WO2014157576A1 - フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯 - Google Patents

フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯 Download PDF

Info

Publication number
WO2014157576A1
WO2014157576A1 PCT/JP2014/059011 JP2014059011W WO2014157576A1 WO 2014157576 A1 WO2014157576 A1 WO 2014157576A1 JP 2014059011 W JP2014059011 W JP 2014059011W WO 2014157576 A1 WO2014157576 A1 WO 2014157576A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
ferritic stainless
less
toughness
rolled
Prior art date
Application number
PCT/JP2014/059011
Other languages
English (en)
French (fr)
Inventor
井上 宜治
憲博 神野
伊藤 宏治
岳 戸村
浩一 井内
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51624532&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014157576(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201480017611.5A priority Critical patent/CN105051234B/zh
Priority to BR112015024500-5A priority patent/BR112015024500B1/pt
Priority to JP2015508731A priority patent/JP5885884B2/ja
Priority to MX2015013765A priority patent/MX2015013765A/es
Priority to EP14776136.5A priority patent/EP2980251B1/en
Priority to US14/780,468 priority patent/US10385429B2/en
Priority to CA2907970A priority patent/CA2907970C/en
Publication of WO2014157576A1 publication Critical patent/WO2014157576A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a ferritic stainless hot-rolled steel sheet that is excellent in toughness at low temperature and has excellent corrosion resistance, a manufacturing method thereof, and steel, which are mainly used for a flange material used in an automobile exhaust system and other pipe joints.
  • a manufacturing method thereof and steel, which are mainly used for a flange material used in an automobile exhaust system and other pipe joints.
  • Ferritic stainless steel is inferior in workability, toughness, and high-temperature strength compared to austenitic stainless steel, but is inexpensive because it does not contain a large amount of Ni, and its thermal expansion is small, so automobile exhaust system parts materials, etc. Used for.
  • steel types such as SUH409L, SUS429, SUS430LX, SUS436J1L, SUS432, and SUS444 are used as ferritic stainless steel suitable for these applications.
  • ferritic stainless steel due to the need for reducing the weight of the vehicle body and extending the service life, a material with excellent corrosion resistance is also required for the automotive flange material, and ferritic stainless steel of SUH409L or higher is used.
  • ferritic stainless steel when used in an exhaust system, ferritic stainless steel is more advantageous than plain steel because it has the effect of reducing the plate thickness if the strength at high temperature is high.
  • thin cold-rolled steel sheets with a thickness of 3 mm or less may be used with improved rigidity by bending, etc., but thick hot-rolled steel sheets with a thickness of 5 mm or more are punched as they are. Often used.
  • ferritic stainless steel hot-rolled steel sheets with a thickness of 5 mm or more are difficult to manufacture because of their low toughness.
  • plate breakage often occurs in the production line after hot rolling. Therefore, the examination of the improvement of toughness so far has been mainly from the manufacturing aspect.
  • Patent Document 1 discloses a method of changing the finishing temperature in accordance with the alloy composition during hot rolling, and quenching after winding.
  • Patent Documents 2 and 3 also show toughness improvement methods for the purpose of improving the productivity of thick hot-rolled coils.
  • ferritic stainless steel When processing ferritic stainless steel as an automotive flange material, it is often manufactured by punching. Therefore, ferritic stainless steel with inferior toughness is disadvantageous. In particular, cracking often occurs during the punching operation in winter, making it difficult to manufacture parts. Therefore, a ferritic stainless steel sheet having excellent toughness that does not hinder parts manufacture even in winter is desired.
  • An object of the present invention is to provide a ferritic stainless hot-rolled steel sheet excellent in toughness and corrosion resistance, a manufacturing method thereof, and a steel strip, which are used for automobile flanges and the like.
  • the present inventors investigated the production environment of the flange material in winter in order to examine the improvement of toughness at low temperatures. As a result, it was found that there are many cases in which the punching work is performed in an environment below room temperature (25 ° C.) in winter, but the punching work is rarely performed in an environment below 0 ° C.
  • the ductile-brittle transition temperature of ferritic stainless steel is near room temperature, and the toughness may vary greatly with temperature changes from room temperature to 0 ° C. For this reason, it is considered that even in an operation in which the steel sheet does not crack in the summer, the steel sheet is cracked in the winter.
  • the inventors considered that the examination of toughness only at room temperature (25 ° C) is not sufficient, and it is considered that cracking does not occur if the toughness at 0 ° C is secured, and detailed examination is performed using the toughness at 0 ° C as an index. Went.
  • Hot-rolled steel sheets are manufactured through the steps of melting, casting, hot-rolling, annealing, and pickling, but the examination of toughness so far has mainly been related to the toughness of the material as it is hot-rolled.
  • the toughness of the hot-rolled annealed material is lower, and in the study of the present invention, it was necessary to consider improving the toughness of the more severe hot-rolled annealed material. It was.
  • the toughness of the hot-rolled annealed sheet is not stable depending on the production conditions.
  • the present inventors have further studied and, as a result, found that the toughness at 0 ° C. can be stably secured by limiting the temperature of the final annealing and the cooling rate to a certain range.
  • the present invention has been made based on these findings, and the gist thereof is as follows.
  • the annealing temperature in the annealing process is 1000 ° C. or higher and 1100 ° C. or lower, and the cooling rate is 800 ° C. to 400 ° C. in the subsequent cooling process. 5.
  • a ferritic stainless steel strip comprising the ferritic stainless hot-rolled steel sheet of (1) or (2).
  • a ferritic stainless steel sheet for automobile flanges comprising the ferritic stainless hot rolled steel sheet of (1) or (2).
  • a ferritic stainless steel strip for automobile flanges characterized by comprising the ferritic stainless hot rolled steel strip of (4) above.
  • the upper limit of the C amount is 0.015%.
  • the lower limit is preferably 0.001%.
  • the content is preferably 0.002 to 0.010%. Furthermore, it is preferably 0.002 to less than 0.007%.
  • N 0.020% or less N, like C, deteriorates formability, corrosion resistance, and hot-rolled sheet toughness. Therefore, the content is preferably as small as possible.
  • Nb is added to stabilize N as carbonitride
  • the lower limit is preferably 0.001%.
  • the content is preferably 0.002 to 0.015%.
  • Si 0.01 to 0.4%
  • Si is an element useful as a deoxidizer, and is an element that improves high-temperature strength and oxidation resistance.
  • the deoxidation effect is improved as the Si amount is increased, and the effect is manifested at 0.01% or more. Therefore, the lower limit of the Si amount is set to 0.01%.
  • Excessive addition of Si reduces room temperature ductility.
  • Si also has the effect of promoting the precipitation of the Laves phase in the cooling process after annealing and degrading toughness. Therefore, the upper limit of Si content is set to 0.4%. More preferably, it is 0.01 to 0.2%.
  • Mn 0.01 to 0.8%
  • Mn is an element added as a deoxidizer and an element contributing to an increase in high-temperature strength in the middle temperature range. Mn does not significantly affect toughness. In order to acquire said effect, it is necessary to make Mn amount 0.01% or more. On the other hand, excessive addition forms MnS and lowers the corrosion resistance, so the upper limit of the amount of Mn is made 0.8%. Preferably it is 0.5% or less.
  • P 0.04% or less P is an element having a large solid solution strengthening ability, but is a ferrite stabilizing element and an element harmful to corrosion resistance and toughness.
  • P is contained as an impurity in ferrochrome, which is a raw material for stainless steel. Since it is very difficult to remove P from molten stainless steel, the P content is preferably 0.010% or more. The content of P is almost determined by the purity and amount of the ferrochrome raw material to be used. Since P is a harmful element, the purity of P of the ferrochrome raw material is preferably low. However, since low P ferrochrome is expensive, the P content is in a range that does not greatly deteriorate the material and corrosion resistance. The following. In addition, Preferably it is 0.03% or less.
  • the content is preferably as low as 0.010%. To do. Further, the smaller the S content, the better the corrosion resistance. However, since the desulfurization load increases and the production cost increases for lowering the S content, the lower limit is preferably made 0.001%. Preferably, the content is 0.001 to 0.008%.
  • Cr 14.0 to less than 18.0% Cr is an essential element for ensuring corrosion resistance. However, Cr is also an element that reduces toughness. If the content of Cr is less than 14.0%, the effect of ensuring corrosion resistance is not obtained, and if the content of Cr is 18.0% or more, it causes deterioration in workability and toughness, particularly at low temperatures.
  • the Cr content is 14.0 to less than 18.0%. In order to avoid 475 brittleness in the cooling process after annealing, it is better that the Cr content is small. Considering the corrosion resistance more, 15.0 to less than 18.0% is preferable.
  • Ni 0.05 to 1%
  • Ni is an element effective for suppressing the progress of pitting corrosion, and the effect is stably exhibited by addition of 0.05% or more. In addition, it is effective for improving the toughness of the hot-rolled sheet. Therefore, the lower limit of the Ni amount is 0.05%. If it is 0.10% or more, it is more effective, and 0.15% or more is more effective. Addition of a large amount may cause material hardening due to solid solution strengthening, so the upper limit is made 1.0%. Considering the alloy cost, 0.05 to 0.30% is preferable.
  • Nb 0.3 to 0.6%
  • Nb is an element that suppresses deterioration of sensitization and corrosion resistance due to precipitation of chromium carbonitride in stainless steel by forming carbonitride.
  • the lower limit of Nb is set to 0.3%
  • the upper limit is set to 0.6%.
  • Nb / (C + N) is set to 16 which is a substantially equivalence ratio.
  • Nb / C + N In order to prevent further sensitization at the weld, it is preferable to set Nb / C + N to 20 or more.
  • Nb, C, and N mean the respective component contents (% by mass).
  • Ti 0.05% or less Ti is an element that suppresses deterioration of sensitization and corrosion resistance due to precipitation of chromium carbonitride in stainless steel by forming carbonitride similarly to Nb.
  • the formed TiN is a large angular precipitate, tends to be a starting point of fracture, and lowers toughness.
  • Ti promotes the precipitation of the Laves phase in the cooling process after annealing, and deteriorates toughness. Therefore, in the present invention, it is necessary to reduce as much as possible, and the upper limit is made 0.05%. Preferably, it is less than 0.02%.
  • Al 0.10% or less Al is useful as a deoxidizing element, and the effect is manifested at 0.005% or more. However, excessive addition of Al decreases the room temperature ductility and toughness, so the upper limit is made 0.10%. Al may not be contained.
  • B 0.0002 to 0.0020%
  • B is an element effective for fixing N, which is harmful to workability, and improving secondary workability, and can be expected to improve toughness. Since the effect is manifested at 0.0002% or more, the lower limit of the B amount is set to 0.0002%. Even if added over 0.0020%, the effect is saturated and workability deterioration due to B occurs, so the upper limit of B is made 0.0020%. Preferably they are 0.0003% or more and 0.0008% or less.
  • the following elements may be added.
  • Mo 1.5% or less Mo may be added as necessary in order to improve the corrosion resistance. In order to exert these effects, it is preferable to add 0.01% or more. More preferably, it is added at 0.10% or more, more preferably 0.5% or more. Excessive addition may cause the generation of a Laves phase, which may cause a decrease in toughness. However, in the steel containing a large amount of Nb as in the present invention, the generation of the Laves phase is not accelerated so much and the toughness is not lowered. Considering these, the upper limit of the Mo amount is 1.5%. Preferably it is 1.1% or less.
  • Sn 0.005 to 0.1%
  • Sn is an element effective for improving corrosion resistance and high temperature strength.
  • Cu 0.05 to 1.5%
  • Cu is an element that improves the corrosion resistance. The effect is manifested at 0.05% or more. In order to obtain the effect, a more preferable addition amount is 0.1% or more. Excessive addition causes abnormal oxidation during hot rolling and causes surface defects, so the upper limit of Cu content is 1.5%. Preferably it is 1.0% or less, More preferably, it is 0.5% or less.
  • V 1% or less
  • W 1% or less
  • V and W are elements that improve high-temperature strength, and can be added as necessary.
  • the ferritic stainless steel of the present invention is a hot-rolled steel sheet, and becomes a product through processes of melting, casting, hot-rolling, annealing, and pickling.
  • the production equipment There are no particular restrictions on the production equipment, and conventional production equipment can be used.
  • stainless steel is manufactured in the form of a so-called steel strip that is very long in the rolling direction, wound, stored and moved in a coiled form.
  • the present invention includes not only ferritic stainless steel sheets but also ferritic stainless steel strips.
  • the hot rolling conditions are not particularly defined, but the heating temperature is preferably 1150 ° C to 1250 ° C.
  • the hot rolling finishing temperature is preferably 850 ° C. or higher. Furthermore, after hot rolling, it is preferable to rapidly cool to 450 ° C. by air-water cooling or the like.
  • the annealing temperature is set to 1000 ° C. or higher because it is necessary to dissolve precipitates such as the Laves phase. However, if the temperature exceeds 1100 ° C., crystal grains grow too much and the toughness decreases, so 1100 ° C. is the upper limit.
  • the cooling rate after annealing is set to a cooling rate from 800 ° C. to 400 ° C. of 5 ° C./sec or more in order to suppress precipitation of precipitates such as a Laves phase and toughness reduction due to 475 brittleness.
  • it is 10 ° C./sec or more.
  • the effect is saturated at 20 ° C./sec or more. Thereby, the dispersion
  • no change related to 475 brittleness can be found in the metal structure, it is confirmed that the precipitation of the Laves phase is eliminated or the precipitation amount of the Laves phase is 1% or less by mass ratio.
  • the component composition of the present invention exhibits a sufficient effect at the above cooling rate. It is not necessary to dare to a cooling rate higher than the above (for example, 50 ° C./sec or more).
  • the cooling rate after hot rolling annealing can be properly controlled, particularly by Cr, Si, and Ti. That is, it is limited to the low Cr component range to avoid 475 brittleness, and further, the Si and Ti contents are lowered to suppress the precipitation of the Laves phase.
  • the reduction of Cr, Si, Ti has the effect of improving toughness by itself, so it is possible to easily manufacture thick hot-rolled coils with good toughness by limiting the component range and controlling the structure to avoid precipitation. is there.
  • the toughness value by the Charpy test at 0 ° C. becomes 10 J / cm 2 or more, and excellent toughness is exhibited.
  • the plate thickness is within the range of 5.0 mm to 9.0 mm. If it is less than 5.0 mm, excellent toughness is exhibited regardless of the present invention, and if it exceeds 9.0 mm, sufficient toughness cannot be exhibited even with the present invention, and manufacturing becomes difficult. It is.
  • the ferritic stainless steel sheet and ferritic stainless steel strip of the present invention are excellent in corrosion resistance, toughness, and hard to break even when operated at 0 ° C. Therefore, the ferritic stainless steel sheet and ferritic stainless steel strip for automobile flanges Can be used particularly preferably.
  • Example 1 Steels having the composition shown in Table 1 were melted and cast into slabs. The slab was heated to 1150 to 1250 ° C. and then hot-rolled to a plate thickness of 6 mm with a finishing temperature in the range of 850 to 950 ° C. to obtain a hot-rolled steel plate. In Table 1, numbers outside the scope of the present invention are underlined. The hot-rolled steel sheet was cooled to 450 ° C. by air-water cooling and then wound into a coil.
  • the hot rolled coil was annealed at 1000 to 1100 ° C. and cooled to room temperature. At this time, the average cooling rate in the range of 800 to 450 ° C. was set to 10 ° C./s or more. Subsequently, the hot-rolled annealed plate was pickled to obtain a product. No. in Table 1 1 to 24 are examples of the present invention, NO. 25 to 45 are comparative examples.
  • the Charpy impact test was conducted on the hot-rolled annealed sheet thus obtained at 0 ° C according to JIS Z. 2242. Since the test piece in this example is a sub-size test piece with the thickness of the hot-rolled annealed plate, the toughness of the hot-rolled annealed plate in each example is obtained by dividing the absorbed energy by the cross-sectional area (unit cm 2 ). Were compared and evaluated. The evaluation standard of toughness was an absorption energy value at 0 ° C., with 10 J / cm 2 or more being good and “G”.
  • ⁇ ⁇ Punchability was evaluated by a punching test at a temperature of 0 ° C. With a press, 100 discs of 50 ⁇ were punched out and determined by the number of cracks on the end face. The number of cracks was 5 or less.
  • the toughness of the hot-rolled annealed steel sheet having the component composition of the present invention was good and showed good punchability. Moreover, the corrosion resistance was also good. On the other hand, in the comparative example which deviates from the present invention, any of the Charpy impact value (absorbed energy), punchability and corrosion resistance was unacceptable. Thereby, it turns out that the toughness of the ferritic stainless steel in a comparative example and corrosion resistance are inferior.
  • Example 2 In the present embodiment, an example in which the plate thickness and manufacturing conditions are changed is shown. No. in Table 1 3 steel, no. No. 8 steel, no. Nine steels were selected, steels having the same composition were melted and cast into slabs. The slab was heated to 1150 to 1250 ° C., the finishing temperature was in the range of 850 to 950 ° C., the plate thickness was changed in the range of 5 to 9 mm, and hot rolled to obtain a hot rolled steel sheet. The hot-rolled steel sheet was cooled to 450 ° C. by air-water cooling and then wound into a coil. Subsequently, the hot rolled coil was annealed and cooled to room temperature. The annealing temperature and cooling conditions at this time were changed.
  • the hot-rolled annealed plate thus obtained was evaluated by the Charpy impact test, punching test, and salt spray test in the same manner as in Example 1.
  • the evaluation criteria are the same.
  • Table 2 shows experimental conditions and evaluation results.
  • the stainless hot-rolled steel sheet and steel strip of the present invention has excellent corrosion resistance, excellent toughness, and is difficult to crack even when operated at 0 ° C.
  • a stainless steel plate excellent in manufacturability can be produced. That is, by applying the material to which the present invention is applied, particularly to exhaust system members of automobiles and motorcycles, parts having a long life can be manufactured at low cost, and the social contribution can be increased. That is, the present invention is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 靭性及び耐食性に優れたフェライト系ステンレス熱延鋼板及び鋼帯であって、所定の成分組成を有し、0℃におけるシャルピー衝撃値が10J/cm以上であり、板厚5.0~9.0mmであることを特徴とする。

Description

フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
 本発明は、主として自動車の排気系その他の配管の接合部に使用されるフランジ材料に使用される、低温での靭性に優れるとともに耐食性に優れたフェライト系ステンレス熱延鋼板とその製造方法、及び鋼帯に関する。
 フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて加工性、靭性及び高温強度では劣るが、多量のNiを含有していないため廉価であり、また熱膨張が小さいので、自動車排気系部品材料などに使用される。一般には、SUH409L、SUS429、SUS430LX、SUS436J1L、SUS432、SUS444等の鋼種が、これらの用途に適するフェライト系ステンレス鋼として用いられる。
 これらの材料は、パイプ等に成形されて使用される。さらに、これらのパイプ等に加工された部品同士を接続するフランジ材料(自動車フランジ材料)には、耐食性に劣る普通鋼が主に使用されている。近年では、最も安価なフェライト系ステンレス鋼であるSUH409Lも使用される。
 しかし、車体重量の軽量化や寿命延長等のニーズから、自動車フランジ材料においても耐食性に優れた材料が要求され、SUH409L以上のフェライト系ステンレス鋼が使用されている。また、排気系に使用する場合、高温での強度が高ければ板厚を薄く設計できる効果もあるので、フェライト系ステンレス鋼は、普通鋼より有利である。
 自動車フランジ材料用には、板厚3mm以下の薄手の冷延鋼板を曲げ加工等で剛性を向上させて使用する場合もあるが、板厚5mm以上の厚手の熱延鋼板を打ち抜き加工程度でそのまま使用する場合も多い。
 しかし、板厚5mm以上のフェライト系ステンレス鋼の熱延鋼板は、靭性が低いので製造が難しい。板厚5mm以上のフェライト系ステンレス鋼の熱延鋼板の製造においては、熱延後の製造ラインでの板破断がしばしば生じる。したがって、これまでの靭性改善の検討は、主に製造面からのものであった。
 特許文献1では、熱延時に仕上げ温度を合金組成に応じて変化させ、巻き取り後、急冷する方法が開示されている。特許文献2、特許文献3においても、厚手熱延コイルの製造性向上目的の靭性改善法が示されている。
 フェライト系ステンレス鋼を自動車フランジ材として加工する場合、打ち抜きで製造する場合が多い。したがって、靭性の劣るフェライト系ステンレス鋼は、不利である。特に、冬季の打ち抜き作業時には、割れが生じることが多く、部品製造が困難である。したがって、冬季でも部品製造に支障がない、靭性に優れたフェライト系ステンレス鋼板が望まれている。
特開昭64-56822号公報 特開昭60-228616号公報 特開2012-140688号公報
 従来のフェライト系ステンレス鋼板では、冬季のフランジ製造時の打ち抜きの際に起こる割れをかならずしも防止できなかった。本発明は、自動車フランジなどに用いられる、靭性及び耐食性に優れたフェライト系ステンレス熱延鋼板とその製造方法及び鋼帯を提供することを課題とする。
 本発明者らは、低温下での靭性向上を検討するに当たり、冬季のフランジ材料の製造環境を調査した。その結果、冬季には室温(25℃)を下回る環境で打ち抜きの作業をする場合は多いが、0℃を下回る環境で打ち抜きの作業することはほとんどないことが分かった。
 フェライト系ステンレス鋼の延性-脆性遷移温度は室温付近にあり、室温から0℃までの温度変化で靭性が大きく変わる場合がある。そのため、夏季には鋼板の割れが生じない作業であっても、冬季には鋼板の割れが生じると考えられる。発明者らは、室温(25℃)のみでの靭性の検討では不十分であり、0℃での靭性を確保すれば割れが起きないと考え、0℃での靭性を指標として、詳細な検討を行った。
 その結果、0℃での靭性値が10J/cm以上あると、打ち抜き時の割れが起きないことが判明した。これを実現するためには、フランジ材として、従来、主に製造面から検討されてきた成分範囲より、さらに成分限定することが必要であることが判明した。
 熱延鋼板は、溶解、鋳造、熱延、焼鈍、酸洗の工程を経て製造されるが、これまでの靱性の検討は、主に熱延まま材の靭性に関するものであった。ところが、熱延まま材と熱延焼鈍材の靭性を比較すると、熱延焼鈍材の靭性の方が低く、本発明の検討では、より厳しい熱延焼鈍材での靭性向上を検討する必要があった。
 本発明者が検討した結果、以下の成分限定により、0℃での靭性を確保できる目処を得た。
(1)Crをできるだけ低減する。
(2)Siを低減する。
(3)Tiを無添加、又は、できるだけ低減する。
(4)Niを微量添加する。
(5)Bを微量添加する。
 また、Moは靭性をあまり低下させず、耐食性、高温強度が必要な場合は、十分な量の添加が可能であることを見出した。
 しかしながら、本発明者らの検討の結果、これらの成分限定をしても、製造条件によって、熱延焼鈍板の靭性が安定しないことが分かった。本発明者らは、さらに検討を進め、その結果、最終焼鈍の温度と冷却速度をある一定範囲に制限することにより、0℃での靭性を安定的に確保できることを見出した。
 本発明は、これらの知見に基づいて到ったものであり、その要旨は以下のとおりである。
 (1)質量%で、C:0.015%以下、Si:0.01~0.4%、Mn:0.01~0.8%、P:0.04%以下、S:0.01%以下、Cr:14.0~18.0%未満、Ni:0.05~1%、Nb:0.3~0.6%、Ti:0.05%以下、N:0.020%以下、Al:0.10%以下、及びB:0.0002~0.0020%を含有し、残部がFe及び不可避的不純物であり、Nb、C、及びNの含有量がNb/(C+N)≧16を満たし、0℃におけるシャルピー衝撃値が10J/cm以上であり、板厚が5.0~9.0mmであることを特徴とするフェライト系ステンレス熱延鋼板。
 (2)さらに、質量%で、Mo:1.5%以下、Sn:0.005~0.1%、Cu:0.05~1.5%、V:1%以下、及びW:1%以下の1種又は2種以上を含有することを特徴とする前記(1)のフェライト系ステンレス熱延鋼板。
 (3)溶解・鋳造-熱延-焼鈍-酸洗の工程の中で、焼鈍工程での焼鈍温度を1000℃以上1100℃以下、その後の冷却過程で、800℃から400℃までの冷却速度が5℃/sec以上であることを特徴とする前記(1)又は(2)のフェライト系ステンレス熱延鋼板の製造方法。
 (4)前記(1)又は(2)のフェライト系ステンレス熱延鋼板からなることを特徴とするフェライト系ステンレス鋼帯。
 (5)前記(1)又は(2)のフェライト系ステンレス熱延鋼板からなることを特徴とする自動車フランジ用フェライト系ステンレス鋼板。
 (6)前記(4)のフェライト系ステンレス熱延鋼帯からなることを特徴とする自動車フランジ用フェライト系ステンレス鋼帯。
 以下、本発明の実施の形態について説明する。まず、本実施形態のステンレス鋼板の鋼組成を限定した理由について説明する。なお、組成についての「%」の表記は、特に断りのない場合は、「質量%」を意味する。
 C:0.015%以下
 Cは、成形性と耐食性、熱延板靭性を劣化させるので、その含有量は少ないほど好ましい。また、本発明では、Cを炭窒化物として安定化させるためにNbを添加しているので、Nb量を低減する点においても、C量は少ないほど好ましい。したがって、C量の上限を0.015%とする。ただし、過度の低減は精錬コストの増加をもたらすので下限は0.001%とするのが好ましい。また、耐食性の観点を重視すると、0.002~0.010%とすることが好ましい。さらに、好ましくは、0.002~0.007%未満である。
 N:0.020%以下
 Nは、Cと同様に、成形性、耐食性、及び熱延板靭性を劣化させるため、その含有量は少ないほど好ましい。また、本発明では、Nを炭窒化物として安定化させるためにNbを添加しているので、Nb量を低減する点においても、N量は少ないほど好ましい。したがって、N量の上限を0.020%とする。ただし、過度の低減は精錬コストの増加に繋がるため、下限は0.001%とするのが好ましい。耐食性を重視すると、0.002~0.015%とすることが好ましい。
 Si:0.01~0.4%
 Siは、脱酸剤としても有用な元素であるとともに、高温強度や耐酸化性を改善させる元素である。脱酸効果は、Si量の増加とともに向上し、その効果は0.01%以上で発現するので、Si量の下限を0.01%とする。Siの過度の添加は常温延性を低下させる。また、Siは、焼鈍後の冷却過程でLaves相の析出を促進し靭性を劣化させる作用もある。そのため、Si量の上限を0.4%とする。より、好ましくは、0.01~0.2%である。
 Mn:0.01~0.8%
 Mnは、脱酸剤として添加される元素であるとともに、中温域での高温強度上昇に寄与する元素である。Mnは、靭性にあまり影響しない。上記の効果を得るためには、Mn量を0.01%以上とする必要がある。一方、過度な添加は、MnSを形成して耐食性を低下させるので、Mn量の上限を0.8%とする。好ましくは0.5%以下である。
 P:0.04%以下
 Pは、固溶強化能の大きな元素であるが、フェライト安定化元素であり、しかも耐食性や靭性に対しても有害な元素であるので、可能な限り少ないほうが好ましい。
 Pは、ステンレス鋼の原料であるフェロクロムに不純物として含まれる。ステンレス鋼の溶鋼から脱Pすることは非常に困難であるため、Pの含有量は0.010%以上とすることが好ましい。Pの含有量は、使用するフェロクロム原料の純度と量でほぼ決定される。Pは有害な元素であるため、フェロクロム原料のPの純度は低いほうが好ましいが、低Pのフェロクロムは高価であるため、Pの含有量は材質や耐食性を大きく劣化させない範囲である0.04%以下とする。なお、好ましくは0.03%以下である。
 S:0.01%以下
 Sは、硫化物系介在物を形成し、鋼材の一般的な耐食性(全面腐食や孔食)を劣化させるので、その含有量は少ないほうが好ましく、0.010%とする。また、Sの含有量は少ないほど耐食性は良好となるが、低S化には脱硫負荷が増大し、製造コストが増大するので、その下限を0.001%とするのが好ましい。なお、好ましくは0.001~0.008%である。
 Cr:14.0~18.0%未満
 Crは、耐食性確保のために必須の元素である。しかしながら、Crは、靭性を低下させる元素でもある。Crの含有量が14.0%未満では、耐食性確保の効果は得られず、Crの含有量が18.0%以上になると、特に低温での加工性の低下や靭性の劣化をもたらすので、Crの含有量は14.0~18.0%未満とする。焼鈍後の冷却過程での475脆性を回避するためには、Cr量は少ない方がよい。耐食性をより考慮すると、15.0~18.0%未満が好ましい。
 Ni:0.05~1%
 Niは、孔食の進展抑制に有効な元素であり、その効果は0.05%以上の添加で安定して発揮される。併せて、熱延板の靱性向上に有効である。したがって、Ni量の下限を0.05%とする。0.10%以上とするとより効果的であり、0.15%以上がさらに有効である。多量の添加は、固溶強化による材質硬化を招くおそれがあるので、上限は1.0%とする。合金コストを考慮すると0.05~0.30%が好ましい。
 Nb:0.3~0.6%
 Nbは、炭窒化物を形成することでステンレス鋼におけるクロム炭窒化物の析出による鋭敏化や耐食性の低下を抑制する元素である。Nbの過度に添加すると、Laves相の生成に起因し、靭性が低下する。これらを考慮し、Nbの下限を0.3%、上限を0.6%とする。さらに、溶接部耐食性から、Nb/(C+N)を、ほぼ等量比である16を下限とする。より溶接部での鋭敏化を防止するためには、Nb/C+Nを20以上とするのが好ましい。式中、Nb、C、Nはそれぞれの成分含有量(質量%)を意味する。
 Ti:0.05%以下
 Tiは、Nbと同様に炭窒化物を形成することで、ステンレス鋼におけるクロム炭窒化物の析出による鋭敏化や耐食性の低下を抑制する元素である。しかしながら、形成されるTiNは大きな角状析出物であり、破壊の起点となりやすく、靭性を低下させる。また、Tiは、焼鈍後の冷却過程でLaves相の析出を促進し、靭性を劣化させる。したがって、本発明では、できるだけ低減する必要があり、その上限を0.05%とする。好ましくは、0.02%未満である。
 Al:0.10%以下
 Alは脱酸元素として有用であり、その効果は、0.005%以上で発現する。しかし、Alの過度の添加は、常温延性、靭性が低下するので、その上限を0.10%とする。Alは含有しなくてもよい。
 B:0.0002~0.0020%
 Bは、加工性に有害なNの固定や、二次加工性改善に有効な元素であり、靭性の改善も期待できる。その効果は、0.0002%以上で発現するため、B量の下限は0.0002%とする。0.0020%を超えて添加してもその効果は飽和し、Bによる加工性劣化が起こるので、Bの上限は0.0020%とする。好ましくは0.0003%以上、0.0008%以下である。
 さらに、耐食性を向上させるために、以下の元素を添加してもよい。
 Mo:1.5%以下
 Moは、耐食性を向上させるために必要に応じて添加すればよく、これらの効果を発揮させるためには、0.01%以上添加することが好ましい。より好ましくは0.10%以上、さらに好ましくは0.5%以上添加するのがよい。過度の添加は、Laves相の生成を生じさせて、靭性の低下を生じるおそれがある。しかしながら、本発明のように、Nbを多く含む鋼では、Laves相の生成もそれほど加速せず、靭性も低下しない。これらを考慮し、Mo量の上限は1.5%とする。好ましくは1.1%以下である。
 Sn:0.005~0.1%
 Snは、耐食性や高温強度の向上に有効な元素である。また、常温の機械的特性を大きく劣化させない効果もある。耐食性への効果は0.005%以上で発現するため、0.005%以上添加することが好ましい。より好ましくは0.01%以上、さらに好ましくは0.03%以上添加するのがよい。過度に添加すると製造性や溶接性が著しく劣化するため、Sn量の上限は0.1%とする。
 さらに、以下の元素を添加してもよい。
 Cu:0.05~1.5%
 Cuは、耐食性を向上させる元素である。その効果は、0.05%以上で発現する。効果を得るためにより好ましい添加量は0.1%以上である。過度な添加は、熱延加熱時に異常酸化を生じ表面疵の原因ともなるため、Cu量の上限は1.5%とする。好ましくは1.0%以下、さらに好ましくは0.5%以下である。
 V:1%以下、W:1%以下
 V、Wは、高温強度を向上させる元素であり、必要に応じて添加することができる。高温強度向上の効果を得るためは、0.05%以上添加することが好ましい。より好ましくは0.1%以上である。過度の添加は、常温延性、靭性が低下するので、添加量の上限は1%とする。好ましくは0.5%以下である。
 本発明のフェライト系ステンレス鋼は、熱延鋼板であり、溶解、鋳造、熱延、焼鈍、酸洗の工程を経て製品となる。製造設備に特段の制限はなく、常法の製造設備を使用できる。通常ステンレス鋼は、圧延方向に非常に長い、いわゆる、鋼帯の形態で製造され、巻かれて、コイル状の形で保管・移動される。本発明には、フェライト系ステンレス鋼板のみならず、フェライト系ステンレス鋼帯も含まれる。
 熱延条件は特に規定しないが、加熱温度は、1150℃から1250℃が好ましい。また、熱延仕上げ温度は、850℃以上が好ましい。さらには、熱延後、気水冷却等で、450℃まで急冷することが好ましい。
 本発明の製造方法で重要なのは、焼鈍工程である。焼鈍温度は、Laves相などの析出物を溶解する必要があるので、1000℃以上とする。しかし、1100℃を超えると結晶粒が成長しすぎて、靭性が低下するので、1100℃を上限とする。
 焼鈍後の冷却速度は、Laves相等の析出物の析出や、475脆性による靭性低下を抑制するため、800℃から400℃までの冷却速度が5℃/sec以上とする。好ましくは、10℃/sec以上である。20℃/sec以上では効果が飽和する。これにより、製造による靭性のばらつきを低減できる。金属組織には、475脆性に関する変化は見出せないが、Laves相の析出がなくなるか、Laves相の析出量が質量比率で1%以下となっていることが確認される。
 本発明の成分組成であれば、上記の冷却速度で十分効果を発現する。上記よりも高速(例えば、50℃/sec以上)の冷却速度にあえてする必要はない。本発明においては、特にCr,Si,Tiによって、熱延焼鈍後の冷却速度を適正に制御することができる。すなわち、低Crの成分範囲に限定して475脆性を回避し、さらにSiとTiの含有量を低くしてLaves相の析出を抑制する。Cr,Si,Tiの低減は、それ自体で靭性を良好にする効果があるので、成分範囲の限定と析出回避の組織制御によって、靭性が良好な厚手熱延コイルを容易に製造できることが可能である。
 これらの成分限定と製造方法により、0℃におけるシャルピー試験による靭性値が、10J/cm以上となり、優れた靭性が発現する。
 板厚は、5.0mm以上9.0mm以下を本発明の範囲とする。5.0mm未満であると、本発明によらず、優れた靭性を発現し、9.0mm超は本発明をもってしても、十分な靭性を発現できないことに加えて、製造も困難となるためである。
 本発明のフェライト系ステンレス鋼板及びフェライト系ステンレス鋼帯は、耐食性に優れる上に、靭性に優れ、0℃で作業しても割れにくいので、自動車フランジ用のフェライト系ステンレス鋼板及びフェライト系ステンレス鋼帯として、特に好適に用いることができる。
 以下、実施例により本発明の効果を説明する。本発明は、以下の実施例で用いた条件に限定されるものではない。
 [実施例1]
 表1に示す成分組成の鋼を溶製してスラブに鋳造した。このスラブを1150~1250℃に加熱後、仕上げ温度を850~950℃の範囲内として、板厚6mmまで熱間圧延し、熱延鋼板とした。表1において、本発明範囲から外れる数値にはアンダーラインを付している。熱延鋼板は気水冷却により、450℃まで冷却した後、コイル状に巻き取った。
 引き続き、熱延コイルを1000~1100℃で焼鈍し、常温まで冷却した。この時、800~450℃の範囲の平均冷却速度を10℃/s以上とした。続いて、熱延焼鈍板を酸洗し、製品とした。表1中のNo.1~24は本発明例、NO.25~45は比較例である。
 このようにして得られた熱延焼鈍板に対して、0℃でシャルピー衝撃試験をJIS Z
 2242に準拠して行った。本実施例における試験片は、熱延焼鈍板の板厚ままのサブサイズ試験片であるので、吸収エネルギーを断面積(単位cm)で割ることにより、各実施例における熱延焼鈍板の靭性を比較し評価した。なお、靭性の評価基準は、0℃での吸収エネルギー値で、10J/cm以上を良好とし、「G」とした。
 打ち抜き性の評価は、温度0℃での打ち抜き試験で評価した。プレスにて、50φの円盤を100枚打ち抜き、端面の割れ個数で求めた。割れ個数が5個以下を合格とした。
 また、焼鈍酸洗板の表面を#600研磨仕上げとした後、JIS Z 2371に規定される塩水噴霧試験方法を48時間行い、錆びの有無を確認して、さびが認められたものを不合格とした。評価結果を表1に示す。表中、合格を「G」、不合格を「P」で表した。
 加えて、各鋼種の熱延板から、抽出残さ法により、析出物を採取し、その成分分析を行った。その結果のNb量から、C,Nの全量が、Nb(C,N)となると仮定し、その残りがLaves相になるとして、Laves相の析出量を求めた。その結果、Si、Nb、Tiの多い、比較例20、29、30を除き、質量比率で、すべて1%以下であった。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の成分組成の鋼の熱延焼鈍板の靭性は良好であり、良好な打ち抜き性を示した。また、耐食性も良好であった。一方、本発明から外れる比較例では、シャルピー衝撃値(吸収エネルギー)、打ち抜き性、耐食性のいずれかが、不合格であった。これにより、比較例におけるフェライト系ステンレス鋼の靭性、耐食性が劣ることが分かる。
 [実施例2]
 本実施例では、板厚及び製造条件を変えた例を示す。表1中のNo.3鋼、No.8鋼、No.9鋼を選び、その成分組成の鋼を溶製してスラブに鋳造した。このスラブを1150~1250℃に加熱後、仕上げ温度を850~950℃の範囲内として、板厚5~9mmの範囲で板厚を変えて、熱間圧延し、熱延鋼板とした。熱延鋼板は気水冷却により、450℃まで冷却した後、コイル状に巻き取った。引き続き、熱延コイルを焼鈍し、常温まで冷却した。この時の焼鈍温度、冷却条件を変更した。
 このようにして得られた熱延焼鈍板に対して、実施例1と同様、シャルピー衝撃試験、打ち抜き試験、塩水噴霧試験で評価した。評価基準も同じである。
 実験条件及び評価結果を表2に示す。
 表2から明らかなように、本発明を適用した成分組成の鋼の熱延焼鈍の靭性は良好であり、良好な打ち抜き性を示した。また、耐食性も良好であった。本発明から外れる比較例では、シャルピー衝撃値(吸収エネルギー)及び打ち抜き性が不合格であった。これにより、比較例におけるフェライト系ステンレス鋼の靭性が劣ることが分かる。
Figure JPOXMLDOC01-appb-T000002
 以上の説明から明らかなように、本発明のステンレス熱延鋼板及び鋼帯によれば、耐食性に優れる上に、靭性に優れ、0℃で作業しても割れにくいため、材料歩留まりが良く、部品製造性に優れたステンレス鋼板が製造可能になる。つまり、本発明を適用した材料を、特に自動車、二輪車の排気系部材に適用することにより、寿命の長い部品を低コストで製造できることができ、社会的寄与度を高めることができる。すなわち、本発明は産業上、非常に有益である。

Claims (6)

  1.  質量%で、
      C:0.015%以下、
      Si:0.01~0.4%、
      Mn:0.01~0.8%、
      P:0.04%以下、
      S:0.01%以下、
      Cr:14.0~18.0%未満、
      Ni:0.05~1%、
      Nb:0.3~0.6%、
      Ti:0.05%以下、
      N:0.020%以下、
      Al:0.10%以下、及び
      B:0.0002~0.0020%
    を含有し、残部がFe及び不可避的不純物であり、
     Nb、C、及びNの含有量が
      Nb/(C+N)≧16
    を満たし、
     0℃におけるシャルピー衝撃値が10J/cm以上であり、
     板厚が5.0~9.0mmである
    ことを特徴とするフェライト系ステンレス熱延鋼板。
  2.  さらに、質量%で、Mo:1.5%以下、Sn:0.005~0.1%、Cu:0.05~1.5%、V:1%以下、及びW:1%以下の1種又は2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス熱延鋼板。
  3.  溶解・鋳造-熱延-焼鈍-酸洗の工程の中で、焼鈍工程での焼鈍温度を1000℃以上1100℃以下、その後の冷却過程で、800℃から400℃までの冷却速度が5℃/sec以上であることを特徴とする請求項1又は2に記載のフェライト系ステンレス熱延鋼板の製造方法。
  4.  請求項1又は2に記載のフェライト系ステンレス熱延鋼板からなることを特徴とするフェライト系ステンレス鋼帯。
  5.  請求項1又は2に記載のフェライト系ステンレス熱延鋼板からなることを特徴とする自動車フランジ用フェライト系ステンレス鋼板。
  6.  請求項4に記載のフェライト系ステンレス熱延鋼帯からなることを特徴とする自動車フランジ用フェライト系ステンレス鋼帯。
PCT/JP2014/059011 2013-03-27 2014-03-27 フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯 WO2014157576A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480017611.5A CN105051234B (zh) 2013-03-27 2014-03-27 铁素体系不锈钢热轧钢板及其制造方法以及钢带
BR112015024500-5A BR112015024500B1 (pt) 2013-03-27 2014-03-27 Chapa de aço inoxidável ferrítico laminada a quente, método para produção da mesma, tira de aço, e seu uso
JP2015508731A JP5885884B2 (ja) 2013-03-27 2014-03-27 フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
MX2015013765A MX2015013765A (es) 2013-03-27 2014-03-27 Hoja de acero inoxidalbe ferritico, laminada en caliente, proceso para la produccion de la misma y fleje de acero.
EP14776136.5A EP2980251B1 (en) 2013-03-27 2014-03-27 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
US14/780,468 US10385429B2 (en) 2013-03-27 2014-03-27 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
CA2907970A CA2907970C (en) 2013-03-27 2014-03-27 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-066354 2013-03-27
JP2013066354 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014157576A1 true WO2014157576A1 (ja) 2014-10-02

Family

ID=51624532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059011 WO2014157576A1 (ja) 2013-03-27 2014-03-27 フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯

Country Status (8)

Country Link
US (1) US10385429B2 (ja)
EP (1) EP2980251B1 (ja)
JP (1) JP5885884B2 (ja)
CN (1) CN105051234B (ja)
BR (1) BR112015024500B1 (ja)
CA (1) CA2907970C (ja)
MX (1) MX2015013765A (ja)
WO (1) WO2014157576A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129580A1 (ja) * 2015-02-10 2016-08-18 新日鐵住金ステンレス株式会社 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法
JP2016204714A (ja) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 自動車排気系部品締結部品用ステンレス鋼
KR20170037663A (ko) * 2014-10-31 2017-04-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내 배기 가스 응축수 부식성과 브레이징성이 우수한 페라이트계 스테인리스 강 및 그 제조 방법
JP2017095789A (ja) * 2015-11-27 2017-06-01 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼熱延鋼板およびその製造方法
KR20180017177A (ko) 2015-07-17 2018-02-20 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 강판 및 열연 어닐링판, 그리고 그들의 제조 방법
WO2018074164A1 (ja) 2016-10-17 2018-04-26 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
EP3214198A4 (en) * 2014-10-31 2018-09-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
EP3388542A4 (en) * 2016-02-02 2019-11-06 Nisshin Steel Co., Ltd. FERRITIC STAINLESS STEEL SHEET CONTAINING HOT ROLLED NAMIN AND ITS MANUFACTURING METHOD AND FERRITIC STAINLESS STEEL SHEET CONTAINING COLD LAMINATED NU AND METHOD FOR MANUFACTURING THE SAME
KR20190131528A (ko) 2017-04-27 2019-11-26 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 어닐링 강판 및 그 제조 방법
WO2020084987A1 (ja) * 2018-10-25 2020-04-30 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
KR20210129140A (ko) * 2019-03-28 2021-10-27 닛테츠 스테인레스 가부시키가이샤 자동차 브레이크 디스크 로터용 페라이트계 스테인리스 강판, 자동차 브레이크 디스크 로터 및 자동차 브레이크 디스크 로터용 핫 스탬프 가공품

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261648B2 (ja) * 2016-05-16 2018-01-17 日新製鋼株式会社 排気管フランジ部品用Ti含有フェライト系ステンレス鋼板および製造方法
CN106591736B (zh) * 2016-12-13 2018-08-21 山西太钢不锈钢股份有限公司 高强低铬不锈钢及其热处理方法
MX2019008874A (es) * 2017-01-26 2019-09-18 Jfe Steel Corp Lamina de acero inoxidable ferritico laminada en caliente y metodo para la fabricacion de la misma.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159974A (ja) * 1983-03-02 1984-09-10 Sumitomo Metal Ind Ltd フエライト系クロムステンレス鋼
JPS60228616A (ja) 1984-04-25 1985-11-13 Sumitomo Metal Ind Ltd フエライト系ステンレス鋼熱延鋼帯の製造法
JPS6456822A (en) 1987-08-27 1989-03-03 Nisshin Steel Co Ltd Production for improving toughness of hot-rolled high-al ferritic band stainless steel
JPH03274245A (ja) * 1990-03-24 1991-12-05 Nisshin Steel Co Ltd 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JPH0570897A (ja) * 1991-09-13 1993-03-23 Kawasaki Steel Corp 高靱性高温高強度フエライト系ステンレス鋼
WO2003004714A1 (fr) * 2001-07-05 2003-01-16 Nisshin Steel Co., Ltd. Acier inoxydable ferritique pour element de debit de gaz d'echappement
JP2006037176A (ja) * 2004-07-28 2006-02-09 Nisshin Steel Co Ltd エキゾーストマニホールド用フェライト系ステンレス鋼
JP2006117985A (ja) * 2004-10-20 2006-05-11 Nisshin Steel Co Ltd 熱疲労特性に優れたフェライト系ステンレス鋼材および自動車排ガス経路部材
JP2009174040A (ja) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Egrクーラー用フェライト系ステンレス鋼およびegrクーラー
JP2011179114A (ja) * 2010-01-28 2011-09-15 Jfe Steel Corp 靭性に優れた高耐食性フェライト系ステンレス熱延鋼板
JP2012140688A (ja) 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Nb含有フェライト系ステンレス鋼熱延コイルおよび製造法

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694574B2 (ja) 1986-12-26 1994-11-24 川崎製鉄株式会社 プレス成形性のきわめて優れたフエライト系ステンレス鋼板の製造方法
US5302214A (en) * 1990-03-24 1994-04-12 Nisshin Steel Co., Ltd. Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
JP2549018B2 (ja) 1990-12-17 1996-10-30 新日本製鐵株式会社 耐熱性および耐食性に優れたフェライト系ステンレス鋼熱延鋼帯の製造方法
JP3219099B2 (ja) 1991-07-26 2001-10-15 日新製鋼株式会社 耐熱性, 低温靭性および溶接性に優れたフエライト系耐熱用ステンレス鋼
JPH05320764A (ja) 1992-03-18 1993-12-03 Sumitomo Metal Ind Ltd 高クロムフェライト系ステンレス鋼の製造方法
JP2896077B2 (ja) 1993-04-27 1999-05-31 日新製鋼株式会社 耐高温酸化性およびスケール密着性に優れたフエライト系ステンレス鋼
JPH0741854A (ja) 1993-07-27 1995-02-10 Nippon Steel Corp 靱性に優れたフェライト単相ステンレス熱延鋼板の製造方法
DE69516336T2 (de) 1994-01-26 2000-08-24 Kawasaki Steel Co Verfahren zur herstellung eines stahlbleches mit hoher korrosionsbeständigkeit
DE69518354T2 (de) 1994-05-21 2001-04-26 Park Yong S Rostfreier Duplex-Stahl mit hoher Korrosionsbeständigkeit
JPH0860303A (ja) 1994-08-11 1996-03-05 Nisshin Steel Co Ltd 抗菌性を有するフェライト系ステンレス鋼及び製造方法
JPH0874079A (ja) 1994-09-02 1996-03-19 Nippon Yakin Kogyo Co Ltd ステンレス鋼の硝フッ酸酸洗方法
JP3152576B2 (ja) 1995-01-19 2001-04-03 川崎製鉄株式会社 Nb含有フェライト鋼板の製造方法
JPH08199237A (ja) 1995-01-25 1996-08-06 Nisshin Steel Co Ltd 低温靭性に優れたフェライト系ステンレス熱延鋼帯の製造方法
JP3067577B2 (ja) 1995-03-20 2000-07-17 住友金属工業株式会社 耐酸化性と高温強度に優れたフェライト系ステンレス鋼
JP3451830B2 (ja) 1996-03-29 2003-09-29 Jfeスチール株式会社 耐リジング性および加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JPH09279312A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 高温特性、耐食性及び加工性に優れたフェライト系ステンレス鋼
JP3242007B2 (ja) 1996-09-13 2001-12-25 日本冶金工業株式会社 耐酸化スケール剥離性に優れた自動車排気系部材用フェライト系ステンレス鋼
JP3705391B2 (ja) 1997-02-27 2005-10-12 日新製鋼株式会社 熱延板の低温靱性に優れたNb含有フェライト系ステンレス鋼
JP3926492B2 (ja) 1998-12-09 2007-06-06 新日鐵住金ステンレス株式会社 断続加熱時の高温強度に優れ、断続加熱時にも剥離し難い酸化スケールを有するフェライト系ステンレス鋼板
JP2001026826A (ja) 1999-07-12 2001-01-30 Sumitomo Metal Ind Ltd ステンレス熱延鋼帯の製造方法
TW480288B (en) 1999-12-03 2002-03-21 Kawasaki Steel Co Ferritic stainless steel plate and method
JP2001181798A (ja) 1999-12-20 2001-07-03 Kawasaki Steel Corp 曲げ加工性に優れたフェライト系ステンレス熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法
US6426039B2 (en) 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel
JP3804408B2 (ja) 2000-07-13 2006-08-02 Jfeスチール株式会社 成形性に優れたCr含有耐熱耐食鋼板の製造方法
KR100467719B1 (ko) 2000-12-08 2005-01-24 주식회사 포스코 리징 저항성 및 스피닝 가공성이 우수한 페라이트계스테인리스강 및 그 제조 방법
JP4545335B2 (ja) 2001-03-21 2010-09-15 日新製鋼株式会社 耐リジング性に優れたFe−Cr系鋼板およびその製造法
JP3696552B2 (ja) 2001-04-12 2005-09-21 日新製鋼株式会社 加工性,冷間鍛造性に優れた軟質ステンレス鋼板
JP3932020B2 (ja) 2001-11-19 2007-06-20 日新製鋼株式会社 深絞り性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
JP3836358B2 (ja) * 2001-11-28 2006-10-25 日新製鋼株式会社 形状凍結性に優れたフェライト系ステンレス鋼帯およびその製造方法
JP4340448B2 (ja) 2002-03-28 2009-10-07 日新製鋼株式会社 燃料電池セパレータ用フェライト系ステンレス鋼及びその製造方法
KR100733016B1 (ko) 2002-06-17 2007-06-27 제이에프이 스틸 가부시키가이샤 Тi첨가 페라이트계 스테인레스 강판 및 그 제조방법
JP4225976B2 (ja) 2002-12-12 2009-02-18 新日鐵住金ステンレス株式会社 加工性に優れたCr含有耐熱鋼板およびその製造方法
JP4309140B2 (ja) 2003-01-15 2009-08-05 新日鐵住金ステンレス株式会社 自動車排気系機器用フェライト系ステンレス鋼
JP4167166B2 (ja) 2003-02-19 2008-10-15 新日鐵住金ステンレス株式会社 靭性に優れた高Al含有フェライト系ステンレス鋼熱間圧延鋼帯及びその製造方法
US7294212B2 (en) 2003-05-14 2007-11-13 Jfe Steel Corporation High-strength stainless steel material in the form of a wheel rim and method for manufacturing the same
JP4519505B2 (ja) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 成形性に優れるフェライト系ステンレス鋼板およびその製造方法
JP4721917B2 (ja) 2005-01-24 2011-07-13 新日鐵住金ステンレス株式会社 成形時の面内異方性が小さく耐リジング性及び耐肌荒れ性に優れた低炭素低窒素フェライト系ステンレス鋼薄板及びその製造方法
JP4498950B2 (ja) 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 加工性に優れた排気部品用フェライト系ステンレス鋼板およびその製造方法
WO2006132164A1 (ja) * 2005-06-09 2006-12-14 Jfe Steel Corporation ベローズ素管用フェライト系ステンレス鋼板
JP4088316B2 (ja) 2006-03-24 2008-05-21 株式会社神戸製鋼所 複合成形性に優れた高強度熱延鋼板
JP4727601B2 (ja) 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 耐すきま腐食性に優れたフェライト系ステンレス鋼
JP5000281B2 (ja) 2006-12-05 2012-08-15 新日鐵住金ステンレス株式会社 加工性に優れた高強度ステンレス鋼板およびその製造方法
JP4948998B2 (ja) 2006-12-07 2012-06-06 日新製鋼株式会社 自動車排ガス流路部材用フェライト系ステンレス鋼および溶接鋼管
JP5010301B2 (ja) 2007-02-02 2012-08-29 日新製鋼株式会社 排ガス経路部材用フェライト系ステンレス鋼および排ガス経路部材
US8059236B2 (en) 2007-02-15 2011-11-15 Au Optronics Corporation Method for producing reflective layers in LCD display
JP5297630B2 (ja) 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
JP2008248329A (ja) 2007-03-30 2008-10-16 Jfe Steel Kk フェライト系ステンレス鋼板の酸洗方法
JP4949124B2 (ja) 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法
JP5012243B2 (ja) 2007-06-19 2012-08-29 Jfeスチール株式会社 高温強度、耐熱性および加工性に優れるフェライト系ステンレス鋼
JP2009035756A (ja) 2007-07-31 2009-02-19 Nisshin Steel Co Ltd 高温強度に優れた二輪車排ガス経路部材用Al系めっき鋼板および部材
EP2182085B1 (en) 2007-08-20 2017-10-11 JFE Steel Corporation Ferritic stainless steel plate excellent in punchability and process for production of the same
JP5396752B2 (ja) 2007-10-02 2014-01-22 Jfeスチール株式会社 靭性に優れたフェライト系ステンレス鋼およびその製造方法
JP5178157B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5178156B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5390175B2 (ja) 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 ろう付け性に優れたフェライト系ステンレス鋼
JP5401039B2 (ja) 2008-01-11 2014-01-29 日新製鋼株式会社 フェライト系ステンレス鋼及びその製造方法
JP5025671B2 (ja) 2008-02-13 2012-09-12 新日鐵住金ステンレス株式会社 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
JP5141296B2 (ja) 2008-02-25 2013-02-13 Jfeスチール株式会社 高温強度と靭性に優れるフェライト系ステンレス鋼
JP5125600B2 (ja) 2008-02-25 2013-01-23 Jfeスチール株式会社 高温強度、耐水蒸気酸化性および加工性に優れるフェライト系ステンレス鋼
JP4386144B2 (ja) * 2008-03-07 2009-12-16 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
JP5387057B2 (ja) * 2008-03-07 2014-01-15 Jfeスチール株式会社 耐熱性と靭性に優れるフェライト系ステンレス鋼
CN101538683A (zh) 2008-03-19 2009-09-23 宝山钢铁股份有限公司 具有优良成型性的铁素体不锈钢及其制造方法
JP5274074B2 (ja) 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 耐酸化性に優れた耐熱性フェライト系ステンレス鋼板
KR20110018455A (ko) 2008-07-23 2011-02-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 요소수 탱크용 페라이트계 스테인리스강
JP2010100877A (ja) 2008-10-22 2010-05-06 Jfe Steel Corp 靭性に優れるフェライト系ステンレス熱延鋼板の製造方法
JP4986975B2 (ja) 2008-10-24 2012-07-25 新日鐵住金ステンレス株式会社 加工性、耐酸化性に優れたAl含有耐熱フェライト系ステンレス鋼板及びその製造方法
JP5462583B2 (ja) 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Egrクーラ用フェライト系ステンレス鋼板
JP5438302B2 (ja) 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5540637B2 (ja) 2008-12-04 2014-07-02 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
JP5546911B2 (ja) 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板
CN101845603B (zh) 2009-03-26 2012-07-25 宝山钢铁股份有限公司 一种汽车排气***高温端部件用铁素体不锈钢及制造方法
JP4702493B1 (ja) 2009-08-31 2011-06-15 Jfeスチール株式会社 耐熱性に優れるフェライト系ステンレス鋼
JP2011068948A (ja) 2009-09-25 2011-04-07 Nisshin Steel Co Ltd スターリングエンジンの熱交換器
KR101463525B1 (ko) 2010-02-02 2014-11-19 제이에프이 스틸 가부시키가이샤 인성이 우수한 고내식성 페라이트계 스테인레스 냉연 강판 및 그 제조 방법
JP5658893B2 (ja) 2010-03-11 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板およびその製造方法
CN102791897A (zh) 2010-03-11 2012-11-21 新日铁住金不锈钢株式会社 耐氧化性优异的铁素体系不锈钢板和耐热性优异的铁素体系不锈钢板及其制造方法
JP5677819B2 (ja) 2010-11-29 2015-02-25 新日鐵住金ステンレス株式会社 耐酸化性に優れたフェライト系ステンレス鋼板
JP5586279B2 (ja) * 2010-03-15 2014-09-10 新日鐵住金ステンレス株式会社 自動車排気系部材用フェライト系ステンレス鋼
JP2011190524A (ja) 2010-03-17 2011-09-29 Nisshin Steel Co Ltd 耐酸化性、二次加工脆性および溶接部の靭性に優れたフェライト系ステンレス鋼
ES2581315T3 (es) * 2010-03-29 2016-09-05 Nippon Steel & Sumikin Stainless Steel Corporation Lámina de acero inoxidable ferrítico excelente en brillo superficial y resistencia a la corrosión, y método para producir la misma
JP2011246813A (ja) 2010-04-30 2011-12-08 Jfe Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP5793283B2 (ja) 2010-08-06 2015-10-14 新日鐵住金ステンレス株式会社 ブラックスポットの生成の少ないフェライト系ステンレス鋼
JP5737951B2 (ja) 2011-01-05 2015-06-17 日新製鋼株式会社 Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
WO2012108479A1 (ja) 2011-02-08 2012-08-16 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼熱延鋼板及びその製造方法、並びにフェライト系ステンレス鋼板の製造方法
JP5703075B2 (ja) 2011-03-17 2015-04-15 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
JP5659061B2 (ja) 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP6071608B2 (ja) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 耐酸化性に優れたフェライト系ステンレス鋼板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159974A (ja) * 1983-03-02 1984-09-10 Sumitomo Metal Ind Ltd フエライト系クロムステンレス鋼
JPS60228616A (ja) 1984-04-25 1985-11-13 Sumitomo Metal Ind Ltd フエライト系ステンレス鋼熱延鋼帯の製造法
JPS6456822A (en) 1987-08-27 1989-03-03 Nisshin Steel Co Ltd Production for improving toughness of hot-rolled high-al ferritic band stainless steel
JPH03274245A (ja) * 1990-03-24 1991-12-05 Nisshin Steel Co Ltd 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JPH0570897A (ja) * 1991-09-13 1993-03-23 Kawasaki Steel Corp 高靱性高温高強度フエライト系ステンレス鋼
WO2003004714A1 (fr) * 2001-07-05 2003-01-16 Nisshin Steel Co., Ltd. Acier inoxydable ferritique pour element de debit de gaz d'echappement
JP2006037176A (ja) * 2004-07-28 2006-02-09 Nisshin Steel Co Ltd エキゾーストマニホールド用フェライト系ステンレス鋼
JP2006117985A (ja) * 2004-10-20 2006-05-11 Nisshin Steel Co Ltd 熱疲労特性に優れたフェライト系ステンレス鋼材および自動車排ガス経路部材
JP2009174040A (ja) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Egrクーラー用フェライト系ステンレス鋼およびegrクーラー
JP2011179114A (ja) * 2010-01-28 2011-09-15 Jfe Steel Corp 靭性に優れた高耐食性フェライト系ステンレス熱延鋼板
JP2012140688A (ja) 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Nb含有フェライト系ステンレス鋼熱延コイルおよび製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980251A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959149B1 (ko) * 2014-10-31 2019-03-15 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내 배기 가스 응축수 부식성과 브레이징성이 우수한 페라이트계 스테인리스 강 및 그 제조 방법
KR20170037663A (ko) * 2014-10-31 2017-04-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내 배기 가스 응축수 부식성과 브레이징성이 우수한 페라이트계 스테인리스 강 및 그 제조 방법
US10752973B2 (en) 2014-10-31 2020-08-25 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
KR102037643B1 (ko) * 2014-10-31 2019-10-28 닛테츠 스테인레스 가부시키가이샤 내 배기 가스 응축수 부식성과 브레이징성이 우수한 페라이트계 스테인리스 강 및 그 제조 방법
EP3214198A4 (en) * 2014-10-31 2018-09-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
KR20190010747A (ko) * 2014-10-31 2019-01-30 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내 배기 가스 응축수 부식성과 브레이징성이 우수한 페라이트계 스테인리스 강 및 그 제조 방법
JPWO2016129580A1 (ja) * 2015-02-10 2017-11-24 新日鐵住金ステンレス株式会社 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法
WO2016129580A1 (ja) * 2015-02-10 2016-08-18 新日鐵住金ステンレス株式会社 面シール性に優れた自動車フランジ用フェライト系ステンレス熱延鋼板および鋼帯ならびにそれらの製造方法
JP2016204714A (ja) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 自動車排気系部品締結部品用ステンレス鋼
KR20180017177A (ko) 2015-07-17 2018-02-20 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 강판 및 열연 어닐링판, 그리고 그들의 제조 방법
JP2017095789A (ja) * 2015-11-27 2017-06-01 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼熱延鋼板およびその製造方法
EP3388542A4 (en) * 2016-02-02 2019-11-06 Nisshin Steel Co., Ltd. FERRITIC STAINLESS STEEL SHEET CONTAINING HOT ROLLED NAMIN AND ITS MANUFACTURING METHOD AND FERRITIC STAINLESS STEEL SHEET CONTAINING COLD LAMINATED NU AND METHOD FOR MANUFACTURING THE SAME
EP3708690A1 (en) * 2016-02-02 2020-09-16 Nippon Steel Stainless Steel Corporation Cold rolled nb-containing ferritic stainless steel sheet and method for producing same
KR20190032477A (ko) 2016-10-17 2019-03-27 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 어닐링 강판 및 그 제조 방법
WO2018074164A1 (ja) 2016-10-17 2018-04-26 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
KR20190131528A (ko) 2017-04-27 2019-11-26 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 어닐링 강판 및 그 제조 방법
WO2020084987A1 (ja) * 2018-10-25 2020-04-30 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
JPWO2020084987A1 (ja) * 2018-10-25 2021-02-15 Jfeスチール株式会社 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
KR20210064281A (ko) 2018-10-25 2021-06-02 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 어닐링 강판 및 그 제조 방법
KR20230142630A (ko) 2018-10-25 2023-10-11 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 어닐링 강판 및 그 제조 방법
KR20210129140A (ko) * 2019-03-28 2021-10-27 닛테츠 스테인레스 가부시키가이샤 자동차 브레이크 디스크 로터용 페라이트계 스테인리스 강판, 자동차 브레이크 디스크 로터 및 자동차 브레이크 디스크 로터용 핫 스탬프 가공품
KR102569352B1 (ko) 2019-03-28 2023-08-22 닛테츠 스테인레스 가부시키가이샤 자동차 브레이크 디스크 로터용 페라이트계 스테인리스 강판, 자동차 브레이크 디스크 로터 및 자동차 브레이크 디스크 로터용 핫 스탬프 가공품

Also Published As

Publication number Publication date
JPWO2014157576A1 (ja) 2017-02-16
BR112015024500A2 (pt) 2017-07-18
US10385429B2 (en) 2019-08-20
CA2907970C (en) 2021-05-25
EP2980251A4 (en) 2016-11-30
MX2015013765A (es) 2016-02-26
JP5885884B2 (ja) 2016-03-16
CA2907970A1 (en) 2014-10-02
US20160053353A1 (en) 2016-02-25
EP2980251B1 (en) 2017-12-13
CN105051234B (zh) 2017-05-10
EP2980251A1 (en) 2016-02-03
BR112015024500B1 (pt) 2020-05-12
CN105051234A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5885884B2 (ja) フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
JP5908936B2 (ja) フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品
KR101564152B1 (ko) 내산화성과 고온 강도가 우수한 고순도 페라이트계 스테인리스 강판 및 그 제조 방법
TWI465587B (zh) 耐氧化性優異之肥粒鐵系不鏽鋼
JP5546911B2 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板
JP5918796B2 (ja) 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯
JP5709875B2 (ja) 耐酸化性に優れた耐熱フェライト系ステンレス鋼板
TWI460293B (zh) 雙相不銹鋼、雙相不銹鋼鑄片、及雙相不銹鋼鋼材
WO2012133573A1 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5904306B2 (ja) フェライト系ステンレス熱延焼鈍鋼板、その製造方法およびフェライト系ステンレス冷延焼鈍鋼板
WO2013099132A1 (ja) フェライト系ステンレス鋼
WO2011093516A1 (ja) 靭性に優れた高耐食性フェライト系ステンレス熱延鋼板
JP5709571B2 (ja) 耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板およびその製造方法
WO2018158854A1 (ja) フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
WO2018158853A1 (ja) フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
JP5937861B2 (ja) 溶接性に優れた耐熱フェライト系ステンレス鋼板
JP5677819B2 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板
JP2015132019A (ja) 耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板およびその製造方法
JP2012172160A (ja) 耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板およびその製造方法
JP5884183B2 (ja) 構造用ステンレス鋼板
JP4940844B2 (ja) 高温強度および靱性に優れたCr含有鋼管の製造方法、およびCr含有鋼管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017611.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508731

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2907970

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14780468

Country of ref document: US

Ref document number: MX/A/2015/013765

Country of ref document: MX

Ref document number: 2014776136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024500

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024500

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150924