data line in the non-display area changes momentarily for the liquid crystal molecules, which affects the deflection state of the liquid crystal molecules in the display area, thereby affecting the transmittance of the pixel; Refraction, reflection, scattering, etc. occur when propagating in the panel, and the light leakage phenomenon of the pixels in the display area is also aggravated.
  • a black matrix is usually disposed in the display panel; however, the black matrix cannot control the transmission of light, and can only be blocked at a place where light leakage may occur, so that the light leakage caused by the influence of other electrodes on the liquid crystal molecules cannot be improved. And can only be occluded by increasing the width of the black matrix, which results in a low aperture ratio of the display panel and poor display performance.
  • Embodiments of the present invention provide an array substrate, a manufacturing method thereof, a display panel, and a driving method thereof for improving contrast of a liquid crystal display panel.
  • an array substrate comprising a pixel electrode, further comprising: a passivation layer formed on the pixel electrode and a bias electrode formed on the passivation layer; wherein the bias electrode At least a portion of the passivation layer other than the pixel electrode is covered.
  • a display panel comprising the above array substrate, a counter substrate, and a liquid crystal layer therebetween is provided, and the opposite substrate includes a common electrode.
  • a method for fabricating an array substrate including: forming a passivation layer on a substrate substrate on which a pixel electrode is formed;
  • a bias electrode is formed on the passivation layer, wherein the bias electrode covers at least a portion of the passivation layer except for the pixel electrode.
  • a driving method of the above display panel comprising: applying a bias voltage on a bias electrode and applying a common electrode voltage on a common electrode to drive between the bias electrode and the common electrode
  • the liquid crystal molecules in the liquid crystal layer are deflected.
  • FIG. 1 is a schematic cross-sectional structural view of an array substrate according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view showing a planar structure of an array substrate according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural view of a display panel according to Embodiment 3 of the present invention when a bias voltage is not applied;
  • FIG. 4 is a schematic structural view of a display panel according to Embodiment 4 of the present invention when a bias voltage is not applied;
  • FIG. 5 is a schematic diagram of a bias voltage, a common electrode voltage, and a gray scale voltage applied to the display panel of FIG. 3;
  • FIG. 6 is a schematic view showing the arrangement state of liquid crystal molecules after the bias voltage is applied to the panel of FIG. 3. detailed description
  • an array substrate includes a pixel electrode, and further includes a passivation layer formed on the pixel electrode and a bias electrode formed on the passivation layer; wherein the bias The electrode covers at least a portion of the passivation layer other than the pixel electrode.
  • the bias electrode covers at least the data lines on the array substrate.
  • the bias electrode and the data line may be completely overlapped or partially overlapped.
  • An embodiment of the present invention provides an array substrate.
  • the array substrate structure is as shown in FIG. 1.
  • the array substrate includes: a substrate substrate 101, a gate electrode 102, and a gate insulating layer 103.
  • the gate electrode 102 is located above the base substrate 101; for example, the gate electrode 102 is made of a metal or alloy such as molybdenum Mo, aluminum aluminide, AlNd, aluminum Al, chromium Cr or copper Cu. Single or multiple layers.
  • the gate insulating layer 103 is located above the gate 102 for insulating the gate 102 from other layer electrodes.
  • the active layer 104 is located above the gate insulating layer 103;
  • the drain electrode 106 is located above the active layer 104 and is located at one side of the active layer 104.
  • the source electrode 105 is disposed in the same layer as the source electrode 104, and is located in the active layer.
  • One side; the drain 106 and the drain 107 are made of a metal or an alloy, for example, a single layer of molybdenum (Mo), chromium (Gr) or a double-layer aluminum-bismuth alloy/molybdenum (AlNd/Mo), etc. .
  • the first passivation layer 107 is located above the drain 106 and the source 105, below the pixel electrode 108.
  • the pixel electrode 108 is located above the first passivation layer 107, below the second passivation layer 109, and is directly connected to the drain 106 through via holes in the first passivation layer 107.
  • the second passivation layer 109 is located above the pixel electrode 108 and below the bias electrode 110 for insulating the pixel electrode 108 and the bias electrode 110.
  • the second passivation layer 109 covers the entire surface of the substrate on which the pixel electrode 108 and the passivation layer 107 are formed.
  • the second passivation layer 109 is made of an insulating material.
  • the second passivation layer 109 may be made of a resin. Because the resin has a certain fluidity, a planarized second blunt may be formed on the pixel electrode 108 by a spin coating process during the fabrication of the array substrate.
  • the layer of the second passivation layer 109 is more convenient for the fabrication of the bias electrode 110; when the material of the second passivation layer 109 is made of a resin material, the thickness of the second passivation layer is, for example, 2 ⁇ 3 ⁇ , the thickness of the layer can be appropriately thickened or thinned as needed during the implementation.
  • the second passivation layer 109 may be made of silicon oxide or silicon nitride, but the planarization of the second passivation layer is not easily formed using silicon nitride and silicon oxide as compared with the resin material. 109, which is disadvantageous for the subsequent fabrication of the bias electrode 110, so that the difficulty of the process is also increased at the same time; when the second passivation layer 109 is made of silicon oxide or silicon nitride, the thickness of the second passivation layer 109 is, for example, 2500 ⁇ -1 ⁇ , the thickness of the layer can be appropriately thickened or thinned as needed during the specific implementation.
  • the biasing electrode 110 is located above the second passivation layer 109. As shown in FIG. 2, in the pixel unit, the region where the bias electrode 110 (grid-like region) is located and the region where the pixel electrode 108 is located are There is substantially no overlap in the vertical direction (there may be overlap at the edge of the pixel electrode due to tolerances). In one example, the bias electrode 110 overlaps all regions except the pixel electrode 108 (striped region). Alternatively, the bias electrode 110 overlaps at least one of the data line 111, the source 105, the drain 106, and the gate 102. In one example, the bias electrode 110 also covers an area between adjacent pixel electrodes.
  • the material of the bias electrode 110 is, for example, a metal material, and can be connected to the drain 106, The source 105 or the gate 102 are made of the same material.
  • the electric field generated by the bias electrode 110 and the common electrode on the opposite substrate controls the liquid crystal orientation of the non-display area, so that the liquid crystal of the non-display area is in a normally black state when the liquid crystal is energized, thereby preventing light leakage. Produce, improve the contrast of the liquid crystal display panel.
  • Embodiment 2
  • a second embodiment of the present invention provides a method for fabricating the array substrate, the method comprising: forming a passivation layer on a substrate substrate on which a pixel electrode is formed;
  • a bias electrode is formed on the passivation layer, and the bias electrode covers at least a portion of the passivation layer except for the pixel electrode.
  • the bias electrode can also be overlaid on at least the data line.
  • the bias electrode covers at least the data lines on the array substrate.
  • the bias electrode and the data line may be completely overlapped or partially overlapped.
  • the method includes:
  • Step 1 a metal layer such as molybdenum (Mo) or chromium (Cr) is deposited over the base substrate 101, and then the gate 102 is formed by a patterning process;
  • Mo molybdenum
  • Cr chromium
  • Step 2 forming a gate insulating layer 103 over the gate 102, for example, comprising: applying a resin over the gate 102 by a spin coating process to form a planarized gate insulating layer; and the gate insulating layer may also be a silicon nitride layer. Or silicon oxide;
  • Step 3 depositing a semiconductor film and a source/drain metal film on the gate insulating layer 103, forming an active layer 104, a source 105, a drain 106, and a data line 111 on the gate insulating layer 103 by using a halftone masking technique;
  • Step 4 forming a first passivation layer 107 over the active layer 104, the source 105 and the drain 106, and forming via holes on the first passivation layer 107;
  • Step 5 forming a pixel electrode 108 over the first passivation layer 107.
  • a transparent conductive film of indium tin oxide (ITO) may be deposited on the first passivation layer 107 by magnetron sputtering. After the engraving and exposure development, wet etching and stripping are performed to form the pixel electrode 108, and the pixel electrode 108 is directly connected to the drain 28 through the via hole located in the first passivation layer 107;
  • ITO indium tin oxide
  • Step 6 forming a second passivation layer 109 on the first passivation layer 107 and the pixel electrode 108,
  • the manufacturing method and the first passivation layer 107 are made in the same method and material.
  • the layer is formed by using a resin material. Since the resin has a certain fluidity, the flat layer is easily formed, which is advantageous for the subsequent fabrication of the bias electrode;
  • Step 7 fabricating the bias electrode 110 on the second passivation layer 109, the bias electrode covering a region other than the pixel electrode 108.
  • a metal layer is formed over the second passivation layer 109 using a metal material, and then the bias electrode 110 is formed by a patterning process.
  • the metal material may be the same as the material of the source, the drain or the gate of the switching transistor connecting the pixel electrodes.
  • a third embodiment of the present invention provides a display panel.
  • the structure of the display panel is as shown in FIG. 3.
  • the display panel includes an opposite substrate, the array substrate of the first embodiment, and the opposite. a liquid crystal layer 301 between the substrate and the array substrate, wherein the opposite substrate is provided with a common electrode 302.
  • the display panel provided in the fourth embodiment of the present invention has a structure as shown in FIG. 4.
  • the display panel includes an opposite substrate, the array substrate of the first embodiment, and the opposite substrate and the array substrate.
  • a liquid crystal layer 301 Unlike the display panel of Fig. 3, in the display panel shown in Fig. 4, a black matrix 401 is further disposed on the opposite substrate.
  • the liquid crystal molecules located between the bias electrode 110 and the common electrode 302 are deflected by the electric field, the optical rotation characteristics are lost, and the polarization state of the incident light cannot be changed, so that no light is transmitted through the non-display area. Therefore, the purpose of preventing light leakage is achieved, and the non-display area without light penetration is in a normally black working mode, which effectively improves the contrast of the display panel.
  • the bias electrode 110 corresponds to a black matrix 401 located above it.
  • the black matrix can also perform the same shading function, mainly by blocking unwanted light, preventing color mixing and increasing the purity of the color, further preventing the occurrence of light leakage, and improving the contrast of the display panel.
  • the opposite substrate refers to a substrate that is opposite to the array substrate, and the specific structure of the opposite substrate is not limited.
  • the opposite substrate may include a color filter layer and / or a color matrix substrate of a black matrix layer.
  • Embodiment 5 of the present invention provides a driving method of the display panel of the fourth embodiment, the method comprising: applying a bias voltage on the bias electrode and applying a common electrode voltage on the common electrode to drive the bias
  • the liquid crystal molecules in the liquid crystal layer between the electrode and the common electrode are deflected.
  • the bias voltage is a periodically varying voltage to prevent polarization of liquid crystal molecules.
  • the display panel shown in FIG. 3 is taken as an example, and the driving method of the display panel is described with reference to FIG. 5.
  • the method includes:
  • a periodically varying bias voltage 501, a gray scale voltage 502, and a common electrode voltage 503 are applied to the bias electrode 110, the pixel electrode 108, and the common electrode 302, respectively.
  • the common electrode voltage 503 applied to the common electrode 302 is constant and applied to the pixel electrode.
  • the gray scale voltage 502 of 108 is irregularly changed, and the bias voltage 501 applied to the bias electrode 110 is a square wave voltage having a periodicity. It should be noted that the period of the bias voltage does not need to match the period of any voltage, and the period can be set according to actual needs.
  • the gray scale voltage 502 applied to the pixel electrode 108 is irregularly changed, and the gray scale voltage is supplied by the data lines in the array substrate, so that the voltage on the data line is also irregularly changed.
  • the irregularly varying voltage on the data line generates a changing electric field, which affects the distribution state of the liquid crystal molecules in the non-display area above it, thereby affecting the transmittance of the pixel and the display effect of the display panel, resulting in the occurrence of light leakage in the non-display area.
  • the bias voltage is a square wave voltage having a certain period. After a bias voltage is applied to the bias electrode 110, an electric field is formed between the bias electrode 110 and the common electrode 302. As shown in FIG. 6, the liquid crystal molecules 601 between the bias electrode 110 and the common electrode 302 are biased by an electric field. Rotating, and arranged in a vertical regular pattern; the optical rotation of the regularly arranged liquid crystal molecules disappears, and the polarization state of the light cannot be changed, and the non-polarized light is transmitted through the upper polarizing plate in the non-display area, effectively preventing the non-display area The light leakage phenomenon occurs; at the same time, since the non-display area has no light transmission, the normal black working mode is exhibited, so the contrast of the display panel is improved.
  • the manufacturing method thereof, the display panel, and the driving method thereof when a bias voltage is applied to the bias electrode, an electric field is formed between the bias electrode and the common electrode.
  • the polarized light behind the layer does not coincide with the direction of the light transmission axis of the polarizing plate located above the liquid crystal molecular layer, and a dark region is formed at a position above the bias electrode, so that the liquid crystal in the non-display region is in a normally black working state, thereby preventing light leakage.
  • the generation improves the contrast of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种阵列基板及制作方法、显示面板及驱动方法。阵列基板,包括像素电极(108),形成在像素电极(108)上的钝化层(109)和形成在钝化层(109)上的偏置电极(110);其中,偏置电极(110)覆盖钝化层(109)的除像素电极(108)外的至少一部分区域。

Description

阵列基板及其制作方法、 显示面板及其驱动方法 技术领域
本发明实施例涉及液晶显示技术领域, 尤其涉及一种阵列基板及其制作 方法、 显示面板及其驱动方法。 背景技术
目前, 部分液晶显示面板为常白工作模式, 如 TN模式显示器。 在 TN 模式的显示面板中, 上偏光片和下偏光片的光透过轴相互垂直, 显示面板使 用扭曲角为 90° 的向列液晶的液晶模式。 在工作的过程中, 如果像素电极不 施加电压或施加低电压时, 液晶分子对经过下偏振片的偏振光偏振方向旋转 90° , 使得经过液晶层后的偏振光与上偏振片光透过轴方向一致, 偏振光可 以透过上偏振片, 则此时像素是透光的, 面板显示为白画面; 当像素电极施 加高电压时, 液晶分子发生偏置, 呈竖直状排列, 此时的液晶分子不具有旋 光特性, 无法使经过下偏振片的偏振光进行旋转, 故经过液晶层的偏振光与 上偏振片光透过轴方向不一致, 偏振光不能透过上偏振片, 则此时像素不透 光, 面板显示为黑画面。 这种常白模式的显示面板, 其对比度远远低于常黑 模式的显示面板。 因为在显示面板工作过程中, 处于非显示区域的数据线上 的电场对于液晶分子来说是时刻变化的, 会影响显示区域液晶分子的偏转状 态, 从而影响像素的透光率; 同时, 光在面板中传播时会发生折射、 反射、 散射等, 也会使显示区域像素的漏光现象加重。
为了防止背光泄露, 通常在显示面板中设置有黑矩阵; 但是, 黑矩阵不 能控制光线的传输, 只能在可能漏光的地方进行遮挡, 因此对于其它电极对 液晶分子的影响导致的漏光不能加以改善, 而且只能通过增加黑矩阵的宽度 进行遮挡, 因此会导致显示面板开口率低且显示效果差。 发明内容
本发明实施例提供了一种阵列基板及其制作方法、 显示面板及其驱动方 法, 用以提高液晶显示面板的对比度。 根据本发明的第一方面,提供了一种阵列基板, 包括像素电极,还包括: 形成在像素电极上的钝化层和形成在钝化层上的偏置电极; 其中, 所述 偏置电极覆盖该钝化层的除像素电极外的至少一部分区域。
根据本发明的第二方面, 提供了一种显示面板, 包括上述的阵列基板、 对置基板及位于二者之间的液晶层, 所述对置基板包括公共电极。
根据本发明的第三方面, 提供了一种阵列基板的制作方法, 包括: 在形成有像素电极的衬底基板上制作钝化层;
在所述钝化层上制作偏置电极, 其中所述偏置电极覆盖该钝化层的除像 素电极外的至少一部分区域。
根据本发明的第四方面, 提供了上述显示面板的驱动方法, 包括: 在偏置电极上施加偏置电压且在公共电极上施加公共电极电压, 以驱使 所述偏置电极和公共电极之间的液晶层中的液晶分子发生偏转。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例一提供的阵列基板的剖面结构示意图;
图 2为本发明实施例一提供的阵列基板的平面结构示意图;
图 3为本发明实施例三提供的显示面板在未施加偏置电压时的结构示意 图;
图 4为本发明实施例四提供的显示面板在未施加偏置电压时的结构示意 图;
图 5为施加到图 3显示面板中的偏置电压、 公共电极电压和灰阶电压示 意图;
图 6为图 3显示面板在施加偏置电压后的液晶分子排列状态示意图。 具体实施方式
为了使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显 然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于 所描述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 或者 "一" 等类似词语也不表示数量限制,而是表示存在至少一个。 "包括"或者 "包含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵盖出 现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排除其 他元件或者物件。 "连接"或者 "相连"等类似的词语并非限定于物理的或者 机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、
"下"、 "左"、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝对位置 改变后, 则该相对位置关系也可能相应地改变。
根据本发明的实施例, 提供了一种阵列基板, 所述阵列基板包括像素电 极,还包括形成在像素电极上的钝化层和形成在钝化层上的偏置电极;其中, 所述偏置电极覆盖该钝化层的除像素电极外的至少一部分区域。 例如, 所述 偏置电极至少覆盖在位于阵列基板上的数据线上方。 所述偏置电极与数据线 可以是完全重叠, 也可以是部分重叠。 实施例一
本发明实施例一提供了一种阵列基板, 所述阵列基板结构如图 1所示, 从图 1中可以看出, 所述阵列基板包括: 衬底基板 101、栅极 102、栅绝缘层 103、 有源层 104、 源极 105、 漏极 106、 第一钝化层 107、 像素电极 108、 第 二钝化层 109、 偏置电极 110和数据线 111 (参见图 2 )。
所述栅极 102, 位于所述衬底基板 101上方; 例如, 所述栅极 102的制 作材料为由诸如钼 Mo、 铝化钕 AlNd、 铝 Al、 铬 Cr或铜 Cu等金属或合金 制成的单层或多层。
所述栅绝缘层 103 , 位于所述栅极 102上方, 用于使栅极 102与其它层 电极绝缘。 所述有源层 104, 位于所述栅绝缘层 103上方;
所述漏极 106, 位于有源层 104上方, 且位于所述有源层 104的一侧; 所述源极 105, 与所述源极 104同层设置, 且位于所述有源层的另一侧; 所述漏极 106和漏极 107的制作材料例如为金属或合金, 例如, 单层的 钼 (Mo )、 铬(Gr )或者双层的铝铌合金 /钼 (AlNd/Mo )等。
所述第一钝化层 107, 位于所述漏极 106和源极 105的上方、 所述像素 电极 108的下方。
所述像素电极 108, 位于第一钝化层 107的上方、 第二钝化层 109的下 方, 并通过第一钝化层 107中的过孔与漏极 106直接连接。
所述第二钝化层 109, 位于所述像素电极 108的上方、 偏置电极 110的 下方, 用于将像素电极 108和偏置电极 110绝缘。 在一个示例中, 第二钝化 层 109覆盖在形成有像素电极 108和钝化层 107的基板整个表面上。 所述第 二钝化层 109由绝缘材料制成。 例如, 所述第二钝化层 109的制作材料可以 为树脂, 因为树脂具有一定的流动性, 在阵列基板的制作过程中, 可以采用 旋涂工艺在像素电极 108上方形成平坦化的第二钝化层 109, 而平坦的第二 钝化层 109更便于偏置电极 110的制作; 当第二钝化层 109的制作材料为树 脂材料时, 所述第二钝化层的厚度例如为 2~3 μηι, 具体实施过程中可根据需 要适当增厚或者减薄该层的厚度。
可替代地, 所述第二钝化层 109的制作材料也可以为氧化硅或氮化硅, 但与树脂材料相比, 使用氮化硅和氧化硅不容易形成平坦化的第二钝化层 109, 不利于后续偏置电极 110的制作, 使得同时还会增大工艺的难度; 当第 二钝化层 109的制作材料为氧化硅或氮化硅时, 第二钝化层 109厚度例如为 2500Α-1μηι, 具体实施过程中可根据需要适当增厚或者减薄该层的厚度。
所述偏置电极 110, 位于第二钝化层 109的上方; 如图 2所示, 在像素 单元内, 所述偏置电极 110 (网格状区域)所在区域与像素电极 108的所在 区域在竖直方向上大体不重叠 (由于公差有可能在像素电极边缘出现重叠)。 在一个示例中, 所述偏置电极 110与所述像素电极 108 (条纹区域) 以外的 全部区域重叠。 或者, 偏置电极 110至少与数据线 111、 源极 105、 漏极 106 和栅极 102之一重叠。 在一个示例中, 所述偏置电极 110还覆盖相邻像素电 极之间的区域。所述偏置电极 110的制作材料例如为金属材料,可与漏极 106、 源极 105或栅极 102的制作材料相同。
在本实施例中, 通过所述偏置电极 110与对置基板上的公共电极产生的 电场控制非显示区域的液晶取向, 使非显示区域的液晶通电时处于常黑的状 态, 从而阻止漏光现象的产生, 提高液晶显示面板的对比度。 实施例二
本发明实施例二提供了一种所述阵列基板的制作方法, 所述方法包括: 在形成有像素电极的衬底基板上制作钝化层;
在钝化层上制作偏置电极, 且所述偏置电极覆盖该钝化层的除像素电极 外的至少一部分区域。 所述偏置电极还可覆盖在至少数据线上方。 例如, 所 述偏置电极至少覆盖在位于阵列基板上的数据线上方。 所述偏置电极与数据 线可以是完全重叠, 也可以是部分重叠。
示例
下面, 以本发明实施例一中所述的阵列基板为例, 详细介绍阵列基板的 制作方法, 该方法包括:
步骤一, 在衬底基板 101上方制作沉积诸如钼(Mo )或铬(Cr )的金属 层, 然后利用构图工艺, 形成所述栅极 102;
步骤二, 在栅极 102上方制作栅绝缘层 103 , 例如包括: 采用旋涂工艺, 在栅极 102上方涂覆树脂, 形成平坦化的栅极绝缘层; 栅极绝缘层也可以采 用氮化硅或者氧化硅;
步骤三, 在栅绝缘层 103上沉积半导体薄膜和源漏金属薄膜, 采用半色 调掩膜技术, 在栅极绝缘层 103上形成有源层 104、 源极 105、 漏极 106和数 据线 111 ;
步骤四, 在有源层 104、 源极 105和漏极 106上方形成第一钝化层 107, 并在该第一钝化层 107上形成过孔;
步骤五, 在第一钝化层 107上方制作像素电极 108, 例如可先使用磁控 溅射法在第一钝化层 107上沉积一层氧化铟锡(ITO )透明导电薄膜, 经涂 覆光刻胶并曝光显影后, 再进行湿刻、 剥离, 形成像素电极 108, 且所述像 素电极 108通过位于第一钝化层 107的过孔直接与漏极 28连接;
步骤六, 在第一钝化层 107和像素电极 108上制作第二钝化层 109, 其 制作方法和第一钝化层 107的制作方法和材料相同, 例如, 使用树脂材料制 作该层, 因为树脂具有一定的流动性, 易形成平坦层, 有利于后续偏置电极 的制作;
步骤七, 在所述第二钝化层 109上制作所述偏置电极 110, 所述偏置电 极覆盖在除所述像素电极 108以外的区域。 例如, 利用金属材料在第二钝化 层 109上方制作金属层, 然后利用构图工艺, 制得所述偏置电极 110。 其中, 所述金属材料可以与连接所述像素电极的开关晶体管的源极、 漏极或栅极的 制作材料相同。
经过以上步骤, 即可制得所述的阵列基板。 实施例三
本发明实施例三提供了一种显示面板, 所述显示面板结构如图 3所示, 从图 3中可以看出, 所述显示面板包括对置基板、 实施例一的阵列基板以及 位于对置基板和阵列基板之间的液晶层 301 , 其中, 所述对置基板上设置有 公共电极 302。
在所述显示面板工作时, 位于偏置电极 110和公共电极 302之间的液晶 分子在电场的作用发生偏转, 失去旋光特性, 因此无法改变入射光线的偏振 态, 使非显示区域无光线透过, 从而达到防止漏光的目的, 同时无光线透过 的非显示区域呈常黑工作模式, 有效地提高了显示面板的对比度。 实施例四
本发明实施例四提供的显示面板, 其结构如图 4所示, 从图 4中可以看 出, 所述显示面板包括对置基板、 实施例一的阵列基板以及位于对置基板和 阵列基板之间的液晶层 301。 与图 3中的显示面板不同的是, 图 4中所示的 显示面板中, 对置基板上还设置有黑矩阵 401。 所述显示面板工作时, 位于 偏置电极 110和公共电极 302之间的液晶分子在电场的作用下发生偏转, 失 去旋光特性, 无法改变入射光线的偏振态, 使非显示区域无光线透过, 从而 达到防止漏光的目的, 同时无光线透的非显示区域呈常黑工作模式, 有效地 提高了显示面板的对比度。
在本实施例中, 所述偏置电极 110与位于其上方的黑矩阵 401相对应, 所述黑矩阵也可以起到同样的遮光作用, 主要通过遮挡住不需要的光, 防止 混色并增加颜色的纯度, 进一步防止漏光现象的发生, 并提高所述显示面板 的对比度。
需要说明的是, 本发明实施例中所述对置基板是指与所述阵列基板对盒 的基板, 对置基板的具体结构不做限定, 比如对置基板中可以是包括彩色滤 光层和 /或黑矩阵层的彩膜基板。 实施例五
本发明实施例五提供了一种以上实施例四的显示面板的驱动方法, 所述 方法包括: 在偏置电极上施加偏置电压且在公共电极上施加公共电极电压, 以驱使所述偏置电极和公共电极之间的液晶层中的液晶分子发生偏转。例如, 所述偏置电压为周期性变化的电压, 以防止液晶分子极化。
示例
下面以图 3所示的显示面板为例, 结合图 5说明所述显示面板的驱动方 法, 该方法包括:
在偏置电极 110、 像素电极 108和公共电极 302上分别施加周期性变化 的偏置电压 501、 灰阶电压 502和公共电极电压 503。
图 5为所述偏置电压 501、灰阶电压 502和公共电极电压 503的时序图, 从图 5中可以看出, 施加在公共电极 302上的公共电极电压 503是恒定的, 施加在像素电极 108的灰阶电压 502是无规则变化的, 施加在偏置电极 110 上的偏置电压 501为具有周期性的方波电压。 需要说明的是, 所述偏置电压 的周期不需要与任何电压的周期相匹配, 其周期可根据实际需要设定。
所述施加在像素电极 108上的灰阶电压 502是无规则变化的, 而所述灰 阶电压是由阵列基板中的数据线提供的, 因此数据线上的电压也是无规则变 化的。 数据线上无规则变化的电压会产生变化的电场, 从而影响其上方非显 示区域液晶分子的分布状态,进而影响像素的透过率和显示面板的显示效果, 导致非显示区域漏光现象的发生。
所述偏置电压为具有一定周期的方波电压, 在偏置电极 110上施加偏置 电压后, 所述偏置电极 110与公共电极 302之间形成电场。 如图 6所示, 处 于偏置电极 110与公共电极 302之间的液晶分子 601在电场的作用下发生偏 转, 并呈竖直规则排列状; 所述呈规则排列的液晶分子的旋光性消失, 不能 改变光的偏振态, 非显示区域中无偏振光透过上偏振片, 有效地防止了非显 示区域漏光现象的发生; 同时, 由于非显示区域无光线透过, 呈现常黑工作 模式, 因此显示面板的对比度得到提升。
综上, 在本发明实施例提供的阵列基板及其制作方法、 显示面板及其驱 动方法中, 当在偏置电极上施加偏置电压时, 所述偏置电极和公共电极之间 形成电场, 驱使非显示区域的液晶层分子发生偏转, 使该区域内的液晶分子 竖直取向, 由于竖直取向的液晶分子层旋光特性消失, 对来自下方偏振片的 偏振光没有延迟作用, 使得经过液晶分子层后的偏振光与位于液晶分子层上 方的偏振片的光透过轴的方向不一致, 在偏置电极上方位置形成暗区, 使非 显示区域的液晶处于常黑的工作状态, 从而阻止漏光现象的产生, 提高了液 晶显示面板的对比度。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种阵列基板, 包括像素电极, 还包括:
形成在像素电极上的钝化层和形成在钝化层上的偏置电极; 其中, 所述 偏置电极覆盖该钝化层的除像素电极外的至少一部分区域。
2、如权利要求 1所述的阵列基板,还包括数据线, 所述偏置电极至少覆 盖在数据线上方。
3、如权利要求 1所述的阵列基板,其中所述偏置电极覆盖除像素电极外 的全部区 i或。
4、如权利要求 2所述的阵列基板,其中所述偏置电极的材料与所述数据 线的材料相同。
5、如权利要求 1至 4任一项所述的阵列基板,其中所述钝化层的材料为 绝缘材料。
6、 如权利要求 5所述的阵列基板, 其中所述绝缘材料为树脂。
7、如权利要求 1至 6任一项所述的阵列基板,其中所述钝化层的厚度为
2-3 μηι。
8、 一种显示面板, 包括权利要求 \〜,任一所述的阵列基板、 对置基板 及位于二者之间的液晶层, 所述对置基板包括公共电极。
9、 一种阵列基板的制作方法, 包括:
在形成有像素电极的衬底基板上制作钝化层;
在所述钝化层上制作偏置电极, 其中所述偏置电极覆盖该钝化层的除像 素电极外的至少一部分区域。
10、 如权利要求 9所述的制作方法, 所述衬底基板还包括数据线, 所述 偏置电极至少覆盖在数据线上方。
11、 如权利要求 9所述的制作方法, 其中所述偏置电极覆盖除像素电极 外的全部区域。
12、如权利要求 10所述的制作方法,其中所述偏置电极的材料与所述数 据线的材料相同。
13、如权利要求 9至 11任一项所述的制作方法,其中所述钝化层的材料 为绝缘材料。
14、 如权利要求 13所述的制作方法, 其中所述绝缘材料为树脂。
15、如权利要求 9至 14任一项所述的制作方法,其中所述钝化层的厚度 为 2〜3 μηι。
16、 一种如权利要求 8所述的显示面板的驱动方法, 包括:
在偏置电极上施加偏置电压且在公共电极上施加公共电极电压, 以驱使 所述偏置电极和公共电极之间的液晶层中的液晶分子发生偏转。
17、如权利要求 16所述的驱动方法,其中所述偏置电压为周期性变化的 方波电压。
18、 如权利要求 16或 17所述的驱动方法, 还包括在像素电极上施加灰 阶电压,驱使所述像素电极和公共电极之间的液晶层中的液晶分子发生偏转。
PCT/CN2013/085805 2013-05-13 2013-10-23 阵列基板及其制作方法、显示面板及其驱动方法 WO2014183386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310175435.5 2013-05-13
CN201310175435.5A CN103293789B (zh) 2013-05-13 2013-05-13 一种阵列基板及制作方法、显示面板及驱动方法

Publications (1)

Publication Number Publication Date
WO2014183386A1 true WO2014183386A1 (zh) 2014-11-20

Family

ID=49094928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085805 WO2014183386A1 (zh) 2013-05-13 2013-10-23 阵列基板及其制作方法、显示面板及其驱动方法

Country Status (2)

Country Link
CN (1) CN103293789B (zh)
WO (1) WO2014183386A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293789B (zh) * 2013-05-13 2015-07-15 京东方科技集团股份有限公司 一种阵列基板及制作方法、显示面板及驱动方法
CN103943633A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104298006A (zh) * 2014-10-20 2015-01-21 京东方科技集团股份有限公司 一种液晶显示面板及其测试控制方法、显示装置
CN104280953A (zh) 2014-10-24 2015-01-14 京东方科技集团股份有限公司 一种显示面板及其制作方法
CN105136378B (zh) 2015-09-24 2018-04-20 京东方科技集团股份有限公司 一种显示基板及显示装置
CN106773379B (zh) 2017-02-06 2020-02-07 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648748A (zh) * 2004-01-29 2005-08-03 夏普株式会社 显示装置
CN1677206A (zh) * 2004-03-30 2005-10-05 Lg.菲利浦Lcd株式会社 液晶显示器件
CN101639597A (zh) * 2008-07-28 2010-02-03 三星电子株式会社 阵列基板
US20100067211A1 (en) * 2008-09-12 2010-03-18 Han Mi-Jung Display substrate and display apparatus having the same
US20100225867A1 (en) * 2009-03-04 2010-09-09 Hannstar Display Corp. Tft array substrate and twisted nematic liquid crystal display panel
CN103293789A (zh) * 2013-05-13 2013-09-11 京东方科技集团股份有限公司 一种阵列基板及制作方法、显示面板及驱动方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088605A1 (en) * 2003-10-27 2005-04-28 Lg. Philips Lcd Co., Ltd. Structure of liquid crystal display panel having a plurality of sealing lines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648748A (zh) * 2004-01-29 2005-08-03 夏普株式会社 显示装置
CN1677206A (zh) * 2004-03-30 2005-10-05 Lg.菲利浦Lcd株式会社 液晶显示器件
CN101639597A (zh) * 2008-07-28 2010-02-03 三星电子株式会社 阵列基板
US20100067211A1 (en) * 2008-09-12 2010-03-18 Han Mi-Jung Display substrate and display apparatus having the same
US20100225867A1 (en) * 2009-03-04 2010-09-09 Hannstar Display Corp. Tft array substrate and twisted nematic liquid crystal display panel
CN103293789A (zh) * 2013-05-13 2013-09-11 京东方科技集团股份有限公司 一种阵列基板及制作方法、显示面板及驱动方法

Also Published As

Publication number Publication date
CN103293789A (zh) 2013-09-11
CN103293789B (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
US8964153B2 (en) In-plane switching mode liquid crystal display device and fabricating method thereof
JP4916770B2 (ja) 液晶表示装置、及びその製造方法
WO2014183386A1 (zh) 阵列基板及其制作方法、显示面板及其驱动方法
JP2009150925A (ja) 液晶表示装置
KR100919199B1 (ko) 횡전계방식 액정표시소자
JP2008076501A (ja) 液晶表示装置
TWI392938B (zh) 一種半穿透半反射式液晶顯示器
JP4337854B2 (ja) 液晶表示装置
KR20080100692A (ko) 액정표시장치와 그 제조방법
KR101423909B1 (ko) 표시 기판 및 이를 구비하는 액정 표시 장치
KR20060131316A (ko) 수평 전계 인가형 액정 표시 패널 및 그 제조방법
JPH09230378A (ja) 液晶表示装置およびその製造方法
KR20070008882A (ko) 액정표시장치 및 그 제조방법
JP4166554B2 (ja) 液晶表示装置及びその製造方法
KR20090051981A (ko) 반사투과형 액정표시장치 및 그 제조방법
WO2013091437A1 (zh) 液晶显示装置、阵列基板及其制造方法
KR20060038069A (ko) 수평 전계 인가형 액정 표시 패널 및 그 제조방법
KR101970550B1 (ko) 박막트랜지스터 기판 및 그 제조 방법
JP5397989B2 (ja) 液晶表示装置
KR101362162B1 (ko) 액정 표시 패널 및 그 제조 방법
JP2009294348A (ja) 液晶表示装置および電子機器
JP4928646B2 (ja) 液晶表示装置、及びその製造方法
KR100969622B1 (ko) 수평 전계 인가형 액정 표시 패널 및 그 제조방법
KR101399154B1 (ko) 액정표시장치 및 그 제조방법
JP2008076503A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13884514

Country of ref document: EP

Kind code of ref document: A1