WO2014180067A1 - 燃气型复合热载体发生*** - Google Patents

燃气型复合热载体发生*** Download PDF

Info

Publication number
WO2014180067A1
WO2014180067A1 PCT/CN2013/079029 CN2013079029W WO2014180067A1 WO 2014180067 A1 WO2014180067 A1 WO 2014180067A1 CN 2013079029 W CN2013079029 W CN 2013079029W WO 2014180067 A1 WO2014180067 A1 WO 2014180067A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat carrier
valve
pipeline
composite heat
Prior art date
Application number
PCT/CN2013/079029
Other languages
English (en)
French (fr)
Inventor
梅立新
梅奕中
李兴儒
张建忠
李伟成
顾世峰
崔国安
Original Assignee
江苏大江石油科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大江石油科技有限公司 filed Critical 江苏大江石油科技有限公司
Publication of WO2014180067A1 publication Critical patent/WO2014180067A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Definitions

  • the invention relates to the technical field of oil recovery technology, and in particular to a gas-type composite heat carrier generation system. Background technique
  • the composite heat carrier generated by the high temperature and high pressure composite heat carrier generator through closed combustion contains high temperature nitrogen, carbon dioxide and water vapor, and carries combustion heat.
  • carbon dioxide has a dissolution effect on the crude oil
  • nitrogen has an elastic driving effect on the crude oil
  • the water vapor has a thermal effect on the crude oil.
  • the composite heat carrier is fully injected into the oil layer through the injection line, which can comprehensively improve oil recovery and single well productivity.
  • the composite heat carrier needs to adjust the temperature, flow rate and total amount according to the requirements of the injection parameters to achieve higher recovery and single well productivity.
  • reliable control of temperature, pressure and flow of composite heat carrier has become a reliable technology for effectively supplementing formation energy in low permeability oilfields.
  • composite heat carrier generators typically operate with diesel as the primary fuel. Although it has a high cost performance compared with general oil-increasing technology in terms of improving recovery rate and comprehensive benefits, diesel is still a cost-effective fuel. In oil reservoirs with natural gas supplies, natural gas costs are lower than diesel. In the oil mines with associated gas production, the associated gas is directly discharged into the air, which wastes fuel and pollutes the environment.
  • the object of the present invention is to overcome the above-mentioned deficiencies and to provide a gas composite heat carrier generating system which utilizes associated gas generated by natural gas or oil field oil as a fuel, and comprehensively improves oil recovery and single well productivity in a gas composite heat carrier. In the qualified mining area, it can effectively reduce operating costs and achieve zero carbon emissions and energy saving.
  • a gas composite heat carrier generating system comprising a composite heat carrier generator, an air line, a gas line and a water line, wherein the input ends of the composite heat carrier generator are respectively The air line, the gas line and the water line are connected.
  • the air line is provided with an air regulating valve, an air mass flow meter, an air pressure transmitter and an air check valve in this order.
  • the gas pipeline is sequentially provided with a first gas pressure transmitter, a first gas shutoff valve, a gas constant temperature control system, a gas flow regulating valve, a gas mass flow meter, a second gas shutoff valve, and a second gas pressure transmitter. And gas check valves.
  • a gas compensation regulating valve is connected in parallel with the gas flow regulating valve.
  • the water pipe is provided with a water inlet regulating valve, a high frequency variable pressure water pump, a first water pressure transmitter, a water filter, a water mass flow meter, a second water pressure transmitter and a water check valve.
  • the composite heat carrier generator output is coupled to the oil layer by a composite heat carrier transfer line.
  • the composite heat carrier transfer line includes a heat carrier pressure transmitter, an output temperature transmitter, a first output safety valve, a first electric vent valve, an output check valve, and an output shutoff valve that are sequentially connected through a pipeline.
  • the composite heat carrier generator is further provided with a cooling water temperature transmitter.
  • the output end of the composite heat carrier generator is further connected with a waste liquid recovery line, and the waste liquid recovery line includes a second output safety valve and a second electric row connected to each other through a pipeline.
  • the air valve is disposed between the first output safety valve and the first electric air vent valve.
  • the gas line is provided with a compressed air bypass, the compressed air bypass comprising a bypass pressure transmitter and three safety relief valves connected in parallel, the three safety overflows
  • the valve is in series with the first gas shutoff valve, the gas flow regulating valve, and the second gas shutoff valve, respectively.
  • the gas composite heat carrier generating system of the present invention utilizes the associated gas generated by natural gas or oil field oil as a fuel, and comprehensively improves the oil recovery rate and the single well productivity in the gas composite heat carrier. In the qualified mining area, it can effectively reduce operating costs and achieve zero carbon emissions and energy saving.
  • FIG. 1 is a schematic view showing a gas-type composite heat carrier generating system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the principle of a gas flow regulating system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the principle of a gas flow regulation and safety control system according to an embodiment of the present invention.
  • 4 is a schematic diagram showing the principle of a temperature adjustment system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the principle of a safety control system according to an embodiment of the present invention. The label in the figure shows:
  • a gas-type composite heat carrier generating system 100 may include a composite heat carrier generator 10, an air line 20, a gas line 30, and a water line 40.
  • the composite heat carrier generator 10 has three inputs and an output. These inputs are connected to air line 20, gas line 30 and water line 40, respectively, to introduce air, gas and water, respectively.
  • the gas may be natural gas.
  • the gas may be associated gas in the reservoir.
  • the composite heat carrier generator 10 can output a desired composite heat carrier comprising nitrogen, carbon dioxide and water vapor.
  • the air line 20 is provided with an air regulating valve 21, an air mass flow meter 22, an air pressure transmitter 23, and an air check valve 24 in this order.
  • the gas pipeline 30 is sequentially provided with a first gas pressure transmitter 31, a first gas shutoff valve 32, a gas temperature control system 33, a gas flow regulating valve 34, a gas mass flow meter 36, a second gas shutoff valve 37, and a Two gas pressure transmitters 38 and a gas check valve 39.
  • a gas compensation regulating valve 35 is connected to the gas flow regulating valve 34.
  • the water pipe 40 is sequentially provided with a water inlet regulating valve 41, a high frequency variable pressure water pump 42, a first water pressure transmitter 43, a water filter 44, a water mass flow meter 45, a second water pressure transmitter 46, and water.
  • Check valve 47 is sequentially provided with a water inlet regulating valve 41, a high frequency variable pressure water pump 42, a first water pressure transmitter 43, a water filter 44, a water mass flow meter 45, a second water pressure transmitter 46, and water.
  • Check valve 47 is sequentially provided with a water inlet regulating valve 41, a high frequency variable pressure water pump 42, a first water pressure transmitter 43, a water filter 44, a water mass flow meter 45, a second water pressure transmitter 46, and water.
  • the output of the composite heat carrier generator 10 is connected to the oil layer by a composite heat carrier transfer line.
  • the composite heat carrier transfer line includes a heat carrier pressure transmitter 12, an output temperature transmitter 13, a first output safety valve 14, a first electric vent valve 15, an output check valve 16, and an output cutoff that are sequentially connected through a pipeline. Valve 17.
  • the composite heat carrier generator 10 is provided with a cooling water temperature transmitter 1 1 .
  • the waste heat recovery line is also connected to the output of the composite heat carrier generator 10.
  • the waste liquid recovery line includes a second output relief valve 18 and a second electric vent valve 19 that are interconnected by a line.
  • the second output safety valve 30 is connected to the The first output relief valve 14 is between the first electric vent valve 15.
  • a compressed air bypass 50 is provided on the gas line 30.
  • the compressed air bypass 50 includes a bypass pressure transmitter 51 and three safety relief valves 52 that are connected in parallel with one another. Three safety relief valves 52 are connected in series with the first gas shutoff valve 32, the gas flow regulating valve 34 and the second gas shutoff valve 37, respectively.
  • the gas-type composite heat carrier generating system controls the input air through the air regulating valve 21 and the air mass flow meter 22, and adjusts the fuel quality through the gas shut-off valves 32 and 37 and the gas mass flow meter 36, and the high-frequency pressure is transformed.
  • the water pump 42 and the water mass flow meter 45 control the quality of the vaporized water, monitor the measured output heat carrier temperature through the output temperature transmitter 13, realize the temperature regulation of the high temperature and high pressure gas composite heat carrier, and the flow control of the high temperature and high pressure composite heat carrier.
  • the high-temperature and high-pressure composite heat carrier generated by the composite heat carrier generator 10 contains carbon dioxide, nitrogen and water vapor, and controls the temperature of the output heat carrier through miscible vaporized water, and efficiently utilizes nitrogen, carbon dioxide and combustion heat to improve oil recovery and single New technology for thermal recovery technology of well production capacity.
  • the high-temperature and high-pressure composite heat carrier generated by the composite heat carrier generator 10 contains carbon dioxide, nitrogen and water vapor, and controls the temperature of the output heat carrier through the miscible vaporized water, so as to ensure the injection safety is strictly controlled according to a certain residual oxygen coefficient of 1.00 ⁇ 1.05.
  • the oxygen content of the output heat carrier is much lower than the safety requirement of 5%, and the final output heat carrier is injected into the ground pipeline through the output tree through the output shut-off valve 17 according to the geological process requirements of the injected oil layer, under a certain temperature and pressure.
  • the flow oil layer meets the requirements of oil production and oil increase process, and improves single well productivity and recovery.
  • the injection flow rate is adjusted according to the amount of air in the high temperature and high pressure composite heat carrier injection process, and the gas flow rate is automatically adjusted after the given amount of air to make the heat carrier high temperature and high pressure sealed combustion fully and thoroughly, and output carbon dioxide, nitrogen and water.
  • Vapor; through gas flow precise automatic adjustment system to achieve gas under high pressure conditions can be according to a given ratio, the corresponding air volume input gas to ensure accurate combustion; through the gas flow accurate automatic adjustment system flow accurate adjustment and system compensation cycle control to achieve gas It can not only smoothly ignite at low flow rate, but also realize high-pressure and large-flow precise control for continuous and stable combustion.
  • the high-pressure softened water flow control system not only ensures the safe operation of the gas composite heat carrier generator, but also ensures that the output heat carrier temperature can be in accordance with the process requirements. Take control.
  • FIG. 2 is a schematic view showing the principle of a gas flow regulating system according to an embodiment of the present invention.
  • a gas-type composite heat carrier generating system according to an embodiment of the present invention, a gas flow regulating valve 34 of a gas flow regulating system in a system adjusts a flow rate, and a gas compensation regulating valve 35 forms a compensation system, and passes through a gas shut-off valve 32, 37.
  • the gas flow supply is cut off immediately, and the gas constant temperature control system 33 ensures that the large flow rate and the small flow gas can meet the ignition and running temperature requirements of the gas composite heat carrier generator, and the high pressure combustion flow control is stable.
  • FIG. 3 is a schematic diagram showing the principle of a gas flow regulation and safety control system according to an embodiment of the present invention.
  • a gas-type composite heat carrier generating system uses a gas temperature control system 33 to output gas at a set temperature from a gas flow regulating valve 34, a gas compensation regulating valve 35, and a gas mass flow meter. 36 Realize the flow control of gas flow during low-flow ignition and high-pressure and large-flow operation, realize the stable input of gas flow into the composite heat carrier generator under the process conditions, avoid the flow interruption of gas flow instability, and realize safety control.
  • FIG. 4 is a schematic diagram showing the principle of a temperature adjustment system according to an embodiment of the present invention.
  • a gas-type composite heat carrier generating system according to an embodiment of the present invention controls a water flow rate by a high-frequency variable pressure water pump 42 to realize an output heat carrier temperature meeting a process requirement, and at the same time, a cooling water temperature is ensured by a water flow control device. Safe operation ensures that the core safety of the gas-fired composite heat carrier generator is controlled.
  • FIG. 5 is a schematic diagram showing the principle of a safety control system according to an embodiment of the present invention.
  • a gas-type composite heat carrier generating system according to an embodiment of the present invention detects air pressure by a high-pressure air pressure transmitter 23, and the air check valve 24 prevents the composite heat carrier from being reflowed to damage the original pipe, the air mass flow meter.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种燃气型复合热载体发生***,它包括复合热载体发生器、空气管路、燃气管路和水管路,所述复合热载体发生器的输入端分别与所述空气管路、燃气管路和水管路相连接,所述复合热载体发生器的输出端通过复合热载体输送管线与油层相连接,所述复合热载体输送管线包括通过管路依次连接的热载体压力变送器、输出温度变送器、第一输出安全阀、第一电动排空阀、输出止回阀和输出截止阀。本发明的燃气型复合热载体发生***,利用天然气或油田采油产生的伴生气作为燃料,在燃气复合热载体综合提高原油采收率和单井产能的技术上,在有条件的矿区能够有效降低运行成本,实现零碳排放和节能减排。

Description

燃气型复合热载体发生*** 技术领域
本发明涉及采油工艺技术领域, 尤其是涉及一种燃气型复合热载体发生系 统。 背景技术
向油层注入饱和水蒸汽进行稠油热采是世界各国普遍采用的方法之一。 目 前, 分别向油层注入二氧化碳、 氮气也成为世界各国开展原油增产和提高采收 率技术的新突破, 并都已取得一定的采油效果和经济效益。
高温高压复合热载体发生器通过密闭燃烧所生成的复合热载体含有高温 的氮气、 二氧化碳及水蒸气, 并携带燃烧热量。 复合热载体中, 二氧化碳对原 油具有溶解作用,氮气对原油具有弹性驱动作用,水蒸汽对原油具有热力作用。 复合热载体通过注热管线全部注入油层, 可以综合提高原油采收率和单井产 能。在注入时, 复合热载体需要按照注入参数的要求来调节温度、流量及总量, 以达到较高的采收率和单井产能。 同时复合热载体温度、 压力、 流量的可靠控 制也成为低渗透油田有效补充地层能量的可靠技术。
目前, 复合热载体发生器一般以柴油作为主要燃料运行。 虽然在提高采收 率和综合效益上与一般增油技术比有很高的性价比, 但是柴油仍然属于成本比 较高的燃料。 在有天然气供应的油藏矿区, 天然气成本低于柴油。 在有伴生气 出产的油藏矿区多将伴生气对空燃烧直接排放, 既浪费了燃料又污染环境。
因此, 考虑到天然气 /伴生气作为燃料具有低廉的运行成本, 如果在有天然 气供应或伴生气出产的油藏矿区, 使用以燃气为燃料的燃气型复合热载体发生 器, 可以降低复合热载体的生产成本。 发明内容
本发明的目的在于克服上述不足, 提供一种燃气复合热载体发生***, 它 利用天然气或油田采油产生的伴生气作为燃料, 在燃气复合热载体综合提高原 油采收率和单井产能的技术上, 在有条件的矿区能够有效降低运行成本, 实现 零碳排放和节能减排。 本发明的目的是这样实现的: 一种燃气复合热载体发生***, 它包括复合 热载体发生器、 空气管路、 燃气管路和水管路, 所述复合热载体发生器的输入 端分别与所述空气管路、 燃气管路和水管路相连接。 所述空气管路上依次设置 有空气调节阀、 空气质量流量计、 空气压力变送器和空气止回阀。 所述燃气管 路上依次设置有第一燃气压力变送器、 第一燃气截止阀、 燃气恒温控制***、 燃气流量调节阀、 燃气质量流量计、 第二燃气截止阀、 第二燃气压力变送器和 燃气止回阀。 所述燃气流量调节阀上并联有燃气补偿调节阀。 所述水管路上依 次设置有进水调节阀、 高频变压水泵、 第一水压力变送器、 水过滤器、 水质量 流量计、 第二水压力变送器和水止回阀。 所述复合热载体发生器输出端通过复 合热载体输送管线与油层相连接。 所述复合热载体输送管线包括通过管路依次 连接的热载体压力变送器、 输出温度变送器、 第一输出安全阀、 第一电动排空 阀、 输出止回阀和输出截止阀。
根据本发明的一个方面, 所述复合热载体发生器上还设置有冷却水温度变 送器。
根据本发明的一个方面, 所述复合热载体发生器的输出端还连接有废液回 收管路, 所述废液回收管路包括通过管路相互连接的第二输出安全阀和第二电 动排空阀, 所述第二输出安全阀连接设置于第一输出安全阀与第一电动排空阀 之间。
根据本发明的一个方面, 所述燃气管路上设置有压缩空气旁路, 所述压缩 空气旁路包括旁路压力变送器和三个相互并联的安全溢流阀, 所述三个安全溢 流阀分别与所述第一燃气截止阀、 燃气流量调节阀和第二燃气截止阀相串联。
与现有技术相比, 本发明的一种燃气复合热载体发生***, 它利用天然气 或油田采油产生的伴生气作为燃料, 在燃气复合热载体综合提高原油采收率和 单井产能的技术上, 在有条件的矿区能够有效降低运行成本, 实现零碳排放和 节能减排。 附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1是本发明一实施例的燃气型复合热载体发生***的示意图。
图 2是本发明一实施例的燃气流量调节***原理示意图。
图 3是本发明一实施例的燃气流量调节和安全控制***原理示意图。 图 4是本发明一实施例的温度调节***原理示意图。 图 5是本发明一实施例的安全控制***原理示意图。 图中标号说明:
10 复合热载体发生器
1 1 冷却水温度变送器
12 热载体压力变送器
13 输出温度变送器
14 第一输出安全阀
15 第一电动排空阀
16 输出止回阀
17 输出截止阀
18 第二输出安全阀
19 第二电动排空阀
0 空气管路
1 空气调节阀
2 空气质量流量计
3 空气压力变送器
4 空气止回阀
0 燃气管路
1 第一燃气压力变送器
2 第一燃气截止阀
3 燃气恒温控制***
4 燃气流量调节阀
5 燃气补偿调节阀
6 燃气质量流量计
7 第二燃气截止阀
8 第二燃气压力变送器
9 燃气止回阀
0 水管路
1 进水调节阀 42 高频变压水泵
43 第一水压力变送器
44 水过滤器
45 水质量流量计
46 第二水压力变送器
47 水止回阀
51 旁路压力变送器
52 安全溢流阀 具体实施方式
参见图 1, 本发明一实施例的燃气型复合热载体发生*** 100可包括复合 热载体发生器 10、 空气管路 20、 燃气管路 30和水管路 40。 复合热载体发生器 10具有三个输入端和一输出端。 这些输入端分别与空气管路 20、 燃气管路 30 和水管路 40 相连接, 以分别引入空气、 燃气和水。 在一实施例中, 燃气可为 天然气。 在另一实施例中, 燃气可为油藏的伴生气。 复合热载体发生器 10 可 输出所需的包含氮气、 二氧化碳及水蒸气的复合热载体。
空气管路 20上依次设置有空气调节阀 21、 空气质量流量计 22、 空气压力 变送器 23和空气止回阀 24。
燃气管路 30上依次设置有第一燃气压力变送器 31、 第一燃气截止阀 32、 燃气恒温控制*** 33、 燃气流量调节阀 34、 燃气质量流量计 36、 第二燃气截 止阀 37、 第二燃气压力变送器 38和燃气止回阀 39。 燃气流量调节阀 34上并 联有燃气补偿调节阀 35。
水管路 40上依次设置有进水调节阀 41、 高频变压水泵 42、 第一水压力变 送器 43、 水过滤器 44、 水质量流量计 45、 第二水压力变送器 46和水止回阀 47。
复合热载体发生器 10 的输出端通过复合热载体输送管线与油层相连接。 复合热载体输送管线包括通过管路依次连接的热载体压力变送器 12、输出温度 变送器 13、 第一输出安全阀 14、 第一电动排空阀 15、 输出止回阀 16和输出截 止阀 17。 复合热载体发生器 10上设置有冷却水温度变送器 1 1。 复合热载体发 生器 10 的输出端还连接有废液回收管路。 废液回收管路包括通过管路相互连 接的第二输出安全阀 18和第二电动排空阀 19。第二输出安全阀 30连接设置于 第一输出安全阀 14与第一电动排空阀 15之间。
燃气管路 30上设置有压缩空气旁路 50。压缩空气旁路 50包括旁路压力变 送器 51和三个相互并联的安全溢流阀 52。三个安全溢流阀 52分别与第一燃气 截止阀 32、 燃气流量调节阀 34和第二燃气截止阀 37相串联。
本发明实施例的燃气型复合热载体发生***, 通过空气调节阀 21 和空气 质量流量计 22控制输入空气, 通过燃气截止阀 32和 37、 燃气质量流量计 36 调节燃油质量, 通过高频变压水泵 42、 水质量流量计 45控制汽化水质量, 通 过输出温度变送器 13 监控实测输出热载体温度、 实现高温高压燃气复合热载 体的温度调节、 以及高温高压复合热载体的流量控制。 复合热载体发生器 10 生成的高温高压复合热载体含二氧化碳、 氮气及水蒸气, 并通过惨混汽化水来 控制输出热载体温度, 高效综合利用氮气、 二氧化碳及燃烧热量提高原油采收 率和单井产能的热采技术新工艺。 复合热载体发生器 10 生成的高温高压复合 热载体含二氧化碳、 氮气及水蒸气, 并通过惨混汽化水控制输出热载体温度, 为确保注入安全严格按照一定的余氧系数 1.00〜1.05范围内控制燃烧, 使输出 热载体的氧含量远低于 5%的安全要求, 最终输出热载体按照注入油层的地质 工艺要求, 在一定的温度和压力下, 通过输出截止阀 17 连接地面管线经采油 树注入流量油层以满足油藏增产增油工艺要求, 提高单井产能和采收率。 同时 为适用不同的油藏条件, 在高温高压复合热载体注入过程对注入流量按照空气 量进行调节, 给定量空气后自动调节燃气流量使热载体高温高压密闭燃烧充分 彻底, 输出二氧化碳、 氮气及水蒸气; 通过燃气流量精确自动调节***实现燃 气在高压条件下可以按照给定的配比, 对应空气量输入燃气保证燃烧精确; 通 过燃气流量精确自动调节***的流量精确调整和***补偿循环控制实现燃气 既能在小流量高压顺利点火, 又能实现高压大流量精确控制连续稳定安全燃 烧; 高压软化水流量调节控制***既保证燃气复合热载体发生器安全运行, 也 保证输出热载体温度可以按照工艺要求进行控制。
图 2是本发明一实施例的燃气流量调节***原理示意图。 参见图 2, 本发 明一实施例的燃气型复合热载体发生***, 通过***中燃气流量调节***的燃 气流量调节阀 34调节流量、 燃气补偿调节阀 35形成补偿***, 通过燃气截止 阀 32、 37实现停机时即时截断燃气流量供应, 通过燃气恒温控制*** 33保证 大流量和小流量燃气都能满足燃气复合热载体发生器点火和运行时温度要求, 高压燃烧流量控制稳定。 图 3是本发明一实施例的燃气流量调节和安全控制***原理示意图。 参见 图 3, 本发明一实施例的燃气型复合热载体发生***, 通过燃气恒温控制*** 33使输出的燃气在设定温度下由燃气流量调节阀 34、 燃气补偿调节阀 35及燃 气质量流量计 36 实现小流量点火、 高压大流量运行时燃气的流量稳定控制, 实现在工艺条件下燃气流量稳定地输入复合热载体发生器, 避免了燃气流量不 稳出现断流, 实现安全控制。
图 4是本发明一实施例的温度调节***原理示意图。 参见图 4, 本发明一 实施例的燃气型复合热载体发生***, 通过高频变压水泵 42变频控制水流量, 实现输出热载体温度满足工艺要求, 同时通过水流量控制确保冷却水温度满足 设备安全运行, 确保燃气型复合热载体发生器核心安全得以控制。
图 5是本发明一实施例的安全控制***原理示意图。 参见图 5, 本发明一 实施例的燃气型复合热载体发生***, 通过高压空气压力变送器 23 检测空气 压力, 空气止回阀 24 防止复合热载体回流形损坏管路原件, 空气质量流量计 22计量注入的空气流量, 实现压力、 流量实时监控; 通过燃气管路安全溢流阀 52、 燃气截止阀 32和 37、 燃气质量流量计 36、 燃气止回阀 39、 燃气压力变送 器 31和 38实现供燃气***流量控制和安全保护; 通过水管路的水质量流量计 45、 水止回阀 47、 水过滤器 44、 水压力变送器 43和 46实现供水***水量保 证和安全保护; 通过输出管线的输出温度变送器 13、 输出安全阀 14、 电动排 空阀 19, 输出止回阀 16、 输出截止阀 17, 实现注入工艺过程止回、 超温、 超 压报警停车及排空泄压, 形成高温高压安全高效注入技术。

Claims

权 利 要 求
1、 一种燃气型复合热载体发生***, 包括复合热载体发生器、 空气管路、 燃气管路和水管路, 所述复合热载体发生器的输入端分别与所述空气管路、 所 述燃气管路和水管路相连接,
所述空气管路上依次设置有空气调节阀、 空气质量流量计、 空气压力变送 器和空气止回阀;
所述燃气管路上依次设置有第一燃气压力变送器、 第一燃气截止阀、 燃气 恒温控制***、 燃气流量调节阀、 燃气质量流量计、 第二燃气截止阀、 第二燃 气压力变送器和燃气止回阀, 所述燃气流量调节阀上并联有燃气补偿调节阀; 所述水管路上依次设置有进水调节阀、高频变压水泵、第一水压力变送器、 水过滤器、 水质量流量计、 第二水压力变送器和水止回阀;
所述复合热载体发生器的输出端通过复合热载体输送管线与油层相连接, 所述复合热载体输送管线包括通过管路依次连接的热载体压力变送器、 输出温 度变送器、 第一输出安全阀、 第一电动排空阀、 输出止回阀和输出截止阀。
2、 根据权利要求 1所述的燃气型复合热载体发生***, 其中所述复合热 载体发生器上还设置有冷却水温度变送器。
3、 根据权利要求 1或 2所述的燃气型复合热载体发生***, 其中所述复 合热载体发生器的输出端还连接有废液回收管路, 所述废液回收管路包括通过 管路相互连接的第二输出安全阀和第二电动排空阀, 所述第二输出安全阀连接 设置于所述第一输出安全阀与所述第一电动排空阀之间。
4、 根据权利要求 1 或 2所述的燃气型复合热载体发生***, 其中所述燃 气管路上设置有压缩空气旁路, 所述压缩空气旁路包括旁路压力变送器和三个 相互并联的安全溢流阀, 所述三个安全溢流阀分别与所述第一燃气截止阀、 燃 气流量调节阀和第二燃气截止阀相串联。
PCT/CN2013/079029 2013-05-08 2013-07-09 燃气型复合热载体发生*** WO2014180067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310165320.8A CN103291268B (zh) 2013-05-08 2013-05-08 燃气复合热载体发生器***
CN201310165320.8 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014180067A1 true WO2014180067A1 (zh) 2014-11-13

Family

ID=49092731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079029 WO2014180067A1 (zh) 2013-05-08 2013-07-09 燃气型复合热载体发生***

Country Status (3)

Country Link
CN (1) CN103291268B (zh)
CA (1) CA2822235A1 (zh)
WO (1) WO2014180067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513708A (zh) * 2021-04-23 2021-10-19 大唐山西发电有限公司太原第二热电厂 一种自力式压力调节阀燃油***

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452538B (zh) * 2013-09-18 2016-06-22 江苏大江石油科技有限公司 纯氧天然气复合热载体发生器***
CN104047584A (zh) * 2014-06-04 2014-09-17 中国海洋石油总公司 双燃料热采混驱***
CN105351748A (zh) * 2015-11-09 2016-02-24 上海华之邦科技股份有限公司 一种用天然气和液氮制取低热值燃气的装置
CN108825191A (zh) * 2018-07-22 2018-11-16 江苏万兴石油装备有限公司 一种温控型蒸汽调节装置
CN109681155A (zh) * 2018-11-13 2019-04-26 中国石油天然气股份有限公司 利用火驱油田生产井伴生尾气回注油层的增产方法
CN109707355A (zh) * 2018-11-13 2019-05-03 中国石油天然气股份有限公司 利用蒸汽驱油田生产井伴生气回注稠油油藏吞吐增产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87102797A (zh) * 1986-04-17 1987-10-28 于利奇核子研究设备公司 开采石油的方法和设备
CN201053311Y (zh) * 2007-06-08 2008-04-30 杨文俊 高压高温蒸汽氮气二氧化碳发生器
CN201297164Y (zh) * 2008-10-23 2009-08-26 东营三原石油技术有限责任公司 稠油井空心杆热载体密闭循环节能降粘采油装置
CN101571039A (zh) * 2009-05-15 2009-11-04 沧州润涛石油设备有限公司 井内稠油开采降粘加热方法
CN201386541Y (zh) * 2009-04-09 2010-01-20 刘晓棠 一种气体热载体清蜡洗井装置
CN102305404A (zh) * 2011-07-19 2012-01-04 关兵 补燃式超临界压力气液两相燃料发生器燃烧室补燃喷注器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734578A (en) * 1956-02-14 Walter
CN2806760Y (zh) * 2005-04-14 2006-08-16 湖南天一赛马工程机械有限公司 一种新型石油热采复合载体注入机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87102797A (zh) * 1986-04-17 1987-10-28 于利奇核子研究设备公司 开采石油的方法和设备
CN201053311Y (zh) * 2007-06-08 2008-04-30 杨文俊 高压高温蒸汽氮气二氧化碳发生器
CN201297164Y (zh) * 2008-10-23 2009-08-26 东营三原石油技术有限责任公司 稠油井空心杆热载体密闭循环节能降粘采油装置
CN201386541Y (zh) * 2009-04-09 2010-01-20 刘晓棠 一种气体热载体清蜡洗井装置
CN101571039A (zh) * 2009-05-15 2009-11-04 沧州润涛石油设备有限公司 井内稠油开采降粘加热方法
CN102305404A (zh) * 2011-07-19 2012-01-04 关兵 补燃式超临界压力气液两相燃料发生器燃烧室补燃喷注器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513708A (zh) * 2021-04-23 2021-10-19 大唐山西发电有限公司太原第二热电厂 一种自力式压力调节阀燃油***
CN113513708B (zh) * 2021-04-23 2023-12-05 大唐山西发电有限公司太原第二热电厂 一种自力式压力调节阀燃油***

Also Published As

Publication number Publication date
CA2822235A1 (en) 2014-11-08
CN103291268A (zh) 2013-09-11
CN103291268B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2014180067A1 (zh) 燃气型复合热载体发生***
CN204062478U (zh) 一种bog重新液化装置
CN203240278U (zh) 一种lng接收站外输天然气热值调高***
CN103452538B (zh) 纯氧天然气复合热载体发生器***
CN206093514U (zh) Bog回收装置
CN103114837A (zh) 复合热载体原油热采***及其采油工艺
CN204082093U (zh) 一种基于压力能发电和热泵加热的天然气井口加热节流***
CN106988717B (zh) 一种用于井下混相热流体发生器的地面供给***
CN203515861U (zh) 油田抽油机用lng燃料发电***
CN208900080U (zh) 一种天然气井口压力能发电的节流***
CN203835469U (zh) 汽轮机低压轴封供汽***
CN204324090U (zh) 一种引射增压式油罐挥发气回收装置
WO2014187023A1 (zh) 柴油型复合热载体发生***
CN206682922U (zh) 一种余热热能回收***
CN109162672A (zh) 一种天然气井口压力能发电的节流***
CN206175007U (zh) 一种汽轮机轴封漏汽余热回收装置
CN108036193A (zh) 一种模块化海底天然气管道水合物防堵装置及工艺
CN204459763U (zh) 一种闪蒸汽回收装置
CN205477788U (zh) 一种燃气调压设施余压利用***
CN103615660A (zh) 一种利用发动机废热能的水浴式汽化器
CN202954839U (zh) 一种瓦斯发电***
CN203939594U (zh) 一种新型车载天然气供气***
CN204100214U (zh) 一种醇基燃料蒸汽发生器
CN103306652B (zh) 原油型复合热载体发生器***
KR101034249B1 (ko) 에너지회수장치를 구비한 이산화탄소 지중저장 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884359

Country of ref document: EP

Kind code of ref document: A1