WO2014155829A1 - 開回路電圧推定方法及び車両 - Google Patents

開回路電圧推定方法及び車両 Download PDF

Info

Publication number
WO2014155829A1
WO2014155829A1 PCT/JP2013/081666 JP2013081666W WO2014155829A1 WO 2014155829 A1 WO2014155829 A1 WO 2014155829A1 JP 2013081666 W JP2013081666 W JP 2013081666W WO 2014155829 A1 WO2014155829 A1 WO 2014155829A1
Authority
WO
WIPO (PCT)
Prior art keywords
post
voltage
secondary battery
average value
charging
Prior art date
Application number
PCT/JP2013/081666
Other languages
English (en)
French (fr)
Inventor
俊雄 小田切
泰有 秋山
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014155829A1 publication Critical patent/WO2014155829A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an open circuit voltage estimation method and a vehicle.
  • SOC state of charge of the battery
  • the true SOC can be obtained by measuring the voltage of the secondary battery (hereinafter referred to as “open circuit voltage” or “OCV”) when the vehicle is stopped and the secondary battery is in a no-load state.
  • OCV open circuit voltage
  • OCV open circuit voltage
  • the conventional estimation method is complicated in calculation, and may be difficult to process with the processing capability of the electronic control unit (hereinafter referred to as “ECU”) of the vehicle.
  • ECU electronice control unit
  • the OCV is estimated by a simple calculation that can be processed by the vehicle ECU, there is a problem that the reliability of the estimated OCV is lowered.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an open circuit voltage estimation method and a vehicle that can easily and reliably estimate the open circuit voltage of a secondary battery. .
  • An open circuit voltage estimation method is an open circuit voltage estimation method including an estimation step of estimating an open circuit voltage of a secondary battery, and the estimation step includes a discharge step of discharging the secondary battery over a predetermined time; A post-discharge pause process that pauses the charging and discharging of the secondary battery for a predetermined time after the discharge process, a charging process that charges the secondary battery for the same time as the discharge time after the post-discharge pause process, and a secondary battery after the charging process.
  • a post-charging pause process for pausing charging and discharging, and acquiring and storing the voltage value of the secondary battery at predetermined time intervals in the post-discharge pause process, and the same as the post-discharge pause process in the post-charge pause process.
  • the voltage value of the secondary battery is sequentially acquired and stored at a time interval of, and the average of the i-th voltage value acquired last in the post-charging pause process and the i-th voltage value acquired in the post-discharge pause process.
  • the value X (i) and the average value X (j) between the voltage values acquired before the i-th in the post-discharge pause process and the post-charge pause process are calculated, and the average value X (i) and the average value X (j ) Is less than the threshold value, the average value X (i) is estimated as the open circuit voltage of the secondary battery.
  • the voltage value of the secondary battery is acquired and stored at a predetermined time interval in the post-discharge pause process, and at the same time interval as the post-discharge pause process in the post-charge pause process. Voltage values are acquired and stored sequentially.
  • the average value X (i) of the i-th voltage value acquired last in the post-charge pause process and the i-th voltage value acquired in the post-discharge pause process is the same in the post-discharge pause process and the post-charge pause process, respectively.
  • the average value X (i ) Is estimated as the open circuit voltage of the secondary battery. For this reason, in this open circuit voltage estimation method, it is only necessary to acquire and store the voltage value of the secondary battery as many times as necessary in the pause process after charging, and only a simple calculation of obtaining an average value in the estimation process. Therefore, the OCV can be estimated even by a vehicle ECU having a low processing capability.
  • the average value X (i) is estimated as the OCV when the average value X (i) converges to a certain level or more, so the OCV is estimated with sufficient reliability even if it is simple. be able to.
  • the average value X (i-1) of the (i-1) -th acquired voltage values in the pause process is calculated, and the difference between the average value X (i) and the average value X (i-1) is less than the threshold value.
  • the last acquired i-th voltage value in the post-charging pause process by overwriting the (i-2) th voltage value stored in the post-charge pause process.
  • An open circuit voltage estimation method is an open circuit voltage estimation method including an estimation step of estimating an open circuit voltage of a secondary battery, and the estimation step charges the secondary battery for a predetermined time.
  • a post-discharge resting step for halting charging / discharging of the battery, and acquiring and storing a voltage value of the secondary battery at a predetermined time interval in the post-charging resting step, and in the post-discharge resting step,
  • the voltage value of the secondary battery is sequentially acquired and stored at the same time interval, and the i-th voltage value acquired last in the post-discharge pause process and the i-th voltage value acquired in the post-charge pause process
  • Average value X (i) and average value X (j) of the voltage values acquired before i-th in the post-charge rest process and the post-discharge rest process, respectively, and the average value X (i) and the average value X are calculated.
  • the average value X (i) is estimated as the open circuit voltage of the secondary battery.
  • the voltage value of the secondary battery is acquired and stored at a predetermined time interval in the pause process after charging, and the secondary battery voltage is measured at the same time interval as the pause process after charge in the pause process after discharge. Voltage values are acquired and stored sequentially.
  • the average value X (i) of the i-th voltage value last acquired in the post-discharge pause process and the i-th voltage value acquired in the post-charge pause process is the post-charge pause process and the post-discharge pause process, respectively.
  • the average value X (i ) Is estimated as the open circuit voltage of the secondary battery. For this reason, in this open circuit voltage estimation method, it is only necessary to acquire and store the voltage value of the secondary battery as many times as necessary in the pause process after discharge, and only a simple calculation of obtaining an average value in the estimation process. Therefore, the OCV can be estimated even by a vehicle ECU having a low processing capability.
  • the average value X (i) is estimated as the OCV when the average value X (i) converges to a certain level or more, so the OCV is estimated with sufficient reliability even if it is simple. be able to.
  • the average value X (i) of the i-th voltage value acquired last in the post-discharge pause step and the i-th voltage value acquired in the post-charge pause step And the average value X (i ⁇ 1) of the (i ⁇ 1) th acquired voltage values in the post-charging pause process and the post-discharge pause process, respectively, and the average value X (i) and the average value X (i) It is preferable to estimate the average value X (i) as the open circuit voltage of the secondary battery when the difference from ⁇ 1) is less than the threshold value. In this case, since it is only necessary to calculate the difference between the average values of the two most recently acquired voltage values, the OCV can be estimated more easily.
  • the last acquired i-th voltage value is overwritten and stored in the (i-2) th voltage value stored in the post-discharge pause process. It is preferable. In this case, it is only necessary to store the two most recently acquired voltage values among the voltage values sequentially acquired in the post-discharge resting process, so that the vehicle ECU or the like having a small storage capacity can estimate the OCV.
  • the vehicle according to the present invention stores the secondary battery, the acquisition means for acquiring the voltage value of the secondary battery, the storage means for storing the voltage value acquired by the acquisition means, and the open circuit voltage estimation method described above.
  • the open circuit voltage of the secondary battery can be estimated easily and with high reliability.
  • FIG. 4 is a flowchart of an embodiment of an open circuit voltage estimation method according to the present invention. It is a schematic diagram which shows an example of the voltage change of the secondary battery which concerns on a modification. It is a flowchart of the open circuit voltage estimation method which concerns on a modification.
  • FIG. 1 is a diagram showing components of an embodiment of a vehicle according to the present invention.
  • the vehicle 1 includes a secondary battery 10 and a vehicle ECU 20 and is configured to be connectable to an external charging / discharging unit 2.
  • the charging / discharging unit 2 charges and discharges the secondary battery 10 in accordance with instructions from the vehicle ECU 20.
  • the secondary battery 10 for example, a lithium ion secondary battery is used.
  • the vehicle ECU 20 includes a determination unit 21, an acquisition unit 22, a storage unit 23, and an estimation unit 24 as functional components.
  • the determination unit 21 determines whether or not the connection body connected to the vehicle 1 is the charge / discharge unit 2. For example, the determination unit 21 acquires product information such as a model number from the connection body, and determines whether or not the connection body is the charge / discharge unit 2 suitable for the vehicle 1 based on the product information. When it is determined that the connected body is the charge / discharge unit 2, the determination unit 21 outputs an instruction signal to the acquisition unit 22 and the estimation unit 24 to shift to the estimation process described below. On the other hand, when it is determined that the connected body is not the charging / discharging unit 2 (for example, a charging unit that performs only charging), the determining unit 21 displays the fact on the display unit of the vehicle 1 to notify the user, for example. Do. In this case, the estimation process described below is not performed.
  • the acquisition unit 22 acquires the voltage value of the secondary battery 10.
  • the acquisition unit 22 performs a discharge process, a post-discharge pause process, a charge process, and a post-charge pause process when acquiring the voltage value of the secondary battery 10. Changes in the voltage value of the secondary battery 10 in these steps are shown in FIG.
  • the acquisition unit 22 When the acquisition unit 22 receives an instruction signal indicating that the process proceeds to the estimation process from the determination unit 21, first, the acquisition unit 22 outputs an instruction signal indicating that the secondary battery 10 starts to be discharged to the charging / discharging unit 2.
  • the discharging step (A in FIG. 2) is performed.
  • an instruction signal for stopping the discharge of the secondary battery 10 is output to the charge / discharge unit 2 to perform a post-discharge stop process (B in FIG. 2) of the secondary battery 10.
  • an instruction signal indicating that charging of the secondary battery 10 is started is output to the charging / discharging unit 2 to perform a charging process of the secondary battery 10 (C in FIG. 2).
  • an instruction signal for stopping the discharge of the secondary battery 10 is output to the charge / discharge unit 2 to perform a post-charge stop process (D in FIG. 2) of the secondary battery 10.
  • the voltage of the secondary battery 10 decreases according to the discharging current.
  • the discharge current value is, for example, 10A.
  • the discharge process is performed for 60 seconds, for example.
  • the voltage of the secondary battery 10 gradually increases so as to converge to a constant voltage value.
  • the post-discharge resting process is performed for 300 seconds, for example.
  • the voltage of the secondary battery 10 increases according to the charging current.
  • the charging current value is the same current value as the discharge current value.
  • the charging process is performed for the same time as the discharging process.
  • the voltage of the secondary battery 10 gradually decreases so as to converge to a constant voltage value.
  • the acquisition unit 22 acquires the voltage value of the secondary battery 10 at a predetermined time interval as indicated by a circle in FIG.
  • the time interval is, for example, 30 seconds.
  • the acquiring unit 22 acquires ten voltage values of the secondary battery 10 in the post-discharge pause process.
  • the acquisition unit 22 sequentially acquires the voltage value of the secondary battery 10 at the same time interval as the time interval in the post-discharge pause process, as indicated by a circle in FIG.
  • the storage unit 23 stores the voltage value acquired by the acquisition unit 22.
  • the storage unit 23 receives and stores the voltage value output from the acquisition unit 22 every time the voltage value of the secondary battery 10 is acquired.
  • the voltage value stored in the memory unit 23 in the post-discharge rest process is the jth voltage value V (j).
  • j 1, 2,...
  • the i-th voltage value stored in the storage unit 23 in the post-charging pause process is defined as W (i).
  • the storage unit 23 overwrites and stores the voltage value W (i ⁇ 2) already stored when storing the voltage value W (i) in the post-charging suspension process.
  • the estimation unit 24 performs an estimation process for estimating the OCV of the secondary battery 10 based on the voltage value of the secondary battery 10 stored in the storage unit 23.
  • the estimation unit 24 receives an instruction signal indicating the shift to the estimation process from the determination unit 21, the estimation unit 24 waits while monitoring the voltage value stored in the storage unit 23. Then, the estimation unit 24 stores the voltage values V (i), V (i ⁇ 1), W (i) from the storage unit 23 when the storage unit 23 stores the voltage value W (i) in the suspension process after charging. ), W (i ⁇ 1), the average value X (i) of the voltage value V (i) and the voltage value W (i), and the voltage value V (i ⁇ 1) and the voltage value W (i ⁇ 1). And the average value X (i ⁇ 1) is calculated to determine whether or not the difference between the average value X (i) and the average value X (i ⁇ 1) is less than the threshold value.
  • the threshold value is, for example, 0.0005V.
  • the estimation unit 24 estimates the average value X (i) as the OCV of the secondary battery 10 when the difference between the average value X (i) and the average value X (i ⁇ 1) is less than the threshold value. On the other hand, when the difference between the average value X (i) and the average value X (i ⁇ 1) is not less than the threshold, the estimation unit 24 continues the estimation process.
  • the estimation unit 24 first stores the voltage values V (1), V (2), W from the storage unit 23 when the storage unit 23 stores the voltage value W (2) in the suspension process after charging. (1), W (2) are received, the average value X (1) of the voltage value V (1) and the voltage value W (1), and the average value of the voltage value V (2) and the voltage value W (2) X (2) and are calculated. Subsequently, the estimation unit 24 determines whether or not the difference between the average value X (1) and the average value X (2) is less than a threshold value.
  • the estimation unit 24 estimates the average value X (2) as the OCV of the secondary battery 10 when the difference between the average value X (1) and the average value X (2) is less than the threshold value. On the other hand, when the difference between the average value X (1) and the average value X (2) is not less than the threshold, the estimation unit 24 continues the estimation process, and then the voltage value W (3) is stored in the storage unit 23. The same processing is performed when Thus, the estimation unit 24 repeats the same processing until the OCV is estimated.
  • the estimation unit 24 The average value X (i) of V (i) and W (i) acquired last in the subsequent charge / discharge suspension state is estimated as the OCV of the secondary battery 10.
  • FIG. 3 is a flowchart of an embodiment of an open circuit voltage estimation method according to the present invention.
  • this open circuit voltage estimation method includes estimation steps (S001 to S013). Further, the estimation step includes a discharging step (S003), a post-discharge resting step (S004 to S005), a charging step (S006), and a post-charging resting step (S007 to S011).
  • the vehicle 1 and the charging / discharging unit 2 are connected (S001), and it is determined whether or not the vehicle 1 and the charging / discharging unit 2 are compatible (S002).
  • the secondary battery 10 is discharged for a predetermined time (S003).
  • the estimation process ends.
  • the voltage value V (j) of the secondary battery 10 is acquired and stored at a predetermined time interval (S005).
  • the predetermined time has elapsed, the secondary battery 10 is subsequently charged for a predetermined time (S006).
  • the voltage value W (i) of the secondary battery 10 is sequentially acquired and stored at predetermined time intervals (S008). The voltage value W (i) is stored by overwriting the voltage value D (i-2) when stored (S009).
  • an average value X (i) of the voltage value V (i) and the voltage value W (i) and an average value X (i ⁇ ) of the voltage value V (i ⁇ 1) and the voltage value V (i ⁇ 1). 1) are respectively calculated (S010), and it is determined whether or not the difference between the average value X (i) and the average value X (i-1) is less than the threshold value Y (S011).
  • the average value X (i) is estimated as the OCV of the secondary battery 10 (S012), and the estimated value The SOC of the secondary battery 10 is calculated from the OCV (S013).
  • the difference between the average value X (i) and the average value X (i ⁇ 1) is not less than the threshold value Y, the difference between the average value X (i) and the average value X (i ⁇ 1) is less than the threshold value Y. The process after S008 is repeated until it becomes.
  • the voltage value of the secondary battery is acquired and stored at a predetermined time interval in the post-discharge pause process, and the secondary battery is secondary in the post-discharge pause process at the same time interval as the post-discharge pause process.
  • Battery voltage values are acquired and stored sequentially.
  • the average value X (i) of the voltage value W (i) acquired last in the rest process after charging and the voltage value V (i) in the rest process after discharge is obtained as the voltage value V (i ⁇
  • the difference between the average value X (i) and the average value X (i-1) is compared with the average value X (i-1) of 1) and the voltage value W (i-1) in the post-charging pause process.
  • the average value X (i) is estimated as the open circuit voltage of the secondary battery. For this reason, in the present embodiment, the voltage value of the secondary battery is acquired as many times as necessary in the suspension process after charging, and only the two most recent voltage values need to be stored. Since only a simple calculation is used to determine the OCV, it is possible to estimate the OCV even with a vehicle ECU having a low processing capability. Further, in this open circuit voltage estimation method, the average value X (i) is estimated as the OCV when the average value X (i) converges to a certain level or more, so the OCV is estimated with sufficient reliability even if it is simple. be able to.
  • the average value X (i) is estimated as OCV when the difference between the average value X (i) and the average value X (i ⁇ 1) is less than the threshold value. Or the average value X (i-2), X (i-3)... Or the average value X (i) and the average value X (1), the average value X (2).
  • the average value X (i) may be estimated as OCV. Even in this case, the OCV can be estimated simply and with sufficient reliability, as in the above embodiment.
  • the average value X (i) is overwritten and stored in the average value X (i-2).
  • the average value X (i) is an average value other than the average value X (i-2). May be overwritten and stored, or any average value may be stored without being overwritten.
  • the OCV can be estimated by a vehicle ECU having a small storage capacity as in the above embodiment.
  • the OCV can be estimated with sufficient reliability because more average values can be used in the estimation of the OCV. be able to.
  • the acquisition part 22 performed the discharge process, the charging / discharging rest process, the charging process, and the charging / discharging rest process in this order, these processes are replaced with charge and discharge as a modification. May be.
  • the acquisition unit 22 may perform a charging process, a post-charge pause process, a discharge process, and a post-discharge pause process in this order.
  • the voltage of the secondary battery 10 changes as shown in FIG. That is, the voltage of the secondary battery 10 rises in the charging process (E in FIG. 4), and falls so as to converge to a constant value in the suspension process after charging (F in FIG. 4). Thereafter, the voltage value of the secondary battery 10 decreases in the discharging process (G in FIG. 4), and increases so as to converge to a constant value in the resting process after discharging (H in FIG. 4).
  • the acquisition unit 22 acquires the voltage value of the secondary battery 10 at predetermined time intervals as shown in FIG. 4F in the pause process after charging, and the predetermined value as shown in H of FIG. 4 in the pause process after discharge. The voltage value of the secondary battery 10 is sequentially acquired at the time intervals.
  • FIG. 5 shows a flowchart of this modification.
  • the flowcharts are the same except that S003, S004, S006, and S007 in the above embodiment (FIG. 3) are replaced with S103, S104, S106, and S107, respectively. is there. That is, in this case, after performing the charging process, the voltage value V (j) of the secondary battery 10 is acquired and stored at a predetermined time interval in the post-charging suspension process (S104 to S005), and then discharged through the discharging process. The voltage value of the secondary battery 10 is sequentially acquired and stored until the OCV is estimated in the post-pause process (S106 to S011).
  • the voltage value of the secondary battery is acquired as many times as necessary in the post-discharge pause process, and only the voltage values of the two most recent points need to be stored. Furthermore, since only a simple calculation for obtaining the average value is used in the estimation step, the OCV can be estimated even by a vehicle ECU having a low processing capability. Also in this case, since the average value X (i) is estimated as the OCV when the average value X (i) converges above a certain level, the OCV can be estimated with sufficient reliability even if it is simple.
  • SYMBOLS 1 ... Vehicle, 2 ... Charging / discharging part, 10 ... Secondary battery, 20 ... Vehicle ECU, 21 ... Judgment part, 22 ... Acquisition part, 23 ... Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 この開回路電圧推定方法は、推定工程を備える開回路電圧推定方法であって、推定工程は、放電工程と、放電後休止工程と、充電工程と、充電後休止工程と、を備え、放電後休止工程において、所定の時間間隔で二次電池の電圧値を取得及び記憶すると共に、充電後休止工程において、放電後休止工程と同一の時間間隔で二次電池の電圧値を順次取得及び記憶していき、充電後休止工程において最後に取得したi番目の電圧値と放電後休止工程においてi番目に取得した電圧値との平均値X(i)、並びに放電後休止工程及び充電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)を演算し、平均値X(i)と平均値X(j)との差が閾値未満となったときに、平均値X(i)を二次電池の開回路電圧と推定する。

Description

開回路電圧推定方法及び車両
 本発明は、開回路電圧推定方法及び車両に関する。
 自動車、産業車両等の車両にリチウム電池等の二次電池を搭載する場合、過充電又は過放電を防止するために電池の充電状態(以下「SOC」)を把握する必要がある。
 一般に、車両が停止し二次電池が無負荷状態であるときの二次電池の電圧(以下「開回路電圧」又は「OCV」)を計測することで真のSOCを求めることができる。しかし、例えば二次電池の内部抵抗が大きい場合には二次電池の電圧が一定値に収束するまでに時間がかかりすぎてしまい、正確なOCVを計測することが現実的には難しい。そこで、従来OCVを推定する方法が提案されている(例えば特許文献1、2参照)。
特開平4-134280号公報 特開2004-109007号公報
 しかしながら、従来の推定方法は演算が複雑であり、車両の電子制御ユニット(以下「ECU」)の処理能力では処理が困難である場合がある。一方、車両ECUで処理できる程度の単純な演算によってOCVを推定すると、推定されたOCVの信頼性が低くなってしまうという問題がある。
 本発明は、上記課題を解決するためになされたものであり、簡便に且つ十分な信頼性で二次電池の開回路電圧を推定できる開回路電圧推定方法及び車両を提供することを目的とする。
 本発明に係る開回路電圧推定方法は、二次電池の開回路電圧を推定する推定工程を備える開回路電圧推定方法であって、推定工程は、二次電池を所定時間にわたって放電する放電工程と、放電工程後に二次電池の充放電を所定時間にわたって休止する放電後休止工程と、放電後休止工程後に二次電池を放電時間と同時間にわたって充電する充電工程と、充電工程後に二次電池の充放電を休止する充電後休止工程と、を備え、放電後休止工程において、所定の時間間隔で二次電池の電圧値を取得及び記憶すると共に、充電後休止工程において、放電後休止工程と同一の時間間隔で二次電池の電圧値を順次取得及び記憶していき、充電後休止工程において最後に取得したi番目の電圧値と放電後休止工程においてi番目に取得した電圧値との平均値X(i)、並びに放電後休止工程及び充電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)を演算し、平均値X(i)と平均値X(j)との差が閾値未満となったときに、平均値X(i)を二次電池の開回路電圧と推定することを特徴とする。
 この開回路電圧推定方法では、放電後休止工程において所定の時間間隔で二次電池の電圧値を取得及び記憶すると共に、充電後休止工程において放電後休止工程と同一の時間間隔で二次電池の電圧値を順次取得及び記憶する。一方、充電後休止工程において最後に取得したi番目の電圧値と放電後休止工程においてi番目に取得した電圧値との平均値X(i)を、放電後休止工程及び充電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)と比較して、平均値X(i)と平均値X(j)との差が閾値未満となったときに平均値X(i)を二次電池の開回路電圧と推定する。このため、この開回路電圧推定方法では、充電後休止工程において二次電池の電圧値を必要最小限の回数だけ取得及び記憶すればよく、さらに推定工程において平均値を求めるという簡便な演算のみを用いるため、処理能力の低い車両ECU等でもOCVの推定が可能となる。また、この開回路電圧推定方法では、平均値X(i)が一定以上収束したときに平均値X(i)をOCVと推定するため、簡便であっても十分な信頼性でOCVを推定することができる。
 また、推定工程において、充電後休止工程で最後に取得したi番目の電圧値と放電後休止工程でi番目に取得した電圧値との平均値X(i)、並びに放電後休止工程及び充電後休止工程でそれぞれ(i-1)番目に取得した電圧値同士の平均値X(i-1)を演算し、平均値X(i)と平均値X(i-1)との差が閾値未満となったときに、平均値X(i)を二次電池の開回路電圧と推定することが好ましい。この場合、直近に取得した二点の電圧値の平均値の差を演算すればよいため、より簡便にOCVを推定することができる。
 また、充電後休止工程において、最後に取得したi番目の電圧値を、充電後休止工程で(i-2)番目に記憶した電圧値に上書きして記憶することが好ましい。この場合、充電後休止工程において順次取得した電圧値のうち、直近に取得した二点の電圧値のみを記憶すればよいため、記憶容量の小さい車両ECU等でもOCVの推定が可能となる。
 また、本発明に係る開回路電圧推定方法は、二次電池の開回路電圧を推定する推定工程を備える開回路電圧推定方法であって、推定工程は、二次電池を所定時間にわたって充電する充電工程と、充電工程後に二次電池の充放電を所定時間にわたって休止する充電後休止工程と、充電後休止工程後に二次電池を充電時間と同時間にわたって放電する放電工程と、放電工程後に二次電池の充放電を休止する放電後休止工程と、を備え、充電後休止工程において、所定の時間間隔で二次電池の電圧値を取得及び記憶すると共に、放電後休止工程において、充電後休止工程と同一の時間間隔で二次電池の電圧値を順次取得及び記憶していき、放電後休止工程において最後に取得したi番目の電圧値と充電後休止工程においてi番目に取得した電圧値との平均値X(i)、並びに充電後休止工程及び放電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)を演算し、平均値X(i)と平均値X(j)との差が閾値未満となったときに、平均値X(i)を二次電池の開回路電圧と推定することを特徴とする。
 この開回路電圧推定方法では、充電後休止工程において所定の時間間隔で二次電池の電圧値を取得及び記憶すると共に、放電後休止工程において充電後休止工程と同一の時間間隔で二次電池の電圧値を順次取得及び記憶する。一方、放電後休止工程において最後に取得したi番目の電圧値と充電後休止工程においてi番目に取得した電圧値との平均値X(i)を、充電後休止工程及び放電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)と比較して、平均値X(i)と平均値X(j)との差が閾値未満となったときに平均値X(i)を二次電池の開回路電圧と推定する。このため、この開回路電圧推定方法では、放電後休止工程において二次電池の電圧値を必要最小限の回数だけ取得及び記憶すればよく、さらに推定工程において平均値を求めるという簡便な演算のみを用いるため、処理能力の低い車両ECU等でもOCVの推定が可能となる。また、この開回路電圧推定方法では、平均値X(i)が一定以上収束したときに平均値X(i)をOCVと推定するため、簡便であっても十分な信頼性でOCVを推定することができる。
 また、第2の開回路電圧推定方法の推定工程において、放電後休止工程で最後に取得したi番目の電圧値と充電後休止工程でi番目に取得した電圧値との平均値X(i)、並びに充電後休止工程及び放電後休止工程でそれぞれ(i-1)番目に取得した電圧値同士の平均値X(i-1)を演算し、平均値X(i)と平均値X(i-1)との差が閾値未満となったときに、平均値X(i)を二次電池の開回路電圧と推定することが好ましい。この場合、直近に取得した二点の電圧値の平均値の差を演算すればよいため、より簡便にOCVを推定することができる。
 また、第2の開回路電圧推定方法の放電後休止工程において、最後に取得したi番目の電圧値を、放電後休止工程で(i-2)番目に記憶した電圧値に上書きして記憶することが好ましい。この場合、放電後休止工程において順次取得した電圧値のうち、直近に取得した二点の電圧値のみを記憶すればよいため、記憶容量の小さい車両ECU等でもOCVの推定が可能となる。
 また、本発明に係る車両は、二次電池と、二次電池の電圧値を取得する取得手段と、取得手段により取得した電圧値を記憶する記憶手段と、上記の開回路電圧推定方法によって記憶手段が記憶した電圧値から二次電池の開回路電圧を推定する推定手段と、を備えることを特徴とする。この車両では、簡便に且つ十分な信頼性でOCVを推定する推定手段を備えるので、車両ECUの処理能力が低くても信頼性の高いOCVを推定することができる。
 本発明によれば、簡便に且つ高い信頼性で二次電池の開回路電圧を推定することができる。
本発明に係る車両の一実施形態の構成要素を示す図である。 二次電池の電圧変化の一例を示す模式図である。 本発明に係る開回路電圧推定方法の一実施形態のフローチャートである。 変形例に係る二次電池の電圧変化の一例を示す模式図である。 変形例に係る開回路電圧推定方法のフローチャートである。
 以下、図面を参照しながら、本発明に係る開回路電圧推定方法及び車両の好適な実施形態について詳細に説明する。
 まず、本実施形態に係る車両について説明する。図1は、本発明に係る車両の一実施形態の構成要素を示す図である。同図に示すように、車両1は、二次電池10と、車両ECU20とを備え、外部の充放電部2と接続可能に構成されている。充放電部2は、車両ECU20からの指示に応じて二次電池10の充電及び放電を行う。二次電池10としては、例えばリチウムイオン二次電池が用いられる。
 この車両1では、充放電部2が接続されたときに二次電池10の開回路電圧推定が行われる。その機能的な構成要素として、車両ECU20は、判断部21と、取得部22と、記憶部23と、推定部24とを備える。
 判断部21は、車両1に接続された接続体が充放電部2であるか否かを判断する。判断部21は、例えば接続体から型番等の製品情報を取得し、その製品情報に基づいて接続体が車両1に適合した充放電部2であるか否かを判断する。接続体が充放電部2であると判断された場合、判断部21は、取得部22及び推定部24へ以下で説明する推定工程に移行する旨の指示信号を出力する。一方、接続体が充放電部2でない(例えば充電のみを行う充電部である場合)と判断された場合、判断部21は、例えば車両1の表示部にその旨を表示させてユーザに報知を行う。この場合は以下で説明する推定工程は行われない。
 取得部22は、二次電池10の電圧値を取得する。取得部22は、二次電池10の電圧値の取得に際して、放電工程、放電後休止工程、充電工程及び充電後休止工程を行う。これらの工程における二次電池10の電圧値の変化を図2に示す。
 取得部22は、判断部21から推定工程に移行する旨の指示信号を受け取ると、まず、充放電部2へ二次電池10の放電を開始する旨の指示信号を出力して二次電池10の放電工程(図2のA)を行う。次に、充放電部2へ二次電池10の放電を休止する旨の指示信号を出力して二次電池10の放電後休止工程(図2のB)を行う。続いて、充放電部2へ二次電池10の充電を開始する旨の指示信号を出力して二次電池10の充電工程(図2のC)を行う。最後に、充放電部2へ二次電池10の放電を休止する旨の指示信号を出力して二次電池10の充電後休止工程(図2のD)を行う。
 放電工程においては、図2のAに示すように、二次電池10の電圧が放電電流に応じて下降する。放電電流値は、例えば10Aである。放電工程は、例えば60秒間にわたって行われる。放電後休止工程においては、図2のBに示すように、二次電池10の電圧が一定の電圧値に収束するように徐々に上昇する。放電後休止工程は、例えば300秒間にわたって行われる。
 充電工程においては、図2のCに示すように、二次電池10の電圧が充電電流に応じて上昇する。充電電流値は、上記放電電流値と同一の電流値とする。充電工程は、放電工程が行われた時間と同時間にわたって行われる。充電後休止工程においては、図2のDに示すように、二次電池10の電圧が一定の電圧値に収束するように徐々に下降する。
 取得部22は、放電後休止工程において図2のBに丸印で示すように、所定の時間間隔で二次電池10の電圧値を取得する。時間間隔は、例えば30秒間隔とする。この場合、取得部22は、放電後休止工程において二次電池10の電圧値を10個取得することとなる。取得部22は、充電後休止工程において図2のDに丸印で示すように、放電後休止工程における時間間隔と同一の時間間隔で二次電池10の電圧値を順次取得していく。
 記憶部23は、取得部22が取得した電圧値を記憶する。記憶部23は、二次電池10の電圧値が取得される度に取得部22から出力される電圧値を受け取り記憶する。ここで、記憶部23に放電後休止工程においてj番目に記憶された電圧値をV(j)とする。本実施形態においては、j=1,2,…10である。また、充電後休止工程において記憶部23にi番目に記憶された電圧値をW(i)とする。なお、記憶部23は、充電後休止工程において電圧値W(i)を記憶する際にすでに記憶されている電圧値W(i-2)に上書きして記憶する。
 推定部24は、記憶部23に記憶された二次電池10の電圧値に基づいて二次電池10のOCVを推定する推定工程を行う。推定部24は、判断部21から推定工程に移行する旨の指示信号を受け取ると、記憶部23に記憶される電圧値を監視しながら待機する。そして、推定部24は、記憶部23に充電後休止工程における電圧値W(i)が記憶されたときに、記憶部23から電圧値V(i),V(i-1),W(i),W(i-1)を受け取り、電圧値V(i)と電圧値W(i)との平均値X(i)及び電圧値V(i-1)と電圧値W(i-1)との平均値X(i-1)を演算して、平均値X(i)と平均値X(i-1)との差が閾値未満であるか否かを判定する。閾値は、例えば0.0005Vとする。
 推定部24は、平均値X(i)と平均値X(i-1)との差が閾値未満である場合は平均値X(i)を二次電池10のOCVと推定する。一方、推定部24は、平均値X(i)と平均値X(i-1)との差が閾値未満でない場合は推定工程を続行する。
 具体的には、推定部24は、まず記憶部23に充電後休止工程における電圧値W(2)が記憶されたときに、記憶部23から電圧値V(1),V(2),W(1),W(2)を受け取り、電圧値V(1)と電圧値W(1)との平均値X(1)及び電圧値V(2)と電圧値W(2)との平均値X(2)及びを演算する。続いて、推定部24は、平均値X(1)と平均値X(2)との差が閾値未満であるか否かを判定する。
 推定部24は、平均値X(1)と平均値X(2)との差が閾値未満である場合は平均値X(2)を二次電池10のOCVと推定する。一方、推定部24は、平均値X(1)と平均値X(2)との差が閾値未満でない場合は推定工程を続行し、次に記憶部23に電圧値W(3)が記憶されたときに同様の処理を行う。このように推定部24は、OCVが推定されるまで同様の処理を繰り返す。
 なお、放電後休止工程と同時間にわたって上記の工程を行っても平均値X(i)と平均値X(i-1)との差が閾値未満にならない場合には、推定部24は、充電後の充放電休止状態で最後に取得したV(i)とW(i)との平均値X(i)を二次電池10のOCVと推定する。
 次に、本実施形態に係る開回路電圧推定方法について説明する。図3は、本発明に係る開回路電圧推定方法の一実施形態のフローチャートである。同図に示すように、この開回路電圧推定方法は、推定工程(S001~S013)を備える。さらに推定工程は、放電工程(S003)と放電後休止工程(S004~S005)と充電工程(S006)と充電後休止工程(S007~S011)とを備える。
 まず、車両1と充放電部2とが接続され(S001)、車両1と充放電部2とが適合しているか否かが判断される(S002)。車両1と充放電部2とが適合していると判断された場合、所定時間にわたって二次電池10の放電が行われる(S003)。一方、例えば車両1が例えば充電のみを行う充電部に接続されている場合、推定工程は終了する。
 放電が終了し二次電池10の充放電が休止されたら(S004)、二次電池10の電圧値V(j)が所定の時間間隔で取得及び記憶される(S005)。所定時間が経過すると、続いて所定時間にわたって二次電池10の充電が行われる(S006)。充電が終了し二次電池10の充放電が休止されたら(S007)、二次電池10の電圧値W(i)が所定の時間間隔で順次取得及び記憶されていく(S008)。なお、電圧値W(i)は、記憶される際に電圧値D(i―2)に上書きして記憶される(S009)。
 次に、電圧値V(i)と電圧値W(i)との平均値X(i)及び電圧値V(i-1)と電圧値V(i-1)との平均値X(i-1)がそれぞれ演算され(S010)、平均値X(i)と平均値X(i-1)との差が閾値Y未満であるか否かが判定される(S011)。
 平均値X(i)と平均値X(i-1)との差が閾値Y未満である場合、平均値X(i)が二次電池10のOCVと推定され(S012)、その推定されたOCVから二次電池10のSOCが算出される(S013)。一方、平均値X(i)と平均値X(i-1)との差が閾値Y未満でない場合、平均値X(i)と平均値X(i-1)との差が閾値Y未満になるまでS008以降の工程を繰り返す。
 以上のように、本実施形態では、放電後休止工程において所定の時間間隔で二次電池の電圧値を取得及び記憶すると共に、充電後休止工程において放電後休止工程と同一の時間間隔で二次電池の電圧値を順次取得及び記憶する。一方、充電後休止工程において最後に取得した電圧値W(i)と放電後休止工程における電圧値V(i)との平均値X(i)を、放電後休止工程における電圧値V(i-1)と充電後休止工程における電圧値W(i-1)との平均値X(i-1)と比較して、平均値X(i)と平均値X(i-1)との差が閾値未満となったときに平均値X(i)を二次電池の開回路電圧と推定する。このため、本実施形態では、充電後休止工程において二次電池の電圧値を必要最小限の回数だけ取得し、また直近の二点の電圧値のみを記憶すればよく、さらに推定工程において平均値を求めるという簡便な演算のみを用いるため、処理能力の低い車両ECU等でもOCVの推定が可能となる。また、この開回路電圧推定方法では、平均値X(i)が一定以上収束したときに平均値X(i)をOCVと推定するため、簡便であっても十分な信頼性でOCVを推定することができる。
 本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、平均値X(i)と平均値X(i-1)との差が閾値未満であるときに平均値X(i)をOCVと推定したが、平均値X(i)と平均値X(i-2),X(i-3)…等との差、あるいは平均値X(i)と平均値X(1)、平均値X(2)…平均値X(i-1)の平均値との差が閾値未満であるときに平均値X(i)をOCVと推定してもよい。この場合でも上記実施形態と同様に、簡便に且つ十分な信頼性でOCVを推定することができる。
 また、上記実施形態では、平均値X(i)を平均値X(i-2)に上書きして記憶させたが、平均値X(i)を平均値X(i-2)以外の平均値に上書きして記憶させてもよく、あるいはいずれの平均値にも上書きせずに記憶させてもよい。平均値X(i)を平均値X(i-2)以外の平均値に上書きして記憶させた場合、上記実施形態と同様に記憶容量の小さな車両ECUでOCVを推定することができる。一方、平均値X(i)をいずれの平均値にも上書きせずに記憶させた場合、OCVの推定の際により多くの平均値を用いることができるためより十分な信頼性でOCVを推定することができる。
 また、取得部22は、上記実施形態においては、放電工程、充放電休止工程、充電工程及び充放電休止工程をこの順で行ったが、変形例として、これらの工程を充電と放電とを入れ替えてもよい。具体的には、取得部22は、充電工程、充電後休止工程、放電工程及び放電後休止工程をこの順で行ってもよい。
 この変形例の場合、二次電池10の電圧は、図4に示すような変化をする。すなわち、二次電池10の電圧は、充電工程において上昇し(図4のE)、充電後休止工程において一定値に収束するように下降する(図4のF)。その後、二次電池10の電圧値は、放電工程において下降し(図4のG)、放電後休止工程において一定値に収束するように上昇する(図4のH)。取得部22は、充電後休止工程において図4のFに示すように、所定の時間間隔で二次電池10の電圧値を取得し、放電後休止工程において図4のHに示すように、所定の時間間隔で二次電池10の電圧値を順次取得していく。
 また、この変形例のフローチャートを図5に示す。同図に示すように、上記実施形態(図3)のS003、S004、S006及びS007が、充電と放電が入れ替わってそれぞれS103、S104、S106及びS107となっている以外は、両フローチャートは同一である。すなわち、この場合まず充電工程を行った後に充電後休止工程において二次電池10の電圧値V(j)が所定の時間間隔で取得及び記憶され(S104~S005)、その後に放電工程を経て放電後休止工程においてOCVが推定されるまで二次電池10の電圧値が順次取得及び記憶されていく(S106~S011)。
 この変形例の場合でも、上記実施形態と同様に、放電後休止工程において二次電池の電圧値を必要最小限の回数だけ取得し、また直近の二点の電圧値のみを記憶すればよく、さらに推定工程において平均値を求めるという簡便な演算のみを用いるため、処理能力の低い車両ECU等でもOCVの推定が可能となる。また、この場合でも、平均値X(i)が一定以上収束したときに平均値X(i)をOCVと推定するため、簡便であっても十分な信頼性でOCVを推定することができる。
 1…車両、2…充放電部、10…二次電池、20…車両ECU、21…判断部、22…取得部、23…記憶部、24…推定部、S001~S013…推定工程、S003…放電工程、S004,S005…放電後休止工程、S006…充電工程、S007~S011…充電後休止工程。

Claims (7)

  1.  二次電池の開回路電圧を推定する推定工程を備える開回路電圧推定方法であって、
     前記推定工程は、
     前記二次電池を所定時間にわたって放電する放電工程と、
     前記放電工程後に前記二次電池の充放電を所定時間にわたって休止する放電後休止工程と、
     前記放電後休止工程後に前記二次電池を放電時間と同時間にわたって充電する充電工程と、
     前記充電工程後に前記二次電池の充放電を休止する充電後休止工程と、を備え、
     前記放電後休止工程において、所定の時間間隔で前記二次電池の電圧値を取得及び記憶すると共に、前記充電後休止工程において、前記放電後休止工程と同一の時間間隔で前記二次電池の電圧値を順次取得及び記憶していき、
     前記充電後休止工程において最後に取得したi番目の電圧値と前記放電後休止工程においてi番目に取得した電圧値との平均値X(i)、並びに前記放電後休止工程及び前記充電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)を演算し、前記平均値X(i)と前記平均値X(j)との差が閾値未満となったときに、前記平均値X(i)を前記二次電池の開回路電圧と推定することを特徴とする、開回路電圧推定方法。
  2.  前記推定工程において、前記充電後休止工程で最後に取得したi番目の電圧値と前記放電後休止工程でi番目に取得した電圧値との平均値X(i)、並びに前記放電後休止工程及び前記充電後休止工程でそれぞれ(i-1)番目に取得した電圧値同士の平均値X(i-1)を演算し、前記平均値X(i)と前記平均値X(i-1)との差が閾値未満となったときに、前記平均値X(i)を前記二次電池の開回路電圧と推定することを特徴とする、請求項1に記載の開回路電圧推定方法。
  3.  前記充電後休止工程において、最後に取得したi番目の電圧値を、前記充電後休止工程で(i-2)番目に記憶した電圧値に上書きして記憶することを特徴とする、請求項2に記載の開回路電圧推定方法。
  4.  二次電池の開回路電圧を推定する推定工程を備える開回路電圧推定方法であって、
     前記推定工程は、
     前記二次電池を所定時間にわたって充電する充電工程と、
     前記充電工程後に前記二次電池の充放電を所定時間にわたって休止する充電後休止工程と、
     前記充電後休止工程後に前記二次電池を充電時間と同時間にわたって放電する放電工程と、
     前記放電工程後に前記二次電池の充放電を休止する放電後休止工程と、を備え、
     前記充電後休止工程において、所定の時間間隔で前記二次電池の電圧値を取得及び記憶すると共に、前記放電後休止工程において、前記充電後休止工程と同一の時間間隔で前記二次電池の電圧値を順次取得及び記憶していき、
     前記放電後休止工程において最後に取得したi番目の電圧値と前記充電後休止工程においてi番目に取得した電圧値との平均値X(i)、並びに前記充電後休止工程及び前記放電後休止工程でそれぞれi番目以前に取得した電圧値同士の平均値X(j)を演算し、前記平均値X(i)と前記平均値X(j)との差が閾値未満となったときに、前記平均値X(i)を前記二次電池の開回路電圧と推定することを特徴とする、開回路電圧推定方法。
  5.  前記推定工程において、前記放電後休止工程で最後に取得したi番目の電圧値と前記充電後休止工程でi番目に取得した電圧値との平均値X(i)、並びに前記充電後休止工程及び前記放電後休止工程でそれぞれ(i-1)番目に取得した電圧値同士の平均値X(i-1)を演算し、前記平均値X(i)と前記平均値X(i-1)との差が閾値未満となったときに、前記平均値X(i)を前記二次電池の開回路電圧と推定することを特徴とする、請求項4に記載の開回路電圧推定方法。
  6.  前記放電後休止工程において、最後に取得したi番目の電圧値を、前記放電後休止工程で(i-2)番目に記憶した電圧値に上書きして記憶することを特徴とする、請求項5に記載の開回路電圧推定方法。
  7.  二次電池と、
     前記二次電池の電圧値を取得する取得手段と、
     前記取得手段により取得した電圧値を記憶する記憶手段と、
     請求項1~6のいずれか一項に記載の開回路電圧推定方法によって前記記憶手段が記憶した電圧値から前記二次電池の開回路電圧を推定する推定手段と、を備えることを特徴とする車両。
PCT/JP2013/081666 2013-03-28 2013-11-25 開回路電圧推定方法及び車両 WO2014155829A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013068619A JP5541391B1 (ja) 2013-03-28 2013-03-28 開回路電圧推定方法及び車両
JP2013-068619 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014155829A1 true WO2014155829A1 (ja) 2014-10-02

Family

ID=51409468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081666 WO2014155829A1 (ja) 2013-03-28 2013-11-25 開回路電圧推定方法及び車両

Country Status (2)

Country Link
JP (1) JP5541391B1 (ja)
WO (1) WO2014155829A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350174B2 (ja) * 2014-09-26 2018-07-04 日立化成株式会社 電池システム用制御装置および電池システムの制御方法
CN109856542B (zh) * 2018-10-23 2021-01-05 许继集团有限公司 一种锂电池soc-ocv曲线簇的标定方法、soc校正方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082887A (ja) * 2006-09-27 2008-04-10 Auto Network Gijutsu Kenkyusho:Kk 開放電圧検出方法及び開放電圧検出装置
JP2008096328A (ja) * 2006-10-13 2008-04-24 Furukawa Electric Co Ltd:The 充電率推定方法、充電率推定装置及び二次電池電源システム
JP2008128964A (ja) * 2006-11-24 2008-06-05 Sony Corp バッテリの安定開回路電圧算出方法、バッテリ装置及び電子機器
JP2008191103A (ja) * 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk 開放電圧予測方法及び開放電圧予測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082887A (ja) * 2006-09-27 2008-04-10 Auto Network Gijutsu Kenkyusho:Kk 開放電圧検出方法及び開放電圧検出装置
JP2008096328A (ja) * 2006-10-13 2008-04-24 Furukawa Electric Co Ltd:The 充電率推定方法、充電率推定装置及び二次電池電源システム
JP2008128964A (ja) * 2006-11-24 2008-06-05 Sony Corp バッテリの安定開回路電圧算出方法、バッテリ装置及び電子機器
JP2008191103A (ja) * 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk 開放電圧予測方法及び開放電圧予測装置

Also Published As

Publication number Publication date
JP2014190929A (ja) 2014-10-06
JP5541391B1 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP6414336B2 (ja) 劣化度推定装置及び劣化度推定方法
JP5051661B2 (ja) 二次電池のsoc値を推定する方法及び装置並びに劣化判定方法及び装置
WO2017000912A2 (zh) 电池健康状态的检测装置及方法
JP6430054B1 (ja) 蓄電池の容量把握方法および容量監視装置
JP6701938B2 (ja) 劣化判定装置、コンピュータプログラム及び劣化判定方法
US20150362557A1 (en) State detecting method and state detecting device of secondary battery
JP2015153750A (ja) バッテリ内部抵抗推算方法及びその装置
JP6066163B2 (ja) 開路電圧推定装置、状態推定装置及び開路電圧推定方法
WO2019116640A1 (ja) 電池監視装置、コンピュータプログラム及び電池監視方法
WO2008053410A2 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
US20090248334A1 (en) Method for estimating the charge of a motor vehicle battery
JP2019508682A5 (ja)
JP6452403B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP2013108919A (ja) Soc推定装置
JP6828339B2 (ja) 蓄電装置
JP2010014636A (ja) 二次電池の状態検知方法、状態検知装置及び二次電池電源システム
KR102350920B1 (ko) Soc 검출 장치
JP5541391B1 (ja) 開回路電圧推定方法及び車両
JP2007064874A (ja) 二次電池の充電状態検出装置及び充電状態検出方法
JP2009234557A (ja) 開放電圧値推定方法及び開放電圧値推定装置
JP5625244B2 (ja) 二次電池の容量推定装置
CN117054886A (zh) 荷电状态的识别方法、装置、设备以及计算机可读介质
JP2016223964A5 (ja)
JP5958424B2 (ja) 2次電池の充電開始制御方法及び充電装置
JP6855947B2 (ja) 充電率推定装置及び充電率推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880123

Country of ref document: EP

Kind code of ref document: A1