WO2014162771A1 - 真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機 - Google Patents

真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機 Download PDF

Info

Publication number
WO2014162771A1
WO2014162771A1 PCT/JP2014/052586 JP2014052586W WO2014162771A1 WO 2014162771 A1 WO2014162771 A1 WO 2014162771A1 JP 2014052586 W JP2014052586 W JP 2014052586W WO 2014162771 A1 WO2014162771 A1 WO 2014162771A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
heat insulating
insulating material
vacuum heat
curved
Prior art date
Application number
PCT/JP2014/052586
Other languages
English (en)
French (fr)
Inventor
俊雄 篠木
俊圭 鈴木
稔則 杉木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/767,173 priority Critical patent/US9574701B2/en
Priority to CN201480019540.2A priority patent/CN105102874B/zh
Priority to EP14779889.6A priority patent/EP2982897B1/en
Priority to JP2015509936A priority patent/JP6025969B2/ja
Publication of WO2014162771A1 publication Critical patent/WO2014162771A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3825Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container with one or more containers located inside the external container
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a vacuum heat insulating material, a heat retaining tank equipped with the heat insulating material, a heat retaining body, and a heat pump type water heater.
  • a vacuum heat insulating material having a core material made of inorganic fibers such as glass fibers manufactured by a continuous filament method in order to improve heat insulating performance has been proposed (for example, see Patent Document 2). ).
  • the technique described in Patent Document 2 sets the average fiber diameter of the inorganic fibers to 3 ⁇ m or more and 15 ⁇ m or less, suppresses an increase in the contact area between the fibers due to the entanglement between the fibers, and suppresses heat conduction between the inorganic fibers. Yes.
  • the technique described in Patent Document 2 uses the wet fiber making method in which the average fiber diameter of the inorganic fiber is 3 mm to 15 mm and a dispersant is added.
  • the inorganic fibers are distributed. As a result, it becomes difficult for the inorganic fibers to be aligned in parallel. As a result, the contact between the inorganic fibers tends to be point contact, and heat conduction between the inorganic fibers can be suppressed.
  • JP 2009-162267 A see, for example, claim 2, [0040], [0046] and [0052]
  • the axial direction of some fibers is the fiber stacking direction (heat transfer direction) so that the fiber encapsulated in the heat insulating material works like a spring. Direction).
  • the technique of patent document 1 is applied to a vacuum heat insulating material, the solid heat conduction from a fiber will increase toward the lamination direction of a fiber.
  • a preset thickness is required for the fiber, and accordingly, the contact area between the fibers increases and heat conduction increases. End up.
  • the average fiber diameter of the inorganic fibers is 3 ⁇ m or more and 15 ⁇ m or less, and the straightness of the inorganic fibers is increased accordingly.
  • straightness refers to the degree of deviation from a straight line.
  • the binder is added, the inorganic fibers are fused with each other, so that the heat conduction of the fiber contact portion having a laminated structure is promoted.
  • the present invention has been made to solve at least one of the problems as described above, and is a vacuum heat insulating material that suppresses a decrease in heat insulating performance, and a heat retaining tank, a heat retaining body, and a heat pump type equipped with the same.
  • the purpose is to provide a water heater.
  • the vacuum heat insulating material according to the present invention is a vacuum heat insulating material having a core material that is a laminated structure of fiber sheets and an outer jacket material that contains the core material, and the fiber sheet comprises curved chopped fibers and curved fibers. It is what you have.
  • the vacuum heat insulating material according to the present invention has the above-described configuration, it is possible to suppress a decrease in heat insulating performance.
  • FIG. 9 is a system configuration diagram of a heat pump hot water supply according to Embodiment 6 of the present invention. It is a system block diagram of the heat pump type hot water supply different from FIG. It is an expanded sectional schematic diagram of the fiber sheet of the vacuum heat insulating material which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a schematic cross-sectional view showing a vacuum heat insulating material 1 according to the first embodiment.
  • FIG. 2 is an enlarged schematic cross-sectional view of the fiber sheet 2 of the vacuum heat insulating material 1 according to the first embodiment.
  • the vacuum heat insulating material 1 according to Embodiment 1 is provided with an improvement capable of improving the heat insulating performance.
  • the vacuum heat insulating material 1 is a jacket material that seals the core material 3 by a core material 3 formed by laminating a fiber sheet 2 having fibers made of glass, and a jacket sheet 4a made of, for example, resin. 4.
  • the core material 3 is formed by laminating a plurality of fiber sheets 2 cut into a preset size from the lower side to the upper side of the drawing.
  • the core material 3 is enclosed in the jacket material 4.
  • stacking number and thickness of the fiber sheet 2 for example, the compressive strain by the pressure difference of atmospheric pressure and a vacuum is assumed, and it sets so that the vacuum heat insulating material 1 may become desired thickness.
  • the fiber sheet 2 has a curved chopped fiber 5 made of glass, for example, and a microfiber 6 made of glass, for example, like the curved chopped fiber 5, and the curved chopped fiber 5 and the microfiber 6 are mixed. It is comprised so that it may do.
  • the curved chopped fiber 5 and the microfiber 6 are dispersed in neutral water or sulfuric acid aqueous solution, and paper is made by an automatic feed paper machine to form a sheet.
  • This sheet-shaped product is dried to obtain an original fabric of the fiber sheet 2 having a thickness of about 0.5 mm to 5 mm.
  • the raw fabric of the fiber sheet 2 is cut according to the area of the required vacuum heat insulating material 1, and the fiber sheet 2 is obtained.
  • the fiber sheet 2 is formed by paper making so that the fiber direction of the fiber sheet 2 is perpendicular to the thickness direction of the fiber sheet 2.
  • an inorganic binder or an organic binder may be added to the fiber solution or to the fibers after papermaking.
  • the inorganic binder include water glass, colloidal silica, and examples of the organic binder include polyurethane (PU) and polyvinyl alcohol (PVA).
  • the curved chopped fiber 5 has an average fiber diameter larger than the average fiber diameter of the microfiber 6.
  • the curved chopped fiber 5 is manufactured as follows, for example. (1) A filament (glass fiber) having a relatively uniform diameter in the range of 4 ⁇ m to 20 ⁇ m in diameter is produced using a continuous filament manufacturing method. (2) After that, the filament manufactured in (1) is passed between the meshing of two gears that are softened and heated to a temperature lower than the melting point of the material. Thereby, the filament manufactured in (1) is thermally deformed, and the curved inorganic filament 8 formed in a wave shape is manufactured (see FIG. 3). (3) The curved inorganic filament 8 produced in (2) can be cut into a preset size of about 4 mm to 18 mm in length to obtain the curved chopped fiber 5.
  • the manufacturing method of the curved inorganic filament 8 described in (2) is not limited to this.
  • the extruded fibers may be wound obliquely around a cylindrical core and formed into a coil shape (see FIG. 4).
  • the microfiber 6 is a fiber that contributes to the sheet formation because it is difficult to form the fiber sheet 2 with only the single curved chopped fiber 5.
  • the microfiber 6 has an average fiber diameter smaller than that of the curved chopped fiber 5.
  • the microfiber 6 is mixed with the fiber sheet 2 together with the curved chopped fiber 5.
  • the microfiber 6 is generally manufactured using a flame method when the fiber diameter is smaller than a certain set value (for example, 3 ⁇ m), and is manufactured by a centrifugal method when the fiber diameter is larger than the set value. Is.
  • the vacuum heat insulating material 1 which concerns on this Embodiment 1 demonstrates as an example the case where it produces with the flame method.
  • the curved chopped fiber 5 and the microfiber 6 are described as being made of glass fiber, but the present invention is not limited to this.
  • the curved chopped fiber 5 and the microfiber 6 may be made of ceramic fiber, silica fiber, or the like.
  • the microfiber 6 may be an organic fiber.
  • polyester fiber and polypropylene fiber fibers having an average diameter of several ⁇ m can be produced by a melt blown manufacturing method.
  • the drying condition is set to a temperature range in which the organic fiber is not decomposed and melted (including partially softened) as a target to which the vacuum heat insulating material 1 is applied.
  • the case where the curved chopped fiber 5 and the microfiber 6 are the same glass fiber will be described as an example, but the present invention is not limited thereto, and may be different fibers.
  • the jacket material 4 stores a core material 3 in which a plurality of fiber sheets 2 having curved chopped fibers 5 and microfibers 6 are stacked in two jacket sheets 4a.
  • the jacket material 4 is a laminate structure, and is formed of, for example, ON (stretched nylon) 25 ⁇ m / PET (polyester) 12 ⁇ m / AL (aluminum) foil 7 ⁇ m / CPP (unstretched polypropylene) 30 ⁇ m from the outside.
  • the envelope material 4 formed in advance with the two envelope sheets 4a is prepared, and after the core material 3 is dried, it is inserted into the envelope material 4 together with the gas adsorbent.
  • the product obtained in (1) is placed in a vacuum chamber.
  • the inside of the vacuum chamber is depressurized to a preset pressure, for example, a vacuum pressure of about 0.1 Pa to 3 Pa. In this state, the remaining opening of the jacket material 4 is sealed by heat sealing.
  • the inside of the vacuum chamber is returned to the atmospheric pressure, and the vacuum heat insulating material 1 can be obtained by taking out from the inside of the vacuum chamber.
  • the core material 3 may be pinched
  • moisture content contained in the fiber sheet 2 you may provide the process of heating the fiber sheet 2 before and behind cutting etc. separately from the drying process at the time of papermaking. Further, this water may be removed by providing a heating step in a vacuum process.
  • the gas adsorbent for example, calcium oxide (CaO), zeolite, iron powder, or a material made of lithium or barium may be used alone or in combination.
  • FIG. 3 is an enlarged schematic cross-sectional view of the corrugated fiber of the vacuum heat insulating material 1 according to the first embodiment.
  • FIG. 4 is an enlarged schematic cross-sectional view of the spiral fiber of the vacuum heat insulating material 1 according to the first embodiment.
  • FIG. 5 is an enlarged schematic cross-sectional view of the fiber sheet 2 of the vacuum heat insulating material 1 according to the first embodiment.
  • FIG. 6 is a model calculation result showing the relationship between the fiber inclination angle ⁇ and the thermal conductivity of the vacuum heat insulating material 1 according to the first embodiment. The thermal conductivity of the vacuum heat insulating material 1 will be described with reference to FIGS.
  • W represents the cut length of the curved inorganic filament 8 and represents the length of a line segment connecting both ends of the curved chopped fiber 5.
  • Yb represents the straight deviation width. That is, Yb is a tangent line that touches the curved chopped fiber 5 at a portion that is parallel to the reference line Y0 and farthest from the reference line Y0 when a straight line connecting both ends of the curved chopped fiber 5 is defined as the reference line Y0. It is determined based on the position of a first tangent line Y1 and a second tangent line Y2 (to be described later). For example, in the example of FIG. 3, the interval between the first tangent line Y1 and the second tangent line Y2 is Yb.
  • the interval between the reference line Y0 and the tangent line Y3 is Yb.
  • Yb corresponds to the maximum distance in the direction intersecting the direction in which the curved chopped fiber 5 extends.
  • represents the inclination angle between the fiber lamination surface and the fiber, and t represents the thickness of the fiber sheet 2 after vacuum sealing.
  • the vacuum heat insulating material 1 according to the first embodiment has the curved chopped fiber 5 and the microfiber 6 as described below, and can constitute the fiber sheet 2 without adding a binder, A reduction in heat insulation performance can be suppressed. That is, as described above, an inorganic binder or an organic binder may be added as necessary, but in the first embodiment, the fiber sheet 2 is configured without adding a binder. Therefore, the detailed configuration of the curved chopped fiber 5 and the microfiber 6 such as the fiber diameter, length, and mixing ratio will be described.
  • the curved inorganic filament 8 is manufactured by bending the inorganic filament into a wave shape by passing it between gears heated to about 600 ° C., for example.
  • the straight deviation width Yb was about 0.9 mm.
  • the fiber sheet 2 is manufactured by mixing the microfiber 6 "having a thickness of about 1 mm" so that the mixing ratio is 60/40 wt%.
  • the fiber sheet 2 is produced by the paper making method using the above-mentioned automatic feed paper machine so that the thickness t of the fiber sheet 2 after paper making and drying is about 1 mm. .
  • the fiber sheet 2 is produced when the mixing ratio of the curved chopped fibers 5 is smaller than 60 wt%, but the binder is used even when the mixing ratio of the curved chopped fibers 5 is 60 wt%.
  • the fiber sheet 2 could be made into a sheet.
  • the mixing ratio refers to the ratio of the total fiber weight. That is, the mixing ratio of the curved chopped fiber 5 is 60 wt%, that the curved chopped fiber 5 accounts for 60% of the total weight of the fiber sheet 2 including the curved chopped fiber 5 and the microfiber 6. It is.
  • the mixing ratio of the curved chopped fibers 5 is the upper limit of 60 wt. The thermal conductivity in the case of% is described.
  • the mixing ratio of straight chopped fiber and microfiber 6 ′ is 40/60 wt%.
  • the fiber sheet 2 ′ is formed by a paper making method using the above-described automatic feed paper machine so that the thickness t of the fiber sheet 2 ′ after paper making and drying is 1 mm. Manufactured.
  • the vacuum heat insulating material 1 ′ using the straight chopped fiber thus obtained was 0.0018 W / (m ⁇ K).
  • the sheet thickness when the vacuum heat insulating material 1 and the vacuum heat insulating material 1 ′ were used was about 1 mm after paper making, but after vacuum sealing, the sheet thickness became about 0.65 mm due to atmospheric pressure.
  • Comparative example 2 Straight deviation width Yb
  • the straight deviation width Yb of the curved chopped fiber 5 was examined.
  • the conditions other than the straight deviation width Yb are the same as those of the vacuum heat insulating material 1. That is, the mixing ratio of the curved chopped fiber 5 ′ and the microfiber 6 ′ is 40/60 wt%.
  • a curved chopped fiber 5 ′ is manufactured using a continuous filament manufacturing method, and ⁇ and W of the curved chopped fiber 5 ′ are the same as those of the curved chopped fiber 5.
  • Yb was 2 mm.
  • the microfiber 6 ′ is also manufactured by a flame method, and its ⁇ and fiber length are the same as those of the microfiber 6.
  • the fiber sheet 2 ′ is formed by a paper making method using the above-described automatic feed paper machine so that the thickness t of the fiber sheet 2 ′ after paper making and drying is 1 mm. Manufactured.
  • the thermal conductivity was 0.0025 W / (m ⁇ K), and the vacuum heat insulating material was obtained.
  • the deterioration of the heat insulating performance was recognized as compared with the material 1.
  • the fiber inclination angle In order to reduce the thermal conductivity of the vacuum heat insulating material 1, it is desirable to suppress the fiber inclination angle to 15 ° or less, preferably 10 ° or less. The reason will be described later.
  • Yb of the vacuum heat insulating material 1 ′ implemented in Comparative Example 2 was increased to 2 mm, when the fibers are arranged with the fibers curved upward in FIG. 5, the curved chopped fibers 5 ′ are substantially formed. This is considered to be because a large inclination angle (corresponding to ⁇ in FIG. 5) is increased and heat transfer is promoted upward.
  • Yb / W is 0.2 or less.
  • Yb is desirably a value smaller than the thickness t of the fiber sheet 2.
  • the fiber cross section is observed, and the fiber inclination angle is calculated from the sample data of a total of 100 points regarding the major axis, minor axis, and section inclination angle.
  • the average of these values was about 27 °. Therefore, the average inclination angle of the irregularly distributed fibers corresponding to the microfiber 6 is 45 °, the inclination angle of the fibers corresponding to the remaining curved chopped fibers 5 is X °, the former is 40%, and the latter is 60.
  • the vacuum heat insulating material 1 having the fiber sheet 2 containing 100% of the microfibers 6 as the core material 3 has a large ⁇ on average because the fiber axis directions are randomly distributed. The thermal conductivity was higher than when the fiber 6 was mixed.
  • the fiber diameter of the curved chopped fiber 5 is desirably 20 ⁇ m or less, and the smaller the fiber diameter, the lower the thermal conductivity.
  • the average fiber diameter of the curved chopped fiber 5 is set to about 6 ⁇ m, this effect can be obtained.
  • the vacuum heat insulating material 1 does not use a binder, long-term reliability is ensured without a problem of lowering the degree of vacuum due to gasification from the binder itself, and the heat of the fiber contact portion caused by the binder There is no problem of an increase in thermal conductivity due to a decrease in resistance.
  • the vacuum heat insulating material 1 which concerns on this Embodiment 1 can suppress the fall of heat insulation performance, suppressing that a manufacturing cost raises.
  • the vacuum heat insulating material 1 uses a curved chopped fiber 5 obtained by bending and cutting a straight filament manufactured by a continuous filament manufacturing method as a base material, and a microfiber 6 having a small fiber diameter and less heat transfer. Is made into a sheet by entanglement of fibers with each other. Thereby, compared with a straight chopped fiber, since the direction of the curved chopped fiber 5 can raise the mixing ratio with the microfiber 6, the inclination angle of the lamination
  • Embodiment 2 the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the thermal conductivity differs depending on the mixing ratio of “straight chopped fiber or curved chopped fiber 5” and “microfiber 6”.
  • the vacuum heat insulating material 1 according to the second embodiment is obtained by paper-making a fiber having a mixing ratio of the curved chopped fiber 5 described in the first embodiment and the microfiber 6 of 80/20 wt%. That is, in the second embodiment, the mixing ratio of the curved chopped fibers 5 is larger than that in the first embodiment. This takes into consideration that the thermal conductivity can be suppressed as the mixing ratio of the curved chopped fibers 5 is larger within a preset range. However, when the mixing ratio of the curved chopped fibers 5 is increased, it becomes difficult to form the fiber sheet 2. Therefore, in the second embodiment, about 0.5% of binder is added, and the curved chopped fiber 5 and the microfiber 6 are used as the fiber sheet 2.
  • the vacuum heat insulating material 1 according to Embodiment 2 suppresses the thermal conductivity by setting the mixing ratio of the curved chopped fiber 5 and the microfiber 6 to 80/20 wt%, and binds the fibers to each other.
  • the binder used for promoting is added. And as a result of measuring heat conductivity, it was 0.0014W / (m * K).
  • the microfibers 6 having an average fiber diameter of 8 ⁇ m or less are generally short fibers that are shrunken due to the characteristics of the manufacturing method.
  • the short fiber is formed on the fiber sheet 2
  • the fiber itself is easily inclined in the stacking direction in the fiber sheet 2, and the solid heat conduction from the fiber itself is increased.
  • the fiber shrinkage also has an irregular three-dimensional structure, the tendency of the fiber itself to incline in the stacking direction becomes strong.
  • the curved chopped fiber 5 has a relatively high straightness, the stacking direction and the fiber axis direction are approximately perpendicular to each other within the appropriate thickness range of the fiber sheet 2.
  • the solid chopped fiber 5 having a higher content can suppress the solid heat conduction of the inorganic fiber.
  • the vacuum heat insulating material 1 which concerns on this Embodiment 2 makes the ratio of the curved chopped fiber 5 larger than Embodiment 1, and adds a binder, it suppresses about the addition amount. It can suppress that the heat insulation performance of the vacuum heat insulating material 1 will reduce.
  • FIG. 13 is a detailed configuration diagram of the vacuum heat insulating material 1 showing another example according to the second embodiment.
  • the fiber sheet 2 has the 1st curve chopped fiber 5b and the 2nd curve chopped fiber 5a. That is, in Embodiment 1, the fiber sheet 2 has the curved chopped fiber 5 and the microfiber 6 as the curved fiber, but in the modification according to Embodiment 2, the fiber sheet 2 Has the 1st curve chopped fiber 5b and the 2nd curve chopped fiber 5a as a curve fiber.
  • the first curved chopped fiber 5b is manufactured by the continuous filament manufacturing method as in the first embodiment.
  • the second curved chopped fiber 5a is also manufactured by the same manufacturing method (continuous filament manufacturing method) as the first curved chopped fiber 5b.
  • the fiber sheet 2 was produced by mixing the first curved chopped fiber 5b and the second curved chopped fiber 5a so that the ratio was 80/20 wt%.
  • the procedure for producing the vacuum heat insulating material 1 is the same as that shown in the first embodiment.
  • a binder was required to produce the fiber sheet 2. That is, a stable fiber sheet can be formed by welding a glass fiber by adding and heating a polyurethane binder having a weight ratio of 1 wt% of the glass fiber during papermaking. And the fiber sheet 2 was laminated
  • the vacuum heat insulating material 1 can reduce the binder by mixing the first curved chopped fiber 5b with the second curved chopped fiber 5a having a different fiber diameter average value ⁇ . Cost reduction can be achieved. Moreover, since the heat transfer by binder reduction is suppressed, the heat insulation performance can be improved.
  • the second curved chopped fiber 5a is described as an example in which the average value ⁇ of the fiber diameter is different from that of the first curved chopped fiber 5b, but is not limited thereto.
  • the cutting length W (fiber length) or the degree of curvature may be different.
  • a plurality of conditions among the average value ⁇ of the fiber diameter, the cutting length W, and the degree of bending may be different.
  • Yb / W can be used as an index representing the degree of curvature.
  • Comparative Example 4 a fiber sheet 2 ′ having a curved chopped fiber 5 ′ of 100% was manufactured.
  • the binder amount at this time was about 2% as in Comparative Example 3.
  • it was 0.0017 W / (m ⁇ K), which was the same as that of the straight chopped fiber of Comparative Example 3.
  • thermal conductivity there was no difference in thermal conductivity between the vacuum heat insulating material 1 ′ having 100% straight chopped fibers and the vacuum heat insulating material 1 having 100% curved chopped fibers 5 ′.
  • Comparative Example 4 since a fiber having a substantially single thickness with a diameter of 6 ⁇ m was used, a relatively large amount of binder was required.
  • a thick curved chopped fiber (first curved chopped fiber 5b) and a thin curved chopped fiber (second curved chopped fiber 5a) are mixed, so that the thin curved chopped fiber is a thick curved chopped fiber. It acts as a medium for fixing thick curved chopped fibers by entering the gap, and can be fixed even with a small amount of binder.
  • Comparative Example 5 Furthermore, as Comparative Example 5, when making a paper having a mixing ratio of straight chopped fiber and microfiber 6 ′ of 80/20 wt%, a fiber sheet 2 ′ could be obtained with a binder addition of about 1%. It was 0.0016 W / (m ⁇ K) as a result of manufacturing the vacuum heat insulating material 1 ′ using the obtained fiber sheet 2 ′ as the core material 3 and measuring the thermal conductivity.
  • the heat insulating performance of the vacuum heat insulating material 1 according to Embodiment 2 is higher than that of the vacuum heat insulating materials 1 'of Comparative Examples 3 to 5.
  • the vacuum heat insulating material 1 according to the second embodiment has the following effects in addition to the effects of the vacuum heat insulating material 1 according to the first embodiment.
  • the mixing ratio of the curved chopped fiber 5 and the microfiber 6 as the curved fiber was 80/20 wt%.
  • the confusion ratio between the first curved chopped fiber 5b and the second curved chopped fiber 5a as the curved fiber is 80/20 wt%. That is, in the vacuum heat insulating material 1 according to the second embodiment and the modification thereof, the mixing ratio of the curved chopped fibers 5 is increased as compared with the first embodiment. Thereby, it is suppressed that the fiber axis direction of the fiber sheet 2 inclines in the lamination direction of the fiber sheet 2, and the heat conductivity of the vacuum heat insulating material 1 can be reduced.
  • the case where the second curved chopped fiber 5a is employed as the curved fiber has been described as an example, but the present invention is not limited thereto.
  • a fiber obtained by combining the second curved chopped fiber 5a and the microfiber 6 may be adopted as the curved fiber.
  • the first curved chopped fiber 5b is 80 wt% and the second curved chopped fiber 5a is used.
  • 10 wt%, the microfiber 6 may be 10 wt%, or the like.
  • the same effect as the modification of the vacuum heat insulating material 1 which concerns on this Embodiment 2 can be acquired.
  • the vacuum heat insulating material 1 according to the second embodiment has increased the mixing ratio of the curved chopped fibers 5 as compared with the first embodiment, a binder is added.
  • the binder is added, the heat conductivity increases because of the occurrence of fusion between the fibers, but the effect of reducing the heat conductivity by increasing the mixing ratio of the curved chopped fiber 5 is increased. As a result, the increase in the thermal conductivity of the vacuum heat insulating material 1 can be suppressed.
  • the fibers such as 90% or more
  • a small amount for example, 10% or less
  • straight chopped fibers may be mixed.
  • the curved chopped fiber 5 may occupy a large portion of the chopped fiber, and the straight chopped fiber may be reduced.
  • the same effect as that of the vacuum heat insulating material 1 according to the second embodiment and the modification thereof can be obtained.
  • the curved chopped fiber 5 is mainly configured with a degree of curvature of 0.1 ⁇ Yb / W ⁇ 0.2, Yb / W is smaller than 0.1 or Yb / W is 0. Smaller than 2 may be included. Even if it is this aspect, the effect similar to the vacuum heat insulating material 1 which concerns on this Embodiment 2, and its modification can be acquired.
  • Embodiment 3 FIG.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and differences from the first and second embodiments will be mainly described.
  • the microfiber 6 manufactured using the flame method is used, but in the third embodiment, the microfiber 7 manufactured using the centrifugal method is used. Is different.
  • FIG. 7 is an enlarged schematic cross-sectional view of the fiber sheet 2 of the vacuum heat insulating material 1 according to the third embodiment.
  • the fiber sheet 2 is composed of curved chopped fibers 5 and microfibers 7.
  • the amount of binder added was about 1 wt%.
  • the curved chopped fiber 5 is the same as that in the first and second embodiments.
  • the vacuum heat insulating material 1 was manufactured and the thermal conductivity was measured in the same procedure as Embodiment 1, 2, it was 0.0016 W / mK. This is a numerical value equivalent to that of the comparative example 5 in the second embodiment. That is, the amount of binder added to the vacuum heat insulating material 1 according to the third embodiment is increased by about 0.5% as compared with the vacuum heat insulating material 1 according to the second embodiment.
  • the thermal conductivity can be suppressed to about 0.0016 W / mK, and the centrifugal method has higher productivity than the flame method.
  • the manufacturing cost of the vacuum heat insulating material 1 can be reduced by the amount that the microfiber 7 can be manufactured at a cost lower than 6.
  • Comparative Example 6 As Comparative Example 6, a curved chopped fiber 5 similar to that in Embodiment 1 and a microfiber 7 ′ having an average diameter of about ⁇ 6 ⁇ m and a fiber length of about 10 mm produced by a centrifugal method have a mixing ratio of 80/20 wt%. A fiber sheet 2 'configured to be as follows was produced. At this time, the amount of binder added was slightly less than about 2 wt%, which was slightly less than that of the straight chopped fiber of Comparative Example 3 of Embodiment 2.
  • the microfiber 6 becomes thicker, the rigidity becomes higher, and the arrangement of the curved chopped fibers 5 is greatly influenced by the randomly bent microfibers 6, thereby increasing the average fiber inclination angle ⁇ of the curved chopped fibers 5.
  • the thick microfiber itself becomes a heat transfer medium in the fiber laminating direction, and it is considered that the characteristics are deteriorated because heat is easily transferred. Therefore, it is desirable that the thickness of the microfiber 6 is thinner than the curved chopped fiber 5. Then, it is desirable that the curved chopped fibers 5 are arranged so as to be substantially parallel to the sheet surface, and there is a thin and flexible microfiber 6 between them.
  • the fiber sheet 2 is formed using the curved chopped fiber 5 and the microfiber 7 obtained by using the centrifugal method having higher productivity than the flame method. While suppressing an increase in manufacturing cost, it is possible to suppress a decrease in heat insulation performance.
  • Embodiment 4 FIG.
  • the same reference numerals are used for the same parts as in the first to third embodiments, and differences from the first to third embodiments will be mainly described.
  • the microfiber 6 manufactured using the flame method or the microfiber 7 manufactured using the centrifugal method is used.
  • the microfiber 6 is used.
  • microfiber 7 is used.
  • FIG. 8 is an enlarged schematic cross-sectional view of the fiber sheet 2 of the vacuum heat insulating material 1 according to the fourth embodiment.
  • the fiber sheet 2 includes “curved chopped fibers 5 similar to those in the first to third embodiments”, “microfibers 6 obtained using the flame method in the first and second embodiments, and And a microfiber 7 "obtained by using the centrifugal method of the third aspect.
  • the vacuum heat insulating material 1 which concerns on this Embodiment 4 Since the vacuum heat insulating material 1 which concerns on this Embodiment 4 has this fiber sheet 2, the vacuum heat insulating material 1 which concerns on Embodiment 1 and Embodiment 2, and the vacuum heat insulating material which concerns on Embodiment 3 It can perform an intermediate function to 1. That is, the vacuum heat insulating material 1 according to the fourth embodiment applies the vacuum heat insulating material 1 because the effects of manufacturing cost and heat insulating performance are intermediate between the first and second embodiments and the third embodiment. If appropriate selection is made in consideration of the previous cost performance, both cost and heat insulation performance can be achieved.
  • FIG. 9 is a schematic cross-sectional view of a heat retaining body (heat retaining tank 22) according to the fifth embodiment.
  • the vacuum heat insulating material 1 is provided on at least a part of the periphery of the heat retaining tank 22. That is, the cylindrical vacuum heat insulating material 1 is wound around about 2/3 of the trunk portion 24a of the cylindrical heat retaining tank 22. The remaining one third of the trunk portion 24a and the upper and lower check plate portions 24b are covered with a non-vacuum heat insulating material 23.
  • the vacuum heat insulating material 1 has the same specifications as those shown in the first embodiment, and the production is performed according to the procedure shown in the first embodiment. Further, the vacuum heat insulating material 1 is bent into a cylindrical shape so as to correspond to the thermal insulation tank 22 being cylindrical.
  • the non-vacuum heat insulating material 23 is an EPS (bead method expanded polystyrene) heat insulating material, and the upper and lower portions of the heat retaining tank 22 are formed in accordance with the shape of the inspection plate portion 24b.
  • the tank is filled with water and boiled by a heating source (not shown).
  • a heating source there are methods such as indirect heating by circulating water from an exhaust heat recovery circuit such as a fuel cell power generation system, for example, when heating directly from an electric heater provided inside the tank.
  • the heating source is described as an example, but this may be a cold heat source.
  • water cooled by a refrigerator or ice sherbet or the like directly or indirectly removes heat from the inside of the heat retaining tank 22 and maintains the inside of the heat retaining tank 22 at a temperature lower than the ambient temperature.
  • the heat insulation tank 22 which improved the thermal-insulation property by applying the vacuum heat insulating material 1 is realizable.
  • FIG. 10 is a schematic cross-sectional view of a heat retaining body 200 different from FIG.
  • the heat retaining body 200 includes an outer box 201, an inner box 202 disposed inside the outer box 201, and a vacuum heat insulating material 1 disposed in a gap between the outer box 201 and the inner box 202.
  • the heat insulating body 200 is filled with a heat insulating material 203 made of polyurethane foam in a space formed by the inner box 202 and the outer box 201 where the vacuum heat insulating material 1 is not disposed.
  • FIG. 11 is a system configuration diagram of a heat pump hot water supply 500 according to the sixth embodiment.
  • This heat pump hot water supply 500 has the heat retaining tank 22 according to the fifth embodiment.
  • the heat pump unit 31 includes a refrigerant circulation circuit 36 in which a circulation medium circulates and a plurality of devices through which the circulation medium flows. That is, the heat pump unit 31 includes an air heat exchanger 35 that receives heat from the atmosphere and transfers it to the circulating refrigerant, a compressor 25 that pressurizes the circulating medium, a heat exchanger 29 that removes heat from the circulating refrigerant, and a circulating medium. And an expansion valve 26 for volumetric expansion.
  • the heat exchanger 29 as a first heat exchanger functions as a condenser
  • the air heat exchanger 35 as a second heat exchanger functions as an evaporator.
  • the other medium heated by the heat exchanger 29 is connected to the upper part of the heat retaining tank 22 via the three-way valve 28.
  • a water pump 34 a is provided between the lower part of the heat retaining tank 22 and the heat exchanger 29.
  • the medium circulation circuit 37 includes the heat exchanger 29, the three-way valve 28, the heat retaining tank 22, the water pump 34a, and the like. Further, hot water is taken out from the upper part of the heat retaining tank 22 and mixed with the city water 32 and the mixing valve 27a to be used for hot water supply. Is provided. Furthermore, from the bathtub 33, the circuit connected to the water pump 34b and the bath heat exchanger 30 is provided. The city water 32 is connected to the lower part of the heat retaining tank 22.
  • the heat pump unit 31 is circulated in the refrigerant circulation circuit 36 using, for example, CO 2 as a refrigerant.
  • the CO 2 refrigerant absorbs heat in the atmosphere by the air heat exchanger 35.
  • it is compressed by the compressor 25 and the temperature rises to a few tens of degrees Celsius.
  • the heat exchanger 29 circulates through the medium circulation circuit 37, for example, heat exchange with water.
  • the temperature of the CO 2 refrigerant deprived of heat is further lowered by the expansion valve 26 and is supplied to the air heat exchanger 35 and circulated again.
  • the water heated in the heat exchanger 29 is heated to, for example, a little over 90 ° C. and supplied to the upper part of the heat retaining tank 22.
  • cold water having a low temperature is taken out from the lower part of the heat retaining tank 22, and this cold water is supplied to the heat exchanger 29 by the water pump 34a.
  • the heat pump unit 31 is used as a heating source to heat the water inside the heat retaining tank 22.
  • the heated hot water is used depending on the application.
  • the hot water taken out from the upper part of the heat retaining tank 22 (pushing up the water by supplying the city water 32 to the lower part of the heat retaining tank 22) is used as a mixing valve.
  • 27a it is mixed with city water 32 and adjusted to an appropriate temperature, and then supplied to a hot water supply circuit 38 for hot water supply.
  • hot water mixed with city water 32 by the mixing valve 27 b is supplied to the bathtub 33.
  • the hot water in the bathtub 33 and the hot water in the heat retaining tank 22 are used by exchanging heat in the bath heat exchanger 30.
  • the vacuum heat insulating material 1 was applied to the heat retaining tank 22 shown in the fifth embodiment, and the performance of a domestic water heater system was evaluated. As a result of evaluating the efficiency of the hot water supply system based on JIS C 9220, it was confirmed that the annual hot water supply efficiency was improved by about 0.5%. As a result, the water heater system using the heat retaining tank 22 to which the vacuum heat insulating material 1 of the first to fourth embodiments is applied can provide a water heater system that is more energy efficient.
  • FIG. 12 is a system configuration diagram of a heat pump type water heater 501 different from FIG.
  • the medium circulation circuit 37 is provided with a circuit that circulates the heat retaining tank 22 by a three-way valve 28 b and a circuit that branches from this and connects to the radiator 39. Further, the circulation circuit that circulates through the heat retaining tank 22 is geometrically separated from the water inside the heat retaining tank 22.
  • R410A is used as the refrigerant of the refrigerant circuit 36.
  • Other configurations are the same as those in FIG.
  • the hot water of about 70 ° C. that circulates through the medium circulation circuit 37 heated by the heat exchanger 29 constituting the heat pump unit 31 is normally supplied to the radiator 39 and used for room heating.
  • the water whose temperature has been lowered by applying heat to the atmosphere by the radiator 39 returns to the heat exchanger 29 by the water pump 34a, thereby forming a medium circulation circuit 37.
  • the supply of warm water to the radiator 39 is stopped by switching the three-way valve 28b, and the water filled in the heat retaining tank 22 is heated by passing through a spiral tube provided in the heat retaining tank 22.
  • the hot water stored in the heat retaining tank 22 is used as hot water for a shower or the like.
  • FIG. 12 shows a hot water supply system mainly for heating. Therefore, it is necessary to store hot water in the heat retaining tank 22 and keep it warm during a time zone when the heating load is small. Since the heat retaining tank 22 has the vacuum heat insulating material 1, the heat pump type hot water heater 501 can reduce heat radiation from the heat retaining tank 22 and can provide a water heater system that is more energy efficient.
  • the heating method of the heat retention tank 22, the reheating of the bathtub 33, and a hot water supply was shown above, nothing is limited to this,
  • the water inside a tank is directly utilized using the principle of a heat pump.
  • the heating medium or the medium circulating in the medium circulation circuit 37 and the water inside the tank may be geometrically separated and indirectly heated.
  • the refrigerant circulating in the refrigerant circuit 36, CO 2 refrigerant, the example of using the R401A refrigerant, the present invention is not limited thereto, for example, be an isobutane such as by use conditions good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Insulation (AREA)
  • Paper (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 繊維シートの積層体構造である芯材と芯材を収容している外被材とを有する真空断熱材において、繊維シートは、湾曲チョップド繊維と湾曲繊維とを有するものである。

Description

真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機
 本発明は、真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機に関するものである。
 従来、断熱材輸送時などの収容効率化のための圧縮に対して、復元性を改善させて断熱性能を向上するために、無機繊維及び捲縮繊維を積層したものを有する断熱材が提案されている(たとえば、特許文献1参照)。なお、復元性とは、断熱材を圧縮した後に、断熱材がもとの形に戻りやすいかどうかということである。
 また、真空断熱材として、断熱性能の向上を図るために連続フィラメント法によって製造されるガラス繊維などの無機繊維で構成した芯材を有する真空断熱材が提案されている(たとえば、特許文献2参照)。
 特許文献2に記載の技術は、この無機繊維の平均繊維径を3μm以上15μm以下とし、繊維同士の絡まりによる繊維同士の接触面積の増大などを抑制し、無機繊維間の熱伝導を抑制している。
 また、特許文献2に記載の技術は、上述した平均繊維径としているとともに、無機繊維の平均繊維長を3mm以上15mm以下とし、分散剤の添加がなされる湿式抄紙法を採用して無機繊維が分散配置されるようにしている。これにより、無機繊維同士が平行に整列しにくくなる結果、無機繊維同士の接触が点接触となりやすく、無機繊維間の熱伝導を抑制することができるようになっている。
特開平9-11374号公報(たとえば、図1及び要約書参照) 特開2009-162267号公報(たとえば、請求項2、[0040]、[0046]及び[0052]参照)
 特許文献1に記載の技術は、断熱材の復元性を高めるため、断熱材に封入された繊維をバネ的な作用が働くように、一部の繊維の軸方向が繊維の積層方向(伝熱方向)に向くようにしている。このため、特許文献1に記載の技術を真空断熱材に適用した場合には、繊維の積層方向に向かって繊維からの固体熱伝導が増加してしまう。
 また、断熱材にバネ的な作用が働くようにするには、繊維に対して予め設定された太さが要求されるため、その分、繊維同士の接触面積が増加して熱伝導が増加してしまう。
 このように、特許文献1に記載の捲縮繊維構造を、真空断熱材の芯材に適用すると、「一部の繊維の軸方向が繊維の積層方向(伝熱方向)に向く」ことになるとともに、「繊維に対して予め設定された太さが要求される」ために、熱伝導が増加して、真空断熱材の断熱性能が低下してしまうという課題があった。
 特許文献2に記載の技術は、無機繊維の平均繊維径を3μm以上15μm以下としており、その分、無機繊維の真直度を高めたものとなっている。このように、真直度を高くするほど、繊維の積層構造を形成しにくくなることから、真直度を高くした分だけ、無機繊維同士間を結着させるのに利用されるバインダが添加されることとなる。なお、真直度とは、直線から外れている度合いを指す。ここで、バインダを添加すると、無機繊維同士が融着することから、積層構造となっている繊維接触部分の熱伝導を促進してしまう。
 すなわち、特許文献2に記載の技術では、無機繊維の真直度を高めている分、真空断熱材に封入される繊維にバインダが添加され、熱伝導が増加し、真空断熱材の断熱性能が低下してしまうという課題があった。
 なお、バインダを利用して無機繊維を一旦シート化した後に、加熱処理によってバインダを除去し、断熱性能の低下を抑制する方法も考えられるが、余分な設備及びエネルギーが必要となり、製造コストが上昇してしまうという課題があった。
 本発明は、以上のような課題のうちの少なくとも1つを解決するためになされたもので、断熱性能の低下を抑制する真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機を提供することを目的としている。
 本発明に係る真空断熱材は、繊維シートの積層体構造である芯材と芯材を収容している外被材とを有する真空断熱材において、繊維シートは、湾曲チョップド繊維と湾曲繊維とを有するものである。
 本発明に係る真空断熱材によれば、上記構成を有しているため、断熱性能の低下を抑制することができる。
本発明の実施の形態1に係る真空断熱材を示す断面模式図である。 本発明の実施の形態1に係る真空断熱材の繊維シートの拡大断面模式図である。 本発明の実施の形態1に係る真空断熱材の波形状繊維の拡大断面模式図である。 本発明の実施の形態1に係る真空断熱材の螺旋状繊維の拡大断面模式図である。 本発明の実施の形態1に係る真空断熱材の繊維シートの拡大断面模式図である。 本発明の実施の形態1に係る真空断熱材の繊維傾斜角度と熱伝導率の関係を示すモデル計算結果である。 本発明の実施の形態3に係る真空断熱材の繊維シートの拡大断面模式図である。 本発明の実施の形態4に係る真空断熱材の繊維シートの拡大断面模式図である。 本発明の実施の形態5に係る保温体の断面模式図である。 図9とは異なる保温体の断面模式図である。 本発明の実施の形態6に係るヒートポンプ式給湯のシステム構成図である  。 図11とは異なるヒートポンプ式給湯のシステム構成図である。 本発明の実施の形態2に係る真空断熱材の繊維シートの拡大断面模式図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1. 
 図1は、実施の形態1に係る真空断熱材1を示す断面模式図である。図2は、実施の形態1に係る真空断熱材1の繊維シート2の拡大断面模式図である。
 本実施の形態1に係る真空断熱材1は、断熱性能の向上が可能となる改良が加えられたものである。
 真空断熱材1は、材質がガラスである繊維を有する繊維シート2を積層して構成された芯材3と、たとえば樹脂などで構成される外被シート4aによって芯材3を密閉する外被材4とを有している。
[芯材3]
 芯材3は、図1に示すように、予め設定されたサイズに切断された繊維シート2が、紙面の下側から上側にかけて複数積層されて構成されたものである。そして、芯材3は、外被材4内に封入されている。なお、繊維シート2の積層数及び厚みであるが、たとえば、大気圧と真空の圧力差による圧縮歪を想定して、真空断熱材1が所望の厚みとなるように設定される。
 繊維シート2は、材質がたとえばガラスである湾曲チョップド繊維5と、この湾曲チョップド繊維5と同様に材質がたとえばガラスであるマイクロファイバ6とを有し、湾曲チョップド繊維5とマイクロファイバ6とが混合するように構成されたものである。
 繊維シート2の製造方法については、たとえば中性水もしくは硫酸水溶液に湾曲チョップド繊維5及びマイクロファイバ6を分散させ、自動送り式抄紙機で抄紙してシート状に形成する。このシート状に形成したものを乾燥させて、厚さ0.5mm~5mm程度の繊維シート2の原反を得る。そして、必要とする真空断熱材1の面積に合わせて繊維シート2の原反を裁断し、繊維シート2を得る。
 なお、繊維シート2は、繊維シート2の繊維の方向が、繊維シート2の厚さ方向と垂直方向をなすように、抄紙して形成される。
 また、必要に応じて、繊維溶液中もしくは抄紙後の繊維に無機系バインダ若しくは有機系バインダを添加してもよい。無機系バインダとしては、水ガラス、コロイダルシリカ、有機系バインダとしては、ポリウレタン(PU)系、ポリビニールアルコール(PVA)系などがある。
(湾曲チョップド繊維5)
 湾曲チョップド繊維5は、その平均の繊維径が、マイクロファイバ6の平均の繊維径より大きいものである。湾曲チョップド繊維5は、たとえば、次のようにして製造される。
 (1)連続フィラメント製法を利用して直径4μm~20μm程度範囲で比較的均一な直径のフィラメント(ガラス繊維)を製造する。
 (2)その後に、素材が軟化し、且つ素材の融点よりも低い温度に加熱された2個の歯車の噛み合わせの間を、(1)で製造したフィラメントを通過させる。これにより、(1)で製造したフィラメントが熱変形し、波状に形成された湾曲無機フィラメント8を製造する(図3参照)。
 (3)そして、(2)で製造した湾曲無機フィラメント8を長さ4mm~18mm程度の予め設定されたサイズに切断し、湾曲チョップド繊維5を得ることができる。
 ここで、(2)で説明した湾曲無機フィラメント8の製造方法については、これに限定されるものではない。たとえば、押し出された繊維を円筒状の芯に斜めに巻き付けて、コイル状に成形しても良い(図4参照)。
(マイクロファイバ6)
 マイクロファイバ6は、単一な湾曲チョップド繊維5だけでは繊維シート2としてのシート化が困難であるので、このシート化に寄与する繊維である。マイクロファイバ6は、その平均の繊維径が、湾曲チョップド繊維5よりも小さいものである。マイクロファイバ6は、図2に示すように、繊維シート2に湾曲チョップド繊維5とともに混合しているものである。
 マイクロファイバ6は、一般的に、繊維径がある設定値(たとえば、3μm)よりも小さい場合には火炎法を利用して作製され、この設定値よりも大きい場合には遠心法で作製されるものである。なお、本実施の形態1に係る真空断熱材1は、火炎法にて作製した場合を例に説明する。
 本実施の形態1では、湾曲チョップド繊維5及びマイクロファイバ6がガラス繊維で構成されているものとして説明するが、これに限定されるものではない。たとえば、湾曲チョップド繊維5及びマイクロファイバ6を、セラミックス繊維、シリカ繊維などで構成してもよい。
 また、マイクロファイバ6は、有機繊維でも良い。たとえば、ポリエステル繊維及びポリプロピレン繊維などは、メルトブローン製法で平均径数μmの繊維を作製することができる。但し、この場合には、乾燥条件を、真空断熱材1を適用する対象を有機繊維が分解、溶融(一部軟化を含む)しない温度領域にすることが必要である。
 さらに、本実施の形態1では、湾曲チョップド繊維5とマイクロファイバ6とは、同じガラス繊維である場合を例に説明するが、それに限定されるものではなく、異なる繊維であってもよい。
[外被材4]
 外被材4は、2枚の外被シート4a内に、湾曲チョップド繊維5及びマイクロファイバ6を有する繊維シート2が複数積層された芯材3を収納しているものである。外被材4は、ラミネート構造体であり、たとえば外側からON(延伸ナイロン)25μm/PET(ポリエステル)12μm/AL(アルミ)箔7μm/CPP(未延伸ポリプロピレン)30μmからなるものである。次に、芯材3を外被材4に挿入して真空断熱材1を製造する方法について説明する。
 (1)まず、2枚の外被シート4aで予め製袋化した外被材4を作製しておき、芯材3を乾燥させてから外被材4にガス吸着剤とともに挿入する。
 (2)その後に、(1)で得られたものを真空チャンバ内に配置する。
 (3)真空チャンバ内を減圧にして、予め設定される圧力、たとえば0.1Pa~3Pa程度の真空圧にする。そして、この状態で、外被材4の残りの開口部をヒートシールにより密閉する。
 (4)真空チャンバ内を大気圧に戻し、真空チャンバ内から取り出して真空断熱材1を得ることができる。
 なお、2枚の外被シート4aによって芯材3を挟み込む様に真空チャンバ内に配置し、真空チャンバ内で減圧した後に、上下の外被シート4aの周囲をヒートシールにより密閉するようにしてもよい。
 また、繊維シート2に含有される水分については、抄紙時の乾燥工程とは別に、裁断前後などに繊維シート2を加熱する工程を設けてもよい。また、真空過程で加熱する工程を設けてこの水分を除去してもよい。さらに、ガス吸着剤としては、たとえば酸化カルシウム(CaO)、ゼオライト、鉄粉、またリチウムやバリウムからなる材料のものを、単独もしくは複数組み合わせて用いてもよい。
[真空断熱材1の熱伝導率について]
 図3は、実施の形態1に係る真空断熱材1の波形状繊維の拡大断面模式図である。図4は、実施の形態1に係る真空断熱材1の螺旋状繊維の拡大断面模式図である。図5は、実施の形態1に係る真空断熱材1の繊維シート2の拡大断面模式図である。図6は、実施の形態1に係る真空断熱材1の繊維傾斜角度θと熱伝導率の関係を示すモデル計算結果である。図3~図6を参照して、真空断熱材1の熱伝導率について説明する。
 なお、図において、Wは湾曲無機フィラメント8の切断長さを表したものであり、湾曲チョップド繊維5の両端を結ぶ線分の長さを示す。また、Ybは、真直ズレ幅を示している。すなわち、Ybは、湾曲チョップド繊維5の両端を結ぶ直線を基準線Y0としたとき、この基準線Y0に平行であって基準線Y0から一番離れている部分で湾曲チョップド繊維5と接する接線(後述の第1の接線Y1及び第2の接線Y2に対応)の位置に基づいて決定される。たとえば、図3の例では、第1の接線Y1と第2の接線Y2との間の間隔がYbである。また、図4の例では、接線は1本しか引けないので基準線Y0と接線Y3との間の間隔がYbとなる。このように、Ybは、湾曲チョップド繊維5の延びる方向とは交差する方向における最大距離に対応している。θは繊維積層面と繊維との傾斜角を表したものであり、tは真空封止後の繊維シート2の厚さを表したものである。
 本実施の形態1に係る真空断熱材1は、次に説明するように、湾曲チョップド繊維5及びマイクロファイバ6を有しており、バインダを添加せずに繊維シート2を構成することができ、断熱性能の低下を抑制することができるようになっている。すなわち、上述したように必要に応じて無機系バインダ若しくは有機系バインダを添加してもよいのであるが、本実施の形態1では、バインダを添加せずに、繊維シート2を構成している。
 そこで、湾曲チョップド繊維5及びマイクロファイバ6の繊維径、長さ及び混合比率などの詳細構成について説明する。また、真空断熱材1が断熱性能を向上することを説明するため、「比較例1」及び「比較例2」の説明をするとともに、「切断長さW」及び「繊維傾斜角度θ」についても併せて説明する。
(実施の形態1に係る真空断熱材1の詳細構成)
 連続フィラメント製法によって製作された繊維直径の平均値がφ=約6μmの真直な無機フィラメントを製造する。次に、例えば約600℃に加熱させた歯車の間に通過させることによって無機フィラメントを波形状に湾曲加工させて湾曲無機フィラメント8を製造する。そして、湾曲無機フィラメント8を、切断長さW=約6mmに切断した湾曲チョップド繊維5を製造する。このとき、真直ズレ幅Yb=約0.9mmとなった。
 一方、火炎法を利用して繊維直径の平均値がφ=約1μmであって、平均繊維長さが約1mm程度のマイクロファイバ6を製造する。
 そして、「『φ=約6μm』、『W=約6mm』、『Yb=約0.9mm』である湾曲加工された湾曲チョップド繊維5」と、「『φ=約1μm』、『平均繊維長さ約1mm』のマイクロファイバ6」とを混合比率が60/40wt%となるように混合させ、繊維シート2を製造する。
 なお、繊維シート2の製造において、抄紙、乾燥させた後の繊維シート2の厚みtが、約1mmとなるように、上述の自動送り式抄紙機を利用する抄紙方法で繊維シート2を製造する。
 ここで、湾曲チョップド繊維5の混合比率が、60wt%より小さい場合の繊維シート2の作製をも実施しているが、湾曲チョップド繊維5の混合比率を60wt%とした場合においても、バインダを用いずに、繊維シート2のシート化をすることができた。ここで、混合比率とは、全体の繊維重量に占める割合を指している。すなわち、湾曲チョップド繊維5の混合比率が60wt%であるというのは、湾曲チョップド繊維5及びマイクロファイバ6を合わせた繊維シート2の全重量のうち湾曲チョップド繊維5が60%を占めているということである。
 以降で詳しく述べるが、ある条件下においては、湾曲チョップド繊維5の混合比率が高い方が、断熱性能が向上するので、ここでの説明では、湾曲チョップド繊維5の混合比率が、上限である60wt%の場合の熱伝導率について述べる。
 このように製造された繊維シート2には、繊維の大きな結束が観察されなかった。そして、繊維シート2を用いて、後述の比較例1と同じ条件で真空断熱材1を製造し、熱伝導率を測定した結果、0.0015W/(m・K)が得られた。
(比較例1:真直チョップド繊維)
 以下の説明において、本実施の形態1に係る真空断熱材1及び真空断熱材1の有する各種構成(繊維シート2など)と、比較例のものとを区別するため、符号に「’」を付している。
 本実施の形態1に係る真空断熱材1との比較をするために、湾曲チョップド繊維5の代わりに、湾曲加工を施していない真直チョップド繊維を用いて真空断熱材1’を製造した。
 なお、真直チョップド繊維とマイクロファイバ6’との混合比率であるが、湾曲チョップド繊維5とは異なり、繊維の絡まりが小さくなっている分、シート化が難しく、真直チョップド繊維の混合比率の上限が40wt%であった。すなわち、真直チョップド繊維の混合比率がこれより増えると繊維がまとまらずにシートにできなかった。そこで、本比較例1では、真直チョップド繊維とマイクロファイバ6’との混合比率が、40/60wt%としている。
 その他の条件は、真空断熱材1の製造のものと同様である。
 すなわち、連続フィラメント製法を利用して真直チョップド繊維を製造し、そのφ及びWは湾曲チョップド繊維5のものと同様である。また、マイクロファイバ6’も火炎法によって製造し、そのφ及び繊維長さはマイクロファイバ6と同様である。また、バインダも用いていない。さらに、繊維シート2’の製造において、抄紙、乾燥させた後の繊維シート2’の厚みtが、1mmとなるように、上述の自動送り式抄紙機を利用する抄紙方法で繊維シート2’を製造した。
 このように得られた真直チョップド繊維を用いた真空断熱材1’は、熱伝導率を測定した結果、0.0018W/(m・K)であった。
 なお、真空断熱材1及び真空断熱材1’とした時のシート厚みは、抄紙後で約1mmであったものが、真空封止後は、大気圧によって約0.65mmになった。
(比較例2:真直ズレ幅Yb)
 比較例2として、湾曲チョップド繊維5の真直ズレ幅Ybについて検討した。比較例2では、真直ズレ幅Yb以外の条件については、真空断熱材1と同一である。
 すなわち、湾曲チョップド繊維5’とマイクロファイバ6’との混合比率は40/60wt%としている。また、連続フィラメント製法を利用して湾曲チョップド繊維5’を製造し、湾曲チョップド繊維5’のφ、Wは湾曲チョップド繊維5と同様である。一方、Ybは2mmとした。
 また、マイクロファイバ6’も火炎法によって製造し、そのφ及び繊維長さはマイクロファイバ6と同様である。また、バインダも用いていない。さらに、繊維シート2’の製造において、抄紙、乾燥させた後の繊維シート2’の厚みtが、1mmとなるように、上述の自動送り式抄紙機を利用する抄紙方法で繊維シート2’を製造した。
 その結果、繊維シート2’を得ることはできたが、この繊維シート2’を用いて真空断熱材1’を製造した結果、熱伝導率は0.0025W/(m・K)となり、真空断熱材1よりも断熱性能の悪化が認められた。
(繊維傾斜角度θと熱伝導率の関係などについて)
 ところで、湾曲無機フィラメント8の切断長さWが逆に短いと、図5に示すように、抄紙時に繊維が積層面に対する傾斜角度が大きくなる可能性がある。そこで、繊維傾斜角度θと熱伝導率の関係についてモデル計算を行った。その解析結果が図6である。
 図6に示したθ=15°基準の計算結果より、繊維傾斜角度θの増加に対して熱伝導率の増加割合が大きくなることが分かる。したがって、繊維傾斜角度θは極力ゼロに近づける方が熱伝導率を小さくすることができることがわかる。
 ここで、真空封止後の繊維シート2の厚みtと、湾曲チョップド繊維5の切断長さWと繊維傾斜角度θの関係は、図5に示したように、sinθ=t/Wの関係となる。真空断熱材1の熱伝導率低減を図るには、繊維の傾斜角度が15°以下、できれば10°以下までに抑制するのが望ましい。その理由については後述する。
 また、比較例2で実施した真空断熱材1’のYbは2mmと大きくしたため、繊維の湾曲が図5中上方向に向いて繊維が配置された場合には、湾曲チョップド繊維5’の実質的な傾斜角度(図5のθに対応)が大きくなり、上方向に熱移動が促進されたためだと考えられる。この湾曲チョップド繊維5’の傾斜角度と湾曲度合いを考慮すると、Yb/Wが0.2以下であることが望ましい。
 また、Ybは繊維シート2の厚みtよりも小さい値であることが望ましい。湾曲チョップド繊維5はおおよそ円弧状に湾曲している場合が多いが、その円弧を含む平面が繊維シート2の厚み方向に揃っている場合には、Ybがt以上となると(上記例ではt=1mmに対してYb=2mm)1本の湾曲チョップド繊維5で繊維シート2の上下面を繋ぐことになり熱移動が大きくなるからである。また、真空封止の際に繊維の滑り、移動、傾斜角の変化、繊維自体の折れ、及び変形などが生じやすくもなる。
 Ybがt未満(上記例ではt=1mmに対してYb=0.9mm)であれば、1本の湾曲チョップド繊維5で繊維シート2の上下面を繋ぐ可能性が低くなり、熱移動が大きくなることを抑制し、真空封止の際に繊維の滑り、移動、傾斜角の変化、繊維自体の折れ、及び変形なども抑制される。
 真空断熱材1の芯材3を構成するガラス繊維について、繊維の積層断面を観察し、長径、短径および断面傾斜角に関して、合計100点のサンプルデータから繊維傾斜角を算出すると、サンプルの値は20°~30°の範囲であった。これらの平均値を求めると約27°であった。
 そこで、マイクロファイバ6に相当する不規則に傾斜分布した繊維の平均傾斜角度を45°とし、残りの湾曲チョップド繊維5に相当する繊維の傾斜角をX°として、前者を40%、後者を60%だけ混合させた場合に、その平均角度が27°になるようなXを求めると、X=15°となった。
 したがって、より真空断熱材1の断熱性能の高性能化を図るには、湾曲チョップド繊維5の傾斜角度は15°以下になることが望ましい。
 すなわち、切断長さWは、W≧t/sin15°、望ましくは、W≧t/sin10°にすることが有効である。一例として、t=0.65、θ=10°となる繊維シート2を考えると、W≧3.74mmであり、切断長さは約3.7mm以上にすることがよいとわかる。
 次に、湾曲チョップド繊維5の切断長さWを3.7mm≦W≦20mmの範囲で、Yb以外は上記比較例2に示した同一条件として、Ybの下限値を調べてみると、Yb/Wが0.1より小さくなると、作製した繊維シート2の引張強度が弱くなり、ロール巻取り等ハンドリングが困難になった。
 したがって、湾曲チョップド繊維5について、Wは3.7mm以上、Yb/Wは、0.1以上0.2以下にするとよい。これにより、繊維シート化が容易になるとともに、この繊維シート2を芯材とする真空断熱材1の断熱性能を向上させることができる。
(湾曲チョップド繊維5の繊維径と熱伝導率の関係について)
 さらに、湾曲チョップド繊維5の繊維径の適正範囲を調べるために、湾曲チョップド繊維5とマイクロファイバ6の混合比率60/40wt%の繊維を芯材3とする真空断熱材1のモデル解析計算を実施した。
 湾曲チョップド繊維5の繊維径と熱伝導率の関係を調べると、湾曲チョップド繊維5の軸方向は、繊維シート2の積層面と平行になりやすい分だけ繊維傾斜角度θが小さい。このように、繊維傾斜角度θが小さい分、湾曲チョップド繊維5の熱伝導率は低くなるが、湾曲チョップド繊維5の繊維径が大きくなるほど熱伝導率は上昇する。
 一方、マイクロファイバ6が100%の繊維シート2を芯材3とする真空断熱材1は、繊維軸方向がランダムに分布していることから平均的にθが大きく、むしろ湾曲チョップド繊維5とマイクロファイバ6とを混合させた場合よりも、熱伝導率が高くなった。
 ここで、湾曲チョップド繊維5の繊維径が約20μmの真空断熱材1と、マイクロファイバ6が100%の真空断熱材1とを比較したところ、熱伝導率が一致することが分かった。
 したがって、湾曲チョップド繊維5の繊維径は、繊維径は20μm以下であることが望ましく、小さいほど熱伝導率を低減できるという効果を得ることができる。
 本実施の形態に係る真空断熱材1では、湾曲チョップド繊維5の繊維径の平均値φ=約6μmと設定しているため、この効果を得ることができるようになっている。
[本実施の形態1に係る真空断熱材1の効果]
 本実施の形態1に係る真空断熱材1について、熱伝導率を抑制することができた理由について述べる。
 湾曲無機フィラメント8を湾曲成形させたことによって、湾曲チョップド繊維5とマイクロファイバ6との絡みつきが向上されて、マイクロファイバ6の混合比率を低くした繊維シート2が製造することができた。
 つまり、湾曲チョップド繊維5は積層方向へ立体的に傾斜せずに積層面と平行に近い方向に分布し、一方で、積層方向に繊維軸方向が向きやすいマイクロファイバ6を低減させたことで、繊維からの固体熱伝導が抑制される効果が得られていると考えられる。
 また、真空断熱材1は、バインダを用いていないことから、バインダ自体からのガス化による真空度低下の問題もなく長期的な信頼性を確保しており、バインダに起因する繊維接触部の熱抵抗低下による熱伝導率の増加の問題もない。
 このように、本実施の形態1に係る真空断熱材1は、製造コストが上昇することを抑制しながら、断熱性能の低下を抑制することができる。
 本実施の形態1に係る真空断熱材1は、連続フィラメント製法で作製された真直なフィラメントを湾曲させ切断した湾曲チョップド繊維5を基材とし、これに繊維径が細く伝熱が少ないマイクロファイバ6によって繊維同士を絡ませることによってシート化するものである。
 これにより、真直チョップド繊維と比較して、湾曲チョップド繊維5の方がマイクロファイバ6との混合比率を高めることができることから、全体的に繊維シート2の積層面と繊維軸方向との傾斜角度を小さくすることができる。
 また逆に、湾曲チョップド繊維5が、マイクロファイバ6と絡みつき易くなることで、添加するバインダを無くして繊維シート2を製造することができる。
 したがって、製造コストが上昇することを抑制しながら、断熱性能の低下を抑制している真空断熱材1を得ることができる。
実施の形態2.
 本実施の形態2では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。本実施の形態2では、「真直チョップ繊維或いは湾曲チョップド繊維5」と「マイクロファイバ6」との混合比率に応じて熱伝導率が異なることについて説明したものである。
(実施の形態2に係る真空断熱材1の詳細構成)
 本実施の形態2に係る真空断熱材1の構成について説明する。
 本実施の形態2に係る真空断熱材1は、実施の形態1で説明した湾曲チョップド繊維5と、マイクロファイバ6との混合比率を80/20wt%とする繊維を抄紙したものである。すなわち、実施の形態2では、実施の形態1と比較すると湾曲チョップド繊維5の混合比率が大きくなっている。
 これは、予め設定された範囲内であれば、湾曲チョップド繊維5の混合比率が大きいほどに熱伝導率を抑制することができることを考慮したものである。ただし、湾曲チョップド繊維5の混合比率を増加させると、繊維シート2を形成することは困難になりやすくなる。そこで、本実施の形態2では、バインダ添加を約0.5%添加して湾曲チョップド繊維5及びマイクロファイバ6を繊維シート2としている。
 このように、本実施の形態2に係る真空断熱材1は、湾曲チョップド繊維5と、マイクロファイバ6との混合比率を80/20wt%として熱伝導率を抑制するとともに、繊維同士の結着を促進するのに利用されるバインダが添加されたものとなっている。そして、熱伝導率を測定した結果、0.0014W/(m・K)であった。
 平均繊維径が8μm以下のマイクロファイバ6は、一般に製法上の特徴から縮れた短繊維となる。短繊維は、繊維シート2に形成するときに、繊維自体が繊維シート2内で積層方向に傾斜し易く、繊維自体からの固体熱伝導が大きくなる。
 また、繊維の縮れも、不規則な三次元的な構造になることから、繊維自体が積層方向に傾斜する傾向が強くなる。
 一方、湾曲チョップド繊維5は、比較的真直度が高いことから、適切な繊維シート2の厚みの範囲であれば、積層方向と繊維軸方向とが概ね直角に近くなる。
 したがって、適切な繊維径と湾曲度合いと繊維長さであれば、湾曲チョップド繊維5の含有量の多い方が、無機繊維の固体熱伝導を抑制することができる。
 このように、本実施の形態2に係る真空断熱材1は、湾曲チョップド繊維5の比率を実施の形態1よりも大きくし、且つ、バインダの添加をするものの、その添加量については抑制することができており、真空断熱材1の断熱性能が低減してしまうことを抑制することができるようになっている。
(実施の形態2に係る真空断熱材1の変形例の詳細構成)
 図13は、実施の形態2に係る他の実施例を示す真空断熱材1の詳細構成図である。図13に示すように、変形例では、繊維シート2が第1の湾曲チョップド繊維5b及び第2の湾曲チョップド繊維5aを有している。すなわち、実施の形態1では、繊維シート2が湾曲チョップド繊維5と、湾曲繊維としてのマイクロファイバ6とを有しているものであったが、実施の形態2に係る変形例では、繊維シート2が第1の湾曲チョップド繊維5bと、湾曲繊維としての第2の湾曲チョップド繊維5aとを有しているものである。
 第1の湾曲チョップド繊維5bは、実施の形態1と同じように連続フィラメント製法によって製作されたものである。なお、実施の形態1では、繊維直径の平均値がφ=約6μmのフィラメントを湾曲加工した湾曲無機フィラメント8を利用した場合を例に説明したが、本変形例では、繊維直径の平均値がφ=約9μmのフィラメントを湾曲加工して湾曲無機フィラメント8としている。すなわち、本変形例に係る第1の湾曲チョップド繊維5bは、φ=約9μmの湾曲無機フィラメント8を切断長さWが約6mmとなるように切断することで得たものであって、φ=約9μmである。
 第2の湾曲チョップド繊維5aも、第1の湾曲チョップド繊維5bと同一の製法(連続フィラメント製法)によって製作されたものである。なお、第2の湾曲チョップド繊維5aは、繊維直径の平均値がφ=約4μmのフィラメントを湾曲加工した湾曲無機フィラメント8を切断長さWが約6mmとなるように切断して得られたものである。すなわち、第2の湾曲チョップド繊維5aは、第1の湾曲チョップド繊維5bとは切断長さW(繊維長さ)が同様であり、Ybと関連する湾曲度合いも同様であるが、繊維直径の平均値φが異なっており、φ=約4μmである。
 本変形例では、第1の湾曲チョップド繊維5bと第2の湾曲チョップド繊維5aの比率を80/20wt%となるように混合させて、繊維シート2を作製した。真空断熱材1を
作製する手順は実施の形態1に示したものと同様である。但しこの場合、繊維シート2の作製にはバインダが必要であった。すなわち、抄紙時にガラス繊維重量比で1wt%のポリウレタン系バインダを添加して加熱することによってガラス繊維を溶着させることで、安定な繊維シート化が可能となった。そして、繊維シート2を実施の形態1と同様に積層し、これを芯材とする真空断熱材1を作製して熱伝導率を測定した結果、0.0015W/(m・K)であった。
 つまり、本実施の形態に係る真空断熱材1は、第1の湾曲チョップド繊維5bに繊維直径の平均値φが異なる第2の湾曲チョップド繊維5aを混合することで、バインダの低減が図れることから、コスト低減が図ることができる。また、バインダ低減による熱移動が抑制されることから断熱性能の向上が図ることができる。
 なお、本変形例において、第2の湾曲チョップド繊維5aとして、第1の湾曲チョップド繊維5bとは繊維直径の平均値φが異なるものを一例として説明したが、それに限定されるものではない。たとえば、切断長さW(繊維長さ)又は湾曲度合いが異なっていてもよい。さらに、繊維直径の平均値φ、切断長さW及び湾曲度合いのうちの複数の条件が異なっていてもよい。なお、湾曲度合いを表す指標としては、たとえばYb/Wを採用することができる。
 なお、本実施の形態2に係る変形例では、繊維シート2が、マイクロファイバ6の代わりに第2の湾曲チョップド繊維5aを有する場合について説明したが、実施の形態1で説明した各種の関係は同様に成立する。
 具体的には、実施の形態1では、(1)真直ズレ率と切断長さとの関係であるYb/Wは、0.1以上0.2以下にするとよいこと、(2)繊維シート2の厚みt、湾曲チョップド繊維5の切断長さW、及び繊維傾斜角度θの関係はsinθ=t/Wであり、θが15°以下がよく、できれば10°以下にするとよいこと、について説明した。これらは、マイクロファイバ6の代わりに第2の湾曲チョップド繊維5aを採用した場合においても成立する。すなわち、第1の湾曲チョップド繊維5b及び第2の湾曲チョップド繊維5aの両方について、上記(1)(2)の関係性を持たせることで、実施の形態1と同様の効果を得ることができる。
(比較例3)
 比較例3として、真直チョップド繊維(平均径φ=約6μm)を100%としたガラス繊維シートを作製した。
 実施の形態1で説明したように、湾曲チョップド繊維5が100%である繊維シート2’を得ることは困難なので、抄紙時にポリウレタン系バインダを付着させ、加熱することでガラス繊維を溶着させた。
 その結果、バインダ量としては、約2wt%以上添加することで、繊維のシート化を図ることができた。このバインダ量が約2wt%の繊維シート2’を実施の形態1と同様に積層し、これを芯材3’とする真空断熱材1’を作製した。
 熱伝導率を測定した結果、0.0017W/(m・K)であった。
(比較例4)
 また、比較例4として、湾曲チョップド繊維5’が100%である繊維シート2’を製造した。このときのバインダ量は、比較例3と同様に約2%であった。そして、熱伝導率を測定した結果、0.0017W/(m・K)であり、比較例3の真直チョップド繊維のものと同じであった。
 このように、真直チョップド繊維が100%の真空断熱材1’と、湾曲チョップド繊維5’が100%の真空断熱材1とでは、熱伝導率についての差異は見られなかった。
 比較例4では直径6μmのほぼ単一の太さの繊維を用いたため、バインダ量が比較的多く必要であった。一方、変形例では、太い湾曲チョップド繊維(第1の湾曲チョップド繊維5b)と細い湾曲チョップド繊維(第2の湾曲チョップド繊維5a)とを混合したことにより、細い湾曲チョップド繊維は太い湾曲チョップド繊維の隙間に入って、太い湾曲チョップド繊維どうしを固定する媒体として働き、少ないバインダでも固定できるようになっている。
(比較例5)
 さらに、比較例5として、真直チョップド繊維とマイクロファイバ6’の混合比率を80/20wt%とする繊維を抄紙したところ、バインダ添加は約1%で繊維シート2’を得ることができた。
 この得られた繊維シート2’を芯材3とする真空断熱材1’を製造して熱伝導率を測定した結果、0.0016W/(m・K)であった。
 このように、本実施の形態2に係る真空断熱材1の方が、比較例3~5の真空断熱材1’よりも断熱性能が高いことが分かる。
[本実施の形態2に係る真空断熱材1の効果]
 本実施の形態2に係る真空断熱材1は、本実施の形態1に係る真空断熱材1の有する効果に加えて次の効果を有する。
 本実施の形態2に係る真空断熱材1は、湾曲チョップド繊維5と湾曲繊維としてのマイクロファイバ6との混合比率を80/20wt%とした。また、変形例では、第1の湾曲チョップド繊維5bと、湾曲繊維としての第2の湾曲チョップド繊維5aとの混同比率を80/20wt%とした。すなわち、実施の形態2に係る真空断熱材1及びその変形例では、実施の形態1と比較すると湾曲チョップド繊維5の混合比率を増大させた。これにより、繊維シート2の繊維軸方向が、繊維シート2の積層方向に傾斜することが抑制され、真空断熱材1の熱伝導率を低減することができる。
 なお、変形例では、湾曲繊維として第2の湾曲チョップド繊維5aを採用した場合を例に説明したが、それに限定されるものではない。たとえば、湾曲繊維として、第2の湾曲チョップド繊維5aとマイクロファイバ6とを組み合わせた繊維を採用してもよく、たとえば、第1の湾曲チョップド繊維5bを80wt%、第2の湾曲チョップド繊維5aを10wt%、マイクロファイバ6を10wt%などとしてもよい。これによっても、本実施の形態2に係る真空断熱材1の変形例と同様の効果を得ることができる。
 本実施の形態2に係る真空断熱材1は、実施の形態1と比較すると湾曲チョップド繊維5の混合比率を増大させたため、バインダを添加している。バインダが添加されると、その分、繊維同士の融着が発生するため熱伝導率が上昇してしまうが、湾曲チョップド繊維5の混合比率を増大させたことによる熱伝導率の低減の効果の方が優っており、結果として真空断熱材1の熱伝導率が増大することを抑制することができるようになっている。
 また、繊維質のほとんど(90%以上など)が湾曲繊維であるなら少量(たとえば10%以下)の真直チョップド繊維が混ざっていてもよい。また、その場合は、チョップド繊維のうち湾曲した湾曲チョップド繊維5が多くを占め、真直チョップド繊維が少なくなるようにすればよい。このように、真直チョップド繊維が少量混ざっていても、本実施の形態2に係る真空断熱材1及びその変形例と同様の効果を得ることができる。
 さらに、湾曲チョップド繊維5が、湾曲度合いとして主に0.1≦Yb/W≦0.2のもので構成されていれば、Yb/Wが0.1よりも小さい、又はYb/Wが0.2よりも大きいものが少量含まれていてもよい。この態様であっても、本実施の形態2に係る真空断熱材1及びその変形例と同様の効果を得ることができる。
実施の形態3.
 本実施の形態3では、実施の形態1、2と同一部分には同一符号とし、実施の形態1、2との相違点を中心に説明するものとする。実施の形態1、2では、火炎法を利用して作製したマイクロファイバ6が用いられているが、本実施の形態3では、遠心法を利用して作製したマイクロファイバ7を用いている点で異なっている。
(実施の形態3に係る真空断熱材1の詳細構成)
 図7は、実施の形態3に係る真空断熱材1の繊維シート2の拡大断面模式図である。図7において、繊維シート2は、湾曲チョップド繊維5とマイクロファイバ7で構成されている。
 マイクロファイバ7は、遠心法で作製された直径が約φ=4μmで、繊維長さが約10mm程度の縮れた繊維である。遠心法で作製された繊維は、火炎法で作製される繊維よりも繊維径が大きく長いので、空間的にランダムに縮れている。また、繊維径が大きいので繊維が絡まりにくくなる。
 湾曲チョップド繊維5とマイクロファイバ7の混合比率を80/20wt%として繊維シート2を製造したところ、バインダの添加量は約1wt%であった。なお、湾曲チョップド繊維5については、実施の形態1、2のものと同様のものである。
 そして、実施の形態1、2と同様の手順で真空断熱材1を製造し、熱伝導率を測定したところ、0.0016W/mKであった。これは、実施の形態2における比較例5と同等の数値である。
 すなわち、本実施の形態3に係る真空断熱材1は、実施の形態2の真空断熱材1と比較すると、約0.5%程度だけバインダの添加量は増加してしまっている。しかし、遠心法で製造したマイクロファイバ7であっても、熱伝導率を0.0016W/mK程度まで抑制することができる上に、遠心法は、火炎法よりも生産性が高いため、マイクロファイバ6よりも低コストでマイクロファイバ7を製造することができる分、真空断熱材1の製造コストを抑制することができる。
(比較例6)
 比較例6として、実施の形態1と同様の湾曲チョップド繊維5と、遠心法で作製した平均直径が約φ6μmで繊維長さが約10mm程度のマイクロファイバ7’とを混合比率が80/20wt%となるように構成した繊維シート2’を製造した。このときバインダ添加量は約2wt%弱で、実施の形態2の比較例3の真直チョップド繊維の場合よりもやや少なかった。この比較例6の真空断熱材1’について、熱伝導率を測定すると、0.0017W/mKであり、比較例3の真空断熱材1’と同等であった。
 このように、比較例6では、バインダの添加量が比較例3よりも減少しているにもかかわらず、熱伝導率が同等であることから、マイクロファイバ7’の平均直径を増大させた分、熱移動が多くなっていることを示唆している。
 マイクロファイバ6が太くなると剛性が高くなり、湾曲チョップド繊維5の配列はランダムに曲がったマイクロファイバ6に大きく影響されることで、湾曲チョップド繊維5の繊維傾斜角度θの平均が大きくなったこと、ならびに、太いマイクロファイバ自体が、繊維積層方向に伝熱媒体となって、熱を伝え易くなったことで、特性が低下したと考えられる。したがって、マイクロファイバ6の太さは湾曲チョップド繊維5よりも細いことが望ましい。そして、湾曲チョップド繊維5がシート面に概ね平行となるように配列し、その間に細く柔軟なマイクロファイバ6がある状態が望ましい。
 このことから、マイクロファイバ7の平均繊維径は、湾曲チョップド繊維5の平均径よりも小さくした方が、真空断熱材1の熱伝導率が増大することを抑制することができる。
 これについては、実施の形態1、2に係る真空断熱材1についても言えることである。
 すなわち、マイクロファイバ6の平均繊維径は、湾曲チョップド繊維5の平均繊維径よりも小さくした方が、真空断熱材1の熱伝導率が増大することを抑制することができる。
[本実施の形態3に係る真空断熱材1の効果]
 本実施の形態3に係る真空断熱材1は、湾曲チョップド繊維5と、火炎法よりも生産性の高い遠心法を利用して得られるマイクロファイバ7とを用いて繊維シート2が形成されるので、製造コストが上昇することを抑制しながら、断熱性能の低下を抑制することができる。
実施の形態4.
 本実施の形態4では、実施の形態1~3と同一部分には同一符号とし、実施の形態1~3との相違点を中心に説明するものとする。実施の形態1~3では、火炎法を利用して製造したマイクロファイバ6、或いは遠心法を利用して製造されたマイクロファイバ7が用いられているが、本実施の形態3では、マイクロファイバ6及びマイクロファイバ7の両方を用いている点で異なっている。
 図8は、実施の形態4に係る真空断熱材1の繊維シート2の拡大断面模式図である。図8において、繊維シート2は、「実施の形態1~3と同様の湾曲チョップド繊維5」と、「実施の形態1、2の火炎法を利用して得られたマイクロファイバ6、及び実施の形態3の遠心法を利用して得られたマイクロファイバ7」とを有している。
[本実施の形態4に係る真空断熱材1の効果]
 本実施の形態4に係る真空断熱材1は、この繊維シート2を有しているので、実施の形態1及び実施の形態2に係る真空断熱材1と、実施の形態3に係る真空断熱材1との中間の機能を果たすことができる。
 すなわち、本実施の形態4に係る真空断熱材1は、製造コスト及び断熱性能の効果が、実施の形態1、2と実施の形態3との中間となることから、真空断熱材1を適用する先のコストパフォーマンスを考慮して、適切な選定をすれば、コストと断熱性能の両立をより図ることができる。
実施の形態5.
 図9は、実施の形態5に係る保温体(保温タンク22)の断面模式図である。
 図9において、保温タンク22の周囲の少なくとも一部に真空断熱材1が設けられている。すなわち、円筒形状の保温タンク22の胴部24aの約2/3に円筒形状の真空断熱材1を巻き付けている。また、胴部24aの残り約1/3と上下の鑑板部24bは非真空断熱材23で被覆してある。
 真空断熱材1は、実施の形態1で示したものと同じ仕様であり、また作製は、実施の形態1で示した手順で行っている。さらに、真空断熱材1は、保温タンク22が円筒状であることに対応するように、円筒形状に曲げ加工がなされている。
 非真空断熱材23は、EPS(ビーズ法発泡ポリスチレン)断熱材で、保温タンク22の上下の部分は、鑑板部24bの形状に合わせて成形している。
 タンク内部には水が満たされており、加熱源(図示せず)により沸き上げたものである。加熱源としては、タンク内部に設けた電気ヒータから直接加熱する場合、また、他の加熱源であるたとえば燃料電池発電システムなどの排熱回収回路からの循環水による間接加熱などの手法がある。
 胴径600mmで容量370Lの保温タンク22を用いて、電気ヒータにてタンク内部を90℃の温水で満たし、外気を4℃に設定した環境にて放熱評価を実施した。
 まず、厚み8mmの真空断熱材1と厚み50mmの非真空断熱材23を用いて、8時間経過した前後で放熱量を測定した。
 次に、比較例1として示した真空断熱材1’を用いたタンクと比較したところ、実施の形態1の真空断熱材1を適用した保温タンク22の方が、約4%の放熱量が低減できていることが確認された。これにより、実施の形態1に係る真空断熱材1を適用することによって、外気との高い断熱性を有する円筒形状保温タンクが実現できる。
 また、本実施の形態5では、加熱源を例に説明したが、これが冷熱源であってもよい。
 たとえば、冷凍機などによって冷却された水、若しくはアイスシャーベットなどが直接もしくは間接的に保温タンク22内部を除熱し、保温タンク22内部を周囲温度より低温に維持するものである。このように、冷熱源であっても、真空断熱材1を適用することでより熱遮性を向上させた保温タンク22を実現できる。
[実施の形態5の変形例]
 図10は、図9とは異なる保温体200の断面模式図である。
 図10において、保温体200は、外箱201と、外箱201の内部に配置された内箱202と、外箱201と内箱202との隙間に配置された真空断熱材1とを有している。
 また、保温体200は、内箱202と外箱201で形成された空間のうち真空断熱材1が配置されていない空間には、ポリウレタンフォームで構成される断熱材203で充填されている。保温体200に、実施の形態1~4に係る真空断熱材1を適用することで、断熱性能が高く、しかも長期信頼性のある保温体200を得ることができる。
実施の形態6.
 図11は、実施の形態6に係るヒートポンプ式給湯500のシステム構成図である。
 このヒートポンプ式給湯500は、実施の形態5に係る保温タンク22を有しているものである。
 図11において、ヒートポンプユニット31は、循環媒体が循環する冷媒循環回路36と、これが流通する複数の機器で構成されている。すなわち、ヒートポンプユニット31は、大気から熱を授受し循環冷媒に授与する空気熱交換器35と、循環媒体を加圧する圧縮機25と、循環冷媒から熱を除去する熱交換器29と、循環媒体を体積膨張させる膨張弁26とを有している。冷媒循環回路36において、第1熱交換器としての熱交換器29は凝縮器として機能し、第2熱交換器としての空気熱交換器35は蒸発器として機能している。
 熱交換器29で加熱された他の媒体は、三方弁28を経由して保温タンク22の上部と接続されている。また、保温タンク22の下部と熱交換器29との間には水ポンプ34aが設けられている。このように、媒体循環回路37は、熱交換器29、三方弁28、保温タンク22及び水ポンプ34aなどを有している。
 また、保温タンク22に上部には温水を取り出して市水32と混合弁27aで混合して給湯に用いる給湯回路38と、混合弁27bにて市水32と混合して浴槽33に供給する回路が設けられている。
 さらに、浴槽33からは、水ポンプ34bと風呂熱交換器30に接続する回路が設けられている。また、市水32は保温タンク22の下部に接続されている。
 次に、保温タンク22の内部の水を加熱する動作について説明する。
 ヒートポンプユニット31は、たとえばCO を冷媒として用い、冷媒循環回路36にて循環される。まず、CO 冷媒は、空気熱交換器35で大気中の熱を吸収する。次に、圧縮機25で圧縮されて百数十℃まで温度が上昇する。そして、熱交換器29で媒体循環回路37を流通する、たとえば水と熱交換が行われる。
 熱を奪われたCO 冷媒は、膨張弁26にてさらに温度が低下されて、再度、空気熱交換器35に供給されて循環される。熱交換器29にて加熱された水は、たとえば90℃強まで加熱され、保温タンク22の上部に供給される。また、保温タンク22の下部からは温度の低い冷水が取り出され、水ポンプ34aにて熱交換器29に、この冷水が供給される。
 この様にヒートポンプユニット31を加熱源として用いて、保温タンク22内部の水を加熱させる。
 加熱された温水は、用途に応じて使用されるが、たとえば、保温タンク22の上部から取り出した温水(保温タンク22の下部に市水32を供給することで水圧にて押し上げる)は、混合弁27aにて市水32と混合させて適切な温度になる様に調整された後、給湯用として給湯回路38に供給される。
 また、同様に混合弁27bにて市水32と混合された温水が浴槽33に供給される。
 一方、浴槽33の追い焚きには、風呂熱交換器30にて、浴槽33内の温水と、保温タンク22内の温水を熱交換させて利用する。
 実施の形態5で示した保温タンク22に、真空断熱材1を適用し、家庭用の給湯機システムの性能を評価した。JIS C 9220に基づいて、給湯機システムの効率を評価した結果、年間給湯効率が約0.5%向上することが確認された。
 これにより、実施の形態1~4の真空断熱材1を適用した保温タンク22を用いた給湯機システムは、より省エネ性に優れた給湯機システムを提供することができる。
[実施の形態6の変形例]
 図12は、図11とは異なるヒートポンプ式給湯機501のシステム構成図である。
 図12において、媒体循環回路37は、三方弁28bによって、保温タンク22を循環する回路と、これと分岐してラジエータ39に接続する回路が設けられている。また、保温タンク22を流通する循環回路は、保温タンク22内部の水とは幾何学的に分離されている。冷媒循環回路36の冷媒にはR410Aを用いている。その他の構成は、図11と同じである。
 ヒートポンプユニット31を構成する熱交換器29で加熱された媒体循環回路37を流通する約70℃弱の温水は、通常はラジエータ39に供給されて、部屋の暖房に用いられる。ラジエータ39で大気に熱を与えて温度が低下した水は、水ポンプ34aによって熱交換器29に戻ることによって、媒体循環回路37を形成している。一方で、三方弁28bの切り替えにより、ラジエータ39への温水の供給を停止し、保温タンク22に設けられた螺旋形状の管を通過させることによって、保温タンク22に満たされた水を加温し、温水として貯える。保温タンク22の貯えられた温水は、シャワーなどの給湯として利用される。
 図12に示すものは、暖房を主目的とした給湯システムであるため、暖房負荷の小さい時間帯に保温タンク22に温水を貯え保温しておくことが必要である。ヒートポンプ式給湯機501は、保温タンク22が真空断熱材1を有しているため、保温タンク22からの放熱が低減され、より省エネ性に優れた給湯機システムを提供することができる。
 なお、上記にて保温タンク22の加熱方法や浴槽33の追い焚きや給湯の一例を示したが、何もこれに限定されるものではなく、ヒートポンプの原理を利用してタンク内部の水を直接加熱するものや、媒体循環回路37を流通させる媒体とタンク内部の水を幾何学的に分離して間接加熱するものであってもよい。
 また、冷媒循環回路36を循環する冷媒には、CO 冷媒、R401A冷媒を利用した例を示したが、これに限定されるものではなく、たとえば、使用条件などによってはイソブタンなどであっても良い。
 1 真空断熱材、2 繊維シート、3 芯材、4 外被材、4a 外被シート、5 湾曲チョップド繊維、5a 第2の湾曲チョップド繊維、5b 第1の湾曲チョップド繊維、6、7 マイクロファイバ、8 湾曲無機フィラメント、22 保温タンク、23 非真空断熱材、24a 胴部、24b 鑑板部、25 圧縮機、26 膨張弁、27a、27b 混合弁、28、28b 三方弁、29 熱交換器、30 風呂熱交換器、31 ヒートポンプユニット、32 市水、33 浴槽、34a、34b 水ポンプ、35 空気熱交換器、36 冷媒循環回路、37 媒体循環回路、38 給湯回路、39 ラジエータ、200 保温体、201 外箱、202 内箱、203 断熱材、500 ヒートポンプ式給湯、501 ヒートポンプ式給湯機。

Claims (12)

  1.  繊維シートの積層体構造である芯材と前記芯材を収容している外被材とを有する真空断熱材において、
     前記繊維シートは、
     第1の湾曲チョップド繊維と湾曲繊維とを有する
     ことを特徴とする真空断熱材。
  2.  前記湾曲繊維は、
     少なくとも湾曲度合い、繊維長さまたは平均繊維径のいずれかが異なる第2の湾曲チョップド繊維を有する
     ことを特徴とする請求項1記載の真空断熱材。
  3.  前記湾曲繊維は、
     前記第1の湾曲チョップド繊維より平均繊維径の小さい
     ことを特徴とする請求項1又は2に記載の真空断熱材。
  4.  前記湾曲繊維は、
     マイクロファイバを有する
     ことを特徴とする請求項1~3のいずれか一項に記載の真空断熱材。
  5.  前記第1の湾曲チョップド繊維の切断長さWと真直ズレ幅Ybの関係が、0.1≦Yb/W≦0.2である
     ことを特徴とする請求項1~4のいずれか一項に記載の真空断熱材。
  6.  前記繊維シートを前記外被材内に収容して前記外被材を封止した状態における前記繊維シートの厚みをtとしたときに、
     t/sin15°≦Wである
     ことを特徴とする請求項1~5のいずれか一項に記載の真空断熱材。
  7.  前記繊維シートは、
     前記第1の湾曲チョップド繊維と前記湾曲繊維とを結着させる無機、又は有機バインダが、1wt%以下添加された
     ことを特徴とする請求項1~6のいずれか一項に記載の真空断熱材。
  8.  前記マイクロファイバは、
     火炎法で製造された無機繊維を有している
     ことを特徴とする請求項4に記載の真空断熱材。
  9.  前記マイクロファイバは、
     遠心法で製造された無機繊維を有している
     ことを特徴とする請求項4に記載の真空断熱材。
  10.  加熱源によって加熱もしくは冷却源によって除熱された媒体を貯留する保温タンクにおいて、前記保温タンクの周囲の少なくとも一部に、請求項1~9のいずれか一項に記載の真空断熱材が設けられている
     ことを特徴とする保温タンク。
  11.  圧縮機、凝縮器として機能する第1熱交換器、減圧手段、及び蒸発器として機能する第2熱交換器を有する冷媒循環回路と、
     前記第1熱交換器、及び請求項10に記載の保温タンクを有し、前記第1熱交換器で前記冷媒循環回路を流れる冷媒と熱交換する媒体が流れる媒体循環回路と、
     を有する
     ことを特徴とするヒートポンプ式給湯機。
  12.  外箱と、
     前記外箱の内側に設けられる内箱と、
     前記外箱と前記内箱との間に設けられる、請求項1~9のいずれか一項に記載の真空断熱材と、を有する
     ことを特徴とする保温体。
PCT/JP2014/052586 2013-04-05 2014-02-04 真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機 WO2014162771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/767,173 US9574701B2 (en) 2013-04-05 2014-02-04 Vacuum heat insulator, heat retaining tank including same, heat retaining structure, and heat pump water heater
CN201480019540.2A CN105102874B (zh) 2013-04-05 2014-02-04 真空隔热件及具备该真空隔热件的保温容器、保温体、及热泵式热水供给机
EP14779889.6A EP2982897B1 (en) 2013-04-05 2014-02-04 Vacuum heat-insulating material, thermal insulation tank provided with same, thermal insulator, and heat pump hot water heater
JP2015509936A JP6025969B2 (ja) 2013-04-05 2014-02-04 真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-079684 2013-04-05
JP2013079684 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014162771A1 true WO2014162771A1 (ja) 2014-10-09

Family

ID=51658075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052586 WO2014162771A1 (ja) 2013-04-05 2014-02-04 真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機

Country Status (5)

Country Link
US (1) US9574701B2 (ja)
EP (1) EP2982897B1 (ja)
JP (1) JP6025969B2 (ja)
CN (1) CN105102874B (ja)
WO (1) WO2014162771A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169823A (ja) * 2015-03-13 2016-09-23 株式会社東芝 断熱材、コア材、冷蔵庫、断熱材の製造方法
WO2018047261A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 真空断熱材及び断熱箱
WO2018087983A1 (ja) * 2016-11-10 2018-05-17 三菱電機株式会社 真空断熱材、真空断熱材の製造方法、及び真空断熱材の製造装置
CN110778852A (zh) * 2015-03-10 2020-02-11 东芝生活电器株式会社 绝热材料、芯材、冰箱以及绝热材料的制造方法
WO2022009851A1 (ja) * 2020-07-10 2022-01-13 イビデン株式会社 熱伝達抑制シート及び組電池
WO2023120544A1 (ja) * 2021-12-23 2023-06-29 イビデン株式会社 熱伝達抑制シート及び組電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512075A (ja) * 2016-02-16 2019-05-09 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 処理プラント水を冷却する方法とシステム
US10883647B2 (en) 2016-05-12 2021-01-05 Mitsubishi Electric Corporation Vacuum heat insulator and method of manufacturing the same
US10800595B2 (en) * 2017-04-07 2020-10-13 Pratt Retail Specialties, Llc Box liner
CN107763850B (zh) * 2017-11-07 2023-10-27 南京航空航天大学 制取不低于100℃沸水的方法
DE202020107477U1 (de) * 2020-12-22 2021-01-29 Va-Q-Tec Ag Isolationsbehälter zur Aufnahme von temperaturempfindlichen Produkten

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911374A (ja) 1995-06-27 1997-01-14 Asahi Fiber Glass Co Ltd 繊維集合体及び断熱吸音材
JPH11505591A (ja) * 1995-03-16 1999-05-21 オウェンス コーニング ブレンドウール充填材を有する真空絶縁パネル、及びその製造方法
JP2009162267A (ja) 2007-12-28 2009-07-23 Sharp Corp 真空断熱材用芯材、真空断熱材、および、これらの製造方法
JP2010242868A (ja) * 2009-04-07 2010-10-28 Sharp Corp 真空断熱材とそれを備える機器
JP2011257012A (ja) * 2010-06-04 2011-12-22 Mitsubishi Electric Corp 貯湯式給湯機
WO2013121992A1 (ja) * 2012-02-14 2013-08-22 井前工業株式会社 真空断熱材及びその製造方法
JP2013238283A (ja) * 2012-05-16 2013-11-28 Imae Kogyo Kk 真空断熱材及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134371B2 (en) * 2001-09-13 2006-11-14 Owens Corning Composites Sprl Apparatus for guiding continuous fibers
WO2005003618A1 (ja) * 2003-07-04 2005-01-13 Matsushita Electric Industrial Co., Ltd. 真空断熱材とそれを用いた機器
JP2005127409A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器
CN1657282A (zh) * 2004-02-04 2005-08-24 松下电器产业株式会社 真空绝热材料及其制造方法、保温保冷设备、以及绝热板
JP5129996B2 (ja) * 2007-06-29 2013-01-30 株式会社コーワ 回転清掃体を構成する清掃体の生地、清掃体、回転清掃体、掃除機用吸込具、電気掃除機及び空気調和機
JP5169531B2 (ja) * 2008-06-24 2013-03-27 三菱電機株式会社 真空断熱材
JP5193713B2 (ja) * 2008-07-17 2013-05-08 日立アプライアンス株式会社 冷凍冷蔵庫
JP4772887B2 (ja) * 2009-03-27 2011-09-14 シャープ株式会社 真空断熱材用芯材、真空断熱材、および、これらの製造方法
JP4717126B2 (ja) * 2009-04-07 2011-07-06 シャープ株式会社 真空断熱材とそれを備える機器
JP5618756B2 (ja) 2010-10-18 2014-11-05 三菱電機株式会社 真空断熱材およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505591A (ja) * 1995-03-16 1999-05-21 オウェンス コーニング ブレンドウール充填材を有する真空絶縁パネル、及びその製造方法
JPH0911374A (ja) 1995-06-27 1997-01-14 Asahi Fiber Glass Co Ltd 繊維集合体及び断熱吸音材
JP2009162267A (ja) 2007-12-28 2009-07-23 Sharp Corp 真空断熱材用芯材、真空断熱材、および、これらの製造方法
JP2010242868A (ja) * 2009-04-07 2010-10-28 Sharp Corp 真空断熱材とそれを備える機器
JP2011257012A (ja) * 2010-06-04 2011-12-22 Mitsubishi Electric Corp 貯湯式給湯機
WO2013121992A1 (ja) * 2012-02-14 2013-08-22 井前工業株式会社 真空断熱材及びその製造方法
JP2013238283A (ja) * 2012-05-16 2013-11-28 Imae Kogyo Kk 真空断熱材及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778852A (zh) * 2015-03-10 2020-02-11 东芝生活电器株式会社 绝热材料、芯材、冰箱以及绝热材料的制造方法
JP2016169823A (ja) * 2015-03-13 2016-09-23 株式会社東芝 断熱材、コア材、冷蔵庫、断熱材の製造方法
WO2018047261A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 真空断熱材及び断熱箱
JPWO2018047261A1 (ja) * 2016-09-08 2019-04-11 三菱電機株式会社 真空断熱材及び断熱箱
WO2018087983A1 (ja) * 2016-11-10 2018-05-17 三菱電機株式会社 真空断熱材、真空断熱材の製造方法、及び真空断熱材の製造装置
JP6359206B1 (ja) * 2016-11-10 2018-07-18 三菱電機株式会社 真空断熱材、真空断熱材の製造方法、及び真空断熱材の製造装置
WO2022009851A1 (ja) * 2020-07-10 2022-01-13 イビデン株式会社 熱伝達抑制シート及び組電池
JP6997263B1 (ja) 2020-07-10 2022-01-17 イビデン株式会社 熱伝達抑制シート及び組電池
JP7000626B1 (ja) 2020-07-10 2022-01-19 イビデン株式会社 熱伝達抑制シート及び組電池
JP2022024233A (ja) * 2020-07-10 2022-02-09 イビデン株式会社 熱伝達抑制シート及び組電池
JP2022025133A (ja) * 2020-07-10 2022-02-09 イビデン株式会社 熱伝達抑制シート及び組電池
JP2022037091A (ja) * 2020-07-10 2022-03-08 イビデン株式会社 熱伝達抑制シートの製造方法及び組電池の製造方法
JP7044939B2 (ja) 2020-07-10 2022-03-30 イビデン株式会社 熱伝達抑制シートの製造方法及び組電池の製造方法
WO2023120544A1 (ja) * 2021-12-23 2023-06-29 イビデン株式会社 熱伝達抑制シート及び組電池

Also Published As

Publication number Publication date
CN105102874B (zh) 2016-12-21
EP2982897A4 (en) 2016-12-14
JP6025969B2 (ja) 2016-11-16
US20150377407A1 (en) 2015-12-31
EP2982897A1 (en) 2016-02-10
CN105102874A (zh) 2015-11-25
EP2982897B1 (en) 2019-09-25
US9574701B2 (en) 2017-02-21
JPWO2014162771A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6025969B2 (ja) 真空断熱材、及びそれを備えた保温タンク、保温体、並びにヒートポンプ式給湯機
US7638181B2 (en) Vacuum heat insulator and hot insulation/cold insulation apparatus incorporating the vacuum insulator
WO2013065162A1 (ja) 真空断熱材およびその製造方法、ならびにそれを用いた保温タンクおよびヒートポンプ式給湯機
JP4726970B2 (ja) 真空断熱材とそれを備える機器
JP6073005B1 (ja) 真空断熱材および真空断熱材の製造方法
JP4969436B2 (ja) 真空断熱材およびそれを用いた機器
JP6266162B2 (ja) 保温体、真空断熱材および真空断熱材の製造方法
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
WO2013073599A1 (ja) 真空断熱材およびそれを備える機器、ならびにその製造方法
KR101165548B1 (ko) 에어로젤을 이용한 파이프 보온 단열재
JP2009228886A (ja) 真空断熱材及びこれを用いた断熱箱
JP2012092870A (ja) 真空断熱材及びそれを用いた断熱箱
WO2010116720A1 (ja) 真空断熱材とそれを備える機器
KR20130133984A (ko) 유리섬유를 이용한 심재, 그 제조방법 및 이를 이용한 진공단열재
JP5788081B2 (ja) 複合断熱材、保温タンク及びヒートポンプ式給湯機
JP6359087B2 (ja) 真空断熱材、及びそれを備えた保温体
JP4907480B2 (ja) 真空断熱材
WO2021054395A1 (ja) 真空断熱材
JP2005273696A (ja) 真空断熱材、真空断熱材を具備する保温保冷機器、および断熱ボード
JP6016435B2 (ja) 真空断熱材および被断熱装置
JP2006220214A (ja) 真空断熱材
KR20140143904A (ko) 진공단열재가 적용된 열수기
JP2006002919A (ja) グラスウールボード及び真空断熱材
KR20130008813A (ko) 에어로젤을 이용한 파이프 보온 단열재 제조방법
JP2017129237A (ja) 真空断熱材及び真空断熱材を用いた機器並びに芯材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019540.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509936

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767173

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014779889

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE