WO2014141461A1 - 塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体 - Google Patents

塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体 Download PDF

Info

Publication number
WO2014141461A1
WO2014141461A1 PCT/JP2013/057353 JP2013057353W WO2014141461A1 WO 2014141461 A1 WO2014141461 A1 WO 2014141461A1 JP 2013057353 W JP2013057353 W JP 2013057353W WO 2014141461 A1 WO2014141461 A1 WO 2014141461A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
mass
parts
impact strength
graft copolymer
Prior art date
Application number
PCT/JP2013/057353
Other languages
English (en)
French (fr)
Inventor
祐一郎 藤川
惇 桑原
綾花 脇田
笠井 俊宏
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2013513429A priority Critical patent/JP6065832B2/ja
Priority to US14/776,251 priority patent/US9862791B2/en
Priority to CN201380076584.4A priority patent/CN105229075B/zh
Priority to PCT/JP2013/057353 priority patent/WO2014141461A1/ja
Priority to EP13877677.8A priority patent/EP2975085B1/en
Publication of WO2014141461A1 publication Critical patent/WO2014141461A1/ja
Priority to US15/675,063 priority patent/US20170342186A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes

Definitions

  • the present invention provides an impact strength modifier that imparts excellent low-temperature impact strength without degrading the workability of the chlorine-containing resin, a chlorine-containing resin composition containing this impact strength modifier, and the chlorine-containing resin composition.
  • the present invention relates to a molded body of a resin composition.
  • the chloride-containing resin is a highly versatile resin, but has the disadvantage of poor impact resistance.
  • compatibility between impact strength and other mechanical properties and processability is a major problem of this resin. Therefore, many methods have been proposed to improve the impact resistance.
  • a silicone / acrylic composite rubber-based graft copolymer particle having a number average particle size of 400 to 2000 nm and a proportion of particles having a particle size of 300 nm or less in the total particle size of 20% by volume or less is mixed with chlorine-containing resin.
  • Patent Document 1 powders coagulated and recovered using a polyvalent metal salt as a flocculant have lower dispersibility in chlorine-containing resins compared to spray-collected powders, and the resin is sufficiently absorbed under normal molding conditions. May not melt.
  • a rubbery polymer-containing material obtained by spraying and recovering a rubbery polymer mainly composed of a composite rubber composed of a polyorganosiloxane component and a polyalkyl (meth) acrylate component Is disclosed (Patent Document 2).
  • Patent Document 2 a rubbery polymer-containing material obtained by spraying and recovering a rubbery polymer mainly composed of a composite rubber composed of a polyorganosiloxane component and a polyalkyl (meth) acrylate component
  • a technique for suppressing the addition of lubricity by the decomposed product for example, 0.1 to 50 parts by mass of the monomer mixture (a2) is graft-polymerized in the presence of 50 to 99.9 parts by mass of the acrylic rubber (A1).
  • the graft copolymer (A) obtained in this manner [where the total of (A1) and (a2) is 100 parts by mass], wherein the monomer mixture (a2) contains 1 to 99% by mass of isobutyl methacrylate
  • Patent Document 3 it is difficult to completely improve the lubricity imparted by the decomposition product derived from an emulsifier (surfactant) generated during molding. Also, the low temperature impact strength required for ordinary molded products is inferior.
  • An object of the present invention is to provide an impact strength modifier that imparts excellent low temperature impact strength without reducing the workability of the chlorine-containing resin.
  • a silicone-based graft copolymer having a specific surface area and a pH of extracted water obtained by extracting powder under specific conditions is within a specific range. It has been found that when a polymer is blended with a chlorine-containing resin, the low-temperature impact strength can be improved without degrading workability, and the present invention has been completed.
  • the present invention is specified by the following items.
  • the content of an emulsifier having a thermal decomposition temperature of less than 200 ° C. measured with a TG / DTA measuring device is 0.1 parts by mass or less with respect to 100 parts by mass of the modifier ( ⁇ ) [1] or The impact strength modifier ( ⁇ ) for chlorine-containing resins according to [2].
  • the vinyl monomer (b1) is at least one monomer selected from the group consisting of aromatic alkenyl compounds, (meth) acrylic acid esters, and vinyl cyanide compounds [1] to [5]
  • the impact strength modifier ( ⁇ ) for a chlorine-containing resin according to any one of the above.
  • the impact strength modifier of the present invention when blended and kneaded with a chlorine-containing resin, can improve the low temperature impact strength without deteriorating its workability.
  • the impact strength modifier ( ⁇ ) for a chlorine-containing resin of the present invention contains at least one polyorganosiloxane rubber (A1) or a composite rubber (A2) containing a polyorganosiloxane rubber and a polyalkyl (meth) acrylate rubber.
  • the powder of the graft copolymer (A) which graft-polymerized the vinyl monomer (b1) is included.
  • the polyorganosiloxane rubber (A1) used in the present invention is a polymer containing organosiloxane units as constituent units.
  • optional components such as a siloxane crosslinking agent, a siloxane grafting agent, and a siloxane oligomer having a terminal blocking group can be used as necessary.
  • polyorganosiloxane rubber (A1) is obtained by superposing
  • organosiloxane both chain organosiloxane and cyclic organosiloxane can be used.
  • cyclic organosiloxane is preferable because of high polymerization stability and a high polymerization rate.
  • 3- to 7-membered cyclic organosiloxane is preferable.
  • octamethylcyclotetrasiloxane examples thereof include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, octaphenylcyclotetrasiloxane. Is mentioned. These may be used alone or in combination of two or more. Among these, it is preferable to use octamethylcyclotetrasiloxane as a main component because the particle size distribution can be easily controlled.
  • the siloxane crosslinking agent preferably has a siloxy group.
  • a siloxane-based crosslinking agent By using a siloxane-based crosslinking agent, a polyorganosiloxane having a crosslinked structure can be obtained.
  • Specific examples of the siloxane crosslinking agent include trifunctional or tetrafunctional silanes such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetrabutoxysilane.
  • a crosslinking agent is mentioned. Among these, a tetrafunctional crosslinking agent is preferable, and tetraethoxysilane is more preferable.
  • the content of the siloxane crosslinking agent is preferably 0.1 to 30% by mass in 100% by mass of the organosiloxane mixture.
  • Siloxane graft crossing agent is a compound having a siloxy group and a functional group polymerizable with a vinyl monomer.
  • a siloxane-based graft crossing agent By using a siloxane-based graft crossing agent, a polyorganosiloxane rubber having a functional group polymerizable with a vinyl monomer can be obtained.
  • Such a polyorganosiloxane rubber can be grafted with an alkyl (meth) acrylate rubber component and a vinyl monomer (b1) described later by radical polymerization.
  • Specific examples of the siloxane-based graft crossing agent include siloxane compounds represented by the following formula (I).
  • R 1 represents a methyl group, an ethyl group, a propyl group or a phenyl group.
  • R 2 represents an organic group in the alkoxy group (for example, a methyl group, an ethyl group, a propyl group, or a phenyl group).
  • n represents 0, 1 or 2.
  • R represents any functional group represented by the following formulas (I-1) to (I-4).
  • R 3 and R 4 each independently represent hydrogen or a methyl group.
  • p represents an integer of 1 to 6.
  • Examples of the functional group represented by the formula (I-1) include a methacryloyloxyalkyl group.
  • R is a functional group represented by the formula (I-1)
  • specific examples of the siloxane-based graft crossing agent include ⁇ -methacryloyloxyethyldimethoxymethylsilane, ⁇ -methacryloyloxypropylmethoxydimethylsilane, and ⁇ -methacryloyl.
  • examples include oxypropyldimethoxymethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropylethoxydiethylsilane, ⁇ -methacryloyloxypropyldiethoxymethylsilane, and ⁇ -methacryloyloxybutyldiethoxymethylsilane.
  • Examples of the functional group represented by the formula (I-2) include a vinylphenyl group.
  • R is a functional group represented by the formula (I-2)
  • specific examples of the siloxane-based graft crossing agent include vinylphenylethyldimethoxysilane.
  • the functional group represented by the formula (I-3) is a vinyl group.
  • R is a functional group represented by the formula (I-3)
  • specific examples of the siloxane-based graft crossing agent include vinyltrimethoxysilane and vinyltriethoxysilane.
  • Examples of the functional group represented by the formula (I-4) include a mercaptoalkyl group.
  • R is a functional group represented by the formula (I-4)
  • specific examples of the siloxane-based grafting agent include ⁇ -mercaptopropyl dimethoxymethylsilane, ⁇ -mercaptopropylmethoxydimethylsilane, and ⁇ -mercaptopropyl. Examples include diethoxymethylsilane, ⁇ -mercaptopropylethoxydimethylsilane, and ⁇ -mercaptopropyltrimethoxysilane.
  • siloxane-based graft crossing agents may be used alone or in combination of two or more.
  • the content of the siloxane grafting agent is preferably 0.05 to 20% by mass in 100% by mass of the organosiloxane mixture.
  • the siloxane oligomer having a terminal blocking group is an organosiloxane oligomer having a blocking group such as an alkyl group at the molecular end. With this use, the degree of polymerization of the polyorganosiloxane can be adjusted as desired.
  • Specific examples of the siloxane oligomer having a terminal blocking group include hexamethyldisiloxane, 1,3-bis (3-glycidoxypropyl) tetramethyldisiloxane, and 1,3-bis (3-aminopropyl) tetramethyldisiloxane. Examples thereof include oligomers such as siloxane and methoxytrimethylsilane.
  • the content of the siloxane oligomer having a terminal blocking group is not particularly limited, and may be appropriately used as desired.
  • the production method of the polyorganosiloxane rubber (A1) is not particularly limited. For example, the following method can be adopted.
  • an emulsion is prepared by emulsifying an organosiloxane and an organosiloxane mixture containing optional components such as a siloxane-based crosslinking agent, a siloxane-based grafting agent, and a siloxane oligomer having a terminal blocking group with an emulsifier (c) and water as required.
  • a siloxane-based crosslinking agent such as a siloxane-based crosslinking agent, a siloxane-based grafting agent, and a siloxane oligomer having a terminal blocking group
  • an emulsifier (c) and water as required.
  • Examples of the emulsion preparation method include a method using a homomixer that makes fine particles by shearing force by high-speed rotation, and a method that mixes by high-speed stirring using a homogenizer that makes fine particles by jetting power from a high-pressure generator.
  • a method using a homogenizer is preferable because the particle size distribution of the polyorganosiloxane latex becomes narrow.
  • the emulsifier (c) used in preparing the emulsion is not particularly limited as long as the organosiloxane can be emulsified, and a known emulsifier can be used, but an anionic emulsifier or a nonionic emulsifier is preferable.
  • the emulsifier (c) it is preferable not to use a large amount of an emulsifier having a thermal decomposition temperature of less than 200 ° C. measured with a TG / DTA measuring device.
  • the amount of the emulsifier having a thermal decomposition temperature of less than 200 ° C. is preferably 0.1 parts by mass or less with respect to 100 parts by mass of the modifier ( ⁇ ).
  • the emulsifier (c) By not using a large amount of the emulsifier (c) having a thermal decomposition temperature of less than 200 ° C., when the impact strength modifier ( ⁇ ) containing the emulsifier (c) and the chlorine-containing resin ( ⁇ ) are kneaded, the emulsifier ( The deterioration of workability due to the thermal decomposition product of c) can be suppressed.
  • an emulsifier having a thermal decomposition temperature of 200 to 400 ° C. As the emulsifier (c), it is preferable to use an emulsifier having a thermal decomposition temperature of 200 to 400 ° C. as the emulsifier (c).
  • the emulsifier (c) having a thermal decomposition temperature of 200 ° C. or higher the emulsifier (c) is used when kneading the impact strength modifier ( ⁇ ) containing the emulsifier (c) and the chlorine-containing resin ( ⁇ ). It is possible to suppress a decrease in workability due to the thermal decomposition product.
  • the emulsifier (c) it is more preferable to use an emulsifier having a thermal decomposition temperature of 230 ° C or higher, and it is particularly preferable to use an emulsifier having a temperature of 250 ° C or higher.
  • the thermal decomposition temperature of the emulsifier (c) is preferably 400 ° C. or lower and more preferably 350 ° C. or lower in terms of easy availability of the emulsifier.
  • the thermal decomposition temperature of the emulsifier (c) when the mass reduction rate is measured using a TG / DTA measuring device, a value obtained by reducing the mass by 3% can be adopted.
  • TG / DTA6200 manufactured by Seiko Instruments Co., Ltd.
  • the mass reduction rate is measured using an apparatus.
  • the thermal decomposition temperature of the emulsifier (c) the temperature at which the weight reduction rate was reduced by 3% was adopted.
  • the emulsifier (c) examples include an anionic emulsifier and a nonionic emulsifier that do not contain a sulfate ester salt.
  • Specific examples of the anionic emulsifier include sodium alkylbenzene sulfonate, sodium alkyldiphenyl ether sulfonate, and sodium alkyl sulfonate.
  • Specific examples of the nonionic emulsifier include polyoxyethylene alkyl ether, polyoxyethylene alkylene alkyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tribenzylphenyl ether, and polyoxyethylene polyoxypropylene glycol. These may be used alone or in combination of two or more.
  • sodium dodecylbenzenesulfonate, sodium alkyldiphenyl ether disulfonate, sodium dialkylsulfosuccinate, and polyoxyethylene distyrenated phenyl ether are more preferable because the thermal decomposition temperature is 200 ° C. or higher.
  • the amount of the emulsifier (c) to be used is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organosiloxane mixture. It is possible to adjust to a desired particle diameter by the use amount of the emulsifier (c). If the amount used is 0.05 parts by mass or more, the emulsion stability of the emulsion is obtained, and the polymerization of the polyorganosiloxane rubber becomes easy. Moreover, since the amount of the emulsifier (c) remaining in the powder of the graft copolymer (A) is not excessive if the amount used is 10 parts by mass or less, it is blended with the chlorine-containing resin ( ⁇ ). Processability and bleed-out resistance are improved.
  • the method for mixing the acid catalyst during the polymerization is not particularly limited.
  • a method of adding and mixing an acid catalyst aqueous solution together with an organosiloxane mixture, an emulsifier and water a method of adding an acid catalyst aqueous solution all at once in an emulsion of an organosiloxane mixture, and an emulsion of an organosiloxane mixture at a high temperature
  • the method of dripping and mixing in an acid catalyst aqueous solution at a fixed speed is mentioned.
  • the polymerization temperature is preferably 50 ° C. or higher, more preferably 70 ° C. or higher.
  • the polymerization time is usually 2 hours or longer, preferably 5 hours or longer when the acid catalyst aqueous solution is added all at once to the emulsion of the organosiloxane mixture for polymerization.
  • the cross-linking density of the polyorganosiloxane can be increased by maintaining the temperature at 30 ° C. or lower for about 5 to 100 hours.
  • the polymerization reaction of the polyorganosiloxane rubber can be terminated by neutralizing the latex to pH 6-8 with an alkaline substance such as sodium hydroxide, potassium hydroxide, or an aqueous ammonia solution.
  • an alkaline substance such as sodium hydroxide, potassium hydroxide, or an aqueous ammonia solution.
  • the acid catalyst used for the polymerization of the polyorganosiloxane rubber include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, and aliphatic substituted naphthalenesulfonic acid; and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. Can be mentioned. These may be used alone or in combination of two or more. Of these, aliphatic substituted benzenesulfonic acid is preferred.
  • the composite rubber (A2) used in the present invention is a rubber comprising a polyorganosiloxane rubber and a polyalkyl (meth) acrylate rubber, which are combined.
  • the polyorganosiloxane rubber constituting the composite rubber (A2) is preferably the same as the polyorganosiloxane rubber (A1) described above.
  • the polyalkyl (meth) acrylate constituting the composite rubber (A2) is obtained by polymerizing an alkyl (meth) acrylate component (hereinafter, abbreviated as “(meth) acrylate component for composite rubber”).
  • the (meth) acrylate component for composite rubber usually contains an alkyl (meth) acrylate and a crosslinkable monomer.
  • alkyl (meth) acrylate examples include ethyl acrylate, n-propyl acrylate, n-butyl acrylate, i-butyl acrylate, and 2-ethylhexyl acrylate. These may be used alone or in combination of two or more. Of these, n-butyl acrylate is preferred from the viewpoint of impact resistance of the thermoplastic resin composition.
  • crosslinkable monomer examples include allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, ethylene glycol diester dimethacrylate, propylene glycol diester dimethacrylate, 1,3-butylene glycol diester dimethacrylate.
  • polyfunctional monomers such as 1,4-butylene glycol diester of dimethacrylic acid, 1,6-hexanediol diacrylic acid ester, and triallyl trimellitic acid. These may be used alone or in combination of two or more.
  • the content of the polyorganosiloxane rubber in the composite rubber (A2) is preferably 1 to 30% by mass, more preferably 3 to 15% by mass in 100% by mass of the composite rubber (A2). If this content is 1% by mass or more, sufficient impact resistance can be obtained. Moreover, if this content is 30 mass% or less, various excellent characteristics including workability can be maintained.
  • the method for producing the composite rubber (A2) is not particularly limited. For example, it can be produced by emulsion polymerization, suspension polymerization or fine suspension polymerization. Of these, emulsion polymerization is preferred.
  • a method for producing the composite rubber (A2) by the emulsion polymerization method in particular, in the presence of the latex of the polyorganosiloxane rubber, the (meth) acrylate component for the composite rubber is emulsion-polymerized to obtain the latex of the composite rubber (A2). The obtaining method is preferred.
  • the (meth) acrylate component for composite rubber As a method for adding the (meth) acrylate component for composite rubber to the latex of the polyorganosiloxane rubber, for example, first, the (meth) acrylate component for composite rubber is added to the latex of the polyorganosiloxane rubber, and then the polyorganosiloxane rubber is added. There is a method of polymerizing by impregnating the polymer with a known radical polymerization initiator. When the (meth) acrylate component for composite rubber is added, for example, the whole amount may be added all at once or may be dropped at a constant rate.
  • an emulsifier (c) can be added to stabilize the latex and control the particle diameter of the composite rubber.
  • the emulsifier (c) is not particularly limited, and a known emulsifier can be used, but the same type and amount used as those exemplified as the emulsifier (c) for producing the polyorganosiloxane rubber (A1) described above. preferable.
  • a radical polymerization initiator For polymerization of the (meth) acrylate component for composite rubber, a radical polymerization initiator is usually used.
  • the radical polymerization initiator include azo initiators, peroxides, and redox initiators in which peroxides are combined with oxidizing agents and reducing agents. These may be used alone or in combination of two or more. Among these, a redox initiator is preferable.
  • azo initiator examples include oil-soluble azo initiators such as 2,2′-azobisisobutyronitrile and dimethyl 2,2′-azobis (2-methylpropionate); -Azobis (4-cyanovaleric acid), 2,2'-azobis [N- (2-carboxymethyl) -2-methylpropionamidine] hydrate, 2,2'-azobis- (N, N'- Water-soluble azo initiators such as dimethyleneisobutylamidine) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride. These may be used alone or in combination of two or more.
  • oil-soluble azo initiators such as 2,2′-azobisisobutyronitrile and dimethyl 2,2′-azobis (2-methylpropionate); -Azobis (4-cyanovaleric acid), 2,2'-azobis [N- (2-carboxymethyl) -2-methylpropionamidine] hydrate, 2,2'-azobis-
  • peroxides include inorganic peroxides such as hydrogen peroxide, potassium persulfate, and ammonium persulfate; diisopropylbenzene hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide Succinic acid peroxide, t-butylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2 -Organic oxides such as ethylhexanoate and t-butylperoxy-2-ethylhexanoate; These may be used alone or in combination of two or more. Of these, organic peroxides are preferred.
  • inorganic peroxides such as hydrogen peroxide, potassium persulfate, and ammonium persulfate
  • the redox initiator examples include an initiator in which a peroxide is combined with a reducing agent.
  • the peroxides listed above were combined with reducing agents such as sodium formaldehyde sulfoxylate, L-ascorbic acid, fructose, dextrose, sorbose, inositol and ferrous sulfate / ethylenediaminetetraacetic acid disodium salt.
  • Redox initiators are preferred.
  • a combination of sodium formaldehyde sulfochelate, ferrous sulfate and ethylenediaminetetraacetic acid disodium salt is more preferable.
  • the content of the polyorganosiloxane rubber (A1) in the graft polymer (A) (when the composite rubber (A2) is used, the content of the polyorganosiloxane rubber (A1) in the composite rubber (A2))
  • the graft copolymer (A) 100% by mass, preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 5 to 30% by mass, Preferably, it is 5 to 25% by mass.
  • the content of the composite rubber (A2) in the graft polymer (A) is preferably 40 to 99% by mass, more preferably 60 to 95% by mass in 100% by mass of the graft copolymer (A). If this content is 40% by mass or more, the low-temperature impact resistance is good. Moreover, if this content is 99 mass% or less, various outstanding characteristics including workability can be maintained.
  • the vinyl monomer (b1) used in the present invention is a monomer that is graft-polymerized to the polyorganosiloxane rubber (A1) or the composite rubber (A2).
  • Specific examples of the vinyl monomer (b1) include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl.
  • the graft polymer (A) powder used in the present invention is a graft copolymer obtained by graft polymerization of one or more vinyl monomers (b1) to the polyorganosiloxane rubber (A1) or the composite rubber (A2) described above. It is a united powder.
  • the latex of the graft polymer (A) can be obtained by adding the vinyl monomer (b1) to the latex of the polyorganosiloxane rubber (A1) or the composite rubber (A2) and performing the polymerization in one or more stages by radical polymerization. It is done.
  • radical polymerization initiator used for graft polymerization examples include a redox initiator in which a peroxide, an azo initiator, and an oxidizing agent / reducing agent are combined. Among them, a redox initiator is preferable, and a redox initiator combined with ferrous sulfate / ethylenediaminetetraacetic acid disodium salt / longalite / hydroperoxide is particularly preferable.
  • Various chain transfer agents and graft crossing agents can be added to the vinyl monomer (b1) in order to adjust the molecular weight and graft ratio of the graft polymer.
  • an emulsifier (c) can be further added to stabilize the latex or control the average particle diameter of the particles.
  • the emulsifier (c) is not particularly limited, and a known emulsifier can be used, but the same type as that exemplified as the emulsifier (c) for producing the polyorganosiloxane rubber (A1) described above is preferable.
  • the mass average particle diameter of the graft copolymer (A) thus obtained is preferably 50 nm to 2000 nm from the viewpoint that the low temperature impact strength and surface appearance of the molded article are improved. If the mass average particle diameter is 50 nm or more, the low-temperature impact strength of the molded article is good, and if it is 2000 nm or more, the impact resistance and surface appearance of the molded article are good.
  • the range of the mass average particle diameter of the graft copolymer (A) is more preferably from 100 nm to 1000 nm, and particularly preferably from 150 nm to 800 nm because of excellent balance between low temperature impact strength and surface appearance.
  • the method for recovering the graft polymer (A) from the latex after completion of the graft polymerization is not particularly limited.
  • known methods such as a spray recovery method, a coagulation method, a centrifugal separation method, and a freeze-drying method can be used.
  • the powder of the graft copolymer (A) has a high specific surface area, the coagulation method and the spray recovery method are preferable, and the spray recovery method is more preferable.
  • the specific surface area of the powder of the graft copolymer (A) measured by a nitrogen gas adsorption method is 0.6 to 30 m 2 / g.
  • the specific surface area is 0.6 m 2 / g or more, excellent dispersibility is exhibited at the time of kneading with the chlorine-containing resin ( ⁇ ), and thus excellent workability is exhibited.
  • a specific surface area is 30 m ⁇ 2 > / g or less, the workability fall by aggregation at the time of kneading
  • the specific surface area of the powder of the graft copolymer (A) is preferably 1.0 ⁇ 25m 2 / g, 2.0 ⁇ 20m 2 / g is more preferred range.
  • the value of the specific surface area is determined by using a specific surface area / pore distribution measuring device [manufactured by Nippon Bell Co., Ltd., product name Belsorb] to obtain the graft copolymer (A) powder (volume: 0.6 cm 3 ). It put into the sample tube for a measurement, and vacuum-dried at 70 degreeC for 12 hours, and measured after that. In this measurement, the value of the specific surface area calculated by the BET method of the following formula (II) can be adopted.
  • an additional emulsifier (c) can be added to the obtained latex and spray dried to recover the powder of the graft copolymer particles (A).
  • the emulsifier (c) is not particularly limited, and a known emulsifier can be used, but the same type as that exemplified as the emulsifier (c) for producing the polyorganosiloxane rubber (A1) described above is preferable.
  • the temperature condition of the spray drying is not particularly limited, but considering the powder handling property and the residual moisture content in the powder, when the glass transition temperature of the graft copolymer (A) is Tg, the outlet temperature of the spray dryer Is preferably higher than [Tg-5 ° C.] or [60 ° C.], which is higher, from the viewpoint of sufficiently drying the powder.
  • the outlet temperature is preferably [Tg + 20 ° C.] or less from the viewpoint of suppressing the powder from fusing in the apparatus and reducing the recovery rate.
  • the volume average particle size of the powder of the graft copolymer (A) is preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, and particularly preferably 100 ⁇ m or less. If this volume average particle diameter is 200 ⁇ m or less, since it has excellent dispersibility during kneading with the chlorine-containing resin ( ⁇ ), it exhibits excellent workability.
  • the powder of the graft copolymer (A) has a pH of 4 to 11 of water extracted under the following conditions. (1) 5.0 g of the powder of the graft copolymer (A) is heated by standing in an oven at 180 ° C. for 15 minutes, (2) After the heating, it is dispersed in 100 ml of heated pure water and extracted with stirring at 70 ° C. for 1 hour.
  • the pH of the extracted water is 4 to 11, hydrolysis of the polyorganosiloxane rubber in the graft copolymer (A) can be suppressed, and the processability and low temperature impact strength of the chlorine-containing resin can be suppressed.
  • the pH of the extracted water is more preferably 4 to 9, and particularly preferably 4 to 7.
  • ⁇ Device pH meter Model F-52 [Horiba, Ltd.] ⁇ Electrode: Model 9611 [Horiba, Ltd.] ⁇ Reference electrode internal solution: 3.33 mol / l-KC solution [Horiba, Ltd.] PH standard solution: pH 4.00, pH 6.88, pH 9.18 (25 ° C.)
  • the use amount of an emulsifier having a thermal decomposition temperature of less than 200 ° C. measured with a TG / DTA measuring device is set to 0 with respect to 100 parts by mass of the modifier ( ⁇ ). .1 part by mass or less, or reducing the amount of coagulant used to lower the pH.
  • the graft copolymer (A) can be recovered by spray recovery, or by sulfuric acid such as aluminum sulfate, even when it is determined by the coagulation method.
  • sulfuric acid such as aluminum sulfate
  • the use of an acetate or phosphate coagulant instead of a salt coagulant can be mentioned.
  • the organosiloxane contained in the graft copolymer (A) exhibits an action like a lubricant when kneaded with the chlorine-containing resin ( ⁇ ). Therefore, the content of organosiloxane contained in the graft copolymer (A) is preferably 0.4% by mass or less, and more preferably 0.2% by mass or less, in 100% by mass of the graft copolymer (A). By reducing the organosiloxane content in this way, it is possible to suppress a decrease in processability.
  • a method for measuring the organosiloxane content 0.3 g of the powder of the graft copolymer (A) is weighed into a 50 ml sample tube, and 20 ml of acetone and 5 ⁇ l of butyl acetate are weighed and injected into the sample tube. A value measured using the following measuring apparatus that measures this as a specimen is adopted.
  • the gelation time of the graft polymer (A) powder measured under the following conditions is preferably 215 seconds or less, more preferably 210 seconds or less.
  • graft polymer (A) one kind may be used alone, or two or more kinds of different powders (for example, powders having different particle diameters, compositions, or specific surface areas) may be used in combination.
  • the chlorine-containing resin ( ⁇ ) used in the present invention is not particularly limited, and a known resin can be used.
  • the production method of the chlorine-containing resin ( ⁇ ) is not particularly limited, and for example, a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like is used.
  • the chlorine-containing resin ( ⁇ ) is typically a thermoplastic resin such as a vinyl chloride resin.
  • the vinyl chloride resin include vinyl chloride resins and resins obtained by chlorinating vinyl chloride resins ((chlorinated vinyl chloride resins). The invention is particularly effective.
  • chlorine-containing resin ( ⁇ ) examples include polyvinyl chloride, chlorinated polyvinyl chloride, polyvinyl chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride- Propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylic Lonilittle copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-malein Acid ester copolymer, vinyl chloride-methacrylic acid
  • the blend goods of 2 or more types of vinyl chloride-type resin may be sufficient.
  • vinyl chloride resins and other synthetic resins not containing chlorine for example, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl (meth) acrylate copolymer) Blends with coalesced, polyester, etc.
  • the block copolymer and the graft copolymer may be sufficient.
  • the average degree of polymerization of the vinyl chloride resin is preferably 600 to 1500, more preferably 800 to 1300. If this average degree of polymerization is 600 or more, sufficient mechanical strength is obtained, and if it is 1500 or less, processing of the resin composition is easy.
  • Examples of commercially available vinyl chloride resins include TK-800, TK-1000, TK-1300 manufactured by Shin-Etsu Chemical Co., Ltd., and TH-800, TH-1000, TH-1300 manufactured by Taiyo PVC Co., Ltd. S-1008, S-1001, and S-1003 (all trade names) manufactured by Kaneka Corporation.
  • the chlorination degree is preferably 50 to 70% by mass, more preferably 60 to 70% by mass, and particularly preferably 65 to 70% by mass.
  • the chlorination degree is 50% by mass or more, a resin composition having sufficient heat resistance can be obtained.
  • the melt viscosity required for the process of a resin composition can be maintained as it is 70 mass% or less.
  • the vinyl chloride resin that is a raw material of the chlorinated vinyl chloride resin those exemplified above are preferred.
  • the degree of chlorination is preferably 50 to 70% by mass, more preferably 60 to 70% by mass, particularly preferably 65 to 70%. % By mass.
  • the chlorination degree is 50% by mass or more, a resin composition having sufficient heat resistance can be obtained.
  • the melt viscosity required for processing of a resin composition can be maintained as this chlorination degree is 70 mass% or less.
  • the vinyl chloride resin which is a raw material of the chlorinated vinyl chloride resin those exemplified above are preferable.
  • chlorinated vinyl chloride resins include, for example, HA-05K, HA-24F, HA-22H, HA-53K, HA-27F manufactured by Sekisui Chemical Co., Ltd., and H-516A manufactured by Kaneka Corporation. , H-527, H-627, H-827, and H-829 (all are trade names).
  • the chlorine-containing resin composition of the present invention is a composition containing the impact strength modifier ( ⁇ ) and the chlorine-containing resin ( ⁇ ) described above. By blending the impact strength modifier ( ⁇ ) with the chlorine-containing resin ( ⁇ ), the impact strength is improved.
  • the content of the graft copolymer (A) constituting the impact strength modifier ( ⁇ ) is not particularly limited, and may be determined according to the desired impact strength.
  • the content of the graft copolymer (A) is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, and most preferably 3 to 3 parts by mass with respect to 100 parts by mass of the chlorine-containing resin ( ⁇ ). 10 parts by mass. If this content is 0.1 parts by mass or more, the low temperature impact strength is excellent, and if it is 30 parts by mass or less, various excellent characteristics including workability can be maintained.
  • a stabilizer In the chlorine-containing resin composition of the present invention, as long as the physical properties are not impaired, a stabilizer, a lubricant, a filler, a flame retardant, a mold release agent, a fluidity improver, a colorant, an antistatic agent, Various additives such as surfactants, anti-fogging agents and antibacterial agents can be added.
  • stabilizers include lead such as tribasic lead sulfate, dibasic lead phosphite, basic lead sulfite and lead silicate.
  • System stabilizers metals such as potassium, magnesium, barium, zinc, cadmium, lead and 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, hydroxystearic acid, oleic acid, ricinoleic acid
  • Metal soap stabilizers derived from fatty acids such as linoleic acid and behenic acid; organotin stabilizers having alkyl groups, ester groups, fatty acid groups, maleic acid groups, sulfide-containing groups, etc .; Ba—Zn, Ca—Zn, Ba—Ca—Sn, Ca—Mg—Sn, Ca—Zn—Sn, Pb—Sn, Pb—Ba—Ca, etc.
  • a metal group such as barium and zinc; a branched fatty acid such as 2-ethylhexanoic acid, isodecanoic acid and trialkylacetic acid; an unsaturated fatty acid such as oleic acid, ricinoleic acid and linoleic acid; and an alicyclic acid such as naphthenic acid;
  • Metal salt stabilizers usually derived from two or more organic acids such as aromatic acids such as carboxylic acid, benzoic acid, salicylic acid and substituted derivatives thereof; organic stabilizers such as petroleum hydrocarbons, alcohols and glycerin derivatives
  • a metal that dissolves in a solvent and further contains stabilizing aids such as phosphites, epoxy compounds, coloring inhibitors, transparency improvers, light stabilizers, antioxidants, bleedout inhibitors, and lubricants.
  • Metallic stabilizers such as liquid stabilizer, epoxy resins, epoxidized soybean oil, epoxidized vegetable oils, epoxy compounds such as epoxidized fatty acid alkyl esters, non-metallic stabilizers such as organic phosphites. These may be used alone or in combination of two or more.
  • the lubricant examples include pure hydrocarbon lubricants such as liquid paraffin, natural paraffin, micro wax, synthetic paraffin, and low molecular weight polyethylene; halogenated hydrocarbon lubricants; fatty acid lubricants such as higher fatty acids and oxy fatty acids; fatty acid amides, Fatty acid amide lubricants such as bis fatty acid amides; lower alcohol esters of fatty acids, polyhydric alcohol esters of fatty acids such as glycerides, polyglycol esters of fatty acids, fatty alcohol esters of fatty acids (ester waxes); other metals Examples include soap, fatty alcohol, polyhydric alcohol, polyglycol, polyglycerol, fatty acid and polyhydric alcohol partial ester, fatty acid and polyglycol, and polyglycerol partial ester. These may be used alone or in combination of two or more.
  • the filler examples include carbonates such as heavy calcium carbonate, precipitated calcium carbonate, and colloidal calcium carbonate, aluminum hydroxide, magnesium hydroxide, titanium oxide, clay, mica, talc, wollastonite, zeolite, silica,
  • Examples of the flame retardant include chlorinated paraffin, aluminum hydroxide, antimony trioxide, and halogen compounds. These can be used alone or in combination of two or more.
  • Examples of the flame retardant include chlorinated paraffin, aluminum hydroxide, antimony trioxide, and halogen compounds. These may be used alone or in combination of two or more.
  • a melt-kneading method can be used. Specifically, for example, a predetermined amount of a thermoplastic resin and a workability improver are mixed with a Henschel mixer, a Banbury mixer, a V-type mixer, a ribbon blender, and the like, and the mixture is mixed with a single screw extruder, a twin screw extruder, or the like. There is a method of melt-kneading with a kneading extruder. The resin composition obtained by melt-kneading is usually formed into pellets. Moreover, you may knead
  • the method for processing the chlorine-containing resin composition of the present invention is not particularly limited, and a known processing method can be used.
  • it can be suitably processed and molded by calendar processing, roll processing, extrusion molding processing, melt rolling, injection molding processing, pressure molding processing, paste processing, powder molding processing, and foam molding processing.
  • part and % represent “part by mass” and “% by mass”, respectively, unless otherwise specified.
  • the measurement standard and judgment of each item were performed as follows.
  • Thermal decomposition temperature of emulsifier (c) TG / DTA6200 [measurement made by Seiko Instruments Inc.] using as a sample an emulsifier whose moisture content was removed to 1.0% or less in a steam dryer at 70 ° C.
  • Cartridge Dedicated capillary cartridge for particle separation [trade name: C-202]
  • Carrier liquid Dedicated carrier liquid [Product name: 2XGR500]
  • Carrier liquid neutral carrier liquid flow rate: 1.4 ml / min
  • Carrier liquid pressure about 4,000 psi [2,600 kPa] Measurement temperature: 35 ° C
  • Sample usage 0.1 ml
  • a monodispersed polystyrene with a known particle size manufactured by DUKE of the United States having a total particle size of 12 points in a particle size range of 40 to 800 nm was used.
  • test piece was kneaded for 3 minutes with a dielectric heating type 8 inch test roll heated to 180 ° C. (kneader manufactured by Kansai Roll Co., Ltd.) with the formulation shown in Tables 3 and 4 and then set to 180 ° C.
  • a press plate formed by heating for 10 minutes and cooling for 5 minutes in a press molding machine was cut to the following size, and notched.
  • Test piece length 80.0 mm ⁇ width 10.0 mm ⁇ thickness 4.0 mm, notch depth: 2.0 mm
  • the test piece was adjusted with a low temperature incubator at ⁇ 10 ° C. for 48 hours or more before the start of measurement.
  • ⁇ Condition preparation conditions (A) 6.0 parts of graft copolymer (A), (B) 100 parts of vinyl chloride resin TK-1000 [trade name, average polymerization degree 1050, average particle size 150 ⁇ m, manufactured by Shin-Etsu Chemical Co., Ltd.] (C) 3.0 parts of CaZn stabilizer [manufactured by Shinagawa Chemical Co., Ltd.] (D) 5.0 parts of CCR white glaze [product name, primary particle diameter 50 nm, surface treatment agent fatty acid] manufactured by Shiraishi Calcium Co., Ltd. as calcium carbonate, (E) As titanium dioxide, 5.0 parts of R-830 [trade name, manufactured by Ishihara Sangyo Co., Ltd., TiO 2 93%, average particle size 0.25 ⁇ m, oil absorption 21].
  • a 20-liter Henschel mixer FM20C / I (product number manufactured by Mitsui Mining Co., Ltd., product number), which is blended with the above materials (a) to (e) and heated to 40 ° C., has a frequency of 65 Hz. Then, hot blending was performed until the internal temperature reached 110 ° C. to obtain a blend.
  • ⁇ Geling time measurement conditions Brabender plastic coder [Brabender Co., Ltd. measuring device] equipped with a batch mixer attachment [heating method electric heater, operating temperature range 0 to 350 ° C], heated to 180 ° C, and prepared under the above conditions After charging 77.55 cc, it was held for 5 minutes, and the time required from the kneading to the point showing the maximum torque at a rotor rotation speed of 30 rpm was defined as the gel time.
  • This emulsion was put into a separable flask equipped with a cooling condenser and heated at 80 ° C. for 5 hours with stirring. Then, it cooled and hold
  • maintained at 50 degreeC for 6 hours, and polymerized organosiloxane. Next, the solution was neutralized to pH 7.0 using a 5% aqueous sodium hydroxide solution to obtain a polyorganosiloxane rubber latex (S-1).
  • the polyorganosiloxane rubber latex (S-1) was dried at 180 ° C. for 30 minutes, and the solid content was determined to be 29.8%.
  • the polyalkyl (meth) acrylate rubber latex (A-1) was dried at 180 ° C. for 30 minutes, and the solid content was determined to be 4.3%.
  • this separable flask was purged with nitrogen in the atmosphere through a nitrogen stream and heated to 60 ° C.
  • an aqueous solution in which 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of distilled water was added, Radical polymerization was performed.
  • this state was maintained for another hour to obtain a latex of a composite rubber containing a polyorganosiloxane rubber and a polyalkyl (meth) acrylate rubber.
  • Spray system Rotating disc type Disc rotation speed: 25000 rpm Hot air temperature Inlet temperature: 150 ° C, Outlet temperature: 65 ° C
  • Table 2 shows the volume average particle diameter, specific surface area, pH of the extracted water, and the amount of organosiloxane contained in the obtained graft copolymer powder (B-1).
  • Table 2 shows the volume average particle diameter, specific surface area, pH of the extracted water, and the amount of organosiloxane contained in the obtained graft copolymer powder (B-5). In addition, each of these measurement methods is as having demonstrated previously.
  • ⁇ Formulation 7-12 preparation conditions > (A) 6.0 parts of graft copolymer (A), (B) 100 parts of chlorinated vinyl chloride resin HA-17F [trade name, chlorine content 64 wt%, manufactured by Sekisui Chemical Co., Ltd.] (C) 4.0 parts of dibutyltin bisthioglycolate [manufactured by Nitto Kasei Co., Ltd.] (D) 1.5 parts of PE-220 [trade name of Mitsui Chemicals, Inc.] as partially oxidized polyethylene wax; (E) As titanium dioxide, 5.0 parts of R-830 [trade name, manufactured by Ishihara Sangyo Co., Ltd., TiO 2 93%, average particle size 0.25 ⁇ m, oil absorption 21].
  • Comparative Example 1 in which the graft copolymer (B-4) having a pH of less than 4 was added, the low-temperature impact strength was reduced and the gelation time was long as compared with the Examples. It was confirmed that the workability was lowered and the bleed-out resistance was also lowered. Further, Comparative Example 2 blended with the graft copolymer (B-5) having a specific surface area of less than 0.6 m 2 / g and the pH of the extracted water of less than 4, showed practically sufficient low temperature impact strength. However, the gelation time was long, that is, the processability was lowered.
  • Comparative Example 4 in which the graft copolymer (B-4) having a pH of 4 or less of the extracted water was blended, the low-temperature impact strength was reduced compared to the Examples, and the time until winding was long. That is, it was confirmed that the workability was lowered.
  • Comparative Example 5 containing a graft copolymer (B-5) having a specific surface area of less than 0.6 m 2 / g and a pH of extracted water of less than 4 exhibited practically sufficient low temperature impact strength. However, the time until winding was long, that is, the workability decreased.
  • the impact strength modifier for chlorine-containing resins of the present invention can improve the low-temperature impact strength without reducing workability when blended and kneaded with chlorine-containing resins. .
  • the impact strength modifier ( ⁇ ) for chlorine-containing resins of the present invention is blended and kneaded with the chlorine-containing resin ( ⁇ ), the low temperature impact strength can be improved without degrading workability. Therefore, the chlorine-containing resin composition of the present invention is useful for various molded articles as various industrial materials. For example, it can be suitably used for applications such as films, bottles, trays, plates, packages, pipes and sheets. In addition, for example, building materials such as wall materials, floor materials, window frames, wall materials, corrugated plates, gutters, etc .; automotive interior and exterior materials; fish food packaging materials; used for packing, gaskets, hoses, joints, toys and other sundries it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリオルガノシロキサンゴム(A1)又はポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムを含む複合ゴム(A2)に、1種以上のビニル単量体(b1)をグラフト重合したグラフト共重合体(A)の粉体を含む衝撃強度改質剤であって、 グラフト共重合体(A)の粉体の窒素ガス吸着法で測定される比表面積が0.6~30m/gであり、(1)グラフト共重合体(A)の粉体5.0gを180℃のオーブン内でで15分間静置加熱し、(2)上記加熱後、加熱純水100mlに分散して70℃で1時間、攪拌しながら抽出するという条件で抽出した水のpHが4~11である塩素含有樹脂用衝撃強度改質剤(α)が開示される。

Description

塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体
 本発明は、塩素含有樹脂の加工性を低下させることなく、優れた低温衝撃強度を付与する衝撃強度改質剤、この衝撃強度改質剤を配合した塩素含有樹脂組成物、及び、この塩素含有樹脂組成物の成形体に関する。
 塩化含有樹脂は汎用性の高い樹脂であるが、耐衝撃性に劣るという欠点がある。特に、衝撃強度や他の機械特性と加工性の両立はこの樹脂の大きな課題である。そこで、耐衝撃性を改良するために多くの方法が提案されている。
 例えば、塩素含有樹脂に数平均粒子径が400~2000nmで且つ全粒子径中に占める粒子径300nm以下の粒子の割合が20体積%以下であるシリコンーン/アクリル複合ゴム系グラフト共重合体粒子を配合することで、低温衝撃強度及び高温機械特性を保持し、良好な加工特性、成形物表面外観及び発色性が発現することが開示されている(特許文献1)。しかし、多価の金属塩を凝集剤として使用して凝固回収した粉体は、噴霧回収した粉と比較して塩素含有樹脂中での分散性が低く、通常の成形加工条件で十分に樹脂が溶融しないことがある。
 この点を改善する為に、例えば、ポリオルガノシロキサン成分とポリアルキル(メタ)アクリレート成分から構成される複合ゴムを主成分とするゴム質重合体を噴霧回収して得たゴム質重合体含有材料が開示されている(特許文献2)。しかし、このゴム質重合体含有材料を塩素含有樹脂に配合すると、成形時に発生する乳化剤の分解物によって必要以上に滑性が付与され、通常の成形加工条件では十分に樹脂が溶融しなくなり、その結果実用上十分な強度が発現しない場合がある。
 分解物による滑性の付与を抑制する手法として、例えば、アクリルゴム(A1)50~99.9質量部の存在下で、単量体混合物(a2)0.1~50質量部をグラフト重合して得られるグラフト共重合体(A)[但し(A1)と(a2)の合計が100質量部]であって、単量体混合物(a2)が、イソブチルメタクリレート1~99質量%を含有するグラフト共重合体(A)を塩化ビニル樹脂に配合することで、耐候性を損なうことなく、溶融成形時の加工性及び耐衝撃性を向上させることが開示されている(特許文献3)。しかし、この手法では成形時に発生する乳化剤(界面活性剤)由来の分解物によって付与される滑性を完全に改良することは難しい。また、通常の成形品に求められている低温衝撃強度も劣っている。
特開2007-204587号公報 特開2002-308997号公報 特開2009-91540号公報
 本発明の目的は、塩素含有樹脂の加工性を低下させることなく優れた低温衝撃強度を付与する衝撃強度改質剤を提供することにある。
 本発明者らは、上記課題に対し鋭意検討を行なった結果、特定の比表面積を有し、かつ特定条件で粉体の抽出を行なった抽出水のpHが特定範囲内にあるシリコーン系グラフト共重合体を塩素含有樹脂に配合すると、加工性を低下させることなく低温衝撃強度を向上できることを見出し、本発明を完成するに至った。
 本発明は、以下の各事項により特定される。
 [1] ポリオルガノシロキサンゴム(A1)又はポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムを含む複合ゴム(A2)に、1種以上のビニル単量体(b1)をグラフト重合したグラフト共重合体(A)の粉体を含む衝撃強度改質剤であって、
 グラフト共重合体(A)の粉体の窒素ガス吸着法で測定される比表面積が0.6~30m/gであり、
 下記条件で抽出した水のpHが4~11である塩素含有樹脂用衝撃強度改質剤(α)。
(1)グラフト共重合体(A)の粉体5.0gを180℃のオーブン内で15分間静置加熱し、
(2)上記加熱後、加熱純水100mlに分散して70℃で1時間、攪拌しながら抽出する。
 [2] グラフト共重合体(A)の粉体が、グラフト共重合体(A)のラテックスを噴霧乾燥して得られるものである[1]に記載の塩素含有樹脂用衝撃強度改質剤(α)。
 [3] TG/DTA測定装置で測定される熱分解温度が200℃未満の乳化剤の含有量が、改質剤(α)100質量部に対して0.1質量部以下である[1]又は[2]に記載の塩素含有樹脂用衝撃強度改質剤(α)。
 [4] ドデシルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム及びポリオキシエチレンジスチレン化フェニルエーテルからなる群より選ばれる少なくとも1種の乳化剤を含有する[1]~[3]の何れか一つに記載の塩素含有樹脂用衝撃強度改質剤(α)。
 [5] グラフト共重合体(A)の粉体中に含まれるオルガノシロキサンの量が0.4質量%以下である[1]~[4]の何れか一つに記載の塩素含有樹脂用衝撃強度改質剤(α)。
 [6] ビニル単量体(b1)が、芳香族アルケニル化合物、(メタ)アクリル酸エステル及びシアン化ビニル化合物からなる群より選ばれる少なくとも1種の単量体である[1]~[5]の何れか一つに記載の塩素含有樹脂用衝撃強度改質剤(α)。
 [7] グラフト重合体(A)の粉体の下記条件で測定したゲル化時間が、215秒以下である[1]~[6]の何れか一つに記載の塩素含有樹脂用衝撃強度改質剤(α)。
 <配合物の作製>
(a)塩化ビニル樹脂[平均重合度 1050、平均粒径150μm]100質量部、
(b)グラフト共重合体(A)の粉体6.0質量部、
(c)CaZn系安定剤3.0質量部、
(d)炭酸カルシウム[一次粒子径 50nm、表面処理剤 脂肪酸]5.0質量部、
(e)二酸化チタン[TiO2 93%、平均粒子径 0.25μm、吸油量21]5.0質量部
を配合し、40℃に昇温した20LヘンシェルミキサーにZ羽根と平羽根を装着して、周波数65Hzで内温が110℃になるまでホットブレンドを行い配合物を得る。
 <測定条件>
(1)測定装置内を180℃に加熱する。
(2)配合物77.55ccを前記測定装置に投入後5分間保持し、ローター回転数30rpmで混練する。
(3)混練開始から最大トルクを示す点までに要する時間をゲル化時間として測定する。
 [8] [1]~[7]の何れか一つに記載の塩素含有樹脂用衝撃強度改質剤(α)及び塩素含有樹脂(β)を含有する塩素含有樹脂組成物。
 [9] 塩素含有樹脂(β)100質量部に対して、塩素含有樹脂用衝撃強度改質剤(α)を0.1~30質量部含有する[8]に記載の塩素含有樹脂組成物。
 [10] [8]又は[9]に記載の塩素含有樹脂組成物を成形して得られる成形体。
 本発明の衝撃強度改質剤は、塩素含有樹脂に配合・混練した場合、その加工性を低下させることなく低温衝撃強度を向上できる。
 <塩素含有樹脂用衝撃強度改質剤(α)>
 本発明の塩素含有樹脂用衝撃強度改質剤(α)は、ポリオルガノシロキサンゴム(A1)又はポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムを含む複合ゴム(A2)に、1種以上のビニル単量体(b1)をグラフト重合したグラフト共重合体(A)の粉体を含む。
 <ポリオルガノシロキサンゴム(A1)>
 本発明に用いるポリオルガノシロキサンゴム(A1)は、オルガノシロキサン単位を構成単位として含有する重合体である。オルガノシロキサンと共に、必要に応じて、例えばシロキサン系架橋剤、シロキサン系グラフト交叉剤、末端封鎖基を有するシロキサンオリゴマー等の任意成分も使用できる。そして、これら各成分を含むオルガノシロキサン混合物を重合することにより、ポリオルガノシロキサンゴム(A1)が得られる。
 オルガノシロキサンとしては、鎖状オルガノシロキサン及び環状オルガノシロキサンの何れも使用できる。特に、環状オルガノシロキサンは重合安定性が高く、重合速度が早いので好ましい。中でも、3~7員環の環状オルガノシロキサンが好ましい。その具体例としては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサンが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。中でも、粒子径分布を制御し易いことから、オクタメチルシクロテトラシロキサンを主成分として用いることが好ましい。
 シロキサン系架橋剤は、シロキシ基を有するものが好ましい。シロキサン系架橋剤の使用により、架橋構造を有するポリオルガノシロキサンが得られる。シロキサン系架橋剤の具体例としては、トリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラブトキシシラン等の3官能性又は4官能性のシラン系架橋剤が挙げられる。中でも、4官能性の架橋剤が好ましく、テトラエトキシシランがより好ましい。
 シロキサン系架橋剤の含有率は、オルガノシロキサン混合物100質量%中、0.1~30質量%が好ましい。
 シロキサン系グラフト交叉剤は、シロキシ基を有する共にビニル単量体と重合可能な官能基も有する化合物である。シロキサン系グラフト交叉剤の使用により、ビニル単量体と重合可能な官能基を有するポリオルガノシロキサンゴムが得られる。このようなポリオルガノシロキサンゴムは、後述するアルキル(メタ)アクリレートゴム用成分やビニル単量体(b1)をラジカル重合によってグラフトさせることができる。シロキサン系グラフト交叉剤の具体例としては、下記式(I)で表されるシロキサン化合物が挙げられる。
  RSiR (OR(3-n)  (I)
[式(I)中、Rはメチル基、エチル基、プロピル基又はフェニル基を示す。Rはアルコキシ基における有機基(例えばメチル基、エチル基、プロピル基又はフェニル基)を示す。nは0、1又は2を示す。Rは下記式(I-1)~(I-4)で表される何れかの官能基を示す。]
  CH=C(R)-COO-(CH- (I-1)
  CH=C(R)-C-       (I-2)
  CH=CH-              (I-3)
  HS-(CH-           (I-4)
[式(I-1)~(I-4)中、R及びRは各々独立して水素又はメチル基を示す。pは1~6の整数を示す。]
 式(I-1)で表される官能基としては、例えばメタクリロイルオキシアルキル基が挙げられる。Rが式(I-1)で表される官能基である場合、シロキサン系グラフト交叉剤の具体例としては、β-メタクリロイルオキシエチルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルメトキシジメチルシラン、γ-メタクリロイルオキシプロピルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルエトキシジエチルシラン、γ-メタクリロイルオキシプロピルジエトキシメチルシラン、δ-メタクリロイルオキシブチルジエトキシメチルシランが挙げられる。
 式(I-2)で表される官能基としては、例えばビニルフェニル基が挙げられる。Rが式(I-2)で表される官能基である場合、シロキサン系グラフト交叉剤の具体例としては、ビニルフェニルエチルジメトキシシランが挙げられる。
 式(I-3)で表される官能基は、ビニル基である。Rが式(I-3)で表される官能基である場合、シロキサン系グラフト交叉剤の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。
 式(I-4)で表される官能基としては、例えばメルカプトアルキル基が挙げられる。Rが式(I-4)で表される官能基である場合、シロキサン系グラフト交叉剤の具体例としては、γ-メルカプトプロピルジメトキメチルシラン、γ-メルカプトプロピルメトキシジメチルシラン、γ-メルカプトプロピルジエトキシメチルシラン、γ-メルカプトプロピルエトキシジメチルシラン、γ-メルカプトプロピルトリメトキシシランが挙げられる。
 これらシロキサン系グラフト交叉剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 シロキサン系グラフト交叉剤の含有率は、オルガノシロキサン混合物100質量%中、0.05~20質量%が好ましい。
 末端封鎖基を有するシロキサンオリゴマーは、分子末端にアルキル基等の封鎖基を有するオルガノシロキサンオリゴマーである。この使用により、ポリオルガノシロキサンの重合度を所望に応じて調整できる。末端封鎖基を有するシロキサンオリゴマーの具体例としては、ヘキサメチルジシロキサン、1,3-ビス(3-グリシドキシプロピル)テトラメチルジシロキサン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、メトキシトリメチルシラン等のオリゴマーが挙げられる。末端封鎖基を有するシロキサンオリゴマーの含有率は特に制限されず、所望に応じて適宜使用すればよい。
 ポリオルガノシロキサンゴム(A1)の製造方法は特に制限されない。例えば、以下の方法を採用できる。
 まず、オルガノシロキサン及び必要に応じてシロキサン系架橋剤、シロキサン系グラフト交叉剤、末端封鎖基を有するシロキサンオリゴマー等の任意成分を含むオルガノシロキサン混合物を、乳化剤(c)と水によって乳化させてエマルションを調製する。これを酸触媒を用いて高温下で重合させ、次いでアルカリ性物質により酸を中和してポリオルガノシロキサンラテックスを得る。
 エマルションの調製方法としては、例えば、高速回転による剪断力で微粒子化するホモミキサーを用いる方法、高圧発生機による噴出力で微粒子化するホモジナイザーを使用して高速攪拌により混合する方法が挙げられる。特にホモジナイザーを使用する方法は、ポリオルガノシロキサンラテックスの粒子径の分布が狭くなるので好ましい。
 エマルションを調製する際に用いる乳化剤(c)としては、オルガノシロキサンを乳化できれば特に制限されず、公知の乳化剤を使用できるが、アニオン系乳化剤又はノニオン系乳化剤が好ましい。
 乳化剤(c)としては、TG/DTA測定装置で測定される熱分解温度が200℃未満の乳化剤を多量に用いないことが好ましい。熱分解温度が200℃未満の乳化剤の量は、最終的に改質剤(α)100質量部に対して0.1質量部以下となることが好ましい。熱分解温度が200℃未満の乳化剤(c)を多量に用いないことで、乳化剤(c)を含有する衝撃強度改質剤(α)と塩素含有樹脂(β)の混練の際に、乳化剤(c)の熱分解物による加工性の低下を抑制することができる。
 特に、乳化剤(c)としては、熱分解温度が200~400℃である乳化剤を用いることが好ましい。熱分解温度が200℃以上の乳化剤(c)を使用することで、乳化剤(c)を含有する衝撃強度改質剤(α)と塩素含有樹脂(β)の混練の際に、乳化剤(c)の熱分解物による加工性の低下を抑制することができる。乳化剤(c)としては、熱分解温度が230℃以上の乳化剤を用いることがより好ましく、250℃以上の乳化剤を用いることが特に好ましい。乳化剤(c)の熱分解温度は、乳化剤の入手が容易な点で400℃以下が好ましく、350℃以下がより好ましい。
 乳化剤(c)の熱分解温度は、TG/DTA測定装置を用いて質量減少率を測定した際に、3%質量減少した値を採用することができる。熱分解温度の測定方法として、70℃の蒸気乾燥機内で水分を除去し、水分含有率を1.0%以下にした乳化剤(c)を検体として、TG/DTA6200[セイコーインスツルメンツ(株)製測定装置]を用いて質量減少率の測定を行う。測定条件は、Air=200ml/min雰囲気下で120℃で5分間保持した後、120℃から550℃まで15℃/minの昇温速度にて測定を行い、測定前の乳化剤の質量を100%として、重量減少率が3%減少した際の温度を乳化剤(c)の熱分解温度として採用した。
 乳化剤(c)としては、例えば、硫酸エステル塩を含まないアニオン系乳化剤及びノニオン系乳化剤が挙げられる。アニオン系乳化剤の具体例としては、アルキルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルスルホン酸ナトリウム、アルキルスルフォ琥珀酸ナトリウムが挙げられる。ノニオン系乳化剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコールが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 特に、ドデシルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ポリオキシエチレンジスチレン化フェニルエーテルは熱分解温度が200℃以上であることから、より好ましい。
 乳化剤(c)の使用量は、オルガノシロキサン混合物100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.1~5質量部である。乳化剤(c)の使用量によって、所望の粒子径に調整することが可能である。その使用量が0.05質量部以上であればエマルションの乳化安定性が得られ、ポリオルガノシロキサンゴムの重合が容易になる。また、その使用量が10質量部以下であればグラフト共重合体(A)の粉体中に残存する乳化剤(c)の量が多過ぎることがないので、塩素含有樹脂(β)に配合した場合の加工性及び耐ブリードアウト性が向上する。
 重合の際の酸触媒の混合方法は、特に制限されない。例えば、オルガノシロキサン混合物、乳化剤及び水と共に酸触媒水溶液を一括して添加し、混合する方法、オルガノシロキサン混合物のエマルション中に酸触媒水溶液を一括して添加する方法、オルガノシロキサン混合物のエマルションを高温の酸触媒水溶液中に一定速度で滴下して混合する方法が挙げられる。重合温度は好ましくは50℃以上、より好ましくは70℃以上である。重合時間は、例えばオルガノシロキサン混合物のエマルション中に酸触媒水溶液を一括して添加して重合する場合は、通常2時間以上、好ましくは5時間以上である。
 更に、30℃以下の温度においてシラノール間の架橋反応が進行するので、30℃以下の温度で5時間から100時間程度保持することにより、ポリオルガノシロキサンの架橋密度を上げることもできる。
 ポリオルガノシロキサンゴムの重合反応は、ラテックスを水酸化ナトリウム、水酸化カリウム、アンモニア水溶液等のアルカリ性物質でpH6~8に中和して終了させることができる。
 ポリオルガノシロキサンゴムの重合に用いられる酸触媒の具体例としては、脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸等のスルホン酸類;硫酸、塩酸、硝酸等の鉱酸類が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。中でも、脂肪族置換ベンゼンスルホン酸が好ましい。
 <複合ゴム(A2)>
 本発明に用いる複合ゴム(A2)は、ポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムを含み、これらを複合化したゴムである。
 複合ゴム(A2)を構成するポリオルガノシロキサンゴムは、先に説明したポリオルガノシロキサンゴム(A1)と同様のものが好ましい。
 複合ゴム(A2)を構成するポリアルキル(メタ)アクリレートは、アルキル(メタ)アクリレート成分(以下、「複合ゴム用(メタ)アクリレート成分」と略す)を重合して得られる。複合ゴム用(メタ)アクリレート成分は、通常、アルキル(メタ)アクリレートと架橋性単量体を含有する。
 アルキル(メタ)アクリレートの具体例としては、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、2-エチルヘキシルアクリレートが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。中でも、熱可塑性樹脂組成物の耐衝撃性の点から、n-ブチルアクリレートが好ましい。
 架橋性単量体の具体例としては、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル、ジビニルベンゼン、ジメタクリル酸エチレングリコールジエステル、ジメタクリル酸プロピレングリコールジエステル、ジメタクリル酸1,3-ブチレングリコールジエステル、ジメタクリル酸1,4-ブチレングリコールジエステル、1,6-ヘキサンジオールジアクリル酸エステル、トリメリト酸トリアリル等の多官能性単量体が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 複合ゴム(A2)中のポリオルガノシロキサンゴムの含有量は、複合ゴム(A2)100質量%中、好ましくは1~30質量%、より好ましくは3~15質量%である。この含有量が1質量%以上であれば、十分な耐衝撃性が得られる。また、この含有量が30質量%以下であれば、加工性も含めた優れた各種特性を維持できる。
 複合ゴム(A2)の製造方法は、特に制限されない。例えば、乳化重合法、懸濁重合法、微細懸濁重合法により製造できる。中でも、乳化重合法が好ましい。乳化重合法による複合ゴム(A2)の製造方法としては、特に、ポリオルガノシロキサンゴムのラテックスの存在下に、複合ゴム用(メタ)アクリレート成分を乳化重合して、複合ゴム(A2)のラテックスを得る方法が好ましい。
 ポリオルガノシロキサンゴムのラテックスに複合ゴム用(メタ)アクリレート成分を添加する方法としては、例えば、まずポリオルガノシロキサンゴムのラテックス中に、複合ゴム用(メタ)アクリレート成分を添加し、ポリオルガノシロキサンゴム中に含浸させた後、公知のラジカル重合開始剤を作用させて重合する方法がある。複合ゴム用(メタ)アクリレート成分を添加する際は、例えば全量を一括して添加してもよいし、一定速度で滴下しもよい。
 複合ゴム(A2)のラテックスを製造する際には、ラテックスを安定化させ、複合ゴムの粒子径を制御する為に、乳化剤(c)を添加することができる。この乳化剤(c)は特に制限されず、公知の乳化剤を使用できるが、先に説明したポリオルガノシロキサンゴム(A1)の製造の為の乳化剤(c)として例示したものと同じ種類及び使用量が好ましい。
 複合ゴム用(メタ)アクリレート成分の重合には、通常、ラジカル重合開始剤を使用する。ラジカル重合開始剤としては、例えば、アゾ系開始剤、過酸化物、過酸化物と酸化剤・還元剤を組み合わせたレドックス系開始剤が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。中でも、レドックス系開始剤が好ましい。
 アゾ系開始剤の具体例としては、2,2’-アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等の油溶性アゾ系開始剤;4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス[N-(2-カルボキシメチル)-2-メチルプロピオナミジン]ハイドレート、2,2’-アゾビス-(N,N’-ジメチレンイソブチルアミジン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩等の水溶性アゾ系開始剤;が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 過酸化物の具体例としては、過酸化水素、過硫酸カリウム、過硫酸アンモニウム等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、サクシニックアシッドパーオキサイド、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機化酸化物;が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。中でも、有機過酸化物が好ましい。
 レドックス系開始剤としては、例えば、過酸化物を還元剤と組み合わせた開始剤が挙げられる。特に、以上に列挙した過酸化物と、ナトリウムホルムアルデヒドスルホキシレート、L-アスコルビン酸、フルクトース、デキストロース、ソルボース、イノシトール等の還元剤と、硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩とを組み合わせたレドックス系開始剤が好ましい。中でも、ナトリウムホルムアルデヒヂスルホキレート・硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩の組み合わせがより好ましい。
 グラフト重合体(A)中のポリオルガノシロキサンゴム(A1)(複合ゴム(A2)を用いた場合は、複合ゴム(A2)中のポリオルガノシロキサンゴム(A1))の含有量は、残存オルガノシロキサンを減らし、ゲル化時間を早めるために、グラフト共重合体(A)100質量%中、好ましくは1~40質量%、より好ましくは5~35質量%、さらに好ましくは5~30質量%、特に好ましくは5~25質量%である。
 グラフト重合体(A)中の複合ゴム(A2)の含有量は、グラフト共重合体(A)100質量%中、好ましくは40~99質量%、より好ましくは60~95質量%である。この含有量が40質量%以上であれば、耐低温衝撃性が良好となる。また、この含有量が99質量%以下であれば、加工性も含めた優れた各種特性を維持できる。
 <ビニル単量体(b1)>
 本発明に用いるビニル単量体(b1)は、ポリオルガノシロキサンゴム(A1)又は複合ゴム(A2)にグラフト重合させる単量体である。ビニル単量体(b1)の具体例としては、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族アルケニル化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 <グラフト重合体(A)の粉体>
 本発明に用いるグラフト重合体(A)の粉体は、以上説明したポリオルガノシロキサンゴム(A1)又は複合ゴム(A2)に1種以上のビニル単量体(b1)をグラフト重合したグラフト共重合体の粉体である。
 例えば、ポリオルガノシロキサンゴム(A1)又は複合ゴム(A2)のラテックスにビニル単量体(b1)を加え、ラジカル重合法により一段又は多段で行うことにより、グラフト重合体(A)のラテックスが得られる。
 グラフト重合に用いるラジカル重合開始剤としては、例えば、過酸化物、アゾ系開始剤、酸化剤・還元剤を組み合わせたレドックス系開始剤が挙げられる。中でも、レドックス系開始剤が好ましく、特に硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ロンガリット・ハイドロパーオキサイドを組み合わせたレドックス系開始剤が好ましい。
 ビニル単量体(b1)には、グラフトポリマーの分子量やグラフト率を調整するために各種連鎖移動剤やグラフト交叉剤を添加できる。
 グラフト重合の際には、ラテックスの安定化又は粒子の平均粒子径の制御の為に、乳化剤(c)を更に追加添加できる。この乳化剤(c)は特に制限されず、公知の乳化剤を使用できるが、先に説明したポリオルガノシロキサンゴム(A1)の製造の為の乳化剤(c)として例示したものと同じ種類が好ましい。
 このようにして得られるグラフト共重合体(A)の質量平均粒子径は、成形体の低温衝撃強度及び表面外観が良好となる点から、好ましくは50nm~2000nmである。この質量平均粒子径が50nm以上であれば成形体の低温衝撃強度が良好となり、2000nm以上であれば成形体の耐衝撃性及び表面外観が良好となる。グラフト共重合体(A)の質量平均粒子径の範囲は、100nm~1000nmがより好ましく、低温衝撃強度と表面外観のバランスに優れることから150nm~800nmが特に好ましい。
 グラフト重合の終了後、ラテックスからグラフト重合体(A)を回収する方法は、特に限定されない。例えば、噴霧回収法、凝析法、遠心分離法、凍結乾燥法等の公知の方法を使用できる。特に、グラフト共重合体(A)の粉体が高い比表面積を有することから、凝析法、噴霧回収法が好ましく、噴霧回収法がより好ましい。
 グラフト共重合体(A)の粉体の窒素ガス吸着法で測定される比表面積は、0.6~30m/gである。この比表面積が0.6m/g以上であれば、塩素含有樹脂(β)との混練時に優れた分散性を示すので、優れた加工性が発現する。また、比表面積が30m/g以下であれば、塩素含有樹脂(β)との混練時の凝集による加工性低下が抑制される。グラフト共重合体(A)の粉体の比表面積は、1.0~25m/gが好ましく、2.0~20m/gがより好ましい範囲である。
 この比表面積の値は、比表面積・細孔分布測定装置[日本ベル(株)製、製品名Belsorp]を用いて、グラフト共重合体(A)の粉体(体積:0.6cm)を測定用サンプル管に入れ、70℃で12時間真空乾燥し、その後測定した。この測定においては、下記式(II)のBET法により算出した比表面積の値を採用できる。
P/[V(P-P)]=[1/(VmC)]+[(C-1)/(VmC)][P/P]  (II)
P:吸着平衡圧
:飽和蒸気圧
V:吸着量
Vm:単分子層吸着量、気体分子が固定表面で単分子層を形成した時の吸着量
C:吸着熱のパラメーター>0
 具体的には、上記の式(II)で得られる単分子層吸着量Vmと窒素ガスの既知の分子占有断面積から、グラフト共重合体(A)の粉体の比表面積を計算できる。
 比表面積を上記の範囲に制御するためには、質量平均粒子径50~100nmのラテックスを凝固剤を用いて凝固する方法や、質量平均粒子径が50~800nmのラテックスを噴霧回収する方法が挙げられる。
 噴霧回収においては、必要であれば得られたラテックスに更に乳化剤(c)を追加添加し、噴霧乾燥してグラフト共重合体粒子(A)の粉体を回収できる。この乳化剤(c)は特に制限されず、公知の乳化剤を使用できるが、先に説明したポリオルガノシロキサンゴム(A1)の製造の為の乳化剤(c)として例示したものと同じ種類が好ましい。
 噴霧乾燥の温度条件は特に制限されないが、粉体取扱性や粉体中の残存水分率を考慮すると、グラフト共重合体(A)のガラス転移温度をTgとしたとき、噴霧乾燥機の出口温度は、粉体を充分に乾燥する点から[Tg-5℃]又は[60℃]の何れか高い方の温度以上であることが好ましい。また、その出口温度は、粉体が装置内に融着して回収率が低下することを抑制する点から[Tg+20℃]以下であることが好ましい。
 グラフト共重合体(A)の粉体の体積平均粒子径は、好ましくは200μm以下、より好ましくは190μm以下、特に好ましくは100μm以下である。この体積平均粒子径が200μm以下であれば、塩素含有樹脂(β)との混練の際に優れた分散性を有するので、優れた加工性を発現する。
 グラフト共重合体(A)の粉体は、下記条件で抽出した水のpHが4~11である。
(1)グラフト共重合体(A)の粉体5.0gを180℃のオーブン内で15分間静置加熱し、
(2)上記加熱後、加熱純水100mlに分散して70℃で1時間、攪拌しながら抽出する。
 抽出した水のpHが4~11であれば、グラフト共重合体(A)中のポリオルガノシロキサンゴムの加水分解を抑制でき、塩素含有樹脂の加工性及び低温衝撃強度の低下を抑制できる。抽出した水のpHは4~9がより好ましく、pH4~7が特に好ましい。
 pH測定方法として、グラフト共重合体(A)の粉体5.0gを、180℃の熱風循環式乾燥機にて15分間静置加熱後、純水100mlに分散して70℃で1時間、攪拌しながら抽出した水を0.2μmセルロース混合エステル製メンブランフィルターで濾過する。これを検体として、以下の測定装置を用いて測定した値を採用する。
・装置:pHメーター 型式F-52[堀場製作所(株)]
・電極:型式 9611[堀場製作所(株)] 
・比較電極内部液:3.33mol/l-KC溶液[堀場製作所(株)]
・pH標準液:pH 4.00、pH 6.88、pH 9.18(25℃)
 抽出した水のpHを上記の範囲に制御するためには、TG/DTA測定装置で測定される熱分解温度が200℃未満の乳化剤の使用量を改質剤(α)100質量部に対し0.1質量部以下にすることや、pHを低下させる凝固剤の使用量を低減すること等が挙げられる。pHを低下させる凝固剤の使用量を低減する方法としては、グラフト共重合体(A)の回収を噴霧回収法により行うことや、凝析法により行う場合であっても、硫酸アルミニウム等の硫酸塩系の凝固剤ではなく、酢酸塩系、リン酸塩系の凝固剤を用いること等が挙げられる。
 グラフト共重合体(A)に含まれるオルガノシロキサンは、塩素含有樹脂(β)との混練の際に滑剤のような作用を示す。したがって、グラフト共重合体(A)に含まれるオルガノシロキサン含有量は、グラフト共重合体(A)100質量%中、好ましくは0.4質量%以下、より好ましくは0.2質量以下である。このようにオルガノシロキサン含有量を低減すれば、加工性の低下を抑制できる。
 オルガノシロキサン含有量の測定方法としては、グラフト共重合体(A)の粉体を0.3g、50mlのサンプル管にはかり取り、アセトン20ml、酢酸ブチルを5μlはかり取りサンプル管に注入する。これを検体として測定する以下の測定装置を用いて測定した値を採用する。
・装置:ガスクロマトグラフ(GC)[Aqilent製 HP6890]
・キャピラリーカラム:DB-WAX
・カラムオーブン:40℃/5min、10℃/min昇温、140℃/0min、20℃/min昇温、220℃/lmin、ポストラン=230℃/2min、カラム流量(He)=2.3ml/min、平均線速度=36cm/sec
・注入口:温度=200℃
・検出器:温度=200℃、水素流量=40ml/min、エアー流量=450ml/min、メークアップ流量(He)=45ml/min
・注入量:1μl
 オルガノシロキサンの量を上記の範囲に制御するためには、グラフト重合体(A)中のポリオルガノシロキサンゴム(A1)(複合ゴム(A2)を用いた場合は、複合ゴム(A2)中のポリオルガノシロキサンゴム(A1))の含有量を、グラフト共重合体(A)100質量%中、25質量%以下とする方法等が挙げられる。
 グラフト重合体(A)の粉体の下記条件で測定したゲル化時間は、好ましくは215秒以下、より好ましくは210秒以下である。
 <配合物の作製>
(a)塩化ビニル樹脂[平均重合度 1050、平均粒径150μm]100質量部、
(b)グラフト共重合体(A)の粉体6.0質量部、
(c)CaZn系安定剤3.0質量部、
(d)炭酸カルシウム[一次粒子径 50nm、表面処理剤 脂肪酸]5.0質量部、
(e)二酸化チタン[TiO2 93%、平均粒子径 0.25μm、吸油量21]5.0質量部
を配合し、40℃に昇温した20LヘンシェルミキサーにZ羽根と平羽根を装着して、周波数65Hzで内温が110℃になるまでホットブレンドを行い配合物を得る。
 <測定条件>
(1)測定装置内を180℃に加熱する。
(2)配合物77.55ccを前記測定装置に投入後5分間保持し、ローター回転数30rpmで混練する。
(3)混練開始から最大トルクを示す点までに要する時間をゲル化時間として測定する。
 グラフト重合体(A)は、1種を単独で使用してもよく、また異なる2種以上の粉体(例えば粒子径、組成又は比表面積が異なる粉体)を併用してもよい。
 <塩素含有樹脂(β)>
 本発明に用いる塩素含有樹脂(β)は特に限定されず、公知の樹脂を使用できる。塩素含有樹脂(β)の製造方法も特に限定されず、例えば塊状重合、溶液重合、懸濁重合、乳化重合等の公知の重合方法が用いられる。
 塩素含有樹脂(β)は、代表的には塩化ビニル系樹脂等の熱可塑性樹脂である。塩化ビニル系樹脂としては、例えば、塩化ビニル樹脂や、塩化ビニル樹脂を塩素化させた樹脂((塩素化塩化ビニル樹脂)が挙げられる。中でも、塩化ビニル樹脂を80質量%以上含む場合に、本発明はとりわけ効果を発揮する。
 塩素含有樹脂(β)の具体例としては、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリ塩化ビニリン、塩素化ポリエチレン、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-プロピレン共重合体、塩化ビニル-スチレン共重合体、塩化ビニル-イソブチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-スチレン-無水マレイン酸三元共重合体、塩化ビニル-スチレン-アクリロニリトル共重合体、塩化ビニル-ブタジエン共重合体、塩化ビニル-イソプレン共重合体、塩化ビニル-塩素化プロピレン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-メタクリル酸エステル共重合体、塩化ビニル-アクリロニトリル共重合体、塩化ビニル-ビニルエーテル共重合体等の塩化ビニル系樹脂が挙げられる。また、2種以上の塩化ビニル系樹脂のブレンド品であってもよい。さらに、塩化ビニル系樹脂と他の塩素を含まない合成樹脂(例えばアクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-エチル(メタ)アクリレート共重合体、ポリエステル等)とのブレンド品であってもよい。また、そのブロック共重合体、グラフト共重合体であってもよい。
 塩化ビニル系樹脂の平均重合度は、好ましくは600~1500、より好ましくは800~1300である。この平均重合度が600以上であれば十分な機械的強度が得られ、1500以下であれば樹脂組成物の加工が容易である。
 塩化ビニル系樹脂の市販品としては、例えば、信越化学工業(株)製のTK-800、TK-1000、TK-1300、太陽塩ビ(株)製のTH-800、TH-1000、TH-1300、カネカ(株)製のS-1008、S-1001、S-1003(何れも商品名)がある。
 塩素化塩化ビニル樹脂を使用する場合、その塩素化度は好ましくは50~70質量%、より好ましくは60~70質量%、特に好ましくは65~70質量%である。この塩素化度が50質量%以上であると十分な耐熱性を有する樹脂組成物が得られる。また70質量%以下であると、樹脂組成物の加工に必要な溶融粘度が維持できる。塩素化塩化ビニル樹脂の原料である塩化ビニル樹脂としては、先に例示列挙したものが好ましい。
 塩化ビニル樹脂を塩素化させた樹脂(塩素化塩化ビニル系樹脂)を使用する場合、その塩素化度は好ましくは50~70質量%、より好ましくは60~70質量%、特に好ましくは65~70質量%である。この塩素化度が50質量%以上であると十分な耐熱性を有する樹脂組成物が得られる。また、この塩素化度が70質量%以下であると、樹脂組成物の加工に必要な溶融粘度が維持できる。塩素化塩化ビニル系樹脂の原料である塩化ビニル樹脂としては、先に例示列挙したものが好ましい。
 塩素化塩化ビニル系樹脂の市販品としては、例えば、積水化学(株)製のHA-05K、HA-24F、HA-22H、HA-53K、HA-27F、カネカ(株)製のH-516A、H-527、H-627、H-827、H-829(何れも商品名)がある。
 <塩素含有樹脂組成物>
 本発明の塩素含有樹脂組成物は、以上説明した衝撃強度改質剤(α)及び塩素含有樹脂(β)を含有する組成物である。塩素含有樹脂(β)に対して衝撃強度改質剤(α)を配合することにより、その衝撃強度が向上する。
 この塩素含有樹脂組成物において、衝撃強度改質剤(α)を構成するグラフト共重合体(A)の含有量は特に限定されず、所望の衝撃強度に応じて決定すればよい。特に、グラフト共重合体(A)の含有量は、塩素含有樹脂(β)100質量部に対して好ましくは0.1~30質量部、より好ましくは1~20質量部、最も好ましくは3~10質量部である。この含有量が0.1質量部以上であれば低温衝撃強度の発現性が良好であり、30質量部以下であれば加工性も含めた優れた各種特性を維持できる。
 本発明の塩素含有樹脂組成物には、物性を損なわない限りにおいて、その目的に応じて安定剤、滑剤、充填剤、難燃剤、離型剤、流動性改良剤、着色剤、帯電防止剤、界面活性剤、防曇剤、抗菌剤等の各種添加剤を添加できる
 安定剤としては、例えば、三塩基性硫酸鉛、二塩基性亜リン酸鉛、塩基性亜硫酸鉛、ケイ酸鉛等の鉛系安定剤;カリウム、マグネシウム、バリウム、亜鉛、カドミウム、鉛等の金属と、2-エチルヘキサン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、ヒドロキシステアリン酸、オレイン酸、リシノール酸、リノール酸、ベヘニン酸等の脂肪酸とから誘導される金属石けん系安定剤;アルキル基、エステル基、脂肪酸基、マレイン酸基、含硫化物基等を有する有機スズ系安定剤;Ba-Zn系、Ca-Zn系、Ba-Ca-Sn系、Ca-Mg-Sn系、Ca-Zn-Sn系、Pb-Sn系、Pb-Ba-Ca系等の複合金属石けん系安定剤;バリウム、亜鉛等の金属基と、2-エチルヘキサン酸、イソデカン酸、トリアルキル酢酸等の分岐脂肪酸、オレイン酸、リシノール酸、リノール酸等の不飽和脂肪酸、ナフテン酸等の脂環族酸、石炭酸、安息香酸、サリチル酸、それらの置換誘導体等の芳香族酸といった有機酸の通常二種以上から誘導される金属塩系安定剤;これら安定剤を石油系炭化水素、アルコール、グリセリン誘導体等の有機溶剤に溶解し、さらに亜リン酸エステル、エポキシ化合物、発色防止剤、透明性改良剤、光安定剤、酸化防止剤、ブリードアウト防止剤、滑剤等の安定化助剤を配合してなる金属塩液状安定剤等の金属系安定剤;エポキシ樹脂、エポキシ化大豆油、エポキシ化植物油、エポキシ化脂肪酸アルキルエステル等のエポキシ化合物、有機亜リン酸エステル等の非金属系安定剤が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 滑剤としては、例えば、流動パラフィン、天然パラフィン、マイクロワックス、合成パラフィン、低分子量ポリエチレン等の純炭化水素系滑剤;ハロゲン化炭化水素系滑剤;高級脂肪酸、オキシ脂肪酸等の脂肪酸系滑剤;脂肪酸アミド、ビス脂肪酸アミド等の脂肪酸アミド系滑剤;脂肪酸の低級アルコールエステル、グリセリド等の脂肪酸の多価アルコールエステル、脂肪酸のポリグリコールエステル、脂肪酸の脂肪アルコールエステル(エステルワックス)等のエステル系滑剤;その他、金属石けん、脂肪アルコール、多価アルコール、ポリグリコール、ポリグリセロール、脂肪酸と多価アルコールの部分エステル、脂肪酸とポリグリコール、ポリグリセロールの部分エステルが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 充填剤としては、例えば、重質炭酸カルシウム、沈降性炭酸カルシウム、膠質炭酸カルシウム等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、クレー、マイカ、タルク、ウォラストナイト、ゼオライト、シリカ、酸化亜鉛、酸化マグネシウム、カーボンブラック、グラファイト、ガラスビーズ、ガラス繊維、炭素繊維、金属繊維等の無機質系充填剤;その他、ポリアミド等の有機繊維が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 難燃剤としては、例えば、塩素化パラフィン、水酸化アルミニウム、三酸化アンチモン、ハロゲン化合物が挙げられる。これらは1種又は2種以上組み合わせて使用できる。
 難燃剤としては、例えば、塩素化パラフィン、水酸化アルミニウム、三酸化アンチモン、ハロゲン化合物が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の塩素含有樹脂組成物を製造する為に、例えば溶融混練法を用いることができる。具体的には、例えば、所定量の熱可塑性樹脂と加工性改良剤をヘンシェルミキサ、バンバリーミキサ、V型ミキサ、リボンブレンダ等で混合し、その混合物を単軸押出機、二軸押出機等の混練押出機により溶融混練する方法がある。溶融混練して得た樹脂組成物は、通常、ペレット状にする。また必要に応じて少量の溶剤を使用して混練しても良い。
 本発明の塩素含有樹脂組成物を加工する方法は特に制限されず、公知の加工方法を用いることができる。例えば、カレンダー加工、ロール加工、押し出し成形加工、溶融圧延法、射出成形加工、加圧成形加工、ペースト加工、粉体成形加工、発泡成形加工により好適に加工、成形できる。
 以下、実施例により本発明を更に具体的に説明する。以下の記載において「部」及び「%」は特に断らない限り、各々「質量部」及び「質量%」を表すものとする。各項目の測定基準、判断は以下のように行った。
 (1)乳化剤(c)の熱分解温度
 70℃の蒸気乾燥機内で水分を除去し、水分含有率を1.0%以下にした乳化剤を検体として、TG/DTA6200[セイコーインスツルメンツ(株)製測定装置]を用いて質量減少率の測定を行った。測定条件は、Air=200ml/min雰囲気下で120℃で5分間保持した後、120℃から550℃まで15℃/minの昇温速度にて測定を行った。得られた測定結果より、測定前の乳化剤の質量を100%として、重量減少率が3%減少した際の温度を、乳化剤の熱分解温度とした。
 (2)グラフト共重合体(A)の質量平均粒子径
 グラフト共重合体ラテックスを脱イオン水で濃度約3%に希釈したものを検体として、CHDF2000型粒度分布計[米国MATEC社製]を用いて質量平均粒子径を測定した。測定はMATEC社が推奨する下記の標準条件で行なった。
カートリッジ:専用の粒子分離用キャピラリー式カートリッジ[商品名:C-202]
キャリア液:専用キャリア液[商品名:2XGR500]
キャリア液の液性:中性
キャリア液の流速:1.4ml/分
キャリア液の圧力:約4,000psi[2,600kPa]
測定温度:35℃
試料使用量:0.1ml
 標準粒子径物質としては、米国DUKE社製の粒子径既知の単分散ポリスチレンで、40~800nmの粒子径の範囲で合計12点の粒子径のものを用いた。
 (3)グラフト共重合体(A)粉体の体積平均粒子径
 グラフト共重合体(A)の粉体を少量の乳化剤を添加した脱イオン水で希釈し、レーザー回折/散乱式粒子径分布測定装置SALD-7100[島津製作所社(株)製測定装置]を用いて、15分間超音波処理をした後に体積平均粒子径を測定した。屈折率は仕込みモノマー組成から算出される屈折率を用い、いずれも平均径としてはメジアン径を用いた。試料濃度は、装置に付属の散乱光強度モニターにおいて適正範囲となるよう適宜調整した。
 (4)グラフト共重合体(A)粉体の比表面積
 比表面積の値は、比表面積・細孔分布測定装置[日本ベル(株)製、製品名Belsorp]を用いて、グラフト共重合体(A)の粉体(体積:0.6cm)を測定用サンプル管に入れ、70℃で12時間真空乾燥し、その後測定した。この測定においては、下記式(II)のBET法により算出した比表面積の値を採用できる。
P/[V(P-P)]=[1/(VmC)]+[(C-1)/(VmC)][P/P]  (II)
P:吸着平衡圧
:飽和蒸気圧
V:吸着量
Vm:単分子層吸着量、気体分子が固定表面で単分子層を形成した時の吸着量
C:吸着熱のパラメーター>0
 (5)グラフト共重合体(A)粉体の抽出水のpH
 pH測定方法としては、グラフト共重合体(A)の粉体5.0gを、180℃の熱風循環式乾燥機にて15分間静置加熱後、純水100mlに分散して70℃で1時間、攪拌しながら抽出した水を0.2μmセルロース混合エステル製メンブランフィルターで濾過した。これを検体として、以下の測定装置を用いて測定した値を採用した。
・装置:pHメーター 型式F-52[堀場製作所(株)]
・電極:型式 9611[堀場製作所(株)] 
・比較電極内部液:3.33mol/l-KC溶液[堀場製作所(株)]
・pH標準液:pH 4.00、pH 6.88、pH 9.18(25℃)
 (6)グラフト共重合体(A)粉体に含まれるオルガノシロキサン量
 オルガノシロキサン含有量の測定方法としては、グラフト共重合体(A)の粉体を0.3g、50mlのサンプル管にはかり取り、アセトン20ml、酢酸ブチルを5μlはかり取りサンプル管に注入した。これを検体として測定する以下の測定装置を用いて測定した値を採用した。
・装置:ガスクロマトグラフ(GC)[Aqilent製 HP6890]
・キャピラリーカラム:DB-WAX
・カラムオーブン:40℃/5min、10℃/min昇温、140℃/0min、20℃/min昇温、220℃/lmin、ポストラン=230℃/2min、カラム流量(He)=2.3ml/min、平均線速度=36cm/sec
・注入口:温度=200℃
・検出器:温度=200℃、水素流量=40ml/min、エアー流量=450ml/min、メークアップ流量(He)=45ml/min
・注入量:1μl
 (7)シャルピー衝撃強度
 JIS K 7111に準じて、-10℃の温度条件下でシャルピー衝撃強度を測定した。試験片は表3と表4に示した配合にて、180℃に昇温した誘電加熱式8インチテストロール[関西ロール(株)製混練機]で3分間混練した後に、180℃に設定したプレス成形機にて10分間加熱、5分間冷却して成形されたプレス板を以下のサイズになるように切断し、ノッチを入れて作製した。
試験片:縦80.0mm×横10.0mm×厚み4.0mm、ノッチ深さ:2.0mm
試験片は、測定開始の48時間以上前から-10℃の低温恒温器にて調整した。
 (8)ゲル化時間
 配合物のゲル化時間の測定は、以下の条件に従って測定を行った。
 <配合物作製条件>
(a)グラフト共重合体(A)を6.0部、
(b)塩化ビニル樹脂 TK-1000[信越化学工業(株)製 商品名、平均重合度 1050、平均粒径 150μm]を100部、
(c)CaZn系安定剤[品川化工(株)製]を3.0部、
(d)炭酸カルシウムとしてCCR白艶華[白石カルシウム(株)製 商品名、一次粒子径 50nm、表面処理剤 脂肪酸]を5.0部、
(e)二酸化チタンとして、R-830[石原産業(株)製 商品名、TiO 93%、平均粒子径 0.25μm、吸油量 21]を5.0部。
 上記の(a)~(e)の材料を配合し、40℃に昇温した20Lヘンシェルミキサー FM20C/I[三井鉱山(株)製 製品番号]にZ羽根と平羽根を装着して、周波数65Hzで内温が110℃になるまでホットブレンドを行い、配合物を得た。
 <ゲル化時間測定条件>
 ブラベンダープラスチコーダー[ブラベンダー(株)製測定装置]にバッチ式ミキサーアタッチメント[加熱方式 電気ヒーター、使用温度範囲 0~350℃]を装着して180℃に加熱し、上記条件で作製した配合物77.55ccを投入した後5分間保持し、ローター回転数30rpmで、混練から最大トルクを示す点までに要する時間をゲル化時間とした。
 (9)耐ブリードアウト性
 誘電加熱式8インチテストロール[関西ロール(株)製混練機]を用いて、配合物50gをロールバンク部に投入後、180℃で30分間混練した際のロールの汚れを、以下の基準に従って目視により判断した。
○:30分混練後のロールに汚れが無い。
×:30分混練後のロールに汚れが付着している。
 (10)巻き付きまでの時間
 誘電加熱式8インチテストロール[関西ロール(株)製混練機]を用いて、配合物50gをロールバンク部に投入し終わった時点を開始時間として混練を行い、配合物が溶融してロールに巻き付くまでの時間を測定した。前後のロールの温度は190℃に設定し、ロールの回転速度は前ロールが14rpm、後ろロールが16rpm、前後ロール間隔0.3mmで混練を行い測定した。
 (製造例1)ポリオルガノシロキサンゴムラテックス(S-1)の製造
 テトラエトキシシラン2部、γ-メタクリロイルオキシプロピルジメトキシメチルシラン0.5部及びオクタメチルシクロテトラシロキサン97.5部を混合して、シロキサン系混合物100部を得た。これに、脱イオン水233部にドデシルベンゼンスルホン酸ナトリウム0.67部とドデシルベンゼンスルホン酸0.67部を溶解した溶液を添加し、ホモミキサーにて10000rpmで5分間攪拌した。次いで、ホモジナイザーに20MPaの圧力で2回通し、安定な予備混合オルガノシロキサンエマルションを得た。
 このエマルションを、冷却コンデンサーを備えたセパラブルフラスコに入れ、攪拌しながら80℃で5時間加熱した。その後、冷却して50℃で6時間保持してオルガノシロキサンを重合した。次いで5%水酸化ナトリウム水溶液を用いてpH=7.0に中和し、ポリオルガノシロキサンゴムラテックス(S-1)を得た。
 このポリオルガノシロキサンゴムラテックス(S-1)を180℃で30分間乾燥し、その固形分を求めたところ、29.8%であった。
 (製造例2)ポリアルキル(メタ)アクリレートゴムラテックス(A-1)の製造
 ブチルアクリレート4.95部、アリルメタクリレート0.025部、1,3-ブチレングリコールジメタクリレート0.025部、ジアルキルスルホコハク酸ナトリウム0.2部及び脱イオン水107.5部を、冷却コンデンサーを備えたセパラブルフラスコに仕込み、窒素気流下で2時間攪拌し、その後内温を70℃に昇温させた。次いで、過硫酸カリウム0.01部、脱イオン水2.5部を添加し、重合を開始した。内温を70℃で90分間保持して、重合を完了し、ポリアルキル(メタ)アクリレートゴムラテックス(A-1)を得た。
 このポリアルキル(メタ)アクリレートゴムムラテックス(A-1)を180℃で30分間乾燥し、その固形分を求めたところ、4.3%であった。
 (製造例3)グラフト共重合体(G-1)の製造
 製造例1で得たポリオルガノシロキサンゴムラテックス(S-1)33.22部(固形分として9.9部)をセパラブルフラスコに入れ、蒸留水200部を添加混合した。その後、ブチルアクリレート77.5部、アリルメタクリレート1.6部、t-ブチルハイドロパーオキサイド0.3部及びドデシルベンゼンスルホン酸ナトリウム0.5部の混合物を添加した。
 次いで、このセパラブルフラスコに窒素気流を通じてフラスコ内雰囲気の窒素置換を行い、60℃まで昇温した。液温が60℃となった時点で、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部及びロンガリット0.24部を蒸留水10部に溶解させた水溶液を添加し、ラジカル重合を実施した。重合を完結させる為に更に1時間この状態を維持し、ポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムを含む複合ゴムのラテックスを得た。
 このラテックスの液温が65℃に低下した後、メチルメタクリレート10部、ブチルアクリレート1部及びキュメンヒドロパーオキサイド0.06部の混合液を30分間にわたって滴下し重合した。滴下終了後、温度60℃以上の状態を1時間保ち、その後冷却し、複合ゴムにメチルメタクリレート・ブチルアクリレート共重合体がグラフト結合されたグラフト共重合体(G-1)のラテックスを得た。このグラフト共重合体(G-1)の質量平均粒子径を表1に示す。
 (製造例4~6)グラフト共重合体(G-2)~(G-4)の製造
 表1に示すように、追加乳化剤の種類を変更したこと以外は、製造例3と同様してグラフト重合体を得た。このグラフト共重合体(G-2)~(G-4)の質量平均粒子径を表1に示す。
 (製造例7)グラフト共重合体(G-5)の製造
 製造例2で得たポリアルキル(メタ)アクリレートゴムラテックス(A-1)ラテックスに、硫酸第一鉄0.0003部、エチレンジアミン四酢酸二ナトリウム塩0.0009部及びロンガリット0.03部を脱イオン水2.5部に溶解させた水溶液を添加した。
 次いで、ブチルアクリレート69.3部、アリルメタクリレート0.7部、1,3-ブチレングリコールジメタクリレート0.35部、t-ブチルハイドロパーオキサイド0.35部、ジアルキルスルホコハク酸ナトリウム0.6部及び脱イオン水35部の混合液を2時間かけて滴下し、内温を70℃で90分間保持して、重合を完了し、アクリルゴムのラテックスを得た。このアクリルゴムのラテックス固形分は33.5%であった。
 このアクリルゴムラテックスに、ジアルキルスルホコハク酸ナトリウム0.1部、ロンガリット0.03部、脱イオン水2.5部を添加した。次いで、メチルメタクリレート20部、イソブチルメタクリレート5部、t-ブチルハイドロパーオキサイド0.25部を1時間かけて滴下し、内温を70℃で90分間保持して重合を完了し、グラフト共重合体(G-5)のラテックス(固形分39.8%)を得た。このグラフト共重合体(G-5)の質量平均粒子径を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の略称は、以下の化合物を示す。
・「ネオぺレックスG15」:ドデシルベンゼンスルホン酸ナトリウム(花王(株)製、商品名ネオぺレックスG15)
・「ぺレックスSSL」:アルキルジフェニルエーテルジスルホン酸ナトリウム(花王(株)製、商品名ぺレックスSSL)
・「エマルゲンA90」:ポリオキシエチレンジスチレン化フェニルエーテル(花王(株)製、商品名エマルゲンA90)
・「エマール20C」:ポリオキシエチレアルキルエーテル硫酸ナトリウム(花王(株)製、商品名エマール20C)
・「ペレックスOTP」:ジアルキルスルホコハク酸ナトリウム(花王(株)製、商品名ペレックスOTP)
・「BA」:アクリル酸n-ブチル
・「MMA」:メタクリル酸メチル
・「AMA」:メタクリル酸アリル
・「i-BMA」:メタクリル酸イソブチル
 (製造例8)グラフト共重合体の粉体(B-1)の製造
 製造例3で得たグラフト共重合体(G-1)のラテックスを、アトマイザー式噴霧乾燥機(大川原化工機(株)製、L8スプレードライヤー)を用いて、下記条件で噴霧乾燥処理してグラフト共重合体の粉体(B-1)を得た。
 <噴霧乾燥処理条件>
 噴霧方式:回転ディスク式
 ディスク回転数:25000rpm
 熱風温度 入口温度:150℃、出口温度:65℃
 得られたグラフト共重合体の粉体(B-1)の体積平均粒子径、比表面積、抽出水のpH、含まれるオルガノシロキサン量を表2に示す。
 (製造例9、10、11及び13)グラフト共重合体の粉体(B-2)、(B-3)、(B-4)及び(B-6)の製造
 表2に示すようにグラフト共重合体の種類を変更したこと以外は、製造例8と同様の噴霧乾燥処理を行い、グラフト重合体の粉体(B-2)、(B-3)、(B-4)及び(B-6)を得た。それらの体積平均粒子径、比表面積、抽出水のpH、含まれるオルガノシロキサン量を表2に示す。
 (製造例12)グラフト共重合体の粉体(B-5)の製造
 製造例3で得たグラフト共重合体のラテックス(G-1)を、硫酸アルミニウムを2.5%の割合で溶解した水溶液500部を35℃に加熱した状態で徐々に滴下して凝固した。滴下終了後、80℃まで更に加熱して完全に固化させた。これを分離、水洗したのち乾燥し、グラフト共重合体の粉体(B-5)を得た。
 得られたグラフト共重合体の粉体(B-5)の体積平均粒子径、比表面積、抽出水のpH、含まれるオルガノシロキサン量を表2に示す。なお、これらの各測定方法は、先に説明した通りである。
Figure JPOXMLDOC01-appb-T000002
 表2中の略称は、以下の方法を示す。
・「SD」:スプレードライ(噴霧乾燥法)
・「凝固」:凝固法
 (実施例1~3及び比較例1~3)
 製造例8~13で得たグラフト共重合体の粉体粒子(B-1)~(B-6)を使用し、表3に示す配合にて、下記条件で配合物1~6を製造した。
 <配合物1~6の作製条件>
(a)グラフト共重合体(A)を6.0部、
(b)塩化ビニル樹脂 TK-1000[信越化学工業(株)製商品名、平均重合度 1050、平均粒径150 μm]を100部、
(c)CaZn系安定剤[品川化工(株)製]を3.0部、
(d)炭酸カルシウムとしてCCR白艶華[白石カルシウム(株)製商品名、一次粒子径 50nm、表面処理剤 脂肪酸]を5.0部、
(e)二酸化チタンとして、R-830[石原産業(株)製商品名、TiO 93%、平均粒子径 0.25μm、吸油量 21]を5.0部。
 上記の(a)~(e)の材料を配合し、40℃に昇温した20Lヘンシェルミキサー FM20C/I[三井鉱山(株)製品番号]にZ羽根と平羽根を装着して、周波数65Hzで内温が110℃になるまでホットブレンドを行い、配合物1~7を得た。
 これらを、180℃に昇温した誘電加熱式8インチテストロール[関西ロール(株)製混練機]で3分間混練した後に、180℃に設定したプレス成形機にて10分間加熱、5分間冷却して、縦200mm×横200mm×厚さ4mmの板状試験片を得た。この試片を評価法に応じて切断して評価を実施した。結果を表3示す。
Figure JPOXMLDOC01-appb-T000003
 (実施例4~6及び比較例4~6)
 製造例8~13で得られたグラフト共重合体の粉体粒子(B-1)~(B-6)を使用し、表4に示す配合にて、下記条件で配合物7~12を製造した。
 <配合物7~12作成条件>
(a)グラフト共重合体(A)を6.0部、
(b)塩素化塩化ビニル樹脂 HA-17F[積水化学(株)製商品名、塩素含有率 64wt%]を100部、
(c)ジブチル錫ビスチオグリコレート[日東化成(株)製]を4.0部、
(d)部分酸化ポリエチレンワックスとしてPE-220[三井化学(株)製商品名]を1.5部、
(e)二酸化チタンとして、R-830[石原産業(株)製商品名、TiO 93%、平均粒子径 0.25μm、吸油量 21]を5.0部。
 上記の(a)~(e)の材料を配合し、40℃に昇温した20Lヘンシェルミキサー FM20C/I[三井鉱山(株)製品番号]にZ羽根と平羽根を装着して、周波数65Hzで内温が110℃になるまでホットブレンドを行い、配合物7~12を得た。
 これらを、190℃に昇温した誘電加熱式8インチテストロール[関西ロール(株)製混練機]で3分間混練した後に、190℃に設定したプレス成形機にて10分間加熱、5分間冷却して、縦200mm×横200mm×厚さ4mmの板状試験片を得た。この試片を評価法に応じて切断して評価を実施した。結果を表4示す。
Figure JPOXMLDOC01-appb-T000004
 (評価)
 表3の結果から明らかなように、塩化ビニル樹脂にグラフト共重合体(B-1)~(B-3)を配合した実施例1~3は、実用上十分な低温衝撃強度を保ち、ゲル化時間が短い、すなわち優れた加工性を有しており、耐ブリードアウト性を有していることが確認された。
 一方、抽出水のpHが4未満であったグラフト共重合体(B-4)を配合した比較例1は、実施例と比較して、低温衝撃強度が低下し、ゲル化時間が長い、すなわち加工性が低下し、耐ブリードアウト性も低下することが確認された。また、比表面積が0.6m/g未満であり抽出水のpHが4未満であったグラフト共重合体(B-5)を配合した比較例2は、実用上十分な低温衝撃強度を示したがゲル化時間が長い、すなわち加工性は低下した。ポリオルガノシロキサンゴム又はその複合ゴムを含まないグラフト共重合体(B-6)を配合した比較例3は、ゲル化時間が短い、すなわち加工性は良いものの低温衝撃強度は不十分であった。
 さらに表4の結果から明らかなように、塩素化塩化ビニル樹脂にグラフト共重合体(B-1)~(B-3)を配合した実施例4~6でも、実用上十分な低温衝撃強度を保ち、巻き付きまでの時間が短い、すなわち優れた加工性を有していることが確認された。
 一方、抽出水のpHが4以下であったグラフト共重合体(B-4)を配合した比較例4は、実施例と比較して、低温衝撃強度が低下し、巻き付きまでの時間が長い、すなわち加工性が低下することが確認された。また、比表面積が0.6m/g未満であり抽出水のpHが4未満であったグラフト共重合体(B-5)を配合した比較例5は、実用上十分な低温衝撃強度を示したが巻き付きまでの時間が長い、すなわち加工性は低下した。ポリオルガノシロキサンゴム又はその複合ゴムを含まないグラフト共重合体(B-6)を配合した比較例6は、巻き付きまでの時間が短い、すなわち加工性は良いものの低温衝撃強度は不十分であった。
 以上のことから、本発明の塩素含有樹脂用衝撃強度改質剤は、塩素含有樹脂に配合、混練した場合、加工性を低下させることなく、低温衝撃強度を向上させることができることが確認された。
 本発明の塩素含有樹脂用衝撃強度改質剤(α)を塩素含有樹脂(β)に配合、混練すれば、加工性を低下させることなく低温衝撃強度を向上できる。したがって、本発明の塩素含有樹脂組成物は、各種工業材料として種々の成形品に有用である。例えば、フィルム、ボトル、トレー、プレート、パッケージ、パイプ、シート等の用途に好適に使用できる。その他、例えば壁材、床材、窓枠、壁材、波板、雨樋等の建材;自動車用内外装材;魚食品包装材;パッキン、ガスケット、ホース、継ぎ手、玩具等の雑貨にも使用できる。
 

Claims (10)

  1.  ポリオルガノシロキサンゴム(A1)又はポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムを含む複合ゴム(A2)に、1種以上のビニル単量体(b1)をグラフト重合したグラフト共重合体(A)の粉体を含む衝撃強度改質剤であって、
     グラフト共重合体(A)の粉体の窒素ガス吸着法で測定される比表面積が0.6~30m/gであり、
     下記条件で抽出した水のpHが4~11である塩素含有樹脂用衝撃強度改質剤(α)。
    (1)グラフト共重合体(A)の粉体5.0gを180℃のオーブン内で15分間静置加熱し、
    (2)上記加熱後、加熱純水100mlに分散して70℃で1時間、攪拌しながら抽出する。
  2.  グラフト共重合体(A)の粉体が、グラフト共重合体(A)のラテックスを噴霧乾燥して得られるものである請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)。
  3.  TG/DTA測定装置で測定される熱分解温度が200℃未満の乳化剤の含有量が、改質剤(α)100質量部に対して0.1質量部以下である請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)。
  4.  ドデシルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム及びポリオキシエチレンジスチレン化フェニルエーテルからなる群より選ばれる少なくとも1種の乳化剤を含有する請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)。
  5.  グラフト共重合体(A)の粉体中に含まれるオルガノシロキサンの量が0.4質量%以下である請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)。
  6.  ビニル単量体(b1)が、芳香族アルケニル化合物、(メタ)アクリル酸エステル及びシアン化ビニル化合物からなる群より選ばれる少なくとも1種の単量体である請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)。
  7.  グラフト重合体(A)の粉体の下記条件で測定したゲル化時間が、215秒以下である請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)。
     <配合物の作製>
    (a)塩化ビニル樹脂[平均重合度 1050、平均粒径150μm]100質量部、
    (b)グラフト共重合体(A)の粉体6.0質量部、
    (c)CaZn系安定剤3.0質量部、
    (d)炭酸カルシウム[一次粒子径 50nm、表面処理剤 脂肪酸]5.0質量部、
    (e)二酸化チタン[TiO 93%、平均粒子径 0.25μm、吸油量21]5.0質量部
    を配合し、40℃に昇温した20LヘンシェルミキサーにZ羽根と平羽根を装着して、周波数65Hzで内温が110℃になるまでホットブレンドを行い配合物を得る。
     <測定条件>
    (1)測定装置内を180℃に加熱する。
    (2)配合物77.55ccを前記測定装置に投入後5分間保持し、ローター回転数30rpmで混練する。
    (3)混練開始から最大トルクを示す点までに要する時間をゲル化時間として測定する。
  8.  請求項1記載の塩素含有樹脂用衝撃強度改質剤(α)及び塩素含有樹脂(β)を含有する塩素含有樹脂組成物。
  9.  塩素含有樹脂(β)100質量部に対して、塩素含有樹脂用衝撃強度改質剤(α)を0.1~30質量部含有する請求項8記載の塩素含有樹脂組成物。
  10.  請求項8又は9記載の塩素含有樹脂組成物を成形して得られる成形体。
     
PCT/JP2013/057353 2013-03-15 2013-03-15 塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体 WO2014141461A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013513429A JP6065832B2 (ja) 2013-03-15 2013-03-15 塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体
US14/776,251 US9862791B2 (en) 2013-03-15 2013-03-15 Impact strength modifier for chlorine-containing resin, chlorine-containing resin composition and molded body of chlorine-containing resin composition
CN201380076584.4A CN105229075B (zh) 2013-03-15 2013-03-15 含氯树脂用冲击强度改性剂、含氯树脂组合物及其成型体
PCT/JP2013/057353 WO2014141461A1 (ja) 2013-03-15 2013-03-15 塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体
EP13877677.8A EP2975085B1 (en) 2013-03-15 2013-03-15 Impact strength modifier for chlorine-containing resin, chlorine-containing resin composition, and molded article thereof
US15/675,063 US20170342186A1 (en) 2013-03-15 2017-08-11 Impact Strength Modifier for Chlorine-Containing Resin, Chlorine-Containing Resin Composition and Molded Body of Chlorine-Containing Resin Composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057353 WO2014141461A1 (ja) 2013-03-15 2013-03-15 塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/776,251 A-371-Of-International US9862791B2 (en) 2013-03-15 2013-03-15 Impact strength modifier for chlorine-containing resin, chlorine-containing resin composition and molded body of chlorine-containing resin composition
US15/675,063 Continuation US20170342186A1 (en) 2013-03-15 2017-08-11 Impact Strength Modifier for Chlorine-Containing Resin, Chlorine-Containing Resin Composition and Molded Body of Chlorine-Containing Resin Composition

Publications (1)

Publication Number Publication Date
WO2014141461A1 true WO2014141461A1 (ja) 2014-09-18

Family

ID=51536156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057353 WO2014141461A1 (ja) 2013-03-15 2013-03-15 塩素含有樹脂用衝撃強度改質剤、塩素含有樹脂組成物及びその成形体

Country Status (5)

Country Link
US (2) US9862791B2 (ja)
EP (1) EP2975085B1 (ja)
JP (1) JP6065832B2 (ja)
CN (1) CN105229075B (ja)
WO (1) WO2014141461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180393A1 (ja) * 2017-03-27 2018-10-04 株式会社カネカ 塩化ビニル-酢酸ビニル共重合体樹脂組成物
WO2019078112A1 (ja) * 2017-10-16 2019-04-25 株式会社カネカ 塩化ビニル系樹脂組成物のパウダースラッシュ成形体及び積層体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535618A (zh) * 2018-11-13 2019-03-29 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种高稳定性cpvc管材及其配混方法
JP2020132866A (ja) * 2019-02-25 2020-08-31 ローム アンド ハース カンパニーRohm And Haas Company ポリマー複合ミクロスフェアの水性分散液
CN114196137A (zh) * 2021-12-27 2022-03-18 卢韩 一种pvc特效无卤阻燃剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036460A (ja) * 1996-07-17 1998-02-10 Mitsubishi Rayon Co Ltd ポリオルガノシロキサン含有グラフト共重合体
JPH10310616A (ja) * 1997-05-12 1998-11-24 Kanegafuchi Chem Ind Co Ltd シリコーン変性アクリルゴム粒子、シリコーン変性アクリルゴム系グラフト共重合体粒子および熱可塑性樹脂組成物
JP2002308997A (ja) 2001-04-12 2002-10-23 Mitsubishi Rayon Co Ltd ゴム質重合体含有材料
JP2006526051A (ja) * 2003-08-02 2006-11-16 エルジー・ケム・リミテッド アクリル−シリコーン系複合耐衝撃性改良剤、その製造方法及びそれを含有する塩化ビニル樹脂組成物
JP2007204587A (ja) 2006-02-01 2007-08-16 Mitsubishi Rayon Co Ltd 塩素含有熱可塑性樹脂組成物
JP2009091540A (ja) 2007-06-29 2009-04-30 Mitsubishi Rayon Co Ltd グラフト共重合体、樹脂組成物及びその成形品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541401B2 (en) * 2004-12-31 2009-06-02 Cheil Industries Inc. Impact modifier for a polymer composition and method for preparing the same
DE102005000824A1 (de) * 2005-01-05 2006-07-13 Consortium für elektrochemische Industrie GmbH Nanopartikelhaltige Organocopolymere
JP2007002046A (ja) * 2005-06-22 2007-01-11 Mitsubishi Rayon Co Ltd 硬化性組成物、その成形品および積層体
EP1964856B1 (en) * 2005-12-12 2011-05-25 Kaneka Corporation Polymer particles, process for production thereof, resin compositions containing the particles, and moldings
EP2182016B1 (en) * 2007-07-13 2019-09-04 Mitsubishi Chemical Corporation Process for manufacturing graft copolymer
KR101612980B1 (ko) * 2008-08-29 2016-04-15 미쯔비시 레이온 가부시끼가이샤 실리콘계 중합체 함유 비닐 중합체의 분체 및 그의 제조 방법, 수지 조성물 및 성형체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036460A (ja) * 1996-07-17 1998-02-10 Mitsubishi Rayon Co Ltd ポリオルガノシロキサン含有グラフト共重合体
JPH10310616A (ja) * 1997-05-12 1998-11-24 Kanegafuchi Chem Ind Co Ltd シリコーン変性アクリルゴム粒子、シリコーン変性アクリルゴム系グラフト共重合体粒子および熱可塑性樹脂組成物
JP2002308997A (ja) 2001-04-12 2002-10-23 Mitsubishi Rayon Co Ltd ゴム質重合体含有材料
JP2006526051A (ja) * 2003-08-02 2006-11-16 エルジー・ケム・リミテッド アクリル−シリコーン系複合耐衝撃性改良剤、その製造方法及びそれを含有する塩化ビニル樹脂組成物
JP2007204587A (ja) 2006-02-01 2007-08-16 Mitsubishi Rayon Co Ltd 塩素含有熱可塑性樹脂組成物
JP2009091540A (ja) 2007-06-29 2009-04-30 Mitsubishi Rayon Co Ltd グラフト共重合体、樹脂組成物及びその成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975085A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180393A1 (ja) * 2017-03-27 2018-10-04 株式会社カネカ 塩化ビニル-酢酸ビニル共重合体樹脂組成物
US11066538B2 (en) 2017-03-27 2021-07-20 Shiraishi Kogyo Kaisha, Ltd. Vinyl chloride-vinyl acetate copolymer resin composition
WO2019078112A1 (ja) * 2017-10-16 2019-04-25 株式会社カネカ 塩化ビニル系樹脂組成物のパウダースラッシュ成形体及び積層体
JPWO2019078112A1 (ja) * 2017-10-16 2020-12-17 株式会社カネカ 塩化ビニル系樹脂組成物のパウダースラッシュ成形体及び積層体
US11312848B2 (en) 2017-10-16 2022-04-26 Kaneka Corporation Powder slush molded body of vinyl chloride resin composition, and laminate
JP7160826B2 (ja) 2017-10-16 2022-10-25 株式会社カネカ 塩化ビニル系樹脂組成物のパウダースラッシュ成形体及び積層体

Also Published As

Publication number Publication date
CN105229075B (zh) 2017-04-26
JPWO2014141461A1 (ja) 2017-02-16
EP2975085B1 (en) 2017-02-01
JP6065832B2 (ja) 2017-01-25
EP2975085A4 (en) 2016-01-20
CN105229075A (zh) 2016-01-06
US9862791B2 (en) 2018-01-09
US20160039963A1 (en) 2016-02-11
US20170342186A1 (en) 2017-11-30
EP2975085A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US20170342186A1 (en) Impact Strength Modifier for Chlorine-Containing Resin, Chlorine-Containing Resin Composition and Molded Body of Chlorine-Containing Resin Composition
CN105723471A (zh) 电线包覆材及经包覆的电线
WO2015045930A1 (ja) 軟質塩化ビニル系樹脂組成物、成形体、電線被覆材及び被覆された電線
CN101864186B (zh) 稳定化的聚合物组合物
CN111440275B (zh) 含有聚有机硅氧烷的接枝共聚物、热塑性树脂组合物及成型体
JP5144307B2 (ja) グラフト共重合体、樹脂組成物及びその成形品
JP5112606B2 (ja) 耐衝撃改質剤とその製造法、および熱可塑性樹脂組成物
WO2000071616A1 (fr) Additif, composition de resine de chlorure de vinyle contenant cet additif, et procede pour produire des pieces moulees au moyen de cet additif
JP6536399B2 (ja) 塩化ビニル樹脂組成物、及び塩化ビニル樹脂成形体
JP2000017029A (ja) 複合ゴム系難燃剤およびそれを用いた難燃性樹脂組成物
JP2019182890A (ja) 塩化ビニル樹脂組成物及び成形体
JP4942344B2 (ja) グラフト共重合体、これを用いた衝撃強度向上剤、熱可塑性樹脂組成物ならびにグラフト共重合体の製造方法
JP3946089B2 (ja) グラフト共重合体とその製造方法、および樹脂組成物
JP4014775B2 (ja) アクリル樹脂プラスチゾル組成物
JP3949821B2 (ja) 塩化ビニル系樹脂組成物
JP4087622B2 (ja) アクリルゴム系グラフト共重合体、耐衝撃強度改質剤、熱可塑性樹脂組成物、アクリルゴム系グラフト共重合体の製造方法
KR20000047718A (ko) 용융공정되는 플라스틱수지의 충격강도를 증대시키고점도를 감소시키는 충격 조절제 조성물 및 그 제조방법
JP2023085185A (ja) 樹脂組成物及び成形体
JPS6357658A (ja) 塩化ビニル樹脂組成物の製造方法
JPH07206951A (ja) グラフト共重合体および樹脂組成物
JPH10212387A (ja) 硬質塩化ビニル系樹脂組成物
JP2009269980A (ja) 樹脂組成物及びその成形品
JP2004217801A (ja) グラフト共重合体及び衝撃強度改質剤並びにこれを用いた樹脂組成物。
JP2005171136A (ja) グラフト共重合体、その製造方法、および熱可塑性樹脂組成物
JP2015061893A (ja) ポリオレフィン樹脂用摺動性向上剤、ポリオレフィン樹脂組成物及びその成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076584.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013513429

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14776251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013877677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013877677

Country of ref document: EP