WO2014129256A1 - Système et procédé pour la synthèse d'ammoniac - Google Patents

Système et procédé pour la synthèse d'ammoniac Download PDF

Info

Publication number
WO2014129256A1
WO2014129256A1 PCT/JP2014/051289 JP2014051289W WO2014129256A1 WO 2014129256 A1 WO2014129256 A1 WO 2014129256A1 JP 2014051289 W JP2014051289 W JP 2014051289W WO 2014129256 A1 WO2014129256 A1 WO 2014129256A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
gas
synthesis
membrane
return
Prior art date
Application number
PCT/JP2014/051289
Other languages
English (en)
Japanese (ja)
Inventor
幹也 桜井
田中 幸男
大空 弘幸
清木 義夫
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014129256A1 publication Critical patent/WO2014129256A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0458Separation of NH3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0488Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an ammonia synthesis system and method for improving system efficiency.
  • a part of product ammonia extracted from the synthesis loop system is used as a chiller refrigerant and used for cooling in the ammonia synthesis loop system.
  • the refrigerant (gas ammonia) after use (after heat exchange) is compressed, cooled, reliquefied and circulated (Patent Documents 1 and 2).
  • an object of the present invention is to provide an ammonia synthesis system and method capable of efficiently separating product ammonia.
  • the first invention of the present invention for solving the above-mentioned problems is an ammonia synthesis tower for synthesizing an ammonia synthesis raw material, a first cooler for cooling a synthesis gas containing ammonia gas from the ammonia synthesis tower, An ammonia separation membrane device that separates only ammonia gas from the cooled synthesis gas, a second cooler that cools the membrane-separated ammonia gas into liquefied ammonia, and an unreacted source gas that has been membrane-separated, A raw material return line that returns to the ammonia synthesis tower side, a compressor that is interposed in the raw material return line and compresses the unreacted return gas that has been membrane-separated, and an unreacted return gas that has been membrane-separated A heat exchanger that exchanges heat with the return gas, and a third cooler that is interposed between the heat exchanger and the compressor of the raw material return line and cools the return gas after heat exchange. Equipped In ammonia synthesis system according
  • an ammonia synthesis raw material is synthesized in an ammonia synthesis tower, the synthesis gas containing ammonia gas from the ammonia synthesis tower is cooled, and then only ammonia gas is separated from the synthesis gas by an ammonia separation membrane device.
  • the separated ammonia gas is cooled to form liquefied ammonia, and when returning the unreacted raw material gas separated into the membrane to the ammonia synthesis tower side, the unreacted return gas separated from the membrane is compressed,
  • heat is exchanged between the separated unreacted return gas and the compressed return gas, and the return gas after heat exchange is cooled before being introduced into the compressor.
  • the membrane separation method by applying the membrane separation method, it is possible to efficiently separate ammonia by utilizing the self-pressure of the synthesis gas by ammonia synthesis, thereby reducing the refrigeration system power for producing liquefied ammonium. be able to.
  • FIG. 1 is a schematic diagram of an ammonia synthesis system according to the present embodiment.
  • FIG. 1 is a schematic diagram of an ammonia synthesis system according to the present embodiment.
  • an ammonia synthesis system 10 according to this embodiment includes a first ammonia synthesis tower 11 that synthesizes an ammonia synthesis raw material, and a synthesis gas 13 that includes an ammonia gas 12G from the ammonia synthesis tower 11.
  • a raw material introduction line L 4 for the raw material gas 20 for synthesis is connected to the ammonia synthesis tower 11 for the makeup of the synthesis system.
  • symbol L 1 indicates a synthesis gas supply line
  • L 3 indicates a liquefied ammonia line
  • L 5 indicates a gas extraction line.
  • the synthesis gas 13 obtained in the ammonia synthesis tower 11 contains ammonia gas 12G and unreacted raw material gas 20.
  • the ammonia gas 12 ⁇ / b> G is subjected to membrane separation by the ammonia separation membrane device 15.
  • the membrane-separated ammonia gas 12G is cooled by the second cooler 16, it becomes liquefied ammonia (liquid) 12L and is stored in the primary storage tank 21.
  • the liquefied ammonia (liquid) 12L is used, for example, in the urea plant 22 as a raw material for chemical production such as urea.
  • the ammonia separation membrane used in the ammonia separation membrane device 15 is not particularly limited as long as it is a known separation membrane. Examples thereof include a separation membrane made of a synthetic resin, a carbon separation membrane, and the like. Examples of the ammonia separation membrane include a porous silica membrane and a carbon membrane.
  • the unreacted raw material gas 20 after the ammonia gas 12G is separated by the ammonia separation membrane device 15 passes through the heat exchanger 18 and the third cooler 19, and is compressed by the compressor 17, and then returned gas. 20b is returned to the ammonia synthesis tower 11, where ammonia synthesis is performed again.
  • the return gas 20b compressed by the compressor 17 is heat-exchanged by the heat exchanger 18 with the unreacted return gas 20a separated by membrane.
  • a gas extraction line L 5 is installed in the downstream line of the ammonia separation membrane device 15 so as to extract a certain amount of gas from the synthesis loop system for the purpose of removing the inert component (unreacted component) 32. I have to.
  • the synthesis pressure of the ammonia synthesis tower 11 is about 18 MPa, for example, by applying a membrane separation method, efficient ammonia separation can be performed using the self-pressure of synthesis gas by ammonia synthesis. Refrigerating system power in the second cooler 16 for ammonia production can be reduced.
  • the ammonia concentration at the inlet to the ammonia synthesis tower is for chiller equipment performance and purge gas (inert component (unreacted component) removal purpose)
  • the ammonia concentration at the inlet to the ammonia synthesis tower is for chiller equipment performance and purge gas (inert component (unreacted component) removal purpose)
  • it is about 4%, although it varies depending on the amount of gas extracted from the synthetic loop system. Therefore, since the upper limit of the amount of ammonia generated by the ammonia synthesis reaction is determined in terms of reaction equilibrium, the lower the inlet ammonia concentration, the more advantageous.
  • ammonia synthesis reactor with an internal heat exchanger
  • the ammonia gas is separated from the synthesis gas by using an ammonia separation membrane, and “increase the membrane area” or “lower the pressure on the membrane permeation (secondary side)” is performed.
  • the ammonia concentration from the synthesis loop system can be reduced to zero (practically 0.5% to 1.0% at the ammonia synthesis tower inlet), and the following effects are expected.
  • the compressor power can be reduced and the size can be reduced by the "flow rate reduction” and “loop pressure loss reduction” associated with the effects A) and B).
  • the compression ratio is 190 / (190-10) versus 190 / (190-10) when liquefied using a conventional chiller facility. -8), and the power is reduced by the ratio 180/182.
  • the ammonia concentration at the ammonia synthesis tower inlet is preferably 2.0% or less, more preferably. Is preferably not more than 1.0%, more preferably in the range of 0.5% to 1.0%.
  • the ammonia concentration at the inlet to the ammonia synthesis tower 11 is preferably 2.0% or less, more preferably 1.0% or less, and even more preferably 0.5% to 1.0%.
  • the compressor power can be reduced and downsized by “reducing the flow rate” and “reducing the loop pressure loss”, thereby reducing the site area of the synthetic loop system. Specifically, when applied to an actual machine, the site area can be reduced by about 20% to 25% of the conventional system using chiller equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La présente invention porte sur un système doté de : une colonne de synthèse d'ammoniac (11) pour la synthèse d'une matière première pour la synthèse d'ammoniac ; un premier dispositif de refroidissement (14) pour le refroidissement d'un gaz de synthèse (13) comprenant de l'ammoniac gazeux (12G) provenant de la colonne de synthèse d'ammoniac (11) ; un dispositif membranaire de séparation d'ammoniac (15) pour la séparation seulement de l'ammoniac gazeux (12G) du gaz de synthèse (13) refroidi ; un deuxième dispositif de refroidissement (16) pour le refroidissement de l'ammoniac gazeux (12G) séparé par membrane pour former de l'ammoniac liquéfié (12L) ; une conduite de retour de matière première (L2) pour le retour, vers un côté de colonne de synthèse d'ammoniac (11), d'une matière première gazeuse n'ayant pas réagi (20) séparée par membrane ; un compresseur (17) pour la compression d'un gaz de retour n'ayant pas réagi (20a) séparé par membrane, le compresseur (17) étant disposé sur la conduite de retour de matière première (L2) ; un échangeur de chaleur (18) pour l'échange de chaleur entre le gaz de retour n'ayant pas réagi (20a) séparé par membrane et le gaz de retour comprimé (20b) ; et un troisième dispositif de refroidissement (19) pour le refroidissement du gaz de retour (20a) ayant subi un échange de chaleur, le troisième dispositif de refroidissement (19) étant disposé entre le compresseur (17) et l'échangeur de chaleur (18) sur la conduite de gaz de retour (L2).
PCT/JP2014/051289 2013-02-21 2014-01-22 Système et procédé pour la synthèse d'ammoniac WO2014129256A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013032641A JP2014162662A (ja) 2013-02-21 2013-02-21 アンモニア合成システム及び方法
JP2013-032641 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129256A1 true WO2014129256A1 (fr) 2014-08-28

Family

ID=51391053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051289 WO2014129256A1 (fr) 2013-02-21 2014-01-22 Système et procédé pour la synthèse d'ammoniac

Country Status (2)

Country Link
JP (1) JP2014162662A (fr)
WO (1) WO2014129256A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035376A1 (fr) * 2014-09-05 2016-03-10 三菱重工業株式会社 Système et procédé de synthèse d'ammoniac
JPWO2016133133A1 (ja) * 2015-02-17 2017-12-28 味の素株式会社 含窒素製品及び発酵・培養生産物から選択される製品の製造システム及び製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016395665B2 (en) * 2016-03-03 2019-07-11 Jgc Corporation Ammonia production method
US11603599B2 (en) 2019-11-21 2023-03-14 Ohmium International, Inc. Systems and methods of ammonia synthesis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253745A (ja) * 1998-03-10 1999-09-21 Mitsubishi Materials Corp アンモニアの回収方法及び回収装置
JP2003183021A (ja) * 2001-10-12 2003-07-03 Taiyo Toyo Sanso Co Ltd アンモニアガスの連続精製方法および装置
JP2005162546A (ja) * 2003-12-03 2005-06-23 Taiyo Nippon Sanso Corp アンモニアの精製方法及び精製装置
JP2007246302A (ja) * 2006-03-14 2007-09-27 Taiyo Nippon Sanso Corp アンモニア精製装置の再生方法
JP2008247654A (ja) * 2007-03-29 2008-10-16 Hiroshima Univ アンモニアの分離方法、製造方法、及び気体分離膜
JP2012096964A (ja) * 2010-11-02 2012-05-24 Sumitomo Seika Chem Co Ltd アンモニア精製システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253745A (ja) * 1998-03-10 1999-09-21 Mitsubishi Materials Corp アンモニアの回収方法及び回収装置
JP2003183021A (ja) * 2001-10-12 2003-07-03 Taiyo Toyo Sanso Co Ltd アンモニアガスの連続精製方法および装置
JP2005162546A (ja) * 2003-12-03 2005-06-23 Taiyo Nippon Sanso Corp アンモニアの精製方法及び精製装置
JP2007246302A (ja) * 2006-03-14 2007-09-27 Taiyo Nippon Sanso Corp アンモニア精製装置の再生方法
JP2008247654A (ja) * 2007-03-29 2008-10-16 Hiroshima Univ アンモニアの分離方法、製造方法、及び気体分離膜
JP2012096964A (ja) * 2010-11-02 2012-05-24 Sumitomo Seika Chem Co Ltd アンモニア精製システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035376A1 (fr) * 2014-09-05 2016-03-10 三菱重工業株式会社 Système et procédé de synthèse d'ammoniac
JP2016056039A (ja) * 2014-09-05 2016-04-21 三菱重工業株式会社 アンモニア合成システム及び方法
US10246340B2 (en) 2014-09-05 2019-04-02 Mitsubishi Heavy Industries Engineering, Ltd. Ammonia synthesis system and method
JPWO2016133133A1 (ja) * 2015-02-17 2017-12-28 味の素株式会社 含窒素製品及び発酵・培養生産物から選択される製品の製造システム及び製造方法
US10941427B2 (en) 2015-02-17 2021-03-09 Ajinomoto Co., Inc. Production system and method of production for product selected from nitrogen-containing product and fermented and cultured product

Also Published As

Publication number Publication date
JP2014162662A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
US9671160B2 (en) Multi nitrogen expansion process for LNG production
US10597301B2 (en) Ammonia production method
WO2014129256A1 (fr) Système et procédé pour la synthèse d'ammoniac
JP5756180B2 (ja) 高純度塩化水素の製造方法及び製造システム
JP2010537151A5 (fr)
JP2014142161A (ja) 低温圧縮ガスまたは液化ガスの製造装置および製造方法
CN108534463A (zh) 多晶硅还原尾气深度净化方法及***
AU2015353026B2 (en) A method for revamping an ammonia plant
KR20220143246A (ko) Lng 개질 시스템
US10302337B2 (en) Ammonia plant upgrading-multistage integrated chilling of process air compressor with ammonia compressor followed by air flow split and multistage air preheating to secondary ammonia reformer
US10899614B2 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
JP6399867B2 (ja) アンモニア合成システム及び方法
JP2014188405A (ja) 二酸化炭素分離装置及び二酸化炭素分離方法
CN108178166B (zh) 合成氨分离的方法和***
AU2013234169B2 (en) Method and device for condensing a carbon dioxide-rich gas stream
JP2005320454A (ja) 天然ガスハイドレートの製造方法及び製造装置
CN105646162A (zh) 用于制备一种或多种反应产物的方法和设备
CN108190916B (zh) 合成氨分离的方法和***
KR101722321B1 (ko) 이산화탄소-하이드레이트 슬러리 냉장 및 냉동 시스템
JPH11304283A (ja) アンモニア合成装置における冷凍システム
CN207385212U (zh) 甲醇驰放气压力能回收***
KR101964328B1 (ko) 아르곤가스 생산 시스템
TH2101002284A (th) ระบบการสังเคราะห์แอมโมเนีย และวิธีการของการผลิตแอมโมเนีย
US20210080174A1 (en) Method of cooling a natural gas feed stream and recovering a natural gas liquid stream from the natural gas feed stream
CN104071803A (zh) 一种液化天然气的回收处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753618

Country of ref document: EP

Kind code of ref document: A1